Sample records for abundant photosynthetic organism

  1. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    PubMed Central

    Lemloh, Marie-Louise; Fromont, Jane; Brümmer, Franz; Usher, Kayley M

    2009-01-01

    Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA) with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide range of sponges in a wide range

  2. Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms.

    PubMed

    Arendt, Philipp; Pollier, Jacob; Callewaert, Nico; Goossens, Alain

    2016-07-01

    With tens of thousands of characterized members, terpenoids constitute the largest class of natural compounds that are synthesized by all living organisms. Several terpenoids play primary roles in the maintenance of cell membrane fluidity, as pigments or as phytohormones, but most of them function as specialized metabolites that are involved in plant resistance to herbivores or plant-environment interactions. Terpenoids are an essential component of human nutrition, and many are economically important pharmaceuticals, aromatics and potential next-generation biofuels. Because of the often low abundance in their natural source, as well as the demand for novel terpenoid structures with new or improved bioactivities, terpenoid biosynthesis has become a prime target for metabolic engineering and synthetic biology projects. In this review we focus on the creation of new-to-nature or tailor-made plant-derived terpenoids in photosynthetic organisms, in particular by means of combinatorial biosynthesis and the activation of silent metabolism. We reflect on the characteristics of different potential photosynthetic host organisms and recent advances in synthetic biology and discuss their utility for the (heterologous) production of (novel) terpenoids. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  3. Engineering photosynthetic organisms for the production of biohydrogen

    DOE PAGES

    Dubini, Alexandra; Ghirardi, Maria L.

    2014-03-27

    Oxygenic photosynthetic organisms such as green algae are capable of absorbing sunlight and converting the chemical energy into hydrogen gas. This process takes advantage of the photosynthetic apparatus of these organisms which links water oxidation to H 2 production. Biological H 2 has therefore the potential to be an alternative fuel of the future and shows great promise for generating large scale sustainable energy. Microalgae are able to produce H 2 under light anoxic or dark anoxic condition by activating 3 different pathways that utilize the hydrogenases as catalysts. In this review, we highlight the principal barriers that prevent hydrogenmore » production in green algae and how those limitations are being addressed, through metabolic and genetic engineering. We also discuss the major challenges and bottlenecks facing the development of future commercial algal photobiological systems for H 2 production. Lastly we provide suggestions for future strategies and potential new techniques to be developed towards an integrated system with optimized hydrogen production.« less

  4. Automated systems to monitor space radiation effect on photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Esposito, D.; di Costa, F.; Faraloni, C.; Fasolo, F.; Pace, E.; Perosino, M.; Torzillo, G.; Touloupakis, E.; Zanini, A.; Giardi, M. T.

    We developed automated biodevices to obtain, automatically, measures about the space radiation effect on living photosynthetic organisms, which can be used as biomass and oxygen-producing system on shuttles or ISS. Vitality measurements were performed by optical devices (fluorimeters) measuring fluorescence emission. Fluorescence methodology is a well known applied technique for studying photosynthetic activity, and in particular the oxygen-evolving process of photosynthetic organisms. Different strains of unicellular green algae are properly immobilized on agar growth medium and kept under survial light. The biodevices are characterised by the sensibility and selectivity of the biological component response, together with easy use, versatility, miniature size and low cost. We performed experiments in some facilities, in order to understand separately the effect of radiation of different LET, on the biochemical activity (gamma rays at Joint Research Centre -Varese, Italy; fast neutrons at CERF -- SPS beam at CERN -Geneva, Switzerland). The exposure to different radiation beams of the automatic devices, allowed us to test them under stress condition. In one year, these instrument are expected to be sent to space, inside a spacecraft, in order to study the effect of ionising cosmic radiation during an ESA flight.

  5. Methods and constructs for expression of foreign proteins in photosynthetic organisms

    DOEpatents

    Laible, Philip D.; Hanson, Deborah K.

    2002-01-01

    A method for expressing and purifying foreign proteins in photosynthetic organisms comprising the simultaneous expression of both the heterologous protein and a means for compartmentalizing or sequestering of the protein.

  6. Measuring indigenous photosynthetic organisms to detect chemical warefare agents in water

    DOEpatents

    Greenbaum, Elias; Sanders, Charlene A.

    2005-11-15

    A method of testing water to detect the presence of a chemical or biological warfare agent is disclosed. The method is carried out by establishing control data by providing control water containing indigenous organisms but substantially free of a chemical and a biological warfare agent. Then measuring photosynthetic activity of the control water with a fluorometer to obtain control data to compare with test data to detect the presence of the chemical or agent. The test data is gathered by providing test water comprising the same indigenous organisms as contained in the control water. Further, the test water is suspected of containing the chemical or agent to be tested for. Photosynthetic activity is also measured by fluorescence induction in the test water using a fluorometer.

  7. Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

    NASA Astrophysics Data System (ADS)

    Avila-Alonso, Dailé; Baetens, Jan M.; Cardenas, Rolando; de Baets, Bernard

    2017-07-01

    In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

  8. How Cyanobacterial Distributions Reveal Flow and Irradiance Conditions of Photosynthetic Biofilm Formation

    NASA Technical Reports Server (NTRS)

    Prufert-Bebout, Lee; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Microbial life on Earth is enormously abundant at sediment-water interfaces. The fossil record in fact contains abundant evidence of the preservation of life on such surfaces. It is therefore critical to our interpretation of early Earth history, and potentially to history of life on other planets, to be able to recognize life forms at these interfaces. On Earth this life often occurs as organized structures of microbes and their extracellular exudates known as biofilms. When such biofilms occur in areas receiving sunlight photosynthetic biofilms are the dominant form in natural ecosystems due to selective advantage inherent in their ability to utilize solar energy. Cyanobacteria are the dominant phototrophic microbes in most modern and ancient photosynthetic biofilms, microbial mats and stromatolites. Due to their long (3.5 billion year) evolutionary history, this group has extensively diversified resulting in an enormous array of morphologies and physiological abilities. This enormous diversity and specialization results in very specific selection for a particular cyanobacterium in each available photosynthetic niche. Furthermore these organisms can alter their spatial orientation, cell morphology, pigmentation and associations with heterotrophic organisms in order to fine tune their optimization to a given micro-niche. These adaptations can be detected, and if adequate knowledge of the interaction between environmental conditions and organism response is available, the detectable organism response can be used to infer the environmental conditions causing that response. This presentation will detail two specific examples which illustrate this point, Light and water are essential to photosynthesis in cyanobacteria and these organisms have specific detectable behavioural responses to these parameters. We will present cyanobacterial responses to quantified flow and irradiance to demonstrate the interpretative power of distribution and orientation information. This

  9. Photosynthetic approaches to chemical biotechnology.

    PubMed

    Desai, Shuchi H; Atsumi, Shota

    2013-12-01

    National interest and environmental advocates encourage alternatives to petroleum-based products. Besides biofuels, many other valuable chemicals used in every-day life are petroleum derivatives or require petroleum for their production. A plausible alternative to production using petroleum for chemical production is to harvest the abundant carbon dioxide resources in the environment to produce valuable hydrocarbons. Currently, efforts are being made to utilize a natural biological system, photosynthetic microorganisms, to perform this task. Photosynthetic microorganisms are attractive to use for biochemical production because they utilize economical resources for survival: sunlight and carbon dioxide. This review examines the various compounds produced by photosynthetic microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. LHCII organization and thylakoid lipids affect the sensitivity of the photosynthetic apparatus to high-light treatment.

    PubMed

    Dankov, Kolyo G; Dobrikova, Anelia G; Ughy, Bettina; Bogos, Balázs; Gombos, Zoltan; Apostolova, Emilia L

    2011-06-01

    Pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photosynthetic oxygen evolution were used to investigate the role of the different amount and organization of light-harvesting complexes of photosystem II (LHCII) in four pea species on the susceptibility of the photosynthetic apparatus to high-light treatment. In this work we analyzed the thylakoid membrane lipid composition of the studied pea plants. A relationship between the structural organization of LHCII proteins, the amount of the main lipid classes and the sensitivity of the photosynthetic apparatus to high-light treatment was found. The results reveal that the photosynthetic apparatus, enriched in oligomeric forms of LHCII concomitant with decreased amount of anionic lipids and increased content of the monogalactosyldiacylglycerol (MGDG), is less sensitive to high light. Our data also suggest that the degree of LHCII oligomerization, as well as the lipid composition do not influence the degree of recovery of the PSII photochemistry after excess light exposure. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. Community Assembly and Ecology of Activated Sludge under Photosynthetic Feast-Famine Conditions.

    PubMed

    Oyserman, Ben O; Martirano, Joseph M; Wipperfurth, Spenser; Owen, Brian R; Noguera, Daniel R; McMahon, Katherine D

    2017-03-21

    Here, we demonstrate that photosynthetic oxygen production under light-dark and feast-famine cycles with no mechanical aeration and negligible oxygen diffusion is able to maintain phosphorus cycling activity associated with the enrichment of polyphosphate accumulating organisms (PAOs). We investigate the ecology of this novel system by conducting a time series analysis of prokaryotic and eukaryotic biodiversity using the V3-V4 and V4 regions of the 16S and 18S rRNA gene sequences, respectively. In the Eukaryotic community, the initial dominant alga observed was Desmodesmus. During operation, the algal community became a more diverse consortium of Desmodesmus, Parachlorella, Characiopodium, and Bacillariophytina. In the Prokaryotic community, there was an initial enrichment of the PAO Candidatus Accumulibacter phosphatis (Accumulibacter) Acc-SG2, and the dominant ammonia-oxidizing organism was Nitrosomonas oligotropha; however, these populations decreased in relative abundance, becoming dominated by Accumulibacter Acc-SG3 and Nitrosomonas ureae. Furthermore, functional guilds that were not abundant initially became enriched including the putative Cyanobacterial PAOs Obscuribacterales and Leptolyngbya and the H 2 -oxidizing denitrifying autotroph Sulfuritalea. After a month of operation, the most-abundant prokaryote belonged to an uncharacterized clade of Chlorobi classified as Chlorobiales;SJA-28 Clade III, the first reported enrichment of this lineage. This experiment represents the first investigation into the ecological interactions and community assembly during photosynthetic feast-famine conditions. Our findings suggest that photosynthesis may provide sufficient oxygen to drive polyphosphate cycling.

  12. High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean.

    PubMed

    Lami, Raphaël; Cottrell, Matthew T; Ras, Joséphine; Ulloa, Osvaldo; Obernosterer, Ingrid; Claustre, Hervé; Kirchman, David L; Lebaron, Philippe

    2007-07-01

    Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions. The abundances of AAP bacteria and Prochlorococcus were high, together accounting for up to 58% of the total prokaryotic community. The abundance of AAP bacteria alone was up to 1.94 x 10(5) cells ml(-1) and as high as 24% of the overall community. These measurements were consistent with the high BChl a concentrations (up to 3.32 x 10(-3) microg liter(-1)) found at all stations. However, the BChl a content per AAP bacterial cell was low, suggesting that AAP bacteria are mostly heterotrophic organisms. Interestingly, the biovolume and therefore biomass of AAP bacteria was on average twofold higher than that of other prokaryotic cells. This study demonstrates that AAP bacteria can be abundant in various oligotrophic conditions, including the most oligotrophic regime of the world ocean, and can account for a large part of the bacterioplanktonic carbon stock.

  13. Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage.

    PubMed

    Hu, Yuan-Yuan; Zhang, Ya-Li; Luo, Hong-Hai; Li, Wei; Oguchi, Riichi; Fan, Da-Yong; Chow, Wah Soon; Zhang, Wang-Feng

    2012-02-01

    Non-foliar green organs are recognized as important carbon sources after leaves. However, the contribution of each organ to total yield has not been comprehensively studied in relation to the time-course of changes in surface area and photosynthetic activity of different organs at different growth stages. We studied the contribution of leaves, main stem, bracts and capsule wall in cotton by measuring their time-course of surface area development, O(2) evolution capacity and photosynthetic enzyme activity. Because of the early senescence of leaves, non-foliar organs increased their surface area up to 38.2% of total at late growth stage. Bracts and capsule wall showed less ontogenetic decrease in O(2) evolution capacity per area and photosynthetic enzyme activity than leaves at the late growth stage. The total capacity for O(2) evolution of stalks and bolls (bracts plus capsule wall) was 12.7 and 23.7% (total ca. 36.4%), respectively, as estimated by multiplying their surface area by their O(2) evolution capacity per area. We also kept the bolls (from 15 days after anthesis) or main stem (at the early full bolling stage) in darkness for comparison with non-darkened controls. Darkening the bolls and main stem reduced the boll weight by 24.1 and 9%, respectively, and the seed weight by 35.9 and 16.3%, respectively. We conclude that non-foliar organs significantly contribute to the yield at the late growth stage.

  14. Oxygen dynamics in photosynthetic membranes.

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Kihara, Shigeharu

    2008-03-01

    Production of oxygen by oxygenic photosynthetic organisms is expected to raise oxygen concentration within their photosynthetic membranes above normal aerobic values. These raised levels of oxygen may affect function of many proteins within photosynthetic cells. However, experiments on proteins in vitro are usually performed in aerobic (or anaerobic) conditions since the oxygen content of a membrane is not known. Using theory of diffusion and measured oxygen production rates we estimated the excess levels of oxygen in functioning photosynthetic cells. We show that for an individual photosynthetic cell suspended in water oxygen level is essentially the same as that for a non-photosynthetic sell. These data suggest that oxygen protection mechanisms may have evolved after the development of oxygenic photosynthesis in primitive bacteria and was driven by the overall rise of oxygen concentration in the atmosphere. Substantially higher levels of oxygen are estimated to occur in closely packed colonies of photosynthetic bacteria and in green leafs.

  15. Engineered photosynthetic bacteria, method of manufacture of biofuels

    DOEpatents

    Laible, Philip D.; Snyder, Seth W.

    2016-09-13

    The invention provides for a novel type of biofuel; a method for cleaving anchors from photosynthetic organisms; and a method for producing biofuels using photosynthetic organisms, the method comprising identifying photosynthesis co-factors and their anchors in the organisms; modifying the organisms to increase production of the anchors; accumulating biomass of the organisms in growth media; and harvesting the anchors.

  16. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria

    PubMed Central

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide. PMID:27513570

  17. Ecological and evolutionary genomics of marine photosynthetic organisms.

    PubMed

    Coelho, Susana M; Simon, Nathalie; Ahmed, Sophia; Cock, J Mark; Partensky, Frédéric

    2013-02-01

    Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms. © 2012 Blackwell Publishing Ltd.

  18. Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1994-01-01

    Photosynthetic reaction centers from a variety of organisms have been isolated and characterized. The groups of prokaryotic photosynthetic organisms include the purple bacteria, the filamentous green bacteria, the green sulfur bacteria and the heliobacteria as anoxygenic representatives as well as the cyanobacteria and prochlorophytes as oxygenic representatives. This review focuses on structural and functional comparisons of the various groups of photosynthetic reaction centers and considers possible evolutionary scenarios to explain the diversity of existing photosynthetic organisms.

  19. Species selection for the design of gold nanobioreactor by photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Dahoumane, Si Amar; Djediat, Chakib; Yéprémian, Claude; Couté, Alain; Fiévet, Fernand; Coradin, Thibaud; Brayner, Roberta

    2012-06-01

    The design of cell-based bioreactors for inorganic particles formation requires both a better understanding of the underlying processes and the identification of most suitable organisms. With this purpose, the process of Au3+ incorporation, intracellular reduction, and Au0 nanoparticle release in the culture medium was compared for four photosynthetic microorganisms, Klebsormidium flaccidum and Cosmarium impressulum green algae, Euglena gracilis euglenoid and Anabaena flos- aquae cyanobacteria. At low gold content, the two green algae show maintained photosynthetic activity and recovered particles (ca. 10 nm in size) are similar to internal colloids, indicating a full biological control over the whole process. In similar conditions, the euglenoid exhibits a rapid loss of biological activity, due to the absence of protective extracellular polysaccharide, but could grow again after an adaptation period. This results in a larger particle size dispersity but larger reduction yield. The cyanobacteria undergo rapid cell death, due to their prokaryotic nature, leading to high gold incorporation rate but poor control over released particle size. Similar observations can be made after addition of a larger gold salt concentration when all organisms rapidly die, suggesting that part of the process is not under biological control anymore but also involves extracellular chemical reactions. Overall, fruitful information on the whole biocrystallogenesis process is gained and most suitable species for further bioreactor design can be identified, i.e., green algae with external coating.

  20. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    DOEpatents

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  1. How Cyanobacterial Distributions Reveal Flow and Irradiance Conditions of Photosynthetic Biofilm Formation

    NASA Technical Reports Server (NTRS)

    Prufert-Bebout, Lee

    2001-01-01

    Microbial life on Earth is enormously abundant at sediment-water interfaces. The fossil record in fact contains abundant evidence of the preservation of life on such surfaces. It is therefore critical to our interpretation of early Earth history, and potentially to history of life on other planets, to be able to recognize life forms at these interfaces. On Earth this life often occurs as organized structures of microbes and their extracellular exudates known as biofilms. When such biofilms occur in areas receiving sunlight photosynthetic biofilms are the dominant form in natural ecosystems due to selective advantage inherent in their ability to utilize solar energy. Cyanobacteria are the dominant phototrophic microbes in most modern and ancient photosynthetic biofilms, microbial mats and stromatolites. Due to their long (3.5 billion year) evolutionary history, this group has extensively diversified resulting in an enormous array of morphologies and physiological abilities. This enormous diversity and specialization results in very specific selection for a particular cyanobacterium in each available photosynthetic niche. Furthermore these organisms can alter their spatial orientation, cell morphology, pigmentation and associations with heterotrophic organisms in order to fine tune their optimization to a given micro-niche. These adaptations can be detected, and if adequate knowledge of the interaction between environmental conditions and organism response is available, the detectable organism response can be used to infer the environmental conditions causing that response. This presentation will detail two specific examples which illustrate this point. Light and water are essential to photosynthesis in cyanobacteria and these organisms have specific detectable behavioral responses to these parameters. We will present cyanobacterial responses to quantified flow and irradiance to demonstrate the interpretative power of distribution and orientation information. This

  2. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress.

    PubMed

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-09-23

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  3. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    PubMed Central

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-01-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings. PMID:26395070

  4. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    NASA Astrophysics Data System (ADS)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  5. Regulation of Photosynthetic Electron Transport and Photoinhibition

    PubMed Central

    Roach, Thomas; Krieger-Liszkay, Anja Krieger

    2014-01-01

    Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms. PMID:24678670

  6. Mapping the spectral variability in photosynthetic and non-photosynthetic vegetation, soils, and shade using AVIRIS

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Smith, Milton O.; Sabol, Donald E.; Adams, John B.; Ustin, Susan L.

    1992-01-01

    The primary objective of this research was to map as many spectrally distinct types of green vegetation (GV), non-photosynthetic vegetation (NPV), shade, and soil (endmembers) in an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene as is warranted by the spectral variability of the data. Once determined, a secondary objective was to interpret these endmembers and their abundances spatially and spectrally in an ecological context.

  7. The essential gene set of a photosynthetic organism

    DOE PAGES

    Rubin, Benjamin E.; Wetmore, Kelly M.; Price, Morgan N.; ...

    2015-10-27

    Synechococcus elongatus PCC 7942 is a model organism used for studying photosynthesis and the circadian clock, and it is being developed for the production of fuel, industrial chemicals, and pharmaceuticals. To identify a comprehensive set of genes and intergenic regions that impacts fitness in S. elongatus, we created a pooled library of ~250,000 transposon mutants and used sequencing to identify the insertion locations. By analyzing the distribution and survival of these mutants, we identified 718 of the organism's 2,723 genes as essential for survival under laboratory conditions. The validity of the essential gene set is supported by its tight overlapmore » with wellconserved genes and its enrichment for core biological processes. The differences noted between our dataset and these predictors of essentiality, however, have led to surprising biological insights. One such finding is that genes in a large portion of the TCA cycle are dispensable, suggesting that S. elongatus does not require a cyclic TCA process. Furthermore, the density of the transposon mutant library enabled individual and global statements about the essentiality of noncoding RNAs, regulatory elements, and other intergenic regions. In this way, a group I intron located in tRNA Leu , which has been used extensively for phylogenetic studies, was shown here to be essential for the survival of S. elongatus. Our survey of essentiality for every locus in the S. elongatus genome serves as a powerful resource for understanding the organism's physiology and defines the essential gene set required for the growth of a photosynthetic organism.« less

  8. Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics [Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics and NanoSIMS.

    DOE PAGES

    Burow, Luke C.; Woebken, Dagmar; Marshall, Ian PG; ...

    2012-11-29

    Photosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here in this paper, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA. In this reconstruction, Microcoleus spp., the most abundant cyanobacterial group in the mats, ferment photosynthate to organic acids, CO 2 and Hmore » 2 through multiple pathways, and an uncultivated lineage of the Chloroflexi take up these organic acids to store carbon as polyhydroxyalkanoates. The metabolic reconstruction is consistent with metabolite measurements and single cell microbial imaging with fluorescence in situ hybridization and NanoSIMS.« less

  9. Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics [Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics and NanoSIMS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burow, Luke C.; Woebken, Dagmar; Marshall, Ian PG

    Photosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here in this paper, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA. In this reconstruction, Microcoleus spp., the most abundant cyanobacterial group in the mats, ferment photosynthate to organic acids, CO 2 and Hmore » 2 through multiple pathways, and an uncultivated lineage of the Chloroflexi take up these organic acids to store carbon as polyhydroxyalkanoates. The metabolic reconstruction is consistent with metabolite measurements and single cell microbial imaging with fluorescence in situ hybridization and NanoSIMS.« less

  10. [Survival strategy of photosynthetic organisms. 1. Variability of the extent of light-harvesting pigment aggregation as a structural factor optimizing the function of oligomeric photosynthetic antenna. Model calculations].

    PubMed

    Fetisova, Z G

    2004-01-01

    In accordance with our concept of rigorous optimization of photosynthetic machinery by a functional criterion, this series of papers continues purposeful search in natural photosynthetic units (PSU) for the basic principles of their organization that we predicted theoretically for optimal model light-harvesting systems. This approach allowed us to determine the basic principles for the organization of a PSU of any fixed size. This series of papers deals with the problem of structural optimization of light-harvesting antenna of variable size controlled in vivo by the light intensity during the growth of organisms, which accentuates the problem of antenna structure optimization because optimization requirements become more stringent as the PSU increases in size. In this work, using mathematical modeling for the functioning of natural PSUs, we have shown that the aggregation of pigments of model light-harvesting antenna, being one of universal optimizing factors, furthermore allows controlling the antenna efficiency if the extent of pigment aggregation is a variable parameter. In this case, the efficiency of antenna increases with the size of the elementary antenna aggregate, thus ensuring the high efficiency of the PSU irrespective of its size; i.e., variation in the extent of pigment aggregation controlled by the size of light-harvesting antenna is biologically expedient.

  11. Excitons in intact cells of photosynthetic bacteria.

    PubMed

    Freiberg, Arvi; Pajusalu, Mihkel; Rätsep, Margus

    2013-09-26

    Live cells and regular crystals seem fundamentally incompatible. Still, effects characteristic to ideal crystals, such as coherent sharing of excitation, have been recently used in many studies to explain the behavior of several photosynthetic complexes, especially the inner workings of the light-harvesting apparatus of the oldest known photosynthetic organisms, the purple bacteria. To this date, there has been no concrete evidence that the same effects are instrumental in real living cells, leaving a possibility that this is an artifact of unnatural study conditions, not a real effect relevant to the biological operation of bacteria. Hereby, we demonstrate survival of collective coherent excitations (excitons) in intact cells of photosynthetic purple bacteria. This is done by using excitation anisotropy spectroscopy for tracking the temperature-dependent evolution of exciton bands in light-harvesting systems of increasing structural complexity. The temperature was gradually raised from 4.5 K to ambient temperature, and the complexity of the systems ranged from detergent-isolated complexes to complete bacterial cells. The results provide conclusive evidence that excitons are indeed one of the key elements contributing to the energetic and dynamic properties of photosynthetic organisms.

  12. Engineering biosynthesis of high-value compounds in photosynthetic organisms.

    PubMed

    O'Neill, Ellis C; Kelly, Steven

    2017-09-01

    The photosynthetic, autotrophic lifestyle of plants and algae position them as ideal platform organisms for sustainable production of biomolecules. However, their use in industrial biotechnology is limited in comparison to heterotrophic organisms, such as bacteria and yeast. This usage gap is in part due to the challenges in generating genetically modified plants and algae and in part due to the difficulty in the development of synthetic biology tools for manipulating gene expression in these systems. Plant and algal metabolism, pre-installed with multiple biosynthetic modules for precursor compounds, bypasses the requirement to install these pathways in conventional production organisms, and creates new opportunities for the industrial production of complex molecules. This review provides a broad overview of the successes, challenges and future prospects for genetic engineering in plants and algae for enhanced or de novo production of biomolecules. The toolbox of technologies and strategies that have been used to engineer metabolism are discussed, and the potential use of engineered plants for industrial manufacturing of large quantities of high-value compounds is explored. This review also discusses the routes that have been taken to modify the profiles of primary metabolites for increasing the nutritional quality of foods as well as the production of specialized metabolites, cosmetics, pharmaceuticals and industrial chemicals. As the universe of high-value biosynthetic pathways continues to expand, and the tools to engineer these pathways continue to develop, it is likely plants and algae will become increasingly valuable for the biomanufacturing of high-value compounds.

  13. Distribution and abundance of organic thiols

    NASA Technical Reports Server (NTRS)

    Fahey, R.

    1985-01-01

    The role of glutathione (GSH) in protecting against the toxicity of oxygen and oxygen by products is well established for all eukaryotes studied except Entamoeba histolytica which lacks mitochrondria, chloroplasts, and microtubules. The GSH is not universal among prokaryotes. Entamoeba histolytica does not produce GSH or key enzymes of GSH metabolism. A general method of thiol analysis based upon fluorescent labeling with monobromobimane and HPLC separation of the resulting thiol derivatives was developed to determine the occurrence of GSH and other low molecular weight thiols in bacteria. Glutathione is the major thiol in cyanobacteria and in most bacteria closely related to the purple photosynthetic bacteria, but GSH was not found in archaebacteria, green bacteria, or GRAM positive bacteria. It suggested that glutathione metabolism was incorporated into eukaryotes at the time that mitochondria and chloroplasts were acquired by endosymbiosis. In Gram positive aerobes, coenzyme A occurs at millimolar levels and CoA disulfide reductases are identified. The CoA, rather than glutathione, may function in the oxygen detoxification processes of these organisms.

  14. Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations.

    PubMed

    Girlanda, Mariangela; Segreto, Rossana; Cafasso, Donata; Liebel, Heiko Tobias; Rodda, Michele; Ercole, Enrico; Cozzolino, Salvatore; Gebauer, Gerhard; Perotto, Silvia

    2011-07-01

    We investigated whether four widespread, photosynthetic Mediterranean meadow orchids (Ophrys fuciflora, Anacamptis laxiflora, Orchis purpurea, and Serapias vomeracea) had either nutritional dependency on mycobionts or mycorrhizal fungal specificity. Nonphotosynthetic orchids generally engage in highly specific interactions with fungal symbionts that provide them with organic carbon. By contrast, fully photosynthetic orchids in sunny, meadow habitats have been considered to lack mycorrhizal specificity. We performed both culture-dependent and culture-independent ITS sequence analysis to identify fungi from orchid roots. By analyzing stable isotope ((13)C and (15)N) natural abundances, we also determined the degree of autotrophy and mycoheterotrophy in the four orchid species. Phylogenetic and multivariate comparisons indicated that Or. purpurea and Oph. fuciflora featured lower fungal diversity and more specific mycobiont spectra than A. laxiflora and S. vomeracea. All orchid species were significantly enriched in (15)N compared with neighboring non-orchid plants. Orchis purpurea had the most pronounced N gain from fungi and differed from the other orchids in also obtaining C from fungi. These results indicated that even in sunny Mediterranean meadows, orchids may be mycoheterotrophic, with correlated mycorrhizal fungal specificity.

  15. Pulley reef: a deep photosynthetic coral reef on the West Florida Shelf, USA

    USGS Publications Warehouse

    Culter, J.K.; Ritchie, K.B.; Earle, S.A.; Guggenheim, D.E.; Halley, R.B.; Ciembronowicz, K.T.; Hine, A.C.; Jarrett, B.D.; Locker, S.D.; Jaap, W.C.

    2006-01-01

    Pulley Reef (24°50′N, 83°40′W) lies on a submerged late Pleistocene shoreline feature that formed during a sea-level stillstand from 13.8 to 14.5 ka (Jarrett et al. 2005). The reef is currently 60–75 m deep, exhibits 10–60% coral cover, and extends over approximately 160 km2 of the sea floor. Zooxanthellate corals are primarily Agaricia lamarcki, A. fragilis, Leptoseris cucullata, and less common Madracis formosa, M. pharensis, M. decactis, Montastraea cavernosa, Porites divaricata, Scolymia cubensis and Oculina tenella. Coralline algae are comparable in abundance to stony corals. Other macroalgae include Halimeda tuna, Dictyota divaricata, Lobophora variegata, Ventricatri ventricosa, Verdigelas pelas, and Kallymenia sp. Anadyomene menziesii is abundant. The reef provides a habitat for organisms typically observed at much shallower depths, and is the deepest known photosynthetic coral reef on the North America continental shelf (Fig. 1).

  16. Biotechnological Approaches to Enhance Halotolerance and Photosynthetic Efficacy in the Cyanobacterium, Fremyella diplosiphon

    NASA Astrophysics Data System (ADS)

    Tabatabai, Ben

    Growing concerns over dwindling energy supplies linked to nonrenewable fossil fuels have driven profound interest in biofuels as a clean and sustainable alternative. Cyanobacteria are a promising source of third-generation biofuel due to their fast generation time and high net biomass conversion. In this study, the effect of salinity stress on Fremyella diplosiphon, a model organism for studying photosynthetic pathways, was investigated and nanobiotechnological approaches undertaken to enhance its halotolerance and photosynthetic efficacy. Heat-induced mutagenesis resulted in a mutant strain that could survive in 20 g L-1 sodium chloride (NaCl) with no loss in pigmentation. To further enhance F. diplosiphon halotolerance, expression plasmids harboring the hlyB and mdh genes were overexpressed in the wild type resulting in two transformants that thrived in 35 g L-1 NaCl, the average salinity of sea water. In addition, no significant reduction in photosynthetic efficacy was detected in the halotolerant strains relative to the wild type. Total lipid content and fatty acid methyl ester composition of wild type and halotolerant strains were assessed for their potential as a production-scale biofuel agent. Methyl palmitate, the methyl ester of hexodeconoate (C16:0), was found to be most abundant in the wild type and transformants accounting for 60-70% of total FAMEs produced. Efforts to enhance the photosynthetic efficiency of the strains revealed that gold nanoparticle-derived surface plasmon resonance augmented culture growth and pigment accumulation. Cell-nanoparticles interactions were visualized using scanning and transmission electron microscopy. Our findings address two key challenges that cyanobacterial biofuel agents need to overcome: enhanced halotolerance and photosynthetic efficacy to minimize freshwater input and artificial light supply. These innovations have paved the way for an efficient cyanobacterial cultivation system for large-scale production of

  17. Enhanced practical photosynthetic CO2 mitigation

    DOEpatents

    Bayless, David J.; Vis-Chiasson, Morgan L.; Kremer, Gregory G.

    2003-12-23

    This process is unique in photosynthetic carbon sequestration. An on-site biological sequestration system directly decreases the concentration of carbon-containing compounds in the emissions of fossil generation units. In this process, photosynthetic microbes are attached to a growth surface arranged in a containment chamber that is lit by solar photons. A harvesting system ensures maximum organism growth and rate of CO.sub.2 uptake. Soluble carbon and nitrogen concentrations delivered to the cyanobacteria are enhanced, further increasing growth rate and carbon utilization.

  18. Photoprotection Conferred by Changes in Photosynthetic Protein Levels and Organization during Dehydration of a Homoiochlorophyllous Resurrection Plant1

    PubMed Central

    Charuvi, Dana; Nevo, Reinat; Shimoni, Eyal; Naveh, Leah; Zia, Ahmad; Adam, Zach; Farrant, Jill M.; Kirchhoff, Helmut; Reich, Ziv

    2015-01-01

    During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state. PMID:25713340

  19. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Vaillancourt, Robert D.; Marra, John; Seki, Michael P.; Parsons, Michael L.; Bidigare, Robert R.

    2003-07-01

    A synoptic spatial examination of the eddy Haulani (17-20 November 2000) revealed a structure typical of Hawaiian cyclonic eddies with divergent surface flow forcing the upward displacement of deep waters. Hydrographic surveys revealed that surface water in the eddy center was ca. 3.5°C cooler, 0.5 saltier, and 1.4 kg m -3 denser than surface waters outside the eddy. Vertically integrated concentrations of nitrate+nitrite, phosphate and silicate were enhanced over out-eddy values by about 2-fold, and nitrate+nitrite concentrations were ca. 8× greater within the euphotic zone inside the eddy than outside. Si:N ratios were lower within the upper mixed layer of the eddy, indicating an enhanced Si uptake relative to nitrate+nitrite. Chlorophyll a concentrations were higher within the eddy compared to control stations outside, when integrated over the upper 150 m, but were not significantly different when integrated over the depth of the euphotic zone. Photosynthetic competency, assessed using fast repetition-rate fluorometry, varied with the doming of the isopycnals and the supply of macro-nutrients to the euphotic zone. The physical and chemical environment of the eddy selected for the accumulation of larger phytoplankton species. Photosynthetic bacteria ( Prochlorococcus and Synechococcus) and small (<3 μm diameter) photosynthetic eukaryotes were 3.6-fold more numerically abundant outside the eddy as compared to inside. Large photosynthetic eukaryotes (>3 μm diameter) were more abundant inside the eddy than outside. Diatoms of the genera Rhizosolenia and Hemiaulus outside the eddy contained diazotrophic endosymbiontic cyanobacteria, but these endosymbionts were absent from the cells of these species inside the eddy. The increase in cell numbers of large photosynthetic eukaryotes with hard silica or calcite cell walls is likely to have a profound impact on the proportion of the organic carbon production that is exported to deep water by sinking of senescent cells

  20. Chlamydomonas reinhardtii: the model of choice to study mitochondria from unicellular photosynthetic organisms.

    PubMed

    Funes, Soledad; Franzén, Lars-Gunnar; González-Halphen, Diego

    2007-01-01

    Chlamydomonas reinhardtii is a model organism to study photosynthesis, cellular division, flagellar biogenesis, and, more recently, mitochondrial function. It has distinct advantages in comparison to higher plants because it is unicellular, haploid, and amenable to tetrad analysis, and its three genomes are subject to specific transformation. It also has the possibility to grow either photoautotrophically or heterotrophically on acetate, making the assembly of the photosynthetic machinery not essential for cell viability. Methods developed allow the isolation of C. reinhardtii mitochondria free of thylakoid contaminants. We review the general procedures used for the biochemical characterization of mitochondria from this green alga.

  1. The activated sludge ecosystem contains a core community of abundant organisms

    PubMed Central

    Saunders, Aaron M; Albertsen, Mads; Vollertsen, Jes; Nielsen, Per H

    2016-01-01

    Understanding the microbial ecology of a system requires that the observed population dynamics can be linked to their metabolic functions. However, functional characterization is laborious and the choice of organisms should be prioritized to those that are frequently abundant (core) or transiently abundant, which are therefore putatively make the greatest contribution to carbon turnover in the system. We analyzed the microbial communities in 13 Danish wastewater treatment plants with nutrient removal in consecutive years and a single plant periodically over 6 years, using Illumina sequencing of 16S ribosomal RNA amplicons of the V4 region. The plants contained a core community of 63 abundant genus-level operational taxonomic units (OTUs) that made up 68% of the total reads. A core community consisting of abundant OTUs was also observed within the incoming wastewater to three plants. The net growth rate for individual OTUs was quantified using mass balance, and it was found that 10% of the total reads in the activated sludge were from slow or non-growing OTUs, and that their measured abundance was primarily because of immigration with the wastewater. Transiently abundant organisms were also identified. Among them the genus Nitrotoga (class Betaproteobacteria) was the most abundant putative nitrite oxidizer in a number of activated sludge plants, which challenges previous assumptions that Nitrospira (phylum Nitrospirae) are the primary nitrite-oxidizers in activated sludge systems with nutrient removal. PMID:26262816

  2. Contributions of photosynthetic and non-photosynthetic cell types to leaf respiration in Vicia faba L. and their responses to growth temperature.

    PubMed

    Long, Benedict M; Bahar, Nur H A; Atkin, Owen K

    2015-11-01

    In intact leaves, mitochondrial populations are highly heterogeneous among contrasting cell types; how such contrasting populations respond to sustained changes in the environment remains, however, unclear. Here, we examined respiratory rates, mitochondrial protein composition and response to growth temperature in photosynthetic (mesophyll) and non-photosynthetic (epidermal) cells from fully expanded leaves of warm-developed (WD) and cold-developed (CD) broad bean (Vicia faba L.). Rates of respiration were significantly higher in mesophyll cell protoplasts (MCPs) than epidermal cell protoplasts (ECPs), with both protoplast types exhibiting capacity for cytochrome and alternative oxidase activity. Compared with ECPs, MCPs contained greater relative quantities of porin, suggesting higher mitochondrial surface area in mesophyll cells. Nevertheless, the relative quantities of respiratory proteins (normalized to porin) were similar in MCPs and ECPs, suggesting that ECPs have lower numbers of mitochondria yet similar protein complement to MCP mitochondria (albeit with lower abundance serine hydroxymethyltransferase). Several mitochondrial proteins (both non-photorespiratory and photorespiratory) exhibited an increased abundance in response to cold in both protoplast types. Based on estimates of individual protoplast respiration rates, combined with leaf cell abundance data, epidermal cells make a small but significant (2%) contribution to overall leaf respiration which increases twofold in the cold. Taken together, our data highlight the heterogeneous nature of mitochondrial populations in leaves, both among contrasting cell types and in how those populations respond to growth temperature. © 2015 John Wiley & Sons Ltd.

  3. Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes*

    PubMed Central

    Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M.; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A.; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J.; Lenhert, Steven; Niyogi, Krishna K.; Kirchhoff, Helmut

    2015-01-01

    The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion. PMID:25897076

  4. Estimation of chromophoric dissolved organic matter (CDOM) and photosynthetic activity of estuarine phytoplankton using a multiple-fixed-wavelength spectral fluorometer.

    PubMed

    Goldman, Emily A; Smith, Erik M; Richardson, Tammi L

    2013-03-15

    The utility of a multiple-fixed-wavelength spectral fluorometer, the Algae Online Analyser (AOA), as a means of quantifying chromophoric dissolved organic matter (CDOM) and phytoplankton photosynthetic activity was tested using algal cultures and natural communities from North Inlet estuary, South Carolina. Comparisons of AOA measurements of CDOM to those by spectrophotometry showed a significant linear relationship, but increasing amounts of background CDOM resulted in progressively higher over-estimates of chromophyte contributions to a simulated mixed algal community. Estimates of photosynthetic activity by the AOA at low irradiance (≈ 80 μmol quanta m(-2) s(-1)) agreed well with analogous values from the literature for the chlorophyte, Dunaliella tertiolecta, but were substantially lower than previous measurements of the maximum quantum efficiency of photosystem II (F(v)/F(m)) in Thalassiosira weissflogii (a diatom) and Rhodomonas salina (a cryptophyte). When cells were exposed to high irradiance (1500 μmol quanta m(-2) s(-1)), declines in photosynthetic activity with time measured by the AOA mirrored estimates of cellular fluorescence capacity using the herbicide 3'-(3, 4-dichlorophenyl)-1',1'-dimethyl urea (DCMU). The AOA shows promise as a tool for the continuous monitoring of phytoplankton community composition, CDOM, and the group-specific photosynthetic activity of aquatic ecosystems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. In situ associations between marine photosynthetic picoeukaryotes and potential parasites - a role for fungi?

    PubMed

    Lepère, Cécile; Ostrowski, Martin; Hartmann, Manuela; Zubkov, Mikhail V; Scanlan, David J

    2016-08-01

    Photosynthetic picoeukaryotes (PPEs) are important components of the marine picophytoplankton community playing a critical role in CO2 fixation but also as bacterivores, particularly in the oligotrophic gyres. Despite an increased interest in these organisms and an improved understanding of the genetic diversity of this group, we still know little of the environmental factors controlling the abundance of these organisms. Here, we investigated the quantitative importance of eukaryotic parasites in the free-living fraction as well as in associations with PPEs along a transect in the South Atlantic. Using tyramide signal amplification-fluorescence in situ hybridization (TSA-FISH), we provide quantitative evidence of the occurrence of free-living fungi in open ocean marine systems, while the Perkinsozoa and Syndiniales parasites were not abundant in these waters. Using flow cytometric cell sorting of different PPE populations followed by a dual-labelled TSA-FISH approach, we also demonstrate fungal associations, potentially parasitic, occurring with both pico-Prymnesiophyceae and pico-Chrysophyceae. These data highlight the necessity for further work investigating the specific role of marine fungi as parasites of phytoplankton to improve understanding of carbon flow in marine ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Structure and enzyme expression in photosynthetic organs of the atypical C4 grass Arundinella hirta.

    PubMed

    Wakayama, Masataka; Ohnishi, Jun-ichi; Ueno, Osamu

    2006-05-01

    In its leaf blade, Arundinella hirta has unusual Kranz cells that lie distant from the veins (distinctive cells; DCs), in addition to the usual Kranz units composed of concentric layers of mesophyll cells (MCs) and bundle sheath cells (BSCs; usual Kranz cells) surrounding the veins. We examined whether chlorophyllous organs other than leaf blades--namely, the leaf sheath, stem, scale leaf, and constituents of the spike--also have this unique anatomy and the C4 pattern of expression of photosynthetic enzymes. All the organs developed DCs to varying degrees, as well as BSCs. The stem, rachilla, and pedicel had C4-type anatomy with frequent occurrence of DCs, as in the leaf blade. The leaf sheath, glume, and scale leaf had a modified C4 anatomy with MCs more than two cells distant from the Kranz cells; DCs were relatively rare. An immunocytochemical study of C3 and C4 enzymes revealed that all the organs exhibited essentially the same C4 pattern of expression as in the leaf blade. In the scale leaf, however, intense expression of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in the MCs as well as in the BSCs and DCs. In the leaf sheath, the distant MCs also expressed Rubisco. In Arundinella hirta, it seems that the ratio of MC to Kranz cell volumes, and the distance from the Kranz cells, but not from the veins, affects the cellular expression of photosynthetic enzymes. We suggest that the main role of DCs is to keep a constant quantitative balance between the MCs and Kranz cells, which is a prerequisite for effective C4 pathway operation.

  7. Functions of tocopherols in the cells of plants and other photosynthetic organisms.

    PubMed

    Mokrosnop, V M

    2014-01-01

    Tocopherol synthesis has only been observed in photosynthetic organisms (plants, algae and some cyanobacteria). Tocopherol is synthesized in the inner membrane of chloroplasts and distributed between chloroplast membranes, thylakoids and plastoglobules. Physiological significance of tocopherols for human and animal is well-studied, but relatively little is known about their function in plant organisms. Among the best characterized functions oftocopherols in cells is their ability to scavenge and quench reactive oxygen species and fat-soluble by-products of oxidative stress. There are the data on the participation of different mechanisms of α-tocopherol action in protecting photosystem II (PS II) from photoinhibition both by deactivation of singlet oxygen produced by PSII and by reduction of proton permeability of thylakoid membranes, leading to acidification of lumen under high light conditions and activation of violaxanthin de-epoxidase. Additional biological activity of tocopherols, independent of its antioxidant functions have been demonstrated. Basic mechanisms for these effects are connected with the modulation of signal transduction pathways by specific tocopherols and, in some instances, by transcriptional activation of gene expression.

  8. Managing the cellular redox hub in photosynthetic organisms.

    PubMed

    Foyer, Christine H; Noctor, Graham

    2012-02-01

    Light-driven redox chemistry is a powerful source of redox signals that has a decisive input into transcriptional control within the cell nucleus. Like photosynthetic electron transport pathways, the respiratory electron transport chain exerts a profound control over gene function, in order to balance energy (reductant and ATP) supply with demand, while preventing excessive over-reduction or over-oxidation that would be adversely affect metabolism. Photosynthetic and respiratory redox chemistries are not merely housekeeping processes but they exert a controlling influence over every aspect of plant biology, participating in the control of gene transcription and translation, post-translational modifications and the regulation of assimilatory reactions, assimilate partitioning and export. The number of processes influenced by redox controls and signals continues to increase as do the components that are recognized participants in the associated signalling pathways. A step change in our understanding of the overall importance of the cellular redox hub to plant cells has occurred in recent years as the complexity of the management of the cellular redox hub in relation to metabolic triggers and environmental cues has been elucidated. This special issue describes aspects of redox regulation and signalling at the cutting edge of current research in this dynamic and rapidly expanding field. © 2011 Blackwell Publishing Ltd.

  9. Designer organisms for photosynthetic production of ethanol from carbon dioxide and water

    DOEpatents

    Lee, James Weifu [Knoxville, TN

    2011-07-05

    The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

  10. Effects of ultraviolet radiation (UVA+UVB) on young gametophytes of Gelidium floridanum: growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure.

    PubMed

    Simioni, Carmen; Schmidt, Eder C; Felix, Marthiellen R de L; Polo, Luz Karime; Rover, Ticiane; Kreusch, Marianne; Pereira, Debora T; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-01-01

    This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1) and PAR+UVA (0.70 W m(-2))+UVB (0.35 W m(-2)) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development. © 2014 The American Society of Photobiology.

  11. Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.

  12. Evolving a photosynthetic organelle.

    PubMed

    Nakayama, Takuro; Archibald, John M

    2012-04-24

    The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles.The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis--the conversion of solar energy into chemical energy--and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  13. Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective.

    PubMed

    Gudmundsson, Steinn; Nogales, Juan

    2015-01-01

    The increasing need to replace oil-based products and to address global climate change concerns has triggered considerable interest in photosynthetic microorganisms. Cyanobacteria, in particular, have great potential as biocatalysts for fuels and fine-chemicals. During the last few years the biotechnological applications of cyanobacteria have experienced an unprecedented increase and the use of these photosynthetic organisms for chemical production is becoming a tangible reality. However, the field is still immature and many concerns about the economic feasibility of the biotechnological potential of cyanobacteria remain. In this review we describe recent successes in biofuel and fine-chemical production using cyanobacteria. We discuss the role of the photosynthetic metabolism and highlight the need for systems-level metabolic optimization in order to achieve the true potential of cyanobacterial biocatalysts.

  14. Temporal trends in arthropod abundances after the transition to organic farming in paddy fields.

    PubMed

    Tsutsui, Masaru H; Kobayashi, Kazuhiko; Miyashita, Tadashi

    2018-01-01

    Organic farming aims to reduce the effect on the ecosystem and enhance biodiversity in agricultural areas, but the long-term effectiveness of its application is unclear. Assessments have rarely included various taxonomic groups with different ecological and economic roles. In paddy fields with different numbers of years elapsed since the transition from conventional to organic farming, we investigated changes in the abundance of insect pests, generalist predators, and species of conservation concern. The abundance of various arthropods exhibited diverse trends with respect to years elapsed since the transition to organic farming. Larval lepidopterans, Tetragnatha spiders, and some planthoppers and stink bugs showed non-linear increases over time, eventually reaching saturation, such as the abundance increasing for several years and then becoming stable after 10 years. This pattern can be explained by the effects of residual pesticides, the lag time of soil mineralization, and dispersal limitation. A damselfly (Ischnura asiatica) did not show a particular trend over time, probably due to its rapid immigration from source habitats. Unexpectedly, both planthoppers and some leafhoppers exhibited gradual decreases over time. As their abundances were negatively related to the abundance of Tetragnatha spiders, increased predation by natural enemies might gradually decrease these insect populations. These results suggest that the consideration of time-dependent responses of organisms is essential for the evaluation of the costs and benefits of organic farming, and such evaluations could provide a basis for guidelines regarding the length of time for organic farming to restore biodiversity or the economic subsidy needed to compensate for pest damage.

  15. Temporal trends in arthropod abundances after the transition to organic farming in paddy fields

    PubMed Central

    Tsutsui, Masaru H.; Kobayashi, Kazuhiko

    2018-01-01

    Organic farming aims to reduce the effect on the ecosystem and enhance biodiversity in agricultural areas, but the long-term effectiveness of its application is unclear. Assessments have rarely included various taxonomic groups with different ecological and economic roles. In paddy fields with different numbers of years elapsed since the transition from conventional to organic farming, we investigated changes in the abundance of insect pests, generalist predators, and species of conservation concern. The abundance of various arthropods exhibited diverse trends with respect to years elapsed since the transition to organic farming. Larval lepidopterans, Tetragnatha spiders, and some planthoppers and stink bugs showed non-linear increases over time, eventually reaching saturation, such as the abundance increasing for several years and then becoming stable after 10 years. This pattern can be explained by the effects of residual pesticides, the lag time of soil mineralization, and dispersal limitation. A damselfly (Ischnura asiatica) did not show a particular trend over time, probably due to its rapid immigration from source habitats. Unexpectedly, both planthoppers and some leafhoppers exhibited gradual decreases over time. As their abundances were negatively related to the abundance of Tetragnatha spiders, increased predation by natural enemies might gradually decrease these insect populations. These results suggest that the consideration of time-dependent responses of organisms is essential for the evaluation of the costs and benefits of organic farming, and such evaluations could provide a basis for guidelines regarding the length of time for organic farming to restore biodiversity or the economic subsidy needed to compensate for pest damage. PMID:29324809

  16. The Photosynthetic Cycle

    DOE R&D Accomplishments Database

    Calvin, Melvin

    1955-03-21

    A cyclic sequence of transformations, including the carboxylation of RuDP (ribulose diphosphate) and its re-formation, has been deduced as the route for the creation of reduced carbon compounds in photosynthetic organisms. With the demonstration of RuDP as substrate for the carboxylation in a cell-free system, each of the reactions has now been carried out independently in vitro. Further purification of this last enzyme system has confirmed the deduction that the carboxylation of RuDP leads directly to the two molecules of PGA (phosphoglyceric acid) involving an internal dismutation and suggesting the name "carboxydismutase" for the enzyme. As a consequence of this knowledge of each of the steps in the photosynthetic CO{sub 2} reduction cycle, it is possible to define the reagent requirements to maintain it. The net requirement for the reduction of one molecule of CO{sub 2} is four equivalents of [H]and three molecules of ATP (adenine triphosphate). These must ultimately be supplied by the photochemical reaction. Some possible ways in which this may be accomplished are discussed.

  17. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Gennady Petrovich; Nesterov, Alexander; Lopez, Gustavo

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it canmore » happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.« less

  18. Linear programming model to construct phylogenetic network for 16S rRNA sequences of photosynthetic organisms and influenza viruses.

    PubMed

    Mathur, Rinku; Adlakha, Neeru

    2014-06-01

    Phylogenetic trees give the information about the vertical relationships of ancestors and descendants but phylogenetic networks are used to visualize the horizontal relationships among the different organisms. In order to predict reticulate events there is a need to construct phylogenetic networks. Here, a Linear Programming (LP) model has been developed for the construction of phylogenetic network. The model is validated by using data sets of chloroplast of 16S rRNA sequences of photosynthetic organisms and Influenza A/H5N1 viruses. Results obtained are in agreement with those obtained by earlier researchers.

  19. Interactions between heavy metals and photosynthetic materials studied by optical techniques.

    PubMed

    Ventrella, Andrea; Catucci, Lucia; Piletska, Elena; Piletsky, Sergey; Agostiano, Angela

    2009-11-01

    In this work studies on rapid inhibitory interactions between heavy metals and photosynthetic materials at different organization levels were carried out by optical assay techniques, investigating the possibility of applications in the heavy metal detection field. Spinach chloroplasts, thylakoids and Photosystem II proteins were employed as biotools in combination with colorimetric assays based on dichlorophenol indophenole (DCIP) photoreduction and on fluorescence emission techniques. It was found that copper and mercury demonstrated a strong and rapid photosynthetic activity inhibition, that varied from proteins to membranes, while other metals like nickel, cobalt and manganese produced only slight inhibition effects on all tested photosynthetic materials. By emission measurements, only copper was found to rapidly influence the photosynthetic material signals. These findings give interesting information about the rapid effects of heavy metals on isolated photosynthetic samples, and are in addition to the literature data concerning the effects of growth in heavy metal enriched media.

  20. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    PubMed Central

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals. PMID:27574182

  1. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturatedmore » metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.« less

  2. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  3. Identifying protist consumers of photosynthetic picoeukaryotes in the surface ocean using stable isotope probing.

    PubMed

    Orsi, William D; Wilken, Susanne; Del Campo, Javier; Heger, Thierry; James, Erick; Richards, Thomas A; Keeling, Patrick J; Worden, Alexandra Z; Santoro, Alyson E

    2018-02-01

    Photosynthetic picoeukaryotes contribute a significant fraction of primary production in the upper ocean. Micromonas pusilla is an ecologically relevant photosynthetic picoeukaryote, abundantly and widely distributed in marine waters. Grazing by protists may control the abundance of picoeukaryotes such as M. pusilla, but the diversity of the responsible grazers is poorly understood. To identify protists consuming photosynthetic picoeukaryotes in a productive North Pacific Ocean region, we amended seawater with living 15 N, 13 C-labelled M. pusilla cells in a 24-h replicated bottle experiment. DNA stable isotope probing, combined with high-throughput sequencing of V4 hypervariable regions from 18S rRNA gene amplicons (Tag-SIP), identified 19 operational taxonomic units (OTUs) of microbial eukaryotes that consumed M. pusilla. These OTUs were distantly related to cultured taxa within the dinoflagellates, ciliates, stramenopiles (MAST-1C and MAST-3 clades) and Telonema flagellates, thus, far known only from their environmental 18S rRNA gene sequences. Our discovery of eukaryotic prey consumption by MAST cells confirms that their trophic role in marine microbial food webs includes grazing upon picoeukaryotes. Our study provides new experimental evidence directly linking the genetic identity of diverse uncultivated microbial eukaryotes to the consumption of picoeukaryotic phytoplankton in the upper ocean. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. RuBisCO in Non-Photosynthetic Alga Euglena longa: Divergent Features, Transcriptomic Analysis and Regulation of Complex Formation.

    PubMed

    Záhonová, Kristína; Füssy, Zoltán; Oborník, Miroslav; Eliáš, Marek; Yurchenko, Vyacheslav

    2016-01-01

    Euglena longa, a close relative of the photosynthetic model alga Euglena gracilis, possesses an enigmatic non-photosynthetic plastid. Its genome has retained a gene for the large subunit of the enzyme RuBisCO (rbcL). Here we provide new data illuminating the putative role of RuBisCO in E. longa. We demonstrated that the E. longa RBCL protein sequence is extremely divergent compared to its homologs from the photosynthetic relatives, suggesting a possible functional shift upon the loss of photosynthesis. Similarly to E. gracilis, E. longa harbors a nuclear gene encoding the small subunit of RuBisCO (RBCS) as a precursor polyprotein comprising multiple RBCS repeats, but one of them is highly divergent. Both RBCL and the RBCS proteins are synthesized in E. longa, but their abundance is very low compared to E. gracilis. No RBCS monomers could be detected in E. longa, suggesting that processing of the precursor polyprotein is inefficient in this species. The abundance of RBCS is regulated post-transcriptionally. Indeed, blocking the cytoplasmic translation by cycloheximide has no immediate effect on the RBCS stability in photosynthetically grown E. gracilis, but in E. longa, the protein is rapidly degraded. Altogether, our results revealed signatures of evolutionary degradation (becoming defunct) of RuBisCO in E. longa and suggest that its biological role in this species may be rather unorthodox, if any.

  5. Organic amendments enhance microbial diversity and abundance of functional genes in Australian Soils

    NASA Astrophysics Data System (ADS)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2016-04-01

    Food and cash crops play important roles in Australia's economy with black, grey and red clay soil, widely use for growing cotton, wheat, corn and other crops in rotation. While the majority of cotton growers use nitrogen and phosphate fertilizers only in the form of agrochemicals, a few experiment with the addition of manure or composted plant material before planting. We hypothesized that the use of such organic amendments would enhance the soil microbial function through increased microbial diversity and abundance, thus contribute to improved soil sustainability. To test the hypothesis we collected soil samples from two cotton-growing farms in close geographical proximity and with mostly similar production practices other than one grower has been using composted plants as organic amendment and the second farmer uses only agrochemicals. We applied the Biolog Ecoplate system to study the metabolic signature of microbial communities and used qPCR to estimate the abundance of functional genes in the soil. The soil treated with organic amendments clearly showed higher metabolic activity of a more diverse range of carbon sources as well as higher abundance of genes involved in the nitrogen and phosphorous cycles. Since microbes undertake a large number of soil functions, the use of organic amendments can contribute to the sustainability of agricultural soils.

  6. Application of photosynthetic N(2)-fixing cyanobacteria to the CELSS program

    NASA Technical Reports Server (NTRS)

    Fry, Ian V.; Hrabeta, Jana; Dsouza, Joe; Packer, Lester

    1987-01-01

    The feasibility of using photosynthetic microalgae (cyanobacteria) as a subsystem component for the closed ecological life support system program, with particular emphasis on the manipulation of the biomass (protein/carbohydrate) was addressed. Using factors which retard growth rates, but not photosynthetic electron flux, the partitioning of photosynthetically derived reductant may be dictated towards CO2 fixation (carbohydrate formation) and away from N2 fixation (protein formation). Cold shock treatment of fairly dense cultures markedly increases the glycogen content from 1 to 35 percent (dry weight), and presents a useful technique to change the protein/carbohydrate ratio of these organisms to a more nutritionally acceptable form.

  7. Photosynthetic antenna engineering to improve crop yields.

    PubMed

    Kirst, Henning; Gabilly, Stéphane T; Niyogi, Krishna K; Lemaux, Peggy G; Melis, Anastasios

    2017-05-01

    Evidence shows that decreasing the light-harvesting antenna size of the photosystems in tobacco helps to increase the photosynthetic productivity and plant canopy biomass accumulation under high-density cultivation conditions. Decreasing, or truncating, the chlorophyll antenna size of the photosystems can theoretically improve photosynthetic solar energy conversion efficiency and productivity in mass cultures of algae or plants by up to threefold. A Truncated Light-harvesting chlorophyll Antenna size (TLA), in all classes of photosynthetic organisms, would help to alleviate excess absorption of sunlight and the ensuing wasteful non-photochemical dissipation of excitation energy. Thus, solar-to-biomass energy conversion efficiency and photosynthetic productivity in high-density cultures can be increased. Applicability of the TLA concept was previously shown in green microalgae and cyanobacteria, but it has not yet been demonstrated in crop plants. In this work, the TLA concept was applied in high-density tobacco canopies. The work showed a 25% improvement in stem and leaf biomass accumulation for the TLA tobacco canopies over that measured with their wild-type counterparts grown under the same ambient conditions. Distinct canopy appearance differences are described between the TLA and wild type tobacco plants. Findings are discussed in terms of concept application to crop plants, leading to significant improvements in agronomy, agricultural productivity, and application of photosynthesis for the generation of commodity products in crop leaves.

  8. Photosynthetic activity during olive (Olea europaea) leaf development correlates with plastid biogenesis and Rubisco levels.

    PubMed

    Maayan, Inbar; Shaya, Felix; Ratner, Kira; Mani, Yair; Lavee, Shimon; Avidan, Benjamin; Shahak, Yosepha; Ostersetzer-Biran, Oren

    2008-11-01

    Olive leaves are known to mature slowly, reaching their maximum photosynthetic activity only after full leaf expansion. Poor assimilation rates, typical to young olive leaves, were previously associated with low stomata conductance. Yet, very little is known about chloroplast biogenesis throughout olive leaf development. Here, the photosynthetic activity and plastids development throughout leaf maturation is characterized by biochemical and ultrastructural analyses. Although demonstrated only low photosynthetic activity, the plastids found in young leaves accumulated both photosynthetic pigments and proteins required for photophosphorylation and carbon fixation. However, Rubisco (ribulose-1,5-bisphosphate carboxylase-oxygenase), which catalyzes the first major step of carbon fixation and one of the most abundant proteins in plants, could not be detected in the young leaves and only slowly accumulated throughout development. In fact, Rubisco levels seemed tightly correlated with the observed photosynthetic activities. Unlike Rubisco, numerous proteins accumulated in the young olive leaves. These included the early light induced proteins, which may be required to reduce the risk of photodamage, because of light absorption by photosynthetic pigments. Also, high levels of ribosomal L11 subunit, transcription factor elF-5A, Histones H2B and H4 were observed in the apical leaves, and in particular a plastidic-like aldolase, which accounted for approximately 30% of the total proteins. These proteins may upregulate in their levels to accommodate the high demand for metabolic energy in the young developing plant tissue, further demonstrating the complex sink-to-source relationship between young and photosynthetically active mature leaves.

  9. Triplet–triplet energy transfer in artificial and natural photosynthetic antennas

    DOE PAGES

    Ho, Junming; Kish, Elizabeth; Méndez-Hernandez, Dalvin D.; ...

    2017-06-26

    In photosynthetic organisms, protection against photo-oxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll to carotenoid triplet-triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, while it is ultrafast in the oxygen-rich chloroplasts of oxygen evolving photosynthetic organisms. In order to better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomericmore » carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET including a resonance Raman based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by DFT calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). In conclusion, both DFT and EPR analysis further indicates that upon T-TET, the triplet wave function is localized on the carotenoid in both dyads.« less

  10. Triplet–triplet energy transfer in artificial and natural photosynthetic antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Junming; Kish, Elizabeth; Méndez-Hernandez, Dalvin D.

    In photosynthetic organisms, protection against photo-oxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll to carotenoid triplet-triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, while it is ultrafast in the oxygen-rich chloroplasts of oxygen evolving photosynthetic organisms. In order to better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomericmore » carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET including a resonance Raman based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by DFT calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). In conclusion, both DFT and EPR analysis further indicates that upon T-TET, the triplet wave function is localized on the carotenoid in both dyads.« less

  11. Triplet–triplet energy transfer in artificial and natural photosynthetic antennas

    PubMed Central

    Ho, Junming; Kish, Elizabeth; Méndez-Hernández, Dalvin D.; WongCarter, Katherine; Pillai, Smitha; Kodis, Gerdenis; Niklas, Jens; Poluektov, Oleg G.; Gust, Devens; Moore, Thomas A.; Moore, Ana L.; Batista, Victor S.

    2017-01-01

    In photosynthetic organisms, protection against photooxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll-to-carotenoid triplet–triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, whereas it is ultrafast in the oxygen-rich chloroplasts of oxygen-evolving photosynthetic organisms. To better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomeric carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET, including a resonance Raman-based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by density functional theory (DFT) calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light-harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). Both DFT and electron paramagnetic resonance (EPR) analyses further indicate that, upon T-TET, the triplet wave function is localized on the carotenoid in both dyads. PMID:28652359

  12. Photosynthetic water splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, E.

    1981-01-01

    The photosynthetic unit of hydrogen evolution, the turnover time of photosynthetic hydrogen production, and hydrogenic photosynthesis are discussed in the section on previous work. Recent results are given on simultaneous photoproduction of hydrogen and oxygen, kinetic studies, microscopic marine algae-seaweeds, and oxygen profiles.

  13. Insights from Placing Photosynthetic Light Harvesting into Context.

    PubMed

    Demmig-Adams, Barbara; Stewart, Jared J; Burch, Tyson A; Adams, William W

    2014-08-21

    Solar-energy conversion through natural photosynthesis forms the base of virtually all food chains on Earth and provides fiber, materials, and fuels, as well as inspiration for the design of biomimetic energy-conversion systems. We summarize well-known as well as recently discovered feedback loops between natural light-harvesting systems and whole-organism function in natural settings. We propose that the low effective quantum yield of natural light-harvesting systems in high light is caused by downstream limitations rather than unavoidable intrinsic vulnerabilities. We evaluate potential avenues, and their costs and benefits, for increasing the maximal rate and photon yield of photosynthesis in high light in plants and photosynthetic microbes. By summarizing mechanisms observable only in complex systems (whole plants, algae, or, in some cases, intact leaves), we aim to stimulate future research efforts on reciprocal feedback loops between light harvesting and downstream processes in whole organisms and to provide additional arguments for the significance of research on photosynthetic light harvesting.

  14. Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs.

    PubMed

    Brocke, Hannah J; Polerecky, Lubos; de Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised areas. Reefs with high BCM abundance were also characterised by high benthic cover of macroalgae and low cover of corals. Nutrient concentrations in the water-column were consistently low, but markedly increased just above substrata (both sandy and hard) covered with BCMs. This was true for sites with both high and low BCM coverage, suggesting that BCM growth is stimulated by a localised, substrate-linked release of nutrients from the microbial degradation of organic matter. This hypothesis was supported by a higher organic content in sediments on reefs with high BCM coverage, and by an in situ experiment which showed that BCMs grew within days on sediments enriched with organic matter (Spirulina). We propose that nutrient runoff from urbanised areas stimulates phototrophic blooms and enhances organic matter concentrations on the reef. This organic matter is transported by currents and settles on the seabed at sites with low hydrodynamics. Subsequently, nutrients released from the organic matter degradation fuel the growth of BCMs. Improved management of nutrients generated on land should lower organic loading of sediments and other benthos (e.g. turf and macroalgae) to reduce BCM proliferation on coral reefs.

  15. Nanoplankton and picoplankton in the Western English Channel: abundance and seasonality from 2007-2013

    NASA Astrophysics Data System (ADS)

    Tarran, Glen A.; Bruun, John T.

    2015-09-01

    The nano- and picoplankton community at Station L4 in the Western English Channel was studied between 2007 and 2013 by flow cytometry to quantify abundance and investigate seasonal cycles within these communities. Nanoplankton included both photosynthetic and heterotrophic eukaryotic single-celled organisms while the picoplankton included picoeukaryote phytoplankton, Synechococcus sp. cyanobacteria and heterotrophic bacteria. A Box-Jenkins Transfer Function climatology analysis of surface data revealed that Synechococcus sp., cryptophytes, and heterotrophic flagellates had bimodal annual cycles. Nanoeukaryotes and both high and low nucleic acid-containing bacteria (HNA and LNA, respectively) groups exhibited unimodal annual cycles. Phaeocystis sp., whilst having clearly defined abundance maxima in spring was not detectable the rest of the year. Coccolithophores exhibited a weak seasonal cycle, with abundance peaks in spring and autumn. Picoeukaryotes did not exhibit a discernable seasonal cycle at the surface. Timings of maximum group abundance varied through the year. Phaeocystis sp. and heterotrophic flagellates peaked in April/May. Nanoeukaryotes and HNA bacteria peaked in June/July and had relatively high abundance throughout the summer. Synechococcus sp., cryptophytes and LNA bacteria all peaked from mid to late September. The transfer function model techniques used represent a useful means of identifying repeating annual cycles in time series data with the added ability to detect trends and harmonic terms at different time scales from months to decades.

  16. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata).

    PubMed

    Kim, Gwang Hoon; Jeong, Hae Jin; Yoo, Yeong Du; Kim, Sunju; Han, Ji Hee; Han, Jong Won; Zuccarello, Giuseppe C

    2013-01-01

    The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons) obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value photosynthetic function. Most of the genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to "capture" new plastids (i.e. different secondary endosymbiosis or tertiary symbioses) to renew photosynthetic function.

  17. Photosynthetic Pigments in Diatoms

    PubMed Central

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries. PMID:26389924

  18. Continuous high and low temperature induced a decrease of photosynthetic activity and changes in the diurnal fluctuations of organic acids in Opuntia streptacantha.

    PubMed

    Ojeda-Pérez, Zaida Zarely; Jiménez-Bremont, Juan Francisco; Delgado-Sánchez, Pablo

    2017-01-01

    Opuntia plants grow naturally in areas where temperatures are extreme and highly variable in the day during the entire year. These plants survive through different adaptations to respond to adverse environmental conditions. Despite this capability, it is unknown how CAM photosynthetic activity and growth in Opuntia plantlets is affected by constant heat or cold. Therefore, the main objective of this research was to evaluate the short-term effect of high (40°C) and low (4°C) continuous temperatures on the photosynthetic efficiency, the organic acid content (malic acid) and the relative growth rate (RGR) in seven-month-old Opuntia streptacantha plantlets during 5, 10, and 15 days. Chlorophyll fluorescence analysis allowed us to determine that high temperatures negatively impact the photosynthetic efficiency of O. streptacantha plantlets, which exhibited the lowest values of maximum quantum efficiency of the photosystem II (Fv/Fm = 52%, Fv/F0 = 85%), operational quantum yield of PS (ΦPSII = 65%) and relative electron transport rate (rETR = 65%), as well as highest values of basal fluorescence (F0 = 226%) during 15 days of treatment. Similarly, low temperatures decreased Fv/Fm (16%), Fv/F0 (50%), ΦPSII and rETR (16%). High temperatures also decreased nocturnal acidification in approximately 34-50%, whereas low temperatures increased it by 30-36%. Additionally, both continuous temperatures affected drastically diurnal consumption of malic acid, which was related to a significant RGR inhibition, where the specific photosynthetic structure area component was the most affected. Our results allowed determining that, despite the high tolerance to extreme temperatures described for Opuntia plants, young individuals of O. streptacantha suffered photosynthetic impairment that led to the inhibition of their growth. Thus, the main findings reported in this study can help to predict the potential impact of climatic change on the establishment and survival of succulent species

  19. Evidence for only minor contributions from bacteria to sedimentary organic carbon

    NASA Technical Reports Server (NTRS)

    Hartgers, W. A.; Sinninghe Damste, J. S.; Requejo, A. G.; Allan, J.; Hayes, J. M.; de Leeuw, J. W.

    1994-01-01

    Because their molecular signatures are often prominent in extracts of sediments, bacteria are thought to be important contributors to petroleum source beds. It has been shown recently, however, that abundances of biomarkers do not always reflect relative contributions to sedimentary organic carbon (Corg). The contribution of photosynthetic green sulphur bacteria to sediments can be assessed effectively because the diagenetic products of distinctive carotenoids from these organisms occur widely and their biomass is isotopically labelled, being enriched in 13C. We show here that, although sediments and oils from the Western Canada and Williston basins contain prominent biomarkers of photosynthetic bacteria, the absence of 13C enrichment in the total Corg requires that the bacterial contribution is in fact minimal. Although the importance of bacterial reworking of sedimentary debris cannot be doubted, we argue that our findings, when considered in conjunction with those from other settings, suggest that bacterial biomass may commonly represent only a minor component of total Corg in carbonaceous rocks.

  20. Photovoltaic concepts inspired by coherence effects in photosynthetic systems

    NASA Astrophysics Data System (ADS)

    Brédas, Jean-Luc; Sargent, Edward H.; Scholes, Gregory D.

    2017-01-01

    The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder -- structural and energetic -- and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

  1. Toward understanding as photosynthetic biosignatures: light harvesting and energy transfer calculation

    NASA Astrophysics Data System (ADS)

    Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.

    2014-03-01

    Among several proposed biosignatures, red edge is a direct evidence of photosynthetic life if it is detected (Kiang et al 2007). Red edge is a sharp change in reflectance spectra of vegetation in NIR region (about 700-750 nm). The sign of red edge is observed by Earthshine or remote sensing (Wolstencroft & Raven 2002, Woolf et al 2002). But, why around 700-750 nm? The photosynthetic organisms on Earth have evolved to optimize the sunlight condition. However, if we consider about photosynthetic organism on extrasolar planets, they should have developed to utilize the spectra of its principal star. Thus, it is not strange even if it shows different vegetation spectra. In this study, we focused on the light absorption mechanism of photosynthetic organisms on Earth and investigated the fundamental properties of the light harvesting mechanisms, which is the first stage for the light absorption. Light harvesting complexes contain photosynthetic pigments like chlorophylls. Effective light absorption and the energy transfer are accomplished by the electronic excitations of collective photosynthetic pigments. In order to investigate this mechanism, we constructed an energy transfer model by using a dipole-dipole approximation for the interactions between electronic excitations. Transition moments and transition energies of each pigment are calculated at the time-dependent density functional theory (TDDFT) level (Marques & Gross 2004). Quantum dynamics simulation for the excitation energy transfer was calculated by the Liouvelle's equation. We adopted the model to purple bacteria, which has been studied experimentally and known to absorb lower energy. It is meaningful to focus on the mechanism of this bacteria, since in the future mission, M planets will become a important target. We calculated the oscillator strengths in one light harvesting complex and confirmed the validity by comparing to the experimental data. This complex is made of an inner and an outer ring. The

  2. Comparative Transcriptional Profiling Established the Awn as the Major Photosynthetic Organ of the Barley Spike while the Lemma and the Palea Primarily Protect the Seed

    USDA-ARS?s Scientific Manuscript database

    The lemma, palea, and awn of barley are photosynthetic organs and supply the developing seed with carbohydrates. In addition, the lemma and the palea cover the seed and protect it from pathogens and insects. In spite of the important role they play, there is very little information about gene expr...

  3. Systems-Wide Analysis of Acclimation Responses to Long-Term Heat Stress and Recovery in the Photosynthetic Model Organism Chlamydomonas reinhardtii[W][OPEN

    PubMed Central

    Hemme, Dorothea; Veyel, Daniel; Mühlhaus, Timo; Sommer, Frederik; Jüppner, Jessica; Unger, Ann-Katrin; Sandmann, Michael; Fehrle, Ines; Schönfelder, Stephanie; Steup, Martin; Geimer, Stefan; Kopka, Joachim; Giavalisco, Patrick; Schroda, Michael

    2014-01-01

    We applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42°C for 24 h and back to 25°C for ≥8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and (5) when sinks for photosynthetic energy and reducing power are depleted, resumption of Calvin cycle activity associated with increased photorespiration, accumulation of reactive oxygen species scavengers, and throttling of linear electron flow by antenna uncoupling. During recovery from HS, cells appear to focus on processes allowing rapid resumption of growth rather than restoring pre-HS conditions. PMID:25415976

  4. Engineering of cyanobacteria for the photosynthetic production of limonene from CO2.

    PubMed

    Kiyota, Hiroshi; Okuda, Yukiko; Ito, Michiho; Hirai, Masami Yokota; Ikeuchi, Masahiko

    2014-09-20

    Isoprenoids, major secondary metabolites in many organisms, are utilized in various applications. We constructed a model photosynthetic production system for limonene, a volatile isoprenoid, using a unicellular cyanobacterium that expresses the plant limonene synthase. This system produces limonene photosynthetically at a nearly constant rate and that can be efficiently recovered using a gas-stripping method. This production does not affect the growth of the cyanobacteria and is markedly enhanced by overexpression of three enzymes in the intrinsic pathway to provide the precursor of limonene, geranyl pyrophosphate. The photosynthetic production of limonene in our system is more or less sustained from the linear to stationary phase of cyanobacterial growth for up to 1 month. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Orchid bees as bio-indicators for organic coffee farms in Costa Rica: does farm size affect their abundance?

    PubMed

    Hedström, Ingemar; Denzel, Andrew; Owens, Gareth

    2006-09-01

    The potential of Euglossini bees, especially Euglossa, as biological indicators of organic vs nonorganic coffee farms was studied in Atenas and San Isidro, Alajuela, Costa Rica using 1.8-cineole as lure. Observations were made for three days at each of four farms and complemented with data from a year of observations. Orchid bees were in greater abundance in the organic farms (t-Student test). However, lower abundances suggest that an organic farm may be negatively affected by the proximity of non-organic farms, depending on its size and distance. Orchid bees may be indicators of organic coffee farms.

  6. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru.

    PubMed

    Bahar, Nur H A; Ishida, F Yoko; Weerasinghe, Lasantha K; Guerrieri, Rossella; O'Sullivan, Odhran S; Bloomfield, Keith J; Asner, Gregory P; Martin, Roberta E; Lloyd, Jon; Malhi, Yadvinder; Phillips, Oliver L; Meir, Patrick; Salinas, Norma; Cosio, Eric G; Domingues, Tomas F; Quesada, Carlos A; Sinca, Felipe; Escudero Vega, Alberto; Zuloaga Ccorimanya, Paola P; Del Aguila-Pasquel, Jhon; Quispe Huaypar, Katherine; Cuba Torres, Israel; Butrón Loayza, Rosalbina; Pelaez Tapia, Yulina; Huaman Ovalle, Judit; Long, Benedict M; Evans, John R; Atkin, Owen K

    2017-05-01

    We examined whether variations in photosynthetic capacity are linked to variations in the environment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/western Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (V cmax ), and the maximum rate of electron transport (J max )), leaf mass, nitrogen (N) and phosphorus (P) per unit leaf area (M a , N a and P a , respectively), and chlorophyll from 210 species at 18 field sites along a 3300-m elevation gradient. Western blots were used to quantify the abundance of the CO 2 -fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than lowland TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf P a were key explanatory factors for models of area-based V cmax and J max but did not account for variations in photosynthetic N-use efficiency. At any given N a and P a , the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a small subset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosynthetic capacity of TMFs, with variations in N allocation and Rubisco activation state further influencing photosynthetic rates and N-use efficiency of these critically important forests. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress.

    PubMed

    Jia, Xia; Liu, Tuo; Zhao, Yonghua; He, Yunhua; Yang, Mingyan

    2016-01-01

    The objective of this study was to investigate the effects of elevated CO2 (700 ± 23 μmol mol(-1)) on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated CO2 was associated with decreased quantities of reducing sugars, starch, and soluble amino acids, and with increased quantities of soluble sugars, total sugars, and soluble proteins in wheat seedlings under Cd stress. The contents of total soluble sugars, total free amino acids, total soluble phenolic acids, and total organic acids in the rhizosphere soil under Cd stress were improved by elevated CO2. Compared to Cd stress alone, the activity of amylase, phenol oxidase, urease, L-asparaginase, β-glucosidase, neutral phosphatase, and fluorescein diacetate increased under elevated CO2 in combination with Cd stress; only cellulase activity decreased. Bacterial abundance in rhizosphere soil was stimulated by elevated CO2 at low Cd concentrations (1.31-5.31 mg Cd kg(-1) dry soil). Actinomycetes, total microbial abundance, and fungi decreased under the combined conditions at 5.31-10.31 mg Cd kg(-1) dry soil. In conclusion, increased production of soluble sugars, total sugars, and proteins in wheat seedlings under elevated CO2 + Cd stress led to greater quantities of organic compounds in the rhizosphere soil relative to seedlings grown under Cd stress only. Elevated CO2 concentrations could moderate the effects of heavy metal pollution on enzyme activity and microorganism abundance in rhizosphere soils, thus improving soil fertility and the microecological rhizosphere environment of wheat under Cd stress.

  8. Decrease in the Photosynthetic Performance of Temperate Grassland Species Does Not Lead to a Decline in the Gross Primary Production of the Ecosystem

    PubMed Central

    Digrado, Anthony; de la Motte, Louis G.; Bachy, Aurélie; Mozaffar, Ahsan; Schoon, Niels; Bussotti, Filippo; Amelynck, Crist; Dalcq, Anne-Catherine; Fauconnier, Marie-Laure; Aubinet, Marc; Heinesch, Bernard; du Jardin, Patrick; Delaplace, Pierre

    2018-01-01

    Plants, under stressful conditions, can proceed to photosynthetic adjustments in order to acclimatize and alleviate the detrimental impacts on the photosynthetic apparatus. However, it is currently unclear how adjustment of photosynthetic processes under environmental constraints by plants influences CO2 gas exchange at the ecosystem-scale. Over a 2-year period, photosynthetic performance of a temperate grassland ecosystem was characterized by conducting frequent chlorophyll fluorescence (ChlF) measurements on three primary grassland species (Lolium perenne L., Taraxacum sp., and Trifolium repens L.). Ecosystem photosynthetic performance was estimated from measurements performed on the three dominant grassland species weighed based on their relative abundance. In addition, monitoring CO2 fluxes was performed by eddy covariance. The highest decrease in photosynthetic performance was detected in summer, when environmental constraints were combined. Dicot species (Taraxacum sp. and T. repens) presented the strongest capacity to up-regulate PSI and exhibited the highest electron transport efficiency under stressful environmental conditions compared with L. perenne. The decline in ecosystem photosynthetic performance did not lead to a reduction in gross primary productivity, likely because increased light energy was available under these conditions. The carbon amounts fixed at light saturation were not influenced by alterations in photosynthetic processes, suggesting photosynthesis was not impaired. Decreased photosynthetic performance was associated with high respiration flux, but both were influenced by temperature. Our study revealed variation in photosynthetic performance of a grassland ecosystem responded to environmental constraints, but alterations in photosynthetic processes appeared to exhibit a negligible influence on ecosystem CO2 fluxes. PMID:29459875

  9. Continuous high and low temperature induced a decrease of photosynthetic activity and changes in the diurnal fluctuations of organic acids in Opuntia streptacantha

    PubMed Central

    Ojeda-Pérez, Zaida Zarely; Jiménez-Bremont, Juan Francisco

    2017-01-01

    Opuntia plants grow naturally in areas where temperatures are extreme and highly variable in the day during the entire year. These plants survive through different adaptations to respond to adverse environmental conditions. Despite this capability, it is unknown how CAM photosynthetic activity and growth in Opuntia plantlets is affected by constant heat or cold. Therefore, the main objective of this research was to evaluate the short-term effect of high (40°C) and low (4°C) continuous temperatures on the photosynthetic efficiency, the organic acid content (malic acid) and the relative growth rate (RGR) in seven-month-old Opuntia streptacantha plantlets during 5, 10, and 15 days. Chlorophyll fluorescence analysis allowed us to determine that high temperatures negatively impact the photosynthetic efficiency of O. streptacantha plantlets, which exhibited the lowest values of maximum quantum efficiency of the photosystem II (Fv/Fm = 52%, Fv/F0 = 85%), operational quantum yield of PS (ΦPSII = 65%) and relative electron transport rate (rETR = 65%), as well as highest values of basal fluorescence (F0 = 226%) during 15 days of treatment. Similarly, low temperatures decreased Fv/Fm (16%), Fv/F0 (50%), ΦPSII and rETR (16%). High temperatures also decreased nocturnal acidification in approximately 34–50%, whereas low temperatures increased it by 30–36%. Additionally, both continuous temperatures affected drastically diurnal consumption of malic acid, which was related to a significant RGR inhibition, where the specific photosynthetic structure area component was the most affected. Our results allowed determining that, despite the high tolerance to extreme temperatures described for Opuntia plants, young individuals of O. streptacantha suffered photosynthetic impairment that led to the inhibition of their growth. Thus, the main findings reported in this study can help to predict the potential impact of climatic change on the establishment and survival of succulent

  10. Arbuscule frequency in grapevine roots is more responsive to reduction in photosynthetic capacity than to increased levels of shoot phosphorus

    USDA-ARS?s Scientific Manuscript database

    We evaluated whether altering photosynthetic capacity or shoot P plays bigger role in regulating arbuscule abundance in fine roots of grapevine. Pinot noir grapevines were grown in an unsterilized vineyard soil and colonized by indigenous arbuscular mycorrhizal fungi (AMF) in two experiments where p...

  11. Impact of Salinity Gradients on Ammonia Bioattenuation Processes in a Photosynthetic Wetland Biomat

    NASA Astrophysics Data System (ADS)

    Vega, M.; Jones, Z.; Sharp, J.

    2017-12-01

    Shallow, open water treatment wetlands may be able to offset challenges associated with the reclamation of impaired waters (e.g., membrane fouling, aeration costs, etc.) due to natural biogeochemical fluctuations produced by a benthic, photoactive biomat. This diatomaceous, redox-stratified biomat has demonstrated significant nitrate and trace organic removal from municipal wastewater streams and the microbial community has been thoroughly characterized. However, research is required to predict shifts in community structure and function in response to the excess salinity, ammonia, and metal gradients of impaired waters. Batch microcosm studies inoculating biomat from an active open water treatment wetland with incremental dilutions of hydraulic fracturing produced water were conducted in a light chamber with oscillating twelve-hour light and dark cycles to assess the effect of an impaired water matrix on biomat functionality. Diurnal photosynthetic signatures and ammonia removal kinetics were quantified in various experiments probing the effects of oscillating light conditions, biomat depth, water column isolation, nitrogen source, and salinity gradients in conjunction with phylogenetic profiles and morphological characterization. Diurnal pH and dissolved oxygen fluctuations were present at all produced water permutations, perhaps indicating stabilization of photosynthetic communities. Ammonia attenuation results suggest that the biomat is effective at removing ammonia, although first order rate constants decrease with increasing produced water abundance. Microbial community diversity appears to decrease with increasing salinity, and it is likely that these shifts correspond to variation in ecosystem function and thus treatment effectiveness. The application of shallow, open water treatment wetlands to remediate impaired waters has the potential to address societally relevant problems while discerning fundamental biogeochemical phenomena.

  12. SEASONAL ABUNDANCE OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    EPA Science Inventory

    Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundances of key tracer compounds together with their dominant sources. Daily PM10...

  13. Micromachined microbial and photosynthetic fuel cells

    NASA Astrophysics Data System (ADS)

    Chiao, Mu; Lam, Kien B.; Lin, Liwei

    2006-12-01

    This paper presents two types of fuel cells: a miniature microbial fuel cell (µMFC) and a miniature photosynthetic electrochemical cell (µPEC). A bulk micromachining process is used to fabricate the fuel cells, and the prototype has an active proton exchange membrane area of 1 cm2. Two different micro-organisms are used as biocatalysts in the anode: (1) Saccharomyces cerevisiae (baker's yeast) is used to catalyze glucose and (2) Phylum Cyanophyta (blue-green algae) is used to produce electrons by a photosynthetic reaction under light. In the dark, the µPEC continues to generate power using the glucose produced under light. In the cathode, potassium ferricyanide is used to accept electrons and electric power is produced by the overall redox reactions. The bio-electrical responses of µMFCs and µPECs are characterized with the open-circuit potential measured at an average value of 300-500 mV. Under a 10 ohm load, the power density is measured as 2.3 nW cm-2 and 0.04 nW cm-2 for µMFCs and µPECs, respectively.

  14. Sources of organic carbon for Rimicaris hybisae: Tracing individual fatty acids at two hydrothermal vent fields in the Mid-Cayman rise

    NASA Astrophysics Data System (ADS)

    Streit, Kathrin; Bennett, Sarah A.; Van Dover, Cindy L.; Coleman, Max

    2015-06-01

    Hydrothermal vents harbor ecosystems mostly decoupled from organic carbon synthesized with the energy of sunlight (photosynthetic carbon source) but fueled instead by oxidation of reduced compounds to generate a chemosynthetic carbon source. Our study aimed to disentangle photosynthetic and chemosynthetic organic carbon sources for the shrimp species Rimicaris hybisae, a primary consumer presumed to obtain its organic carbon mainly from ectosymbiotic chemoautotrophic bacteria living on its gill cover membrane. To provide ectosymbionts with ideal conditions for chemosynthesis, these shrimp live in dense clusters around vent chimneys; they are, however, also found sparsely distributed adjacent to diffuse vent flows, where they might depend on alternative food sources. Densely and sparsely distributed shrimp were sampled and dissected into abdominal tissue and gill cover membrane, covered with ectosymbiotic bacteria, at two hydrothermal vent fields in the Mid-Cayman rise that differ in vent chemistry. Fatty acids (FA) were extracted from shrimp tissues and their carbon isotopic compositions assessed. The FA data indicate that adult R. hybisae predominantly rely on bacteria for their organic carbon needs. Their FA composition is dominated by common bacterial FA of the n7 family (~41%). Bacterial FA of the n4 FA family are also abundant and found to constitute good biomarkers for gill ectosymbionts. Sparsely distributed shrimp contain fractions of n4 FA in gill cover membranes ~4% lower than densely packed ones (~18%) and much higher fractions of photosynthetic FA in abdominal tissues, ~4% more (compared with 1.6%), suggesting replacement of ectosymbionts along with exoskeletons (molt), while they take up alternative diets of partly photosynthetic organic carbon. Abdominal tissues also contain photosynthetic FA from a second source taken up presumably during an early dispersal phase and still present to c. 3% in adult shrimp. The contribution of photosynthetic carbon to

  15. Bioinspired Organic PV Cells Using Photosynthetic Pigment Complex for Energy Harvesting Materials

    DTIC Science & Technology

    2010-05-10

    ultrafast laser spectroscopy. More recently the structures of the LH2 complexes has revealed the nonameric or octameric arrangement of repeating units...Scheme 1. Compartimentalization of light harvesting and charge separation. The antenna complexes( LH2 ,LH1-RC) efficiently realize various...photosynthetic functions using cofactors (BChl a and carotenoid) assembled into the apoproteins (LH1 and LH2 ). The light-harvesting mechanisms in these

  16. Bio-inspired photo-electronic material based on photosynthetic proteins

    NASA Astrophysics Data System (ADS)

    Lebedev, Nikolai; Trammell, Scott A.; Tsoi, Stanislav; Spano, Anthony; Kim, Jin Ho; Xu, Jimmy; Twigg, Mark E.; Schnur, Joel M.

    2009-08-01

    The construction of efficient light energy converting (photovoltaic and photo-electronic) devices is a current and great challenge in science and technology and one that will have important economic consequences. Several innovative nanoelectronic materials were proposed to achieve this goal, semiconductor quantum dots, metallic nanowires and carbon nanotubes (CNT) are among them. As a charge separating unit for light energy conversion, we propose the utilization of the most advanced photoelectronic material developed by nature, photosynthetic reaction center proteins. As a first step in this direction, we constructed a novel bioinorganic nanophotoelectronic material with photoactive photosynthetic reaction center (RC) proteins encapsulated inside a multiwall CNT arrayed electrode. The material consists of photosynthetic RC-cytochrome complexes acting as charge separating units bound to the inner walls of a CNT electrode and ubiquinone-10 (Q2) serving as a soluble electron-transfer mediator to the counter electrode. The proteins were immobilized inside carbon nanotubes by a Ni(NTA)-alkane-pyrene linker, forming a self-assembled monolayer (SAM) on the surface of inner CNT walls and allowing for unidirectional protein orientation. The material demonstrates an enhanced photoinduced electron transfer rate and shows substantial improvement in photocurrent density compared to that obtained with the same proteins when immobilized on planar graphite (HOPG) electrode. The results suggest that protein encapsulation in precisely organized arrayed tubular electrode architecture can considerably improve the performance of photovoltaic, photoelectronic, or biofuel cell devices. They demonstrate the potential for substantial advantages of precisely organized nano electrode tubular arrayed architecture for variety biotechnological applications.

  17. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  18. Influence of thermal light correlations on photosynthetic structures

    NASA Astrophysics Data System (ADS)

    de Mendoza, Adriana; Manrique, Pedro; Caycedo-Soler, Felipe; Johnson, Neil F.; Rodríguez, Ferney J.; Quiroga, Luis

    2014-03-01

    The thermal light from the sun is characterized by both classical and quantum mechanical correlations. These correlations have left a fingerprint on the natural harvesting structures developed through five billion years of evolutionary pressure, specially in photosynthetic organisms. In this work, based upon previous extensive studies of spatio-temporal correlations of light fields, we hypothesize that structures involving photosensitive pigments like those present in purple bacteria vesicles emerge as an evolutionary response to the different properties of incident light. By using burstiness and memory as measures that quantify higher moments of the photon arrival statistics, we generate photon-time traces. They are used to simulate absorption on detectors spatially extended over regions comparable to these light fields coherence length. Finally, we provide some insights into the connection between these photo-statistical features with the photosynthetic membrane architecture and the lights' spatial correlation. Facultad de Ciencias Uniandes.

  19. Determination of photophysical parameters of chlorophyll {alpha} in photosynthetic organisms using the method of nonlinear laser fluorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gostev, T S; Fadeev, V V

    2011-05-31

    We study the possibility of solving the multiparameter inverse problem of nonlinear laser fluorimetry of molecular systems with high local concentration of fluorophores (by the example of chlorophyll {alpha} molecules in photosynthetic organisms). The algorithms are proposed that allow determination of up to four photophysical parameters of chlorophyll {alpha} from the experimental fluorescence saturation curves. The uniqueness and stability of the inverse problem solution obtained using the proposed algorithms were assessed numerically. The laser spectrometer, designed in the course of carrying out the work and aimed at nonlinear laser fluorimetry in the quasi-stationary and nonstationary excitation regimes is described. Themore » algorithms, proposed in this paper, are tested on pure cultures of microalgae Chlorella pyrenoidosa and Chlamydomonas reinhardtii under different functional conditions. (optical technologies in biophysics and medicine)« less

  20. Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species.

    PubMed

    Sulpice, Ronan; Ishihara, Hirofumi; Schlereth, Armin; Cawthray, Gregory R; Encke, Beatrice; Giavalisco, Patrick; Ivakov, Alexander; Arrivault, Stéphanie; Jost, Ricarda; Krohn, Nicole; Kuo, John; Laliberté, Etienne; Pearse, Stuart J; Raven, John A; Scheible, Wolf-Rüdiger; Teste, François; Veneklaas, Erik J; Stitt, Mark; Lambers, Hans

    2014-06-01

    Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat. The results were compared with those for Arabidopsis thaliana. Compared with A. thaliana, immature leaves of Proteaceae species contained very low levels of rRNA, especially plastidic rRNA. Proteaceae species showed slow development of the photosynthetic apparatus (‘delayed greening’), with young leaves having very low levels of chlorophyll and Calvin-Benson cycle enzymes. In mature leaves, soluble protein and Calvin-Benson cycle enzyme activities were low, but Glc6P levels were similar to those in A. thaliana. We propose that low ribosome abundance contributes to the high P efficiency of these Proteaceae species in three ways: (1) less P is invested in ribosomes; (2) the rate of growth and, hence, demand for P is low; and (3) the especially low plastidic ribosome abundance in young leaves delays formation of the photosynthetic machinery, spreading investment of P in rRNA. Although Calvin-Benson cycle enzyme activities are low, Glc6P levels are maintained, allowing their effective use.

  1. Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species

    PubMed Central

    Sulpice, Ronan; Ishihara, Hirofumi; Schlereth, Armin; Cawthray, Gregory R; Encke, Beatrice; Giavalisco, Patrick; Ivakov, Alexander; Arrivault, StÉphanie; Jost, Ricarda; Krohn, Nicole; Kuo, John; Laliberté, Etienne; Pearse, Stuart J; Raven, John A; Scheible, Wolf-rüdiger; Teste, François; Veneklaas, Erik J; Stitt, Mark; Lambers, Hans

    2014-01-01

    Abstract Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat. The results were compared with those for Arabidopsis thaliana. Compared with A. thaliana, immature leaves of Proteaceae species contained very low levels of rRNA, especially plastidic rRNA. Proteaceae species showed slow development of the photosynthetic apparatus (‘delayed greening’), with young leaves having very low levels of chlorophyll and Calvin–Benson cycle enzymes. In mature leaves, soluble protein and Calvin–Benson cycle enzyme activities were low, but Glc6P levels were similar to those in A. thaliana. We propose that low ribosome abundance contributes to the high P efficiency of these Proteaceae species in three ways: (1) less P is invested in ribosomes; (2) the rate of growth and, hence, demand for P is low; and (3) the especially low plastidic ribosome abundance in young leaves delays formation of the photosynthetic machinery, spreading investment of P in rRNA. Although Calvin–Benson cycle enzyme activities are low, Glc6P levels are maintained, allowing their effective use. PMID:24895754

  2. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers

    PubMed Central

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further

  3. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers.

    PubMed

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further

  4. Photosynthetic physiology and biomass partitioning in the model diatom Phaeodactylum tricornutum grown in a sinusoidal light regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jallet, Denis; Caballero, Michael A.; Gallina, Alessandra A.

    Photosynthetic microbes respond to changing light environments to balance photosynthetic process with light induced damage and photoinhibition. There have been very few characterizations of photosynthetic physiology or biomass partitioning during the day in mass culture. Understanding the constraints on photosynthetic efficiency and biomass accumulation are necessary for engineering superior strains or cultivation methods. We observed the photosynthetic physiology of nutrient replete Phaeodactylum tricornutum growing in light environments that mimic those found in rapidly mixing, outdoor, low biomass photobioreactors. We found little evidence for photoinhibition or non-photochemical quenching in situ, suggesting photosynthesis remains highly efficient throughout the day. Cells doubled theirmore » organic carbon from dawn to dusk and a small percentage – around 20% – of this carbon was allocated to carbohydrates or triacylglycerol. We thus conclude that the self-shading provided by dense culturing of P. tricornutum inhibits the induction of photodamage, and energy dissipation processes that would otherwise lower productivity in an outdoor photobioreactor.« less

  5. Photosynthetic physiology and biomass partitioning in the model diatom Phaeodactylum tricornutum grown in a sinusoidal light regime

    DOE PAGES

    Jallet, Denis; Caballero, Michael A.; Gallina, Alessandra A.; ...

    2016-06-11

    Photosynthetic microbes respond to changing light environments to balance photosynthetic process with light induced damage and photoinhibition. There have been very few characterizations of photosynthetic physiology or biomass partitioning during the day in mass culture. Understanding the constraints on photosynthetic efficiency and biomass accumulation are necessary for engineering superior strains or cultivation methods. We observed the photosynthetic physiology of nutrient replete Phaeodactylum tricornutum growing in light environments that mimic those found in rapidly mixing, outdoor, low biomass photobioreactors. We found little evidence for photoinhibition or non-photochemical quenching in situ, suggesting photosynthesis remains highly efficient throughout the day. Cells doubled theirmore » organic carbon from dawn to dusk and a small percentage – around 20% – of this carbon was allocated to carbohydrates or triacylglycerol. We thus conclude that the self-shading provided by dense culturing of P. tricornutum inhibits the induction of photodamage, and energy dissipation processes that would otherwise lower productivity in an outdoor photobioreactor.« less

  6. Removal of Anabaena spiroides by potassium permanganate pre-oxidation: effect on photosynthetic capacity and molecular weight distribution.

    PubMed

    Qiao, Junlian; Zhang, Xiaodong; Lv, Liping

    2017-11-01

    Bench scale tests were conducted to investigate the effect of potassium permanganate pre-oxidation on the photosynthetic activity and molecular weight distribution of Anabaena spiroides. Different concentrations of potassium permanganate were added into the suspension of Anabaena spiroides, one of the dominant algae in water bloom, and after pre-oxidation of permanganate for 1 h, the results show that the removal rate significantly increases by 33.99~36.35% compared to direct coagulation. Then, the algal characteristics, including photosynthetic ability, the changes in extracellular organic matter three-dimensional fluorescence, and the distribution of molecular weight were conducted and the results show that along with increasing concentration of potassium permanganate, the photosynthetic ability of algae decreases, more extracellular organic matter is secreted, and large molecular weight matter (humic-like and fulvic-like substances) are generated. Therefore, this study demonstrates that potassium permanganate could be used in addressing the algae-rich water.

  7. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis

    PubMed Central

    Kim, Jaoon Young Hwan; Kwak, Ho Seok; Sung, Young Joon; Choi, Hong Il; Hong, Min Eui; Lim, Hyun Seok; Lee, Jae-Hyeok; Lee, Sang Yup; Sim, Sang Jun

    2016-01-01

    Microalgae possess great potential as a source of sustainable energy, but the intrinsic inefficiency of photosynthesis is a major challenge to realize this potential. Photosynthetic organisms evolved phototaxis to find optimal light condition for photosynthesis. Here we report a microfluidic screening using competitive phototaxis of the model alga, Chlamydomonas reinhardtii, for rapid isolation of strains with improved photosynthetic efficiencies. We demonstrated strong relationship between phototaxis and photosynthetic efficiency by quantitative analysis of phototactic response at the single-cell level using a microfluidic system. Based on this positive relationship, we enriched the strains with improved photosynthetic efficiency by isolating cells showing fast phototactic responses from a mixture of 10,000 mutants, thereby greatly improving selection efficiency over 8 fold. Among 147 strains isolated after screening, 94.6% showed improved photoautotrophic growth over the parental strain. Two mutants showed much improved performances with up to 1.9- and 8.1-fold increases in photoautotrophic cell growth and lipid production, respectively, a substantial improvement over previous approaches. We identified candidate genes that might be responsible for fast phototactic response and improved photosynthesis, which can be useful target for further strain engineering. Our approach provides a powerful screening tool for rapid improvement of microalgal strains to enhance photosynthetic productivity. PMID:26852806

  8. Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae.

    PubMed

    Yang, Bo; Liu, Jin; Ma, Xiaonian; Guo, Bingbing; Liu, Bin; Wu, Tao; Jiang, Yue; Chen, Feng

    2017-01-01

    Photosynthetic microalgae are emerging as potential biomass feedstock for sustainable production of biofuels and value-added bioproducts. CO 2 biomitigation through these organisms is considered as an eco-friendly and promising alternative to the existing carbon sequestration methods. Nonetheless, the inherent relatively low photosynthetic capacity of microalgae has hampered the practical use of this strategy for CO 2 biomitigation applications. Here, we demonstrate the feasibility of improving photosynthetic capacity by the genetic manipulation of the Calvin cycle in the typical green microalga Chlorella vulgaris . Firstly, we fused a plastid transit peptide to upstream of the enhanced green fluorescent protein (EGFP) and confirmed its expression in the chloroplast of C. vulgaris . Then we introduced the cyanobacterial fructose 1,6-bisphosphate aldolase, guided by the plastid transit peptide, into C. vulgaris chloroplast, leading to enhanced photosynthetic capacity (~ 1.2-fold) and cell growth. Molecular and physiochemical analyses suggested a possible role for aldolase overexpression in promoting the regeneration of ribulose 1,5-bisphosphate in the Calvin cycle and energy transfer in photosystems. Our work represents a proof-of-concept effort to enhance photosynthetic capacity by the engineering of the Calvin cycle in green microalgae. Our work also provides insights into targeted genetic engineering toward algal trait improvement for CO 2 biomitigation uses.

  9. Electron Paramagnetic Resonance Study of a Photosynthetic Microbial Mat and Comparison with Archean Cherts

    NASA Astrophysics Data System (ADS)

    Bourbin, M.; Derenne, S.; Gourier, D.; Rouzaud, J.-N.; Gautret, P.; Westall, F.

    2012-12-01

    Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.

  10. Photosynthetic Units

    PubMed Central

    Schmid, Georg H.; Gaffron, Hans

    1968-01-01

    Leaf tissues of aurea mutants of tobacco and Lespedeza have been shown to have higher photosynthetic capacity per molecule of chlorophyll, a higher saturation intensity, a simpler lamellar structure, and the same quantum yield as their dark green parents. Here we report on the values of photosynthetic units for both types of plants and some algae. The unit has been assumed to be about as uniform and steady in the plant world as the quantum efficiency. The number on which all theoretical discussions have been based so far is 2400 per O2 evolved or CO2 reduced. With dark green plants and algae our determinations of units by means of 40 µsec flashes superimposed on a steady rate of background photosynthesis at 900 ergs cm-2 sec-1 of red light yielded mostly numbers between 2000 and 2700. However, the photosynthetic unit turned out to be very variable, even in these objects. In aurea mutants the unit was distinctly smaller, averaging 600 chl/CO2. By choosing the right combination of colors for flash and background light, units as low as 300 chl/CO2 or 40 chl/e- could be measured consistently. We found five well-defined groups of units composed of multiples of its smallest member. These new findings are discussed in terms of structural entities that double or divide under the influence of far-red light. PMID:5672002

  11. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms.

    PubMed

    Tomar, Vandana; Sidhu, Gurpreet Kaur; Nogia, Panchsheela; Mehrotra, Rajesh; Mehrotra, Sandhya

    2017-11-01

    This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO 2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O 2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C 4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO 2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO 2 and HCO 3 - transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO 2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.

  12. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niederman, Robert A.; Blankenship, Robert E.; Frank, Harry A.

    These funds were used for partial support of the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems, that was held on 8-11 August, 2013, at Washington University, St. Louis, MO. This conference, held in conjunction with the 16th International Congress on Photosynthesis/St. Louis, continued a long tradition of light-harvesting satellite conferences that have been held prior to the previous six international photosynthesis congresses. In this Workshop, the basis was explored for the current interest in replacing fossil fuels with energy sources derived form direct solar radiation, coupled with light-driven electron transport in natural photosynthetic systems and how they offer a valuablemore » blueprint for conversion of sunlight to useful energy forms. This was accomplished through sessions on the initial light-harvesting events in the biological conversion of solar energy to chemically stored energy forms, and how these natural photosynthetic processes serve as a guide to the development of robust bio-hybrid and artificial systems for solar energy conversion into both electricity or chemical fuels. Organized similar to a Gordon Research Conference, a lively, informal and collegial setting was established, highlighting the exchange of exciting new data and unpublished results from ongoing studies. A significant amount of time was set aside for open discussion and interactive poster sessions, with a special session devoted to oral presentations by talented students and postdoctoral fellows judged to have the best posters. This area of research has seen exceptionally rapid progress in recent years, with the availability of a number of antenna protein structures at atomic resolution, elucidation of the molecular surface architecture of native photosynthetic membranes by atomic force microscopy and the maturing of ultrafast spectroscopic and molecular biological techniques for the investigation and manipulation of photosynthetic systems. The

  13. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  14. Impact of nitrophenols on the photosynthetic electron transport chain and ATP content in Nostoc muscorum and Chlorella vulgaris.

    PubMed

    Umamaheswari, A; Venkateswarlu, K

    2004-06-01

    Concentration-dependent inhibition of the photosynthetic electron transport chain (photosystem I (PS I), photosystem II (PS II) and whole chain reaction) and ATP content was observed in Nostoc muscorum and Chlorella vulgaris grown with o-nitrophenol, m-nitrophenol, or 2,4-dinitrophenol. Although the extents of inhibition of the photosynthetic electron transport chain in both organisms were similar, PS II was more sensitive than PS I and whole chain reaction to the nitrophenols. Depletion of the ATP pool was noted in nitrophenol-grown cultures, probably as a consequence of nearly complete inhibition of the photosynthetic electron transport chain.

  15. Contrasting Strategies of Photosynthetic Energy Utilization Drive Lifestyle Strategies in Ecologically Important Picoeukaryotes

    PubMed Central

    Halsey, Kimberly H.; Milligan, Allen J.; Behrenfeld, Michael J.

    2014-01-01

    The efficiency with which absorbed light is converted to net growth is a key property for estimating global carbon production. We previously showed that, despite considerable evolutionary distance, Dunaliella tertiolecta (Chlorophyceae) and Thalassiosira weissflogii (Bacillariophyceae) share a common strategy of photosynthetic energy utilization and nearly identical light energy conversion efficiencies. These findings suggested that a single model might be appropriate for describing relationships between measures of phytoplankton production. This conclusion was further evaluated for Ostreococcus tauri RCC1558 and Micromonas pusilla RCC299 (Chlorophyta, Prasinophyceae), two picoeukaryotes with contrasting geographic distributions and swimming abilities. Nutrient-dependent photosynthetic efficiencies in O. tauri were similar to the previously studied larger algae. Specifically, absorption-normalized gross oxygen and carbon production and net carbon production were independent of nutrient limited growth rate. In contrast, all measures of photosynthetic efficiency were strongly dependent on nutrient availability in M. pusilla. This marked difference was accompanied by a diminished relationship between Chla:C and nutrient limited growth rate and a remarkably greater efficiency of gross-to-net energy conversion than the other organisms studied. These results suggest that the cost-benefit of decoupling pigment concentration from nutrient availability enables motile organisms to rapidly exploit more frequent encounters with micro-scale nutrient patches in open ocean environments. PMID:24957026

  16. Non-coding RNAs' partitioning in the evolution of photosynthetic organisms via energy transduction and redox signaling.

    PubMed

    Kotakis, Christos

    2015-01-01

    Ars longa, vita brevis -Hippocrates Chloroplasts and mitochondria are genetically semi-autonomous organelles inside the plant cell. These constructions formed after endosymbiosis and keep evolving throughout the history of life. Experimental evidence is provided for active non-coding RNAs (ncRNAs) in these prokaryote-like structures, and a possible functional imprinting on cellular electrophysiology by those RNA entities is described. Furthermore, updated knowledge on RNA metabolism of organellar genomes uncovers novel inter-communication bridges with the nucleus. This class of RNA molecules is considered as a unique ontogeny which transforms their biological role as a genetic rheostat into a synchronous biochemical one that can affect the energetic charge and redox homeostasis inside cells. A hypothesis is proposed where such modulation by non-coding RNAs is integrated with genetic signals regulating gene transfer. The implications of this working hypothesis are discussed, with particular reference to ncRNAs involvement in the organellar and nuclear genomes evolution since their integrity is functionally coupled with redox signals in photosynthetic organisms.

  17. The use of 210Pb/Pb as a Tracer of Chemosynthetic and Photosynthetic Organic Carbon in Hydrothermal Vent Particles

    NASA Astrophysics Data System (ADS)

    Kadko, D.

    2004-12-01

    Jack Dymond pioneered the use of sediment traps to understand the chemistry and flux of material emanating from submarine hydrothermal vents. For example, in one paper Roth and Dymond (1989) used the ratio of Corg/CCaCO3 between traps to determine the fraction of chemosynthetically derived organic carbon (OC) in collected material. Knowledge of the relative proportion of chemosynthetic and photosynthetic OC is critical to mass balance calculations of hydrothermal OC inputs/exports and can also be determined from the 210Pb/Pb ratio measured in the sediment traps and suspended particles. The 210Pb/Pb ratio of particles in the ridge environment is diagnostic of the source and path of the particles. At the Endeavour Ridge, particles emanating directly from vents have a ratio close to that of the vent fluids and basalt ( ˜0.5 dpm/μ g) from where they are derived, and subsequently scavenge additional 210Pb as they disperse. It is therefore reasonable to assume that particles with a 210Pb/Pb ratio of 0.5 are "fresh" and any OC associated with them must be chemosynthetic in origin. This ratio is much smaller than that of typical (non-vent) seawater (>3 dpm/μ g) and thus particles in the upper water column (or distant from vents) will have a high 210Pb/Pb ratio and contain OC predominantly from photosynthetic production. The 210Pb/Pb ratio of Endeavour particles increase markedly from <0.70 at a vent orifice, to 1.22 within the buoyant plume ( ˜20 ma vent), to 1.4 downstream (~2 km) within the neutrally-buoyant plume at 2100 m depth. These plume particles are distinguished from those above the plume (at 1700 m with 210Pb/Pb = 3.2 dpm/μ g) by lower 210Pb/Pb ratios but much higher 210Pb content. The high Pb content attests to a hydrothermal component of the plume particles. Therefore, the 210Pb/Pb ratio can be used to define two conservative endmembers for a particle population: those derived from the vents will have a ratio of 0.5 (with 100% chemosynthetic OC) and those

  18. Photosynthetic capacity regulation is uncoupled from nutrient limitation

    NASA Astrophysics Data System (ADS)

    Smith, N. G.; Keenan, T. F.; Prentice, I. C.; Wang, H.

    2017-12-01

    Ecosystem and Earth system models need information on leaf-level photosynthetic capacity, but to date typically rely on empirical estimates and an assumed dependence on nitrogen supply. Recent evidence suggests that leaf nitrogen is actively controlled though plant responses to photosynthetic demand. Here, we propose and test a theory of demand-driven coordination of photosynthetic processes, and use it to assess the relative roles of nutrient supply and photosynthetic demand. The theory captured 63% of observed variability in a global dataset of Rubisco carboxylation capacity (Vcmax; 3,939 values at 219 sites), suggesting that environmentally regulated biophysical costs and light availability are the first-order drivers of photosynthetic capacity. Leaf nitrogen, on the other hand, was a weak secondary driver of Vcmax, explaining less than 6% of additional observed variability. We conclude that leaf nutrient allocation is primarily driven by demand. Our theory offers a simple, robust strategy for dynamically predicting leaf-level photosynthetic capacity in global models.

  19. Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: metabolic reorganization prior to early stress responses.

    PubMed

    Pinheiro, Carla; António, Carla; Ortuño, Maria Fernanda; Dobrev, Petre I; Hartung, Wolfram; Thomas-Oates, Jane; Ricardo, Cândido Pinto; Vanková, Radomira; Chaves, M Manuela; Wilson, Julie C

    2011-10-01

    The early (2-4 d) effects of slowly imposed soil water deficit on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance in different organs (leaf blade, stem stele, stem cortex, and root) were evaluated on 23-d-old plants (growth chamber assay). Our work shows that several metabolic adjustments occurred prior to alteration of the plant water status, implying that water deficit is perceived before the change in plant water status. The slow, progressive decline in soil water content started to be visible 3 d after withholding water (3 DAW). The earliest plant changes were associated with organ-specific metabolic responses (particularly in the leaves) and with leaf conductance and only later with plant water status and photosynthetic rate (4 DAW) or photosynthetic capacity (according to the Farquhar model; 6 DAW). Principal component analysis (PCA) of the physiological parameters, the carbohydrate and the hormone levels and their relative values, as well as leaf water-soluble metabolites full scan data (LC-MS/MS), showed separation of the different sampling dates. At 6 DAW classically described stress responses are observed, with plant water status, ABA level, and root hormonal balance contributing to the separation of these samples. Discrimination of earlier stress stages (3 and 4 DAW) is only achieved when the relative levels of indole-3-acetic acid (IAA), cytokinins (Cks), and carbon metabolism (glucose, sucrose, raffinose, and starch levels) are taken into account. Our working hypothesis is that, in addition to single responses (e.g. ABA increase), the combined alterations in hormone and carbohydrate levels play an important role in the stress response mechanism. Response to more advanced stress appears to be associated with a combination of cumulative changes, occurring in several plant organs. The carbohydrate and hormonal balance in the leaf (IAA to bioactive-Cks; soluble sugars to IAA and starch to IAA; relative abundances of the

  20. Abundance and patterns of transparent exopolymer particles (TEP) in Arctic floodplain lakes of the Mackenzie River Delta

    NASA Astrophysics Data System (ADS)

    Chateauvert, C. Adam; Lesack, Lance F. W.; Bothwell, Max L.

    2012-12-01

    The Mackenzie River Delta is a lake-rich arctic floodplain that receives high inputs of dissolved organic matter (DOM) and suspended particulates from allochthonous and autochthonous sources, and may transfer carbon from dissolved to particulate phase via in situ formation of transparent exopolymer particles (TEP). TEP provides food for grazers, surfaces for bacteria, and increased potential for aggregation and sedimentation of organic matter. During open water 2006, we tracked TEP abundances in three Delta lakes representing gradients that include declining river-to-lake connection times, increasing levels of dissolved organic carbon (DOC), and declining chromophoric-DOM (CDOM). Unexpectedly, TEP abundances were highest immediately after the flood, when autochthonous autotrophic production was at a seasonal low and CDOM a seasonal high. Moreover, the lake with the strongest riverine influence and lowest levels of autochthonous autotrophic production had the highest mean TEP-carbon (TEP-C) concentrations among the lakes. The mean proportion of particulate organic carbon (POC) represented by TEP-C increased with increasing river connection time, and appears to represent a substantial proportion of POC in Mackenzie Delta Lakes. Unexpectedly, the TEP gradient was most strongly related to CDOM (river water source) rather than overall DOC. Variations in CDOM accounted for 53% of TEP-C variation among the lakes, indicating allochthonous matter was the most important source of TEP. DOC release from in situ macrophytes during periods of high photosynthesis may contribute to TEP formation in the lake with lowest riverine influence, but pH levels >9.5 driven by the high photosynthetic rates complicate the interpretation of results from this lake.

  1. Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance.

    PubMed

    Leles, S G; Mitra, A; Flynn, K J; Stoecker, D K; Hansen, P J; Calbet, A; McManus, G B; Sanders, R W; Caron, D A; Not, F; Hallegraeff, G M; Pitta, P; Raven, J A; Johnson, M D; Glibert, P M; Våge, S

    2017-08-16

    This first comprehensive analysis of the global biogeography of marine protistan plankton with acquired phototrophy shows these mixotrophic organisms to be ubiquitous and abundant; however, their biogeography differs markedly between different functional groups. These mixotrophs, lacking a constitutive capacity for photosynthesis (i.e. non-constitutive mixotrophs, NCMs), acquire their phototrophic potential through either integration of prey-plastids or through endosymbiotic associations with photosynthetic microbes. Analysis of field data reveals that 40-60% of plankton traditionally labelled as (non-phototrophic) microzooplankton are actually NCMs, employing acquired phototrophy in addition to phagotrophy. Specialist NCMs acquire chloroplasts or endosymbionts from specific prey, while generalist NCMs obtain chloroplasts from a variety of prey. These contrasting functional types of NCMs exhibit distinct seasonal and spatial global distribution patterns. Mixotrophs reliant on 'stolen' chloroplasts, controlled by prey diversity and abundance, dominate in high-biomass areas. Mixotrophs harbouring intact symbionts are present in all waters and dominate particularly in oligotrophic open ocean systems. The contrasting temporal and spatial patterns of distribution of different mixotroph functional types across the oceanic provinces, as revealed in this study, challenges traditional interpretations of marine food web structures. Mixotrophs with acquired phototrophy (NCMs) warrant greater recognition in marine research. © 2017 The Author(s).

  2. Differential photosynthetic and morphological adaptations to low light affect depth distribution of two submersed macrophytes in lakes.

    PubMed

    Chen, Jianfeng; Cao, Te; Zhang, Xiaolin; Xi, Yilong; Ni, Leyi; Jeppesen, Erik

    2016-10-03

    To evaluate the relative importance of photosynthetic versus morphological adaptations of submersed macrophytes to low light intensity in lakes, rapid light curves (RLCs), morphological parameters, relative growth rate (RGR), clonal reproduction and abundance of two submersed macrophytes (Potamogeton maackianus and Vallisneria natans) were examined under 2.8%, 7.1%, 17.1% and 39.5% ambient light in a field and outdoor experimental study. The plants increased their initial slope of RLCs (α) and decreased their minimum saturating irradiance (E k ) and maximum relative electron transport rate (ETRm) of RLCs under low light stress, but V. natans was more sensitive in RLCs than P. maackianus. Accordingly, the RGR, plant height and abundance of P. maackianus were higher in the high light regimes (shallow water) but lower in the low light regimes than those of V. natans. At the 2.8% ambient light, V. natans produced ramets and thus fulfilled its population expansion, in contrast to P. maackianus. The results revealed that P. maackianus as a canopy-former mainly elongated its shoot length towards the water surface to compensate for the low light conditions, however, it became limited in severe low light stress conditions. V. natans as a rosette adapted to low light stress mainly through photosynthetic adjustments and superior to severely low light than shoot elongation.

  3. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta.

    PubMed

    Revill, Meredith J W; Stanley, Susan; Hibberd, Julian M

    2005-09-01

    The genus Cuscuta (dodder) is composed of parasitic plants, some species of which appear to be losing the ability to photosynthesize. A molecular phylogeny was constructed using 15 species of Cuscuta in order to assess whether changes in photosynthetic ability and alterations in structure of the plastid genome relate to phylogenetic position within the genus. The molecular phylogeny provides evidence for four major clades within Cuscuta. Although DNA blot analysis showed that Cuscuta species have smaller plastid genomes than tobacco, and that plastome size varied significantly even within one Cuscuta clade, dot blot analysis indicated that the dodders possess homologous sequence to 101 genes from the tobacco plastome. Evidence is provided for significant rates of DNA transfer from plastid to nucleus in Cuscuta. Size and structure of Cuscuta plastid genomes, as well as photosynthetic ability, appear to vary independently of position within the phylogeny, thus supporting the hypothesis that within Cuscuta photosynthetic ability and organization of the plastid genome are changing in an unco-ordinated manner.

  4. Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells

    PubMed Central

    Altamura, Emiliano; Milano, Francesco; Tangorra, Roberto R.; Trotta, Massimo; Omar, Omar Hassan; Stano, Pasquale

    2017-01-01

    Photosynthesis is responsible for the photochemical conversion of light into the chemical energy that fuels the planet Earth. The photochemical core of this process in all photosynthetic organisms is a transmembrane protein called the reaction center. In purple photosynthetic bacteria a simple version of this photoenzyme catalyzes the reduction of a quinone molecule, accompanied by the uptake of two protons from the cytoplasm. This results in the establishment of a proton concentration gradient across the lipid membrane, which can be ultimately harnessed to synthesize ATP. Herein we show that synthetic protocells, based on giant lipid vesicles embedding an oriented population of reaction centers, are capable of generating a photoinduced proton gradient across the membrane. Under continuous illumination, the protocells generate a gradient of 0.061 pH units per min, equivalent to a proton motive force of 3.6 mV⋅min−1. Remarkably, the facile reconstitution of the photosynthetic reaction center in the artificial lipid membrane, obtained by the droplet transfer method, paves the way for the construction of novel and more functional protocells for synthetic biology. PMID:28320948

  5. Artificial Photosynthetic Reaction Center Exhibiting Acid-Responsive Regulation of Photoinduced Charge Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahk, Ian; Kodis, Gerdenis; Fleming, Graham R.

    Charge separation (CS) is the primary light-driven reaction in photosynthesis whereas onphotochemical quenching (NPQ) is a photoprotective regulatory mechanism employed by many photosynthetic organisms to dynamically modulate energy flow within the photosynthetic apparatus in response to fluctuating light conditions. Activated by decreases in lumen pH produced during periods of high photon flux, NPQ induces rapid thermal dissipation of excess excitation energy. As a result, the rate of CS decreases, thereby limiting the accumulation of potentially deleterious reactive intermediates and byproducts. In this article, a molecular triad that functionally mimics the effects of NPQ associated with an artificial photosynthetic reaction centermore » is described. Steady-state absorption and emission, time-resolved fluorescence, and transient absorption spectroscopies have been used to demonstrate a 1 order of magnitude reduction in the CS quantum yield via reversible protonation of an excited-state-quenching molecular switch moiety. As in the natural system, the populations of unquenched and quenched states and therefore the overall yields of CS were found to be dependent on acid concentration.« less

  6. Constraining the Abundances of Complex Organics in the Inner Regions of Solar-Type Protostars

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Taquet, V.; Ceccarelli, C.; Neri, R.; Kahane, C.; Charnley, S. B.

    2015-12-01

    We present arcsecond-resolution observations, obtained with the IRAM Plateau de Bure interferometer, of multiple complex organic molecules in two hot corino protostars: IRAS 2A and IRAS 4A, in the NGC 1333 star-forming region. The distribution of the line emission is very compact, indicating the presence of COMs is mostly concentrated in the inner hot corino regions. A comparison of the COMs abundances with astrochemical models favours a gas-phase formation route for CH3OCH3, and a grain formation of C2H5OH, C2H5CN, and HCOCH2OH. The high abundances of methyl formate (HCOOCH3) remain underpredicted by an order of magnitude.

  7. Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness.

    PubMed

    Xue, Xian; Wang, Qi; Qu, Yanli; Wu, Hongyang; Dong, Fengqin; Cao, Haoyan; Wang, Hou-Ling; Xiao, Jianwei; Shen, Yingbai; Wan, Yinglang

    2017-01-01

    Here, we compared the development of dark- and light-grown Chinese fir (Cunninghamia lanceolata) cotyledons, which synthesize chlorophyll in the dark, representing a different phenomenon from angiosperm model plants. We determined that the grana lamellar membranes were well developed in both chloroplasts and etiochloroplasts. The accumulation of thylakoid membrane protein complexes was similar between chloroplasts and etiochloroplasts. Measurement of chlorophyll fluorescence parameters indicated that photosystem II (PSII) had low photosynthetic activities, whereas the photosystem I (PSI)-driven cyclic electron flow (CEF) rate exceeded the rate of PSII-mediated photon harvesting in etiochloroplasts. Analysis of the protein contents in etiochloroplasts indicated that the light-harvesting complex II remained mostly in its monomeric conformation. The ferredoxin NADP + oxidoreductase and NADH dehydrogenase-like complexes were relatively abundantly expressed in etiochloroplasts for Chinese fir. Our transcriptome analysis contributes a global expression database for Chinese fir cotyledons, providing background information on the regulatory mechanisms of different genes involved in the development of dark- and light-grown cotyledons. In conclusion, we provide a novel description of the early developmental status of the light-dependent and light-independent photosynthetic apparatuses in gymnosperms. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Photosynthetic light capture and processing from cell to canopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenberg, P.; DeLucia, E.H.; Schoettle, A.W.

    1995-07-01

    We have addressed the unique structural features of conifers, as they relate to photosynthetic production, at different levels of organization (from needle to canopy). Many concepts and measures must be defined for conifers so that they are consistent with the structural properties of needles and shoots. Consistency is needed in comparing the photosynthetic performance of conifers and broad leaves, wherein it is important to distinguish the effect of structural factors on light capture from differences in the photosynthetic response at a fixed interception. Needles differ from broad leaves both with respect to inner structure and external shape, which includes amore » continuum from nearly flat to cylindrical. For nonflat three-dimensional objects such as for conifer needles, total surface area is the natural measure. The meaning of the one-sided area of needles is not clear, but consistency requires that it be defined as half the total needle surface area, as concluded. Characteristic structural factors of conifers that affect their ability to harvest light are a deep canopy combined with a small needle size, which create an important penumbra effect, and the clustering of needles on shoots, which creates a discontinuous distribution of needle area. These factors imply that, at a fixed leaf area index, the intercepted PAR would be smaller in coniferous than in broad-leafed canopies, but the vertical gradient of light in conifers is less steep and light reaching the lower canopy is all penumbral (diffuse). Conifers can maintain a higher leaf area index, and this may be accomplished by a more even distribution of light between shoots at different locations in the canopy and also because shade shoots have a structure that effectively intercepts light. Broad leaves in general have higher maximum photosynthetic rates than do needles, and yet conifers are at least equally productive on a stand basis. Possible reasons are discussed.« less

  9. Stoichiometry and kinetics of mercury uptake by photosynthetic bacteria.

    PubMed

    Kis, Mariann; Sipka, Gábor; Maróti, Péter

    2017-05-01

    Mercury adsorption on the cell surface and intracellular uptake by bacteria represent the key first step in the production and accumulation of highly toxic mercury in living organisms. In this work, the biophysical characteristics of mercury bioaccumulation are studied in intact cells of photosynthetic bacteria by use of analytical (dithizone) assay and physiological photosynthetic markers (pigment content, fluorescence induction, and membrane potential) to determine the amount of mercury ions bound to the cell surface and taken up by the cell. It is shown that the Hg(II) uptake mechanism (1) has two kinetically distinguishable components, (2) includes co-opted influx through heavy metal transporters since the slow component is inhibited by Ca 2+ channel blockers, (3) shows complex pH dependence demonstrating the competition of ligand binding of Hg(II) ions with H + ions (low pH) and high tendency of complex formation of Hg(II) with hydroxyl ions (high pH), and (4) is not a passive but an energy-dependent process as evidenced by light activation and inhibition by protonophore. Photosynthetic bacteria can accumulate Hg(II) in amounts much (about 10 5 ) greater than their own masses by well-defined strong and weak binding sites with equilibrium binding constants in the range of 1 (μM) -1 and 1 (mM) -1 , respectively. The strong binding sites are attributed to sulfhydryl groups as the uptake is blocked by use of sulfhydryl modifying agents and their number is much (two orders of magnitude) smaller than the number of weak binding sites. Biofilms developed by some bacteria (e.g., Rvx. gelatinosus) increase the mercury binding capacity further by a factor of about five. Photosynthetic bacteria in the light act as a sponge of Hg(II) and can be potentially used for biomonitoring and bioremediation of mercury-contaminated aqueous cultures.

  10. Differential uptake of photosynthetic and non-photosynthetic proteins by pea root plastids.

    PubMed

    Yan, Xianxi; Khan, Sultan; Hase, Toshiharu; Emes, Michael J; Bowsher, Caroline G

    2006-11-27

    The photosynthetic proteins RuBiSCO, ferredoxin I and ferredoxin NADP(+)-oxidoreductase (pFNR) were efficiently imported into isolated pea chloroplasts but not into pea root plastids. By contrast non-photosynthetic ferredoxin III and heterotrophic FNR (hFNR) were efficiently imported into both isolated chloroplasts and root plastids. Chimeric ferredoxin I/III (transit peptide of ferredoxin I attached to the mature region of ferredoxin III) only imported into chloroplasts. Ferredoxin III/I (transit peptide of ferredoxin III attached to the mature region of ferredoxin I) imported into both chloroplasts and root plastids. This suggests that import depends on specific interactions between the transit peptide and the translocon apparatus.

  11. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression

    PubMed Central

    Symnaczik, Sarah; Mäder, Paul; De Deyn, Gerlinde; Gattinger, Andreas

    2017-01-01

    Population growth and climate change challenge our food and farming systems and provide arguments for an increased intensification of agriculture. A promising option is eco-functional intensification through organic farming, an approach based on using and enhancing internal natural resources and processes to secure and improve agricultural productivity, while minimizing negative environmental impacts. In this concept an active soil microbiota plays an important role for various soil based ecosystem services such as nutrient cycling, erosion control and pest and disease regulation. Several studies have reported a positive effect of organic farming on soil health and quality including microbial community traits. However, so far no systematic quantification of whether organic farming systems comprise larger and more active soil microbial communities compared to conventional farming systems was performed on a global scale. Therefore, we conducted a meta-analysis on current literature to quantify possible differences in key indicators for soil microbial abundance and activity in organic and conventional cropping systems. All together we integrated data from 56 mainly peer-reviewed papers into our analysis, including 149 pairwise comparisons originating from different climatic zones and experimental duration ranging from 3 to more than 100 years. Overall, we found that organic systems had 32% to 84% greater microbial biomass carbon, microbial biomass nitrogen, total phospholipid fatty-acids, and dehydrogenase, urease and protease activities than conventional systems. Exclusively the metabolic quotient as an indicator for stresses on microbial communities remained unaffected by the farming systems. Categorical subgroup analysis revealed that crop rotation, the inclusion of legumes in the crop rotation and organic inputs are important farming practices affecting soil microbial community size and activity. Furthermore, we show that differences in microbial size and activity

  12. Functional Inactivation of Putative Photosynthetic Electron Acceptor Ferredoxin C2 (FdC2) Induces Delayed Heading Date and Decreased Photosynthetic Rate in Rice

    PubMed Central

    Ruan, Banpu; Kang, Shujing; He, Lei; Zhang, Sen; Dong, Guojun; Hu, Jiang; Zeng, Dali; Zhang, Guangheng; Gao, Zhenyu; Ren, Deyong; Hu, Xingming; Chen, Guang; Guo, Longbiao; Qian, Qian; Zhu, Li

    2015-01-01

    Ferredoxin (Fd) protein as unique electron acceptor, involved in a variety of fundamental metabolic and signaling processes, which is indispensable for plant growth. The molecular mechanisms of Fd such as regulation of electron partitioning, impact of photosynthetic rate and involvement in the carbon fixing remain elusive in rice. Here we reported a heading date delay and yellowish leaf 1 (hdy1) mutant derived from Japonica rice cultivar “Nipponbare” subjected to EMS treatment. In the paddy field, the hdy1 mutant appeared at a significantly late heading date and had yellow-green leaves during the whole growth stage. Further investigation indicated that the abnormal phenotype of hdy1 was connected with depressed pigment content and photosynthetic rate. Genetic analysis results showed that the hdy1 mutant phenotype was caused by a single recessive nuclear gene mutation. Map-based cloning revealed that OsHDY1 is located on chromosome 3 and encodes an ortholog of the AtFdC2 gene. Complementation and overexpression, transgenic plants exhibited the mutant phenotype including head date, leaf color and the transcription levels of the FdC2 were completely rescued by transformation with OsHDY1. Real-time PCR revealed that the expression product of OsHDY1 was detected in almost all of the organs except root, whereas highest expression levels were observed in seeding new leaves. The lower expression levels of HDY1 and content of iron were detected in hdy1 than WT’s. The FdC2::GFP was detected in the chloroplasts of rice. Real-time PCR results showed that the expression of many photosynthetic electron transfer related genes in hdy1 were higher than WT. Our results suggest that OsFdC2 plays an important role in photosynthetic rate and development of heading date by regulating electron transfer and chlorophyll content in rice. PMID:26598971

  13. Evolutionary insight into the ionotropic glutamate receptor superfamily of photosynthetic organisms.

    PubMed

    De Bortoli, Sara; Teardo, Enrico; Szabò, Ildikò; Morosinotto, Tomas; Alboresi, Alessandro

    2016-11-01

    Photosynthetic eukaryotes have a complex evolutionary history shaped by multiple endosymbiosis events that required a tight coordination between the organelles and the rest of the cell. Plant ionotropic glutamate receptors (iGLRs) form a large superfamily of proteins with a predicted or proven non-selective cation channel activity regulated by a broad range of amino acids. They are involved in different physiological processes such as C/N sensing, resistance against fungal infection, root and pollen tube growth and response to wounding and pathogens. Most of the present knowledge is limited to iGLRs located in plasma membranes. However, recent studies localized different iGLR isoforms to mitochondria and/or chloroplasts, suggesting the possibility that they play a specific role in bioenergetic processes. In this work, we performed a comparative analysis of GLR sequences from bacteria and various photosynthetic eukaryotes. In particular, novel types of selectivity filters of bacteria are reported adding new examples of the great diversity of the GLR superfamily. The highest variability in GLR sequences was found among the algal sequences (cryptophytes, diatoms, brown and green algae). GLRs of land plants are not closely related to the GLRs of green algae analyzed in this work. The GLR family underwent a great expansion in vascular plants. Among plant GLRs, Clade III includes sequences from Physcomitrella patens, Marchantia polymorpha and gymnosperms and can be considered the most ancient, while other clades likely emerged later. In silico analysis allowed the identification of sequences with a putative target to organelles. Sequences with a predicted localization to mitochondria and chloroplasts are randomly distributed among different type of GLRs, suggesting that no compartment-related specific function has been maintained across the species. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Constraining the Abundances of Complex Organics in the Inner Regions of Solar-type Protostars

    NASA Astrophysics Data System (ADS)

    Taquet, Vianney; López-Sepulcre, Ana; Ceccarelli, Cecilia; Neri, Roberto; Kahane, Claudine; Charnley, Steven B.

    2015-05-01

    The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected toward low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the single-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs toward the two low-mass protostars NGC 1333-IRAS 2A and -IRAS 4A with the Plateau de Bure interferometer at an angular resolution of 2″, resulting in the first multi-line detection of the O-bearing species glycolaldehyde and ethanol and of the N-bearing species ethyl cyanide toward low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COM column densities. The COM abundances with respect to methanol derived toward IRAS 2A and IRAS 4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COM abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.

  15. Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon.

    PubMed

    Sanda, Satoko; Yoshida, Kazuo; Kuwano, Masayoshi; Kawamura, Tadayuki; Munekage, Yuri Nakajima; Akashi, Kinya; Yokota, Akiho

    2011-07-01

    In plants, drought stress coupled with high levels of illumination causes not only dehydration of tissues, but also oxidative damage resulting from excess absorbed light energy. In this study, we analyzed the regulation of electron transport under drought/high-light stress conditions in wild watermelon, a xerophyte that shows strong resistance to this type of stress. Under drought/high-light conditions that completely suppressed CO(2) fixation, the linear electron flow was diminished between photosystem (PS) II and PS I, there was no photoinhibitory damage to PS II and PS I and no decrease in the abundance of the two PSs. Proteome analyses revealed changes in the abundance of protein spots representing the Rieske-type iron-sulfur protein (ISP) and I and K subunits of NAD(P)H dehydrogenase in response to drought stress. Two-dimensional electrophoresis and immunoblot analyses revealed new ISP protein spots with more acidic isoelectric points in plants under drought stress. Our findings suggest that the modified ISPs depress the linear electron transport activity under stress conditions to protect PS I from photoinhibition. The qualitative changes in photosynthetic proteins may switch the photosynthetic electron transport from normal photosynthesis mode to stress-tolerance mode. Copyright © Physiologia Plantarum 2011.

  16. Photoenhanced anaerobic digestion of organic acids

    DOEpatents

    Weaver, Paul F.

    1990-01-01

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  17. Radiative Energy Budgets of Phototrophic Surface-Associated Microbial Communities and their Photosynthetic Efficiency Under Diffuse and Collimated Light.

    PubMed

    Lichtenberg, Mads; Brodersen, Kasper E; Kühl, Michael

    2017-01-01

    We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O 2 , temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, E k , i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the

  18. Radiative Energy Budgets of Phototrophic Surface-Associated Microbial Communities and their Photosynthetic Efficiency Under Diffuse and Collimated Light

    PubMed Central

    Lichtenberg, Mads; Brodersen, Kasper E.; Kühl, Michael

    2017-01-01

    We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O2, temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, Ek, i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the

  19. [Photosynthetic characteristics of five arbor species in Shenyang urban area].

    PubMed

    Li, Hai-Me; He, Xing-Yuan; Wang, Kui-Ling; Chen, Wei

    2007-08-01

    By using LI-6400 infrared gas analyzer, this paper studied the diurnal and seasonal variations of the photosynthetic rate of main arbor species (Populus alba x P. berolinensis, Salix matsudana, Ulmus pumila, Robinia pseudoacacia and Prunus davidiana) in Shenyang urban area. The correlations between net photosynthetic rate and environmental factors (photosynthetic active radiation, temperature, and stomatal conductance) were assessed by multivariate regression analysis, and related equations were constructed. The results showed that for test arbor species, the diurnal variation of photosynthetic rate mainly presented a single peak curve, and the seasonal variation was in the order of summer > autumn > spring. The major factors affecting the photosynthetic rate were photosynthetic active radiation, stomatal conductance, and intercellular CO2 concentration.

  20. Biogeography of photosynthetic light-harvesting genes in marine phytoplankton.

    PubMed

    Bibby, Thomas S; Zhang, Yinan; Chen, Min

    2009-01-01

    Photosynthetic light-harvesting proteins are the mechanism by which energy enters the marine ecosystem. The dominant prokaryotic photoautotrophs are the cyanobacterial genera Prochlorococcus and Synechococcus that are defined by two distinct light-harvesting systems, chlorophyll-bound protein complexes or phycobilin-bound protein complexes, respectively. Here, we use the Global Ocean Sampling (GOS) Project as a unique and powerful tool to analyze the environmental diversity of photosynthetic light-harvesting genes in relation to available metadata including geographical location and physical and chemical environmental parameters. All light-harvesting gene fragments and their metadata were obtained from the GOS database, aligned using ClustalX and classified phylogenetically. Each sequence has a name indicative of its geographic location; subsequent biogeographical analysis was performed by correlating light-harvesting gene budgets for each GOS station with surface chlorophyll concentration. Using the GOS data, we have mapped the biogeography of light-harvesting genes in marine cyanobacteria on ocean-basin scales and show that an environmental gradient exists in which chlorophyll concentration is correlated to diversity of light-harvesting systems. Three functionally distinct types of light-harvesting genes are defined: (1) the phycobilisome (PBS) genes of Synechococcus; (2) the pcb genes of Prochlorococcus; and (3) the iron-stress-induced (isiA) genes present in some marine Synechococcus. At low chlorophyll concentrations, where nutrients are limited, the Pcb-type light-harvesting system shows greater genetic diversity; whereas at high chlorophyll concentrations, where nutrients are abundant, the PBS-type light-harvesting system shows higher genetic diversity. We interpret this as an environmental selection of specific photosynthetic strategy. Importantly, the unique light-harvesting system isiA is found in the iron-limited, high-nutrient low-chlorophyll region of

  1. Structural and Functional Hierarchy in Photosynthetic Energy Conversion—from Molecules to Nanostructures

    NASA Astrophysics Data System (ADS)

    Szabó, Tibor; Magyar, Melinda; Hajdu, Kata; Dorogi, Márta; Nyerki, Emil; Tóth, Tünde; Lingvay, Mónika; Garab, Győző; Hernádi, Klára; Nagy, László

    2015-12-01

    Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converting molecular devices. In photosynthetic organisms, the conversion of light energy into chemical energy takes places in highly organized fine-tunable systems with structural and functional hierarchy. The incident photons are absorbed by light-harvesting complexes, which funnel the excitation energy into reaction centre (RC) protein complexes containing redox-active chlorophyll molecules; the primary charge separations in the RCs are followed by vectorial transport of charges (electrons and protons) in the photosynthetic membrane. RCs possess properties that make their use in solar energy-converting and integrated optoelectronic systems feasible. Therefore, there is a large interest in many laboratories and in the industry toward their use in molecular devices. RCs have been bound to different carrier matrices, with their photophysical and photochemical activities largely retained in the nano-systems and with electronic connection to conducting surfaces. We show examples of RCs bound to carbon-based materials (functionalized and non-functionalized single- and multiwalled carbon nanotubes), transitional metal oxides (ITO) and conducting polymers and porous silicon and characterize their photochemical activities. Recently, we adapted several physical and chemical methods for binding RCs to different nanomaterials. It is generally found that the P+(QAQB)- charge pair, which is formed after single saturating light excitation is stabilized after the attachment of the RCs to the nanostructures, which is followed by slow reorganization of the protein structure. Measuring the electric conductivity in a direct contact mode or in electrochemical cell indicates that there is an

  2. Influence on photosynthesis of starlight, moonlight, planetlight, and light pollution (reflections on photosynthetically active radiation in the universe).

    PubMed

    Raven, J A; Cockell, C S

    2006-08-01

    Photosynthesis on Earth can occur in a diversity of organisms in the photosynthetically active radiation (PAR) range of 10 nmol of photons m(-2) s(-1) to 8 mmol of photons m(-2) s(-1). Similar considerations would probably apply to photosynthetic organisms on Earth-like planets (ELPs) in the continuously habitable zone of other stars. On Earth, starlight PAR is inadequate for photosynthetically supported growth. An increase in starlight even to reach the minimum theoretical levels to allow for photosynthesis would require a universe that was approximately ten million times older, or with a ten million times greater density of stars, than is the case for the present universe. Photosynthesis on an ELP using PAR reflected from a natural satellite with the same size as our Moon, but at the Roche limit, could support a low rate of photosynthesis at full Moon. Photosynthesis on an ELP-like satellite of a Jupiter-sized planet using light reflected from the planet could be almost 1% of the rate in full sunlight on Earth when the planet was full. These potential contributions to photosynthesis require that the contribution is compared with the rate of photosynthesis driven by direct radiation from the star. Light pollution on Earth only energizes photosynthesis by organisms that are very close to the light source. However, effects of light pollution on photosynthesis can be more widespread if the photosynthetic canopy is retained for more of the year, caused by effects on photoperiodism, with implications for the influence of civilizations on photosynthesis.

  3. Enzymatic activities and prokaryotic abundance in relation to organic matter along a West-East Mediterranean transect (TRANSMED cruise).

    PubMed

    Zaccone, R; Boldrin, A; Caruso, G; La Ferla, R; Maimone, G; Santinelli, C; Turchetto, M

    2012-07-01

    The distribution of extracellular enzymatic activities (EEA) [leucine aminopeptidase (LAP), ß-glucosidase (GLU), alkaline phosphatase (AP)], as well as that of prokaryotic abundance (PA) and biomass (PB), dissolved organic carbon (DOC), particulate organic carbon and particulate total nitrogen (POC, PTN), was determined in the epi-, meso-, and bathypelagic waters of the Mediterranean Sea along a West-East transect and at one Atlantic station located outside the Strait of Gibraltar. This study represents a synoptical evaluation of the microbial metabolism during early summer. Decreasing trends with depth were observed for most of the parameters (PA, PB, AP, DOC, POC, PTN). Significant differences between the western and eastern basins of the Mediterranean Sea were found, displaying higher rates of LAP and GLU and lower C/N ratios more in the eastern than in the western areas. Conversely, in the epipelagic layer, PA and PB were found to be higher in the western than in the eastern basins. PB was significantly related to DOC concentration (all data, n = 145, r = 0.53, P < 0.01), while significant correlations of EEA with POC and PTN were found in the epipelagic layer, indicating an active response of microbial metabolism to organic substrates. Specific enzyme activities normalized to cell abundance pointed out high values of LAP and GLU in the bathypelagic layer, especially in the eastern basin, while cell-specific AP was high in the epi- and bathypelagic zone of the eastern basin indicating a rapid regeneration of inorganic P for both prokaryotes and phytoplankton needs. Low activity and abundance characterized the Atlantic station, while opposite trends of these parameters were observed along the Mediterranean transect, showing the uncoupling between abundance and activity data. In the east Mediterranean Sea, decomposition processes increased probably in response to mesoscale structures which lead to organic matter downwelling.

  4. Morning reduction of photosynthetic capacity before midday depression.

    PubMed

    Koyama, Kohei; Takemoto, Shuhei

    2014-03-17

    Midday depression of photosynthesis has important consequences for ecosystem carbon exchange. Recent studies of forest trees have demonstrated that latent reduction of photosynthetic capacity can begin in the early morning, preceding the midday depression. We investigated whether such early morning reduction also occurs in an herbaceous species, Oenothera biennis. Diurnal changes of the photosynthetic light response curve (measured using a light-emitting diode) and incident sunlight intensity were measured under field conditions. The following results were obtained: (1) the light-saturated photosynthetic rate decreased beginning at sunrise; (2) the incident sunlight intensity on the leaves increased from sunrise; and (3) combining (1) and (2), the net photosynthetic rate under natural sunlight intensity increased from sunrise, reached a maximum at mid-morning, and then showed midday depression. Our results demonstrate that the latent morning reduction of photosynthetic capacity begins at sunrise, preceding the apparent midday depression, in agreement with previous studies of forest trees.

  5. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions.

    PubMed

    Magdaong, Nikki M; LaFountain, Amy M; Greco, Jordan A; Gardiner, Alastair T; Carey, Anne-Marie; Cogdell, Richard J; Gibson, George N; Birge, Robert R; Frank, Harry A

    2014-09-25

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment-protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions.

  6. High Efficiency Light Harvesting by Carotenoids in the LH2 Complex from Photosynthetic Bacteria: Unique Adaptation to Growth under Low-Light Conditions

    PubMed Central

    2015-01-01

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment–protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions. PMID:25171303

  7. The making of a photosynthetic animal

    PubMed Central

    Rumpho, Mary E.; Pelletreau, Karen N.; Moustafa, Ahmed; Bhattacharya, Debashish

    2011-01-01

    Symbiotic animals containing green photobionts challenge the common perception that only plants are capable of capturing the sun's rays and converting them into biological energy through photoautotrophic CO2 fixation (photosynthesis). ‘Solar-powered’ sacoglossan molluscs, or sea slugs, have taken this type of symbiotic association one step further by solely harboring the photosynthetic organelle, the plastid (=chloroplast). One such sea slug, Elysia chlorotica, lives as a ‘plant’ when provided with only light and air as a result of acquiring plastids during feeding on its algal prey Vaucheria litorea. The captured plastids (kleptoplasts) are retained intracellularly in cells lining the digestive diverticula of the sea slug, a phenomenon sometimes referred to as kleptoplasty. Photosynthesis by the plastids provides E. chlorotica with energy and fixed carbon for its entire lifespan of ∼10 months. The plastids are not transmitted vertically (i.e. are absent in eggs) and do not undergo division in the sea slug. However, de novo protein synthesis continues, including plastid- and nuclear-encoded plastid-targeted proteins, despite the apparent absence of algal nuclei. Here we discuss current data and provide hypotheses to explain how long-term photosynthetic activity is maintained by the kleptoplasts. This fascinating ‘green animal’ provides a unique model to study the evolution of photosynthesis in a multicellular heterotrophic organism. PMID:21177950

  8. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment.

    PubMed

    Lomstein, Bente Aa; Langerhuus, Alice T; D'Hondt, Steven; Jørgensen, Bo B; Spivack, Arthur J

    2012-03-18

    Two decades of scientific ocean drilling have demonstrated widespread microbial life in deep sub-seafloor sediment, and surprisingly high microbial-cell numbers. Despite the ubiquity of life in the deep biosphere, the large community sizes and the low energy fluxes in this vast buried ecosystem are not yet understood. It is not known whether organisms of the deep biosphere are specifically adapted to extremely low energy fluxes or whether most of the observed cells are in a dormant, spore-like state. Here we apply a new approach--the D:L-amino-acid model--to quantify the distributions and turnover times of living microbial biomass, endospores and microbial necromass, as well as to determine their role in the sub-seafloor carbon budget. The approach combines sensitive analyses of unique bacterial markers (muramic acid and D-amino acids) and the bacterial endospore marker, dipicolinic acid, with racemization dynamics of stereo-isomeric amino acids. Endospores are as abundant as vegetative cells and microbial activity is extremely low, leading to microbial biomass turnover times of hundreds to thousands of years. We infer from model calculations that biomass production is sustained by organic carbon deposited from the surface photosynthetic world millions of years ago and that microbial necromass is recycled over timescales of hundreds of thousands of years.

  9. Nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates of typical desert vegetation in western China.

    PubMed

    Ji, Cuicui; Jia, Yonghong; Gao, Zhihai; Wei, Huaidong; Li, Xiaosong

    2017-01-01

    Desert vegetation plays significant roles in securing the ecological integrity of oasis ecosystems in western China. Timely monitoring of photosynthetic/non-photosynthetic desert vegetation cover is necessary to guide management practices on land desertification and research into the mechanisms driving vegetation recession. In this study, nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates are investigated through comparing the performance of linear and nonlinear spectral mixture models with different endmembers applied to field spectral measurements of two types of typical desert vegetation, namely, Nitraria shrubs and Haloxylon. The main results were as follows. (1) The correct selection of endmembers is important for improving the accuracy of vegetation cover estimates, and in particular, shadow endmembers cannot be neglected. (2) For both the Nitraria shrubs and Haloxylon, the Kernel-based Nonlinear Spectral Mixture Model (KNSMM) with nonlinear parameters was the best unmixing model. In consideration of the computational complexity and accuracy requirements, the Linear Spectral Mixture Model (LSMM) could be adopted for Nitraria shrubs plots, but this will result in significant errors for the Haloxylon plots since the nonlinear spectral mixture effects were more obvious for this vegetation type. (3) The vegetation canopy structure (planophile or erectophile) determines the strength of the nonlinear spectral mixture effects. Therefore, no matter for Nitraria shrubs or Haloxylon, the non-linear spectral mixing effects between the photosynthetic / non-photosynthetic vegetation and the bare soil do exist, and its strength is dependent on the three-dimensional structure of the vegetation canopy. The choice of linear or nonlinear spectral mixture models is up to the consideration of computational complexity and the accuracy requirement.

  10. Nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates of typical desert vegetation in western China

    PubMed Central

    Jia, Yonghong; Gao, Zhihai; Wei, Huaidong

    2017-01-01

    Desert vegetation plays significant roles in securing the ecological integrity of oasis ecosystems in western China. Timely monitoring of photosynthetic/non-photosynthetic desert vegetation cover is necessary to guide management practices on land desertification and research into the mechanisms driving vegetation recession. In this study, nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates are investigated through comparing the performance of linear and nonlinear spectral mixture models with different endmembers applied to field spectral measurements of two types of typical desert vegetation, namely, Nitraria shrubs and Haloxylon. The main results were as follows. (1) The correct selection of endmembers is important for improving the accuracy of vegetation cover estimates, and in particular, shadow endmembers cannot be neglected. (2) For both the Nitraria shrubs and Haloxylon, the Kernel-based Nonlinear Spectral Mixture Model (KNSMM) with nonlinear parameters was the best unmixing model. In consideration of the computational complexity and accuracy requirements, the Linear Spectral Mixture Model (LSMM) could be adopted for Nitraria shrubs plots, but this will result in significant errors for the Haloxylon plots since the nonlinear spectral mixture effects were more obvious for this vegetation type. (3) The vegetation canopy structure (planophile or erectophile) determines the strength of the nonlinear spectral mixture effects. Therefore, no matter for Nitraria shrubs or Haloxylon, the non-linear spectral mixing effects between the photosynthetic / non-photosynthetic vegetation and the bare soil do exist, and its strength is dependent on the three-dimensional structure of the vegetation canopy. The choice of linear or nonlinear spectral mixture models is up to the consideration of computational complexity and the accuracy requirement. PMID:29240777

  11. Research on spatial distribution of photosynthetic characteristics of Winter Wheat

    NASA Astrophysics Data System (ADS)

    Yan, Q. Q.; Zhou, Q. Y.; Zhang, B. Z.; Han, X.; Han, N. N.; Li, S. M.

    2018-03-01

    In order to explore the spatial distribution of photosynthetic characteristics of winter wheat leaf, the photosynthetic rate on different parts of leaf (leaf base-leaf middle-leaf apex) and that on each canopy (top layer-middle layer-bottom layer) leaf during the whole growth period of winter wheat were measured. The variation of photosynthetic rate with PAR and the spatial distribution of winter wheat leaf during the whole growth periods were analysed. The results showed that the photosynthetic rate of different parts of winter wheat increased with the increase of PAR, which was showed as leaf base>leaf middle>leaf apex. In the same growth period, photosynthetic rate in different parts of the tablet was showed as leaf middle>leaf base>leaf apex. For the different canopy layer of winter wheat, the photosynthetic rate of the top layer leaf was significantly greater than that of the middle layer and lower layer leaf. The photosynthetic rate of the top layer leaf was the largest in the leaf base position. The photosynthetic rate of leaf of the same canopy layer at different growth stages were showed as tasseling stage >grain filling stage > maturation stage.

  12. BOREAS TE-10 Photosynthetic Response Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Middleton, Elizabeth; Sullivan, Joseph

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-10 (Terrestrial Ecology) team collected several data sets in support of its efforts to characterize and interpret information on the gas exchange, reflectance, transmittance, chlorophyll content, carbon content, hydrogen content, nitrogen content, and photosynthetic response of boreal vegetation. This data set contains measurements of quantitative parameters and leaf photosynthetic response to increases in light conducted in the SSA during the growing seasons of 1994 and 1996 using an oxygen electrode system. Leaf photosynthetic responses were not collected in 1996. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  13. CONSTRAINING THE ABUNDANCES OF COMPLEX ORGANICS IN THE INNER REGIONS OF SOLAR-TYPE PROTOSTARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taquet, Vianney; Charnley, Steven B.; López-Sepulcre, Ana

    The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected toward low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the single-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs toward the two low-mass protostars NGC 1333-IRAS 2A and -IRAS 4A with the Plateau de Bure interferometer at an angular resolution of 2″, resulting in the first multi-line detection of the O-bearing species glycolaldehydemore » and ethanol and of the N-bearing species ethyl cyanide toward low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COM column densities. The COM abundances with respect to methanol derived toward IRAS 2A and IRAS 4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COM abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.« less

  14. Comparing photosynthetic characteristics of Isoetes sinensis Palmer under submerged and terrestrial conditions.

    PubMed

    Yang, Tao; Liu, Xing

    2015-12-04

    Crassulacean acid metabolism (CAM) is widespread in terrestrial and aquatic species, plastic in response to environmental changes. Isoetes L. is one of the earliest basal vascular plants and CAM is popular in this genus. Isoetes sinensis Palmer is an amphibious species, alternating frequently between terrestrial and aquatic environments. Given this, we investigated and compared photosynthetic characteristics over a diurnal cycle under submerged condition (SC) and terrestrial condition (TC). The results suggest that I. sinensis possesses a stronger CAM capacity under SC. Compared with under TC, titratable acidity levels and organic acid concentrations were more enriched under SC, whereas soluble sugar or starch and protein levels were lower under SC. Transcript analyses for nine photosynthetic genes revealed that CAM-associated genes possessed high transcripts under SC, but C3-related transcripts were highly expressed under TC. In addition, the enzyme activity measurements demonstrated that PEPC activity over a diurnal cycle was slightly higher under SC, whereas Rubisco activity during the daytime was greater under TC. This comprehensive study probably facilitates general understandings about the CAM photosynthetic characteristics of Isoetes in response to the environmental changes.

  15. Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms.

    PubMed

    Steinbach, Gábor; Kaňa, Radek

    2016-04-01

    Photosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (through Time Controller offered by Olympus or Experiment Designer offered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with the Cell⊕Finder software was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) the Cell⊕Finder software with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser. Cell⊕Finder can be downloaded from http://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity in Synechocystis sp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.

  16. Interactions between colloidal silver and photosynthetic pigments located in cyanobacteria fragments and in solution.

    PubMed

    Siejak, Przemysław; Frackowiak, Danuta

    2007-09-25

    Changes in the yield of the fluorescence emitted by pigments of photosynthetic organisms could be used for the establishment of the presence of some toxic substances. The presence of colloidal metals can be indicated by enhancement of pigments' emission as a result of plasmons generation. The spectra of the pigments of cyanobacterium Synechocystis located in the bacterium fragments and in solutions with and without colloidal silver additions have been measured. The quantum yield of the pigments' fluorescence in solution has been observed to increase at some wavelength of excitation, while the fluorescence of the pigments in the bacteria fragments has been only quenched as a consequence of interactions with colloidal silver particles. Close contact between pigment molecules located in bacteria fragments and silver particles is probably not possible. We plan in future to investigate the influence of other, more typical metal pollutants of water, using similar spectral methods and several other photosynthetic bacteria pigments, in solution, in cell fragments and in the whole bacteria organisms.

  17. Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones - what makes a good extraction pathway?

    PubMed

    Longatte, G; Rappaport, F; Wollman, F-A; Guille-Collignon, M; Lemaître, F

    2016-08-04

    Plants or algae take many benefits from oxygenic photosynthesis by converting solar energy into chemical energy through the synthesis of carbohydrates from carbon dioxide and water. However, the overall yield of this process is rather low (about 4% of the total energy available from sunlight is converted into chemical energy). This is the principal reason why recently many studies have been devoted to extraction of photosynthetic electrons in order to produce a sustainable electric current. Practically, the electron transfer occurs between the photosynthetic organism and an electrode and can be assisted by an exogenous mediator, mainly a quinone. In this regard, we recently reported on a method involving fluorescence measurements to estimate the ability of different quinones to extract photosynthetic electrons from a mutant of Chlamydomonas reinhardtii. In the present work, we used the same kind of methodology to establish a zone diagram for predicting the most suitable experimental conditions to extract photoelectrons from intact algae (quinone concentration and light intensity) as a function of the purpose of the study. This will provide further insights into the extraction mechanism of photosynthetic electrons using exogenous quinones. Indeed fluorescence measurements allowed us to model the capacity of photosynthetic algae to donate electrons to an exogenous quinone by considering a numerical parameter called "open center ratio" which is related to the Photosystem II acceptor redox state. Then, using it as a proxy for investigating the extraction of photosynthetic electrons by means of an exogenous quinone, 2,6-DCBQ, we suggested an extraction mechanism that was globally found consistent with the experimentally extracted parameters.

  18. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    PubMed Central

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth’s atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. PMID:24806920

  19. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists.

    PubMed

    Hadariová, Lucia; Vesteg, Matej; Hampl, Vladimír; Krajčovič, Juraj

    2018-04-01

    Chloroplasts are generally known as eukaryotic organelles whose main function is photosynthesis. They perform other functions, however, such as synthesizing isoprenoids, fatty acids, heme, iron sulphur clusters and other essential compounds. In non-photosynthetic lineages that possess plastids, the chloroplast genomes have been reduced and most (or all) photosynthetic genes have been lost. Consequently, non-photosynthetic plastids have also been reduced structurally. Some of these non-photosynthetic or "cryptic" plastids were overlooked or unrecognized for decades. The number of complete plastid genome sequences and/or transcriptomes from non-photosynthetic taxa possessing plastids is rapidly increasing, thus allowing prediction of the functions of non-photosynthetic plastids in various eukaryotic lineages. In some non-photosynthetic eukaryotes with photosynthetic ancestors, no traces of plastid genomes or of plastids have been found, suggesting that they have lost the genomes or plastids completely. This review summarizes current knowledge of non-photosynthetic plastids, their genomes, structures and potential functions in free-living and parasitic plants, algae and protists. We introduce a model for the order of plastid gene losses which combines models proposed earlier for land plants with the patterns of gene retention and loss observed in protists. The rare cases of plastid genome loss and complete plastid loss are also discussed.

  20. Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs.

    PubMed

    Watanabe, K; Imase, M; Aoyagi, H; Ohmura, N; Saiki, H; Tanaka, H

    2008-09-01

    (i) Quantitative and qualitative analyses of photosynthetic metabolites of Chlorella sorokiniana and elucidation of the mechanism of their utilization by algal symbionts. (ii) Development of artificial medium that imitates photoautotroph-heterotroph interaction and investigation of its suitability for isolation of novel microbes from the environment. Various components, including free dissolved carbohydrates, nitrogenous compounds and vitamin, were detected and together contributed 11.1% (as carbon content) of the total photosynthetic metabolites in the medium. Utilization of these photosynthetic metabolites in algal culture broth by algal symbionts was studied. Many symbionts showed specific utilization patterns. A novel artificial extracellular released organic carbon medium, which imitated the nutritional conditions surrounding algae, was developed based on the pattern of utilization of the algal metabolites by the symbiotic heterotrophs. About 42.9% of the isolates were closely related to photoautotrophic-dependent and oligotrophic bacteria. With the novel artificial medium, it was possible to selectively isolate some bacterial strains. Synthetic bacterial growth medium is an important and basic tool for bacterial isolation from environmental samples. The current study shows that preferential separation of typical bacterial subset can be achieved by using artificial medium that mimics photosynthetic metabolites.

  1. Application of photosynthetic N2-fixing cyanobacteria to the CELSS program

    NASA Technical Reports Server (NTRS)

    Packer, L.; Fry, I.; Belkin, S.

    1986-01-01

    Commercially available air lift fermentors were used to simultaneously monitor biomass production, N2-fixation, photosynthesis, respiration, and sensitivity to oxidative damage during growth under various nutritional and light regimes, to establish a data base for the integration of these organisms into a Closed Ecological Life Support System (CELSS) program. Certain cyanobacterial species have the unique ability to reduce atmospheric N2 to organic nitrogen. These organisms combine the ease of cultivation characteristics of prokaryotes with the fully developed photosynthetic apparatus of higher plants. This, along with their ability to adapt to changes in their environment by modulation of certain biochemical pathways, make them attractive candidates for incorporation into the CELSS program.

  2. Structure and function of isozymes: Evolutionary aspects and role of oxygen in eucaryotic organisms

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.

    1985-01-01

    Oxygen is not only one of the most abundant elements on the Earth, but it is also one of the most important elements for life. In terms of composition, the feature of the atmosphere that most distinguishes Earth from other planets is the presence of abundant amounts of oxygen. The first forms of life may have been similar to present day anaerobic bacteria such as clostridium. The relationship between prokaryotes and eukaryotes, if any, has been a topic of much speculation. With only a few exceptions eukaryotes are oxygen-utilizing organisms. This research eukaryotes or eukaryotic biochemical processes requiring oxygen, could have arisen quite early in evolution and utilized the small quantities of photocatalytically produced oxygen which are thought to have been present on the Earth prior to the evolution of massive amounts of photosynthetically-produced oxygen.

  3. Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales.

    PubMed

    Noy, Dror; Moser, Christopher C; Dutton, P Leslie

    2006-02-01

    Decades of research on the physical processes and chemical reaction-pathways in photosynthetic enzymes have resulted in an extensive database of kinetic information. Recently, this database has been augmented by a variety of high and medium resolution crystal structures of key photosynthetic enzymes that now include the two photosystems (PSI and PSII) of oxygenic photosynthetic organisms. Here, we examine the currently available structural and functional information from an engineer's point of view with the long-term goal of reproducing the key features of natural photosystems in de novo designed and custom-built molecular solar energy conversion devices. We find that the basic physics of the transfer processes, namely, the time constraints imposed by the rates of incoming photon flux and the various decay processes allow for a large degree of tolerance in the engineering parameters. Moreover, we find that the requirements to guarantee energy and electron transfer rates that yield high efficiency in natural photosystems are largely met by control of distance between chromophores and redox cofactors. Thus, for projected de novo designed constructions, the control of spatial organization of cofactor molecules within a dense array is initially given priority. Nevertheless, constructions accommodating dense arrays of different cofactors, some well within 1 nm from each other, still presents a significant challenge for protein design.

  4. Photosynthetic Machineries in Nano-Systems

    PubMed Central

    Nagy, László; Magyar, Melinda; Szabó, Tibor; Hajdu, Kata; Giotta, Livia; Dorogi, Márta; Milano, Francesco

    2014-01-01

    Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms, where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite materials have been assembled by using reaction centres and different carrier matrices for different purposes in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides). In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to be overcome in the different applications. We will also show possible research directions for the close future in this specific field. PMID:24678673

  5. Principles of light harvesting from single photosynthetic complexes.

    PubMed

    Schlau-Cohen, G S

    2015-06-06

    Photosynthetic systems harness sunlight to power most life on Earth. In the initial steps of photosynthetic light harvesting, absorbed energy is converted to chemical energy with near-unity quantum efficiency. This is achieved by an efficient, directional and regulated flow of energy through a network of proteins. Here, we discuss the following three key principles of this flow and of photosynthetic light harvesting: thermal fluctuations of the protein structure; intrinsic conformational switches with defined functional consequences; and environmentally triggered conformational switches. Through these principles, photosynthetic systems balance two types of operational costs: metabolic costs, or the cost of maintaining and running the molecular machinery, and opportunity costs, or the cost of losing any operational time. Understanding how the molecular machinery and dynamics are designed to balance these costs may provide a blueprint for improved artificial light-harvesting devices. With a multi-disciplinary approach combining knowledge of biology, this blueprint could lead to low-cost and more effective solar energy conversion. Photosynthetic systems achieve widespread light harvesting across the Earth's surface; in the face of our growing energy needs, this is functionality we need to replicate, and perhaps emulate.

  6. [Influences of long-term application of organic and inorganic fertilizers on the composition and abundance of nirS-type denitrifiers in black soil].

    PubMed

    Yin, Chang; Fan, Fen-Liang; Li, Zhao-Jun; Song, A-Lin; Zhu, Ping; Peng, Chang; Liang, Yong-Chao

    2012-11-01

    The objectives of this study were to explore the effects of long-term organic and inorganic fertilizations on the composition and abundance of nirS-type denitrifiers in black soil. Soil samples were collected from 4 treatments (i. e. no fertilizer treatment, CK; organic manure treatment, OM; chemical fertilizer treatment (NPK) and combination of organic and chemical fertilizers treatment (MNPK)) in Gongzhuling Long-term Fertilization Experiment Station. Composition and abundance of nirS-type denitrifiers were analyzed with terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR (Q-PCR), respectively. Denitrification enzyme activity (DEA) and soil properties were also measured. Application of organic fertilizers (OM and MNPK) significantly increased the DEAs of black soil, with the DEAs in OM and MNPK being 5.92 and 6.03 times higher than that in CK treatment, respectively, whereas there was no significant difference between NPK and CK. OM and MNPK treatments increased the abundances of nirS-type denitrifiers by 2.73 and 3.83 times relative to that of CK treatment, respectively. The abundance of nirS-type denitrifiers in NPK treatment was not significantly different from that of CK. The T-RFLP analysis of nirS genes showed significant differences in community composition between organic and inorganic treatments, with the emergence of a 79 bp T-RF, a significant decrease in relative abundance of the 84 bp T-RF and a loss of the 99 bp T-RF in all organic treatments. Phylogenetic analysis indicated that the airS-type denitrifiers in the black soil were mainly composed of alpha, beta and gamma-Proteobacteria. The 79 bp-type denitrifiers inhabiting exclusively in organic treatments (OM and MNPK) were affiliated to Pseudomonadaceae in gamma-Proteobacteria and Burkholderiales in beta-Proteobacteria. The 84 bp-types were related to Burkholderiales and Rhodocyclales. Correlation analysis indicated that pH, concentrations of total nitrogen

  7. An Energy Balance Model to Predict Chemical Partitioning in a Photosynthetic Microbial Mat

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Albert, Daniel B.; DesMarais, David J.

    2006-01-01

    Studies of biosignature formation in photosynthetic microbial mat communities offer potentially useful insights with regards to both solar and extrasolar astrobiology. Biosignature formation in such systems results from the chemical transformation of photosynthetically fixed carbon by accessory microorganisms. This fixed carbon represents a source not only of reducing power, but also energy, to these organisms, so that chemical and energy budgets should be coupled. We tested this hypothesis by applying an energy balance model to predict the fate of photosynthetic productivity under dark, anoxic conditions. Fermentation of photosynthetically fixed carbon is taken to be the only source of energy available to cyanobacteria in the absence of light and oxygen, and nitrogen fixation is the principal energy demand. The alternate fate for fixed carbon is to build cyanobacterial biomass with Redfield C:N ratio. The model predicts that, under completely nitrogen-limited conditions, growth is optimized when 78% of fixed carbon stores are directed into fermentative energy generation, with the remainder allocated to growth. These predictions were compared to measurements made on microbial mats that are known to be both nitrogen-limited and populated by actively nitrogen-fixing cyanobacteria. In these mats, under dark, anoxic conditions, 82% of fixed carbon stores were diverted into fermentation. The close agreement between these independent approaches suggests that energy balance models may provide a quantitative means of predicting chemical partitioning within such systems - an important step towards understanding how biological productivity is ultimately partitioned into biosignature compounds.

  8. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism.

    PubMed

    Houston, Norma L; Hajduch, Martin; Thelen, Jay J

    2009-10-01

    Seed maturation or seed filling is a phase of development that plays a major role in the storage reserve composition of a seed. In many plant seeds photosynthesis plays a major role in this process, although oilseeds, such as castor (Ricinus communis), are capable of accumulating oil without the benefit of photophosphorylation to augment energy demands. To characterize seed filling in castor, a systematic quantitative proteomics study was performed. Two-dimensional gel electrophoresis was used to resolve and quantify Cy-dye-labeled proteins expressed at 2, 3, 4, 5, and 6 weeks after flowering in biological triplicate. Expression profiles for 660 protein spot groups were established, and of these, 522 proteins were confidently identified by liquid chromatography-tandem mass spectrometry by mining against the castor genome. Identified proteins were classified according to function, and the most abundant groups of proteins were involved in protein destination and storage (34%), energy (19%), and metabolism (15%). Carbon assimilatory pathways in castor were compared with previous studies of photosynthetic oilseeds, soybean (Glycine max) and rapeseed (Brassica napus). These comparisons revealed differences in abundance and number of protein isoforms at numerous steps in glycolysis. One such difference was the number of enolase isoforms and their sum abundance; castor had approximately six times as many isoforms as soy and rapeseed. Furthermore, Rubisco was 11-fold less prominent in castor compared to rapeseed. These and other differences suggest some aspects of carbon flow, carbon recapture, as well as ATP and NADPH production in castor differs from photosynthetic oilseeds.

  9. Primitive Photosynthetic Architectures Based on Self-Organization and Chemical Evolution of Amino Acids and Metal Ions.

    PubMed

    Liu, Kai; Ren, Xiaokang; Sun, Jianxuan; Zou, Qianli; Yan, Xuehai

    2018-06-01

    The emergence of light-energy-utilizing metabolism is likely to be a critical milestone in prebiotic chemistry and the origin of life. However, how the primitive pigment is spontaneously generated still remains unknown. Herein, a primitive pigment model based on adaptive self-organization of amino acids (Cystine, Cys) and metal ions (zinc ion, Zn 2+ ) followed by chemical evolution under hydrothermal conditions is developed. The resulting hybrid microspheres are composed of radially aligned cystine/zinc (Cys/Zn) assembly decorated with carbonate-doped zinc sulfide (C-ZnS) nanocrystals. The part of C-ZnS can work as a light-harvesting antenna to capture ultraviolet and visible light, and use it in various photochemical reactions, including hydrogen (H 2 ) evolution, carbon dioxide (CO 2 ) photoreduction, and reduction of nicotinamide adenine dinucleotide (NAD + ) to nicotinamide adenine dinucleotide hydride (NADH). Additionally, guest molecules (e.g., glutamate dehydrogenase, GDH) can be encapsulated within the hierarchical Cys/Zn framework, which facilitates sustainable photoenzymatic synthesis of glutamate. This study helps deepen insight into the emergent functionality (conversion of light energy) and complexity (hierarchical architecture) from interaction and reaction of prebiotic molecules. The primitive pigment model is also promising to work as an artificial photosynthetic microreactor.

  10. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia

    PubMed Central

    Januar, Indra; Wild, Christian; Kunzmann, Andreas

    2016-01-01

    Declining water quality is one of the main reasons of coral reef degradation in the Thousand Islands off the megacity Jakarta, Indonesia. Shifts in benthic community composition to higher soft coral abundances have been reported for many degraded reefs throughout the Indo-Pacific. However, it is not clear to what extent soft coral abundance and physiology are influenced by water quality. In this study, live benthic cover and water quality (i.e. dissolved inorganic nutrients (DIN), turbidity (NTU), and sedimentation) were assessed at three sites (< 20 km north of Jakarta) in Jakarta Bay (JB) and five sites along the outer Thousand Islands (20–60 km north of Jakarta). This was supplemented by measurements of photosynthetic yield and, for the first time, respiratory electron transport system (ETS) activity of two dominant soft coral genera, Sarcophyton spp. and Nephthea spp. Findings revealed highly eutrophic water conditions in JB compared to the outer Thousand Islands, with 44% higher DIN load (7.65 μM/L), 67% higher NTU (1.49 NTU) and 47% higher sedimentation rate (30.4 g m−2 d−1). Soft corals were the dominant type of coral cover within the bay (2.4% hard and 12.8% soft coral cover) compared to the outer Thousand Islands (28.3% hard and 6.9% soft coral cover). Soft coral abundances, photosynthetic yield, and ETS activity were highly correlated with key water quality parameters, particularly DIN and sedimentation rates. The findings suggest water quality controls the relative abundance and physiology of dominant soft corals in JB and may thus contribute to phase shifts from hard to soft coral dominance, highlighting the need to better manage water quality in order to prevent or reverse phase shifts. PMID:27904802

  11. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  12. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    PubMed Central

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547

  13. Oxygen concentration inside a functioning photosynthetic cell.

    PubMed

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-06

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Role of Rhodobacter sp. Strain PS9, a Purple Non-Sulfur Photosynthetic Bacterium Isolated from an Anaerobic Swine Waste Lagoon, in Odor Remediation

    PubMed Central

    Do, Young S.; Schmidt, Thomas M.; Zahn, James A.; Boyd, Eric S.; de la Mora, Arlene; DiSpirito, Alan A.

    2003-01-01

    Temporal pigmentation changes resulting from the development of a purple color in anaerobic swine waste lagoons were investigated during a 4-year period. The major purple photosynthetic bacterium responsible for these color changes and the corresponding reductions in odor was isolated from nine photosynthetic lagoons. By using morphological, physiological, and phylogenetic characterization methods we identified the predominant photosynthetic bacterium as a new strain of Rhodobacter, designated Rhodobacter sp. strain PS9. Rhodobacter sp. strain PS9 is capable of photoorganotrophic growth on a variety of organic compounds, including all of the characteristic volatile organic compounds (VOC) responsible for the odor associated with swine production facilities (J. A. Zahn, A. A. DiSpirito, Y. S. Do, B. E. Brooks, E. E. Copper, and J. L. Hatfield, J. Environ. Qual. 30:624-634, 2001). The seasonal variations in airborne VOC emitted from waste lagoons showed that there was a 80 to 93% decrease in the concentration of VOC during a photosynthetic bloom. During the height of a bloom, the Rhodobacter sp. strain PS9 population accounted for 10% of the total community and up to 27% of the eubacterial community based on 16S ribosomal DNA signals. Additional observations based on seasonal variations in meteorological, biological, and chemical parameters suggested that the photosynthetic blooms of Rhodobacter sp. strain PS9 were correlated with lagoon water temperature and with the concentrations of sulfate and phosphate. In addition, the photosynthetic blooms of Rhodobacter sp. strain PS9 were inversely correlated with the concentrations of protein and fluoride. PMID:12620863

  15. Regulation of the photosynthetic apparatus under fluctuating growth light.

    PubMed

    Tikkanen, Mikko; Grieco, Michele; Nurmi, Markus; Rantala, Marjaana; Suorsa, Marjaana; Aro, Eva-Mari

    2012-12-19

    Safe and efficient conversion of solar energy to metabolic energy by plants is based on tightly inter-regulated transfer of excitation energy, electrons and protons in the photosynthetic machinery according to the availability of light energy, as well as the needs and restrictions of metabolism itself. Plants have mechanisms to enhance the capture of energy when light is limited for growth and development. Also, when energy is in excess, the photosynthetic machinery slows down the electron transfer reactions in order to prevent the production of reactive oxygen species and the consequent damage of the photosynthetic machinery. In this opinion paper, we present a partially hypothetical scheme describing how the photosynthetic machinery controls the flow of energy and electrons in order to enable the maintenance of photosynthetic activity in nature under continual fluctuations in white light intensity. We discuss the roles of light-harvesting II protein phosphorylation, thermal dissipation of excess energy and the control of electron transfer by cytochrome b(6)f, and the role of dynamically regulated turnover of photosystem II in the maintenance of the photosynthetic machinery. We present a new hypothesis suggesting that most of the regulation in the thylakoid membrane occurs in order to prevent oxidative damage of photosystem I.

  16. Photosynthetic Activity and Adaptation Capacities of Lichens and Cyanobacteria to Martian Surface Conditions

    NASA Astrophysics Data System (ADS)

    De Vera, Jean-Pierre; Schulze-Makuch, D.; Khan, A.; Lorek, A.; Koncz, A.; Stivaletta, N.; Möhlmann, D.; Spohn, T.

    2012-05-01

    We observed an increase in photosynthetic activity in the lichen Pleopsidium chlorophanum but a strong negative effect on the photosynthetic activity of endolithic cyanobacteria when subjected for 34 days to environmental stresses likely to be encountered in semi-protected habitats on the Martian surface. Stresses were simulated in a Mars Simulation Chamber (MSC) and included high UV fluxes, low temperatures, low water activity, high atmospheric CO2 concentrations, and an atmospheric pressure of about 6 mbar. P. chlorophanum is an extremophile: it lives in very cold, dry, high-altitude habitats which are Earth's best approximation of the Martian surface. Our lichen samples came from North Victoria Land in Antarctica whereas the investigated samples of cyanobacteria came from tropic regions in the Sahara. Three samples of each group of organisms were exposed uninterruptedly to simulated conditions (as above) of the naked, unprotected Martian surface for 34 days, receiving the full Martian solar spectrum (200 - 2500 nm) for a cumulative UV dose of 6343.6 kJm-2. For a second sample set - containing also three lichen thalli and three endolithic cyanobacteria communities - the cumulative (34-day) UV dose was reduced to 268.8 kJm-2, to reasonably simulate the amount the microorganisms might receive in (semi-) protected surface sites (e.g., fissures, cracks and micro-caves within rocks or permafrost soil). In the 'unprotected' experiment it was unclear if the lichen was still actively photosynthesizing but still clear that the cyanobacteria were affected. However, under 'protected site' conditions, the cyanobacteria had no clear photosynthetic response under and after simulated Martian conditions but the lichen not only survived and remained photosynthetically active, it even adapted physiologically by increasing its photosynthetic activity over 34 days. Comparison with other Mars simulation experiments on exposure platforms in space and in the laboratory with other

  17. Thioredoxins in evolutionarily primitive organisms

    NASA Technical Reports Server (NTRS)

    Buchanan, B. B.

    1986-01-01

    Thioredoxins are low molecular weight redox proteins, alternating between the S-S (oxidized) and SH (reduced) states, that function in a number of biochemical processes, including DNA synthesis, DNA replication, and enzyme regulation. Until recently, reduced ferredoxin was known to serve as the source of reducing power for the reduction of thioredoxins only in oxygenic photosynthetic cells. In all other organisms, the source of hydrogen (electrons) for thioredoxin reduction was considered to be NADPH. It was found that Clostridium pasteurianum, an anaerobic organism normally living in the soil unexposed to light, resembles photosynthetic cells in using ferredoxin for the reduction of thioredoxin. The results reveal the existence of a pathway in which ferredoxin, provides the reducing power for the reduction of thioredoxin via the flavoprotein enzyme, ferredoxinthioredoxin reductase. In related studies, it was found that Chromatium vinosum, an anaerobic photosynthetic purple sulfur bacterium, resembles evolutionarily more advanced micro-organisms in having an NADP-thioredoxin system composed of a single thioredoxin which is reduced by NADPH via NADP-thioredoxin reductase. The adoption of the NADP-thioredoxin system by Chromatium seems appropriate in view of evidence tha the organi sm utilizes ATP-driven reverse electron transport. Finally, results of research directed towards the identification of target enzymes of the ferredoxin/thioredoxin system in a cyanobacterium (Nostoc muscorum), show that thioredoxin-linked photosynthetic enzymes of cyanobateria are similar to those of chloroplasts. It now seems that the ferredoxin/thioredoxin system functions in regulating CO2 assimilation via the reductive pentose phosphate cycle in oxygenic but not anoxygenic photosynthetic cells.

  18. Effects of photosynthetic photon flux density, frequency, duty ratio, and their interactions on net photosynthetic rate of cos lettuce leaves under pulsed light: explanation based on photosynthetic-intermediate pool dynamics.

    PubMed

    Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro

    2018-06-01

    Square-wave pulsed light is characterized by three parameters, namely average photosynthetic photon flux density (PPFD), pulsed-light frequency, and duty ratio (the ratio of light-period duration to that of the light-dark cycle). In addition, the light-period PPFD is determined by the averaged PPFD and duty ratio. We investigated the effects of these parameters and their interactions on net photosynthetic rate (P n ) of cos lettuce leaves for every combination of parameters. Averaged PPFD values were 0-500 µmol m -2  s -1 . Frequency values were 0.1-1000 Hz. White LED arrays were used as the light source. Every parameter affected P n and interactions between parameters were observed for all combinations. The P n under pulsed light was lower than that measured under continuous light of the same averaged PPFD, and this difference was enhanced with decreasing frequency and increasing light-period PPFD. A mechanistic model was constructed to estimate the amount of stored photosynthetic intermediates over time under pulsed light. The results indicated that all effects of parameters and their interactions on P n were explainable by consideration of the dynamics of accumulation and consumption of photosynthetic intermediates.

  19. Protection of the Photosynthetic Apparatus from Extreme Dehydration and Oxidative Stress in Seedlings of Transgenic Tobacco

    PubMed Central

    Personat, José-María; Tejedor-Cano, Javier; Lindahl, Marika; Diaz-Espejo, Antonio; Jordano, Juan

    2012-01-01

    A genetic program that in sunflower seeds is activated by Heat Shock transcription Factor A9 (HaHSFA9) has been analyzed in transgenic tobacco seedlings. The ectopic overexpression of the HSFA9 program protected photosynthetic membranes, which resisted extreme dehydration and oxidative stress conditions. In contrast, heat acclimation of seedlings induced thermotolerance but not resistance to the harsh stress conditions employed. The HSFA9 program was found to include the expression of plastidial small Heat Shock Proteins that accumulate only at lower abundance in heat-stressed vegetative organs. Photosystem II (PSII) maximum quantum yield was higher for transgenic seedlings than for non-transgenic seedlings, after either stress treatment. Furthermore, protection of both PSII and Photosystem I (PSI) membrane protein complexes was observed in the transgenic seedlings, leading to their survival after the stress treatments. It was also shown that the plastidial D1 protein, a labile component of the PSII reaction center, and the PSI core protein PsaB were shielded from oxidative damage and degradation. We infer that natural expression of the HSFA9 program during embryogenesis may protect seed pro-plastids from developmental desiccation. PMID:23227265

  20. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency.

    PubMed

    Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hong-Bin

    2016-11-01

    Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.

    PubMed

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  2. Photoenergy Harvesting Organic PV Cells Using Modified Photosynthetic Light-Harvesting Complex for Energy Harvesting Materials

    DTIC Science & Technology

    2008-07-03

    complex is still unclear even in the crystal structure of RC-LH1 core complex from Rhodopseudomonas (Rps.) palustris [1]. In this study, we use a...complex of R. palustris . 16 The NIR absorption spectra of these core complexes on the electrode indicate that these complexes are stable when...as the LH or the core complex. For example, the core complex, isolated from the photosynthetic bacterium, Rps. palustris , was successfully

  3. Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, Michael R.

    In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised ofmore » chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the dependencies of electron transfer rate constants on donor?acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular 'wires' that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular

  4. Complete fluorescent fingerprints of extremophilic and photosynthetic microbes

    NASA Astrophysics Data System (ADS)

    Dartnell, Lewis R.; Storrie-Lombardi, Michael C.; Ward, John M.

    2010-10-01

    The work reported here represents a study into the total fluorescence exhibited by a broad selection of model, extremophilic and photosynthetic bacterial strains, over a great range of excitation and emission wavelengths from ultraviolet (UV) through visible to near infrared. The aim is to identify distinctive fluorescent features that may serve as detectable biosignatures of remnant microbial life on the Martian surface. A lab-bench fluorescence spectrometer was used to generate an excitation-emission matrix (EEM) for the unpigmented Escherichia coli, radiation-resistant Deinococcus radiodurans, Antarctic Dry Valley isolates Brevundimonas sp. MV.7 and Rhodococcus sp. MV.10, and the cyanobacterium Synechocystis sp. PCC 6803. Detailed EEMs, representing the fluorescence signature of each organism, are presented, and the most significant features suitable for biosignature surveys are identified, including small-molecule cellular metabolites, light-harvesting photosynthetic pigments and extracellular UV-screening compounds. E. coli exhibits the most intense emission from tryptophan, presumably due to the absence of UV-screening pigments that would shield the organism from short-wavelength light-exciting intracellular fluorescence. The efficacy of commonly available laser diodes for exciting cellular fluorescence is treated, along with the most appropriate filter wavelengths for imaging systems. The best combination of available laser diodes and PanCam filters aboard the ExoMars probe is proposed. The possibility of detecting fluorescence excited by solar UV radiation in freshly exposed surface samples by imaging when both sunlit and shadowed, perhaps by the body of the rover itself, is discussed. We also study how these biological fluorophore molecules may be degraded, and thus the potential biosignatures erased, by the high flux of far-ultraviolet light on Mars.

  5. Impacts of genetically engineered alterations in carbon sink pathways on photosynthetic performance

    DOE PAGES

    Holland, Steven C.; Artier, Juliana; Miller, Neil T.; ...

    2016-10-05

    Genetic engineering of photosynthetic organisms typically redirects native metabolism towards desirable products, which thereby represent new metabolic sinks. There is limited information on how these modifications impact the evolved mechanisms of photosynthetic energy metabolism and cellular growth. Two engineered strains of Synechocystis sp. PCC 6803 with altered carbon sink capacity were assayed for their photosynthetic and CO 2 concentrating mechanism properties in conditions of high and low inorganic carbon (Ci) availability. In the ΔglgC mutant, glycogen cannot be synthesized and a carbon sink pathway has been effectively removed. The JU547 strain has been engineered by integration of the Pseudomonas syringaemore » ethylene forming enzyme and provides a new sink. When cultured under high carbon conditions, ΔglgC displayed diminished photochemical efficiency, a more reduced NADPH pool, delayed initiation of the Calvin-Benson-Bassham cycle, and impairment of linear and cyclic electron flows. It also exhibited a large decrease in photochemical quenching indicative of the accumulation of Q A-, normally associated with a reduced PQ pool, but appears instead to be the result of an undefined dissipative mechanism to spill excess energy. In the case of carbon sink integration, JU547 displayed slightly more oxidized PQ and NADPH pools and increased rates of cyclic electron flow and an enhanced demand for inorganic carbon as suggested by increase in the expression of the bicarbonate transporter, SbtA. Overall, the results highlight the importance of the native regulatory network of autotrophic metabolism in governing photosynthetic performance and provide cogent examples of both predicable and difficult to predict phenotypic consequences upon installation of new pathways in autotrophs.« less

  6. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  7. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    DOEpatents

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  8. Global scale environmental control of plant photosynthetic capacity

    DOE PAGES

    Ali, Ashehad; Xu, Chonggang; Rogers, Alistair; ...

    2015-12-01

    Photosynthetic capacity, determined by light harvesting and carboxylation reactions, is a key plant trait that determines the rate of photosynthesis; however, in Earth System Models (ESMs) at a reference temperature, it is either a fixed value for a given plant functional type or derived from a linear function of leaf nitrogen content. In this study, we conducted a comprehensive analysis that considered correlations of environmental factors with photosynthetic capacity as determined by maximum carboxylation (V c,m) rate scaled to 25°C (i.e., V c,25; μmol CO 2·m –2·s –1) and maximum electron transport rate (Jmax) scaled to 25°C (i.e., J 25;more » μmol electron·m –2·s –1) at the global scale. Our results showed that the percentage of variation in observed Vc,25 and J25 explained jointly by the environmental factors (i.e., day length, radiation, temperature, and humidity) were 2–2.5 times and 6–9 times of that explained by area-based leaf nitrogen content, respectively. Environmental factors influenced photosynthetic capacity mainly through photosynthetic nitrogen use efficiency, rather than through leaf nitrogen content. The combination of leaf nitrogen content and environmental factors was able to explain ~56% and ~66% of the variation in V c,25 and J 25 at the global scale, respectively. As a result, our analyses suggest that model projections of plant photosynthetic capacity and hence land–atmosphere exchange under changing climatic conditions could be substantially improved if environmental factors are incorporated into algorithms used to parameterize photosynthetic capacity in ESMs.« less

  9. Examination of an indicative tool for rapidly estimating viable organism abundance in ballast water

    NASA Astrophysics Data System (ADS)

    Vanden Byllaardt, Julie; Adams, Jennifer K.; Casas-Monroy, Oscar; Bailey, Sarah A.

    2018-03-01

    Regulatory discharge standards stipulating a maximum allowable number of viable organisms in ballast water have led to a need for rapid, easy and accurate compliance assessment tools and protocols. Some potential tools presume that organisms present in ballast water samples display the same characteristics of life as the native community (e.g. rates of fluorescence). This presumption may not prove true, particularly when ships' ballast tanks present a harsh environment and long transit times, negatively impacting organism health. Here, we test the accuracy of a handheld pulse amplitude modulated (PAM) fluorometer, the Hach BW680, for detecting photosynthetic protists at concentrations above or below the discharge standard (< 10 cells·ml- 1) in comparison to microscopic counts using fluorescein diacetate as a viability probe. Testing was conducted on serial dilutions of freshwater harbour samples in the lab and in situ untreated ballast water samples originating from marine, freshwater and brackish sources utilizing three preprocessing techniques to target organisms in the size range of ≥ 10 and < 50 μm. The BW680 numeric estimates were in agreement with microscopic counts when analyzing freshly collected harbour water at all but the lowest concentrations (< 38 cells·ml- 1). Chi-square tests determined that error is not independent of preprocessing methods: using the filtrate method or unfiltered water, in addition to refining the conversion factor of raw fluorescence to cell size, can decrease the grey area where exceedance of the discharge standard cannot be measured with certainty (at least for the studied populations). When examining in situ ballast water, the BW680 detected significantly fewer viable organisms than microscopy, possibly due to factors such as organism size or ballast water age. Assuming both the BW680 and microscopy with FDA stain were measuring fluorescence and enzymatic activity/membrane integrity correctly, the observed discrepancy

  10. Effects of multiple levels of social organization on survival and abundance.

    PubMed

    Ward, Eric J; Semmens, Brice X; Holmes, Elizabeth E; Balcomb Iii, Ken C

    2011-04-01

    Identifying how social organization shapes individual behavior, survival, and fecundity of animals that live in groups can inform conservation efforts and improve forecasts of population abundance, even when the mechanism responsible for group-level differences is unknown. We constructed a hierarchical Bayesian model to quantify the relative variability in survival rates among different levels of social organization (matrilines and pods) of an endangered population of killer whales (Orcinus orca). Individual killer whales often participate in group activities such as prey sharing and cooperative hunting. The estimated age-specific survival probabilities and survivorship curves differed considerably among pods and to a lesser extent among matrilines (within pods). Across all pods, males had lower life expectancy than females. Differences in survival between pods may be caused by a combination of factors that vary across the population's range, including reduced prey availability, contaminants in prey, and human activity. Our modeling approach could be applied to demographic rates for other species and for parameters other than survival, including reproduction, prey selection, movement, and detection probabilities. Conservation Biology ©2010 Society for Conservation Biology. No claim to original US government works.

  11. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol.

    PubMed

    Li, Han; Liao, James C

    2013-01-22

    The modern society primarily relies on petroleum and natural gas for the production of fuels and chemicals. One of the major commodity chemicals 1,2-propanediol (1,2-PDO), which has an annual production of more than 0.5 million tons in the United States, is currently produced by chemical processes from petroleum derived propylene oxide, which is energy intensive and not sustainable. In this study, we sought to achieve photosynthetic production of 1,2-PDO from CO2 using a genetically engineered cyanobacterium Synechococcus elongatus PCC 7942. Compared to the previously reported biological 1,2-PDO production processes which used sugar or glycerol as the substrates, direct chemical production from CO2 in photosynthetic organisms recycles the atmospheric CO2 and will not compete with food crops for arable land. In this study, we reported photosynthetic production of 1,2-PDO from CO2 using a genetically engineered cyanobacterium Synechococcus elongatus PCC 7942. Introduction of the genes encoding methylglyoxal synthase (mgsA), glycerol dehydrogenase (gldA), and aldehyde reductase (yqhD) resulted in the production of ~22 mg/L 1,2-PDO from CO2. However, a comparable amount of the pathway intermediate acetol was also produced, especially during the stationary phase. The production of 1,2-PDO requires a robust input of reducing equivalents from cellular metabolism. To take advantage of cyanobacteria's NADPH pool, the synthetic pathway of 1,2-PDO was engineered to be NADPH-dependent by exploiting the NADPH-specific secondary alcohol dehydrogenases which have not been reported for 1,2-PDO production previously. This optimization strategy resulted in the production of ~150 mg/L 1,2-PDO and minimized the accumulation of the incomplete reduction product, acetol. This work demonstrated that cyanobacteria can be engineered as a catalyst for the photosynthetic conversion of CO2 to 1,2-PDO. This work also characterized two NADPH-dependent sADHs for their catalytic capacity in 1

  12. Photosynthetic performance of restored and natural mangroves under different environmental constraints.

    PubMed

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes; Simonassi, José Carlos; Quadros, Daiane Paula Cunha; Borges, Daniel Lázaro Gallindo; Soriano-Sierra, Eduardo Juan

    2013-10-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (αETR). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Comparative transcriptomics with self-organizing map reveals cryptic photosynthetic differences between two accessions of North American Lake cress.

    PubMed

    Nakayama, Hokuto; Sakamoto, Tomoaki; Okegawa, Yuki; Kaminoyama, Kaori; Fujie, Manabu; Ichihashi, Yasunori; Kurata, Tetsuya; Motohashi, Ken; Al-Shehbaz, Ihsan; Sinha, Neelima; Kimura, Seisuke

    2018-02-19

    Because natural variation in wild species is likely the result of local adaptation, it provides a valuable resource for understanding plant-environmental interactions. Rorippa aquatica (Brassicaceae) is a semi-aquatic North American plant with morphological differences between several accessions, but little information available on any physiological differences. Here, we surveyed the transcriptomes of two R. aquatica accessions and identified cryptic physiological differences between them. We first reconstructed a Rorippa phylogeny to confirm relationships between the accessions. We performed large-scale RNA-seq and de novo assembly; the resulting 87,754 unigenes were then annotated via comparisons to different databases. Between-accession physiological variation was identified with transcriptomes from both accessions. Transcriptome data were analyzed with principal component analysis and self-organizing map. Results of analyses suggested that photosynthetic capability differs between the accessions. Indeed, physiological experiments revealed between-accession variation in electron transport rate and the redox state of the plastoquinone pool. These results indicated that one accession may have adapted to differences in temperature or length of the growing season.

  14. Abundance of Soil-Borne Entomopathogenic Fungi in Organic and Conventional Fields in the Midwestern USA with an Emphasis on the Effect of Herbicides and Fungicides on Fungal Persistence.

    PubMed

    Clifton, Eric H; Jaronski, Stefan T; Hodgson, Erin W; Gassmann, Aaron J

    2015-01-01

    Entomopathogenic fungi (EPF) are widespread in agricultural fields and help suppress crop pests. These natural enemies may be hindered by certain agronomic practices associated with conventional agriculture including the use of pesticides. We tested whether the abundance of EPF differed between organic and conventional fields, and whether specific cropping practices and soil properties were correlated with their abundance. In one year of the survey, soil from organic fields and accompanying margins had significantly more EPF than conventional fields and accompanying margins. Regression analysis revealed that the percentage of silt and the application of organic fertilizer were positively correlated with EPF abundance; but nitrogen concentration, tillage, conventional fields, and margins of conventional fields were negatively correlated with EPF abundance. A greenhouse experiment in which fungicides and herbicides were applied to the soil surface showed no significant effect on EPF. Though organic fields were perceived to be more suitable environments for EPF, abiotic factors and cropping practices such as tillage may have greater impacts on the abundance of EPF. Also, fungicides and herbicides may not be as toxic to soil-borne EPF as originally thought.

  15. KT-HAK-KUP transporters in major terrestrial photosynthetic organisms: A twenty years tale.

    PubMed

    Santa-María, Guillermo E; Oliferuk, Sonia; Moriconi, Jorge I

    2018-04-21

    Since their discovery, twenty years ago, KT-HAK-KUP transporters have become a keystone to understand how alkali cation fluxes are controlled in major land-dwelling photosynthetic organisms. In this review we focus on their discovery, phylogeny, and functions, as well as the regulation of its canonical member, AtHAK5. We also address issues related to structure-function studies, and the technological possibilities opened up by recent findings. Available evidence suggests that this family of transporters underwent an early divergence into major groups following the conquest of land by embryophytes. KT-HAK-KUPs are necessary to accomplish several major developmental and growth processes, as well as to ensure plant responses to environmental injuries. Although the primary function of these transporters is to mediate potassium (K + ) fluxes, some of them can also mediate sodium (Na + ) and cesium (Cs + ) transport, and contribute to maintenance of K + (and Na + ) homeostasis in different plant tissues. In addition, there is evidence for a role of some members of this family in auxin movement and in adenylate cyclase activity. Recent research, focusing on the regulation of the canonical member of this family, AtHAK5, revealed the existence of a complex network that involves transcriptional and post-transcriptional phenomena which control the enhancement of AtHAK5-mediated K + uptake when Arabidopsis thaliana plants are faced with low K + supply. In spite of the formidable advances made since their discovery, important subjects remain to be elucidated to gain a more complete knowledge of the roles and regulation of KT-HAK-KUPs, as well as to improve their use for innovative procedures in crop breeding. Copyright © 2018 Elsevier GmbH. All rights reserved.

  16. Spatial patterns of photosynthesis in thin- and thick-leaved epiphytic orchids: unravelling C3–CAM plasticity in an organ-compartmented way

    PubMed Central

    Rodrigues, Maria Aurineide; Matiz, Alejandra; Cruz, Aline Bertinatto; Matsumura, Aline Tiemi; Takahashi, Cassia Ayumi; Hamachi, Leonardo; Félix, Lucas Macedo; Pereira, Paula Natália; Latansio-Aidar, Sabrina Ribeiro; Aidar, Marcos Pereira Marinho; Demarco, Diego; Freschi, Luciano; Mercier, Helenice; Kerbauy, Gilberto Barbante

    2013-01-01

    Background and Aims A positive correlation between tissue thickness and crassulacean acid metabolism (CAM) expression has been frequently suggested. Therefore, this study addressed the question of whether water availability modulates photosynthetic plasticity in different organs of two epiphytic orchids with distinct leaf thickness. Methods Tissue morphology and photosynthetic mode (C3 and/or CAM) were examined in leaves, pseudobulbs and roots of a thick-leaved (Cattleya walkeriana) and a thin-leaved (Oncidium ‘Aloha’) epiphytic orchid. Morphological features were studied comparing the drought-induced physiological responses observed in each organ after 30 d of either drought or well-watered treatments. Key Results Cattleya walkeriana, which is considered a constitutive CAM orchid, displayed a clear drought-induced up-regulation of CAM in its thick leaves but not in its non-leaf organs (pseudobulbs and roots). The set of morphological traits of Cattleya leaves suggested the drought-inducible CAM up-regulation as a possible mechanism of increasing water-use efficiency and carbon economy. Conversely, although belonging to an orchid genus classically considered as performing C3 photosynthesis, Oncidium ‘Aloha’ under drought seemed to express facultative CAM in its roots and pseudobulbs but not in its leaves, indicating that such photosynthetic responses might compensate for the lack of capacity to perform CAM in its thin leaves. Morphological features of Oncidium leaves also indicated lower efficiency in preventing water and CO2 losses, while aerenchyma ducts connecting pseudobulbs and leaves suggested a compartmentalized mechanism of nighttime carboxylation via phosphoenolpyruvate carboxylase (PEPC) (pseudobulbs) and daytime carboxylation via Rubisco (leaves) in drought-exposed Oncidium plants. Conclusions Water availability modulated CAM expression in an organ-compartmented manner in both orchids studied. As distinct regions of the same orchid could perform

  17. Impact of heavy metals on photosynthetic pigment content in roadside plant communities

    NASA Astrophysics Data System (ADS)

    Popova, Elena

    2017-11-01

    The research is dedicated to the study of the impact of heavy metals (As, Cr, Cu, Mo, Ni, Pb, Sr, Zn) found in plant samples on photosynthetic pigments in anthropogenic roadside plant communities. In the process of research, the anthropogenic load intensity for the selected sites (1 < 6 < 5 < 4 < 2 < 3) was determined. The analysis of the results showed that the impact of heavy metals on photosynthetic pigment content depends not only on metal toxicity but also on its concentration. A high level was noted for Pb (7.2-10.6), Cr (2.6-4.5), As (0.1-0.9) and Sr (9.4-12.1) mg/kg. The inverse relation between the heavy metal and photosynthetic pigment concentrations was revealed. The research showed that the concentration of chlorophyll a, b and carotenoids changes depending on the growing conditions. Carotenoids are less vulnerable to the negative impact of heavy metals as compared to chlorophylls. A higher concentration of carotenoids is noted in stressing environment. On the one hand, it decreases stress effect; on the other hand, it performs a protective function by preventing destruction of chlorophyll molecules and other organic substances. The obtained data may be used to forecast dynamics of plant populations and communities in the polluted areas and to monitor conditions of natural ecosystems.

  18. Control of photosynthetic membrane assembly in Rhodobacter sphaeroides mediated by puhA and flanking sequences.

    PubMed Central

    Sockett, R E; Donohue, T J; Varga, A R; Kaplan, S

    1989-01-01

    A reaction center H- strain (RCH-) of Rhodobacter sphaeroides, PUHA1, was made by in vitro deletion of an XhoI restriction endonuclease fragment from the puhA gene coupled with insertion of a kanamycin resistance gene cartridge. The resulting construct was delivered to R. sphaeroides wild-type 2.4.1, with the defective puhA gene replacing the wild-type copy by recombination, followed by selection for kanamycin resistance. When grown under conditions known to induce intracytoplasmic membrane development, PUHA1 synthesized a pigmented intracytoplasmic membrane. Spectral analysis of this membrane showed that it was deficient in B875 spectral complexes as well as functional reaction centers and that the level of B800-850 spectral complexes was greater than in the wild type. The RCH- strain was photosythetically incompetent, but photosynthetic growth was restored by complementation with a 1.45-kilobase (kb) BamHI restriction endonuclease fragment containing the puhA gene carried in trans on plasmid pRK404. B875 spectral complexes were not restored by complementation with the 1.45-kb BamHI restriction endonuclease fragment containing the puhA gene but were restored along with photosynthetic competence by complementation with DNA from a cosmid carrying the puhA gene, as well as a flanking DNA sequence. Interestingly, B875 spectral complexes, but not photosynthetic competence, were restored to PUHA1 by introduction in trans of a 13-kb BamHI restriction endonuclease fragment carrying genes encoding the puf operon region of the DNA. The effect of the puhA deletion was further investigated by an examination of the levels of specific mRNA species derived from the puf and puc operons, as well as by determinations of the relative abundances of polypeptides associated with various spectral complexes by immunological methods. The roles of puhA and other genetic components in photosynthetic gene expression and membrane assembly are discussed. Images PMID:2644200

  19. Noise induced quantum effects in photosynthetic complexes

    NASA Astrophysics Data System (ADS)

    Dorfman, Konstantin; Voronine, Dmitri; Mukamel, Shaul; Scully, Marlan

    2012-02-01

    Recent progress in coherent multidimensional optical spectroscopy revealed effects of quantum coherence coupled to population leading to population oscillations as evidence of quantum transport. Their description requires reevaluation of the currently used methods and approximations. We identify couplings between coherences and populations as the noise-induced cross-terms in the master equation generated via Agarwal-Fano interference that have been shown earlier to enhance the quantum yield in a photocell. We investigated a broad range of typical parameter regimes, which may be applied to a variety of photosynthetic complexes. We demonstrate that quantum coherence may be induced in photosynthetic complexes under natural conditions of incoherent light from the sun. This demonstrates that a photosynthetic reaction center may be viewed as a biological quantum heat engine that transforms high-energy thermal photon radiation into low entropy electron flux.

  20. Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed.

    PubMed

    Bothe, Hermann; Tripp, H James; Zehr, Jonathan P

    2010-10-01

    Some unicellular N(2)-fixing cyanobacteria have recently been found to lack a functional photosystem II of photosynthesis. Such organisms, provisionally termed UCYN-A, of the oceanic picoplanktion are major contributors to the global marine N-input by N(2)-fixation. Since their photosystem II is inactive, they can perform N(2)-fixation during the day. UCYN-A organisms cannot be cultivated as yet. Their genomic analysis indicates that they lack genes coding for enzymes of the Calvin cycle, the tricarboxylic acid cycle and for the biosynthesis of several amino acids. The carbon source in the ocean that allows them to thrive in such high abundance has not been identified. Their genomic analysis implies that they metabolize organic carbon by a new mode of life. These unicellular N(2)-fixing cyanobacteria of the oceanic picoplankton are evolutionarily related to spheroid bodies present in diatoms of the family Epithemiaceae, such as Rhopalodia gibba. More recently, spheroid bodies were ultimately proven to be related to cyanobacteria and to express nitrogenase. They have been reported to be completely inactive in all photosynthetic reactions despite the presence of thylakoids. Sequence data show that R. gibba and its spheroid bodies are an evolutionarily young symbiosis that might serve as a model system to unravel early events in the evolution of chloroplasts. The cell metabolism of UCYN-A and the spheroid bodies may be related to that of the acetate photoassimilating green alga Chlamydobotrys.

  1. PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians.

    PubMed

    Roberty, Stéphane; Bailleul, Benjamin; Berne, Nicolas; Franck, Fabrice; Cardol, Pierre

    2014-10-01

    Photosynthetic organisms have developed various photoprotective mechanisms to cope with exposure to high light intensities. In photosynthetic dinoflagellates that live in symbiosis with cnidarians, the nature and relative amplitude of these regulatory mechanisms are a matter of debate. In our study, the amplitude of photosynthetic alternative electron flows (AEF) to oxygen (chlororespiration, Mehler reaction), the mitochondrial respiration and the Photosystem I (PSI) cyclic electron flow were investigated in strains belonging to three clades (A1, B1 and F1) of Symbiodinium. Cultured Symbiodinium strains were maintained under identical environmental conditions, and measurements of oxygen evolution, fluorescence emission and absorption changes at specific wavelengths were used to evaluate PSI and PSII electron transfer rates (ETR). A light- and O2 -dependent ETR was observed in all strains. This electron transfer chain involves PSII and PSI and is insensitive to inhibitors of mitochondrial activity and carbon fixation. We demonstrate that in all strains, the Mehler reaction responsible for photoreduction of oxygen by the PSI under high light, is the main AEF at the onset and at the steady state of photosynthesis. This sustained photosynthetic AEF under high light intensities acts as a photoprotective mechanism and leads to an increase of the ATP/NADPH ratio. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  2. Acyl homoserine lactone changes the abundance of proteins and the levels of organic acids associated with stationary phase in Salmonella Enteritidis.

    PubMed

    de Almeida, Felipe Alves; Pimentel-Filho, Natan de Jesus; Carrijo, Lanna Clícia; Bento, Cláudia Braga Pereira; Baracat-Pereira, Maria Cristina; Pinto, Uelinton Manoel; de Oliveira, Leandro Licursi; Vanetti, Maria Cristina Dantas

    2017-01-01

    Quorum sensing (QS) is cell-cell communication mechanism mediated by signaling molecules known as autoinducers (AIs) that lead to differential gene expression. Salmonella is unable to synthesize the AI-1 acyl homoserine lactone (AHL), but is able to recognize AHLs produced by other microorganisms through SdiA protein. Our study aimed to evaluate the influence of AI-1 on the abundance of proteins and the levels of organic acids of Salmonella Enteritidis. The presence of N-dodecyl-homoserine lactone (C12-HSL) did not interfere on the growth or the total amount of extracted proteins of Salmonella. However, the abundance of the proteins PheT, HtpG, PtsI, Adi, TalB, PmgI (or GpmI), Eno, and PykF enhanced while the abundance of the proteins RplB, RplE, RpsB, Tsf, OmpA, OmpC, OmpD, and GapA decreased when Salmonella Enteritidis was anaerobically cultivated in the presence of C12-HSL. Additionally, the bacterium produced less succinic, lactic, and acetic acids in the presence of C12-HSL. However, the concentration of extracellular formic acid reached 20.46 mM after 24 h and was not detected when the growth was in the absence of AI-1. Considering the cultivation period for protein extraction, their abundance, process and function, as well as the levels of organic acids, we observed in cells cultivated in presence of C12-HSL a correlation with what is described in the literature as entry into the stationary phase of growth, mainly related to nitrogen and amino acid starvation and acid stress. Further studies are needed in order to determine the specific role of the differentially abundant proteins and extracellular organic acids secreted by Salmonella in the presence of quorum sensing signaling molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Coral bleaching independent of photosynthetic activity.

    PubMed

    Tolleter, Dimitri; Seneca, François O; DeNofrio, Jan C; Krediet, Cory J; Palumbi, Stephen R; Pringle, John R; Grossman, Arthur R

    2013-09-23

    The global decline of reef-building corals is due in part to the loss of algal symbionts, or "bleaching," during the increasingly frequent periods of high seawater temperatures. During bleaching, endosymbiotic dinoflagellate algae (Symbiodinium spp.) either are lost from the animal tissue or lose their photosynthetic pigments, resulting in host mortality if the Symbiodinium populations fail to recover. The >1,000 studies of the causes of heat-induced bleaching have focused overwhelmingly on the consequences of damage to algal photosynthetic processes, and the prevailing model for bleaching invokes a light-dependent generation of toxic reactive oxygen species (ROS) by heat-damaged chloroplasts as the primary trigger. However, the precise mechanisms of bleaching remain unknown, and there is evidence for involvement of multiple cellular processes. In this study, we asked the simple question of whether bleaching can be triggered by heat in the dark, in the absence of photosynthetically derived ROS. We used both the sea anemone model system Aiptasia and several species of reef-building corals to demonstrate that symbiont loss can occur rapidly during heat stress in complete darkness. Furthermore, we observed damage to the photosynthetic apparatus under these conditions in both Aiptasia endosymbionts and cultured Symbiodinium. These results do not directly contradict the view that light-stimulated ROS production is important in bleaching, but they do show that there must be another pathway leading to bleaching. Elucidation of this pathway should help to clarify bleaching mechanisms under the more usual conditions of heat stress in the light. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Differential Mechanisms of Photosynthetic Acclimation to Light and Low Temperature in Arabidopsis and the Extremophile Eutrema salsugineum

    PubMed Central

    Khanal, Nityananda; Bray, Geoffrey E.; Grisnich, Anna; Moffatt, Barbara A.; Gray, Gordon R.

    2017-01-01

    Photosynthetic organisms are able to sense energy imbalances brought about by the overexcitation of photosystem II (PSII) through the redox state of the photosynthetic electron transport chain, estimated as the chlorophyll fluorescence parameter 1-qL, also known as PSII excitation pressure. Plants employ a wide array of photoprotective processes that modulate photosynthesis to correct these energy imbalances. Low temperature and light are well established in their ability to modulate PSII excitation pressure. The acquisition of freezing tolerance requires growth and development a low temperature (cold acclimation) which predisposes the plant to photoinhibition. Thus, photosynthetic acclimation is essential for proper energy balancing during the cold acclimation process. Eutrema salsugineum (Thellungiella salsuginea) is an extremophile, a close relative of Arabidopsis thaliana, but possessing much higher constitutive levels of tolerance to abiotic stress. This comparative study aimed to characterize the photosynthetic properties of Arabidopsis (Columbia accession) and two accessions of Eutrema (Yukon and Shandong) isolated from contrasting geographical locations at cold acclimating and non-acclimating conditions. In addition, three different growth regimes were utilized that varied in temperature, photoperiod and irradiance which resulted in different levels of PSII excitation pressure. This study has shown that these accessions interact differentially to instantaneous (measuring) and long-term (acclimation) changes in PSII excitation pressure with regard to their photosynthetic behaviour. Eutrema accessions contained a higher amount of photosynthetic pigments, showed higher oxidation of P700 and possessed more resilient photoprotective mechanisms than that of Arabidopsis, perhaps through the prevention of PSI acceptor-limitation. Upon comparison of the two Eutrema accessions, Shandong demonstrated the greatest PSII operating efficiency (ΦPSII) and P700 oxidizing

  5. The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter

    NASA Technical Reports Server (NTRS)

    Popp, B. N.; Takigiku, R.; Hayes, J. M.; Louda, J. W.; Baker, E. W.

    1989-01-01

    Carbon-isotopic compositions of geoporphyrins have been measured from marine sediments of Mesozoic and Cenozoic age in order to elucidate the timing and extent of depletion of 13C in marine primary producers. These results indicate that the difference in isotopic composition of coeval marine carbonates and marine primary photosynthate was approximately 5 to 7 permil greater during the Mesozoic and early Cenozoic than at present. In contrast to the isotopic record of marine primary producers, isotopic compositions of terrestrial organic materials have remained approximately constant for this same interval of time. This difference in the isotopic records of marine and terrestrial organic matter is considered in terms of the mechanisms controlling the isotopic fractionation associated with photosynthetic fixation of carbon. We show that the decreased isotopic fractionation between marine carbonates and organic matter from the Early to mid-Cenozoic may record variations in the abundance of atmospheric CO2.

  6. Tracking photosynthetic efficiency with narrow-band spectroradiometry

    NASA Technical Reports Server (NTRS)

    Gamon, John A.; Field, Christopher B.

    1992-01-01

    Narrow-waveband spectroradiometry presents the possibility of detecting subtle signals closely related to the current physiological state of vegetation. One such signal related to the epoxidation state of the xanthophyll cycle pigments, violaxanthin, antheraxanthin, and zeaxanthin is discussed. Recent advances in plant ecophysiology demonstrated a close relationship between these pigments and the regulatory state of photosystem 2 in photosynthesis. Our recent field studies of sunflower (Helianthus annuus) and oak (Quercus agrifolia) demonstrated that a 'xanthophyll signal' can be isolated from the diurnal reflectance spectra of intact canopies. Furthermore, the xanthophyll signal can be used to derive a 'physiological reflectance index' (PRI) that closely correlates with the actual photosynthetic efficiency (defined as the photosynthetic rate divided by the incident PAR) in closed canopies. If these signals were detectable in Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images, they could lead to improved remote estimates of photosynthetic fluxes.

  7. Light absorption and excitation energy transfer calculations in primitive photosynthetic bacteria

    NASA Astrophysics Data System (ADS)

    Komatsu, Yu; Kayanuma, Megumi; Shoji, Mitsuo; Yabana, Kazuhiro; Shiraishi, Kenji; Umemura, Masayuki

    2015-06-01

    In photosynthetic organisms, light energy is converted into chemical energy through the light absorption and excitation energy transfer (EET) processes. These processes start in light-harvesting complexes, which contain special photosynthetic pigments. The exploration of unique mechanisms in light-harvesting complexes is directly related to studies, such as artificial photosynthesis or biosignatures in astrobiology. We examined, through ab initio calculations, the light absorption and EET processes using cluster models of light-harvesting complexes in purple bacteria (LH2). We evaluated absorption spectra and energy transfer rates using the LH2 monomer and dimer models to reproduce experimental results. After the calibration tests, a LH2 aggregation model, composed of 7 or 19 LH2s aligned in triangle lattice, was examined. We found that the light absorption is red shifted and the energy transfer becomes faster as the system size increases. We also found that EET is accelerated by exchanging the central pigments to lower energy excited pigments. As an astrobiological application, we calculated light absorptions efficiencies of the LH2 in different photoenvironments.

  8. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy.

    PubMed

    Decelle, Johan; Romac, Sarah; Stern, Rowena F; Bendif, El Mahdi; Zingone, Adriana; Audic, Stéphane; Guiry, Michael D; Guillou, Laure; Tessier, Désiré; Le Gall, Florence; Gourvil, Priscillia; Dos Santos, Adriana L; Probert, Ian; Vaulot, Daniel; de Vargas, Colomban; Christen, Richard

    2015-11-01

    Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing. © 2015 John Wiley & Sons Ltd.

  9. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms.

    PubMed

    Bradbury, Louis M T; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J; Wurtzel, Eleanore T

    2012-07-03

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784-11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that CruP aids in preventing accumulation of reactive oxygen species (ROS), thereby reducing accumulation of β-carotene-5,6-epoxide, a ROS-catalyzed autoxidation product, and inhibiting accumulation of anthocyanins, which are known chemical indicators of ROS. Plants with a nonfunctional cruP accumulate substantially higher levels of ROS and β-carotene-5,6-epoxide in green tissues. Plants overexpressing cruP show reduced levels of ROS, β-carotene-5,6-epoxide, and anthocyanins. The observed up-regulation of cruP transcripts under photoinhibitory and lipid peroxidation-inducing conditions, such as high light stress, cold stress, anoxia, and low levels of CO(2), fits with a role for CruP in mitigating the effects of ROS. Phylogenetic distribution of CruP in prokaryotes showed that the gene is only present in cyanobacteria that live in habitats characterized by large variation in temperature and inorganic carbon availability. Therefore, CruP represents a unique target for developing resilient plants and algae needed to supply food and biofuels in the face of global climate change.

  10. Climate controls photosynthetic capacity more than leaf nitrogen contents

    NASA Astrophysics Data System (ADS)

    Ali, A. A.; Xu, C.; McDowell, N. G.

    2013-12-01

    Global vegetation models continue to lack the ability to make reliable predictions because the photosynthetic capacity varies a lot with growth conditions, season and among species. It is likely that vegetation models link photosynthetic capacity to concurrent changes in leaf nitrogen content only. To improve the predictions of the vegetation models, there is an urgent need to review species growth conditions and their seasonal response to changing climate. We sampled the global distribution of the Vcmax (maximum carboxylation rates) data of various species across different environmental gradients from the literature and standardized its value to 25 degree Celcius. We found that species explained the largest variation in (1) the photosynthetic capacity and (2) the proportion of nitrogen allocated for rubisco (PNcb). Surprisingly, climate variables explained more variations in photosynthetic capacity as well as PNcb than leaf nitrogen content and/or specific leaf area. The chief climate variables that explain variation in photosynthesis and PNcb were radiation, temperature and daylength. Our analysis suggests that species have the greatest control over photosynthesis and PNcb. Further, compared to leaf nitrogen content and/or specific leaf area, climate variables have more control over photosynthesis and PNcb. Therefore, climate variables should be incorporated in the global vegetation models when making predictions about the photosynthetic capacity.

  11. Abundance of Soil-Borne Entomopathogenic Fungi in Organic and Conventional Fields in the Midwestern USA with an Emphasis on the Effect of Herbicides and Fungicides on Fungal Persistence

    PubMed Central

    Clifton, Eric H.; Jaronski, Stefan T.; Hodgson, Erin W.; Gassmann, Aaron J.

    2015-01-01

    Entomopathogenic fungi (EPF) are widespread in agricultural fields and help suppress crop pests. These natural enemies may be hindered by certain agronomic practices associated with conventional agriculture including the use of pesticides. We tested whether the abundance of EPF differed between organic and conventional fields, and whether specific cropping practices and soil properties were correlated with their abundance. In one year of the survey, soil from organic fields and accompanying margins had significantly more EPF than conventional fields and accompanying margins. Regression analysis revealed that the percentage of silt and the application of organic fertilizer were positively correlated with EPF abundance; but nitrogen concentration, tillage, conventional fields, and margins of conventional fields were negatively correlated with EPF abundance. A greenhouse experiment in which fungicides and herbicides were applied to the soil surface showed no significant effect on EPF. Though organic fields were perceived to be more suitable environments for EPF, abiotic factors and cropping practices such as tillage may have greater impacts on the abundance of EPF. Also, fungicides and herbicides may not be as toxic to soil-borne EPF as originally thought. PMID:26191815

  12. Photosynthetic microbial mats in the 3,416-Myr-old ocean

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Lowe, Donald R.

    2004-09-01

    Recent re-evaluations of the geological record of the earliest life on Earth have led to the suggestion that some of the oldest putative microfossils and carbonaceous matter were formed through abiotic hydrothermal processes. Similarly, many early Archaean (more than 3,400-Myr-old) cherts have been reinterpreted as hydrothermal deposits rather than products of normal marine sedimentary processes. Here we present the results of a field, petrographic and geochemical study testing these hypotheses for the 3,416-Myr-old Buck Reef Chert, South Africa. From sedimentary structures and distributions of sand and mud, we infer that deposition occurred in normal open shallow to deep marine environments. The siderite enrichment that we observe in deep-water sediments is consistent with a stratified early ocean. We show that most carbonaceous matter was formed by photosynthetic mats within the euphotic zone and distributed as detrital matter by waves and currents to surrounding environments. We find no evidence that hydrothermal processes had any direct role in the deposition of either the carbonaceous matter or the enclosing sediments. Instead, we conclude that photosynthetic organisms had evolved and were living in a stratified ocean supersaturated in dissolved silica 3,416Myr ago.

  13. Photosynthetic microbial mats in the 3,416-Myr-old ocean.

    PubMed

    Tice, Michael M; Lowe, Donald R

    2004-09-30

    Recent re-evaluations of the geological record of the earliest life on Earth have led to the suggestion that some of the oldest putative microfossils and carbonaceous matter were formed through abiotic hydrothermal processes. Similarly, many early Archaean (more than 3,400-Myr-old) cherts have been reinterpreted as hydrothermal deposits rather than products of normal marine sedimentary processes. Here we present the results of a field, petrographic and geochemical study testing these hypotheses for the 3,416-Myr-old Buck Reef Chert, South Africa. From sedimentary structures and distributions of sand and mud, we infer that deposition occurred in normal open shallow to deep marine environments. The siderite enrichment that we observe in deep-water sediments is consistent with a stratified early ocean. We show that most carbonaceous matter was formed by photosynthetic mats within the euphotic zone and distributed as detrital matter by waves and currents to surrounding environments. We find no evidence that hydrothermal processes had any direct role in the deposition of either the carbonaceous matter or the enclosing sediments. Instead, we conclude that photosynthetic organisms had evolved and were living in a stratified ocean supersaturated in dissolved silica 3,416 Myr ago.

  14. An Inexpensive Apparatus for Growing Photosynthetic Microorganisms in Exotic Atmospheres

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Herbert, Stephen K.

    2005-02-01

    Given the need for a light source, cyanobacteria and other photosynthetic microorganisms can be difficult and expensive to grow in large quantities. Lighted growth chambers and incubators typically cost 50-100% more than standard microbiological incubators. Self-shading of cells in liquid cultures prevents the growth of dense suspensions. Growing liquid cultures on a shaker table or lighted shaker incubator achieves greater cell densities, but adds considerably to the cost. For experiments in which gases other than air are required, the cost for conventional incubators increases even more. We describe an apparatus for growing photosynthetic organisms in exotic atmospheres that can be built relatively inexpensively (approximately $100 U.S.) using parts available from typical hardware or department stores (e.g., Wal-mart or K-mart). The apparatus uses microfiltered air (or other gases) to aerate, agitate, and mix liquid cultures, thus achieving very high cell densities (A750 > 3). Because gases are delivered to individual culture tubes, a variety of gas mixes can be used without the need for enclosed chambers. The apparatus works with liquid cultures of unicellular and filamentous species, and also works with agar slants.

  15. Growth and photosynthetic responses of wheat plants grown in space

    NASA Technical Reports Server (NTRS)

    Tripathy, B. C.; Brown, C. S.; Levine, H. G.; Krikorian, A. D.

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  16. Photosynthetic strategies of two Mojave Desert shrubs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinkopf, G.E.; Hartsock, T.L.; Wallace, A.

    1980-01-01

    Photosynthetic production of two Mojave Desert shrubs was measured under natural growing conditions. Measurements of photosynthesis, transpiration, resistances to water vapor flux, soil moisture potential, and tissue water potential were made. Atriplex canescens (Pursh) Nutt., a member of the C/sub 4/ biochemical carbon dioxide fixation group was highly competitive in growth rate and production during conditions of adequate soil moisture. As soil moisture conditions declined to minus 40 bars, the net photosynthetic rate of Atriplex decreased to zero. However, the C/sub 3/ shrub species Larrea tridentata (Sesse and Moc. ex DC.) Cov. was able to maintain positive net photosynthetic productionmore » during conditions of high temperature and extreme low soil moisture through the major part of the season. The comparative advantages of the C/sub 4/ versus the C/sub 3/ pathway of carbon fixation was lost between these two species as the soil moisture potential declined to minus 40 bars. Desert plants have diffferent strategies for survival, one of the strategies being the C/sub 4/ biochemical carbon fixation pathway. However, many of the plants are members of the C/sub 3/ group. In this instance, the C/sub 4/ fixation pathway does not confer an added advantage to the productivity of the species in the Mojave Desert. Species distribution based on comparative photosynthetic production is discussed« less

  17. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

    PubMed

    Chávez, Myra Noemi; Schenck, Thilo Ludwig; Hopfner, Ursula; Centeno-Cerdas, Carolina; Somlai-Schweiger, Ian; Schwarz, Christian; Machens, Hans-Günther; Heikenwalder, Mathias; Bono, María Rosa; Allende, Miguel L; Nickelsen, Jörg; Egaña, José Tomás

    2016-01-01

    The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure.

    PubMed

    Henderson, Peter A; Magurran, Anne E

    2010-05-22

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance.

  19. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure

    PubMed Central

    Henderson, Peter A.; Magurran, Anne E.

    2010-01-01

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximately triangular region. Simple energetic and sampling constraints explain the triangular form. The dispersion of species within this triangle is the key to understanding why SADs of numerical abundance and biomass can differ. Given regular or random species dispersion, we can predict the shape of the SAD for both currencies under a variety of sampling regimes. We argue that this dispersion pattern will lie between regular and random for the following reasons. First, regular dispersion patterns will result if communities are comprised groups of organisms that use different components of the physical space (e.g. open water, the sea bed surface or rock crevices in a marine fish assemblage), and if the abundance of species in each of these spatial guilds is linked to the way individuals of varying size use the habitat. Second, temporal variation in abundance and sampling error will tend to randomize this regular pattern. Data from two intensively studied marine ecosystems offer empirical support for these predictions. Our approach also has application in environmental monitoring and the recognition of anthropogenic disturbance, which may change the shape of the triangular region by, for example, the loss of large body size top predators that occur at low abundance. PMID:20071388

  20. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters.

    PubMed

    Xu, Huacheng; Guo, Laodong

    2017-06-15

    Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the <3 kDa fraction in freshwater samples, but these percentages were higher in the seawater sample. Spectroscopic properties of DOM, such as specific ultraviolet absorbance, spectral slope, and biological and humification indices also varied significantly with membrane cutoffs. In addition, different ultrafiltration membranes with the same manufacture-rated cutoff also gave rise to different DOM retention efficiencies and thus different colloidal abundances and size spectra. Thus, the size-dependent DOM properties were related to both sample types and membranes used. Our results here provide not only baseline data for filter pore-size selection when exploring DOM ecological and environmental roles, but also new insights into better understanding the physical definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Photoautotrophic organisms control microbial abundance and diversity in biological soil crusts

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Maier, Stefanie; Wu, Dianming; Caesar, Jennifer; Hoffman, Timm; Grube, Martin; Weber, Bettina

    2017-04-01

    Vascular vegetation is typically quite sparse or even absent in dryland ecosystems all over the world, but the ground surface is not bare and largely covered by biological soil crusts (referred to as biocrusts hereafter). These biocrust communities generally comprise poikilohydric organisms. They are usually dominated by photoautotrophic cyanobacteria, lichens and mosses, growing together with heterotrophic fungi, bacteria and archaea in varying composition. Cyanobacteria-, lichen- and moss-dominated biocrusts are known to stabilize the soil and to influence the water budgets and plant establishment. The autotrophic organisms take up atmospheric CO2, and (cyano-)bacteria fix atmospheric nitrogen. The intention of the present project was to study the relevance of the dominating photoautotrophic organisms for biocrust microbial composition and physiology. High-throughput sequencing revealed that soil microbiota of biocrusts largely differ from the bacterial community in bare soil. We observed that bacterial and fungal abundance (16S and 18S rRNA gene copy numbers) as well as alpha diversity was lowest in bare soil, and increasing from cyanobacteria-, and chlorolichen- to moss-dominated biocrusts. CO2 gas exchange measurements revealed large respiration rates of the soil in moss-dominated biocrusts, which was not observed for cyanobacteria- and chlorolichen-dominated biocrusts. Thus, soil respiration of moss-dominated biocrusts is mainly due to the activity of the microbial communities, whereas the microorganisms in the other biocrust types are either dormant or feature functionally different microbial communities. Our results indicate that biocrust type determines the pattern of microbial communities in the underlying soil layer.

  2. Photosynthetic carbon metabolism in Enteromorpha compressa (Chlorophyta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, S.; Shragge, B.

    1987-12-01

    The intertidal macroalga Enteromorpha compressa showed the ability to use HCO/sub 3//sup -/, as an exogenous inorganic carbon (Ci) source for photosynthesis. However, although the natural sea water concentration of this carbon form was saturating, additional CO/sub 2/ above ambient Ci levels doubled net photosynthetic rates. Therefore, the productivity of this alga, when submerged, is likely to be limited by Ci. When plants were exposed to air, photosynthetic rates saturated at air-levels of CO/sub 2/ during mild desiccation. Based on carbon fixing enzyme activities and Ci pulse-chase incorporation patterns, it was found that Enteromorpha is a C/sub 3/ plant. However,more » this alga did not show O/sub 2/ inhibited photosynthetic rates at natural sea water Ci conditions. It is suggested that such a C/sub 4/-like gas exchange response is due to the HCO/sub 3//sup -/ utilization system concentrating CO/sub 2/ intracellularly, thus alleviating apparent photorespiration.« less

  3. Collapsing Aged Culture of the Cyanobacterium Synechococcus elongatus Produces Compound(s) Toxic to Photosynthetic Organisms

    PubMed Central

    Cohen, Assaf; Sendersky, Eleonora; Carmeli, Shmuel; Schwarz, Rakefet

    2014-01-01

    Phytoplankton mortality allows effective nutrient cycling, and thus plays a pivotal role in driving biogeochemical cycles. A growing body of literature demonstrates the involvement of regulated death programs in the abrupt collapse of phytoplankton populations, and particularly implicates processes that exhibit characteristics of metazoan programmed cell death. Here, we report that the cell-free, extracellular fluid (conditioned medium) of a collapsing aged culture of the cyanobacterium Synechococcus elongatus is toxic to exponentially growing cells of this cyanobacterium, as well as to a large variety of photosynthetic organisms, but not to eubacteria. The toxic effect, which is light-dependent, involves oxidative stress, as suggested by damage alleviation by antioxidants, and the very high sensitivity of a catalase-mutant to the conditioned medium. At relatively high cell densities, S. elongatus cells survived the deleterious effect of conditioned medium in a process that required de novo protein synthesis. Application of conditioned medium from a collapsing culture caused severe pigment bleaching not only in S. elongatus cells, but also resulted in bleaching of pigments in a cell free extract. The latter observation indicates that the elicited damage is a direct effect that does not require an intact cell, and therefore, is mechanistically different from the metazoan-like programmed cell death described for phytoplankton. We suggest that S. elongatus in aged cultures are triggered to produce a toxic compound, and thus, this process may be envisaged as a novel regulated death program. PMID:24959874

  4. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.

    2015-09-01

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850∗ states of LH2 in each of the 3 samples with a lifetime of ˜40-60 fs.

  5. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states

    PubMed Central

    Schlau-Cohen, Gabriela S.; Wang, Quan; Southall, June; Cogdell, Richard J.; Moerner, W. E.

    2013-01-01

    Photosynthetic organisms flourish under low light intensities by converting photoenergy to chemical energy with near unity quantum efficiency and under high light intensities by safely dissipating excess photoenergy and deleterious photoproducts. The molecular mechanisms balancing these two functions remain incompletely described. One critical barrier to characterizing the mechanisms responsible for these processes is that they occur within proteins whose excited-state properties vary drastically among individual proteins and even within a single protein over time. In ensemble measurements, these excited-state properties appear only as the average value. To overcome this averaging, we investigate the purple bacterial antenna protein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level. We use a room-temperature, single-molecule technique, the anti-Brownian electrokinetic trap, to study LH2 in a solution-phase (nonperturbative) environment. By performing simultaneous measurements of fluorescence intensity, lifetime, and spectra of single LH2 complexes, we identify three distinct states and observe transitions occurring among them on a timescale of seconds. Our results reveal that LH2 complexes undergo photoactivated switching to a quenched state, likely by a conformational change, and thermally revert to the ground state. This is a previously unobserved, reversible quenching pathway, and is one mechanism through which photosynthetic organisms can adapt to changes in light intensities. PMID:23776245

  6. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states.

    PubMed

    Schlau-Cohen, Gabriela S; Wang, Quan; Southall, June; Cogdell, Richard J; Moerner, W E

    2013-07-02

    Photosynthetic organisms flourish under low light intensities by converting photoenergy to chemical energy with near unity quantum efficiency and under high light intensities by safely dissipating excess photoenergy and deleterious photoproducts. The molecular mechanisms balancing these two functions remain incompletely described. One critical barrier to characterizing the mechanisms responsible for these processes is that they occur within proteins whose excited-state properties vary drastically among individual proteins and even within a single protein over time. In ensemble measurements, these excited-state properties appear only as the average value. To overcome this averaging, we investigate the purple bacterial antenna protein light harvesting complex 2 (LH2) from Rhodopseudomonas acidophila at the single-protein level. We use a room-temperature, single-molecule technique, the anti-Brownian electrokinetic trap, to study LH2 in a solution-phase (nonperturbative) environment. By performing simultaneous measurements of fluorescence intensity, lifetime, and spectra of single LH2 complexes, we identify three distinct states and observe transitions occurring among them on a timescale of seconds. Our results reveal that LH2 complexes undergo photoactivated switching to a quenched state, likely by a conformational change, and thermally revert to the ground state. This is a previously unobserved, reversible quenching pathway, and is one mechanism through which photosynthetic organisms can adapt to changes in light intensities.

  7. Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency1[OPEN

    PubMed Central

    Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Feng, Dongru; Wang, Jinfa

    2016-01-01

    Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. PMID:27609860

  8. Short-term changes in loblolly pine water conductance and photosynthetic capacity from fertilizer source and straw harvesting

    Treesearch

    Michael A. Blazier; Keith Ellum; Hal O. Liechty

    2012-01-01

    Organic matter removal associated with intensive straw harvesting in loblolly pine (Pinus taeda L.) plantations has the potential to alter tree water regimes and photosynthetic capacity. Fertilization done to remedy nutrient removals from straw harvesting, as well as the type of fertilizer, likewise has potential to change water regimes and...

  9. The Ratio of Leaf to Total Photosynthetic Area Influences Shade Survival and Plastic Response to Light of Green‐stemmed Leguminous Shrub Seedlings

    PubMed Central

    VALLADARES, FERNANDO; HERNÁNDEZ, LIBERTAD G.; DOBARRO, IKER; GARCÍA‐PÉREZ, CRISTINA; SANZ, RUBÉN; PUGNAIRE, FRANCISCO I.

    2003-01-01

    Different plant species and organs within a plant differ in their plastic response to light. These responses influence their performance and survival in relation to the light environment, which may range from full sunlight to deep shade. Plasticity, especially with regard to physiological features, is linked to a greater capacity to exploit high light and is usually low in shade‐tolerant species. Among photosynthetic organs, green stems, which represent a large fraction of the total photosynthetic area of certain species, are hypothesized to be less capable of adjustment to light than leaves, because of biomechanical and hydraulic constraints. The response to light by leaves and stems of six species of leguminous, green‐stemmed shrubs from dry and high‐light environments was studied by growing seedlings in three light environments: deep shade, moderate shade and sun (3, 30 and 100 % of full sunlight, respectively). Survival in deep shade ranged from 2 % in Retama sphaerocarpa to 74 % in Ulex europaeus. Survival was maximal at moderate shade in all species, ranging from 80 to 98 %. The six species differed significantly in their ratio of leaf to total photosynthetic area, which influenced their light response. Survival in deep shade increased significantly with increasing ratio of leaf to total photosynthetic area, and decreased with increasing plasticity in net photosynthesis and dark respiration. Responses to light differed between stems and leaves within each species. Mean phenotypic plasticity for the variables leaf or stem specific mass, chlorophyll content, chlorophyll a/b ratio, and carotenoid to chlorophyll ratio of leaves, was inversely related to that of stems. Although mean plasticity of stems increased with the ratio of leaf to total photosynthetic area, the mean plasticity of leaves decreased. Shrubs with green stems and a low ratio of leaf to total photosynthetic area are expected to be restricted to well‐lit habitats, at least during the

  10. The Relationship between Anatomy and Photosynthetic Performance of Heterobaric Leaves1

    PubMed Central

    Nikolopoulos, Dimosthenis; Liakopoulos, Georgios; Drossopoulos, Ioannis; Karabourniotis, George

    2002-01-01

    Heterobaric leaves show heterogeneous pigmentation due to the occurrence of a network of transparent areas that are created from the bundle sheaths extensions (BSEs). Image analysis showed that the percentage of photosynthetically active leaf area (Ap) of the heterobaric leaves of 31 plant species was species dependent, ranging from 91% in Malva sylvestris to only 48% in Gynerium sp. Although a significant portion of the leaf surface does not correspond to photosynthetic tissue, the photosynthetic capacity of these leaves, expressed per unit of projected area (Pmax), was not considerably affected by the size of their transparent leaf area (At). This means that the photosynthetic capacity expressed per Ap (P*max) should increase with At. Moreover, the expression of P*max could be allowing the interpretation of the photosynthetic performance in relation to some critical anatomical traits. The P*max, irrespective of plant species, correlated with the specific leaf transparent volume (λt), as well as with the transparent leaf area complexity factor (CFAt), parameters indicating the volume per unit leaf area and length/density of the transparent tissues, respectively. Moreover, both parameters increased exponentially with leaf thickness, suggesting an essential functional role of BSEs mainly in thick leaves. The results of the present study suggest that although the Ap of an heterobaric leaf is reduced, the photosynthetic performance of each areole is increased, possibly due to the light transferring capacity of BSEs. This mechanism may allow a significant increase in leaf thickness and a consequent increase of the photosynthetic capacity per unit (projected) area, offering adaptive advantages in xerothermic environments. PMID:12011354

  11. Unraveling the molecular mechanism of photosynthetic toxicity of highly fluorescent silver nanoclusters to Scenedesmus obliquus.

    PubMed

    Zhang, Li; Goswami, Nirmal; Xie, Jianping; Zhang, Bo; He, Yiliang

    2017-11-27

    While the discovery of numerous attractive properties of silver at the nanoscale has increased their demand in many sectors including medicine, optics, sensing, painting and cosmetics, it has also raised wide public concerns about their effect on living organisms in aquatic environment. Despite the continuous effort to understand the various aspects of the toxicity of silver nanomaterials, the molecular level understanding on their cytotoxicity mechanism to biological organisms has remained unclear. Herein, we demonstrated the underlying mechanism of the photosynthetic toxicity against green algae namely, Scenedesmus obliquus by using an emerging silver nanomaterial, called silver nanoclusters (defined as r-Ag NCs). By exploiting the unique fluorescence properties of r-Ag NCs along with various other analytical/biological tools, we proposed that the photosynthetic toxicity of r-Ag NCs was largely attributed to the "joint-toxicity" effect of particulate form of r-Ag NCs and its released Ag + , which resulted in the disruption of the electron transport chain of light reaction and affected the content of key enzymes (RuBP carboxylase/ oxygenase) of Calvin cycle of algae cells. We believe that the present study can also be applied to the assessment of the ecological risk derived from other metal nanoparticles.

  12. BIOGEOCHEMICAL STUDIES OF PHOTOSYNTHETIC MICROBIAL MATS AND THEIR BIOTA

    NASA Technical Reports Server (NTRS)

    DesMarais, David; Discipulo, M.; Turk, K.; Londry, K. L.

    2005-01-01

    Photosynthetic microbial mats offer an opportunity to define holistic functionality at the millimeter scale. At the same time. their biogeochemistry contributes to environmental processes on a planetary scale. These mats are possibly direct descendents of the most ancient biological communities; communities in which oxygenic photosynthesis might have been invented. Mats provide one of the best natural systems to study how microbial populations associate to control dynamic biogeochemical gradients. These are self- sustaining, complete ecosystems in which light energy absorbed over a dial (24 hour) cycle drives the synthesis of spatially-organized, diverse biomass. Tightly-coupled microorganisms in the mat have specialized metabolisms that catalyze transformations of carbon, nitrogen, sulfur, and a host of other elements.

  13. Microbial Assimilation of Atmospheric CO2 to Synthesize Organic Matter in Soils

    NASA Astrophysics Data System (ADS)

    Ge, Tida

    2014-05-01

    Like higher plants, microbial autotrophs possess photosynthetic systems that enable them to fix CO2. Whilst present in large numbers in soils, the capacity for soil microorganisms to fix CO2 and their importance in terrestrial C cycling has not been quantified. To measure the activities of microbial autotrophs in assimilating atmospheric CO2, seven different soils were incubated with 14C labelled CO2 for 80 d, and the 14C-labelled organic C synthesized was determined. The results indicate that the synthesis rates of 14C-lablled organic C ranged from 0.0134 to 0.103 g C m-2 d-1, and were closely related to RubisCO activities and the abundance of cbbL-genes in the soils, indicating that the synthesis could be attributed to soil microbial autotrophs. This finding suggests that microbial assimilation of atmospheric CO2 is an important process in the sequestration and cycling of terrestrial C that, until now, has been largely ignored.

  14. Self-sustaining, solar-driven bioelectricity generation in micro-sized microbial fuel cell using co-culture of heterotrophic and photosynthetic bacteria

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Choi, Seokheun

    2017-04-01

    Among many energy harvesting techniques with great potential, microbial fuel cell (MFC) technology is arguably the most underdeveloped. Even so, excitement is building, as microorganisms can harvest electrical power from any biodegradable organic source (e.g. wastewater) that is readily available in resource-limited settings. Nevertheless, the requirement for endless introduction of organic matter imposes a limiting factor to this technology, demanding an active feeding system and additional power. Here, we demonstrated self-sustaining bioelectricity generation from a microliter-scale microbial fuel cell (MFC) by using the syntrophic interaction between heterotrophic exoelectrogenic bacteria and phototrophs. The MFC continuously generated light-responsive electricity from the heterotrophic bacterial metabolic respiration with the organic substrates produced by photosynthetic bacteria. Without additional organic fuel, the mixed culture in a 90-μL-chamber MFC generated self-sustained current for more than 13 days, while the heterotrophic culture produced current that decreased dramatically within a few hours. The current from the mixed culture was about 70 times greater than that of the device with only photosynthetic bacteria. The miniaturization provided a short start-up time, a well-controlled environment, and small internal resistance. Those advantages will become the general design platform for micropower generation.

  15. Effects of microgravityon the structural organization of Brassica rapa photosynthetic appartus

    NASA Astrophysics Data System (ADS)

    Adamchuk, N.; Kordyum, E.; Guikema, J.

    Leaf mesophyll cells of 13- and 15-day old Brassica rapa plants grown on board the space shuttle Columbia (STS-87) and in the ground control have been investigated using the methods of light and electron microscopy. 13-day old plants were fixed on orbit and 15-day old plants were fixed after landing. It was shown the essential differences in leaf mesophyll quantitative anatomical and ultrastructural characteristics between spaceflight and ground control variants. Both the volume of palisade parenchyma cells and a number of chloroplasts in those cells increased in spaceflight samples. Simultaneusly, a chloroplast size decreased together with increasing of a relative volume of stromal thylakoids, starch grains and plastoglobuli. It was also noted increasing of stromal thylakoid length. In the same time, both a total length of thylakoids in granae and the grana number diminished in space flight. In addition, the interthylakoid space could be expended and the thylakoid length was more variable in chloroplast granae on microgravity, that correlated with a shrinkage of thylakoids in granal stacks. The obtained data a er discussed with the questions on both the photosynthetic apparatus sensitivity to gravity and its adaptive possibility to microgravity.

  16. Leaf expansion and development of photosynthetic capacity and pigments in Liquidambar Styraciflua (Hamamelidaceae)-effects of UV-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillenburg, L.R.; Sullivan, J.H.; Teramura, A.H.

    1995-07-01

    In order to perform their functions as photosynthetic organs, leaves must cope with excess heat and potentially damaging ultraviolet radiation. Possible increases in the UV-B portion of the solar spectrum may place an additional burden on leaves, and this could be particularly important for young expanding leaves with poorly developed UV-B defense mechanisms. We evaluated the effects of supplemental UV-B radiation on leaf expansion and the development of photosynthetic capacity and pigments in sweetgum (Liquidambar styraciflua L.) seedlings. Seedlings were grown in the field under either ambient or ambient plus 3 or 5.0 kJ of biologically effective supplemental UV-B radiation.more » Although final leaf size was unaffected, the rate of leaf elongation and accumulation of leaf area was slower in leaves exposed to the lower supplemental UV-B irradiance. In contrast, chlorophyll accumulation and the development of photosynthetic capacity was more rapid in plants exposed to the higher, compared to the lower supplemental UV-B irradiance. The accumulation of anthocyanins and other putative flavonoids or UV-absorbing compounds was scarcely affected by exposure to supplemental UV-B radiation. These results suggest that the UV-B portion of the solar spectrum may, in the absence of gross affects on biomass, exert subtle influences on leaf ontogeny and the development of photosynthetic pigments and capacity in sweetgum. 44 refs., 6 figs.« less

  17. Isolation and Characterization of Canthaxanthin Biosynthesis Genes from the Photosynthetic Bacterium Bradyrhizobium sp. Strain ORS278

    PubMed Central

    Hannibal, Laure; Lorquin, Jean; D'Ortoli, Nicolas Angles; Garcia, Nelly; Chaintreuil, Clemence; Masson-Boivin, Catherine; Dreyfus, Bernard; Giraud, Eric

    2000-01-01

    A carotenoid biosynthesis gene cluster involved in canthaxanthin production was isolated from the photosynthetic Bradyrhizobium sp. strain ORS278. This cluster includes five genes identified as crtE, crtY, crtI, crtB, and crtW that are organized in at least two operons. The functional assignment of each open reading frame was confirmed by complementation studies. PMID:10851005

  18. Temporal changes in the abundance, leaf growth and photosynthesis of three co-occurring Philippine seagrasses.

    PubMed

    Agawin, N S.R.; Duarte, C M.; Fortes, M D.; Uri, J S.; Vermaat, J E.

    2001-06-01

    The analysis of the temporal changes in shoot density, areal leaf biomass, leaf growth and parameters of the photosynthesis-irradiance relationship of three tropical seagrass species (Enhalus acoroides, Thalassia hemprichii and Cymodocea rotundata), co-existing in a shallow subtidal meadow in Cape Bolinao, Philippines, shows that species-specific traits are significant sources of temporal variability, and indicates that these seagrass species respond differently to a common environmental forcing. Species-specific differences are much less important as source of variability of the temporal change in chlorophyll concentration of seagrass leaves. The results indicate that the temporal changes in photosynthetic performance of these seagrasses were driven by environmental forcing and their specific responses to it mostly, but the temporal change in their abundance and leaf growth was also controlled by other factors. The significant contribution of species-specific factors in the temporal changes of biomass, growth and photosynthetic performance of co-occurring seagrass species in Cape Bolinao should contribute to the maintenance of the multispecific, highly productive meadows characteristic of pristine coastal ecosystems in Southeast (SE) Asia.

  19. Predicting the Dynamics of Protein Abundance

    PubMed Central

    Mehdi, Ahmed M.; Patrick, Ralph; Bailey, Timothy L.; Bodén, Mikael

    2014-01-01

    Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA–protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation

  20. Predicting the dynamics of protein abundance.

    PubMed

    Mehdi, Ahmed M; Patrick, Ralph; Bailey, Timothy L; Bodén, Mikael

    2014-05-01

    Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA-protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation efficiency

  1. Photosynthetic production of hydrogen. [Blue-green alga, Anabaena cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neil, G.; Nicholas, D.J.D.; Bockris, J.O.

    A systematic investigation of photosynthetic hydrogen production using a blue-green alga, Anabaena cylindrica, was carried out. The results indicate that there are two important problems which must be overcome for large-scale hydrogen production using photosynthetic processes. These are (a) the development of a stable system, and (b) attainment of at least a fifty-fold increase in the rate of hydrogen evolution per unit area illuminated.

  2. Leaf ontogeny and demography explain photosynthetic seasonality in Amazon evergreen forests

    NASA Astrophysics Data System (ADS)

    Wu, J.; Albert, L.; Lopes, A. P.; Restrepo-Coupe, N.; Hayek, M.; Wiedemann, K. T.; Guan, K.; Stark, S. C.; Prohaska, N.; Tavares, J. V.; Marostica, S. F.; Kobayashi, H.; Ferreira, M. L.; Campos, K.; Silva, R. D.; Brando, P. M.; Dye, D. G.; Huxman, T. E.; Huete, A. R.; Nelson, B. W.; Saleska, S. R.

    2015-12-01

    Photosynthetic seasonality couples the evolutionary ecology of plant leaves to large-scale rhythms of carbon and water exchanges that are important feedbacks to climate. However, the extent, magnitude, and controls on photosynthetic seasonality of carbon-rich tropical forests are poorly resolved, controversial in the remote sensing literature, and inadequately represented in most earth system models. Here we show that ecosystem-scale phenology (measured by photosynthetic capacity), rather than environmental seasonality, is the primary driver of photosynthetic seasonality at four Amazon evergreen forests spanning gradients in rainfall seasonality, forest composition, and flux seasonality. We further demonstrate that leaf ontogeny and demography explain most of this ecosystem phenology at two central Amazon evergreen forests, using a simple leaf-cohort canopy model that integrates eddy covariance-derived CO2 fluxes, novel near-surface camera-detected leaf phenology, and ground observations of litterfall and leaf physiology. The coordination of new leaf growth and old leaf divestment (litterfall) during the dry season shifts canopy composition towards younger leaves with higher photosynthetic efficiency, driving large seasonal increases (~27%) in ecosystem photosynthetic capacity. Leaf ontogeny and demography thus reconciles disparate observations of forest seasonality from leaves to eddy flux towers to satellites. Strategic incorporation of such whole-plant coordination processes as phenology and ontogeny will improve ecological, evolutionary and earth system theories describing tropical forests structure and function, allowing more accurate representation of forest dynamics and feedbacks to climate in earth system models.

  3. The sporulation of the green alga Ulva prolifera is controlled by changes in photosynthetic electron transport chain.

    PubMed

    Wang, Hui; Lin, Apeng; Gu, Wenhui; Huan, Li; Gao, Shan; Wang, Guangce

    2016-04-22

    Sporulation and spore release are essential phases of the life cycle in algae and land plants. Ulva prolifera, which is an ideal organism for studying sporulation and spore release, was used as the experimental material in the present study. The determination of photosynthetic parameters, combined with microscopic observation, treatment with photosynthetic inhibitors, limitation of carbon acquisition, and protein mass spectrometry, was employed in this experiment. Cycle electron transport (CEF) was found enhanced at the onset of sporangia formation. The inhibition effect of dibromothymoquinone (DBMIB) towards sporulation was always strong during the sporulation process whereas the inhibition effect of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) was continuously declined accompanied with the progress of sporulation. The changes of photosynthesis resulted from the limitation of CO2 acquisition could stimulate sporulation onset. Quantitative protein analysis showed that enzymes involved in carbon fixation, including RUBISCO and pyruvate orthophosphate dikinase, declined during sporogenesis, while proteins involved in sporulation, including tubulin and centrin, increased. These results suggest that enhanced cyclic electron flow (CEF) and oxidation of the plastoquinone pool are essential for sporangia formation onset, and changes in photosynthetic electron transport chain have significant impacts on sporulation of the green algae.

  4. Photosynthetic Photovoltaic Cells

    DTIC Science & Technology

    2007-06-21

    OFF (T). B. SPR detection of the binding of Ni2+, RC, and cytochrome to NTA surface. The arrows indicate the periods of time ON (t) and OFF (1) when...photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria . Physics Reports-Review Section of Physics Letters, 1997. 287(1-2): p. 2-247. 7...photosynthetic bacteria reaction centers. Journal of Photochemistry and Photobiology a-Chemistry, 1997. 111(1-3): p. 111-138. 27. Beratan, D.N., J.N. Betts, and

  5. Towards clarifying what distinguishes cyanobacteria able to resurrect after desiccation from those that cannot: The photosynthetic aspect.

    PubMed

    Raanan, Hagai; Oren, Nadav; Treves, Haim; Keren, Nir; Ohad, Itzhak; Berkowicz, Simon M; Hagemann, Martin; Koch, Moriz; Shotland, Yoram; Kaplan, Aaron

    2016-06-01

    Organisms inhabiting biological soil crusts (BSCs) are able to cope with extreme environmental conditions including daily hydration/dehydration cycles, high irradiance and extreme temperatures. The photosynthetic machinery, potentially the main source of damaging reactive oxygen species during cessation of CO(2) fixation in desiccating cells, must be protected to avoid sustained photodamage. We compared certain photosynthetic parameters and the response to excess light of BCS-inhabiting, desiccation-tolerant cyanobacteria Leptolyngbya ohadii and Nostoc reinholdii with those observed in the "model" organisms Nostoc sp. PCC 7120, able to resurrect after mild desiccation, and Synechococcus elongatus PCC 7942 and Synechocystis sp. PCC 6803 that are unable to recover from dehydration. Desiccation-tolerant strains exhibited a transient decline in the photosynthetic rate at light intensities corresponding to the inflection point in the PI curve relating the O(2) evolution rate to light intensity. They also exhibited a faster and larger loss of variable fluorescence and profoundly faster Q(A)(-) re-oxidation rates after exposure to high illumination. Finally, a smaller difference was found in the temperature of maximal thermoluminescence signal in the absence or presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) than observed in "model" cyanobacteria. These parameters indicate specific functional differences of photosystem II (PSII) between desiccation tolerant and sensitive cyanobacteria. We propose that exposure to excess irradiation activates a non-radiative electron recombination route inside PSII that minimizes formation of damaging singlet oxygen in the desiccation-tolerant cyanobacteria and thereby reduces photodamage. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Human Heart Mitochondrial DNA Is Organized in Complex Catenated Networks Containing Abundant Four-way Junctions and Replication Forks*

    PubMed Central

    Pohjoismäki, Jaakko L. O.; Goffart, Steffi; Tyynismaa, Henna; Willcox, Smaranda; Ide, Tomomi; Kang, Dongchon; Suomalainen, Anu; Karhunen, Pekka J.; Griffith, Jack D.; Holt, Ian J.; Jacobs, Howard T.

    2009-01-01

    Analysis of human heart mitochondrial DNA (mtDNA) by electron microscopy and agarose gel electrophoresis revealed a complete absence of the θ-type replication intermediates seen abundantly in mtDNA from all other tissues. Instead only Y- and X-junctional forms were detected after restriction digestion. Uncut heart mtDNA was organized in tangled complexes of up to 20 or more genome equivalents, which could be resolved to genomic monomers, dimers, and linear fragments by treatment with the decatenating enzyme topoisomerase IV plus the cruciform-cutting T7 endonuclease I. Human and mouse brain also contained a population of such mtDNA forms, which were absent, however, from mouse, rabbit, or pig heart. Overexpression in transgenic mice of two proteins involved in mtDNA replication, namely human mitochondrial transcription factor A or the mouse Twinkle DNA helicase, generated abundant four-way junctions in mtDNA of heart, brain, and skeletal muscle. The organization of mtDNA of human heart as well as of mouse and human brain in complex junctional networks replicating via a presumed non-θ mechanism is unprecedented in mammals. PMID:19525233

  7. [Engineering photosynthetic cyanobacterial chassis: a review].

    PubMed

    Wu, Qin; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2013-08-01

    Photosynthetic cyanobacteria possess a series of good properties, such as their abilities to capture solar energy for CO2 fixation, low nutritional requirements for growth, high growth rate, and relatively simple genetic background. Due to the high oil price and increased concern of the global warming in recent years, cyanobacteria have attracted widespread attention because they can serve as an 'autotrophic microbial factory' for producing renewable biofuels and fine chemicals directly from CO2. Particularly, significant progress has been made in applying synthetic biology techniques and strategies to construct and optimize cyanobacteria chassis. In this article, we critically summarized recent advances in developing new methods to optimize cyanobacteria chassis, improving cyanobacteria photosynthetic efficiency, and in constructing cyanobacteria chassis tolerant to products or environmental stresses. In addition, various industrial applications of cyanobacteria chassis are also discussed.

  8. Photosynthetic Picoeukaryotes in the Land-Fast Ice of the White Sea, Russia.

    PubMed

    Belevich, T A; Ilyash, L V; Milyutina, I A; Logacheva, M D; Goryunov, D V; Troitsky, A V

    2018-04-01

    The White Sea is a unique marine environment combining features of temperate and Arctic seas. The composition and abundance of photosynthetic picoeukaryotes (PPEs) were investigated in the land-fast ice of the White Sea, Russia, in March 2013 and 2014. High-throughput tag sequencing (Illumina MiSeq system) of the V4 region of the 18S rRNA gene was used to reveal the diversity of PPE ice community. The integrated PPE abundance varied from 11 × 10 6 cells/m 2 to 364 × 10 6 cells/m 2 ; the integrated biomass ranged from 0.02 to 0.26 mg С/m 2 . The composition of sea-ice PPEs was represented by 16 algae genera belonging to eight classes and three super-groups. Chlorophyta, especially Mamiellophyceae, dominated among ice PPEs. The detailed analysis revealed the latent diversity of Micromonas and Mantоniella. Micromonas clade E2 revealed in the subarctic White Sea ice indicates that the area of distribution of this species is wider than previously thought. We suppose there exists a new Micromonas clade F. Micromonas clade C and Minutocellulus polymorphus were first discovered in the ice and extend the modern concept of sympagic communities' diversity generally and highlights the importance of further targeting subarctic sea ice for microbial study.

  9. Non-photosynthetic plastids as hosts for metabolic engineering.

    PubMed

    Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo; Jensen, Poul Erik; Pribil, Mathias

    2018-04-13

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. Probabilisitc Geobiological Classification Using Elemental Abundance Distributions and Lossless Image Compression in Recent and Modern Organisms

    NASA Technical Reports Server (NTRS)

    Storrie-Lombardi, Michael C.; Hoover, Richard B.

    2005-01-01

    Last year we presented techniques for the detection of fossils during robotic missions to Mars using both structural and chemical signatures[Storrie-Lombardi and Hoover, 2004]. Analyses included lossless compression of photographic images to estimate the relative complexity of a putative fossil compared to the rock matrix [Corsetti and Storrie-Lombardi, 2003] and elemental abundance distributions to provide mineralogical classification of the rock matrix [Storrie-Lombardi and Fisk, 2004]. We presented a classification strategy employing two exploratory classification algorithms (Principal Component Analysis and Hierarchical Cluster Analysis) and non-linear stochastic neural network to produce a Bayesian estimate of classification accuracy. We now present an extension of our previous experiments exploring putative fossil forms morphologically resembling cyanobacteria discovered in the Orgueil meteorite. Elemental abundances (C6, N7, O8, Na11, Mg12, Ai13, Si14, P15, S16, Cl17, K19, Ca20, Fe26) obtained for both extant cyanobacteria and fossil trilobites produce signatures readily distinguishing them from meteorite targets. When compared to elemental abundance signatures for extant cyanobacteria Orgueil structures exhibit decreased abundances for C6, N7, Na11, All3, P15, Cl17, K19, Ca20 and increases in Mg12, S16, Fe26. Diatoms and silicified portions of cyanobacterial sheaths exhibiting high levels of silicon and correspondingly low levels of carbon cluster more closely with terrestrial fossils than with extant cyanobacteria. Compression indices verify that variations in random and redundant textural patterns between perceived forms and the background matrix contribute significantly to morphological visual identification. The results provide a quantitative probabilistic methodology for discriminating putatitive fossils from the surrounding rock matrix and &om extant organisms using both structural and chemical information. The techniques described appear applicable

  11. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling

    PubMed Central

    Galmés, Jeroni; Hermida-Carrera, Carmen; Laanisto, Lauri; Niinemets, Ülo

    2016-01-01

    The present study provides a synthesis of the in vitro and in vivo temperature responses of Rubisco Michaelis–Menten constants for CO2 (Kc) and O2 (Ko), specificity factor (Sc,o) and maximum carboxylase turnover rate (kcatc) for 49 species from all the main photosynthetic kingdoms of life. Novel correction routines were developed for in vitro data to remove the effects of study-to-study differences in Rubisco assays. The compilation revealed differences in the energy of activation (∆Ha) of Rubisco kinetics between higher plants and other photosynthetic groups, although photosynthetic bacteria and algae were under-represented and very few species have been investigated so far. Within plants, the variation in Rubisco temperature responses was related to species’ climate and photosynthetic mechanism, with differences in ∆Ha for kcatc among C3 plants from cool and warm environments, and in ∆Ha for kcatc and Kc among C3 and C4 plants. A negative correlation was observed among ∆Ha for Sc/o and species’ growth temperature for all data pooled, supporting the convergent adjustment of the temperature sensitivity of Rubisco kinetics to species’ thermal history. Simulations of the influence of varying temperature dependences of Rubisco kinetics on Rubisco-limited photosynthesis suggested improved photosynthetic performance of C3 plants from cool habitats at lower temperatures, and C3 plants from warm habitats at higher temperatures, especially at higher CO2 concentration. Thus, variation in Rubisco kinetics for different groups of photosynthetic organisms might need consideration to improve prediction of photosynthesis in future climates. Comparisons between in vitro and in vivo data revealed common trends, but also highlighted a large variability among both types of Rubisco kinetics currently used to simulate photosynthesis, emphasizing the need for more experimental work to fill in the gaps in Rubisco datasets and improve scaling from enzyme kinetics to

  12. Factors controlling the abundance of organic sulfur in flash pyrolyzates of Upper Cretaceous kerogens from Sergipe Basin, Brazil

    USGS Publications Warehouse

    Carmo, A.M.; Stankiewicz, B.A.; Mastalerz, Maria; Pratt, L.M.

    1997-01-01

    The molecular and elemental composition of immature kerogens isolated from Upper Cretaceous marine carbonates from Sergipe Basin, Brazil were investigated using combined pyrolysis-gas chromatography/mass spectrometry and organic petrographic techniques. The kerogens are predominantly composed of reddish-fluorescing amorphous organic matter (AOM) and variable amounts of yellow-fluorescing alginite and liptodetrinite. The abundance of organic sulfur in the kerogens inferred from the ratio 2-ethyl-5-methylthiophene/(1,2-dimethylbenzene + dec-1-ene) in the pyrolyzates is variable and may be related to changes in the type of primary organic input and/or to variations in rates of bacterial sulfate reduction. A concomitant increase in S/C and O/C ratios determined in situ using the electron microprobe is observed in AOM and alginites and may be related to a progressive oxidation of the organic matter during sulfurization. The S/C ratio of the AOM is systematically higher than the S C ratio of the alginites. Combined with a thiophene distribution characteristic of pyrolyzates of Type II organic matter, the higher S/C of AOM in Sergipe kerogens suggests that sulfurization and incorporation of low-molecular weight lipids derived from normal marine organic matter into the kerogen structure predominated over direct sulfurization of highly aliphatic algal biomacromolecules.The molecular and elemental composition of immature kerogens isolated from Upper Cretaceous marine carbonates from Sergipe Basin, Brazil were investigated using combined pyrolysis-gas chromatography/mass spectrometry and organic petrographic techniques. The kerogens are predominantly composed of reddish-fluorescing amorphous organic matter (AOM) and variable amounts of yellow-fluorescing alginite and liptodetrinite. The abundance of organic sulfur in the kerogens inferred from the ratio 2-ethyl-5-methylthiophene/(1,2-dimethylbenzene+dec-1-ene) in the pyrolyzates is variable and may be related to changes in

  13. Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima.

    PubMed

    Brodribb, Tim J; Holbrook, N Michele; Zwieniecki, Maciej A; Palma, Beatriz

    2005-03-01

    * The hydraulic plumbing of vascular plant leaves varies considerably between major plant groups both in the spatial organization of veins, as well as their anatomical structure. * Five conifers, three ferns and 12 angiosperm trees were selected from tropical and temperate forests to investigate whether the profound differences in foliar morphology of these groups lead to correspondingly profound differences in leaf hydraulic efficiency. * We found that angiosperm leaves spanned a range of leaf hydraulic conductance from 3.9 to 36 mmol m2 s-1 MPa-1, whereas ferns (5.9-11.4 mmol m-2 s-1 MPa-1) and conifers (1.6-9.0 mmol m-2 s-1 MPa-1) were uniformly less conductive to liquid water. Leaf hydraulic conductance (Kleaf) correlated strongly with stomatal conductance indicating an internal leaf-level regulation of liquid and vapour conductances. Photosynthetic capacity also increased with Kleaf, however, it became saturated at values of Kleaf over 20 mmol m-2 s-1 MPa-1. * The data suggest that vessels in the leaves of the angiosperms studied provide them with the flexibility to produce highly conductive leaves with correspondingly high photosynthetic capacities relative to tracheid-bearing species.

  14. Intracellular spectral recompositioning of light enhances algal photosynthetic efficiency

    PubMed Central

    Fu, Weiqi; Chaiboonchoe, Amphun; Khraiwesh, Basel; Sultana, Mehar; Jaiswal, Ashish; Jijakli, Kenan; Nelson, David R.; Al-Hrout, Ala’a; Baig, Badriya; Amin, Amr; Salehi-Ashtiani, Kourosh

    2017-01-01

    Diatoms, considered as one of the most diverse and largest groups of algae, can provide the means to reach a sustainable production of petrochemical substitutes and bioactive compounds. However, a prerequisite to achieving this goal is to increase the solar-to-biomass conversion efficiency of photosynthesis, which generally remains less than 5% for most photosynthetic organisms. We have developed and implemented a rapid and effective approach, herein referred to as intracellular spectral recompositioning (ISR) of light, which, through absorption of excess blue light and its intracellular emission in the green spectral band, can improve light utilization. We demonstrate that ISR can be used chemogenically, by using lipophilic fluorophores, or biogenically, through the expression of an enhanced green fluorescent protein (eGFP) in the model diatom Phaeodactylum tricornutum. Engineered P. tricornutum cells expressing eGFP achieved 28% higher efficiency in photosynthesis than the parental strain, along with an increased effective quantum yield and reduced nonphotochemical quenching (NPQ) induction levels under high-light conditions. Further, pond simulator experiments demonstrated that eGFP transformants could outperform their wild-type parental strain by 50% in biomass production rate under simulated outdoor sunlight conditions. Transcriptome analysis identified up-regulation of major photosynthesis genes in the engineered strain in comparison with the wild type, along with down-regulation of NPQ genes involved in light stress response. Our findings provide a proof of concept for a strategy of developing more efficient photosynthetic cell factories to produce algae-based biofuels and bioactive products. PMID:28879232

  15. Sun and Shade leaves, SIF, and Photosynthetic Capacity

    NASA Astrophysics Data System (ADS)

    Berry, J. A.; Badgley, G.

    2016-12-01

    Recent advances in retrieval of solar induced chlorophyll fluorescence (SIF) have opened up new possibilities for remote sensing of canopy physiology and structure. To date most of the emphasis has been placed on SIF as an indicator of stress and photosynthetic capacity. However, it is clear that canopy structure can also have an influence. To this point, simulations of SIF in land surface models tend to under predict observed variation in SIF. Also, large, systematic differences in SIF from different canopy types seem to correlate well with the photosynthetic capacity of these canopies. SIF emissions from pampered crops can be several-fold that from evergreen, needle-leaf forests. Yet, these may have similar vegetation indices and absorb a similar fraction of incident PAR. SIF photons produced in a conifer canopy do have a lower probability of escaping its dense, clumped foliage. However, this does not explain the correlated differences in photosynthetic rate and SIF. It is useful, in this regard, to consider the separate contributions of sun and shade leaves to the SIF emitted by a canopy. Sun leaves tend to be displayed to intercept the direct solar beam, and these highly illuminated leaves are often visible from above the canopy. Sun leaves produce more SIF and a large fraction of it escapes. Therefore, the intensity of SIF may be a sensitive indicator of the partitioning of absorbed PAR to sun and shade leaves. Many models account tor the different photosynthetic capacity of sun and shade leaves in calculating canopy responses. However, the fraction of leaves in each category is usually parameterized by an assumed leaf angle distribution (e.g. spherical). In reality, the sun/shade fraction can vary over a wide range, and it has been difficult to measure. SIF and possibly near-IR reflectance of canopies can be used to specify this key parameter with obvious importance to understanding photosynthetic rate.

  16. Atomic force microscopy studies of native photosynthetic membranes.

    PubMed

    Sturgis, James N; Tucker, Jaimey D; Olsen, John D; Hunter, C Neil; Niederman, Robert A

    2009-05-05

    In addition to providing the earliest surface images of a native photosynthetic membrane at submolecular resolution, examination of the intracytoplasmic membrane (ICM) of purple bacteria by atomic force microscopy (AFM) has revealed a wide diversity of species-dependent arrangements of closely packed light-harvesting (LH) antennae, capable of fulfilling the basic requirements for efficient collection, transmission, and trapping of radiant energy. A highly organized architecture was observed with fused preparations of the pseudocrystalline ICM of Blastochloris viridis, consiting of hexagonally packed monomeric reaction center light-harvesting 1 (RC-LH1) core complexes. Among strains which also form a peripheral LH2 antenna, images of ICM patches from Rhodobacter sphaeroides exhibited well-ordered, interconnected networks of dimeric RC-LH1 core complexes intercalated by rows of LH2, coexisting with LH2-only domains. Other peripheral antenna-containing species, notably Rhodospirillum photometricum and Rhodopseudomonas palustris, showed a less regular organization, with mixed regions of LH2 and RC-LH1 cores, intermingled with large, paracrystalline domains. The ATP synthase and cytochrome bc(1) complex were not observed in any of these topographs and are thought to be localized in the adjacent cytoplasmic membrane or in inaccessible ICM regions separated from the flat regions imaged by AFM. The AFM images have served as a basis for atomic-resolution modeling of the ICM vesicle surface, as well as forces driving segregation of photosynthetic complexes into distinct domains. Docking of atomic-resolution molecular structures into AFM topographs of Rsp. photometricum membranes generated precise in situ structural models of the core complex surrounded by LH2 rings and a region of tightly packed LH2 complexes. A similar approach has generated a model of the highly curved LH2-only membranes of Rba. sphaeroides which predicts that sufficient space exists between LH2 complexes

  17. Impact of weak water deficit on growth, photosynthetic primary processes and storage processes in pine and spruce seedlings.

    PubMed

    Zlobin, Ilya E; Ivanov, Yury V; Kartashov, Alexander V; Sarvin, Boris A; Stavrianidi, Andrey N; Kreslavski, Vladimir D; Kuznetsov, Vladimir V

    2018-05-19

    We investigated the influence of 40 days of drought on growth, storage processes and primary photosynthetic processes in 3-month-old Scots pine and Norway spruce seedlings growing in perlite culture. Water stress significantly affected seedling water status, whereas absolute dry biomass growth was not substantially influenced. Water stress induced an increase in non-structural carbohydrate content (sugars, sugar alcohols, starch) in the aboveground part of pine seedlings in contrast to spruce seedlings. Due to the relatively low content of sugars and sugar alcohols in seedling organs, their expected contribution to osmotic potential changes was quite low. In contrast to biomass accumulation and storage, photosynthetic primary processes were substantially influenced by water shortage. In spruce seedlings, PSII was more sensitive to water stress than PSI. In particular, electron transport in PSI was stable under water stress despite the substantial decrease of electron transport in PSII. The increase in thermal energy dissipation due to enhancement of non-photochemical quenching (NPQ) was evident in both species under water stress. Simultaneously, the yields of non-regulated energy dissipation in PSII were decreased in pine seedlings under drought. A relationship between growth, photosynthetic activities and storage processes is analysed under weak water deficit.

  18. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane

    NASA Astrophysics Data System (ADS)

    Steinberg-Yfrach, Gali; Rigaud, Jean-Louis; Durantini, Edgardo N.; Moore, Ana L.; Gust, Devens; Moore, Thomas A.

    1998-04-01

    Energy-transducing membranes of living organisms couple spontaneous to non-spontaneous processes through the intermediacy of protonmotive force (p.m.f.) - an imbalance in electrochemical potential of protons across the membrane. In most organisms, p.m.f. is generated by redox reactions that are either photochemically driven, such as those in photosynthetic reaction centres, or intrinsically spontaneous, such as those of oxidative phosphorylation in mitochondria. Transmembrane proteins (such as the cytochromes and complexes I, III and IV in the electron-transport chain in the inner mitochondrial membrane) couple the redox reactions to proton translocation, thereby conserving a fraction of the redox chemical potential as p.m.f. Many transducer proteins couple p.m.f. to the performance of biochemical work, such as biochemical synthesis and mechanical and transport processes. Recently, an artificial photosynthetic membrane was reported in which a photocyclic process was used to transport protons across a liposomal membrane, resulting in acidification of the liposome's internal volume. If significant p.m.f. is generated in this system, then incorporating an appropriate transducer into the liposomal bilayer should make it possible to drive a non-spontaneous chemical process. Here we report the incorporation of FOF1-ATP synthase into liposomes containing the components of the proton-pumping photocycle. Irradiation of this artificial membrane with visible light results in the uncoupler- and inhibitor-sensitive synthesis of adenosine triphosphate (ATP) against an ATP chemical potential of ~12kcalmol-1, with a quantum yield of more than 7%. This system mimics the process by which photosynthetic bacteria convert light energy into ATP chemical potential.

  19. Remote sensing of life: polarimetric signatures of photosynthetic pigments as sensitive biomarkers

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana V.; Kuhn, Jeff R.; Harrington, David M.; Šantl-Temkiv, Tina; Messersmith, E. John

    2016-01-01

    We develop a polarimetry-based remote-sensing method for detecting and identifying life forms in distant worlds and distinguishing them from non-biological species. To achieve this we have designed and built a bio-polarimetric laboratory experiment BioPol for measuring optical polarized spectra of various biological and non-biological samples. Here we focus on biological pigments, which are common in plants and bacteria that employ them either for photosynthesis or for protection against reactive oxygen species. Photosynthesis, which provides organisms with the ability to use light as a source of energy, emerged early in the evolution of life on Earth. The ability to harvest such a significant energy resource could likely also develop on habited exoplanets. Thus, we investigate the detectability of biomolecules that can capture photons of particular wavelengths and contribute to storing their energy in chemical bonds. We have carried out laboratory spectropolarimetric measurements of a representative sample of plants containing various amounts of pigments such as chlorophyll, carotenoids and others. We have also measured a variety of non-biological samples (sands, rocks). Using our lab measurements, we have modelled intensity and polarized spectra of Earth-like planets having different surface coverage by photosynthetic organisms, deserted land and ocean, as well as clouds. Our results demonstrate that linearly polarized spectra provide very sensitive and rather unambiguous detection of photosynthetic pigments of various kinds. Our work paves the path towards analogous measurements of microorganisms and remote sensing of microbial ecology on the Earth and of extraterrestrial life on other planets and moons.

  20. Leaf maximum photosynthetic rate and venation are linked by hydraulics.

    PubMed

    Brodribb, Tim J; Feild, Taylor S; Jordan, Gregory J

    2007-08-01

    Leaf veins are almost ubiquitous across the range of terrestrial plant diversity, yet their influence on leaf photosynthetic performance remains uncertain. We show here that specific physical attributes of the vascular plumbing network are key limiters of the hydraulic and photosynthetic proficiency of any leaf. Following the logic that leaf veins evolved to bypass inefficient water transport through living mesophyll tissue, we examined the hydraulic pathway beyond the distal ends of the vein system as a possible limiter of water transport in leaves. We tested a mechanistic hypothesis that the length of this final traverse, as water moves from veins across the mesophyll to where it evaporates from the leaf, governs the hydraulic efficiency and photosynthetic carbon assimilation of any leaf. Sampling 43 species across the breadth of plant diversity from mosses to flowering plants, we found that the post-vein traverse as determined by characters such as vein density, leaf thickness, and cell shape, was strongly correlated with the hydraulic conductivity and maximum photosynthetic rate of foliage. The shape of this correlation provided clear support for the a priori hypothesis that vein positioning limits photosynthesis via its influence on leaf hydraulic efficiency.

  1. Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes.

    PubMed

    Wang, Xiao-Feng; Koyama, Yasushi; Kitao, Osamu; Wada, Yuji; Sasaki, Shin-Ich; Tamiaki, Hitoshi; Zhou, Haoshen

    2010-04-15

    Dye-sensitized solar cells (DSSCs) are similar to natural photosynthesis in the initial processes involving in light-harvesting and charge separation. In order to mimic those natural photosynthetic systems mainly containing multiple pigments, six different chlorophyllous sensitizers have been isolated from natural photosynthetic organism or synthesized based on natural photosynthetic precursors, and used for fabricating DSSCs. These dye sensitizers can be placed into three classes, i.e., a-type, b-type, or c-type, based on the structural similarity to their analogs of the natural photosynthesis pigments chlorophylls a, b, and c. We succeeded in demonstrating homogeneous co-sensitization among these analogues when these were present together on mesoporous TiO2 films, and we measured the photovoltaic performance of the resulting chlorophyll-sensitized solar cells. Significantly enhanced power-conversion efficiencies (eta) were achieved with DSSCs based on co-sensitization of a chlorophyll a derivative with a chlorophyll b or c derivative. A highest power-conversion efficiency of up to 5.4% has been obtained. These results suggest that it is possible to apply multiple pigments and the energy transfer mechanism from natural photosynthetic systems in fabricating high-efficiency DSSCs. 2010 Elsevier B.V. All rights reserved.

  2. Evolution of heliobacteria: implications for photosynthetic reaction center complexes

    NASA Technical Reports Server (NTRS)

    Vermaas, W. F.; Blankenship, R. E. (Principal Investigator)

    1994-01-01

    The evolutionary position of the heliobacteria, a group of green photosynthetic bacteria with a photosynthetic apparatus functionally resembling Photosystem I of plants and cyanobacteria, has been investigated with respect to the evolutionary relationship to Gram-positive bacteria and cyanobacteria. On the basis of 16S rRNA sequence analysis, the heliobacteria appear to be most closely related to Gram-positive bacteria, but also an evolutionary link to cyanobacteria is evident. Interestingly, a 46-residue domain including the putative sixth membrane-spanning region of the heliobacterial reaction center protein show rather strong similarity (33% identity and 72% similarity) to a region including the sixth membrane-spanning region of the CP47 protein, a chlorophyll-binding core antenna polypeptide of Photosystem II. The N-terminal half of the heliobacterial reaction center polypeptide shows a moderate sequence similarity (22% identity over 232 residues) with the CP47 protein, which is significantly more than the similarity with the Photosystem I core polypeptides in this region. An evolutionary model for photosynthetic reaction center complexes is discussed, in which an ancestral homodimeric reaction center protein (possibly resembling the heliobacterial reaction center protein) with 11 membrane-spanning regions per polypeptide has diverged to give rise to the core of Photosystem I, Photosystem II, and of the photosynthetic apparatus in green, purple, and heliobacteria.

  3. Constraints on hydrocarbon and organic acid abundances in hydrothermal fluids at the Von Damm vent field, Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.

    2013-12-01

    The generation of organic compounds in vent fluids has been of interest since the discovery of seafloor hydrothermal systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in hydrothermal systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during active circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm vent field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in vent fluids at Von Damm. An ultramafic-influenced hydrothermal system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm vent fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted vent fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during hydrothermal circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during hydrothermal circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm vent fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with

  4. Photosynthetic Bradyrhizobia Are Natural Endophytes of the African Wild Rice Oryza breviligulata

    PubMed Central

    Chaintreuil, Clémence; Giraud, Eric; Prin, Yves; Lorquin, Jean; Bâ, Amadou; Gillis, Monique; de Lajudie, Philippe; Dreyfus, Bernard

    2000-01-01

    We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains of Bradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O. breviligulata and surrounding water by using A. sensitiva as a trap legume. Most endophytic and aquatic isolates were photosynthetic and belonged to the same phylogenetic Bradyrhizobium/Blastobacter subgroup as the typical photosynthetic Bradyrhizobium strains previously isolated from Aeschynomene stem nodules. Nitrogen-fixing activity, measured by acetylene reduction, was detected in rice plants inoculated with endophytic isolates. A 20% increase in the shoot growth and grain yield of O. breviligulata grown in a greenhouse was also observed upon inoculation with one endophytic strain and one Aeschynomene photosynthetic strain. The photosynthetic Bradyrhizobium sp. strain ORS278 extensively colonized the root surface, followed by intercellular, and rarely intracellular, bacterial invasion of the rice roots, which was determined with a lacZ-tagged mutant of ORS278. The discovery that photosynthetic Bradyrhizobium strains, which are usually known to induce nitrogen-fixing nodules on stems of the legume Aeschynomene, are also natural true endophytes of the primitive rice O. breviligulata could significantly enhance cultivated rice production. PMID:11097925

  5. Cyborgian Material Design for Solar Fuel Production: The Emerging Photosynthetic Biohybrid Systems.

    PubMed

    Sakimoto, Kelsey K; Kornienko, Nikolay; Yang, Peidong

    2017-03-21

    Photosynthetic biohybrid systems (PBSs) combine the strengths of inorganic materials and biological catalysts by exploiting semiconductor broadband light absorption to capture solar energy and subsequently transform it into valuable CO 2 -derived chemicals by taking advantage of the metabolic pathways in living organisms. In this work, we first traverse through a brief history of recent PBSs, demonstrating the modularity and diversity of possible architectures to rival and, in many cases, surpass the performance of chemistry or biology alone before envisioning the future of these hybrid systems, opportunities for improvement, and its role in sustainable living here on earth and beyond.

  6. On the photosynthetic potential in the very Early Archean oceans.

    PubMed

    Avila, Daile; Cardenas, Rolando; Martin, Osmel

    2013-02-01

    In this work we apply a mathematical model of photosynthesis to quantify the potential for photosynthetic life in the very Early Archean oceans. We assume the presence of oceanic blockers of ultraviolet radiation, specifically ferrous ions. For this scenario, our results suggest a potential for photosynthetic life greater than or similar to that in later eras/eons, such as the Late Archean and the current Phanerozoic eon.

  7. Constrained parameterisation of photosynthetic capacity causes significant increase of modelled tropical vegetation surface temperature

    NASA Astrophysics Data System (ADS)

    Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C.

    2009-04-01

    Photosynthetic capacity is one of the most sensitive parameters of terrestrial biosphere models whose representation in global scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Due to its coupling to stomatal conductance changes in the parameterisation of photosynthetic capacity may potentially influence transpiration rates and vegetation surface temperature. Here, we provide a constrained parameterisation of photosynthetic capacity for different plant functional types in the context of the photosynthesis model proposed by Farquhar et al. (1980), based on a comprehensive compilation of leaf photosynthesis rates and leaf nitrogen content. Mean values of photosynthetic capacity were implemented into the coupled climate-vegetation model ECHAM5/JSBACH and modelled gross primary production (GPP) is compared to a compilation of independent observations on stand scale. Compared to the current standard parameterisation the root-mean-squared difference between modelled and observed GPP is substantially reduced for almost all PFTs by the new parameterisation of photosynthetic capacity. We find a systematic depression of NUE (photosynthetic capacity divided by leaf nitrogen content) on certain tropical soils that are known to be deficient in phosphorus. Photosynthetic capacity of tropical trees derived by this study is substantially lower than standard estimates currently used in terrestrial biosphere models. This causes a decrease of modelled GPP while it significantly increases modelled tropical vegetation surface temperatures, up to 0.8°C. These results emphasise the importance of a constrained parameterisation of photosynthetic capacity not only for the carbon cycle, but also for the climate system.

  8. Insights into carotenoid dynamics in non-foliar photosynthetic tissues of avocado.

    PubMed

    Esteban, Raquel; Olascoaga, Beñat; Becerril, José M; García-Plazaola, José I

    2010-09-01

    Leaves are the main photosynthetically active tissues in most plants. However, stems and fruits are also important for the overall carbon balance of the plant because of their contribution to fixation of the CO(2) released by respiration. Photosynthesis could not be possible without a complete set of photoprotection mechanisms, which include the ubiquitous violaxanthin (V) cycle and the taxonomically restricted lutein epoxide (Lx) cycle. In this work, we characterise carotenoid stoichiometry in photosynthetic stems and fruits of avocado in comparison with that of leaves and specifically whether Lx is present in these tissues and also whether it is involved in a light-driven cycle. Avocado was selected as model species to study whether both cycles were functional in non-foliar photosynthetic structures (stems and fruits). An unusual pigment composition was observed in avocado fruit, with a high content of cis-V and cis-Lx, suggesting a different photosynthetic function. In stems, both xanthophylls de-epoxidated upon illumination, but only V recovered in the dark, indicating the existence of a possible 'truncated' Lx cycle. Lx in fruits was de-epoxidated only when its pool was higher than a threshold of 30 mmol mol(-1) chlorophyll, indicating a high non-photoconvertible pool of Lx. We conclude that, at least in stems, the dynamic regulation of photosynthetic activity could also depend on the Lx cycle.

  9. A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments

    PubMed Central

    2017-01-01

    Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because—in nature—photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded by At4g02530) is required for growth acclimation of Arabidopsis thaliana plants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented that mph2 mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover, mph2—and previously characterized PSII repair-defective mutants—exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair. PMID:28874535

  10. Effects of distributions of energy of transfer rates on spectral hole burning in photosynthetic pigment-protein complexes

    NASA Astrophysics Data System (ADS)

    Ahmouda, Somaya

    To perform photosynthesis, plants, algae and bacteria possess well organized and closely coupled photosynthetic pigment-protein complexes. Information on energy transfer in photosynthetic complexes is important to understand their functioning and possibly to design new and improved photovoltaic devices. The information on energy transfer processes contained in the narrow zero-phonon lines at low temperatures is hidden under the inhomogeneous broadening. Thus, it has been proven difficult to analyze the spectroscopic properties of these complexes in sufficient detail by conventional spectroscopy methods. In this context the high resolution spectroscopy techniques such as Spectral Hole Burning are powerful tools designed to get around the inhomogeneous broadening. Spectral Hole Burning involves selective excitation by a laser which removes molecules with the zero-phonon transitions resonant with this laser. This thesis focuses on the effects of the distributions of the energy transfer rates (homogeneous line widths) on the evolution of spectral holes. These distributions are a consequence of the static disorder in the photosynthetic pigment-protein complexes. The qualitative effects of different types of the line width distributions on the evolution of spectral holes have been and explored by numerical simulations, an example of analysis of the original experimental data has been presented as well.

  11. A chloroplast thylakoid lumen protein is required for proper photosynthetic acclimation of plants under fluctuating light environments.

    PubMed

    Liu, Jun; Last, Robert L

    2017-09-19

    Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because-in nature-photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded by At4g02530 ) is required for growth acclimation of Arabidopsis thaliana plants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented that mph2 mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover, mph2 -and previously characterized PSII repair-defective mutants-exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair.

  12. Proton-Coupled Electron Transfer in Artificial Photosynthetic Systems.

    PubMed

    Mora, S Jimena; Odella, Emmanuel; Moore, Gary F; Gust, Devens; Moore, Thomas A; Moore, Ana L

    2018-02-20

    Artificial photosynthetic constructs can in principle operate more efficiently than natural photosynthesis because they can be rationally designed to optimize solar energy conversion for meeting human demands rather than the multiple needs of an organism competing for growth and reproduction in a complex ecosystem. The artificial photosynthetic constructs described in this Account consist primarily of covalently linked synthetic chromophores, electron donors and acceptors, and proton donors and acceptors that carry out the light absorption, electron transfer, and proton-coupled electron transfer (PCET) processes characteristic of photosynthetic cells. PCET is the movement of an electron from one site to another accompanied by proton transfer. PCET and the transport of protons over tens of angstroms are important in all living cells because they are a fundamental link between redox processes and the establishment of transmembrane gradients of proton electrochemical potential, known as proton-motive force (PMF), which is the unifying concept in bioenergetics. We have chosen a benzimidazole phenol (BIP) system as a platform for the study of PCET because with appropriate substitutions it is possible to design assemblies in which one or multiple proton transfers can accompany oxidation of the phenol. In BIP, oxidation of the phenol increases its acidity by more than ten pK a units; thus, electrochemical oxidation of the phenol is associated with a proton transfer to the imidazole. This is an example of a PCET process involving transfer of one electron and one proton, known as electron-proton transfer (EPT). When the benzimidazole moiety of BIP is substituted at the 4-position with good proton acceptor groups such as aliphatic amines, experimental and theoretical results indicate that two proton transfers occur upon one-electron oxidation of the phenol. This phenomenon is described as a one-electron-two-proton transfer (E2PT) process and results in translocation of

  13. Lead effects on Brassica napus photosynthetic organs.

    PubMed

    Ferreyroa, Gisele V; Lagorio, M Gabriela; Trinelli, María A; Lavado, Raúl S; Molina, Fernando V

    2017-06-01

    In this study, effects of lead on ultracellular structure and pigment contents of Brassica napus were examined. Pb(II) was added in soluble form to soil prior to sowing. Pb contents were measured in plant organs at the ontogenetic stages of flowering (FL) and physiological maturity (PM). Pigment contents were evaluated through reflectance measurements. Pb content in organs was found to decrease in the order; roots>stems>leaves. Lead content in senescent leaves at FL stage was significantly higher than harvested leaves, strongly suggesting a detoxification mechanism. Leaves and stems harvested at the PM stage showed damage at subcellular level, namely chloroplast disorganization, cell wall damage and presence of osmiophilic bodies. Chlorophyll content increased in the presence of Pb at the FL stage, compared with control; at the PM stage, chlorophyll contents decreased with low Pb concentration but showed no significant differences with control at high Pb soil concentration. The results suggest an increase in antioxidants at low Pb concentration and cell damage at higher lead concentration. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Quantum transport in the FMO photosynthetic light-harvesting complex.

    PubMed

    Karafyllidis, Ioannis G

    2017-06-01

    The very high light-harvesting efficiency of natural photosynthetic systems in conjunction with recent experiments, which showed quantum-coherent energy transfer in photosynthetic complexes, raised questions regarding the presence of non-trivial quantum effects in photosynthesis. Grover quantum search, quantum walks, and entanglement have been investigated as possible effects that lead to this efficiency. Here we explain the near-unit photosynthetic efficiency without invoking non-trivial quantum effects. Instead, we use non-equilibrium Green's functions, a mesoscopic method used to study transport in nano-conductors to compute the transmission function of the Fenna-Matthews-Olson (FMO) complex using an experimentally derived exciton Hamiltonian. The chlorosome antenna and the reaction center play the role of input and output contacts, connected to the FMO complex. We show that there are two channels for which the transmission is almost unity. Our analysis also revealed a dephasing-driven regulation mechanism that maintains the efficiency in the presence of varying dephasing potentials.

  15. Differential Allocation to Photosynthetic and Non-Photosynthetic Nitrogen Fractions among Native and Invasive Species

    PubMed Central

    Funk, Jennifer L.; Glenwinkel, Lori A.; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the “high-return” end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids. PMID:23700483

  16. Calculation of the radiative properties of photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  17. Photosynthetic and ultrastructural responses of Ulva australis to Zn stress.

    PubMed

    Farias, D R; Schmidt, E; Simioni, C; Bouzon, Z L; Hurd, C L; Eriksen, R S; Macleod, C K

    2017-12-01

    This research evaluated the effect of zinc (Zn) on the ultrastructure and the photosynthetic efficiency of a common green alga. Ulva australis was grown in the laboratory for 7days under a range of different Zn concentrations (0, 25, 50 and 100μgL -1 ). Growth rate (Gr), photosynthetic efficiency (Fv/Fm and ETRmax), photosynthetic pigments, and metal accumulation were measured. Samples of 1mm length were taken to analyse the effect of Zn on the ultrastructure using transmission electron microscopy (TEM) and cytochemical responses (TB-O and PAS) were evaluated by light microscopy (LM). There were no significant differences in the growth rate, Fv/Fm, ETRmax and the photosynthetic pigments chlorophyll a, chlorophyll b and carotenoids (p>0.05) after 7days of Zn exposure. However, TEM revealed cytoplasm retraction, compression of cellulose fibrils, dissembled thylakoids and electron-dense bodies suggesting ultrastructural impacts from metal exposure and accumulation. Cytological analysis demonstrated that Zn affected U. australis cells at the three concentrations tested. The main effect was cytoplasm retraction and a decrease on the amount of starch granules, following exposure at 25μgL -1 and 50μgL -1 of Zn. We conclude that concentrations of Zn assessed in U. australis in this research has a short-term cellular effect as revealed by TEM and cytological analysis, demonstrating the importance of measuring a broad suite of endpoints to better understand species responses to environmentally relevant concentrations of Zn. However, U. australis was able to physiologically tolerate adverse conditions, since there was no effect on the photosynthetic performance and growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hydrogen Biogeochemistry in Anaerobic and Photosynthetic Ecosystems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The simple biochemistry of molecular hydrogen is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, a great majority of microbial redox processes involve hydrogen as a reactant, product or potential by-product. Accordingly, the energetics (thermodynamics) of each of these processes is affected by variations in local H2 concentrations. It has long been established that this effect is important in governing microbe-microbe interactions and there are multiple demonstrations that "interspecies hydrogen transfer" can alter the products of, inhibit/stimulate, or even reverse microbial metabolic reactions. In anoxic sediments, H2 concentrations themselves are thought to be controlled by the thermodynamics of the predominant H2-consuming microbial process. In sediments from Cape Lookout Bight, this relationship quantitatively describes the co-variation of H2 concentrations with temperature (for methanogens and sulfate reducers) and with sulfate concentration (for sulfate reducers). The quantitative aspect is import= for two reasons: 1) it permits the modeling of H2-sensitive biogeochemistry, such as anaerobic methane oxidation or pathways of organic matter remineralization, as a function of environmental controls; 2) for such a relationship to be observed requires that intracellular biochemistry and bioenergetics are being directly expressed in a component of the extracellular medium. H2 could therefore be utilized a non-invasive probe of cellular energetic function in intact microbial ecosystems. Based on the latter principle we have measured down-core profiles of H2 and other relevant physico-chemical parameters in order to calculate the metabolic energy yields (DG) that support microbial metabolism in Cape Lookout Bight sediments. Methanogens in this system apparently function with energy yields significantly smaller than the minimum requirements suggested by pure

  19. [Correlation research of photosynthetic characteristics and medicinal materials production with 4 Uncariae Cum Uncis].

    PubMed

    Luo, Min; Song, Zhi-Qin; Yang, Ping-Fei; Liu, Hai; Yang, Zai-Gang; Wu, Ming-Kai

    2017-01-01

    Using four Uncariae Cum Uncis materials including Uncaria sinensis (HGT), U. hirsutea (MGT), Jianhe U. rhynchophylla (JHGT) and U. rhynchophylla(GT) as the research objects, the correlations between medicinal materials' yield and photosynthetic ecophysiology-factors in the plant exuberant growth period were studied. Results showed that the Uncaria plants net photosynthetic rate (Pn) changed by unimodal curve. There was not "midday depression" phenomenon. There was a different relationship among the photosynthetic ecophysiology-factors and between photosynthetic ecophysiology-factors and medicinal materials' yield. Pn,Tl,Gs had a significant correlation with medicinal materials' yield(M)and were the most important factors of growth. Copyright© by the Chinese Pharmaceutical Association.

  20. Predicting Photosynthetic Fluxes from Spectral Reflectance of Leaves and Canopies

    NASA Technical Reports Server (NTRS)

    Gamon, John A.

    1997-01-01

    The central hypothesis of this study has been that photosynthetic efficiency and capacity can be predicted from 'physiological reflectance indices' derived from spectral reflectance of leaves and canopies. I have approached this topic with a combination of laboratory and field experiments, and have also explored the potential of deriving a meaningful physiological index from imaging spectrometry (e.g. AVIRIS). A few highlights are presented below. The main emphasis has been on the 'Photochemical Reflectance Index' (PRI), derived from reflectance at 531 nm and 570 nm. Unlike most 'conventional' vegetation indices (e.g. NDVI), PRI changes rapidly both with illumination and physiological state, because it detects the interconversion of xanthophyll cycle pigments, which serve as photoregulatory pigments and control energy distribution for the photosynthetic system. This approach has differed dramatically from most remote sensing in that it has emphasized temporal variation in narrow-band spectral signatures, instead of spatial patterns of broadband indices. Our primary conclusion has been that PRI works well as an index of photosynthetic light-use efficiency at the leaf scale, much in the same way as the fluorescence index DeltaF/Fm. However, unlike DeltaF/Fm which must be measured at close scales, PRI can be sampled at a range of spatial scales, presenting the possibility of monitoring photosynthetic fluxes remotely.

  1. Quantitative measurement of the growth rate of the PHA-producing photosynthetic bacterium Rhodocyclus gelatinous CBS-2[PolyHydroxyAlkanoate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfrum, E.J.; Weaver, P.F.

    Researchers at the National Renewable Energy Laboratory (NREL) have been investigating the use of model photosynthetic microorganisms that use sunlight and two-carbon organic substrates (e.g., ethanol, acetate) to produce biodegradable polyhydroxyalkanoate (PHA) copolymers as carbon storage compounds. Use of these biological PHAs in single-use plastics applications, followed by their post-consumer composting or anaerobic digestion, could impact petroleum consumption as well as the overloading of landfills. The large-scale production of PHA polymers by photosynthetic bacteria will require large-scale reactor systems utilizing either sunlight or artificial illumination. The first step in the scale-up process is to quantify the microbial growth rates andmore » the PHA production rates as a function of reaction conditions such as nutrient concentration, temperature, and light quality and intensity.« less

  2. Light history modulates antioxidant and photosynthetic responses of biofilms to both natural (light) and chemical (herbicides) stressors.

    PubMed

    Bonnineau, Chloé; Sague, Irene Gallardo; Urrea, Gemma; Guasch, Helena

    2012-05-01

    In multiple stress situations, the co-occurrence of environmental and chemical factors can influence organisms' ability to cope with toxicity. In this context, the influence of light adaptation on the response of freshwater biofilms to sudden light changes or to herbicides exposure was investigated by determining various parameters: diatom community composition, photosynthetic parameters, chlorophyll a content, antioxidant enzyme activities. Biofilms were grown in microcosms under sub-optimal, saturating, and high light intensities and showed already described characteristics of shade/light adaptation (community structure, photosynthetic adaptation, etc.). Light history modulated antioxidant and photosynthetic responses of biofilms to the stress caused by short-term exposure to sudden light changes or to herbicides. First biofilms adapted to sub-optimal light intensity (shade-adapted) were found to be more sensitive to an increase in light intensity than high-light adapted ones to a reduction in light intensity. Second, while light history influenced biofilms' response to glyphosate, it had little influence on biofilms' response to copper and none on its response to oxyfluorfen. Indeed glyphosate exposure led to a stronger decrease in photosynthetic efficiency of shade-adapted biofilms (EC(50) = 11.7 mg L(-1)) than of high-light adapted communities (EC(50) = 35.6 mg L(-1)). Copper exposure led to an activation of ascorbate peroxidase (APX) in biofilms adapted to sub-optimal and saturating light intensity while the protein content decreased in all biofilms exposed to copper. Oxyfluorfen toxicity was independent of light history provoking an increase in APX activity. In conclusion this study showed that both previous exposure to contaminants and physical habitat characteristics might influence community tolerance to disturbances strongly.

  3. Cyanobacteria: photosynthetic factories combining biodiversity, radiation resistance, and genetics to facilitate drug discovery.

    PubMed

    Cassier-Chauvat, Corinne; Dive, Vincent; Chauvat, Franck

    2017-02-01

    Cyanobacteria are ancient, abundant, and widely diverse photosynthetic prokaryotes, which are viewed as promising cell factories for the ecologically responsible production of chemicals. Natural cyanobacteria synthesize a vast array of biologically active (secondary) metabolites with great potential for human health, while a few genetic models can be engineered for the (low level) production of biofuels. Recently, genome sequencing and mining has revealed that natural cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The corresponding panoply of enzymes (polyketide synthases and non-ribosomal peptide synthases) of interest for synthetic biology can still be increased through gene manipulations with the tools available for the few genetically manipulable strains. In this review, we propose to exploit the metabolic diversity and radiation resistance of cyanobacteria, and when required the genetics of model strains, for the production and radioactive ( 14 C) labeling of bioactive products, in order to facilitate the screening for new drugs.

  4. Strong Coupling of Shoot Assimilation and Soil Respiration during Drought and Recovery Periods in Beech As Indicated by Natural Abundance δ13C Measurements.

    PubMed

    Blessing, Carola H; Barthel, Matti; Gentsch, Lydia; Buchmann, Nina

    2016-01-01

    Drought down-regulates above- and belowground carbon fluxes, however, the resilience of trees to drought will also depend on the speed and magnitude of recovery of these above- and belowground fluxes after re-wetting. Carbon isotope composition of above- and belowground carbon fluxes at natural abundance provides a methodological approach to study the coupling between photosynthesis and soil respiration (SR) under conditions (such as drought) that influence photosynthetic carbon isotope discrimination. In turn, the direct supply of root respiration with recent photoassimilates will impact on the carbon isotope composition of soil-respired CO 2 . We independently measured shoot and soil CO 2 fluxes of beech saplings ( Fagus sylvatica L.) and their respective δ 13 C continuously with laser spectroscopy at natural abundance. We quantified the speed of recovery of drought stressed trees after re-watering and traced photosynthetic carbon isotope signal in the carbon isotope composition of soil-respired CO 2 . Stomatal conductance responded strongly to the moderate drought (-65%), induced by reduced soil moisture content as well as increased vapor pressure deficit. Simultaneously, carbon isotope discrimination decreased by 8‰, which in turn caused a significant increase in δ 13 C of recent metabolites (1.5-2.5‰) and in δ 13 C of SR (1-1.5‰). Generally, shoot and soil CO 2 fluxes and their δ 13 C were in alignment during drought and subsequent stress release, clearly demonstrating a permanent dependence of root respiration on recently fixed photoassimilates, rather than on older reserves. After re-watering, the drought signal persisted longer in δ 13 C of the water soluble fraction that integrates multiple metabolites (soluble sugars, amino acids, organic acids) than in the neutral fraction which represents most recently assimilated sugars or in the δ 13 C of SR. Nevertheless, full recovery of all aboveground physiological variables was reached within 4 days

  5. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling.

    PubMed

    Galmés, Jeroni; Hermida-Carrera, Carmen; Laanisto, Lauri; Niinemets, Ülo

    2016-09-01

    The present study provides a synthesis of the in vitro and in vivo temperature responses of Rubisco Michaelis-Menten constants for CO2 (Kc) and O2 (Ko), specificity factor (Sc,o) and maximum carboxylase turnover rate (kcatc) for 49 species from all the main photosynthetic kingdoms of life. Novel correction routines were developed for in vitro data to remove the effects of study-to-study differences in Rubisco assays. The compilation revealed differences in the energy of activation (∆Ha) of Rubisco kinetics between higher plants and other photosynthetic groups, although photosynthetic bacteria and algae were under-represented and very few species have been investigated so far. Within plants, the variation in Rubisco temperature responses was related to species' climate and photosynthetic mechanism, with differences in ∆Ha for kcatc among C3 plants from cool and warm environments, and in ∆Ha for kcatc and Kc among C3 and C4 plants. A negative correlation was observed among ∆Ha for Sc/o and species' growth temperature for all data pooled, supporting the convergent adjustment of the temperature sensitivity of Rubisco kinetics to species' thermal history. Simulations of the influence of varying temperature dependences of Rubisco kinetics on Rubisco-limited photosynthesis suggested improved photosynthetic performance of C3 plants from cool habitats at lower temperatures, and C3 plants from warm habitats at higher temperatures, especially at higher CO2 concentration. Thus, variation in Rubisco kinetics for different groups of photosynthetic organisms might need consideration to improve prediction of photosynthesis in future climates. Comparisons between in vitro and in vivo data revealed common trends, but also highlighted a large variability among both types of Rubisco kinetics currently used to simulate photosynthesis, emphasizing the need for more experimental work to fill in the gaps in Rubisco datasets and improve scaling from enzyme kinetics to realized

  6. Electron, proton and hydrogen-atom transfers in photosynthetic water oxidation.

    PubMed Central

    Tommos, Cecilia

    2002-01-01

    When photosynthetic organisms developed so that they could use water as an electron source to reduce carbon dioxide, the stage was set for efficient proliferation. Algae and plants spread globally and provided the foundation for our atmosphere and for O(2)-based chemistry in biological systems. Light-driven water oxidation is catalysed by photosystem II, the active site of which contains a redox-active tyrosine denoted Y(Z), a tetramanganese cluster, calcium and chloride. In 1995, Gerald Babcock and co-workers presented the hypothesis that photosynthetic water oxidation occurs as a metallo-radical catalysed process. In this model, the oxidized tyrosine radical is generated by coupled proton/electron transfer and re-reduced by abstracting hydrogen atoms from substrate water or hydroxide-ligated to the manganese cluster. The proposed function of Y(Z) requires proton transfer from the tyrosine site upon oxidation. The oxidation mechanism of Y(Z) in an inhibited and O(2)-evolving photosystem II is discussed. Domino-deprotonation from Y(Z) to the bulk solution is shown to be consistent with a variety of data obtained on metal-depleted samples. Experimental data that suggest that the oxidation of Y(Z) in O(2)-evolving samples is coupled to proton transfer in a hydrogen-bonding network are described. Finally, a dielectric-dependent model for the proton release that is associated with the catalytic cycle of photosystem II is discussed. PMID:12437877

  7. Respiratory processes in non-photosynthetic plastids

    PubMed Central

    Renato, Marta; Boronat, Albert; Azcón-Bieto, Joaquín

    2015-01-01

    Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids. PMID:26236317

  8. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.

    PubMed

    Tanaka, Kenya; Kaneko, Masahiro; Ishikawa, Masahito; Kato, Souichiro; Ito, Hidehiro; Kamachi, Toshiaki; Kamiya, Kazuhide; Nakanishi, Shuji

    2017-04-19

    Redox phospholipid polymers added in culture media are known to be capable of extracting electrons from living photosynthetic cells across bacterial cell membranes with high cytocompatibility. In the present study, we identify the intracellular redox species that transfers electrons to the polymers. The open-circuit electrochemical potential of an electrolyte containing the redox polymer and extracted thylakoid membranes shift to positive (or negative) under light irradiation, when an electron transport inhibitor specific to plastoquinone is added upstream (or downstream) in the photosynthetic electron transport chain. The same trend is also observed for a medium containing living photosynthetic cells of Synechococcus elongatus PCC7942. These results clearly indicate that the phospholipid redox polymers extract photosynthetic electrons mainly from plastoquinone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. viral abundance distribution in deep waters of the Northern of South China Sea

    NASA Astrophysics Data System (ADS)

    He, Lei; Yin, Kedong

    2017-04-01

    Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.

  10. Early photosynthetic microorganisms and environmental evolution

    NASA Technical Reports Server (NTRS)

    Golubic, S.

    1980-01-01

    Microfossils which are preserved as shrivelled kerogenous residues provide little information about cellular organization and almost none about the metabolic properties of the organisms. The distinction between prokaryotic vs eukaryotic, and phototrophic vs chemo- and organotrophic fossil microorganisms rests entirely on morphological comparisons with recent counterparts. The residual nature of the microbial fossil record promotes the conclusion that it must be biased toward (a) most abundant organisms, (b) those most resistant to degradation, and (c) those inhabiting environments with high preservation potential e.g., stromatolites. These criteria support the cyanophyte identity of most Precambrian microbial fossils on the following grounds: (1) as primary producers they dominate prokaryotic communities in modern extreme environments, e.g., intertidal zone; (2) several morphological counterparts of modern cyanophytes and microbial fossils have been established based on structure, cell division patterns and degradation sequences. The impact of anaerobic and oxygenic microbial photosynthesis on the evolution of Precambrian environments is discussed.

  11. Excitation energy transfer in photosynthetic protein-pigment complexes

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Hao

    Quantum biology is a relatively new research area which investigates the rules that quantum mechanics plays in biology. One of the most intriguing systems in this field is the coherent excitation energy transport (EET) in photosynthesis. In this document I will discuss the theories that are suitable for describing the photosynthetic EET process and the corresponding numerical results on several photosynthetic protein-pigment complexes (PPCs). In some photosynthetic EET processes, because of the electronic coupling between the chromophores within the system is about the same order of magnitude as system-bath coupling (electron-phonon coupling), a non-perturbative method called hierarchy equation of motion (HEOM) is applied to study the EET dynamics. The first part of this thesis includes brief introduction and derivation to the HEOM approach. The second part of this thesis the HEOM method will be applied to investigate the EET process within the B850 ring of the light harvesting complex 2 (LH2) from purple bacteria, Rhodopseudomonas acidophila. The dynamics of the exciton population and coherence will be analyzed under different initial excitation configurations and temperatures. Finally, how HEOM can be implemented to simulate the two-dimensional electronic spectra of photosynthetic PPCs will be discussed. Two-dimensional electronic spectroscopy is a crucial experimental technique to probe EET dynamics in multi-chromophoric systems. The system we are interested in is the 7-chromophore Fenna-Matthews-Olson (FMO) complex from green sulfur bacteria, Prosthecochloris aestuarii. Recent crystallographic studies report the existence of an additional (eighth) chromophore in some of the FMO monomers. By applying HEOM we are able to calculate the two-dimensional electronic spectra of the 7-site and 8-site FMO complexes and investigate the functionality of the eighth chromophore.

  12. The role of energy losses in photosynthetic light harvesting

    NASA Astrophysics Data System (ADS)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  13. [Photosynthetic physiological adaptabilities of Pinus tabulaeformis and Robinia pseudoacacia in the Loess Plateau].

    PubMed

    Zheng, Shu-xia; Shangguan, Zhou-ping

    2007-01-01

    With Yangling, Yongshou, Fuxian, Ansai, Mizhi and Shenmu, the s ix counties from the south to the north in the Loess Plateau as study sites, this paper studied thoe photosynthetic charac teristics and leaf traits of Pinus tabulaeformis and Robinia pseudoacacia. The results showed that among the six sites, there were significant differences in the photosynthetic rate (Pn), photosynthetic nitrogen use efficiency (PNUE), water use efficiency (WUE), leaf mass per area (LMA), nitrogen content (Nmass), and chlorophyll content (Chl) of P. tabulaeformis and R. pseudoacacia, suggesting that the photosynthetic capacity and leaf traits of the two species differed with sites. From the south to the north, the Pn, PNUE and WUE of P. tabulaeformis increased slightly while those of R. pseudoacacia decreased significantly, indicating that in drought habitat, P. tabulaef6rmis could still maintain high photosynthetic capacity, hut the photosynthetic capacity of R. pseudoacacia was greatly restrained. Also from the south to the north, the LMA of P. tabulaeformis and R. pseudoacacia had a slight increasing trend, while Nmass and Chl decreased slightly. The variation ranges of the three parameters were greater for R. pseudoacacia than for P. tabulaeformis, indicating that P. tabulaeformis had stronger drought-tolerant capability than R. pseudoacacia, which was not only exhibited in physiological metabolism, but also in leaf morphological acclimation. The correlation analysis between photosynthetic parameters and leaf traits of P. tabulaeformis and R. pseudoacacia in the six sites showed that there was a significant negative correlation between LMA and Nmass. The Pn and PNUE of both test species had no correlations with LMA and Nmass, but had significant positive correlation with Chl. The WUE of the species was negatively correlated with LMA, but positively correlated with Nmass.

  14. Robust and Porous β-Diketiminate-Functionalized Metal–Organic Frameworks for Earth-Abundant-Metal-Catalyzed C–H Amination and Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thacker, Nathan C.; Lin, Zekai; Zhang, Teng

    We have designed a strategy for postsynthesis installation of the β-diketiminate (NacNac) functionality in a metal–organic framework (MOF) of UiO-topology. Metalation of the NacNac-MOF (I) with earth-abundant metal salts afforded the desired MOF-supported NacNac-M complexes (M = Fe, Cu, and Co) with coordination environments established by detailed EXAFS studies. The NacNac-Fe-MOF catalyst, I•Fe(Me), efficiently catalyzed the challenging intramolecular sp 3 C–H amination of a series of alkyl azides to afford α-substituted pyrrolidines. The NacNac-Cu-MOF catalyst, I•Cu(THF), was effective in promoting the intermolecular sp 3 C–H amination of cyclohexene using unprotected anilines to provide access to secondary amines in excellent selectivity.more » Finally, the NacNac-Co-MOF catalyst, I•Co(H), was used to catalyze alkene hydrogenation with turnover numbers (TONs) as high as 700 000. All of the NacNac-M-MOF catalysts were more effective than their analogous homogeneous catalysts and could be recycled and reused without a noticeable decrease in yield. The NacNac-MOFs thus provide a novel platform for engineering recyclable earth-abundant-element-based single-site solid catalysts for many important organic transformations.« less

  15. Effects of pH and Oxygen on Photosynthetic Reactions of Intact Chloroplasts 1

    PubMed Central

    Heber, Ulrich; Andrews, T. John; Boardman, N. Keith

    1976-01-01

    Oxygen inhibition of photosynthesis was studied with intact spinach (Spinacia oleracea L.) chloroplasts which exhibited very high rates of photosynthetic CO2 reduction and were insensitive to additions of photosynthetic intermediates when CO2 was available at saturating concentrations. Photosynthetic rates were measured polarographically as O2 evolution, and the extent of the reduction of substrate was estimated from the amount of O2 evolved. With CO2 as substrate, inhibition of photosynthesis by O2 was dependent on pH. At pH values above 8, rates of O2 evolution were strongly inhibited by O2 and only a fraction of the added bicarbonate was reduced before O2 evolution ceased. The extent of O2 evolution declined with increasing O2 concentration and decreasing initial bicarbonate concentration. At pH 7.2, the initial photosynthetic rate was inhibited about 30% at high O2 levels, but the extent of O2 evolution was unaffected and most of the added bicarbonate was reduced. Photosynthetic O2 evolution with 3-phosphoglycerate as substrate was similarly dependent on pH and O2 concentration. In contrast, there was little effect of O2 and pH on oxaloacetate-dependent oxygen evolution. Acid-base shift experiments with osmotically shocked chloroplasts showed that ATP formation was not affected by O2. The results are discussed in terms of a balance between photosynthetic O2 evolution and O2 consumption by the ribulose diphosphate oxygenase reaction. PMID:16659466

  16. Solar Coronal and photospheric abundances from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Solar energetic particle (SEP) elemental abundance data from the cosmic ray subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with 3 Z or = 30. It is found that the ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.

  17. Solar coronal and photospheric abundances from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Breneman, H. H.; Stone, E. C.

    1985-01-01

    Solar energetic particle (SEP) elemental abundance data from the cosmic ray subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with Z = 6-30. It is found that the ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.

  18. Solar coronal and photospheric abundances from solar energetic particle measurements

    NASA Technical Reports Server (NTRS)

    Breneman, H.; Stone, E. C.

    1985-01-01

    Solar energetic particle (SEP) elemental abundance data from the Cosmic Ray Subsystem (CRS) aboard the Voyager 1 and 2 spacecraft are used to derive unfractionated coronal and photospheric abundances for elements with 3 = or Z or = 30. The ionic charge-to-mass ratio (Q/M) is the principal organizing parameter for the fractionation of SEPs by acceleration and propagation processes and for flare-to-flare variability, making possible a single-parameter Q/M-dependent correction to the average SEP abundances to obtain unfractionated coronal abundances. A further correction based on first ionization potential allows the determination of unfractionated photospheric abundances.

  19. Photosynthetic adaptation strategy of Ulva prolifera floating on the sea surface to environmental changes.

    PubMed

    Zhao, Xinyu; Tang, Xuexi; Zhang, Huanxin; Qu, Tongfei; Wang, Ying

    2016-10-01

    For 8 consecutive years, a green tide has originated in the southern Yellow Sea and spread to the Qingdao offshore area. The causative species, Ulva prolifera, always forms a very thick thallus mat that is capable of drifting long distances over long periods. During this process, although the thalli face disturbance by complex environmental factors, they maintain high biomass and proliferation. We hypothesized that some form of photosynthetic adaptation strategy must exist to protect the thalli. Therefore, we studied the different photosynthetic response characteristics of the surface and lower layers of the floating thallus mats, and investigated the physiological and molecular-level adaptation mechanisms. The results showed that: (1) U. prolifera has strong photosynthetic capability that ensures it can gain sufficient energy to increase its biomass and adapt to long-distance migration. (2) Surface layer thalli adapt to the complex environment by dissipating excess energy via photosynthetic quantum control (energy quenching and energy redistribution between PSII/PSI) to avoid irreversible damage to the photosynthetic system. (3) Lower layer thalli increase their contents of Chlorophyll a (Chl a) and Chlorophyll b (Chl b) and decrease their Chl a/Chl b ratio to improve their ability to use light energy. (4) U. prolifera has strong photosynthetic plasticity and can adapt to frequent exchange between the surface and lower layer environments because of wave disturbance. Pigment component changes, energy quenching, and energy redistribution between PSII/PSI contribute to this photosynthetic plasticity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Changes in photosynthetic performance and antioxidative strategies during maturation of Norway maple (Acer platanoides L.) leaves.

    PubMed

    Lepeduš, Hrvoje; Gaća, Vlatka; Viljevac, Marija; Kovač, Spomenka; Fulgosi, Hrvoje; Simić, Domagoj; Jurković, Vlatka; Cesar, Vera

    2011-04-01

    Different structural and functional changes take place during leaf development. Since some of them are highly connected to oxidative metabolism, regulation of reactive oxygen species (ROS) abundance is required. Most of the reactive oxygen species ROS in plant cells are produced in chloroplasts as a result of highly energetic reactions of photosynthesis. The aim of our study was to examine the changes in concentration of oxidative stress parameters (TBARS - thiobarbituric acid-reacting substances and protein carbonyls) as well as antioxidative strategies during development of maple (Acer platanoides L.) leaves in the light of their enhanced photosynthetic performance. We reveal that biogenesis of the photosynthetic apparatus during maple leaf maturation corresponded with oxidative damage of lipids, but not proteins. In addition, antioxidative responses in young leaves differed from that in older leaves. Young leaves had high values of non-photochemical quenching (NPQ) and catalase (CAT, EC 1.11.1.6) activity which declined during the maturation process. Developing leaves were characterized by an increase in TBARS level, the content of non-enzymatic antioxidants as well as ascorbate peroxidase activity (APX, EC 1.11.1.11), while the content of protein carbonyls decreased with leaf maturation. Fully developed leaves had the highest lipid peroxidation level accompanied by a maximum in ascorbic acid content and superoxide dismutase activity (SOD, EC1.15.1.1). These observations imply completely different antioxidative strategies during leaf maturation enabling them to perform their basic function. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  1. Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress.

    PubMed

    Vanlerberghe, Greg C; Martyn, Greg D; Dahal, Keshav

    2016-07-01

    Photosynthesis and respiration are the hubs of energy metabolism in plants. Drought strongly perturbs photosynthesis as a result of both diffusive limitations resulting from stomatal closure, and in some cases biochemical limitations that are associated with a reduced abundance of key photosynthetic components. The effects of drought on respiration, particularly respiration in the light (RL ), are less understood. The plant mitochondrial electron transport chain includes a non-energy conserving terminal oxidase called alternative oxidase (AOX). Several studies have shown that drought increases AOX transcript, protein and maximum capacity. Here we review recent studies comparing wild-type (WT) tobacco to transgenic lines with altered AOX protein amount. Specifically during drought, RL was compromised in AOX knockdown plants and enhanced in AOX overexpression plants, compared with WT. Significantly, these differences in RL were accompanied by dramatic differences in photosynthetic performance. Knockdown of AOX increased the susceptibility of photosynthesis to drought-induced biochemical limitations, while overexpression of AOX delayed the development of such biochemical limitations, compared with WT. Overall, the results indicate that AOX is essential to maintaining RL during drought, and that this non-energy conserving respiration maintains photosynthesis during drought by promoting energy balance in the chloroplast. This review also outlines several areas for future research, including the possibility that enhancement of non-energy conserving respiratory electron sinks may be a useful biotechnological approach to increase plant performance during stress. © 2016 Scandinavian Plant Physiology Society.

  2. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.

    PubMed

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B; Niyogi, Krishna K; Ulm, Roman; Goldschmidt-Clermont, Michel

    2016-12-20

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.

  3. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here in this paper, we report in the green alga Chlamydomonasmore » reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.« less

  4. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii

    DOE PAGES

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; ...

    2016-12-05

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here in this paper, we report in the green alga Chlamydomonasmore » reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.« less

  5. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii

    PubMed Central

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B.; Niyogi, Krishna K.; Goldschmidt-Clermont, Michel

    2016-01-01

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast. PMID:27930292

  6. Lateral organization of biological membranes: role of long-range interactions.

    PubMed

    Duneau, Jean-Pierre; Sturgis, James N

    2013-12-01

    The lateral organization of biological membranes is of great importance in many biological processes, both for the formation of specific structures such as super-complexes and for function as observed in signal transduction systems. Over the last years, AFM studies, particularly of bacterial photosynthetic membranes, have revealed that certain proteins are able to segregate into functional domains with a specific organization. Furthermore, the extended non-random nature of the organization has been suggested to be important for the energy and redox transport properties of these specialized membranes. In the work reported here, using a coarse-grained Monte Carlo approach, we have investigated the nature of interaction potentials able to drive the formation and segregation of specialized membrane domains from the rest of the membrane and furthermore how the internal organization of the segregated domains can be modulated by the interaction potentials. These simulations show that long-range interactions are necessary to allow formation of membrane domains of realistic structure. We suggest that such possibly non-specific interactions may be of great importance in the lateral organization of biological membranes in general and in photosynthetic systems in particular. Finally, we consider the possible molecular origins of such interactions and suggest a fundamental role for lipid-mediated interactions in driving the formation of specialized photosynthetic membrane domains. We call these lipid-mediated interactions a 'lipophobic effect.'

  7. BOREAS TE-9 NSA Photosynthetic Response Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves. This data set describes: (1) the response of leaf and shoot-level photosynthesis to ambient and intercellular CO2 concentration, temperature, and incident photosynthetically active radiation (PAR) for black spruce, jack pine, and aspen during the three intensive field campaigns (IFCs) in 1994 in the Northern Study Area (NSA); (2) the response of stomatal conductance to vapor pressure difference throughout the growing season of 1994; and (3) a range of shoot water potentials (controlled in the laboratory) for black spruce and jack pine. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  8. Older Thinopyrum intermedium (Poaceae) plants exhibit superior photosynthetic tolerance to cold stress and greater increases in two photosynthetic enzymes under freezing stress compared with young plants

    PubMed Central

    Jaikumar, Nikhil S.; Snapp, Sieglinde S.; Sharkey, Thomas D.

    2016-01-01

    Effects of plant age on resource acquisition and stress tolerance processes is a largely unstudied subject in herbaceous perennials. In a field experiment, we compared rates of photosynthesis (A), ribulose-1,5-bisphosphate (RuBP) carboxylation capacity (V Cmax), maximum electron transport rate (J max), and triose phosphate utilization (TPU), as well as concentrations of Rubisco and sucrose-phosphate synthase (SPS) in 5-year-old and 2-year-old intermediate wheatgrass (Thinopyrum intermedium) under both optimal growing conditions and cold stress in early spring and autumn. This species is a relative of wheat undergoing domestication. An additional experiment compared photosynthetic rates in different cohorts at mid-season and under colder conditions. We hypothesized that photosynthetic capacity in older plants would be lower under favorable conditions but higher under cold stress. Our hypothesis was generally supported. Under cold stress, 5-year-old plants exhibited higher A, TPU, and temperature-adjusted V Cmax than younger plants, as well as 50% more SPS and 37% more Rubisco. In contrast, at mid-season, photosynthetic capacities in older plants were lower than in younger plants in one experiment, and similar in the other, independent of differences in water status. Both cohorts increased A, temperature-adjusted TPU and J max, [Rubisco], and [SPS] under cold stress, but changes were greater in older plants. Photosynthetic differences were largest at 1.2 ºC in very early spring, where older plants had 200% higher A and maintained up to 17% of their peak photosynthetic capacity. We find evidence of increased cold tolerance in older cohorts of wheatgrass, consistent with a growing body of research in woody perennials. PMID:27401911

  9. The structural and photosynthetic characteristics of the exposed peduncle of wheat (Triticum aestivum L.): an important photosynthate source for grain-filling.

    PubMed

    Kong, Lingan; Wang, Fahong; Feng, Bo; Li, Shengdong; Si, Jisheng; Zhang, Bin

    2010-07-11

    In wheat (Triticum aestivum L), the flag leaf has been thought of as the main source of assimilates for grain growth, whereas the peduncle has commonly been thought of as a transporting organ. The photosynthetic characteristics of the exposed peduncle have therefore been neglected. In this study, we investigated the anatomical traits of the exposed peduncle during wheat grain ontogenesis, and we compared the exposed peduncle to the flag leaf with respect to chloroplast ultrastructure, photosystem II (PSII) quantum yield, and phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) activity. Transmission electron microscope observations showed well-developed chloroplasts with numerous granum stacks at grain-filling stages 1, 2 and 3 in both the flag leaf and the exposed peduncle. In the exposed peduncle, the membranes constituting the thylakoids were very distinct and plentiful, but in the flag leaf, there was a sharp breakdown at stage 4 and complete disintegration of the thylakoid membranes at stage 5. PSII quantum yield assays revealed that the photosynthetic efficiency remained constant at stages 1, 2 and 3 and then declined in both organs. However, the decline occurred more dramatically in the flag leaf than in the exposed peduncle. An enzyme assay showed that at stages 1 and 2 the PEPCase activity was lower in the exposed peduncle than in the flag leaf; but at stages 3, 4 and 5 the value was higher in the exposed peduncle, with a particularly significant difference observed at stage 5. Subjecting the exposed part of the peduncle to darkness following anthesis reduced the rate of grain growth. Our results suggest that the exposed peduncle is a photosynthetically active organ that produces photosynthates and thereby makes a crucial contribution to grain growth, particularly during the late stages of grain-filling.

  10. Inorganic and organic fertilizers impact the abundance and proportion of antibiotic resistance and integron-integrase genes in agricultural grassland soil.

    PubMed

    Nõlvak, Hiie; Truu, Marika; Kanger, Kärt; Tampere, Mailiis; Espenberg, Mikk; Loit, Evelin; Raave, Henn; Truu, Jaak

    2016-08-15

    Soil fertilization with animal manure or its digestate may facilitate an important antibiotic resistance dissemination route from anthropogenic sources to the environment. This study examines the effect of mineral fertilizer (NH4NO3), cattle slurry and cattle slurry digestate amendment on the abundance and proportion dynamics of five antibiotic resistance genes (ARGs) and two classes of integron-integrase genes (intI1 and intI2) in agricultural grassland soil. Fertilization was performed thrice throughout one vegetation period. The targeted ARGs (sul1, tetA, blaCTX-M, blaOXA2 and qnrS) encode resistance to several major antibiotic classes used in veterinary medicine such as sulfonamides, tetracycline, cephalosporins, penicillin and fluoroquinolones, respectively. The non-fertilized grassland soil contained a stable background of tetA, blaCTX-M and sul1 genes. The type of applied fertilizer significantly affected ARGs and integron-integrase genes abundances and proportions in the bacterial community (p<0.001 in both cases), explaining 67.04% of the abundance and 42.95% of the proportion variations in the grassland soil. Both cattle slurry and cattle slurry digestate proved to be considerable sources of ARGs, especially sul1, as well as integron-integrases. Sul1, intI1 and intI2 levels in grassland soil were elevated in response to each organic fertilizer's application event, but this increase was followed by a stage of decrease, suggesting that microbes possessing these genes were predominantly entrained into soil via cattle slurry or its digestate application and had somewhat limited survival potential in a soil environment. However, the abundance of these three target genes did not decrease to a background level by the end of the study period. TetA was most abundant in mineral fertilizer treated soil and blaCTX-M in cattle slurry digestate amended soil. Despite significantly different abundances, the abundance dynamics of bacteria possessing these genes were

  11. Soil compaction and organic matter affect conifer seedling nonmycorrhizal and ectomycorrhizal root tip abundance and diversity. Forest Service research paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaranthus, M.P.; Page-Dumroese, D.; Harvey, A.

    1996-05-01

    Three levels of organic matter removal (bole only; bole and crowns; and bole, crowns, and forest floor) and three levels of mechanical soil compaction (no compaction, moderate compaction, and severe soil compaction) were studied as they influence Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and western white pine (Pinus monticola Dougl. ex D. Don) seedlings following outplanting. Moderate and severe soil compaction significantly reduced nonmycorrhizal root tip abundance on both Douglas-fir and western white pine seedlings (p less than or equal to 0.05). Ectomycorrhizal root tip abundance was significantly reduced on Douglas-fir seedlings in severely compacted areas with bole andmore » crowns and bole, crowns, and forest floor removed. Ectomycorrhizal diversity also was significantly reduced on Douglas-fir seedlings in all severely compacted areas.« less

  12. Discussion of Yellow Starthistle Response to Photosynthetic Irradiance, Photoperiod, and CO2

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    2017-01-01

    Yellow Starthistle (Centaurea solstitialis) is a native annual weed of Eurasia and since introduction into the United STates has become an invasive and noxious weed. It grows in a rosette habit during the vegetative state and usually bolts in summer to produce a large and branched flowering stem. Time to flowering in Yellow Starthistle has been attributed to photoperiod, nitrogen nutrition, temperature, and water stress. We executed a series of studies to investigate the role of light, both photoperiod and photosynthetic photon flux, on flowering and development in Yellow Starthistle. Treatments were presented in 4 ways: 1) varying day length with constant photosynthetic photon flus (PPF) providing increasing daily integrated Photosynthetic Photon (PP) exposure with longer day lengths 2) varying day length while adjusting PPF to maintain daily PP exposure for all treatments 3) extending photoperiod treatments beyond common 12-h photosynthetic period with low light levels to maintain both PPF and daily PP across all treatments4)reciprocal exchange of plant among photoperiod treatments Yellow Starthistle appears to be a long-day plant with a critical day length requirement between 14-h and 16-h to induce transition from vegetative to floral stages in development. PPF and daily absorbed photons did not affect time to vegetative floral stage transition, but did affect factors such as biomass accumulation and canopy parameters such as specific leaf mass. Reciprocal exchange of plants between floral inducing and inhibiting photoperiod treatments, starting at 2-weeks post germination, had no effect on to flower. Flowering was determined by photoperiod experienced during the first 2-weeks (or less) post germination.Yellow Starthistle net photosynthetic response to elevated atmospheric CO2 concentrations over a range of photosynthetically active radiation flux rates and temperatures will also be presented and discussed.

  13. Faster photosynthetic induction in tobacco by expressing cyanobacterial flavodiiron proteins in chloroplasts.

    PubMed

    Gómez, Rodrigo; Carrillo, Néstor; Morelli, María P; Tula, Suresh; Shahinnia, Fahimeh; Hajirezaei, Mohammad-Reza; Lodeyro, Anabella F

    2018-05-01

    Plants grown in the field experience sharp changes in irradiation due to shading effects caused by clouds, other leaves, etc. The excess of absorbed light energy is dissipated by a number of mechanisms including cyclic electron transport, photorespiration, and Mehler-type reactions. This protection is essential for survival but decreases photosynthetic efficiency. All phototrophs except angiosperms harbor flavodiiron proteins (Flvs) which relieve the excess of excitation energy on the photosynthetic electron transport chain by reducing oxygen directly to water. Introduction of cyanobacterial Flv1/Flv3 in tobacco chloroplasts resulted in transgenic plants that showed similar photosynthetic performance under steady-state illumination, but displayed faster recovery of various photosynthetic parameters, including electron transport and non-photochemical quenching during dark-light transitions. They also kept the electron transport chain in a more oxidized state and enhanced the proton motive force of dark-adapted leaves. The results indicate that, by acting as electron sinks during light transitions, Flvs contribute to increase photosynthesis protection and efficiency under changing environmental conditions as those found by plants in the field.

  14. Detecting in-field variation in photosynthetic capacity of trangenically modifed plants with hyperspectral imaging.

    NASA Astrophysics Data System (ADS)

    Meacham, K.; Montes, C.; Pederson, T.; Wu, J.; Guan, K.; Bernacchi, C.

    2017-12-01

    Improved photosynthetic rates have been shown to increase crop biomass, making improved photosynthesis a focus for driving future grain yield increases. Improving the photosynthetic pathway offers opportunity to meet food demand, but requires high throughput measurement techniques to detect photosynthetic variation in natural accessions and transgenically modified plants. Gas exchange measurements are the most widely used method of measuring photosynthesis in field trials but this process is laborious and slow, and requires further modeling to estimate meaningful parameters and to upscale to the plot or canopy level. In field trials of tobacco with modifications made to the photosynthetic pathway, we infer the maximum carboxylation rate of Rubisco (Vcmax) and maximum electron transport rate (Jmax) and detect photosynthetic variation from hyperspectral imaging with a partial least squares regression technique. Ground-truth measurements from photosynthetic gas exchange, a full-range (400-2500nm) handheld spectroadiometer with leaf clip, hyperspectral indices, and extractions of leaf pigments support the model. The results from a range of wild-type cultivars and from genetically modified germplasm suggest that the opportunity for rapid selection of top performing genotypes from among thousands of plots. This research creates the opportunity to extend agroecosystem models from simplified "one-cultivar" generic parameterization to better represent a full suite of current and future crop cultivars for a wider range of environmental conditions.

  15. Photosynthetic response of Eriophorum vaginatum to in situ shrub shading in tussock tundra of northern Alaska

    NASA Astrophysics Data System (ADS)

    Anderson-Smith, A.; Pattison, R.; Sullivan, P.; Welker, J. M.

    2009-12-01

    Eriophorum vaginatum (Cotton Grass) is an important component of moist acidic tussock tundra, a plant community that appears to be undergoing changes in species composition associated with climate warming. This species is one of the most abundant in the arctic tundra, and provides important forage for caribou in their calving grounds on the Arctic Coastal Plain and along their migratory route through the foothills of Alaska. Recently, remote sensing data, repeat photography and plot-level measurements have indicated that shrub abundance is increasing while Eriophorum abundance is either constant or decreasing. One possible explanation for the reduction of Eriophorum while Betula nana is increasing, is that lower light levels in the taller Betula canopy may be constraining Eriophorum photosynthesis and subsequently reducing plant growth. This study measured the effect of shading on the light response of Eriphorum leaf photosynthesis in four different sites near Toolik Lake Alaska during the summer of 2009. Measurements were taken in: 1) a shrub patch within the drift zone of the ITEX long term snow fence experiment, 2) an LTER shade house (50% shading) built in 1989, 3) water track site 1 and water track site 2 (i.e. control areas with no experimental manipulations) Average photosynthetic rates for Eriophorum at a light level of 800 PAR varied from 3.8 to 10.9 umol m-2 s-1 and were not significantly different in shaded and unshaded areas. This study indicates that shading by shrubs does not appear to be altering the light response of Eriophorum nor does long-term shading by itself eliminate Eriophorum from the community. An alternative explanation for the decline of Eriophorum while Betula increases in abundance under changing climates may be related to plant and soil mineral nutrition, plant water relations or biotic processes involving herbivores.

  16. Investigations of photosynthetic light harvesting by two-dimensional electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Read, Elizabeth Louise

    Photosynthesis begins with the harvesting of sunlight by antenna pigments, organized in a network of pigment-protein complexes that rapidly funnel energy to photochemical reaction centers. The intricate design of these systems---the widely varying structural motifs of pigment organization within proteins and protein organization within a larger, cooperative network---underlies the remarkable speed and efficiency of light harvesting. Advances in femtosecond laser spectroscopy have enabled researchers to follow light energy on its course through the energetic levels of photosynthetic systems. Now, newly-developed femtosecond two-dimensional electronic spectroscopy reveals deeper insight into the fundamental molecular interactions and dynamics that emerge in these structures. The following chapters present investigations of a number of natural light-harvesting complexes using two-dimensional electronic spectroscopy. These studies demonstrate the various types of information contained in experimental two-dimensional spectra, and they show that the technique makes it possible to probe pigment-protein complexes on the length- and time-scales relevant to their functioning. New methods are described that further extend the capabilities of two-dimensional electronic spectroscopy, for example, by independently controlling the excitation laser pulse polarizations. The experiments, coupled with theoretical simulation, elucidate spatial pathways of energy flow, unravel molecular and electronic structures, and point to potential new quantum mechanical mechanisms of light harvesting.

  17. Photosynthetic Energy Transfer at the Quantum/Classical Border.

    PubMed

    Keren, Nir; Paltiel, Yossi

    2018-06-01

    Quantum mechanics diverges from the classical description of our world when very small scales or very fast processes are involved. Unlike classical mechanics, quantum effects cannot be easily related to our everyday experience and are often counterintuitive to us. Nevertheless, the dimensions and time scales of the photosynthetic energy transfer processes puts them close to the quantum/classical border, bringing them into the range of measurable quantum effects. Here we review recent advances in the field and suggest that photosynthetic processes can take advantage of the sensitivity of quantum effects to the environmental 'noise' as means of tuning exciton energy transfer efficiency. If true, this design principle could be a base for 'nontrivial' coherent wave property nano-devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Comparison of meiofaunal abundance in two mangrove wetlands in Tong'an Bay, Xiamen, China

    NASA Astrophysics Data System (ADS)

    Zhou, Xiping; Cai, Lizhe; Fu, Sujing

    2015-10-01

    To compare meiofaunal community in the two mangrove wetlands in Tong'an Bay, Xiamen, China, and probe the response of meiofauna to high organic matter, sampling was carried out in Fenglin and Xiang'an mangrove wetlands in the bay. The results showed that the Ne/Co ratio (nematode to benthic copepod) and organic matter in Fenglin mangrove wetland were higher than those in Xiang'an mangrove wetland. The meiofaunal abundance in Fenglin mangrove was all lower than that in Xiang'an mangrove wetland in summer, autumn and spring, while the meiofaunal abundance in Fenglin mangrove was higher than that in Xiang'an mangrove wetland in winter. Two-way ANOVA results showed that the meiofaunal abundance and nematode abundance were significantly different between regions, seasons and region×season. With all the results in the present study, we confirmed that the positive response of meiofaunal and nematode abundance were only detected for medium organic matter contents according to the Xiang'an wetland's level, and that the distribution of meiofaunal abundance would be influenced by sand content. Higher copepod abundance and lower N/C value usually suggest better environmental quality.

  19. Photosynthetic Physiological Response of Radix Isatidis (Isatis indigotica Fort.) Seedlings to Nicosulfuron

    PubMed Central

    Ning, Na; Wen, Yinyuan; Dong, Shuqi; Yin, Meiqiang; Guo, Meijun; Wang, Binqiang; Feng, Lei; Guo, Pingyi

    2014-01-01

    Radix Isatidis (Isatis indigotica Fort.) is one of the most important traditional Chinese medicine plants. However, there is no suitable herbicide used for weed control in Radix Isatidis field during postemergence stage. To explore the safety of sulfonylurea herbicide nicosulfuron on Radix Isatidis (Isatis indigotica Fort.) seedlings and the photosynthetic physiological response of the plant to the herbicide, biological mass, leaf area, photosynthetic pigment content, photosynthetic rate, chlorophyll fluorescence characteristics, and P700 parameters of Radix Isatidis seedlings were analyzed 10 d after nicosulfuron treatment at 5th leaf stage in this greenhouse research. The results showed that biological mass, total chlorophyll, chlorophyll a, and carotenoids content, photosynthetic rate, stomatal conductance, PS II maximum quantum yield, PS II effective quantum yield, PS II electron transport rate, photochemical quenching, maximal P700 change, photochemical quantum yield of PS I, and PS I electron transport rate decreased with increasing herbicide concentrations, whereas initial fluorescence, quantum yield of non-regulated energy dissipation in PS II and quantum yield of non-photochemical energy dissipation due to acceptor side limitation in PS I increased. It suggests that nicosulfuron ≥1 mg L−1 causes the damage of chloroplast, PS II and PS I structure. Electron transport limitations in PS I receptor side, and blocked dark reaction process may be the main cause of the significantly inhibited growth and decreased photosynthetic rate of Radix Isatidis seedlings. PMID:25165819

  20. Photosynthetically Driven Cycles Produce Extreme pCO2Variability in a Large Eelgrass Meadow and Readily Measured Proxies Can Be Used to Estimate These Changes

    NASA Astrophysics Data System (ADS)

    Love, B. A.; O'Brien, C.; Bohlmann, H.

    2016-02-01

    Declining ocean pH has spurred research into the effects of marine carbonate chemistry on a variety of organisms, but less work has focused on the potential role of organisms in changing local carbonate chemistry. It has been suggested that photosynthetic activity of macrophytes in coastal areas can decrease pCO2, increase pH, and may provide areas of refuge for organisms sensitive to ocean acidification. To assess the effect of a large eelgrass meadow on water chemistry, discreet samples were collected hourly over several 24 hour cycles in Padilla Bay, Washington. Calculated pCO2 ranged from less than 100 ppm to greater than 700 ppm, often over the course of only a few hours. Aragonite saturation, DIC and pH were also highly variable. In -situ sensors, including a YSI glass electrode, a custom built DuraFET sensor and a SeaFET sensor were co-deployed to provide a high frequency record of water chemistry over several months. These data, (discrete samples and sensors) were used to develop a model that estimates pCO2 for the summer season based on readily measured parameters. Tidal height, photosynthetically active radiation and pH can predict pCO2 reasonably well in this environment. We compare the data from the 3 pH sensors and analyze the quality of data and predictions based on each one. A simple theoretical model shows that the large observed and modeled changes in pCO2 and pH (up to 800 ppm CO2 or 1 pH unit per day) match the magnitude of changes expected based on experimentally derived photosynthetic rates, measured light and water depth and that CO2 fluxes from gas exchange are expected to be small compared to photosynthetic fluxes in this environment. This study illustrates how eelgrass meadows do have the potential to create favorable carbonate chemistry, and demonstrates both the temporally variable nature of that effect and the possibility of better understanding when and how long it occurs through relatively simple modeling of the system.

  1. Evolution and Adaptation of Phytoplankton Photosynthetic Pathways to perturbations of the geological carbon system

    NASA Astrophysics Data System (ADS)

    Rickaby, R. E.; Young, J. N.; Hermoso, M.; Heureux, A.; McCLelland, H.; Lee, R.; Eason Hubbard, M.

    2012-12-01

    The ocean and atmosphere carbon system has varied greatly over geological history both in response to initial evolutionary innovation, and as a driver of adaptive change. Here we establish that positive selection in Rubisco, the most abundant enzyme on the Earth responsible for all photosynthetic carbon fixation, occurred early in Earth's history, and basal to the radiation of the modern marine algal groups. Our signals of positive selection appear to be triggered by changing intracellular concentrations of carbon dioxide (CO2) due to the emergence of carbon concentrating mechanisms between 1.56 and 0.41 Ba in response to declining atmospheric CO2 . We contend that, at least in terms of carbon, phytoplankton generally were well poised to manage subsequent abrupt carbon cycle perturbations. The physiological pathways for optimising carbon acquisition across a wide range of ambient carbon dioxide concentrations had already been established and were genetically widespread across open ocean phytoplankton groups. We will further investigate some case studies from the Mesozoic and Cenozoic abrupt carbon cycle excursions using isotopic tools to probe the community photosynthetic response and demonstrate the flexibility of phytoplankton photosynthesis in the face of major perturbations. In particular, an unprecedented resolution record across the Toarcian (Early Jurassic) carbon isotope excursion in the Paris Basin reveals a selection and evolution towards a community reliant solely on diffusive carbon dioxide supply for photosynthesis at the height of the excursion at 1500-2500 ppm CO2. The continued flourishing of the phytoplankton biological pump throughout this excursion was able to remove the excess carbon injected into the water column in less than 45 kyrs.

  2. Older Thinopyrum intermedium (Poaceae) plants exhibit superior photosynthetic tolerance to cold stress and greater increases in two photosynthetic enzymes under freezing stress compared with young plants.

    PubMed

    Jaikumar, Nikhil S; Snapp, Sieglinde S; Sharkey, Thomas D

    2016-08-01

    Effects of plant age on resource acquisition and stress tolerance processes is a largely unstudied subject in herbaceous perennials. In a field experiment, we compared rates of photosynthesis (A), ribulose-1,5-bisphosphate (RuBP) carboxylation capacity (V Cmax), maximum electron transport rate (J max), and triose phosphate utilization (TPU), as well as concentrations of Rubisco and sucrose-phosphate synthase (SPS) in 5-year-old and 2-year-old intermediate wheatgrass (Thinopyrum intermedium) under both optimal growing conditions and cold stress in early spring and autumn. This species is a relative of wheat undergoing domestication. An additional experiment compared photosynthetic rates in different cohorts at mid-season and under colder conditions. We hypothesized that photosynthetic capacity in older plants would be lower under favorable conditions but higher under cold stress. Our hypothesis was generally supported. Under cold stress, 5-year-old plants exhibited higher A, TPU, and temperature-adjusted V Cmax than younger plants, as well as 50% more SPS and 37% more Rubisco. In contrast, at mid-season, photosynthetic capacities in older plants were lower than in younger plants in one experiment, and similar in the other, independent of differences in water status. Both cohorts increased A, temperature-adjusted TPU and J max, [Rubisco], and [SPS] under cold stress, but changes were greater in older plants. Photosynthetic differences were largest at 1.2 ºC in very early spring, where older plants had 200% higher A and maintained up to 17% of their peak photosynthetic capacity. We find evidence of increased cold tolerance in older cohorts of wheatgrass, consistent with a growing body of research in woody perennials. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Hydraulic constraints modify optimal photosynthetic profiles in giant sequoia trees.

    PubMed

    Ambrose, Anthony R; Baxter, Wendy L; Wong, Christopher S; Burgess, Stephen S O; Williams, Cameron B; Næsborg, Rikke R; Koch, George W; Dawson, Todd E

    2016-11-01

    Optimality theory states that whole-tree carbon gain is maximized when leaf N and photosynthetic capacity profiles are distributed along vertical light gradients such that the marginal gain of nitrogen investment is identical among leaves. However, observed photosynthetic N gradients in trees do not follow this prediction, and the causes for this apparent discrepancy remain uncertain. Our objective was to evaluate how hydraulic limitations potentially modify crown-level optimization in Sequoiadendron giganteum (giant sequoia) trees up to 90 m tall. Leaf water potential (Ψ l ) and branch sap flow closely followed diurnal patterns of solar radiation throughout each tree crown. Minimum leaf water potential correlated negatively with height above ground, while leaf mass per area (LMA), shoot mass per area (SMA), leaf nitrogen content (%N), and bulk leaf stable carbon isotope ratios (δ(13)C) correlated positively with height. We found no significant vertical trends in maximum leaf photosynthesis (A), stomatal conductance (g s), and intrinsic water-use efficiency (A/g s), nor in branch-averaged transpiration (E L), stomatal conductance (G S), and hydraulic conductance (K L). Adjustments in hydraulic architecture appear to partially compensate for increasing hydraulic limitations with height in giant sequoia, allowing them to sustain global maximum summer water use rates exceeding 2000 kg day(-1). However, we found that leaf N and photosynthetic capacity do not follow the vertical light gradient, supporting the hypothesis that increasing limitations on water transport capacity with height modify photosynthetic optimization in tall trees.

  4. Improving Models of Photosynthetic Thermal Acclimation: Which Parameters are Most Important and How Many Should Be Modified?

    NASA Astrophysics Data System (ADS)

    Stinziano, J. R.; Way, D.; Bauerle, W.

    2017-12-01

    Photosynthetic temperature acclimation could strongly affect coupled vegetation-atmosphere feedbacks in the global carbon cycle, especially as the climate warms. Thermal acclimation of photosynthesis can be modelled as changes in the parameters describing the direct effect of temperature on photosynthetic capacity (activation energy, Ea; deactivation energy, Hd; entropy parameter, ΔS) or the basal value of photosynthetic capacity (i.e. photosynthetic capacity measured at 25 °C), however the impact of acclimating these parameters (individually or in combination) on vegetative carbon gain is relatively unexplored. Here we compare the ability of 66 photosynthetic temperature acclimation scenarios to improve predictions of a spatially explicit canopy carbon flux model, MAESTRA, for eddy covariance data from a loblolly pine forest. We show that: 1) incorporating seasonal temperature acclimation of basal photosynthetic capacity improves the model's ability to capture seasonal changes in carbon fluxes; 2) multifactor scenarios of photosynthetic temperature acclimation provide minimal (if any) improvement in model performance over single factor acclimation scenarios; 3) acclimation of enzyme activation energies should be restricted to the temperature ranges of the data from which the equations are derived; and 4) model performance is strongly affected by the choice of deactivation energy. We suggest that a renewed effort be made into understanding the thermal acclimation of enzyme activation and deactivation energies across broad temperature ranges to better understand the mechanisms underlying thermal photosynthetic acclimation.

  5. Effect of photosynthesis on the abundance of 18O13C16O in atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Hofmann, Magdalena E. G.; Pons, Thijs L.; Ziegler, Martin; Lourens, Lucas J.; Röckmann, Thomas

    2016-04-01

    The abundance of the isotopologue 18O13C16O (Δ47) in atmospheric air is a promising new tracer for the atmospheric carbon cycle (Eiler and Schauble, 2004; Affek and Eiler, 2006; Affek et al., 2007). The large gross fluxes in CO2 between the atmosphere and biosphere are supposed to play a major role in controlling its abundance. Eiler and Schauble (2004) set up a box model describing the effect of air-leaf interaction on the abundance of 18O13C16O in atmospheric air. The main assumption is that the exchange between CO2 and water within the mesophyll cells will imprint a Δ47 value on the back-diffusing CO2 that reflects the leaf temperature. Additionally, kinetic effects due to CO2 diffusion into and out of the stomata are thought to play a role. We investigated the effect of photosynthesis on the residual CO2 under controlled conditions using a leaf chamber set-up to quantitatively test the model assumptions suggested by Eiler and Schauble (2004). We studied the effect of photosynthesis on the residual CO2 using two C3 and one C4 plant species: (i) sunflower (Helianthus annuus), a C3 species with a high leaf conductance for CO2 diffusion, (ii) ivy (Hedera hibernica), a C3 species with a low conductance, and (iii), maize (Zea mays), a species with the C4 photosynthetic pathway. We also investigated the effect of different light intensities (photosynthetic photon flux density of 200, 700 and 1800 μmol m2s-1), and thus, photosynthetic rate in sunflower and maize. A leaf was mounted in a cuvette with a transparent window and an adjustable light source. The air inside was thoroughly mixed, making the composition of the outgoing air equal to the air inside. A gas-mixing unit was attached at the entrance of the cuvette that mixed air with a high concentration of scrambled CO2 with a Δ47 value of 0 to 0.1‰ with CO2 free air to set the CO2 concentration of ingoing air at 500 ppm. The flow rate through the cuvette was adjusted to the photosynthetic activity of the leaf

  6. Characterization of photosynthetic ferredoxin from the Antarctic alga Chlamydomonas sp. UWO241 reveals novel features of cold adaptation.

    PubMed

    Cvetkovska, Marina; Szyszka-Mroz, Beth; Possmayer, Marc; Pittock, Paula; Lajoie, Gilles; Smith, David R; Hüner, Norman P A

    2018-05-08

    The objective of this work was to characterize photosynthetic ferredoxin from the Antarctic green alga Chlamydomonas sp. UWO241, a key enzyme involved in distributing photosynthetic reducing power. We hypothesize that ferredoxin possesses characteristics typical of cold-adapted enzymes, namely increased structural flexibility and high activity at low temperatures, accompanied by low stability at moderate temperatures. To address this objective, we purified ferredoxin from UWO241 and characterized the temperature dependence of its enzymatic activity and protein conformation. The UWO241 ferredoxin protein, RNA, and DNA sequences were compared with homologous sequences from related organisms. We provide evidence for the duplication of the main ferredoxin gene in the UWO241 nuclear genome and the presence of two highly similar proteins. Ferredoxin from UWO241 has both high activity at low temperatures and high stability at moderate temperatures, representing a novel class of cold-adapted enzymes. Our study reveals novel insights into how photosynthesis functions in the cold. The presence of two distinct ferredoxin proteins in UWO241 could provide an adaptive advantage for survival at cold temperatures. The primary amino acid sequence of ferredoxin is highly conserved among photosynthetic species, and we suggest that subtle differences in sequence can lead to significant changes in activity at low temperatures. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  7. A Simple Method to Estimate Photosynthetic Radiation Use Efficiency of Canopies

    PubMed Central

    ROSATI, A.; METCALF, S. G.; LAMPINEN, B. D.

    2004-01-01

    • Background and Aims Photosynthetic radiation use efficiency (PhRUE) over the course of a day has been shown to be constant for leaves throughout a general canopy where nitrogen content (and thus photosynthetic properties) of leaves is distributed in relation to the light gradient. It has been suggested that this daily PhRUE can be calculated simply from the photosynthetic properties of a leaf at the top of the canopy and from the PAR incident on the canopy, which can be obtained from weather‐station data. The objective of this study was to investigate whether this simple method allows estimation of PhRUE of different crops and with different daily incident PAR, and also during the growing season. • Methods The PhRUE calculated with this simple method was compared with that calculated with a more detailed model, for different days in May, June and July in California, on almond (Prunus dulcis) and walnut (Juglans regia) trees. Daily net photosynthesis of 50 individual leaves was calculated as the daylight integral of the instantaneous photosynthesis. The latter was estimated for each leaf from its photosynthetic response to PAR and from the PAR incident on the leaf during the day. • Key Results Daily photosynthesis of individual leaves of both species was linearly related to the daily PAR incident on the leaves (which implies constant PhRUE throughout the canopy), but the slope (i.e. the PhRUE) differed between the species, over the growing season due to changes in photosynthetic properties of the leaves, and with differences in daily incident PAR. When PhRUE was estimated from the photosynthetic light response curve of a leaf at the top of the canopy and from the incident radiation above the canopy, obtained from weather‐station data, the values were within 5 % of those calculated with the more detailed model, except in five out of 34 cases. • Conclusions The simple method of estimating PhRUE is valuable as it simplifies calculation of canopy

  8. High abundances of presolar grains and 15N-rich organic matter in CO3.0 chondrite Dominion Range 08006

    NASA Astrophysics Data System (ADS)

    Nittler, Larry R.; Alexander, Conel M. O'D.; Davidson, Jemma; Riebe, My E. I.; Stroud, Rhonda M.; Wang, Jianhua

    2018-04-01

    NanoSIMS C-, N-, and O-isotopic mapping of matrix in CO3.0 chondrite Dominion Range (DOM) 08006 revealed it to have in its matrix the highest abundance of presolar O-rich grains (257 +76/-96 ppm, 2σ) of any meteorite. It also has a matrix abundance of presolar SiC of 35 (+25/-17, 2σ) ppm, similar to that seen across primitive chondrite classes. This provides additional support to bulk isotopic and petrologic evidence that DOM 08006 is the most primitive known CO meteorite. Transmission electron microscopy of five presolar silicate grains revealed one to have a composite mineralogy similar to larger amoeboid olivine aggregates and consistent with equilibrium condensation, two non-stoichiometric amorphous grains, and two olivine grains, though one is identified as such solely based on its composition. We also found insoluble organic matter (IOM) to be present primarily as sub-micron inclusions with ranges of C- and N-isotopic anomalies similar to those seen in primitive CR chondrites and interplanetary dust particles. In contrast to other primitive extraterrestrial materials, H isotopic imaging showed normal and homogeneous D/H. Most likely, DOM 08006 and other CO chondrites accreted a similar complement of primitive and isotopically anomalous organic matter to that found in other chondrite classes and IDPs, but the very limited amount of thermal metamorphism experienced by DOM 08006 has caused loss of D-rich organic moieties, while not substantially affecting either the molecular carriers of C and N anomalies or most inorganic phases in the meteorite. One C-rich grain that was highly depleted in 13C and 15N was identified; we propose it originated in the Sun's parental molecular cloud.

  9. Bringing abundance into environmental politics: Constructing a Zionist network of water abundance, immigration, and colonization.

    PubMed

    Alatout, Samer

    2009-06-01

    For more than five decades, resource scarcity has been the lead story in debates over environmental politics. More importantly, and whenever environmental politics implies conflict, resource scarcity is constructed as the culprit. Abundance of resources, if at all visited in the literature, holds less importance. Resource abundance is seen, at best, as the other side of scarcity--maybe the successful conclusion of multiple interventions that may turn scarcity into abundance. This paper reinstates abundance as a politico-environmental category in its own right. Rather than relegating abundance to a second-order environmental actor that matters only on occasion, this paper foregrounds it as a crucial element in modern environmental politics. On the substantive level, and using insights from science and technology studies, especially a slightly modified actor-network framework, I describe the emergence and consolidation of a Zionist network of abundance, immigration, and colonization in Palestine between 1918 and 1948. The essential argument here is that water abundance was constructed as fact, and became a political rallying point around which a techno-political network emerged that included a great number of elements. To name just a few, the following were enrolled in the service of such a network: geologists, geophysicists, Zionist settlement experts, Zionist organizations, political and technical categories of all sorts, Palestinians as the negated others, Palestinian revolts in search of political rights, the British Mandate authorities, the hydrological system of Palestine, and the absorptive capacity of Palestine, among others. The point was to successfully articulate these disparate elements into a network that seeks opening Palestine for Jewish immigration, redefining Palestinian geography and history through Judeo-Christian Biblical narratives, and, in the process, de-legitimizing political Palestinian presence in historic Palestine.

  10. Role of various hormones in photosynthetic responses of green plants under environmental stresses.

    PubMed

    Poonam; Bhardwaj, Renu; Kaur, Ravdeep; Bali, Shagun; Kaur, Parminder; Sirhindi, Geetika; Thukral, Ashwani K; Ohri, Puja; Vig, Adarsh P

    2015-01-01

    Environmental stress includes adverse factors like water deficit, high salinity, enhanced temperature and heavy metals etc. These stresses alter the normal growth and metabolic processes of plants including photosynthesis. Major photosynthetic responses under various stresses include inhibition of photosystems (I and II), changes in thylakoid complexes, decreased photosynthetic activity and modifications in structure and functions of chloroplasts etc. Various defense mechanisms are triggered inside the plants in response to these stresses that are regulated by plant hormones or plant growth regulators. These phytohormones include abscisic acid, auxins, cytokinins, ethylene, brassinosteroids, jasmonates and salicylic acid etc. The present review focuses on stress protective effects of plants hormones on the photosynthetic responses.

  11. CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion.

    PubMed

    Jones, Shawn W; Fast, Alan G; Carlson, Ellinor D; Wiedel, Carrissa A; Au, Jennifer; Antoniewicz, Maciek R; Papoutsakis, Eleftherios T; Tracy, Bryan P

    2016-09-30

    Maximizing the conversion of biogenic carbon feedstocks into chemicals and fuels is essential for fermentation processes as feedstock costs and processing is commonly the greatest operating expense. Unfortunately, for most fermentations, over one-third of sugar carbon is lost to CO 2 due to the decarboxylation of pyruvate to acetyl-CoA and limitations in the reducing power of the bio-feedstock. Here we show that anaerobic, non-photosynthetic mixotrophy, defined as the concurrent utilization of organic (for example, sugars) and inorganic (for example, CO 2 ) substrates in a single organism, can overcome these constraints to increase product yields and reduce overall CO 2 emissions. As a proof-of-concept, Clostridium ljungdahlii was engineered to produce acetone and achieved a mass yield 138% of the previous theoretical maximum using a high cell density continuous fermentation process. In addition, when enough reductant (that is, H 2 ) is provided, the fermentation emits no CO 2 . Finally, we show that mixotrophy is a general trait among acetogens.

  12. [Molecular responses of photosynthetic apparatus of plants to long term irradiance changes].

    PubMed

    Adamiec, Małgorzata; Jackowski, Grzegorz

    2008-01-01

    In response to long term (at least 1-3 h) irradiance changes the responses are elicited at the level of structure and function of photosynthetic apparatus of plants which are thought to be aimed to keep the balance between the level of excitation energy funneled to the reaction centers of the photosystems by energetic antennae and the utilization of this energy in the form of photosynthetic electron transfer and dark reactions. At high vs medium irradiances the rate of excitation energy transfer via LHCII is reduced while the rate of electron flow and photosynthetic dark reactions is increased. The reaction at LHCII level stems from the reduction of its pool per PSII reaction center and the regulatory events comprise changes in the expression of LHCII apoproteins and/or chi b biosynthesis. The basis for higher electron flow capabilities lies in significant increases in the content of some electron carriers and the catalytic activity of ATP synthase. The upregulation of photosynthetic dark reaction in turn is due to the activation of signaling pathways leading to the increase in the pool and catalytic activities of rubisco and other Calvin cycle enzymes.

  13. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers.

    PubMed

    Gamon, John A; Huemmrich, K Fred; Wong, Christopher Y S; Ensminger, Ingo; Garrity, Steven; Hollinger, David Y; Noormets, Asko; Peñuelas, Josep

    2016-11-15

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying "photosynthetic phenology" from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a "chlorophyll/carotenoid index" (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA's Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology.

  14. Rhodobacter sphaeroides spd mutations allow cytochrome c2-independent photosynthetic growth.

    PubMed Central

    Rott, M A; Donohue, T J

    1990-01-01

    In Rhodobacter sphaeroides, cytochrome c2 (cyt c2) is a periplasmic redox protein required for photosynthetic electron transfer. cyt c2-deficient mutants created by replacing the gene encoding the apoprotein for cyt c2 (cycA) with a kanamycin resistance cartridge are photosynthetically incompetent. Spontaneous mutations that suppress this photosynthesis deficiency (spd mutants) arise at a frequency of 1 to 10 in 10(7). We analyzed the cytochrome content of several spd mutants spectroscopically and by heme peroxidase assays. These suppressors lacked detectable cyt c2, but they contained a new soluble cytochrome which was designated isocytochrome c2 (isocyt c2) that was not detectable in either cycA+ or cycA mutant cells. When spd mutants were grown photosynthetically, isocyt c2 was present at approximately 20 to 40% of the level of cyt c2 found in photosynthetically grown wild type cells, and it was found in the periplasm with cytochromes c' and c554. These spd mutants also had several other pleiotropic phenotypes. Although photosynthetic growth rates of the spd mutants were comparable to those of wild-type strains at all light intensities tested, they contained elevated levels of B800-850 pigment-protein complexes. Several spd mutants contained detectable amounts of isocyt c2 under aerobic conditions. Finally, heme peroxidase assays indicated that, under anaerobic conditions, the spd mutants may contain another new cytochrome in addition to isocyt c2. These pleiotropic phenotypes, the frequency at which the spd mutants arise, and the fact that a frameshift mutagen is very effective in generating the spd phenotype suggest that some spd mutants contain a mutation in loci which regulate cytochrome synthesis. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 PMID:2156806

  15. Photosynthetic Rates of Citronella and Lemongrass 1

    PubMed Central

    Herath, H. M. Walter; Ormrod, Douglas P.

    1979-01-01

    Ten selections of citronella (Cymbopogon nardus [L.] Rendle) were grown at 32/27, 27/21, or 15/10 C day/night temperatures, and plants from three populations of lemongrass (Cymbopogon citratus [D.C.] Stapf from Japan or Sri Lanka and Cymbopogon flexuosus [D.C.] Stapf from India) were grown at 8- or 15-hour photoperiods. Net photosynthetic rates of mature leaves were measured in a controlled environment at 25 C and 260 microeinsteins per meter2 per second. Rates declined with increasing leaf age, and from the tip to the base of the leaf blade. Rates for citronella leaves grown at 15/10 C were extremely low for all selections. Highest rates of net photosynthesis were recorded for four selections grown at 27/21 C and for two selections grown at 32/27 C. Lemongrass grown at 8-hour photoperiod had higher photosynthetic rates than that grown at 15-hour photoperiod. PMID:16660737

  16. Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE

    NASA Astrophysics Data System (ADS)

    Boyd, P. W.; Abraham, E. R.

    Active fluorescence (fast repetition rate fluorometry, FRRF) was used to follow the photosynthetic response of the phytoplankton community during the 13-day Southern Ocean Iron RElease Experiment (SOIREE). This in situ iron enrichment was conducted in the polar waters of the Australasian-Pacific sector of the Southern Ocean in February 1999. Iron fertilisation of these high nitrate low chlorophyll (HNLC) waters resulted in an increase in the photosynthetic competence ( Fv/ Fm) of the resident cells from around 0.20 to greater than 0.60 (i.e. close to the theoretical maximum) by 10/11 days after the first enrichment. Although a significant iron-mediated response in Fv/ Fm was detected as early as 24 h after the initial fertilisation, the increase in Fv/ Fm to double ambient levels took 6 days. This response was five-fold slower than observed in iron enrichments (in situ and in vitro) in the HNLC waters of the subarctic and equatorial Pacific. Although little is known about the relationship between water temperature and Fv/ Fm, it is likely that low water temperatures — and possibly the deep mixed layer — were responsible for this slow response time. During SOIREE, the photosynthetic competence of the resident phytoplankton in iron-enriched waters increased at dissolved iron levels above 0.2 nM, suggesting that iron limitation was alleviated at this concentration. Increases in Fv/ Fm of cells within four algal size classes suggested that all taxa displayed a photosynthetic response to iron enrichment. Other physiological proxies of algal iron stress (such as flavodoxin levels in diatoms) exhibited different temporal trends to iron-enrichment than Fv/ Fm during the time-course of SOIREE. The relationship between Fv/ Fm, algal growth rate and such proxies in Southern Ocean waters is discussed.

  17. Functional Diversity of Photosynthetic Light Use of 16 Vascular Epiphyte Species Under Fluctuating Irradiance in the Canopy of a Giant Virola michelii (Myristicaceae) Tree in the Tropical Lowland Forest of French Guyana

    PubMed Central

    Rascher, Uwe; Freiberg, Martin; Lüttge, Ulrich

    2011-01-01

    Here we present the first study, in which a large number of different vascular epiphyte species were measured for their photosynthetic performance in the natural environment of their phorophyte in the lowland rainforest of French Guyana. More than 70 epiphyte species covered the host tree in a dense cover. Of these, the photosynthesis of 16 abundant species was analyzed intensely over several months. Moreover, the light environment was characterized with newly developed light sensors that recorded continuously and with high temporal resolution light intensity next to the epiphytes. Light intensity was highly fluctuating and showed great site specific spatio-temporal variations of photosynthetic photon flux. Using a novel computer routine we quantified the integrated light intensity the epiphytes were exposed to in a 3 h window and we related this light intensity to measurements of the actual photosynthetic status. It could be shown that the photosynthetic apparatus of the epiphytes was well adapted to the quickly changing light conditions. Some of the epiphytes were chronically photoinhibited at predawn and significant acute photoinhibition, expressed by a reduction of potential quantum efficiency (Fv/Fm)30′, was observed during the day. By correlating (Fv/Fm)30′ to the integrated and weighted light intensity perceived during the previous 3 h, it became clear that acute photoinhibition was related to light environment prior to the measurements. Additionally photosynthetic performance was not determined by rain events, with the exception of an Aechmea species. This holds true for all the other 15 species of this study and we thus conclude that actual photosynthesis of these tropical epiphytes was determined by the specific and fluctuating light conditions of their microhabitat and cannot be simply attributed to light-adapted ancestors. PMID:22629271

  18. Photosynthetic oxygen production in a warmer ocean: the Sargasso Sea as a case study.

    PubMed

    Richardson, Katherine; Bendtsen, Jørgen

    2017-09-13

    Photosynthetic O 2 production can be an important source of oxygen in sub-surface ocean waters especially in permanently stratified oligotrophic regions of the ocean where O 2 produced in deep chlorophyll maxima (DCM) is not likely to be outgassed. Today, permanently stratified regions extend across approximately 40% of the global ocean and their extent is expected to increase in a warmer ocean. Thus, predicting future ocean oxygen conditions requires a better understanding of the potential response of photosynthetic oxygen production to a warmer ocean. Based on our own and published observations of water column processes in oligotrophic regions, we develop a one-dimensional water column model describing photosynthetic oxygen production in the Sargasso Sea to quantify the importance of photosynthesis for the downward flux of O 2 and examine how it may be influenced in a warmer ocean. Photosynthesis is driven in the model by vertical mixing of nutrients (including eddy-induced mixing) and diazotrophy and is found to substantially increase the downward O 2 flux relative to physical-chemical processes alone. Warming (2°C) surface waters does not significantly change oxygen production at the DCM. Nor does a 15% increase in re-mineralization rate (assuming Q 10  = 2; 2°C warming) have significant effect on net sub-surface oxygen accumulation. However, changes in the relative production of particulate (POM) and dissolved organic material (DOM) generate relatively large changes in net sub-surface oxygen production. As POM/DOM production is a function of plankton community composition, this implies plankton biodiversity and food web structure may be important factors influencing O 2 production in a warmer ocean.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  19. Photosynthetic oxygen production in a warmer ocean: the Sargasso Sea as a case study

    NASA Astrophysics Data System (ADS)

    Richardson, Katherine; Bendtsen, Jørgen

    2017-08-01

    Photosynthetic O2 production can be an important source of oxygen in sub-surface ocean waters especially in permanently stratified oligotrophic regions of the ocean where O2 produced in deep chlorophyll maxima (DCM) is not likely to be outgassed. Today, permanently stratified regions extend across approximately 40% of the global ocean and their extent is expected to increase in a warmer ocean. Thus, predicting future ocean oxygen conditions requires a better understanding of the potential response of photosynthetic oxygen production to a warmer ocean. Based on our own and published observations of water column processes in oligotrophic regions, we develop a one-dimensional water column model describing photosynthetic oxygen production in the Sargasso Sea to quantify the importance of photosynthesis for the downward flux of O2 and examine how it may be influenced in a warmer ocean. Photosynthesis is driven in the model by vertical mixing of nutrients (including eddy-induced mixing) and diazotrophy and is found to substantially increase the downward O2 flux relative to physical-chemical processes alone. Warming (2°C) surface waters does not significantly change oxygen production at the DCM. Nor does a 15% increase in re-mineralization rate (assuming Q10 = 2; 2°C warming) have significant effect on net sub-surface oxygen accumulation. However, changes in the relative production of particulate (POM) and dissolved organic material (DOM) generate relatively large changes in net sub-surface oxygen production. As POM/DOM production is a function of plankton community composition, this implies plankton biodiversity and food web structure may be important factors influencing O2 production in a warmer ocean. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  20. Photosynthetic pathway types of evergreen rosette plants (Liliaceae) of the Chihuahuan desert.

    PubMed

    Kemp, Paul R; Gardetto, Pietra E

    1982-11-01

    Diurnal patterns of CO 2 exchange and titratable acidity were monitored in six species of evergreen rosette plants growing in controlled environment chambers and under outdoor environmental conditions. These patterns indicated that two of the species, Yucca baccata and Y. torreyi, were constituitive CAM plants while the other species, Y. elata, Y. campestris, Nolina microcarpa and Dasylirion wheeleri, were C 3 plants. The C 3 species did not exhibit CAM when grown in any of several different temperature, photoperiod, and moisture regimes. Both photosynthetic pathway types appear adapted to desert environments and all species show environmentally induced changes in their photosynthetic responses consistent with desert adaptation. The results of this study do not indicate that changes in the photosynthetic pathway type are an adaptation in any of these species.

  1. Photosynthetic capacity of red spruce during winter

    Treesearch

    P.G. Schaberg; J.B. Shane; P.F. Cali; J.R. Donnelly; G.R. Strimbeck

    1998-01-01

    We measured the photosynthetic capacity (Pmax) of plantation-grown red spruce (Picea rubens Sarg.) during two winter seasons (1993-94 and 1994-95) and monitored field photosynthesis of these trees during one winter (1993-94). We also measured Pmax for mature montane trees from January through May 1995....

  2. Accuracy or precision: Implications of sample design and methodology on abundance estimation

    USGS Publications Warehouse

    Kowalewski, Lucas K.; Chizinski, Christopher J.; Powell, Larkin A.; Pope, Kevin L.; Pegg, Mark A.

    2015-01-01

    Sampling by spatially replicated counts (point-count) is an increasingly popular method of estimating population size of organisms. Challenges exist when sampling by point-count method, and it is often impractical to sample entire area of interest and impossible to detect every individual present. Ecologists encounter logistical limitations that force them to sample either few large-sample units or many small sample-units, introducing biases to sample counts. We generated a computer environment and simulated sampling scenarios to test the role of number of samples, sample unit area, number of organisms, and distribution of organisms in the estimation of population sizes using N-mixture models. Many sample units of small area provided estimates that were consistently closer to true abundance than sample scenarios with few sample units of large area. However, sample scenarios with few sample units of large area provided more precise abundance estimates than abundance estimates derived from sample scenarios with many sample units of small area. It is important to consider accuracy and precision of abundance estimates during the sample design process with study goals and objectives fully recognized, although and with consequence, consideration of accuracy and precision of abundance estimates is often an afterthought that occurs during the data analysis process.

  3. Photoperiodic controls on ecosystem-level photosynthetic capacity

    NASA Astrophysics Data System (ADS)

    Stoy, P. C.; Trowbridge, A. M.; Bauerle, W.

    2012-12-01

    Most models of photosynthesis at the leaf or canopy level assume that temperature is the dominant control on the variability of photosynthetic parameters. Recent studies, however, have found that photoperiod is a better descriptor of the seasonal variability of photosynthetic function at the leaf and plant scale, and that spectral indices of leaf functionality are poor descriptors of this seasonality. We explored the variability of photosynthesic parameters at the ecosystem scale using over 100 site-years of air temperature and gross primary productivity (GPP) data from non-tropical forested sites in the Free/Fair Use LaThuille FLUXNET database (www.fluxdata.org), excluding sites that were classified as dry and/or with savanna vegetation, where we expected GPP to be driven by moisture availability. Both GPP and GPP normalized by daily photosynthetic photon flux density (GPPn) were considered, and photoperiod was calculated from eddy covariance tower coordinates. We performed a Granger causality analysis, a method based on the understanding that causes precede effects, on both the GPP and GPPn. Photoperiod Granger-caused GPP (GPPn) in 95% (87%) of all site-years. While temperature Granger-caused GPP in a mere 23% of site years, it Granger-caused GPPn 73% of the time. Both temperature values are significantly less than the percent of cases in which day length Granger-caused GPP (p<0.05, Student's t-test). An inverse analysis was performed for completeness, and it was found that GPP Granger-caused photoperiod (temperature) in 39% (78%) of all site years. Results demonstrate that incorporating simple photoperiod controls may be a logical step in improving ecosystem and global model output.

  4. DAILY BUDGETS OF PHOTOSYNTHETICALLY FIXED CARBON IN SYMBIOTIC ZOANTHIDS.

    PubMed

    Steen, R Grant; Muscatine, L

    1984-10-01

    We tested the hypothesis that some zoanthids are able to meet a portion of their daily respiratory carbon requirement with photosynthetic carbon from symbiotic algal cells (= zooxanthellae). A daily budget was constructed for carbon (C) photosynthetically fixed by zooxanthellae of the Bermuda zoanthids Zoanthus sociatus and Palythoa variabilis. Zooxanthellae have an average net photosynthetic C fixation of 7.48 and 15.56 µgC·polyp -1 ·day -1 for Z. sociatus and P. variabilis respectively. The C-specific growth rate (µ c ) was 0.215·day -1 for Z. sociatus and 0.152·day -1 for P. variabilis. The specific growth rate (µ) of zooxanthellae in the zoanthids was measured to be 0.011 and 0.017·day -1 for Z. sociatus and P. variabilis zooxanthellae respectively. Z. sociatus zooxanthellae translocated 95.1% of the C assimilated in photosynthesis, while P. variabilis zooxanthellae translocated 88.8% of their fixed C. As the animal tissue of a polyp of Z. sociatus required 14.75 µgC·day -1 for respiration, and one of P. variabiis required 105.54 µgC·day -1 , the contribution of zooxanthellae to animal respiration (CZAR) was 48.2% for Z. sociatus and 13.1% for P. variabilis.

  5. Auxenochlorella protothecoides and Prototheca wickerhamii plastid genome sequences give insight into the origins of non-photosynthetic algae

    PubMed Central

    Yan, Dong; Wang, Yun; Murakami, Tatsuya; Shen, Yue; Gong, Jianhui; Jiang, Huifeng; Smith, David R.; Pombert, Jean-Francois; Dai, Junbiao; Wu, Qingyu

    2015-01-01

    The forfeiting of photosynthetic capabilities has occurred independently many times throughout eukaryotic evolution. But almost all non-photosynthetic plants and algae still retain a colorless plastid and an associated genome, which performs fundamental processes apart from photosynthesis. Unfortunately, little is known about the forces leading to photosynthetic loss; this is largely because there is a lack of data from transitional species. Here, we compare the plastid genomes of two “transitional” green algae: the photosynthetic, mixotrophic Auxenochlorella protothecoides and the non-photosynthetic, obligate heterotroph Prototheca wickerhamii. Remarkably, the plastid genome of A. protothecoides is only slightly larger than that of P. wickerhamii, making it among the smallest plastid genomes yet observed from photosynthetic green algae. Even more surprising, both algae have almost identical plastid genomic architectures and gene compositions (with the exception of genes involved in photosynthesis), implying that they are closely related. This close relationship was further supported by phylogenetic and substitution rate analyses, which suggest that the lineages giving rise to A. protothecoides and P. wickerhamii diverged from one another around six million years ago. PMID:26403826

  6. Auxenochlorella protothecoides and Prototheca wickerhamii plastid genome sequences give insight into the origins of non-photosynthetic algae.

    PubMed

    Yan, Dong; Wang, Yun; Murakami, Tatsuya; Shen, Yue; Gong, Jianhui; Jiang, Huifeng; Smith, David R; Pombert, Jean-Francois; Dai, Junbiao; Wu, Qingyu

    2015-09-25

    The forfeiting of photosynthetic capabilities has occurred independently many times throughout eukaryotic evolution. But almost all non-photosynthetic plants and algae still retain a colorless plastid and an associated genome, which performs fundamental processes apart from photosynthesis. Unfortunately, little is known about the forces leading to photosynthetic loss; this is largely because there is a lack of data from transitional species. Here, we compare the plastid genomes of two "transitional" green algae: the photosynthetic, mixotrophic Auxenochlorella protothecoides and the non-photosynthetic, obligate heterotroph Prototheca wickerhamii. Remarkably, the plastid genome of A. protothecoides is only slightly larger than that of P. wickerhamii, making it among the smallest plastid genomes yet observed from photosynthetic green algae. Even more surprising, both algae have almost identical plastid genomic architectures and gene compositions (with the exception of genes involved in photosynthesis), implying that they are closely related. This close relationship was further supported by phylogenetic and substitution rate analyses, which suggest that the lineages giving rise to A. protothecoides and P. wickerhamii diverged from one another around six million years ago.

  7. Spatiotemporal patterns of phytoplankton composition and abundance in the Maryland Coastal Bays: The influence of freshwater discharge and anthropogenic activities

    NASA Astrophysics Data System (ADS)

    Oseji, Ozuem F.; Chigbu, Paulinus; Oghenekaro, Efeturi; Waguespack, Yan; Chen, Nianhong

    2018-07-01

    The spatial and temporal variations in phytoplankton abundance and community structure in the northern and southern parts of the Maryland Coastal Bays (MCBs) that differ in anthropogenic activities and hydrological characteristics were studied in 2012 and 2013 using photosynthetic pigments as biomarkers. Phytoplankton pigment biomass and diversity were generally higher in the northern bays that receive high nutrient input from St. Martin River, than in the southern bays where nutrient levels were comparatively low. Sites close to the mouths of tributaries in northern and southern bays had higher nutrient levels, which favored the development of dinoflagellates, and nano- and picophytoplankton, than sites closer to the inlets. The microplankton dominated the phytoplankton community in spring (>90%) and decreased in relative abundance into fall (<60%) whereas nanoplankton peaked in summer or fall. Picoplankton relative abundance increased from late spring (<10%, March 2012 & 2013) to summer (40%, July 2012 and August 2013) and was correlated positively with NH4+ and negatively with salinity. The observed spatial and seasonal patterns of phytoplankton relative abundance and diversity are likely due to changes in nutrient concentrations and ratios, driven by variations in freshwater discharge, and selective grazing of phytoplankton. Water quality management in the MCBs should continue to focus on reducing nutrient inputs into the bays.

  8. Carbon, Hydrogen, and Oxygen Isotope Ratios of Cellulose from Plants Having Intermediary Photosynthetic Modes 1

    PubMed Central

    Sternberg, Leonel O'Reilly; Deniro, Michael J.; Ting, Irwin P.

    1984-01-01

    Carbon and hydrogen isotope ratios of cellulose nitrate and oxygen isotope ratios of cellulose from species of greenhouse plants having different photosynthetic modes were determined. When hydrogen isotope ratios are plotted against carbon isotope ratios, four clusters of points are discernible, each representing different photosynthetic modes: C3 plants, C4 plants, CAM plants, and C3 plants that can shift to CAM or show the phenomenon referred to as CAM-cycling. The combination of oxygen and carbon isotope ratios does not distinguish among the different photosynthetic modes. Analysis of the carbon and hydrogen isotope ratios of cellulose nitrate should prove useful for screening different photosynthetic modes in field specimens that grew near one another. This method will be particularly useful for detection of plants which show CAM-cycling. PMID:16663360

  9. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

    PubMed Central

    Huemmrich, K. Fred; Ensminger, Ingo; Garrity, Steven; Noormets, Asko; Peñuelas, Josep

    2016-01-01

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA’s Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology. PMID:27803333

  10. The Protective Roles of the Antioxidant Enzymes Superoxide Dismutase and Catalase in the Green Photosynthetic Bacterium Chloroflexus Aurantiacus

    NASA Technical Reports Server (NTRS)

    Blankenship, Robert E.; Rothschild, Lynn (Technical Monitor)

    2004-01-01

    The purpose of this study was to examine the biochemical response of the green thermophilic photosynthetic bacterium Chloroflexus aurantiacus to oxidative stress. Lab experiments focused primarily on characterizing the antioxidant enzyme superoxide dismutase and the response of this organism to oxidative stress. Experiments in the field at the hotsprings in Yellowstone National Park focused on the changes in the level of these enzymes during the day in response to oxidants and to the different types of ultraviolet radiation.

  11. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice.

    PubMed

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd. © 2016 John Wiley & Sons Ltd.

  12. Clustering in the stellar abundance space

    NASA Astrophysics Data System (ADS)

    Boesso, R.; Rocha-Pinto, H. J.

    2018-03-01

    We have studied the chemical enrichment history of the interstellar medium through an analysis of the n-dimensional stellar abundance space. This work is a non-parametric analysis of the stellar chemical abundance space. The main goal is to study the stars from their organization within this abundance space. Within this space, we seek to find clusters (in a statistical sense), that is, stars likely to share similar chemo-evolutionary history, using two methods: the hierarchical clustering and the principal component analysis. We analysed some selected abundance surveys available in the literature. For each sample, we labelled the group of stars according to its average abundance curve. In all samples, we identify the existence of a main enrichment pattern of the stars, which we call chemical enrichment flow. This flow is set by the structured and well-defined mean rate at which the abundances of the interstellar medium increase, resulting from the mixture of the material ejected from the stars and stellar mass-loss and interstellar medium gas. One of the main results of our analysis is the identification of subgroups of stars with peculiar chemistry. These stars are situated in regions outside of the enrichment flow in the abundance space. These peculiar stars show a mismatch in the enrichment rate of a few elements, such as Mg, Si, Sc and V, when compared to the mean enrichment rate of the other elements of the same stars. We believe that the existence of these groups of stars with peculiar chemistry may be related to the accretion of planetary material on to stellar surfaces or may be due to production of the same chemical element by different nucleosynthetic sites.

  13. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.

    PubMed

    Pandey, Jitendra Kumar; Dubey, Gunjan; Gopal, R

    2015-10-01

    Pigeon pea is one of the most important legume crops in India and dimethoate is a widely used insecticide in various crop plants. We studied the effect of dimethoate on growth and photosynthetic activity of pigeon pea plants over a short and long term exposure. Plant growth parameters, photosynthetic pigment content and chlorophyll fluorescence response of pigeon pea (Cajanus cajan L.) plants treated with various concentrations of the insecticide dimethoate (10, 20, 40 and 80 ppm) have been compared for 30 days at regular intervals of 10 days each. Laser induced chlorophyll fluorescence spectra and fluorescence-induction kinetics (FIK) curve of dimethoate treated pigeon pea plants were recorded after 10, 20 and 30 days of treatment. Fluorescence intensity ratio at the two fluorescence maxima (F685/F730) was calculated by evaluating curve-fitted parameters. The variable chlorophyll fluorescence decrease ratio (Rfd) was determined from the FIK curves. Our study revealed that after 10 days of treatment, 10 ppm of dimethoate showed stimulatory response whereas 20, 40 and 80 ppm of dimethoate showed inhibitory response for growth and photosynthetic activity of pigeon pea plants, but after 20 and 30 days of treatment all the tested concentrations of dimethoate became inhibitory. This study clearly shows that dimethoate is highly toxic to the pigeon pea plant, even at very low concentration (10 ppm), if used for a prolonged duration. Our study may thus be helpful in determining the optimal dose of dimethoate in agricultural practices. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Abundance models improve spatial and temporal prioritization of conservation resources.

    PubMed

    Johnston, Alison; Fink, Daniel; Reynolds, Mark D; Hochachka, Wesley M; Sullivan, Brian L; Bruns, Nicholas E; Hallstein, Eric; Merrifield, Matt S; Matsumoto, Sandi; Kelling, Steve

    2015-10-01

    Conservation prioritization requires knowledge about organism distribution and density. This information is often inferred from models that estimate the probability of species occurrence rather than from models that estimate species abundance, because abundance data are harder to obtain and model. However, occurrence and abundance may not display similar patterns and therefore development of robust, scalable, abundance models is critical to ensuring that scarce conservation resources are applied where they can have the greatest benefits. Motivated by a dynamic land conservation program, we develop and assess a general method for modeling relative abundance using citizen science monitoring data. Weekly estimates of relative abundance and occurrence were compared for prioritizing times and locations of conservation actions for migratory waterbird species in California, USA. We found that abundance estimates consistently provided better rankings of observed counts than occurrence estimates. Additionally, the relationship between abundance and occurrence was nonlinear and varied by species and season. Across species, locations prioritized by occurrence models had only 10-58% overlap with locations prioritized by abundance models, highlighting that occurrence models will not typically identify the locations of highest abundance that are vital for conservation of populations.

  15. Thermal Quantum Correlations in Photosynthetic Light-Harvesting Complexes

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Kouhestani, H.

    2015-08-01

    Photosynthesis is one of the ancient biological processes, playing crucial role converting solar energy to cellular usable currency. Environmental factors and external perturbations has forced nature to choose systems with the highest efficiency and performance. Recent theoretical and experimental studies have proved the presence of quantum properties in biological systems. Energy transfer systems like Fenna-Matthews-Olson (FMO) complex shows quantum entanglement between sites of Bacteriophylla molecules in protein environment and presence of decoherence. Complex biological systems implement more truthful mechanisms beside chemical-quantum correlations to assure system's efficiency. In this study we investigate thermal quantum correlations in FMO protein of the photosynthetic apparatus of green sulfur bacteria by quantum discord measure. The results confirmed existence of remarkable quantum correlations of of BChla pigments in room temperature. This results approve involvement of quantum correlation mechanisms for information storage and retention in living organisms that could be useful for further evolutionary studies. Inspired idea of this study is potentially interesting to practice by the same procedure in genetic data transfer mechanisms.

  16. Thermal alteration of organic matter in recent marine sediments. 1: Pigments. [photosynthetic pigments from Tanner Basin off Southern California

    NASA Technical Reports Server (NTRS)

    Ikan, R.; Aizenshtat, Z.; Baedecker, M. J.; Kaplan, I. R.

    1974-01-01

    Sediment from Tanner Basin, the outer continental shelf off Southern California, was analyzed for photosynthetic pigments and their derivatives, namely carotenes and chlorins. Samples of the sediment were also exposed to raised temperatures (65, 100, 150 C) for various periods of time (1 week, 1 month, 2 months). Analysis of the heat-treated sediment revealed the presence of alpha-ionene and 2,6-dimethylnapthalene, thermal degradation products of Betacarotente. Chlorins were converted to nickel porphyrins of both DPEP and etio series. Possible mechanisms of these transformations are presented.

  17. Genes, Genomes, and Assemblages of Modern Anoxygenic Photosynthetic Cyanobacteria as Proxies for Ancient Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Grim, S. L.; Dick, G.

    2015-12-01

    Oxygenic photosynthetic (OP) cyanobacteria were responsible for the production of O2 during the Proterozoic. However, the extent and degree of oxygenation of the atmosphere and oceans varied for over 2 Ga after OP cyanobacteria first appeared in the geologic record. Cyanobacteria capable of anoxygenic photosynthesis (AP) may have altered the trajectory of oxygenation, yet the scope of their role in the Proterozoic is not well known. Modern cyanobacterial populations from Middle Island Sinkhole (MIS), Michigan and a handful of cultured cyanobacterial strains, are capable of OP and AP. With their metabolic versatility, these microbes may approximate ancient cyanobacterial assemblages that mediated Earth's oxygenation. To better characterize the taxonomic and genetic signatures of these modern AP/OP cyanobacteria, we sequenced 16S rRNA genes and conducted 'omics analyses on cultured strains, lab mesocosms, and MIS cyanobacterial mat samples collected over multiple years from May to September. Diversity in the MIS cyanobacterial mat is low, with one member of Oscillatoriales dominating at all times. However, Planktothrix members are more abundant in the cyanobacterial community in late summer and fall. The shift in cyanobacterial community composition may be linked to seasonally changing light intensity. In lab mesocosms of MIS microbial mat, we observed a shift in dominant cyanobacterial groups as well as the emergence of Chlorobium, bacteria that specialize in AP. These shifts in microbial community composition and metabolism are likely in response to changing environmental parameters such as the availability of light and sulfide. Further research is needed to understand the impacts of the changing photosynthetic community on oxygen production and the entire microbial consortium. Our study connects genes and genomes of AP cyanobacteria to their environment, and improves understanding of cyanobacterial metabolic strategies that may have shaped Earth's redox evolution.

  18. Rubisco mutants of Chlamydomonas reinhardtii display divergent photosynthetic parameters and lipid allocation.

    PubMed

    Esquível, M G; Matos, A R; Marques Silva, J

    2017-07-01

    Photosynthesis and lipid allocation were investigated in Rubisco small subunit mutants of the microalga Chlamydomonas reinhardtii. Comparative analyses were undertaken with cells grown photoheterotrophically under sulphur-replete or sulphur-depleted conditions. The Y67A Rubisco mutant, which has previously demonstrated a pronounced reduction in Rubisco levels and higher hydrogen production rates than the wild type, also shows the following divergences in photosynthetic phenotype and lipid allocation: (i) low Fv/Fm (maximum photochemical efficiency), (ii) low effective quantum yield of photosystem II (ΦPSII), (iii) low effectiveness at protection against high light intensities, (iv) a higher level of total lipids per pigment and (v) changes in the relative proportions of different fatty acids, with a marked decrease in unsaturated fatty acids (FAs). The most abundant thylakoid membrane lipid, monogalactosyldiacylglycerol, decreased in amount, while the neutral lipid/polar lipid ratio increased in the mutant. The low amount and activity of the mutated Rubisco Y67A enzyme seems to have an adverse effect on photosynthesis and causes changes in carbon allocation in terms of membrane fatty acid composition and storage lipid accumulation. Our results suggest that Rubisco mutants of Chlamydomonas might be useful in biodiesel production.

  19. Patterns of rare and abundant marine microbial eukaryotes.

    PubMed

    Logares, Ramiro; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Gobet, Angélique; Kooistra, Wiebe H C F; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Romac, Sarah; Shalchian-Tabrizi, Kamran; Simon, Nathalie; Stoeck, Thorsten; Santini, Sébastien; Siano, Raffaele; Wincker, Patrick; Zingone, Adriana; Richards, Thomas A; de Vargas, Colomban; Massana, Ramon

    2014-04-14

    Biological communities are normally composed of a few abundant and many rare species. This pattern is particularly prominent in microbial communities, in which most constituent taxa are usually extremely rare. Although abundant and rare subcommunities may present intrinsic characteristics that could be crucial for understanding community dynamics and ecosystem functioning, microbiologists normally do not differentiate between them. Here, we investigate abundant and rare subcommunities of marine microbial eukaryotes, a crucial group of organisms that remains among the least-explored biodiversity components of the biosphere. We surveyed surface waters of six separate coastal locations in Europe, independently considering the picoplankton, nanoplankton, and microplankton/mesoplankton organismal size fractions. Deep Illumina sequencing of the 18S rRNA indicated that the abundant regional community was mostly structured by organismal size fraction, whereas the rare regional community was mainly structured by geographic origin. However, some abundant and rare taxa presented similar biogeography, pointing to spatiotemporal structure in the rare microeukaryote biosphere. Abundant and rare subcommunities presented regular proportions across samples, indicating similar species-abundance distributions despite taxonomic compositional variation. Several taxa were abundant in one location and rare in other locations, suggesting large oscillations in abundance. The substantial amount of metabolically active lineages found in the rare biosphere suggests that this subcommunity constitutes a diversity reservoir that can respond rapidly to environmental change. We propose that marine planktonic microeukaryote assemblages incorporate dynamic and metabolically active abundant and rare subcommunities, with contrasting structuring patterns but fairly regular proportions, across space and time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms.

    PubMed

    Bentley, Fiona K; Melis, Anastasios

    2012-01-01

    Photosynthesis for the generation of fuels and chemicals from cyanobacteria and microalgae offers the promise of a single host organism acting both as photocatalyst and processor, performing sunlight absorption and utilization, as well as CO(2) assimilation and conversion into product. However, there is a need to develop methods for generating, sequestering, and trapping such bio-products in an efficient and cost-effective manner that is suitable for industrial scale-up and exploitation. A sealed gaseous/aqueous two-phase photobioreactor was designed and applied for the photosynthetic generation of volatile isoprene (C(5)H(8)) hydrocarbons, which operates on the principle of spontaneous diffusion of CO(2) from the gaseous headspace into the microalgal or cyanobacterial-containing aqueous phase, followed by photosynthetic CO(2) assimilation and isoprene production by the transgenic microorganisms. Volatile isoprene hydrocarbons were emitted from the aqueous phase and were sequestered into the gaseous headspace. Periodic replacement (flushing) of the isoprene (C(5)H(8)) and oxygen (O(2)) content of the gaseous headspace with CO(2) allowed for the simultaneous harvesting of the photoproducts and replenishment of the CO(2) supply in the gaseous headspace. Reduction in practice of the gaseous/aqueous two-phase photobioreactor is offered in this work with a fed-batch and a semi-continuous culturing system using Synechocystis sp. PCC 6803 heterologously expressing the Pueraria montana (kudzu) isoprene synthase (IspS) gene. Constitutive isoprene production was observed over 192 h of experimentation, coupled with cyanobacterial biomass accumulation. The diffusion-based process in gaseous/aqueous two-phase photobioreactors has the potential to be applied to other high-value photosynthetically derived volatile molecules, emanating from a variety of photosynthetic microorganisms. Copyright © 2011 Wiley Periodicals, Inc.

  1. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Valle, Kristin Collier; Nymark, Marianne; Aamot, Inga; Hancke, Kasper; Winge, Per; Andresen, Kjersti; Johnsen, Geir; Brembu, Tore; Bones, Atle M

    2014-01-01

    Due to the selective attenuation of solar light and the absorption properties of seawater and seawater constituents, free-floating photosynthetic organisms have to cope with rapid and unpredictable changes in both intensity and spectral quality. We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions.

  2. Reproduction reduces photosynthetic capacity in females of the subdioecious Honckenya peploides

    NASA Astrophysics Data System (ADS)

    Sánchez-Vilas, Julia; Retuerto, Rubén

    2011-03-01

    As a consequence of the different reproductive functions performed by the sexes, sexually dimorphic/polymorphic plants may exhibit gender-related variations in the energy and resources allocated to reproduction, and in the physiological processes that underlie these differences. This study investigated whether the sexes of the subdioecious plant Honckenya peploides differ in ecophysiological traits related to photosynthetic capacity and whether possible differences depend on reproductive status and on the plant's position (edge or centre) in the population. We registered in three sites in NW Spain, the sex and density of shoots of two segregated clumps of plants. These clumps represent an extreme case of sex-ratio variation across space, with separated single-sex clumps of plants. In two of these sites we measured photosynthetic efficiencies, chlorophyll content, and specific leaf areas. In females, reproduction reduced photochemical efficiency, chlorophyll content and increased the specific leaf area, which is a key leaf trait related to photosynthetic capacity. In males, no differences due to reproduction were detected. The position within the clump affected the specific leaf area of the shoots, with shoots growing at the edge having the lowest values, regardless of the sex. Finally, the effects of position in photosynthetic efficiency and chlorophyll content where highly variable among clumps. We conclude that the differential effects of reproduction on sexes may entail different costs that could be crucial in the outcome of interactions between them, contributing to their spatial segregation.

  3. Construction of hybrid photosynthetic units using peripheral and core antennae from two different species of photosynthetic bacteria: detection of the energy transfer from bacteriochlorophyll a in LH2 to bacteriochlorophyll b in LH1.

    PubMed

    Fujii, Ritsuko; Shimonaka, Shozo; Uchida, Naoko; Gardiner, Alastair T; Cogdell, Richard J; Sugisaki, Mitsuru; Hashimoto, Hideki

    2008-01-01

    Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109-127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.

  4. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2

    USDA-ARS?s Scientific Manuscript database

    Photosynthetic pigments such as chlorophyll (Chl) a, Chl b and carotenoids concentration, and chlorophyll fluorescence (CF) have widely been used as indicators of stress and photosynthetic performance in plants. Although photosynthetic pigments and CF are partly interdependent due to absorption and ...

  5. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    PubMed

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-09-15

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  6. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes

    PubMed Central

    Richardson, Dale N; Simmons, Mark P; Reddy, Anireddy SN

    2006-01-01

    Background Kinesins, a superfamily of molecular motors, use microtubules as tracks and transport diverse cellular cargoes. All kinesins contain a highly conserved ~350 amino acid motor domain. Previous analysis of the completed genome sequence of one flowering plant (Arabidopsis) has resulted in identification of 61 kinesins. The recent completion of genome sequencing of several photosynthetic and non-photosynthetic eukaryotes that belong to divergent lineages offers a unique opportunity to conduct a comprehensive comparative analysis of kinesins in plant and non-plant systems and infer their evolutionary relationships. Results We used the kinesin motor domain to identify kinesins in the completed genome sequences of 19 species, including 13 newly sequenced genomes. Among the newly analyzed genomes, six represent photosynthetic eukaryotes. A total of 529 kinesins was used to perform comprehensive analysis of kinesins and to construct gene trees using the Bayesian and parsimony approaches. The previously recognized 14 families of kinesins are resolved as distinct lineages in our inferred gene tree. At least three of the 14 kinesin families are not represented in flowering plants. Chlamydomonas, a green alga that is part of the lineage that includes land plants, has at least nine of the 14 known kinesin families. Seven of ten families present in flowering plants are represented in Chlamydomonas, indicating that these families were retained in both the flowering-plant and green algae lineages. Conclusion The increase in the number of kinesins in flowering plants is due to vast expansion of the Kinesin-14 and Kinesin-7 families. The Kinesin-14 family, which typically contains a C-terminal motor, has many plant kinesins that have the motor domain at the N terminus, in the middle, or the C terminus. Several domains in kinesins are present exclusively either in plant or animal lineages. Addition of novel domains to kinesins in lineage-specific groups contributed to the

  7. Nutrient allocation among plant organs across 13 tree species in three Bornean rain forests with contrasting nutrient availabilities.

    PubMed

    Aoyagi, Ryota; Kitayama, Kanehiro

    2016-07-01

    Allocation of nitrogen (N) and phosphorus (P) among plant organs is an important factor regulating growth rate, which is a key ecological process associated with plant life-history strategies. However, few studies have explored how N and P investment in photosynthetic (leaves) and non-photosynthetic (stems and roots) organs changes in relation to depletion of each element. We investigated nutrient concentrations of plant organs in relation to whole-plant nutrient concentration (total nutrient weight per total biomass) as an index of nutrient status of each individual using the saplings of the 13 species in three tropical rain forests with contrasting N and P availabilities (tropical evergreen forests and tropical heath forests). We found a steeper decrease in foliar N concentration than foliar P concentration with decreasing whole-plant nutrient concentration. Moreover, the steeper decrease in foliar N concentration was associated with relatively stable N concentration in stems, and vice versa for P. We suggest that the depletion of N is associated with a rapid dilution of foliar N because the cell walls in non-photosynthetic organs function as an N sink. On the other hand, these species can maintain foliar P concentration by decreasing stem P concentrations despites the depletion of P. Our results emphasize the significance of non-photosynthetic organs as an N sink for understanding the variation of foliar nutrient concentrations for the tree species in the three Bornean rain forests with different N and P availabilities.

  8. Storage nitrogen co-ordinates leaf expansion and photosynthetic capacity in winter oilseed rape

    PubMed Central

    Liu, Tao; Ren, Tao; White, Philip J; Cong, Rihuan

    2018-01-01

    Abstract Storage nitrogen (N) is a buffer pool for maintaining leaf growth and synthesizing photosynthetic proteins, but the dynamics of its forms within the life cycle of a single leaf and how it is influenced by N supply remain poorly understood. A field experiment was conducted to estimate the influence of N supply on leaf growth, photosynthetic characteristics, and N partitioning inthe sixth leaf of winter oilseed rape (Brassica napus L.) from emergence through senescence. Storage N content (Nstore) decreased gradually along with leaf expansion. The relative growth rate based on leaf area (RGRa) was positively correlated with Nstore during leaf expansion. The water-soluble protein form of storage N was the main N source for leaf expansion. After the leaves fully expanded, the net photosynthetic rate (An) followed a linear–plateau response to Nstore, with An stabilizing at the highest value above a threshold and declining below the threshold. Non-protein and SDS (detergent)-soluble protein forms of storage N were the main N sources for maintaining photosynthesis. For the leaf N economy, storage N is used for co-ordinating leaf expansion and photosynthetic capacity. N supply can improve Nstore, thereby promoting leaf growth and biomass. PMID:29669007

  9. Dependence of Photosynthetic Capacity, Photosynthetic Pigment Allocation, and Carbon Storage on Nitrogen Levels in Foliage of Aspen Stands

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.; Sullivan, Joseph H.; Papagno, Andrea J.

    2000-01-01

    The role of foliar nitrogen (N) in the seasonal dynamics and vertical canopy distribution of photosynthetic pigments, photosynthetic capacity, and carbon (C) storage was investigated in boreal broadleaved species. The study was conducted at two different aged stands (60 y and 15 y) in 1994 and 1996 in Saskatchewan, Canada as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). Foliage in upper and lower strata was examined for aspen (Populus tremuloides Michx.) and its associated hazelnut shrub (Corylus americana Walt.). We determined that C accumulation, expressed as dry mass per unit leaf area (mg C cm (exp -2)), was linearly dependent on N content (approximately 0.3- 3.5 mg N cm (exp -2))(r (exp 2) = 0.93, n=383, P less than 0.001) when eleven foliage groups were defined according to species, site, and developmental stage. C assembly was greatest in the upper aspen strata of both sites (seasonal average, 40.1 plus or minus 0.6 mg C cm (exp -2)), intermediate in the lower aspen strata (32.7 plus or minus 0.6), and considerably lower, and similar, in the hazelnut shrub layers (23.7 plus or minus 0.6) and in expanding aspen leaves (23.8 plus or minus 0.5); the lowest C assembly per unit N occurred in the two youngest, emerging leaf groups (17.1 plus or minus 0.6). Other relationships among physiological and biochemical variables were typically non-linear and were confounded by inclusion of the three groups of young (i.e., emerging or expanding) leaves, unless these were separately identified. Net C uptake, measured as photosynthetic capacity (A (sub max), micromole CO2 m (exp -2) s (exp -1)), was greater in aspen throughout the season, and optimal in mid-summer at a C:N ratio of approximately 18 (approximately 2.3 %N). When young leaves were excluded and logarithms of both variables were used, A (sub max) was approximately linearly dependent on N (mg N cm (exp-2) (r (exp 2) = 0.85, n= 193, P less than 0.001), attributed to incorporation of N into photosynthetic

  10. Photosynthetic capacity and dry mass partitioning in dwarf and semi-dwarf wheat (Triticum aestivum L.)

    NASA Technical Reports Server (NTRS)

    Bishop, D. L.; Bugbee, B. G.

    1998-01-01

    Efficient use of space and high yields are critical for long-term food production aboard the International Space Station. The selection of a full dwarf wheat (less than 30 cm tall) with high photosynthetic and yield potential is a necessary prerequisite for growing wheat in the controlled, volume-limited environments available aboard long-term spaceflight missions. This study evaluated the photosynthetic capacity and carbon partitioning of a full-dwarf wheat cultivar, Super Dwarf, which is routinely used in spaceflight studies aboard U.S. space shuttle and NASA/Mir missions and made comparisons with other dwarf and semi-dwarf wheat cultivars utilized in other ground-based studies in plant space biology. Photosynthetic capacity of the flag leaf in two dwarf (Super Dwarf, BB-19), and three semi-dwarf (Veery-10, Yecora Rojo, IBWSN 199) wheat cultivars (Triticum aestivum L.) was assessed by measuring: net maximum photosynthetic rate, RuBP carboxylation efficiency, chlorophyll concentration and flag leaf area. Dry mass partitioning of carbohydrates to the leaves, sheaths, stems and ear was also assessed. Plants were grown under controlled environmental conditions in three replicate studies: slightly enriched CO2 (370 micromoles mol-1), high photosynthetic photon flux (1000 micromoles m-2 s-1; 58 mol m-2 d-1) for a 16 h photoperiod, 22/15 degrees C day/night temperatures, ample nutrients and water provided by one-half strength Hoagland's nutrient solution (Hoagland and Arnon, 1950). Photosynthetic capacity of the flag leaf was determined at anthesis using net CO2 exchange rate versus internal CO2 concentration curves measured under saturating light (2000 micromoles m-2 s-1) and CO2 (1000 micromoles mol-1). Dwarf wheat cultivars had greater photosynthetic capacities than the taller semi-dwarfs, they averaged 20% higher maximum net photosynthetic rates compared to the taller semi-dwarfs, but these higher rates occurred only at anthesis, had slightly greater carboxylation

  11. Effects of deer on the photosynthetic performance of invasive and native forest herbs.

    PubMed

    Heberling, J Mason; Brouwer, Nathan L; Kalisz, Susan

    2017-03-01

    Overabundant generalist herbivores can facilitate non-native plant invasions, presumably through direct and indirect modifications to the environment that affect plant performance. However, ecophysiological mechanisms behind ungulate-mediated plant invasions have not been well-studied. At a long-term Odocoileus virginianus (white-tailed deer) exclusion site in a temperate deciduous forest, we quantified deer-mediated ecophysiological impacts on an invasive biennial Alliaria petiolata (garlic mustard) and two palatable native herbaceous perennials, Maianthemum racemosum and Trillium grandiflorum . In mid-summer, we found that leaf-level light availability was higher in unfenced areas compared with areas fenced to exclude deer. Alliaria in unfenced areas exhibited 50 % higher mean maximum photosynthetic rates compared with fenced areas. Further, specific leaf area decreased by 48 % on average in unfenced areas, suggesting leaf structural responses to higher light levels. Similarly, Maianthemum had 42 % higher mean photosynthetic rates and 33 % decreased mean specific leaf area in unfenced areas, but these functional advantages were likely countered by high rates of deer herbivory. By contrast, Trillium exhibited significantly lower (26 %) maximum photosynthetic rates in unfenced areas, but SLA did not differ. Deer-mediated differences in light saturated photosynthetic rates for all three species were only significant during months with overstory tree canopy cover, when light availability in the herb layer was significantly lower in fenced areas. Alliaria 's enhanced photosynthetic rates implicate overabundant deer, a situation that is nearly ubiquitous across its invaded range. Collectively, our results provide empirical evidence that generalist herbivores can alter non-native plant physiology to facilitate invasion.

  12. NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis.

    PubMed

    Kirchsteiger, Kerstin; Ferrández, Julia; Pascual, María Belén; González, Maricruz; Cejudo, Francisco Javier

    2012-04-01

    Plastids are organelles present in photosynthetic and nonphotosynthetic plant tissues. While it is well known that thioredoxin-dependent redox regulation is essential for leaf chloroplast function, little is known of the redox regulation in plastids of nonphotosynthetic tissues, which cannot use light as a direct source of reducing power. Thus, the question remains whether redox regulation operates in nonphotosynthetic plastid function and how it is integrated with chloroplasts for plant growth. Here, we show that NADPH-thioredoxin reductase C (NTRC), previously reported as exclusive to green tissues, is also expressed in nonphotosynthetic tissues of Arabidopsis thaliana, where it is localized to plastids. Moreover, we show that NTRC is involved in maintaining the redox homeostasis of plastids also in nonphotosynthetic organs. To test the relationship between plastids of photosynthetic and nonphotosynthetic tissues, transgenic plants were obtained with redox homeostasis restituted exclusively in leaves or in roots, through the expression of NTRC under the control of organ-specific promoters in the ntrc mutant. Our results show that fully functional root amyloplasts are not sufficient for root, or leaf, growth, but fully functional chloroplasts are necessary and sufficient to support wild-type rates of root growth and lateral root formation.

  13. The relationship of metals, bifenthrin, physical habitat metrics, grain size, total organic carbon, dissolved oxygen and conductivity to Hyalella sp. abundance in urban California streams.

    PubMed

    Hall, Lenwood W; Anderson, Ronald D

    2013-01-01

    The objectives of this study were to determine the relationship between Hyalella sp. abundance in four urban California streams and the following parameters: (1) 8 bulk metals (As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn) and their associated sediment Threshold Effect Levels (TELs); (2) bifenthrin sediment concentrations; (3) 10 habitat metrics and total score; (4) grain size (% sand, silt and clay); (5) Total Organic Carbon (TOC); (6) dissolved oxygen; and (7) conductivity. California stream data used for this study were collected from Kirker Creek (2006 and 2007), Pleasant Grove Creek (2006, 2007 and 2008), Salinas streams (2009 and 2010) and Arcade Creek (2009 and 2010). Hyalella abundance in the four California streams generally declined when metals concentrations were elevated beyond the TELs. There was also a statistically significant negative relationship between Hyalella abundance and % silt for these 4 California streams as Hyalella were generally not present in silt areas. No statistically significant relationships were reported between Hyalella abundance and metals concentrations, bifenthrin concentrations, habitat metrics, % sand, % clay, TOC, dissolved oxygen and conductivity. The results from this study highlight the complexity of assessing which factors are responsible for determining the abundance of amphipods, such as Hyalella sp., in the natural environment.

  14. Biogeography and Photosynthetic Biomass of Arctic Marine Pico-Eukaroytes during Summer of the Record Sea Ice Minimum 2012

    PubMed Central

    Metfies, Katja; von Appen, Wilken-Jon; Kilias, Estelle; Nicolaus, Anja; Nöthig, Eva-Maria

    2016-01-01

    Information on recent photosynthetic biomass distribution and biogeography of Arctic marine pico-eukaryotes (0.2–3 μm) is needed to better understand consequences of environmental change for Arctic marine ecosystems. We analysed pico-eukaryote biomass and community composition in Fram Strait and large parts of the Central Arctic Ocean (Nansen Basin, Amundsen Basin) using chlorophyll a (Chl a) measurements, automated ribosomal intergenic spacer analysis (ARISA) and 454-pyrosequencing. Samples were collected during summer 2012, the year with the most recent record sea ice minimum. Chl a concentrations were highest in eastern Fram Strait and pico-plankton accounted for 60–90% of Chl a biomass during the observation period. ARISA-patterns and 454-pyrosequencing revealed that pico-eukaryote distribution is closely related to water mass distribution in the euphotic zone of the Arctic Ocean. Phaeocystaceae, Micromonas sp., Dinophyceae and Syndiniales constitute a high proportion of sequence reads, while sequence abundance of autotrophic Phaeocystaceae and mixotrophic Micromonas sp. was inversely correlated. Highest sequence abundances of Phaeocystaceae were observed in the warm Atlantic Waters in Fram Strait, while Micromonas sp. dominated the abundant biosphere in the arctic halocline. Our results are of particular interest considering existing hypotheses that environmental conditions in Nansen Basin might become more similar to the current conditions in Fram Strait. We propose that in response, biodiversity and biomass of pico-eukaryotes in Nansen Basin could resemble those currently observed in Fram Strait in the future. This would significantly alter biogeochemical cycles in a large part of the Central Arctic Ocean. PMID:26895333

  15. Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2.

    PubMed

    Wang, Bo; Pugh, Shawn; Nielsen, David R; Zhang, Weiwen; Meldrum, Deirdre R

    2013-03-01

    (S)- and (R)-3-hydroxybutyrate (3HB) are precursors to synthesize the biodegradable plastics polyhydroxyalkanoates (PHAs) and many fine chemicals. To date, however, their production has been restricted to petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economical feasibility. With the ability to fix CO2 photosynthetically, cyanobacteria have attracted increasing interest as a biosynthesis platform to produce fuels and chemicals from alternative renewable resources. To this end, synthesis metabolic pathways have been constructed and optimized in cyanobacterium Synechocystis sp. PCC 6803 to photosynthetically produce (S)- and (R)-3HB directly from CO2. Both types of 3HB molecules were produced and readily secreted from Synechocystis cells without over-expression of transporters. Additional inactivation of the competing pathway by deleting slr1829 and slr1830 (encoding PHB polymerase) from the Synechocystis genome further promoted the 3HB production. Up to 533.4mg/L 3HB has been produced after photosynthetic cultivation of the engineered cyanobacterium Synechocystis TABd for 21 days. Further analysis indicated that the phosphate consumption during the photoautrophic growth and the concomitant elevated acetyl-CoA pool acted as a key driving force for 3HB biosynthesis in Synechocystis. For the first time, the study has demonstrated the feasibility of photosynthetic production of (S)- and (R)-3HB directly from sunlight and CO2. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Photosynthetic capacity peaks at intermediate size in temperate deciduous trees.

    PubMed

    Thomas, Sean C

    2010-05-01

    Studies of age-related changes in leaf functional biology have generally been based on dichotomous comparisons of young and mature individuals (e.g., saplings and mature canopy trees), with little data available to describe changes through the entire ontogeny of trees, particularly of broadleaf angiosperms. Leaf-level gas-exchange and morphological parameters were quantified in situ in the upper canopy of trees acclimated to high light conditions, spanning a wide range of ontogenetic stages from saplings (approximately 1 cm in stem diameter) to trees >60 cm d.b.h. and nearing their maximum lifespan, in three temperate deciduous tree species in central Ontario, Canada. Traits associated with growth performance, including leaf photosynthetic capacity (expressed on either an area, mass or leaf N basis), stomatal conductance, leaf size and leaf N content, generally showed a unimodal ('hump-shaped') pattern, with peak values at an intermediate ontogenetic stage. In contrast, leaf mass per area (LMA) and related morphological parameters (leaf thickness, leaf tissue density, leaf C content) increased monotonically with tree size, as did water-use efficiency; these monotonic relationships were well described by simple allometric functions of the form Y = aX(b). For traits showing unimodal patterns, tree size corresponding to the trait maximum differed markedly among traits: all three species showed a similar pattern in which the peak for leaf size occurred in trees approximately 2-6 cm d.b.h., followed by leaf chemical traits and photosynthetic capacity on a mass or leaf N basis and finally by photosynthetic capacity on a leaf area basis, which peaked approximately at the size of reproductive onset. It is argued that ontogenetic increases in photosynthetic capacity and related traits early in tree ontogeny are general among relatively shade-tolerant tree species that have a low capacity for leaf-level acclimation, as are declines in this set of traits late in tree ontogeny.

  17. Plastidial Folate Prevents Starch Biosynthesis Triggered by Sugar Influx into Non-Photosynthetic Plastids of Arabidopsis

    PubMed Central

    Hayashi, Makoto; Tanaka, Mina; Yamamoto, Saki; Nakagawa, Taro; Kanai, Masatake; Anegawa, Aya; Ohnishi, Miwa; Mimura, Tetsuro; Nishimura, Mikio

    2017-01-01

    Abstract Regulation of sucrose–starch interconversion in plants is important to maintain energy supplies necessary for viability and growth. Arabidopsis mutants were screened for aberrant responses to sucrose to identify candidates with a defect in the regulation of starch biosynthesis. One such mutant, fpgs1-4, accumulated substantial amounts of starch in non-photosynthetic cells. Dark-grown mutant seedlings exhibited shortened hypocotyls and accumulated starch in etioplasts when supplied with exogenous sucrose/glucose. Similar starch accumulation from exogenous sucrose was observed in mutant chloroplasts, when photosynthesis was prevented by organ culture in darkness. Molecular genetic analyses revealed that the mutant was defective in plastidial folylpolyglutamate synthetase, one of the enzymes engaged in folate biosynthesis. Active folate derivatives are important biomolecules that function as cofactors for a variety of enzymes. Exogenously supplied 5-formyl-tetrahydrofolate abrogated the mutant phenotypes, indicating that the fpgs1-4 mutant produced insufficient folate derivative levels. In addition, the antifolate agents methotrexate and 5-fluorouracil induced starch accumulation from exogenously supplied sucrose in dark-grown seedlings of wild-type Arabidopsis. These results indicate that plastidial folate suppresses starch biosynthesis triggered by sugar influx into non-photosynthetic cells, demonstrating a hitherto unsuspected link between plastidial folate and starch metabolism. PMID:28586467

  18. Effects of ploidy level and haplotype on variation of photosynthetic traits: Novel evidence from two Fragaria species

    PubMed Central

    Gao, Song; Yan, Qiaodi; Chen, Luxi; Song, Yaobin; Fu, Chengxin; Dong, Ming

    2017-01-01

    To reveal the effects of ploidy level and haplotype on photosynthetic traits, we chose 175 genotypes of wild strawberries belonging to two haplotypes at two types of ploidy levels (diploidy and tetraploidy) and measured photosynthetic traits. Our results revealed that ploidy significantly affected the characteristics of light-response curves, CO2-response curves, and leaf gas exchange parameters, except intercellular CO2 concentration (Ci). Tetraploid species had a lower light saturation point (LSP) and CO2 saturation point (CSP), higher light compensation point (LCP), dark respiration (Rd), and CO2 compensation point (CCP) than diploid species. Furthermore, tetraploid species have lower photosynthetic capacity than diploid species, including net photosynthetic rate (Pn), stomatal conductivity (Gs), and transpiration rate (Tr). In addition, haplotype had a significant effect on LSP, CSP, Tr, and Ci as well as a significant interactive effect between ploidy and haplotype on the maximal photosynethic rate of the light-response curve and Rd. Most of the variance existed within haplotypes among individuals. These results suggest that polyploidization was the main driver for the evolution of photosynthesis with increasing ploidy level (i.e. from diploidy to tetraploidy in Fragaria species), while the origin of a chromosome could also affect the photosynthetic traits and the polyploidization effect on photosynthetic traits. PMID:28644876

  19. Effects of ploidy level and haplotype on variation of photosynthetic traits: Novel evidence from two Fragaria species.

    PubMed

    Gao, Song; Yan, Qiaodi; Chen, Luxi; Song, Yaobin; Li, Junmin; Fu, Chengxin; Dong, Ming

    2017-01-01

    To reveal the effects of ploidy level and haplotype on photosynthetic traits, we chose 175 genotypes of wild strawberries belonging to two haplotypes at two types of ploidy levels (diploidy and tetraploidy) and measured photosynthetic traits. Our results revealed that ploidy significantly affected the characteristics of light-response curves, CO2-response curves, and leaf gas exchange parameters, except intercellular CO2 concentration (Ci). Tetraploid species had a lower light saturation point (LSP) and CO2 saturation point (CSP), higher light compensation point (LCP), dark respiration (Rd), and CO2 compensation point (CCP) than diploid species. Furthermore, tetraploid species have lower photosynthetic capacity than diploid species, including net photosynthetic rate (Pn), stomatal conductivity (Gs), and transpiration rate (Tr). In addition, haplotype had a significant effect on LSP, CSP, Tr, and Ci as well as a significant interactive effect between ploidy and haplotype on the maximal photosynethic rate of the light-response curve and Rd. Most of the variance existed within haplotypes among individuals. These results suggest that polyploidization was the main driver for the evolution of photosynthesis with increasing ploidy level (i.e. from diploidy to tetraploidy in Fragaria species), while the origin of a chromosome could also affect the photosynthetic traits and the polyploidization effect on photosynthetic traits.

  20. Pathogenic Streptomyces spp. abundance affected by potato cultivars.

    PubMed

    Nahar, Kamrun; Goyer, Claudia; Zebarth, Bernie J; Burton, David L; Whitney, Sean

    2018-04-16

    Potato cultivars vary in their tolerance to common scab (CS), however how they affect CS-causing Streptomyces spp. populations over time is poorly understood. This study investigated the effects of potato cultivar on pathogenic Streptomyces spp. abundance, measured using quantitative PCR, in three spatial locations in a CS-infested field: 1) soil close to the plant (SCP); 2) rhizosphere (RS); and 3) geocaulosphere (GS) soils. Two tolerant (Gold Rush, Hindenburg) and two susceptible cultivars (Green Mountain, Agria) were tested. The abundance of pathogenic Streptomyces spp. significantly increased in late August compared with other dates in RS of susceptible cultivars in both years. Abundance of pathogenic Streptomyces spp., when averaged over locations and time, was significantly greater in susceptible cultivars compared with tolerant cultivars in 2014. Principal coordinates analysis showed that SCP and RS soil properties (pH, organic carbon and nitrogen concentrations) explained 68% and 76% of total variation in Streptomyces spp. abundance among cultivars in 2013, respectively, suggesting that cultivars influenced CS pathogen growth conditions. The results suggested that the genetic background of potato cultivars influenced the abundance of pathogenic Streptomyces spp., with 5 to 6 times more abundant Streptomyces spp. in RS of susceptible cultivars compared with tolerant cultivars, which would result in substantially more inoculum left in the field after harvest.  .

  1. An allosteric photoredox catalyst inspired by photosynthetic machinery

    DOE PAGES

    Lifschitz, Alejo M.; Young, Ryan M.; Mendez-Arroyo, Jose; ...

    2015-03-30

    Biological photosynthetic machinery allosterically regulate light harvesting via conformational and electronic changes at the antenna protein complexes as a response to specific chemical inputs. Fundamental limitations in current approaches to regulating inorganic light-harvesting mimics prevent their use in catalysis. Here we show that a light-harvesting antenna/reaction centre mimic can be regulated by utilizing a coordination framework incorporating antenna hemilabile ligands and assembled via a high-yielding, modular approach. As in nature, allosteric regulation is afforded by coupling the conformational changes to the disruptions in the electrochemical landscape of the framework upon recognition of specific coordinating analytes. The hemilabile ligands enable switchingmore » using remarkably mild and redox-inactive inputs, allowing one to regulate the photoredox catalytic activity of the photosynthetic mimic reversibly and in situ. Furthermore, we demonstrate that bioinspired regulatory mechanisms can be applied to inorganic light-harvesting arrays displaying switchable catalytic properties and with potential uses in solar energy conversion and photonic devices.« less

  2. An allosteric photoredox catalyst inspired by photosynthetic machinery

    PubMed Central

    Lifschitz, Alejo M.; Young, Ryan M.; Mendez-Arroyo, Jose; Stern, Charlotte L.; McGuirk, C. Michael; Wasielewski, Michael R.; Mirkin, Chad A.

    2015-01-01

    Biological photosynthetic machinery allosterically regulate light harvesting via conformational and electronic changes at the antenna protein complexes as a response to specific chemical inputs. Fundamental limitations in current approaches to regulating inorganic light-harvesting mimics prevent their use in catalysis. Here we show that a light-harvesting antenna/reaction centre mimic can be regulated by utilizing a coordination framework incorporating antenna hemilabile ligands and assembled via a high-yielding, modular approach. As in nature, allosteric regulation is afforded by coupling the conformational changes to the disruptions in the electrochemical landscape of the framework upon recognition of specific coordinating analytes. The hemilabile ligands enable switching using remarkably mild and redox-inactive inputs, allowing one to regulate the photoredox catalytic activity of the photosynthetic mimic reversibly and in situ. Thus, we demonstrate that bioinspired regulatory mechanisms can be applied to inorganic light-harvesting arrays displaying switchable catalytic properties and with potential uses in solar energy conversion and photonic devices. PMID:25817586

  3. Estimation of photosynthetic capacity using MODIS polarization: 1988 proposal to NASA Headquarters

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern C.

    1992-01-01

    The remote sensing community has clearly identified the utility of NDVI (normalized difference vegetation index) and SR (simple ratio) and other vegetation indices for estimating such metrics of landscape ecology as green foliar biomass, photosynthetic capacity, and net primary production. Both theoretical and empirical investigations have established cause and effect relationships between the photosynthetic process in plant canopies and these combinations of remotely sensed data. Yet it has also been established that the relationships exhibit considerable variability that appears to be ecosystem-dependent and may represent a source of ecologically important information. The overall hypothesis of this proposal is that the ecosystem-dependent variability in the various vegetation indices is in part attributable to the effects of specular reflection. The polarization channels on MODIS provide the potential to estimate this specularly reflected light and allow the modification of the vegetation indices to better measure the photosynthetic process in plant canopies. In addition, these polarization channels potentially provide additional ecologically important information about the plant canopy.

  4. Abundance and Distribution of Microbial Cells and Viruses in an Alluvial Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Donald; Nolan, Jason; Williams, Kenneth H.

    Viruses are the most abundant biological entity on Earth and their interactions with microbial communities are recognized to influence microbial ecology and impact biogeochemical cycling in various ecosystems. While the factors that control the distribution of viruses in surface aquatic environments are well-characterized, the abundance and distribution of continental subsurface viruses with respect to microbial abundance and biogeochemical parameters have not yet been established. In order to begin to understand the factors governing virus distribution in subsurface environments, we assessed microbial cell and virus abundance in groundwater concurrent with groundwater chemistry in a uranium impacted alluvial aquifer adjoining the Coloradomore » River near Rifle, CO. Virus abundance ranged from 8.0 × 10 4 to 1.0 × 10 6 mL -1 and exceeded cell abundance in all samples (cell abundance ranged from 5.8 × 10 4 to 6.1 × 10 5 mL -1). The virus to microbial cell ratio ranged from 1.1 to 8.1 and averaged 3.0 ± 1.6 with virus abundance most strongly correlated to cell abundance (Spearman's ρ = 0.73, p < 0.001). Both viruses and cells were positively correlated to dissolved organic carbon (DOC) with cells having a slightly stronger correlation (Spearman's ρ = 0.46, p < 0.05 and ρ = 0.54, p < 0.05; respectively). Groundwater uranium was also strongly correlated with DOC and virus and cell abundance (Spearman's ρ = 0.62, p < 0.05; ρ = 0.46, p < 0.05; and ρ = 0.50, p < 0.05; respectively). Together the data indicate that microbial cell and virus abundance are correlated to the geochemical conditions in the aquifer. As such local geochemical conditions likely control microbial host cell abundance which in turn controls viral abundance. Given the potential impacts of viral-mediated cell lysis such as liberation of labile organic matter from lysed cells and changes in microbial community structure, viral interactions with the microbiota should be considered in an

  5. Abundance and Distribution of Microbial Cells and Viruses in an Alluvial Aquifer

    DOE PAGES

    Pan, Donald; Nolan, Jason; Williams, Kenneth H.; ...

    2017-07-11

    Viruses are the most abundant biological entity on Earth and their interactions with microbial communities are recognized to influence microbial ecology and impact biogeochemical cycling in various ecosystems. While the factors that control the distribution of viruses in surface aquatic environments are well-characterized, the abundance and distribution of continental subsurface viruses with respect to microbial abundance and biogeochemical parameters have not yet been established. In order to begin to understand the factors governing virus distribution in subsurface environments, we assessed microbial cell and virus abundance in groundwater concurrent with groundwater chemistry in a uranium impacted alluvial aquifer adjoining the Coloradomore » River near Rifle, CO. Virus abundance ranged from 8.0 × 10 4 to 1.0 × 10 6 mL -1 and exceeded cell abundance in all samples (cell abundance ranged from 5.8 × 10 4 to 6.1 × 10 5 mL -1). The virus to microbial cell ratio ranged from 1.1 to 8.1 and averaged 3.0 ± 1.6 with virus abundance most strongly correlated to cell abundance (Spearman's ρ = 0.73, p < 0.001). Both viruses and cells were positively correlated to dissolved organic carbon (DOC) with cells having a slightly stronger correlation (Spearman's ρ = 0.46, p < 0.05 and ρ = 0.54, p < 0.05; respectively). Groundwater uranium was also strongly correlated with DOC and virus and cell abundance (Spearman's ρ = 0.62, p < 0.05; ρ = 0.46, p < 0.05; and ρ = 0.50, p < 0.05; respectively). Together the data indicate that microbial cell and virus abundance are correlated to the geochemical conditions in the aquifer. As such local geochemical conditions likely control microbial host cell abundance which in turn controls viral abundance. Given the potential impacts of viral-mediated cell lysis such as liberation of labile organic matter from lysed cells and changes in microbial community structure, viral interactions with the microbiota should be considered in an

  6. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

    PubMed Central

    Oka, Hisaki

    2016-01-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature. PMID:27173144

  7. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

    NASA Astrophysics Data System (ADS)

    Oka, Hisaki

    2016-05-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature.

  8. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation.

    PubMed

    Oka, Hisaki

    2016-05-13

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature.

  9. Microbial Communities in the Northeastern Pacific and Responses to Organic Matter Inputs Above the Sediment-Water Interface

    NASA Astrophysics Data System (ADS)

    Harbeitner, R.; Sudek, S.; Choi, C. J.; Bird, L.; Worden, A. Z.

    2016-12-01

    We are investigating variability in marine microbial communities in the sunlit photic zone, the mesopelagic "twilight" zone, and the deep sea. To establish an understanding that allows assessment of future change, consistent methods are being used across three North Pacific Ocean cruises. We will characterize vertical distributions and temporal variability by flow cytometry and 16S rRNA gene sequencing (V1-V2 Illumina amplicons). Stations were sampled in the Monterey Bay Canyon, including a shallow depth station (600 m) with relatively high terrestrial input, deeper stations (1000 and 1800 m), and above an offshore seamount (1400 m). At all stations, the cyanobacterium Synechococcus was more abundant than Prochlorococcus in the photic zone and at the shallowest station, photosynthetic eukaryotes dominated. Heterotrophic bacteria abundances were similar (1,132,886 ± 316,914 ml-1) at the chlorophyll maximum in photic zone samples. Within the mesopelagic, at 600 m depth, bacterial abundances were similar (98,632-104,075 ml-1). Below 600 m, the seamount station had lower abundances (49,050 ± 8,473 ml-1) than canyon stations (71,799 ± 10,425 ml-1). We also performed experiments in newly designed gas permeable in situ incubators using water from just above the sediment-seawater interface at canyon sites of 1000 and 1800 m depth. Organic matter (OM)-amended treatments and controls were sampled at 0, 1, 5, and 24 days. Bacteria abundance increased with OM addition after 1 day (e.g. control 68,856 ± 6,826 ml-1, amended 98,088 ± 199 ml-1) and by 24 days increased 6-fold, with no statistical difference between controls and OM treatments. The results that will be presented from these experiments and ongoing diversity analyses are providing new insights into microbial distributions and activities over vertical gradients in the ocean. We are investigating variability in marine microbial communities in the sunlit photic zone, the mesopelagic "twilight" zone, and the deep sea

  10. Photosynthetic parameters in the Beaufort Sea in relation to the phytoplankton community structure

    NASA Astrophysics Data System (ADS)

    Huot, Y.; Babin, M.; Bruyant, F.

    2013-05-01

    To model phytoplankton primary production from remotely sensed data, a method to estimate photosynthetic parameters describing the photosynthetic rates per unit biomass is required. Variability in these parameters must be related to environmental variables that are measurable remotely. In the Arctic, a limited number of measurements of photosynthetic parameters have been carried out with the concurrent environmental variables needed. Such measurements and their relationship to environmental variables will be required to improve the accuracy of remotely sensed estimates of phytoplankton primary production and our ability to predict future changes. During the MALINA cruise, a large dataset of these parameters was obtained. Together with previously published datasets, we use environmental and trophic variables to provide functional relationships for these parameters. In particular, we describe several specific aspects: the maximum rate of photosynthesis (Pmaxchl) normalized to chlorophyll decreases with depth and is higher for communities composed of large cells; the saturation parameter (Ek) decreases with depth but is independent of the community structure; and the initial slope of the photosynthesis versus irradiance curve (αchl) normalized to chlorophyll is independent of depth but is higher for communities composed of larger cells. The photosynthetic parameters were not influenced by temperature over the range encountered during the cruise (-2 to 8 °C).

  11. Photosynthetic parameters in the Beaufort Sea in relation to the phytoplankton community structure

    NASA Astrophysics Data System (ADS)

    Huot, Y.; Babin, M.; Bruyant, F.

    2013-01-01

    To model phytoplankton primary production from remotely sensed data a method to estimate photosynthetic parameters describing the photosynthetic rates per unit biomass is required. Variability in these parameters must be related to environmental variables that are measurable remotely. In the Arctic, a limited number of measurements of photosynthetic parameter have been carried out with the concurrent environmental variables needed. Therefore, to improve the accuracy of remote estimates of phytoplankton primary production as well as our ability to predict changes in the future such measurements and relationship to environmental variables are required. During the MALINA cruise, a large dataset of these parameters were obtained. Together with previously published datasets, we use environmental and trophic variables to provide functional relationships for these parameters. In particular, we describe several specific aspects: the maximum rate of photosynthesis (Pmaxchl) normalized to chlorophyll decreases with depth and is higher for communities composed of large cells; the saturation parameter (Ek) decreases with depth but is independent of the community structure; and the initial slope of the photosynthesis versus irradiance curve (αchl) normalized to chlorophyll is independent of depth but is higher for communities composed of larger cells. The photosynthetic parameters were not influenced by temperature over the range encountered during the cruise (-2 to 8 °C).

  12. Interface for Light-Driven Electron Transfer by Photosynthetic Complexes Across Block Copolymer Membranes.

    PubMed

    Kuang, Liangju; Olson, Tien L; Lin, Su; Flores, Marco; Jiang, Yunjiang; Zheng, Wan; Williams, JoAnn C; Allen, James P; Liang, Hongjun

    2014-03-06

    Incorporation of membrane proteins into nanodevices to mediate recognition and transport in a collective and scalable fashion remains a challenging problem. We demonstrate how nanoscale photovoltaics could be designed using robust synthetic nanomembranes with incorporated photosynthetic reaction centers (RCs). Specifically, RCs from Rhodobacter sphaeroides are reconstituted spontaneously into rationally designed polybutadiene membranes to form hierarchically organized proteopolymer membrane arrays via a charge-interaction-directed reconstitution mechanism. Once incorporated, the RCs are fully active for prolonged periods based upon a variety of spectroscopic measurements, underscoring preservation of their 3D pigment configuration critical for light-driven charge transfer. This result provides a strategy to construct solar conversion devices using structurally versatile proteopolymer membranes with integrated RC functions to harvest broad regions of the solar spectrum.

  13. Abundances of iron-binding photosynthetic and nitrogen-fixing proteins of Trichodesmium both in culture and in situ from the North Atlantic.

    PubMed

    Richier, Sophie; Macey, Anna I; Pratt, Nicola J; Honey, David J; Moore, C Mark; Bibby, Thomas S

    2012-01-01

    Marine cyanobacteria of the genus Trichodesmium occur throughout the oligotrophic tropical and subtropical oceans, where they can dominate the diazotrophic community in regions with high inputs of the trace metal iron (Fe). Iron is necessary for the functionality of enzymes involved in the processes of both photosynthesis and nitrogen fixation. We combined laboratory and field-based quantifications of the absolute concentrations of key enzymes involved in both photosynthesis and nitrogen fixation to determine how Trichodesmium allocates resources to these processes. We determined that protein level responses of Trichodesmium to iron-starvation involve down-regulation of the nitrogen fixation apparatus. In contrast, the photosynthetic apparatus is largely maintained, although re-arrangements do occur, including accumulation of the iron-stress-induced chlorophyll-binding protein IsiA. Data from natural populations of Trichodesmium spp. collected in the North Atlantic demonstrated a protein profile similar to iron-starved Trichodesmium in culture, suggestive of acclimation towards a minimal iron requirement even within an oceanic region receiving a high iron-flux. Estimates of cellular metabolic iron requirements are consistent with the availability of this trace metal playing a major role in restricting the biomass and activity of Trichodesmium throughout much of the subtropical ocean.

  14. Sunspots, Starspots, and Elemental Abundances

    NASA Astrophysics Data System (ADS)

    Doschek, George A.; Warren, Harry P.

    2017-08-01

    The composition of plasma in solar and stellar atmospheres is not fixed, but varies from feature to feature. These variations are organized by the First Ionization Potential (FIP) of the element. Solar measurements often indicate that low FIP elements (< 10eV, such as Fe, Si, Mg) are enriched by factors of 3-4 in the corona relative to high FIP elements (>10 eV, such as C, N, O, Ar, He) compared to abundances in the photosphere. Stellar observations have also shown similar enrichments. An inverse FIP effect, where the low FIP elements are depleted, has been observed in stellar coronae of stars believed to have large starspots in their photospheres. The abundances are important for determining radiative loss rates in models, tracing the origin of the slow solar wind, and for understanding wave propagation in the chromosphere and corona. Recently, inverse FIP effects have been discovered in the Sun (Doschek, Warren, & Feldman 2015, ApJ, 808, L7) from spectra obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. The inverse FIP regions seem always to be near sunspots and cover only a very small area (characteristic length = a few arcseconds). However, in pursuing the search for inverse FIP regions, we have found that in some sunspot groups the coronal abundance at a temperature of 3-4 MK can be near photospheric over much larger areas of the sun near the sunspots (e.g., 6,000 arcsec2). Also, sometimes the abundances at 3-4 MK are in between coronal and photospheric values. This can occur in small areas of an active region. It is predicted (Laming 2015, Sol. Phys., 12, 2) that the FIP effect should be highly variable in the corona. Several examples of coronal abundance variations are presented. Our work indicates that a comprehensive re-investigation of solar abundances is highly desirable. This work is supported by a NASA Hinode grant.

  15. PS2007 Satellite Meeting on Photosynthetic Antennas, 19-22 July 2007, Drymen, Scotland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert E. Blankenship

    2009-06-04

    A Satellite Workshop of the 14th International Congress on Photosynthesis on the topic of photosynthetic light-harvesting systems was held on 18-21 July 2007, at the Buchanan Arms Hotel in Drymen, Scotland, near Glasgow. This meeting continued the tradition of satellite light-harvesting conferences occurring prior to the last five international photosynthesis congresses in Japan, France, Hungary, Australia and Canada, dating from 1992. With an attendance of 124 participants, this Workshop represents an intimate gathering of scientists interested in a thorough coverage of the light-harvesting aspects of photosynthesis. A significant amount of time was set aside for discussion and poster sessions. Themore » organizers were: Richard J. Cogdell, UK (Chairperson), Alastair T. Gardiner, UK, Conrad W. Mullineaux, UK, Robert A. Niederman, USA, Robert E. Blankenship, USA, Harry Frank, USA, Bruno Robert, France. Sessions were focused on new concepts relating to the function, regulation, assembly, photoprotection and evolution of a wide variety of antenna systems. Cutting-edge scientific methods used to study these systems that were covered included time-resolved and single-molecule spectroscopy, structure determination by X-ray diffraction, NMR and electron and atomic force microscopy, molecular genetics, protein chemistry, model systems and theory. A central theme was how emerging high-resolution structural information on antenna proteins continues to provide an enhanced understanding of areas ranging from the kinetics of energy transfer processes to the assembly of the photosynthetic apparatus.« less

  16. NADPH Thioredoxin Reductase C Is Localized in Plastids of Photosynthetic and Nonphotosynthetic Tissues and Is Involved in Lateral Root Formation in Arabidopsis[W

    PubMed Central

    Kirchsteiger, Kerstin; Ferrández, Julia; Pascual, María Belén; González, Maricruz; Cejudo, Francisco Javier

    2012-01-01

    Plastids are organelles present in photosynthetic and nonphotosynthetic plant tissues. While it is well known that thioredoxin-dependent redox regulation is essential for leaf chloroplast function, little is known of the redox regulation in plastids of nonphotosynthetic tissues, which cannot use light as a direct source of reducing power. Thus, the question remains whether redox regulation operates in nonphotosynthetic plastid function and how it is integrated with chloroplasts for plant growth. Here, we show that NADPH-thioredoxin reductase C (NTRC), previously reported as exclusive to green tissues, is also expressed in nonphotosynthetic tissues of Arabidopsis thaliana, where it is localized to plastids. Moreover, we show that NTRC is involved in maintaining the redox homeostasis of plastids also in nonphotosynthetic organs. To test the relationship between plastids of photosynthetic and nonphotosynthetic tissues, transgenic plants were obtained with redox homeostasis restituted exclusively in leaves or in roots, through the expression of NTRC under the control of organ-specific promoters in the ntrc mutant. Our results show that fully functional root amyloplasts are not sufficient for root, or leaf, growth, but fully functional chloroplasts are necessary and sufficient to support wild-type rates of root growth and lateral root formation. PMID:22505729

  17. Fixation of CO2 and CO on a diverse range of carbohydrates using anaerobic, non-photosynthetic mixotrophy.

    PubMed

    Maru, Biniam T; Munasinghe, Pradeep C; Gilary, Hadar; Jones, Shawn W; Tracy, Bryan P

    2018-04-01

    Biological CO2 fixation is an important technology that can assist in combating climate change. Here, we show an approach called anaerobic, non-photosynthetic mixotrophy can result in net CO2 fixation when using a reduced feedstock. This approach uses microbes called acetogens that are capable of concurrent utilization of both organic and inorganic substrates. In this study, we investigated the substrate utilization of 17 different acetogens, both mesophilic and thermophilic, on a variety of different carbohydrates and gases. Compared to most model acetogen strains, several non-model mesophilic strains displayed greater substrate flexibility, including the ability to utilize disaccharides, glycerol and an oligosaccharide, and growth rates. Three of these non-model strains (Blautia producta, Clostridium scatologenes and Thermoanaerobacter kivui) were chosen for further characterization, under a variety of conditions including H2- or syngas-fed sugar fermentations and a CO2-fed glycerol fermentation. In all cases, CO2 was fixed and carbon yields approached 100%. Finally, the model acetogen C. ljungdahlii was engineered to utilize glucose, a non-preferred sugar, while maintaining mixotrophic behavior. This work demonstrates the flexibility and robustness of anaerobic, non-photosynthetic mixotrophy as a technology to help reduce CO2 emissions.

  18. Co-regulation of photosynthetic capacity by nitrogen, phosphorus and magnesium in a subtropical Karst forest in China.

    PubMed

    Wang, Jing; Wen, Xuefa; Zhang, Xinyu; Li, Shenggong; Zhang, Da-Yong

    2018-05-09

    Leaf photosynthetic capacity is mainly constrained by nitrogen (N) and phosphorus (P). Little attention has been given to the photosynthetic capacity of mature forests with high calcium (Ca) and magnesium (Mg) in the Karst critical zone. We measured light-saturated net photosynthesis (A sat ), photosynthetic capacity (maximum carboxylation rate [V cmax ], and maximum electron transport rate [J max ]) as well as leaf nutrient contents (N, P, Ca, Mg, potassium [K], and sodium [Na]), leaf mass per area (LMA), and leaf thickness (LT) in 63 dominant plants in a mature subtropical forest in the Karst critical zone in southwestern China. Compared with global data, plants showed higher A sat for a given level of P. V cmax and J max were mainly co-regulated by N, P, Mg, and LT. The ratios of V cmax to N or P, and J max to N or P were significantly positively related to Mg. We speculate that the photosynthetic capacity of Karst plants can be modified by Mg because Mg can enhance photosynthetic N and P use efficiency.

  19. The mechanisms by which phenanthrene affects the photosynthetic apparatus of cucumber leaves.

    PubMed

    Jin, Liqiao; Che, Xingkai; Zhang, Zishan; Li, Yuting; Gao, Huiyuan; Zhao, Shijie

    2017-02-01

    Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) that is widely distributed in the environment and seriously affects the growth and development of plants. To clarify the mechanisms of the direct effects of phenanthrene on the plant photosynthetic apparatus, we measured short-term phenanthrene-treated cucumber leaves. Phenanthrene inhibited Rubisco carboxylation activity, decreasing photosynthesis rates (Pn). And phenanthrene inhibited photosystem II (PSII) activity, thereby blocking photosynthetic electron transport. The inhibition of the light and dark reactions decreased the photosynthetic electron transport rate (ETR) and increased the excitation pressure (1-qP). Under high light, the maximum photochemical efficiency of photosystem II (F v /F m ) in phenanthrene-treated cucumber leaves decreased significantly, but photosystem I (PSI) activity (Δ I/I o ) did not. Phenanthrene also caused a J-point rise in the OJIP curve under high light, which indicated that the acceptor side of PSII Q A to Q B electron transfer was restricted. This was primarily due to the net degradation of D1 protein, which is caused by the accumulation of reactive oxygen species (ROS) in phenanthrene-treated cucumber leaves under high light. This study demonstrated that phenanthrene could directly inhibit photosynthetic electron transport and Rubisco carboxylation activity to decrease net Pn. Under high light, phenanthrene caused the accumulation of ROS, resulting in net increases in D1 protein degradation and consequently causing PSII photoinhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Changes in growth, photosynthetic activities, biochemical parameters and amino acid profile of Thompson Seedless grapes (Vitis vinifera L.).

    PubMed

    Somkuwar, R G; Bahetwar, Anita; Khan, I; Satisha, J; Ramteke, S D; Itroutwar, Prerna; Bhongale, Aarti; Oulkar, Dashrath

    2014-11-01

    The study on photosynthetic activity and biochemical parameters in Thompson Seedless grapes grafted on Dog Ridge rootstock and its impact on growth, yield and amino acid profile at various stages of berry development was conducted during the year 2012-2013. Leaf and berry samples from ten year old vines of Thompson Seedless were collected at different growth and berry developmental stages. The analysis showed difference in photosynthetic activity, biochemical parameters and amino acid status with the changes in berry development stage. Higher photosynthetic rate of 17.39 umol cm(-2) s(-1) was recorded during 3-4mm berry size and the lowest (10.08 umol cm(-2) s(-1)) was recorded during the veraison stage. The photosynthetic activity showed gradual decrease with the onset of harvest while the different biochemical parameters showed increase and decrease from one stage to another in both berry and leaves. Changes in photosynthetic activity and biochemical parameters thereby affected the growth, yield and amino acid content of the berry. Positive correlation of leaf area and photosynthetic rate was recorded during the period of study. Reducing sugar (352.25 mg g(-1)) and total carbohydrate (132.52 mg g(-1)) was more in berries as compared to leaf. Amino acid profile showed variations in different stages of berry development. Marked variations in photosynthetic as well as biochemical and amino acid content at various berry development stages was recorded and thereby its cumulative effect on the development of fruit quality.

  1. Leaf Photosynthetic Parameters Related to Biomass Accumulation in a Global Rice Diversity Survey1[OPEN

    PubMed Central

    Zheng, Guangyong; Hamdani, Saber; Essemine, Jemaa; Song, Qingfeng; Wang, Hongru

    2017-01-01

    Mining natural variations is a major approach to identify new options to improve crop light use efficiency. So far, successes in identifying photosynthetic parameters positively related to crop biomass accumulation through this approach are scarce, possibly due to the earlier emphasis on properties related to leaf instead of canopy photosynthetic efficiency. This study aims to uncover rice (Oryza sativa) natural variations to identify leaf physiological parameters that are highly correlated with biomass accumulation, a surrogate of canopy photosynthesis. To do this, we systematically investigated 14 photosynthetic parameters and four morphological traits in a rice population, which consists of 204 U.S. Department of Agriculture-curated minicore accessions collected globally and 11 elite Chinese rice cultivars in both Beijing and Shanghai. To identify key components responsible for the variance of biomass accumulation, we applied a stepwise feature-selection approach based on linear regression models. Although there are large variations in photosynthetic parameters measured in different environments, we observed that photosynthetic rate under low light (Alow) was highly related to biomass accumulation and also exhibited high genomic inheritability in both environments, suggesting its great potential to be used as a target for future rice breeding programs. Large variations in Alow among modern rice cultivars further suggest the great potential of using this parameter in contemporary rice breeding for the improvement of biomass and, hence, yield potential. PMID:28739819

  2. Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, G.A.; Hearst, J.E.; Alberti, M.

    1990-12-01

    Carotenoids comprise one of the most widespread classes of pigments found in nature. The first reactions of C{sub 40} carotenoid biosynthesis proceed through common intermediates in all organisms, suggesting the evolutionary conservation of early enzymes from this pathway. The authors report here the nucleotide sequence of three genes from the carotenoid biosynthesis gene cluster of Erwinia herbicola, a nonphotosynthetic epiphytic bacterium, which encode homologs of the CrtB, CrtE, and CrtI proteins of Rhodobacter capsulatus, a purple nonsulfur photosynthetic bacterium. CrtB (prephytoene pyrophosphate synthase), CrtE (phytoene synthase), and CrtI (phytoene dehydrogenase) are required for the first three reactions specific to themore » carotenoid branch of general isoprenoid metabolism. All three dehydrogenases possess a hydrophobic N-terminal domain containing a putative ADP-binding {beta}{alpha}{beta} fold characteristic of enzymes known to bind FAD or NAD(P) cofactors. These data indicate the structural conservation of early carotenoid biosynthesis enzymes in evolutionary diverse organisms.« less

  3. Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach.

    PubMed

    Esteban, Raquel; Barrutia, Oihana; Artetxe, Unai; Fernández-Marín, Beatriz; Hernández, Antonio; García-Plazaola, José Ignacio

    2015-04-01

    Photosynthetic pigment composition has been a major study target in plant ecophysiology during the last three decades. Although more than 2000 papers have been published, a comprehensive evaluation of the responses of photosynthetic pigment composition to environmental conditions is not yet available. After an extensive survey, we compiled data from 525 papers including 809 species (subkingdom Viridiplantae) in which pigment composition was described. A meta-analysis was then conducted to assess the ranges of photosynthetic pigment content. Calculated frequency distributions of pigments were compared with those expected from the theoretical pigment composition. Responses to environmental factors were also analysed. The results revealed that lutein and xanthophyll cycle pigments (VAZ) were highly responsive to the environment, emphasizing the high phenotypic plasticity of VAZ, whereas neoxanthin was very stable. The present meta-analysis supports the existence of relatively narrow limits for pigment ratios and also supports the presence of a pool of free 'unbound' VAZ. Results from this study provide highly reliable ranges of photosynthetic pigment contents as a framework for future research on plant pigments. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient.

    PubMed

    Granath, Gustaf; Strengbom, Joachim; Breeuwer, Angela; Heijmans, Monique M P D; Berendse, Frank; Rydin, Håkan

    2009-04-01

    Increased N deposition in Europe has affected mire ecosystems. However, knowledge on the physiological responses is poor. We measured photosynthetic responses to increasing N deposition in two peatmoss species (Sphagnum balticum and Sphagnum fuscum) from a 3-year, north-south transplant experiment in northern Europe, covering a latitudinal N deposition gradient ranging from 0.28 g N m(-2) year(-1) in the north, to 1.49 g N m(-2) year(-1) in the south. The maximum photosynthetic rate (NP(max)) increased southwards, and was mainly explained by tissue N concentration, secondly by allocation of N to the photosynthesis, and to a lesser degree by modified photosystem II activity (variable fluorescence/maximum fluorescence yield). Although climatic factors may have contributed, these results were most likely attributable to an increase in N deposition southwards. For S. fuscum, photosynthetic rate continued to increase up to a deposition level of 1.49 g N m(-2) year(-1), but for S. balticum it seemed to level out at 1.14 g N m(-2) year(-1). The results for S. balticum suggested that transplants from different origin (with low or intermediate N deposition) respond differently to high N deposition. This indicates that Sphagnum species may be able to adapt or physiologically adjust to high N deposition. Our results also suggest that S. balticum might be more sensitive to N deposition than S. fuscum. Surprisingly, NP(max) was not (S. balticum), or only weakly (S. fuscum) correlated with biomass production, indicating that production is to a great extent is governed by factors other than the photosynthetic capacity.

  5. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    PubMed

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Ecohydrology of the different photosynthetic pathways and implication for sustainable agriculture

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.; Bartlett, M. S., Jr.; Hartzell, S. R.

    2016-12-01

    We use a recently proposed model that can simulate the different photosynthetic pathways coupled to the soil-plant-atmosphere continuum (SPAC) to discuss their ecohydrological implications in relation to water use and plant water stress in both natural and agricultural ecosystems. Built around the classical C3 photosynthesis core model (light reactions and Calvin cycle), the model includes a simple CO2-pump parameterization for C4 plants and a circadian rhythm and carbon storage components for the CAM (Crassulacean Acid Metabolism) plants. Its architecture takes advantage of the interesting modularity in which photosynthesis evolved in geological times to provide a relatively simple but comprehensive framework to explore the advantages and tradeoffs in water energy and carbon fluxes of the three photosynthetic pathways under fluctuating environmental forcing. We calibrate the model with reference to a series of C3,C4 and CAM plants, and discuss the trade-offs in water use and plan productivity and the related impact on hydrologic fluxes and soil biogeochemistry. We also consider some important crop species to analyze the implications of choosing crops with different photosynthetic pathways to improve sustainability of agriculture and irrigation in semiarid systems.

  7. Spontaneous Mutation Rate in the Smallest Photosynthetic Eukaryotes

    PubMed Central

    Krasovec, Marc; Eyre-Walker, Adam; Sanchez-Ferandin, Sophie

    2017-01-01

    Abstract Mutation is the ultimate source of genetic variation, and knowledge of mutation rates is fundamental for our understanding of all evolutionary processes. High throughput sequencing of mutation accumulation lines has provided genome wide spontaneous mutation rates in a dozen model species, but estimates from nonmodel organisms from much of the diversity of life are very limited. Here, we report mutation rates in four haploid marine bacterial-sized photosynthetic eukaryotic algae; Bathycoccus prasinos, Ostreococcus tauri, Ostreococcus mediterraneus, and Micromonas pusilla. The spontaneous mutation rate between species varies from μ = 4.4 × 10−10 to 9.8 × 10−10 mutations per nucleotide per generation. Within genomes, there is a two-fold increase of the mutation rate in intergenic regions, consistent with an optimization of mismatch and transcription-coupled DNA repair in coding sequences. Additionally, we show that deviation from the equilibrium GC content increases the mutation rate by ∼2% to ∼12% because of a GC bias in coding sequences. More generally, the difference between the observed and equilibrium GC content of genomes explains some of the inter-specific variation in mutation rates. PMID:28379581

  8. Modulation of cadmium-induced phytotoxicity in Cabomba caroliniana by urea involves photosynthetic metabolism and antioxidant status.

    PubMed

    Huang, Wenmin; Shao, Hui; Zhou, Sining; Zhou, Qin; Li, Wei; Xing, Wei

    2017-10-01

    Urea is a widespread organic pollutant, which can be a nitrogen source, playing different roles in the growth of submerged macrophytes depending on concentrations, while high cadmium (Cd) concentrations are often toxic to macrophytes. In order to evaluate the combined effect of urea and Cd on a submerged macrophyte, Cabomba caroliniana, the morphological and physiological responses of C. caroliniana in the presence of urea and Cd were studied. The results showed that high concentrations of urea (400mgL -1 ) and Cd (500µmolL -1 ) had negative effects on C. caroliniana. There were strong visible symptoms of toxicity after 4 days of exposure under Cd-alone, 400mgL -1 urea, and Cd+400mgL -1 urea treatments. In addition, 400mgL -1 urea and Cd had adverse effects on C. caroliniana's pigment system. Significant losses in chlorophyll fluorescence and photosynthetic rates, as well as Rubisco activity were also observed under Cd-alone, 400mgL -1 urea, and Cd+400mgL -1 urea treatments. 400mgL -1 urea markedly enhanced Cd toxicity in C. caroliniana, reflected by a sharp decrease in photosynthetic activity and more visible toxicity symptoms. The results of thiobarbituric acid reactive substances (TBARS) pointed to extreme oxidative stress in C. caroliniana induced under Cd or 400mgL -1 urea exposure. Exogenous ascorbate (AsA) protected C. caroliniana from adverse damage in 400mgL -1 urea, which further corroborated the oxidative stress claim under 400mgL -1 urea. However, results also demonstrated that lower urea concentration (10mgL -1 ) alleviated Cd-induced phytotoxicity by stimulating chlorophyll synthesis and photosynthetic activity, as well as activating the activity of catalase (CAT) and glutathione-S-transferase (GST), which may explain the alleviating effect of urea on C. caroliniana under Cd stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. BOREAS TE-9 NSA Photosynthetic Capacity and Foliage Nitrogen Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the spatial and temporal relationship between foliage nitrogen concentration and photosynthetic capacity in the canopies of black spruce, jack pine, and aspen located within the Northern Study Area (NSA). The data were collected from June to September 1994 and are useful for modeling the vertical distribution of carbon fixation for different forest types in the boreal forest. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum.

    PubMed

    Jiang, Chuang-Dao; Wang, Xin; Gao, Hui-Yuan; Shi, Lei; Chow, Wah Soon

    2011-03-01

    Leaf anatomy of C3 plants is mainly regulated by a systemic irradiance signal. Since the anatomical features of C4 plants are different from that of C3 plants, we investigated whether the systemic irradiance signal regulates leaf anatomical structure and photosynthetic performance in sorghum (Sorghum bicolor), a C4 plant. Compared with growth under ambient conditions (A), no significant changes in anatomical structure were observed in newly developed leaves by shading young leaves alone (YS). Shading mature leaves (MS) or whole plants (S), on the other hand, caused shade-leaf anatomy in newly developed leaves. By contrast, chloroplast ultrastructure in developing leaves depended only on their local light conditions. Functionally, shading young leaves alone had little effect on their net photosynthetic capacity and stomatal conductance, but shading mature leaves or whole plants significantly decreased these two parameters in newly developed leaves. Specifically, the net photosynthetic rate in newly developed leaves exhibited a positive linear correlation with that of mature leaves, as did stomatal conductance. In MS and S treatments, newly developed leaves exhibited severe photoinhibition under high light. By contrast, newly developed leaves in A and YS treatments were more resistant to high light relative to those in MS- and S-treated seedlings. We suggest that (1) leaf anatomical structure, photosynthetic capacity, and high-light tolerance in newly developed sorghum leaves were regulated by a systemic irradiance signal from mature leaves; and (2) chloroplast ultrastructure only weakly influenced the development of photosynthetic capacity and high-light tolerance. The potential significance of the regulation by a systemic irradiance signal is discussed.

  11. Dynamic control of photosynthetic photon flux for lettuce production in CELSS

    NASA Technical Reports Server (NTRS)

    Chun, C.; Mitchell, C. A.

    1996-01-01

    A new dynamic control of photosynthetic photon flux (PPF) was tested using lettuce canopies growing in the Minitron II plant-growth/canopy gas-exchange system. Canopy photosynthetic rates (Pn) were measured in real time and fedback for further environment control. Pn can be manipulated by changing PPF, which is a good environmental parameter for dynamic control of crop production in a Controlled Ecological Life-Support Systems CELSS. Decision making that combines empirical mathematical models with rule sets developed from recent experimental data was tested. With comparable yield indices and potential for energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  12. Sustained Photosynthetic Performance of Coffea spp. under Long-Term Enhanced [CO2

    PubMed Central

    Ramalho, José C.; Rodrigues, Ana P.; Semedo, José N.; Pais, Isabel P.; Martins, Lima D.; Simões-Costa, Maria C.; Leitão, António E.; Fortunato, Ana S.; Batista-Santos, Paula; Palos, Isabel M.; Tomaz, Marcelo A.; Scotti-Campos, Paula; Lidon, Fernando C.; DaMatta, Fábio M.

    2013-01-01

    Coffee is one of the world’s most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m-2 s-1), RH (75%) and 380 or 700 μL CO2 L-1 for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49%) when measured at 700 than at 380 μL CO2 L-1. This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory) components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down-regulation was found, our data

  13. Breakdown of food waste by anaerobic fermentation and non-oxygen producing photosynthesis using a photosynthetic bacterium.

    PubMed

    Mekjinda, N; Ritchie, R J

    2015-01-01

    Large volumes of food waste are produced by restaurants, hotels, etc generating problems in its collection, processing and disposal. Disposal as garbage increases the organic matter in landfills and leachates. The photosynthetic bacterium Rhodopseudomonas palustris (CGA 009) easily broke down food waste. R. palustris produces H2 under anaerobic conditions and digests a very wide range of organic compounds. R. palustris reduced BOD by ≈70% and COD by ≈33%, starch, ammonia, nitrate, was removed but had little effect on reducing sugar or the total phosphorus, lipid, protein, total solid in a 7-day incubation. R. palustris produced a maximum of 80ml H2/g COD/day. A two-stage anaerobic digestion using yeast as the first stage, followed by a R. palustris digestion was tested but production of H2 was low. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.

    PubMed

    Stinziano, Joseph R; Way, Danielle A

    2017-08-01

    Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.

  15. Photosynthetic light reactions--an adjustable hub in basic production and plant immunity signaling.

    PubMed

    Kangasjärvi, Saijaliisa; Tikkanen, Mikko; Durian, Guido; Aro, Eva-Mari

    2014-08-01

    Photosynthetic efficiency is a key trait that influences the sustainable utilization of plants for energy and nutrition. By now, extensive research on photosynthetic processes has underscored important structural and functional relationships among photosynthetic thylakoid membrane protein complexes, and their roles in determining the productivity and stress resistance of plants. Photosystem II photoinhibition-repair cycle, for example, has arisen vital in protecting also Photosystem I against light-induced damage. Availability of highly sophisticated genetic, biochemical and biophysical tools has greatly expanded the catalog of components that carry out photoprotective functions in plants. On thylakoid membranes, these components encompass a network of overlapping systems that allow delicate regulation of linear and cyclic electron transfer pathways, balancing of excitation energy distribution between the two photosystems and dissipation of excess light energy in the antenna system as heat. An increasing number of reports indicate that the above mentioned mechanisms also mediate important functions in the regulation of biotic stress responses in plants. Particularly the handling of excitation energy in the light harvesting II antenna complexes appears central to plant immunity signaling. Comprehensive understanding of the underlying mechanisms and regulatory cross-talk, however, still remain elusive. This review highlights the current understanding of components that regulate the function of photosynthetic light reactions and directly or indirectly also modulate disease resistance in higher plants. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Photophysiology of kleptoplasts: photosynthetic use of light by chloroplasts living in animal cells.

    PubMed

    Serôdio, João; Cruz, Sónia; Cartaxana, Paulo; Calado, Ricardo

    2014-04-19

    Kleptoplasty is a remarkable type of photosynthetic association, resulting from the maintenance of functional chloroplasts--the 'kleptoplasts'--in the tissues of a non-photosynthetic host. It represents a biologically unique condition for chloroplast and photosynthesis functioning, occurring in different phylogenetic lineages, namely dinoflagellates, ciliates, foraminiferans and, most interestingly, a single taxon of metazoans, the sacoglossan sea slugs. In the case of sea slugs, chloroplasts from macroalgae are often maintained as intracellular organelles in cells of these marine gastropods, structurally intact and photosynthetically competent for extended periods of time. Kleptoplasty has long attracted interest owing to the longevity of functional kleptoplasts in the absence of the original algal nucleus and the limited number of proteins encoded by the chloroplast genome. This review updates the state-of-the-art on kleptoplast photophysiology, focusing on the comparative analysis of the responses to light of the chloroplasts when in their original, macroalgal cells, and when sequestered in animal cells and functioning as kleptoplasts. It covers fundamental but ecologically relevant aspects of kleptoplast light responses, such as the occurrence of photoacclimation in hospite, operation of photoprotective processes and susceptibility to photoinhibition. Emphasis is given to host-mediated processes unique to kleptoplastic associations, reviewing current hypotheses on behavioural photoprotection and host-mediated enhancement of photosynthetic performance, and identifying current gaps in sacoglossan kleptoplast photophysiology research.

  17. Identification of large variation in the photosynthetic induction response among 37 soybean genotypes that is not correlated with steady-state photosynthetic capacity

    USDA-ARS?s Scientific Manuscript database

    Irradiance continuously fluctuates during the day in the field, potentially resulting in photosynthetic induction of leaves as they transition from low to high light. The speed of the induction response affects the cumulative carbon gain of the plants and could impact growth and yield. The photosynt...

  18. Abundance of complex organic molecules in comets

    NASA Astrophysics Data System (ADS)

    Biver, N.; Bockelée-Morvan, D.; Debout, V.; Crovisier, J.; Moreno, R.; Boissier, J.; Lis, D.; Colom, P.; Paubert, G.; Dello Russo, N.; Vervack, R.; Weaver, H.

    2014-07-01

    The IRAM-30m submillimetre radio telescope has now an improved sensitivity and versality thanks to its wide-band EMIR receivers and high-resolution FFT spectrometer. Since 2012, we have undertaken ~70 GHz wide spectral surveys in the 1-mm band in several comets: C/2009 P1 (Garradd), C/2011 L4 (PanSTARRS), C/2012 F6 (Lemmon), C/2012 S1 (ISON), and C/2013 R1 (Lovejoy). Since their discovery in comet C/1995 O1 (Hale-Bopp) in 1997 (Bockelée-Morvan et al. 2000, Crovisier et al. 2004a, 2004b), we have detected complex CHO(N)-molecules such as formic acid (HCOOH), formamide (NH_2CHO), acetaldehyde (CH_3CHO), and ethylene glycol ((CH_2OH)_2) in several other comets. HCOOH has now been detected in 6 other comets since 2004, and formamide, ethylene glycol, and acetaldehyde were re-detected for the first time in comets Lemmon or Lovejoy in 2013 (Biver et al. 2014). We will present the abundances relative to water we derive for these species, and the sensitive upper limits we obtain for other complex CHO-bearing molecules. We will discuss the implication of these findings on the origin of cometary material in comparison with observations of such molecules in the interstellar medium.

  19. Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends.

    PubMed

    Fernandes, Bruno D; Mota, Andre; Teixeira, Jose A; Vicente, Antonio A

    2015-11-01

    The possibility of using photosynthetic microorganisms, such as cyanobacteria and microalgae, for converting light and carbon dioxide into valuable biochemical products has raised the need for new cost-efficient processes ensuring a constant product quality. Food, feed, biofuels, cosmetics and pharmaceutics are among the sectors that can profit from the application of photosynthetic microorganisms. Biomass growth in a photobioreactor is a complex process influenced by multiple parameters, such as photosynthetic light capture and attenuation, nutrient uptake, photobioreactor hydrodynamics and gas-liquid mass transfer. In order to optimize productivity while keeping a standard product quality, a permanent control of the main cultivation parameters is necessary, where the continuous cultivation has shown to be the best option. However it is of utmost importance to recognize the singularity of continuous cultivation of cyanobacteria and microalgae due to their dependence on light availability and intensity. In this sense, this review provides comprehensive information on recent breakthroughs and possible future trends regarding technological and process improvements in continuous cultivation systems of microalgae and cyanobacteria, that will directly affect cost-effectiveness and product quality standardization. An overview of the various applications, techniques and equipment (with special emphasis on photobioreactors) in continuous cultivation of microalgae and cyanobacteria are presented. Additionally, mathematical modeling, feasibility, economics as well as the applicability of continuous cultivation into large-scale operation, are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yoshitomo; Hall, D.O.; Nouee, J. De La

    1995-07-20

    The photosynthetic performance of a helical tubular photobioreactor (``Biocoil``), incorporating the filamentous cyanobacterium Spirulina platensis, was investigated. The photobioreactor was constructed in a cylindrical shape with a 0.25-m{sup 2} basal area and a photostage comprising 60 m of transparent PVC tubing of 1.6-cm inner diameter. The inner surface of the cylinder was illuminated with cool white fluorescent lamps; the energy input of photosynthetically active radiation into the photobioreactor was 2,920 kJ per day. An air-lift system incorporating 4% CO{sub 2} was used to circulate the growth medium in the tubing. The maximum productivity achieved in batch culture was 7.18 gmore » dry biomass per day which corresponded to a photosynthetic (PAR) efficiency of 5.45%. The CO{sub 2} was efficiently removed from the gaseous stream; monitoring the CO{sub 2} in the outlet and inlet gas streams showed a 70% removal of CO{sub 2} from the inlet gas over an 8-h period with almost maximum growth rate.« less

  1. Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints

    NASA Technical Reports Server (NTRS)

    Zubko, Viktor; Dwek, Eli; Arendt, Richard G.

    2004-01-01

    We present new interstellar dust models which have been derived by simultaneously fitting the far ultraviolet to near infrared extinction, the diffuse infrared emission, and, unlike previous models, the elemental abundances in dust for the diffuse interstellar medium. We found that dust models consisting of a mixture of spherical graphite and silicate grains, polycyclic aromatic hydrocarbon (PAH) molecules, in addition to porous composite particles containing silicate, organic refractory, and water ice, provide an improved .t to the UV-to-infrared extinction and infrared emission measurements, while consuming the amounts of elements well within the uncertainties of adopted interstellar abundances, including B star abundances. These models are a signi.cant improvement over the recent Li & Draine (2001, ApJ, 554, 778) model which requires an excessive amount of silicon to be locked up in dust: 48 ppm (atoms per million of H atoms), considerably more than the solar abundance of 34 ppm or the B star abundance of 19 ppm.

  2. Peudomonas fluorescens diversity and abundance in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Amina, Melinai; Ahmed, Bensoltane; Khaladi, Mederbel

    2010-05-01

    It is now over 30 years since that a several plant associated strains of fluorescent Pseudomonas spp. are known to produce antimicrobial metabolites, playing a significant role in the biological control of a lot of plant diseases. For that, the interest in the use of these bacteria for biocontrol of plant pathogenic agents has increased. However, few comprehensive studies have described the abundance of this soil borne bacteria in the region of Mascara (Northern-Algerian West). In the connection of this problem, this work was done by monitoring the number of indigenous Pseudomonas fluorescens organisms in three stations characterizing different ecosystems, to document their abundance, diversity and investigate the relationship between P. fluorescens abundance and soil properties. Our quantitative plate counting results hence the conception of their ecology in the rhizosphere. Thus, quantitative results has confirmed that P. fluorescens are successful root colonizers with strong predominance and competed for many ecological niche, where their distribution were correlated significantly (P<0.05) with the majority of soil properties. Keywords: P. Fluorescens, Ecosystems, Abundance, Diversity, Correlated, Soil Properties.

  3. Laboratory assessment of bioleaching of shallow eutrophic sediment by immobilized photosynthetic bacteria.

    PubMed

    Sun, Shiyong; Fan, Shenglan; Shen, Kexuan; Lin, Shen; Nie, Xiaoqin; Liu, Mingxue; Dong, Faqin; Li, Jian

    2017-10-01

    Eutrophic sediment is a serious problem in ecosystem restoration, especially in shallow lake ecosystems. We present a novel bioleaching approach to treat shallow eutrophic sediment with the objective of preventing the release of nitrate, phosphate, and organic compounds from the sediment to the water column, using porous mineral-immobilized photosynthetic bacteria (PSB). Bioactivity of bacteria was maintained during the immobilization process. Immobilized PSB beads were directly deposited on the sediment surface. The deposited PSB utilized pollutants diffused from the sediment as a nutritive matrix for growth. We evaluated the effects of light condition, temperature, initial pH, amount of PSB beads, and frequency of addition of PSB beads for contaminant removal efficiency during bioleaching operations. The presented study indicated that immobilized PSB beads using porous minerals as substrates have considerable application potential in bioremediation of shallow eutrophic lakes.

  4. Purple non-sulfur photosynthetic bacteria monitor environmental stresses.

    PubMed

    Kis, Mariann; Sipka, Gábor; Asztalos, Emese; Rázga, Zsolt; Maróti, Péter

    2015-10-01

    Heavy metal ion pollution and oxygen deficiency are major environmental risks for microorganisms in aqueous habitat. The potential of purple non-sulfur photosynthetic bacteria for biomonitoring and bioremediation was assessed by investigating the photosynthetic capacity in heavy metal contaminated environments. Cultures of bacterial strains Rhodobacter sphaeroides, Rhodospirillum rubrum and Rubrivivax gelatinosus were treated with heavy metal ions in micromolar (Hg(2+)), submillimolar (Cr(6+)) and millimolar (Pb(2+)) concentration ranges. Functional assays (flash-induced absorption changes and bacteriochlorophyll fluorescence induction) and electron micrographs were taken to specify the harmful effects of pollution and to correlate to morphological changes of the membrane. The bacterial strains and functional tests showed differentiated responses to environmental stresses, revealing that diverse mechanisms of tolerance and/or resistance are involved. The microorganisms were vulnerable to the prompt effect of Pb(2+), showed weak tolerance to Hg(2+) and proved to be tolerant to Cr(6+). The reaction center controlled electron transfer in Rvx. gelatinosus demonstrated the highest degree of resistance against heavy metal exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The genetic basis of anoxygenic photosynthetic arsenite oxidation

    USGS Publications Warehouse

    Hernandez-Maldonado, Jamie; Sanchez-Sedillo, Benjamin; Stoneburner, Brendon; Boren, Alison; Miller, Laurence G.; McCann, Shelley; Rosen, Michael R.; Oremland, Ronald S.; Saltikov, Chad W.

    2017-01-01

    “Photoarsenotrophy”, the use of arsenite as an electron donor for anoxygenic photosynthesis, is thought to be an ancient form of phototrophy along with the photosynthetic oxidation of Fe(II), H2S, H2, and NO2-. Photoarsenotrophy was recently identified from Paoha Island's (Mono Lake, CA) arsenic-rich hot springs. The genomes of several photoarsenotrophs revealed a gene cluster, arxB2AB1CD, where arxA is predicted to encode for the sole arsenite oxidase. The role of arxA in photosynthetic arsenite oxidation was confirmed by disrupting the gene in a representative photoarsenotrophic bacterium, resulting in the loss of light-dependent arsenite oxidation. In situ evidence of active photoarsenotrophic microbes was supported by arxA mRNA detection for the first time, in red-pigmented microbial mats within the hot springs of Paoha Island. This work expands on the genetics for photosynthesis coupled to new electron donors and elaborates on known mechanisms for arsenic metabolism, thereby highlighting the complexities of arsenic biogeochemical cycling.

  6. Role of interference in the photosynthetic heat engine

    NASA Astrophysics Data System (ADS)

    Xu, Y. Y.; Liu, J.

    2014-11-01

    The observation of quantum coherence in pigment-protein complexes has attracted considerable interest. One such endeavor entails applying a quantum heat engine to model the photosynthetic reaction center, but the definition of work used is inconsistent with that defined in quantum thermodynamics. Using the definition of work proposed in Weimer et al. [Europhys. Lett. 83, 30008 (2008), 10.1209/0295-5075/83/30008], we investigated two proposals for enhancing the performance of the photosynthetic reaction center. In proposal A, which is similar to that in Dorfman et al. [Proc. Natl. Acad. Sci. USA 110, 2746 (2013), 10.1073/pnas.1212666110], we found that the power and current-voltage characteristic of the heat engine can be increased by Fano interference but the efficiency cannot. In proposal B, which is similar to that in Creatore et al. [Phys. Rev. Lett. 111, 253601 (2013), 10.1103/PhysRevLett.111.253601], we found that the mechanism of strengthening the performance of the heat engine is invalid; i.e., the dipole-dipole interaction between two electron donors could not increase the power, efficiency, or current-voltage characteristic.

  7. Mycorrhiza Symbiosis Increases the Surface for Sunlight Capture in Medicago truncatula for Better Photosynthetic Production

    PubMed Central

    Adolfsson, Lisa; Keresztes, Áron; Uddling, Johan; Schoefs, Benoît; Spetea, Cornelia

    2015-01-01

    Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with Pi fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with Pi fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased Pi supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and Pi-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by Pi fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and Pi-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area. PMID:25615871

  8. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production.

    PubMed

    Adolfsson, Lisa; Solymosi, Katalin; Andersson, Mats X; Keresztes, Áron; Uddling, Johan; Schoefs, Benoît; Spetea, Cornelia

    2015-01-01

    Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with P(i) fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with P(i) fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased P(i) supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and P(i)-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by P(i) fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and P(i)-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.

  9. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies).

    PubMed

    Stinziano, Joseph R; Hüner, Norman P A; Way, Danielle A

    2015-12-01

    Climate change, via warmer springs and autumns, may lengthen the carbon uptake period of boreal tree species, increasing the potential for carbon sequestration in boreal forests, which could help slow climate change. However, if other seasonal cues such as photoperiod dictate when photosynthetic capacity declines, warmer autumn temperatures may have little effect on when carbon uptake capacity decreases in these species. We investigated whether autumn warming would delay photosynthetic decline in Norway spruce (Picea abies (L.) H. Karst.) by growing seedlings under declining weekly photoperiods and weekly temperatures either at ambient temperature or a warming treatment 4 °C above ambient. Photosynthetic capacity was relatively constant in both treatments when weekly temperatures were >8 °C, but declined rapidly at lower temperatures, leading to a delay in the autumn decline in photosynthetic capacity in the warming treatment. The decline in photosynthetic capacity was not related to changes in leaf nitrogen or chlorophyll concentrations, but was correlated with a decrease in the apparent fraction of leaf nitrogen invested in Rubisco, implicating a shift in nitrogen allocation away from the Calvin cycle at low autumn growing temperatures. Our data suggest that as the climate warms, the period of net carbon uptake will be extended in the autumn for boreal forests dominated by Norway spruce, which could increase total carbon uptake in these forests. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Importance of Fluctuations in Light on Plant Photosynthetic Acclimation1[CC-BY

    PubMed Central

    2017-01-01

    The acclimation of plants to light has been studied extensively, yet little is known about the effect of dynamic fluctuations in light on plant phenotype and acclimatory responses. We mimicked natural fluctuations in light over a diurnal period to examine the effect on the photosynthetic processes and growth of Arabidopsis (Arabidopsis thaliana). High and low light intensities, delivered via a realistic dynamic fluctuating or square wave pattern, were used to grow and assess plants. Plants subjected to square wave light had thicker leaves and greater photosynthetic capacity compared with fluctuating light-grown plants. This, together with elevated levels of proteins associated with electron transport, indicates greater investment in leaf structural components and photosynthetic processes. In contrast, plants grown under fluctuating light had thinner leaves, lower leaf light absorption, but maintained similar photosynthetic rates per unit leaf area to square wave-grown plants. Despite high light use efficiency, plants grown under fluctuating light had a slow growth rate early in development, likely due to the fact that plants grown under fluctuating conditions were not able to fully utilize the light energy absorbed for carbon fixation. Diurnal leaf-level measurements revealed a negative feedback control of photosynthesis, resulting in a decrease in total diurnal carbon assimilated of at least 20%. These findings highlight that growing plants under square wave growth conditions ultimately fails to predict plant performance under realistic light regimes and stress the importance of considering fluctuations in incident light in future experiments that aim to infer plant productivity under natural conditions in the field. PMID:28184008

  11. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B.; Knott, W. M. (Principal Investigator)

    1993-01-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  12. Evidence for compensatory photosynthetic and yield response of soybeans to aphid herbivory

    DOE PAGES

    Kucharik, Christopher J.; Mork, Amelia C.; Meehan, Timothy D.; ...

    2016-04-13

    The soybean aphid, Aphis glycines Matsumura, an exotic species in North America that has been detected in 21 U.S. states and Canada, is a major pest for soybean that can reduce maximum photosynthetic capacity and yields. Our existing knowledge is based on relatively few studies that do not span a wide variety of environmental conditions, and often focus on relatively high and damaging population pressure. We examined the effects of varied populations and duration of soybean aphids on soybean photosynthetic rates and yield in two experiments. In a 2011 field study, we found that plants with low cumulative aphid daysmore » (CAD, less than 2,300) had higher yields than plants not experiencing significant aphid pressure, suggesting a compensatory growth response to low aphid pressure. This response did not hold at higher CAD, and yields declined. In a 2013 controlled-environment greenhouse study, soybean plants were well-watered and fertilized with nitrogen (N), and aphid populations were manipulated to reach moderate to high levels (8,000–50,000 CAD). Plants tolerated these population levels when aphids were introduced during the vegetative or reproductive phenological stages of the plant, showing no significant reduction in yield. Leaf N concentration and CAD were positively and significantly correlated with increasing ambient photosynthetic rates. Our findings suggest that, given the right environmental conditions, modern soybean plants can withstand higher aphid pressure than previously assumed. Moreover, soybean plants also responded positively through a compensatory photosynthetic effect to moderate population pressure, contributing to stable or increased yield.« less

  13. Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles.

    PubMed

    Djanaguiraman, M; Boyle, D L; Welti, R; Jagadish, S V K; Prasad, P V V

    2018-04-05

    High temperature is a major abiotic stress that limits wheat (Triticum aestivum L.) productivity. Variation in levels of a wide range of lipids, including stress-related molecular species, oxidative damage, cellular organization and ultrastructural changes were analyzed to provide an integrated view of the factors that underlie decreased photosynthetic rate under high temperature stress. Wheat plants of cultivar Chinese Spring were grown at optimum temperatures (25/15 °C, maximum/minimum) until the onset of the booting stage. Thereafter, plants were exposed to high temperature (35/25 °C) for 16 d. Compared with optimum temperature, a lower photosynthetic rate was observed at high temperature which is an interplay between thylakoid membrane damage, thylakoid membrane lipid composition, oxidative damage of cell organelle, and stomatal and non-stomatal limitations. Triacylglycerol levels were higher under high temperature stress. Polar lipid fatty acyl unsaturation was lower at high temperature, while triacylglycerol unsaturation was the same at high temperature and optimum temperature. The changes in lipid species indicates increases in activities of desaturating, oxidizing, glycosylating and acylating enzymes under high temperature stress. Cumulative effect of high temperature stress led to generation of reactive oxygen species, cell organelle and membrane damage, and reduced antioxidant enzyme activity, and imbalance between reactive oxygen species and antioxidant defense system. Taken together with recent findings demonstrating that reactive oxygen species are formed from and are removed by thylakoid lipids, the data suggest that reactive oxygen species production, reactive oxygen species removal, and changes in lipid metabolism contribute to decreased photosynthetic rate under high temperature stress.

  14. Nitrate and Ammonium Induced Photosynthetic Suppression in N-Limited Selenastrum minutum.

    PubMed

    Elrifi, I R; Turpin, D H

    1986-05-01

    Nitrate-limited chemostat cultures of Selenastrum minutum Naeg. Collins (Chlorophyta) were used to determine the effects of nitrogen addition on photosynthesis, dark respiration, and dark carbon fixation. Addition of NO(3) (-) or NH(4) (+) induced a transient suppression of photosynthetic carbon fixation (70 and 40% respectively). Intracellular ribulose bisphosphate levels decreased during suppression and recovered in parallel with photosynthesis. Photosynthetic oxygen evolution was decreased by N-pulsing under saturating light (650 microeinsteins per square meter per second). Under subsaturating light intensities (<165 microeinsteins per square meter per second) NH(4) (+) addition resulted in O(2) consumption in the light which was alleviated by the presence of the tricarboxylic acid cycle inhibitor fluoroacetate. Addition of NO(3) (-) or NH(4) (+) resulted in a large stimulation of dark respiration (67 and 129%, respectively) and dark carbon fixation (360 and 2080%, respectively). The duration of N-induced perturbations was dependent on the concentration of added N. Inhibition of glutamine 2-oxoglutarate aminotransferase by azaserine alleviated all these effects. It is proposed that suppression of photosynthetic carbon fixation in response to N pulsing was the result of a competition for metabolites between the Calvin cycle and nitrogen assimilation. Carbon skeletons required for nitrogen assimilation would be derived from tricarboxylic acid cycle intermediates. To maintain tricarboxylic acid cycle activity triose phosphates would be exported from the chloroplast. This would decrease the rate of ribulose bisphosphate regeneration and consequently decrease net photosynthetic carbon accumulation. Stoichiometric calculations indicate that the Calvin cycle is one source of triose phosphates for N assimilation; however, during transient N resupply the major demand for triose phosphates must be met by starch or sucrose breakdown. The effects of N-pulsing on O(2

  15. Photosynthetic functions of Synechococcus in the ocean microbiomes of diverse salinity and seasons.

    PubMed

    Kim, Yihwan; Jeon, Jehyun; Kwak, Min Seok; Kim, Gwang Hoon; Koh, InSong; Rho, Mina

    2018-01-01

    Synechococcus is an important photosynthetic picoplankton in the temperate to tropical oceans. As a photosynthetic bacterium, Synechococcus has an efficient mechanism to adapt to the changes in salinity and light intensity. The analysis of the distributions and functions of such microorganisms in the ever changing river mouth environment, where freshwater and seawater mix, should help better understand their roles in the ecosystem. Toward this objective, we have collected and sequenced the ocean microbiome in the river mouth of Kwangyang Bay, Korea, as a function of salinity and temperature. In conjunction with comparative genomics approaches using the sequenced genomes of a wide phylogeny of Synechococcus, the ocean microbiome was analyzed in terms of their composition and clade-specific functions. The results showed significant differences in the compositions of Synechococcus sampled in different seasons. The photosynthetic functions in such enhanced Synechococcus strains were also observed in the microbiomes in summer, which is significantly different from those in other seasons.

  16. Ozone Exposure Response for U.S. Soybean Cultivars: Linear Reductions in Photosynthetic Potential, Biomass, and Yield1[W][OA

    PubMed Central

    Betzelberger, Amy M.; Yendrek, Craig R.; Sun, Jindong; Leisner, Courtney P.; Nelson, Randall L.; Ort, Donald R.; Ainsworth, Elizabeth A.

    2012-01-01

    Current background ozone (O3) concentrations over the northern hemisphere’s midlatitudes are high enough to damage crops and are projected to increase. Soybean (Glycine max) is particularly sensitive to O3; therefore, establishing an O3 exposure threshold for damage is critical to understanding the current and future impact of this pollutant. This study aims to determine the exposure response of soybean to elevated tropospheric O3 by measuring the agronomic, biochemical, and physiological responses of seven soybean genotypes to nine O3 concentrations (38–120 nL L−1) within a fully open-air agricultural field location across 2 years. All genotypes responded similarly, with season-long exposure to O3 causing a linear increase in antioxidant capacity while reducing leaf area, light absorption, specific leaf mass, primary metabolites, seed yield, and harvest index. Across two seasons with different temperature and rainfall patterns, there was a robust linear yield decrease of 37 to 39 kg ha−1 per nL L−1 cumulative O3 exposure over 40 nL L−1. The existence of immediate effects of O3 on photosynthesis, stomatal conductance, and photosynthetic transcript abundance before and after the initiation and termination of O3 fumigation were concurrently assessed, and there was no evidence to support an instantaneous photosynthetic response. The ability of the soybean canopy to intercept radiation, the efficiency of photosynthesis, and the harvest index were all negatively impacted by O3, suggesting that there are multiple targets for improving soybean responses to this damaging air pollutant. PMID:23037504

  17. Plastidial Folate Prevents Starch Biosynthesis Triggered by Sugar Influx into Non-Photosynthetic Plastids of Arabidopsis.

    PubMed

    Hayashi, Makoto; Tanaka, Mina; Yamamoto, Saki; Nakagawa, Taro; Kanai, Masatake; Anegawa, Aya; Ohnishi, Miwa; Mimura, Tetsuro; Nishimura, Mikio

    2017-08-01

    Regulation of sucrose-starch interconversion in plants is important to maintain energy supplies necessary for viability and growth. Arabidopsis mutants were screened for aberrant responses to sucrose to identify candidates with a defect in the regulation of starch biosynthesis. One such mutant, fpgs1-4, accumulated substantial amounts of starch in non-photosynthetic cells. Dark-grown mutant seedlings exhibited shortened hypocotyls and accumulated starch in etioplasts when supplied with exogenous sucrose/glucose. Similar starch accumulation from exogenous sucrose was observed in mutant chloroplasts, when photosynthesis was prevented by organ culture in darkness. Molecular genetic analyses revealed that the mutant was defective in plastidial folylpolyglutamate synthetase, one of the enzymes engaged in folate biosynthesis. Active folate derivatives are important biomolecules that function as cofactors for a variety of enzymes. Exogenously supplied 5-formyl-tetrahydrofolate abrogated the mutant phenotypes, indicating that the fpgs1-4 mutant produced insufficient folate derivative levels. In addition, the antifolate agents methotrexate and 5-fluorouracil induced starch accumulation from exogenously supplied sucrose in dark-grown seedlings of wild-type Arabidopsis. These results indicate that plastidial folate suppresses starch biosynthesis triggered by sugar influx into non-photosynthetic cells, demonstrating a hitherto unsuspected link between plastidial folate and starch metabolism. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  18. Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior.

    PubMed

    Tomimatsu, Hajime; Tang, Yanhong

    2012-08-01

    To understand dynamic photosynthetic characteristics in response to fluctuating light under a high CO(2) environment, we examined photosynthetic induction in two poplar genotypes from two species, Populus koreana 9 trichocarpa cv. Peace and Populus euramericana cv. I-55, respectively. Stomata of cv. Peace barely respond to changes in photosynthetic photon flux density (PFD), whereas those of cv. I-55 show a normal response to variations in PFD at ambient CO(2). The plants were grown under three CO2 regimes (380, 700, and 1,020 μmol CO(2) mol(-1) in air) for approximately 2 months. CO2 gas exchange was measured in situ in the three CO2 regimes under a sudden PFD increase from 20 to 800 μmol m(-2) s(-1). In both genotypes, plants grown under higher CO(2) conditions had a higher photosynthetic induction state, shorter induction time, and reduced induction limitation to photosynthetic carbon gain. Plants of cv. I-55 showed a much larger increase in induction state and decrease in induction time under high CO(2) regimes than did plants of cv. Peace. These showed that, throughout the whole induction process, genotype cv. I-55 had a much smaller reduction of leaf carbon gain under the two high CO(2) regimes than under the ambient CO(2) regime, while the high CO(2) effect was smaller in genotype cv. Peace. The results suggest that a high CO(2) environment can reduce both biochemical and stomatal limitations of leaf carbon gain during the photosynthetic induction process, and that a rapid stomatal response can further enhance the high CO(2) effect.

  19. Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies

    NASA Technical Reports Server (NTRS)

    Myneni, R. B.; Ganapol, B. D.; Asrar, G.

    1992-01-01

    The problem of remote sensing the canopy photosynthetic and stomatal conductance efficiencies is investigated with the aid of one- and three-dimensional radiative transfer methods coupled to a semi-empirical mechanistic model of leaf photosynthesis and stomatal conductance. Desertlike vegetation is modeled as clumps of leaves randomly distributed on a bright dry soil with partial ground cover. Normalized difference vegetation index (NDVI), canopy photosynthetic (Ep), and stomatal efficiencies (Es) are calculated for various geometrical, optical, and illumination conditions. The contribution of various radiative fluxes to estimates of Ep is evaluated and the magnitude of errors in bulk canopy formulation of problem parameters are quantified. The nature and sensitivity of the relationship between Ep and Es to NDVI is investigated, and an algorithm is proposed for use in operational remote sensing.

  20. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOEpatents

    Weaver, Paul F.; Maness, Pin-Ching

    1993-01-01

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

  1. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    PubMed

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  2. Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts.

    PubMed

    Torres, Rocio; Diz, Virginia E; Lagorio, M Gabriela

    2018-04-18

    Effects of gold nanoparticles (average diameter: 10-14 nm) on leaves and chloroplasts have been studied. Gold nanoparticles (AuNPs) quenched significantly chlorophyll fluorescence when introduced both in intact leaves and isolated chloroplasts. Additionally, the fluorescence spectra corrected for light re-absorption processes showed a net decrease in the fluorescence ratio calculated as the quotient between the maximum fluorescence at 680 and 735 nm. This fact gave evidence for a reduction in the fluorescence emission of the PSII relative to that of the PSI. Strikingly, the photosynthetic parameters derived from the analysis of the slow phase of Kautsky's kinetics, the rate of oxygen evolution and the rate of photo-reduction of 2,6-dichlorophenolindophenol were increased in the presence of AuNPs indicating an apparent greater photosynthetic capacity. The observed results were consistent with an electron transfer process from the excited PSII, which was thermodynamically possible, and which competed with both the electron transport process that initiated photosynthesis and the deactivation of the excited PSII by fluorescence emission. Additionally, it is here explained, in terms of a completely rational kinetic scheme and their corresponding algebraic expressions, why the photosynthetic parameters and the variable and non-variable fluorescence of chlorophyll are modified in a photosynthetic tissue containing gold nanoparticles.

  3. Acclimatization of Photosynthetic Apparatus of Tor Grass (Brachypodium pinnatum) during Expansion

    PubMed Central

    Bąba, Wojciech; Kalaji, Hazem M.; Kompała-Bąba, Agnieszka; Goltsev, Vasilij

    2016-01-01

    The aim of this study was to understand the acclimatization mechanisms of photosynthetic apparatus in Brachypodium pinnatum (L.) P. Beauv grass during its expansion. Twelve populations differentiated by age: young (30–50 years old), intermediate age (ca. 100 y) and old (>300 y) were studied. It was confirmed that the decrease of the number of genotypes as a result of environmental stress and competition were reflected in changes in chlorophyll fluorescence (ChlF) parameters. The old stands were dominated by a few genotypes which seem to be the best acclimatized to the self-shading/competition by lowering their photosynthetic performance during light-phase of photosynthesis. On the other hand, the 'high-speed' photosynthetic rate observed in the young populations can be seen as acclimatization to very adverse conditions. Our results clearly confirm that ChlF is a powerful method of inferring physiological mechanisms of the expansion of tor grass. The Principal Component and Redundancy Analyses, followed with k-means classification, allowed to find the differentiation of groups of distinct ChlF parameters and enabled us to relate them to changes in genotypic diversity of populations. We conclude that the plastic morphological and physiological response to changeable habitat light conditions with its optimum in half-shade refers to its forest-steppe origin. PMID:27275605

  4. Acclimatization of Photosynthetic Apparatus of Tor Grass (Brachypodium pinnatum) during Expansion.

    PubMed

    Bąba, Wojciech; Kalaji, Hazem M; Kompała-Bąba, Agnieszka; Goltsev, Vasilij

    2016-01-01

    The aim of this study was to understand the acclimatization mechanisms of photosynthetic apparatus in Brachypodium pinnatum (L.) P. Beauv grass during its expansion. Twelve populations differentiated by age: young (30-50 years old), intermediate age (ca. 100 y) and old (>300 y) were studied. It was confirmed that the decrease of the number of genotypes as a result of environmental stress and competition were reflected in changes in chlorophyll fluorescence (ChlF) parameters. The old stands were dominated by a few genotypes which seem to be the best acclimatized to the self-shading/competition by lowering their photosynthetic performance during light-phase of photosynthesis. On the other hand, the 'high-speed' photosynthetic rate observed in the young populations can be seen as acclimatization to very adverse conditions. Our results clearly confirm that ChlF is a powerful method of inferring physiological mechanisms of the expansion of tor grass. The Principal Component and Redundancy Analyses, followed with k-means classification, allowed to find the differentiation of groups of distinct ChlF parameters and enabled us to relate them to changes in genotypic diversity of populations. We conclude that the plastic morphological and physiological response to changeable habitat light conditions with its optimum in half-shade refers to its forest-steppe origin.

  5. Spatial Variations of Chemical Abundances in Titan's Atmosphere as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Thelen, Alexander E.; Nixon, Conor; Chanover, Nancy J.; Molter, Edward; Serigano, Joseph; Cordiner, Martin; Charnley, Steven B.; Teanby, Nicholas A.; Irwin, Patrick

    2016-10-01

    Complex organic molecules in Titan's atmosphere - formed through the dissociation of N2 and CH4 - exhibit latitudinal variations in abundance as observed by Cassini. Chemical species including hydrocarbons - such as CH3CCH - and nitriles - HCN, HC3N, CH3CN, and C2H5CN - may show spatial abundance variations as a result of atmospheric circulation, photochemical production and subsequent destruction throughout Titan's seasonal cycle. Recent calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) with beam sizes of ~0.3'' allow for measurements of rotational transition lines of these species in spatially resolved regions of Titan's disk. We present abundance profiles obtained from public ALMA data taken in 2014, as Titan transitioned into northern summer. Abundance profiles in Titan's lower/middle atmosphere were retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code. These retrievals were performed using spatial temperature profiles obtained by modeling strong CO lines from datasets taken in similar times with comparable resolution. We compare the abundance variations of chemical species to measurements made using Cassini data. Comparisons of chemical species with strong abundance enhancements over the poles will inform our knowledge of chemical lifetimes in Titan's atmosphere, and allow us to observe the important changes in production and circulation of numerous organic molecules which are attributed to Titan's seasons.

  6. Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation.

    PubMed

    Jin, Peng; Gao, Kunshan; Villafañe, Virginia E; Campbell, Douglas A; Helbling, E Walter

    2013-08-01

    Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO₂ levels, under regimes of fluctuating irradiances with or without UVR. Under both CO₂ levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO₂ showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO₂-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.

  7. Novel bufferless photosynthetic microbial fuel cell (PMFCs) for enhanced electrochemical performance.

    PubMed

    Wang, Chin-Tsan; Huang, Yan-Sian; Sangeetha, Thangavel; Chen, Yen-Ming; Chong, Wen-Tong; Ong, Hwai-Chyuan; Zhao, Feng; Yan, Wei-Mon

    2018-05-01

    Photosynthetic microbial fuel cells (PMFCs) are novel bioelectrochemical transducers that employ microalgae to generate oxygen, organic metabolites and electrons. Conventional PMFCs employ non-eco-friendly membranes, catalysts and phosphate buffer solution. Eliminating the membrane, buffer and catalyst can make the MFC a practical possibility. Therefore, single chambered (SPMFC) were constructed and operated at different recirculation flow rates (0, 40 and 240 ml/min) under bufferless conditions. Furthermore, maximum power density of 4.06 mW/m 2 , current density of 46.34 mA/m 2 and open circuit potential of 0.43 V and low internal resistance of 611.8 Ω were obtained at 40 ml/min. Based on the results it was decided that SPMFC was better for operation at 40 ml/min. Therefore, these findings provided progressive insights for future pilot and industrial scale studies of PMFCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The use of amino acid indices for assessing organic matter quality and microbial abundance in deep-sea Antarctic sediments of IODP Expedition 318

    USGS Publications Warehouse

    Carr, Stephanie A; Mills, Christopher T.; Mandernack, Kevin W

    2016-01-01

    The Adélie Basin, located offshore of the Wilkes Land margin, experiences unusually high sedimentation rates (~ 2 cm yr− 1) for the Antarctic coast. This study sought to compare depthwise changes in organic matter (OM) quantity and quality with changes in microbial biomass with depth at this high-deposition site and an offshore continental margin site. Sediments from both sites were collected during the International Ocean Drilling (IODP) Program Expedition 318. Viable microbial biomass was estimated from concentrations of bacterial-derived phospholipid fatty acids, while OM quality was assessed using four different amino acid degradation proxies. Concentrations of total hydrolysable amino acids (THAA) measured from the continental margin suggest an oligotrophic environment, with THAA concentrations representing only 2% of total organic carbon with relative proportions of non-protein amino acids β-alanine and γ-aminobutyric acid as high as 40%. In contrast, THAA concentrations from the near-shore Adélie Basin represent 40%–60% of total organic carbon. Concentrations of β-alanine and γ-aminobutyric acid were often below the detection limit and suggest that the OM of the basin as labile. DI values in surface sediments at the Adélie and margin sites were measured to be + 0.78 and − 0.76, reflecting labile and more recalcitrant OM, respectively. Greater DI values in deeper and more anoxic portions of both cores correlated positively with increased relative concentrations of phenylalanine plus tyrosine and may represent a change of redox conditions, rather than OM quality. This suggests that DI values calculated along chemical profiles should be interpreted with caution. THAA concentrations, the percentage of organic carbon (CAA%) and total nitrogen (NAA%) represented by amino acids at both sites demonstrated a significant positive correlation with bacterial abundance estimates. These data suggest that the selective degradation of amino acids, as

  9. Spatiotemporal variations in the abundance and composition of bulk and chromophoric dissolved organic matter in seasonally hypoxia-influenced Green Bay, Lake Michigan, USA.

    PubMed

    DeVilbiss, Stephen E; Zhou, Zhengzhen; Klump, J Val; Guo, Laodong

    2016-09-15

    Green Bay, Lake Michigan, USA, is the largest freshwater estuary in the Laurentian Great Lakes and receives disproportional terrestrial inputs as a result of a high watershed to bay surface area ratio. While seasonal hypoxia and the formation of "dead zones" in Green Bay have received increasing attention, there are no systematic studies on the dynamics of dissolved organic matter (DOM) and its linkage to the development of hypoxia. During summer 2014, bulk dissolved organic carbon (DOC) analysis, UV-vis spectroscopy, and fluorescence excitation-emission matrices (EEMs) coupled with PARAFAC analysis were used to quantify the abundance, composition and source of DOM and their spatiotemporal variations in Green Bay, Lake Michigan. Concentrations of DOC ranged from 202 to 571μM-C (average=361±73μM-C) in June and from 279 to 610μM-C (average=349±64μM-C) in August. In both months, absorption coefficient at 254nm (a254) was strongly correlated to bulk DOC and was most abundant in the Fox River, attesting a dominant terrestrial input. Non-chromophoric DOC comprised, on average, ~32% of bulk DOC in June with higher terrestrial DOM and ~47% in August with higher aquagenic DOM, indicating that autochthonous and more degraded DOM is of lower optical activity. PARAFAC modeling on EEM data resulted in four major fluorescent DOM components, including two terrestrial humic-like, one aquagenic humic-like, and one protein-like component. Variations in the abundance of DOM components further supported changes in DOM sources. Mixing behavior of DOM components also indicated that while bulk DOM behaved quasi-conservatively, significant compositional changes occurred during transport from the Fox River to the open bay. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Abundance of introduced species at home predicts abundance away in herbaceous communities

    USGS Publications Warehouse

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  11. Iron deficiency cause changes in photochemistry, thylakoid organization, and accumulation of photosystem II proteins in Chlamydomonas reinhardtii.

    PubMed

    Devadasu, Elsin Raju; Madireddi, Sai Kiran; Nama, Srilatha; Subramanyam, Rajagopal

    2016-12-01

    A trace element, iron (Fe) plays a pivotal role in photosynthesis process which in turn mediates the plant growth and productivity. Here, we have focused majorly on the photochemistry of photosystem (PS) II, abundance of proteins, and organization of supercomplexes of thylakoids from Fe-depleted cells in Chlamydomonas reinhardtii. Confocal pictures show that the cell's size has been reduced and formed rosette-shaped palmelloids; however, there is no cell death. Further, the PSII photochemistry was reduced remarkably. Further, the photosynthetic efficiency analyzer data revealed that both donor and acceptor side of PSII were equally damaged. Additionally, the room-temperature emission spectra showed the fluorescence emission maxima increased due to impaired energy transfer from PSII to PSI. Furthermore, the protein data reveal that most of the proteins of reaction center and light-harvesting antenna were reduced in Fe-depleted cells. Additionally, the supercomplexes of PSI and PSII were destabilized from thylakoids under Fe-deficient condition showing that Fe is an important element in photosynthesis mechanism.

  12. Photosynthetic tolerance to non-resource stress influences competition importance and intensity in an invaded estuary.

    PubMed

    Tang, Long; Wolf, Amelia A; Gao, Yang; Wang, Cheng Huan

    2018-06-01

    In an attempt to clarify the role of environmental and biotic interactions on plant growth, there has been a long-running ecological debate over whether the intensity and importance of competition stabilizes, increases or decreases across environmental gradients. We conducted an experiment in a Chinese estuary to investigate the effects of a non-resource stress gradient, soil salinity (from 1.4‰ to 19.0‰ salinity), on the competitive interactions between native Phragmites australis and invasive Spartina alterniflora. We linked these effects to measurements of photosynthetic activities to further elucidate the underlying physiological mechanism behind the competitive interactions and the driver of invasion. The experiments revealed that while biomass of both species decreased in the presence of the other, competition did not alter photosynthetic activity of either species over time. P. australis exhibited high photosynthetic activity, including low chlorophyllase activity, high chlorophyll content, high stomatal conductance and high net photosynthetic rate, at low salinity. Under these conditions, P. australis experienced low competitive intensity, leading to high biomass production and competitive exclusion of S. alterniflora. The opposite was observed for S. alterniflora: while competitive intensity experienced by P. australis increased with increasing salinity, and photosynthetic activity, biomass, competitive dominance and the importance of competition for P. australis growth decreased, those of S. alterniflora were stable. These findings demonstrate that S. alterniflora invasion driven by competitive exclusion are likely to occur and expand in high salinity zones. The change in the nature of competition along a non-resource stress gradient differs between competitors likely due to differences in photosynthetic tolerance to salinity. The driver of growth of the less-tolerant species changes from competition to non-resource stress factors with

  13. Estimation of the light field inside photosynthetic microorganism cultures through Mittag-Leffler functions at depleted light conditions

    NASA Astrophysics Data System (ADS)

    Fuente, David; Lizama, Carlos; Urchueguía, Javier F.; Conejero, J. Alberto

    2018-01-01

    Light attenuation within suspensions of photosynthetic microorganisms has been widely described by the Lambert-Beer equation. However, at depths where most of the light has been absorbed by the cells, light decay deviates from the exponential behaviour and shows a lower attenuation than the corresponding from the purely exponential fall. This discrepancy can be modelled through the Mittag-Leffler function, extending Lambert-Beer law via a tuning parameter α that takes into account the attenuation process. In this work, we describe a fractional Lambert-Beer law to estimate light attenuation within cultures of model organism Synechocystis sp. PCC 6803. Indeed, we benchmark the measured light field inside cultures of two different Synechocystis strains, namely the wild-type and the antenna mutant strain called Olive at five different cell densities, with our in silico results. The Mittag-Leffler hyper-parameter α that best fits the data is 0.995, close to the exponential case. One of the most striking results to emerge from this work is that unlike prior literature on the subject, this one provides experimental evidence on the validity of fractional calculus for determining the light field. We show that by applying the fractional Lambert-Beer law for describing light attenuation, we are able to properly model light decay in photosynthetic microorganisms suspensions.

  14. Methyl Jasmonate Alleviates Cadmium-Induced Photosynthetic Damages through Increased S-Assimilation and Glutathione Production in Mustard

    PubMed Central

    Per, Tasir S.; Khan, Nafees A.; Masood, Asim; Fatma, Mehar

    2016-01-01

    The effect of methyl jasmonate (MeJA) in mitigation of 50 μM cadmium (Cd) toxicity on structure and function of photosynthetic apparatus in presence or absence of 1.0 mM SO42– was investigated in mustard (Brassica juncea L. cv. Ro Agro 4001) at 30 days after sowing. Plants exhibited increased oxidative stress, impaired photosynthetic function when grown with Cd, but MeJA in presence of sulfur (S) more prominently ameliorated Cd effects through increased S-assimilation and production of reduced glutathione (GSH) and promoted photosynthetic functions. The transmission electron microscopy showed that MeJA protected chloroplast structure against Cd-toxicity. The use of GSH biosynthetic inhibitor, buthionine sulfoximine (BSO) substantiated the findings that ameliorating effect of MeJA was through GSH production. MeJA could not alleviate Cd effects when BSO was used due to unavailability of GSH even with the input of S. The study shows that MeJA regulates S-assimilation and GSH production for protection of structure and function of photosynthetic apparatus in mustard plants under Cd stress. PMID:28066485

  15. Interaction between photosynthetic electron transport and chloroplast sinks triggers protection and signalling important for plant productivity

    PubMed Central

    Gollan, Peter J.; Lima-Melo, Yugo; Tiwari, Arjun; Tikkanen, Mikko

    2017-01-01

    The photosynthetic light reactions provide energy that is consumed and stored in electron sinks, the products of photosynthesis. A balance between light reactions and electron consumption in the chloroplast is vital for plants, and is protected by several photosynthetic regulation mechanisms. Photosystem I (PSI) is particularly susceptible to photoinhibition when these factors become unbalanced, which can occur in low temperatures or in high light. In this study we used the pgr5 Arabidopsis mutant that lacks ΔpH-dependent regulation of photosynthetic electron transport as a model to study the consequences of PSI photoinhibition under high light. We found that PSI damage severely inhibits carbon fixation and starch accumulation, and attenuates enzymatic oxylipin synthesis and chloroplast regulation of nuclear gene expression after high light stress. This work shows that modifications to regulation of photosynthetic light reactions, which may be designed to improve yield in crop plants, can negatively impact metabolism and signalling, and thereby threaten plant growth and stress tolerance. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’. PMID:28808104

  16. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis

    2001-10-15

    This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/03/2000 through 10/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. This is the fourth quarterly report for this project, so it also serves as a year-1 project review. We have made significant progress on our Phase I objectives, and our current efforts are focused on fulfilling these research objectives ''on time'' relative to the project timeline. Overall, we believe that we are on schedule to complete Phase I activitiesmore » by 10/2002, which is the milestone date from the original project timeline. Our results to date concerning the individual factors which have the most significant effect on CO{sub 2} uptake are inconclusive, but we have gathered useful information about the effects of lighting, temperature and CO{sub 2} concentration on one particular organism (Nostoc) and significant progress has been made in identifying other organisms that are more suitable for use in the bioreactor due to their better tolerance for the high temperatures likely to be encountered in the flue gas stream. Our current tests are focused on one such thermophilic organism (Cyanidium), and an enlarged bioreactor system (CRF-2) has been prepared for testing this organism. Tests on the enhanced mass transfer CO{sub 2} absorption technique are underway and useful information is currently being collected concerning pressure drop. The solar collectors for the deep-penetration hybrid solar lighting system have been designed and a single solar collector tracking unit is being prepared for installation in the pilot scale bioreactor system currently under construction. Much progress has been made in designing the fiber optic light delivery system, but final selection of the ''optimum'' delivery system design depends on many factors, most significantly the

  17. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOEpatents

    Weaver, P.F.; Pinching Maness.

    1993-10-05

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

  18. Viruses Inhibit CO2 Fixation in the Most Abundant Phototrophs on Earth.

    PubMed

    Puxty, Richard J; Millard, Andrew D; Evans, David J; Scanlan, David J

    2016-06-20

    Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most numerous photosynthetic organisms on our planet [1, 2]. With a global population size of 3.6 × 10(27) [3], they are responsible for approximately 10% of global primary production [3, 4]. Viruses that infect Prochlorococcus and Synechococcus (cyanophages) can be readily isolated from ocean waters [5-7] and frequently outnumber their cyanobacterial hosts [8]. Ultimately, cyanophage-induced lysis of infected cells results in the release of fixed carbon into the dissolved organic matter pool [9]. What is less well known is the functioning of photosynthesis during the relatively long latent periods of many cyanophages [10, 11]. Remarkably, the genomes of many cyanophage isolates contain genes involved in photosynthetic electron transport (PET) [12-18] as well as central carbon metabolism [14, 15, 19, 20], suggesting that cyanophages may play an active role in photosynthesis. However, cyanophage-encoded gene products are hypothesized to maintain or even supplement PET for energy generation while sacrificing wasteful CO2 fixation during infection [17, 18, 20]. Yet this paradigm has not been rigorously tested. Here, we measured the ability of viral-infected Synechococcus cells to fix CO2 as well as maintain PET. We compared two cyanophage isolates that share different complements of PET and central carbon metabolism genes. We demonstrate cyanophage-dependent inhibition of CO2 fixation early in the infection cycle. In contrast, PET is maintained throughout infection. Our data suggest a generalized strategy among marine cyanophages to redirect photosynthesis to support phage development, which has important implications for estimates of global primary production. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice.

    PubMed

    Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi

    2017-12-01

    High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.

  20. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    USGS Publications Warehouse

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  1. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Terrestrial salamander abundance on reclaimed mountaintop removal mines

    USGS Publications Warehouse

    Wood, Petra Bohall; Williams, Jennifer M.

    2013-01-01

    Mountaintop removal mining, a large-scale disturbance affecting vegetation, soil structure, and topography, converts landscapes from mature forests to extensive grassland and shrubland habitats. We sampled salamanders using drift-fence arrays and coverboard transects on and near mountaintop removal mines in southern West Virginia, USA, during 2000–2002. We compared terrestrial salamander relative abundance and species richness of un-mined, intact forest with habitats on reclaimed mountaintop removal mines (reclaimed grassland, reclaimed shrubland, and fragmented forest). Salamanders within forests increased in relative abundance with increasing distance from reclaimed mine edge. Reclaimed grassland and shrubland habitats had lower relative abundance and species richness than forests. Characteristics of reclaimed habitats that likely contributed to lower salamander abundance included poor soils (dry, compacted, little organic matter, high rock content), reduced vertical structure of vegetation and little tree cover, and low litter and woody debris cover. Past research has shown that salamander populations reduced by clearcutting may rebound in 15–24 years. Time since disturbance was 7–28 years in reclaimed habitats on our study areas and salamander populations had not reached levels found in adjacent mature forests.

  3. Simultaneous modeling of habitat suitability, occupancy, and relative abundance: African elephants in Zimbabwe

    USGS Publications Warehouse

    Martin, Julien; Chamaille-Jammes, Simon; Nichols, James D.; Fritz, Herve; Hines, James E.; Fonnesbeck, Christopher J.; MacKenzie, Darryl I.; Bailey, Larissa L.

    2010-01-01

    The recent development of statistical models such as dynamic site occupancy models provides the opportunity to address fairly complex management and conservation problems with relatively simple models. However, surprisingly few empirical studies have simultaneously modeled habitat suitability and occupancy status of organisms over large landscapes for management purposes. Joint modeling of these components is particularly important in the context of management of wild populations, as it provides a more coherent framework to investigate the population dynamics of organisms in space and time for the application of management decision tools. We applied such an approach to the study of water hole use by African elephants in Hwange National Park, Zimbabwe. Here we show how such methodology may be implemented and derive estimates of annual transition probabilities among three dry-season states for water holes: (1) unsuitable state (dry water holes with no elephants); (2) suitable state (water hole with water) with low abundance of elephants; and (3) suitable state with high abundance of elephants. We found that annual rainfall and the number of neighboring water holes influenced the transition probabilities among these three states. Because of an increase in elephant densities in the park during the study period, we also found that transition probabilities from low abundance to high abundance states increased over time. The application of the joint habitat–occupancy models provides a coherent framework to examine how habitat suitability and factors that affect habitat suitability influence the distribution and abundance of organisms. We discuss how these simple models can further be used to apply structured decision-making tools in order to derive decisions that are optimal relative to specified management objectives. The modeling framework presented in this paper should be applicable to a wide range of existing data sets and should help to address important ecological

  4. Tufted hairgrass (Deschampsia caespitosa) exhibits a lower photosynthetic plasticity than Antarctic hairgrass (D. antarctica).

    PubMed

    Bystrzejewska-Piotrowska, Grazyna; Urban, Pawel L

    2009-06-01

    The aim of our work was to assess photosynthetic plasticity of two hairgrass species with different ecological origins (a temperate zone species, Deschampsia caespitosa (L.) Beauv. and an Antarctic species, D. antarctica) and to consider how the anticipated climate change may affect vitality of these plants. Measurements of chlorophyll fluorescence showed that the photosystem II (PSII) quantum efficiency of D. caespitosa decreased during 4 d of incubation at 4 degrees C but it remained stable in D. antarctica. The fluorescence half-rise times were almost always lower in D. caespitosa than in D. antarctica, irrespective of the incubation temperature. These results indicate that the photosynthetic apparatus of D. caespitosa has poorer performance in these conditions. D. caespitosa reached the maximum photosynthesis rate at a higher temperature than D. antarctica although the values obtained at 8 degrees C were similar in both species. The photosynthetic water-use efficiency (photosynthesis-to-transpiration ratio, P/E) emerges as an important factor demonstrating presence of mechanisms which facilitate functioning of a plant in non-optimal conditions. Comparison of the P/E values, which were higher in D. antarctica than in D. caespitosa at low and medium temperatures, confirms a high degree of adjustability of the photosynthetic apparatus in D. antarctica and unveils the lack of such a feature in D. caespitosa.

  5. Cultivar variation in cotton photosynthetic performance under different temperature regimes

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) yields are impacted by overall photosynthetic production. Factors that influence crop photosynthesis are the plants genetic makeup and the environmental conditions. This study investigated cultivar variation in photosynthesis when plants were grown in the field under...

  6. [Primary study on photosynthetic characteristics of Dendrobium nobile].

    PubMed

    Su, Wenhua; Zhang, Guangfei

    2003-03-01

    With LiCor-6400 Portable Photosynthesis System, carbon dioxide exchange pattern for leaves of Dendrobium nobile during 24 hours were studied in sunny day and rainy day, and the variation of CO2 exchange rate to light intensity was analysed. The results showed that in sunny day D. nobile absorbed CO2 in all day except at midday, at noon photorespiration took place. The CO2 exchange pattern was similar to Crassulacean Acid Metabolism(CAM). In rainy day CO2 uptake was in all day, at night CO2 uptake was monitored at 21:00, then CO2 released from 23:00 to dawn. Light saturation point was 1000 mumol/m2s. Over light saturation point photosynthesis, photoinhibition of photosynthesis will be induced by high-light. Exposed to high-light, the light saturation point and the CO2 uptake velocity would be decreased. With variation of environmental factors, photosynthetic pathway in D. nobile could change from CAM to C3 photosynthetic metabolism. It may be one of main reasons for D. nobile to adapt to the shade-requiring environment, the slow growth and rareness in nature.

  7. Estimating abundance

    USGS Publications Warehouse

    Sutherland, Chris; Royle, Andy

    2016-01-01

    This chapter provides a non-technical overview of ‘closed population capture–recapture’ models, a class of well-established models that are widely applied in ecology, such as removal sampling, covariate models, and distance sampling. These methods are regularly adopted for studies of reptiles, in order to estimate abundance from counts of marked individuals while accounting for imperfect detection. Thus, the chapter describes some classic closed population models for estimating abundance, with considerations for some recent extensions that provide a spatial context for the estimation of abundance, and therefore density. Finally, the chapter suggests some software for use in data analysis, such as the Windows-based program MARK, and provides an example of estimating abundance and density of reptiles using an artificial cover object survey of Slow Worms (Anguis fragilis).

  8. Biomass Accumulation, Photosynthetic Traits and Root Development of Cotton as Affected by Irrigation and Nitrogen-Fertilization

    PubMed Central

    Chen, Zongkui; Tao, Xianping; Khan, Aziz; Tan, Daniel K. Y.; Luo, Honghai

    2018-01-01

    Limitations of soil water and nitrogen (N) are factors which cause a substantial reduction in cotton (Gossypium hirsutum L.) yield, especially in an arid environment. Suitable management decisions like irrigation method and nitrogen fertilization are the key yield improvement technologies in cotton production systems. Therefore, we hypothesized that optimal water-N supply can increase cotton plant biomass accumulation by maintaining leaf photosynthetic capacity and improving root growth. An outdoor polyvinyl chloride (PVC) tube study was conducted to investigate the effects of two water-N application depths, i.e., 20 cm (H20) or 40 cm (H40) from soil surface and four water-N combinations [deficit irrigation (W55) and no N (N0) (W55N0), W55 and moderate N (N1) (W55N1), moderate irrigation (W75) and N0 (W75N0), W75N1] on the roots growth, leaf photosynthetic traits and dry mass accumulation of cotton crops. H20W55N1 combination increased total dry mass production by 29–82% and reproductive organs biomass by 47–101% compared with other counterparts. Root protective enzyme and nitrate reductase (NR) activity, potential quantum yield of photosystem (PS) II (Fv/Fm), PSII quantum yield in the light [Y(II)] and electron transport rate of PSII were significantly higher in H20W55N1 prior to 82 days after emergence. Root NR activity and protective enzyme were significantly correlated with chlorophyll, Fv/Fm, Y(II) and stomatal conductance. Hence, shallow irrigation (20 cm) with moderate irrigation and N-fertilization application could increase cotton root NR activity and protective enzyme leading to enhance light capture and photochemical energy conversion of PSII before the full flowering stage. This enhanced photoassimilate to reproductive organs. PMID:29497435

  9. Abundant ammonia in primitive asteroids and the case for a possible exobiology

    PubMed Central

    Pizzarello, Sandra; Williams, Lynda B.; Lehman, Jennifer; Holland, Gregory P.; Yarger, Jeffery L.

    2011-01-01

    Carbonaceous chondrites are asteroidal meteorites that contain abundant organic materials. Given that meteorites and comets have reached the Earth since it formed, it has been proposed that the exogenous influx from these bodies provided the organic inventories necessary for the emergence of life. The carbonaceous meteorites of the Renazzo-type family (CR) have recently revealed a composition that is particularly enriched in small soluble organic molecules, such as the amino acids glycine and alanine, which could support this possibility. We have now analyzed the insoluble and the largest organic component of the CR2 Grave Nunataks (GRA) 95229 meteorite and found it to be of more primitive composition than in other meteorites and to release abundant free ammonia upon hydrothermal treatment. The findings appear to trace CR2 meteorites’ origin to cosmochemical regimes where ammonia was pervasive, and we speculate that their delivery to the early Earth could have fostered prebiotic molecular evolution. PMID:21368183

  10. Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings.

    PubMed

    Sun, Zhaoguo; Wang, Lihong; Chen, Minmin; Wang, Lei; Liang, Chanjuan; Zhou, Qing; Huang, Xiaohua

    2012-05-01

    Interactive effects of cadmium (Cd(2+)) and acid rain on photosynthetic light reaction in soybean seedlings were investigated under hydroponic conditions. Single treatment with Cd(2+) or acid rain and the combined treatment decreased the content of chlorophyll, Hill reaction rate, the activity of Mg(2+)-ATPase, maximal photochemical efficiency and maximal quantum yield, increased initial fluorescence and damaged the chloroplast structure in soybean seedlings. In the combined treatment, the change in the photosynthetic parameters and the damage of chloroplast structure were stronger than those of any single pollution. Meanwhile, Cd(2+) and acid rain had the interactive effects on the test indices in soybean seedlings. The results indicated that the combined pollution of Cd(2+) and acid rain aggravated the toxic effect of the single pollution of Cd(2+) or acid rain on the photosynthetic parameters due to the serious damage to the chloroplast structure. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutopoulos, Christos; Zergioti, Ioanna; Touloupakis, Eleftherios

    This letter demonstrates the direct laser printing of photosynthetic material onto low cost nonfunctionalized screen printed electrodes for the fabrication of photosynthesis-based amperometric biosensors. The high kinetic energy of the transferred material induces direct immobilization of the thylakoids onto the electrodes without the use of linkers. This type of immobilization is able to establish efficient electrochemical contact between proteins and electrode, stabilizing the photosynthetic biomolecule and transporting electrons to the solid state device with high efficiency. The functionality of the laser printed biosensors was evaluated by the detection of a common herbicide such as Linuron.

  12. Nitrate and Ammonium Induced Photosynthetic Suppression in N-Limited Selenastrum minutum1

    PubMed Central

    Elrifi, Ivor R.; Turpin, David H.

    1986-01-01

    Nitrate-limited chemostat cultures of Selenastrum minutum Naeg. Collins (Chlorophyta) were used to determine the effects of nitrogen addition on photosynthesis, dark respiration, and dark carbon fixation. Addition of NO3− or NH4+ induced a transient suppression of photosynthetic carbon fixation (70 and 40% respectively). Intracellular ribulose bisphosphate levels decreased during suppression and recovered in parallel with photosynthesis. Photosynthetic oxygen evolution was decreased by N-pulsing under saturating light (650 microeinsteins per square meter per second). Under subsaturating light intensities (<165 microeinsteins per square meter per second) NH4+ addition resulted in O2 consumption in the light which was alleviated by the presence of the tricarboxylic acid cycle inhibitor fluoroacetate. Addition of NO3− or NH4+ resulted in a large stimulation of dark respiration (67 and 129%, respectively) and dark carbon fixation (360 and 2080%, respectively). The duration of N-induced perturbations was dependent on the concentration of added N. Inhibition of glutamine 2-oxoglutarate aminotransferase by azaserine alleviated all these effects. It is proposed that suppression of photosynthetic carbon fixation in response to N pulsing was the result of a competition for metabolites between the Calvin cycle and nitrogen assimilation. Carbon skeletons required for nitrogen assimilation would be derived from tricarboxylic acid cycle intermediates. To maintain tricarboxylic acid cycle activity triose phosphates would be exported from the chloroplast. This would decrease the rate of ribulose bisphosphate regeneration and consequently decrease net photosynthetic carbon accumulation. Stoichiometric calculations indicate that the Calvin cycle is one source of triose phosphates for N assimilation; however, during transient N resupply the major demand for triose phosphates must be met by starch or sucrose breakdown. The effects of N-pulsing on O2 evolution, dark respiration

  13. Organisms for biofuel production: natural bioresources and methodologies for improving their biosynthetic potentials.

    PubMed

    Hu, Guangrong; Ji, Shiqi; Yu, Yanchong; Wang, Shi'an; Zhou, Gongke; Li, Fuli

    2015-01-01

    In order to relieve the pressure of energy supply and environment contamination that humans are facing, there are now intensive worldwide efforts to explore natural bioresources for production of energy storage compounds, such as lipids, alcohols, hydrocarbons, and polysaccharides. Around the world, many plants have been evaluated and developed as feedstock for bioenergy production, among which several crops have successfully achieved industrialization. Microalgae are another group of photosynthetic autotroph of interest due to their superior growth rates, relatively high photosynthetic conversion efficiencies, and vast metabolic capabilities. Heterotrophic microorganisms, such as yeast and bacteria, can utilize carbohydrates from lignocellulosic biomass directly or after pretreatment and enzymatic hydrolysis to produce liquid biofuels such as ethanol and butanol. Although finding a suitable organism for biofuel production is not easy, many naturally occurring organisms with good traits have recently been obtained. This review mainly focuses on the new organism resources discovered in the last 5 years for production of transport fuels (biodiesel, gasoline, jet fuel, and alkanes) and hydrogen, and available methods to improve natural organisms as platforms for the production of biofuels.

  14. Natural variation in stomatal abundance of Arabidopsis thaliana includes cryptic diversity for different developmental processes

    PubMed Central

    Delgado, Dolores; Alonso-Blanco, Carlos; Fenoll, Carmen; Mena, Montaña

    2011-01-01

    Background and Aims Current understanding of stomatal development in Arabidopsis thaliana is based on mutations producing aberrant, often lethal phenotypes. The aim was to discover if naturally occurring viable phenotypes would be useful for studying stomatal development in a species that enables further molecular analysis. Methods Natural variation in stomatal abundance of A. thaliana was explored in two collections comprising 62 wild accessions by surveying adaxial epidermal cell-type proportion (stomatal index) and density (stomatal and pavement cell density) traits in cotyledons and first leaves. Organ size variation was studied in a subset of accessions. For all traits, maternal effects derived from different laboratory environments were evaluated. In four selected accessions, distinct stomatal initiation processes were quantitatively analysed. Key Results and Conclusions Substantial genetic variation was found for all six stomatal abundance-related traits, which were weakly or not affected by laboratory maternal environments. Correlation analyses revealed overall relationships among all traits. Within each organ, stomatal density highly correlated with the other traits, suggesting common genetic bases. Each trait correlated between organs, supporting supra-organ control of stomatal abundance. Clustering analyses identified accessions with uncommon phenotypic patterns, suggesting differences among genetic programmes controlling the various traits. Variation was also found in organ size, which negatively correlated with cell densities in both organs and with stomatal index in the cotyledon. Relative proportions of primary and satellite lineages varied among the accessions analysed, indicating that distinct developmental components contribute to natural diversity in stomatal abundance. Accessions with similar stomatal indices showed different lineage class ratios, revealing hidden developmental phenotypes and showing that genetic determinants of primary and

  15. Dinoflagellate cyst abundance is positively correlated to sediment organic carbon in Sydney Harbour and Botany Bay, NSW, Australia.

    PubMed

    Tian, Chang; Doblin, Martina A; Dafforn, Katherine A; Johnston, Emma L; Pei, Haiyan; Hu, Wenrong

    2018-02-01

    There is growing public concern about the global expansion of harmful algal bloom species (HABs), with dinoflagellate microalgae comprising the major portion of the harmful taxa. These motile, unicellular organisms have a lifecycle involving sexual reproduction and resting cyst formation whereby cysts can germinate from sediments and 'seed' planktonic populations. Thus, investigation of dinoflagellate cyst (dinocyst) distribution in sediments can provide significant insights into HAB dynamics and contribute to indices of habitat quality. Species composition and abundance of dinocysts in relation to sediment characteristics were studied at 18 stations in two densely populated temperate Australian estuaries, Sydney Harbour (Parramatta River/Port Jackson; PS) and Botany Bay (including Georges River; GB). Eighteen dinocyst taxa were identified, dominated by Protoceratium reticulatum and Gonyaulax sp.1 in the PS estuary, together with Archaeperidinium minutum and Gonyaulax sp.1 in the GB estuary. Cysts of Alexandrium catenella, which is one of the causative species of paralytic shellfish poisoning (PSP), were also detected in both estuaries. Out of the measured sediment characteristics (TOC, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Zn and polycyclic aromatic hydrocarbons), TOC was the parameter explaining most of the variation in dinocyst assemblages and was positively correlated to most of the heavy metals. Given the significant relationship between sediment TOC and dinocyst abundance and heavy metal concentrations, this study suggests that sediment TOC could be broadly used in risk management for potential development of algal blooms and sediment contamination in these estuaries.

  16. Increasing aridity reduces soil microbial diversity and abundance in global drylands.

    PubMed

    Maestre, Fernando T; Delgado-Baquerizo, Manuel; Jeffries, Thomas C; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Quero, José Luis; García-Gómez, Miguel; Gallardo, Antonio; Ulrich, Werner; Bowker, Matthew A; Arredondo, Tulio; Barraza-Zepeda, Claudia; Bran, Donaldo; Florentino, Adriana; Gaitán, Juan; Gutiérrez, Julio R; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L; Miriti, Maria; Naseri, Kamal; Ospina, Abelardo; Stavi, Ilan; Wang, Deli; Woods, Natasha N; Yuan, Xia; Zaady, Eli; Singh, Brajesh K

    2015-12-22

    Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands.

  17. Increasing aridity reduces soil microbial diversity and abundance in global drylands

    PubMed Central

    Delgado-Baquerizo, Manuel; Jeffries, Thomas C.; Eldridge, David J.; Ochoa, Victoria; Gozalo, Beatriz; Quero, José Luis; García-Gómez, Miguel; Gallardo, Antonio; Ulrich, Werner; Bowker, Matthew A.; Arredondo, Tulio; Barraza-Zepeda, Claudia; Bran, Donaldo; Florentino, Adriana; Gaitán, Juan; Gutiérrez, Julio R.; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L.; Miriti, Maria; Naseri, Kamal; Ospina, Abelardo; Stavi, Ilan; Wang, Deli; Woods, Natasha N.; Yuan, Xia; Zaady, Eli; Singh, Brajesh K.

    2015-01-01

    Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands. PMID:26647180

  18. Ecosystem recharge by volcanic dust drives broad-scale variation in bird abundance.

    PubMed

    Gunnarsson, Tómas Grétar; Arnalds, Ólafur; Appleton, Graham; Méndez, Verónica; Gill, Jennifer A

    2015-06-01

    Across the globe, deserts and volcanic eruptions produce large volumes of atmospheric dust, and the amount of dust is predicted to increase with global warming. The effects of long-distance airborne dust inputs on ecosystem productivity are potentially far-reaching but have primarily been measured in soil and plants. Airborne dust could also drive distribution and abundance at higher trophic levels, but opportunities to explore these relationships are rare. Here we use Iceland's steep dust deposition gradients to assess the influence of dust on the distribution and abundance of internationally important ground-nesting bird populations. Surveys of the abundance of breeding birds at 729 locations throughout lowland Iceland were used to explore the influence of dust deposition on bird abundance in agricultural, dry, and wet habitats. Dust deposition had a strong positive effect on bird abundance across Iceland in dry and wet habitats, but not in agricultural land where nutrient levels are managed. The abundance of breeding waders, the dominant group of terrestrial birds in Iceland, tripled on average between the lowest and highest dust deposition classes in both wet and dry habitats. The deposition and redistribution of volcanic materials can have powerful impacts in terrestrial ecosystems and can be a major driver of the abundance of higher trophic-level organisms at broad spatial scales. The impacts of volcanic ash deposition during eruptions and subsequent redistribution of unstable volcanic materials are strong enough to override effects of underlying variation in organic matter and clay content on ecosystem fertility. Global rates of atmospheric dust deposition are likely to increase with increasing desertification and glacier retreat, and this study demonstrates that the effects on ecosystems are likely to be far-reaching, both in terms of spatial scales and ecosystem components.

  19. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes.

    PubMed

    Moriyama, Takashi; Sato, Naoki

    2014-01-01

    Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  20. Enhanced photosynthetic efficiency in trees world-wide by rising atmospheric CO2 levels

    NASA Astrophysics Data System (ADS)

    Ehlers, Ina; Wieloch, Thomas; Groenendijk, Peter; Vlam, Mart; van der Sleen, Peter; Zuidema, Pieter A.; Robertson, Iain; Schleucher, Jürgen

    2014-05-01

    The atmospheric CO2 concentration is increasing rapidly due to anthropogenic emissions but the effect on the Earth's biosphere is poorly understood. The ability of the biosphere to fix CO2 through photosynthesis will determine future atmospheric CO2 concentrations as well as future productivity of crops and forests. Manipulative CO2 enrichment experiments (e.g. FACE) are limited to (i) short time spans, (ii) few locations and (iii) large step increases in [CO2]. Here, we apply new stable isotope methodology to tree-ring archives, to study the effect of increasing CO2 concentrations retrospectively during the past centuries. We cover the whole [CO2] increase since industrialization, and sample trees with global distribution. Instead of isotope ratios of whole molecules, we use intramolecular isotope distributions, a new tool for tree-ring analysis with decisive advantages. In experiments on annual plants, we have found that the intramolecular distribution of deuterium (equivalent to ratios of isotopomer abundances) in photosynthetic glucose depends on growth [CO2] and reflects the metabolic flux ratio of photosynthesis to photorespiration. By applying this isotopomer methodology to trees from Oak Ridge FACE experiment, we show that this CO2 response is present in trees on the leaf level. This CO2 dependence constitutes a physiological signal, which is transferred to the wood of the tree rings. In trees from 13 locations on all continents the isotopomer ratio of tree-ring cellulose is correlated to atmospheric [CO2] during the past 200 years. The shift of the isotopomer ratio is universal for all 12 species analyzed, including both broad-leafed trees and conifers. Because the trees originate from sites with widely differing D/H ratios of precipitation, the generality of the response demonstrates that the signal is independent of the source isotope ratio, because it is encoded in an isotopomer abundance ratio. This decoupling of climate signals and physiological

  1. [Effects of lead stress on net photosynthetic rate, SPAD value and ginsenoside production in Ginseng (Panax ginseng)].

    PubMed

    Liang, Yao; Jiang, Xiao-Li; Yang, Fen-Tuan; Cao, Qing-Jun; Li, Gang

    2014-08-01

    The paper aimed to evaluate the effects of lead stress on photosynthetic performance and ginsenoside content in ginseng (Panax ginseng). To accomplish this, three years old ginseng were cultivated in pot and in phytotron with different concentrations of lead, ranging from 0 to 1000 mg x kg(-1) soil for a whole growth period (about 150 days). The photosynthetic parameters in leaves and ginsenoside content in roots of ginseng were determined in green fruit stage and before withering stage, respectively. In comparison with the control, net photosynthetic rate and SPAD value in ginseng leaves cultivated with 100 and 250 mg x kg(-1) of lead changed insignificantly, however, ginseng supplied with 500 and 1 000 mg x kg(-1) of lead showed a noticeably decline in the net rate of photosynthesis and SPAD value (P < 0.05), the lowest net photosynthetic rate and SPAD value showed in the treatment supplied with 1 000 mg x kg(-1) of lead, with decline of 57.8%,11.0%, respectively. Total content of ginsenoside in ginseng roots cultivated with 100 mg x kg(-1) of lead showed insignificantly change compared to the control, but the content increased remarkably in treatments supplied with 250, 500, 1 000 mg x kg(-1) of lead (P < 0.05), and highest content appeared in these ginsengs exposed to 1000 mg x kg(-1) of lead. The net photosynthetic rate and SPAD value in leaves of ginseng both showed significantly negative linear correlations with lead stress level (P < 0.01), and significant positive linear correlations between total content of ginsenoside and lead concentration was also observed (P < 0.05). These results strongly indicate that exposing to high level of lead negatively affects photosynthetic performance in ginseng leaves, but benefits for accumulation of secondary metabolism (total content of ginsenoside) in ginseng root.

  2. Thylakoid-Deposited Micro-Pillar Electrodes for Enhanced Direct Extraction of Photosynthetic Electrons

    PubMed Central

    Ryu, DongHyun; Kim, Yong Jae; Kim, Seon Il; Hong, Hyeonaug; Ahn, Hyun S.

    2018-01-01

    Photosynthesis converts solar energy to electricity in a highly efficient manner. Since only water is needed as fuel for energy conversion, this highly efficient energy conversion process has been rigorously investigated. In particular, photosynthetic apparatus, such as photosystem II (PSII), photosystem I (PSI), or thylakoids, have been isolated from various plants to construct bio-hybrid anodes. Although PSII or PSI decorated anodes have shown potentials, there still remain challenges, such as poor stability of PSII-based systems or need for electron donors other than water molecules of PSI-based systems. Thylakoid membranes are relatively stable after isolation and they contain all the necessary photosynthetic apparatus including the PSII and PSI. To increase electrical connections between thylakoids and anodes, nanomaterials such as carbon nanotubes, nanowires, nanoparticles, or graphene have been employed. However, since they rely on the secondary electrical connections between thylakoids and anodes; it is desired to achieve larger direct contacts between them. Here, we aimed to develop micro-pillar (MP) array anodes to maximize direct contact with thylakoids. The thylakoid morphology was analyzed and the MP array was designed to maximize direct contact with thylakoids. The performance of MP anodes and a photosynthetic fuel cell based on MP electrodes was demonstrated and analyzed. PMID:29587387

  3. Photosynthetic and Biochemical Changes in Response to Short Interval High ``g'' Exposure in Wheat

    NASA Astrophysics Data System (ADS)

    Dixit, Jyotsana; Vidyasagar, Pandit; Jagtap, Sagar; Kamble, Shailendra

    We have investigated the effect of short interval post imbibition high “g” exposure on wheat seeds (Triticum aestivum var.Lok-1) by evaluating the photosynthetic performance, chlorophyll “a” fluorescence biochemical indices and antioxidant response. Imbibed wheat seeds were exposed to high “g” ranging from 500 g to 2500 g for 10 min, allowed to germinate and grown for 5 days under normal gravity i.e. 1 g. Chlorophyll “a” fluorescence transient was examined in wheat seedling raised from hyper gravity treated seeds. Fv/Fm, PI, Fv/Fo decreased in high “g” treated seeds compared to control. Photosynthetic performance indices such as Transpiration rate, Stomatal conductance, Net photosynthetic rate, Intracellular CO2 concentration, Intrinsic water use efficiency also declined in wheat seedlings raised from High “g” treated seeds suggesting that high g reduces efficiency of photosynthesis in wheat seedlings. Results of Biochemical analysis showed reduced alpha- amylase activity in wheat seeds subjected to high “g” ranging from 500 g to 2500 g in a magnitude dependent manner. Decline in enzyme activity was positively correlated with higher starch content and lower reducing sugars in high “g” exposed wheat seeds. This possibly explains the reduced percent germination and growth in response to high “g”. Antioxidant enzyme activity (CAT and POX) significantly increased as a result of hypergravity exposure In conclusion, short interval high “g” exposure results in reduced growth and photosynthetic activity in wheat seedlings.

  4. Calibration of the Odyssey Photosynthetic Irradiance Recorder for Absolute Irradiance Measures

    EPA Science Inventory

    Researchers are increasingly interested in measuring hotosynthetically active radiation (PAR) because of its importance in determining the structure and function of lotic ecosystems. The Odyssey Photosynthetic Irradiance Recorder is an affordable PAR meter gaining popularity am...

  5. Relative contribution of shoot and ear photosynthesis to grain filling in wheat under good agronomical conditions assessed by differential organ δ13C

    PubMed Central

    Sanchez-Bragado, Rut; Molero, Gemma; Reynolds, Matthew P.; Araus, Jose Luis

    2014-01-01

    During grain filling in C3 cereals, the shoot (particularly the flag leaf) and the ear are believed to play major roles as sources of assimilates. However, both the cost and the intrusive nature of most of the methodologies available to investigate this have prevented conclusive results being obtained. This study compared the carbon isotope composition (δ13C) in its natural abundance in mature kernels with the δ13C of the water-soluble fraction of the peduncle, glumes, and awns to assess the relative contribution of the shoot (understood as the whole set of photosynthetic organs below the peduncle) and ear to grain filling in a set of highly productive wheat lines from the International Maize and Wheat Improvement Center, Mexico, under good agronomic conditions. In overall terms, the contribution of the ear was greater in comparison with that of the shoot. The specific contribution of the flag leaf blade to grain filling was also assessed by comparing the δ13C of grains with the δ13C of the water-soluble fraction of the flag leaf and the awns. The contribution of the flag leaf was minor, ranging between 3 and 18%. Complementary analyses performed such as gas-exchange rates and the accumulated water-soluble carbohydrates in both organs and light intercepted by the canopy at different strata suggested that the ear has a photosynthetic capacity at least comparable to that of the flag leaf. In this sense, selection for a higher contribution of ear photosynthesis to grain yield in breeding programmes could be addressed with the use of stable isotopes. PMID:25053645

  6. Photosynthetic solar cell using nanostructured proton exchange membrane for microbial biofilm prevention.

    PubMed

    Lee, Dong Hyun; Oh, Hwa Jin; Bai, Seoung Jae; Song, Young Seok

    2014-06-24

    Unwanted biofilm formation has a detrimental effect on bioelectrical energy harvesting in microbial cells. This issue still needs to be solved for higher power and longer durability and could be resolved with the help of nanoengineering in designing and manufacturing. Here, we demonstrate a photosynthetic solar cell (PSC) that contains a nanostructure to prevent the formation of biofilm by micro-organisms. Nanostructures were fabricated using nanoimprint lithography, where a film heater array system was introduced to precisely control the local wall temperature. To understand the heat and mass transfer phenomena behind the manufacturing and energy harvesting processes of PSC, we carried out a numerical simulation and experimental measurements. It revealed that the nanostructures developed on the proton exchange membrane enable PSC to produce enhanced output power due to the retarded microbial attachment on the Nafion membrane. We anticipate that this strategy can provide a pathway where PSC can ensure more renewable, sustainable, and efficient energy harvesting performance.

  7. Growth, photosynthetic acclimation and yield quality in legumes under climate change simulations: an updated survey.

    PubMed

    Irigoyen, J J; Goicoechea, N; Antolín, M C; Pascual, I; Sánchez-Díaz, M; Aguirreolea, J; Morales, F

    2014-09-01

    Continued emissions of CO2, derived from human activities, increase atmospheric CO2 concentration. The CO2 rise stimulates plant growth and affects yield quality. Effects of elevated CO2 on legume quality depend on interactions with N2-fixing bacteria and mycorrhizal fungi. Growth at elevated CO2 increases photosynthesis under short-term exposures in C3 species. Under long-term exposures, however, plants generally acclimate to elevated CO2 decreasing their photosynthetic capacity. An updated survey of the literature indicates that a key factor, perhaps the most important, that characteristically influences this phenomenon, its occurrence and extent, is the plant source-sink balance. In legumes, the ability of exchanging C for N at nodule level with the N2-fixing symbionts creates an extra C sink that avoids the occurrence of photosynthetic acclimation. Arbuscular mycorrhizal fungi colonizing roots may also result in increased C sink, preventing photosynthetic acclimation. Defoliation (Anthyllis vulneraria, simulated grazing) or shoot cutting (alfalfa, usual management as forage) largely increases root/shoot ratio. During re-growth at elevated CO2, new shoots growth and nodule respiration function as strong C sinks that counteracts photosynthetic acclimation. In the presence of some limiting factor, the legumes response to elevated CO2 is weakened showing photosynthetic acclimation. This survey has identified limiting factors that include an insufficient N supply from bacterial strains, nutrient-poor soils, low P supply, excess temperature affecting photosynthesis and/or nodule activity, a genetically determined low nodulation capacity, an inability of species or varieties to increase growth (and therefore C sink) at elevated CO2 and a plant phenological state or season when plant growth is stopped. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Photoautotrophic Culture of Coffea arabusta Somatic Embryos: Photosynthetic Ability and Growth of Different Stage Embryos

    PubMed Central

    AFREEN, F.; ZOBAYED, S. M. A.; KOZAI, T.

    2002-01-01

    Coffea arabusta somatic embryos were cultured and development of stomata, rate of CO2 fixation or production, chlorophyll content and chlorophyll fluorescence were studied in embryos at different stages of development. Cotyledonary and germinated embryos have photosynthetic capacity, although pretreatment at a high photosynthetic photon flux (PPF) (100 µmol m–2 s–1) for 14 d increased photosynthetic ability. Except in a very small number of cases, stomata did not develop fully in precotyledonary stage embryos and were absent in torpedo stage embryos. Low chlorophyll content (90–130 µg g–1 fresh mass) was noted in torpedo and precotyledonary stage embryos compared with cotyledonary and germinated embryos (300–500 µg g–1 fresh mass). Due to the absence of stomata and low chlorophyll content in the torpedo and precotyledonary stage embryos, the photosynthetic rate was low and, in some cases, CO2 production was observed. These data suggest that the cotyledonary stage is the earliest stage that can be cultured photoautotrophically to ensure plantlet development. When grown photoautotrophically (in a sugar‐free medium with CO2 enrichment in the culture headspace and high photosynthetic photon flux), torpedo and precotyledonary stage embryos lost 20–25 % of their initial dry mass after 60 d of culture. However, in cotyledonary and germinated embryos, the dry mass of each embryo increased by 10 and 50 %, respectively. By using a porous supporting material, growth (especially root growth) was increased in cotyledonary stage embryos. In addition, photoautotrophic conditions, high PPF (100–150 µmol m–2 s–1) and increased CO2 concentration (1100 µmol mol–1) were found to be necessary for the development of plantlets from cotyledonary stage embryos. PMID:12125763

  9. The Abundance and Distribution of Presolar Materials in Cluster IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay; Nakamura-Messenger, Keiko; Ito, Motoo

    2007-01-01

    Presolar grains and remnants of interstellar organic compounds occur in a wide range of primitive solar system materials, including meteorites, interplanetary dust particles (IDPs), and comet Wild-2 samples. Among the most abundant presolar phases are silicate stardust grains and molecular cloud material. However, these materials have also been susceptible to destruction and alteration during parent body and nebular processing. In addition to their importance as direct samples of remote and ancient astrophysical environments, presolar materials thus provide a measure of how well different primitive bodies have preserved the original solar system starting materials. The matrix normalized abundances of presolar silicate grains in meteorites range from 20 ppm in Semarkona and Bishunpur to 170 ppm for Acfer 094. The lower abundances of presolar silicates in Bishunpur and Semarkona has been ascribed to the destruction of presolar silicates during aqueous processes. Presolar silicates appear to be significantly more abundant in anhydrous IDPs, possibly because these materials did not experience parent body hydrothermal alteration. Among IDPs the estimated abundances of presolar silicates vary by more than an order of magnitude, from 480 to 5500 ppm. The wide disparity in the abundances of presolar silicates of IDPs may be a consequence of the relatively small total area analyzed in those studies and the fine grain sizes of the IDPs. Alternatively, there may be a wide range in presolar silicate abundances between different IDPs. This view is supported by the observation that 15N-rich IDPs have higher presolar silicate abundances than those with isotopically normal N.

  10. Biomaterials based on photosynthetic membranes as potential sensors for herbicides.

    PubMed

    Ventrella, Andrea; Catucci, Lucia; Placido, Tiziana; Longobardi, Francesco; Agostiano, Angela

    2011-08-15

    In this study, ultrathin film multilayers of Photosystem II-enriched photosynthetic membranes (BBY) were prepared and immobilized on quartz substrates by means of a Layer by Layer procedure exploiting electrostatic interactions with poly(ethylenimine) as polyelectrolyte. The biomaterials thus obtained were characterized by means of optical techniques and Atomic Force Microscopy, highlighting the fact that the Layer by Layer approach allowed the BBYs to be immobilized with satisfactory results. The activity of these hybrid materials was evaluated by means of optical assays based on the Hill Reaction, indicating that the biosamples, which preserved about 65% of their original activity even ten weeks after preparation, were both stable and active. Furthermore, an investigation of the biochips' sensitivity to the herbicide terbutryn, as a model analyte, gave interesting results: inhibition of photosynthetic activity was observed at terbutryn concentrations higher than 10(-7)M, thus evidencing the potential of such biomaterials in the environmental biosensor field. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Changes of Photosynthetic Behaviors in Kappaphycus alvarezii Infected by Epiphyte.

    PubMed

    Pang, Tong; Liu, Jianguo; Liu, Qian; Lin, Wei

    2011-01-01

    Epiphytic filamentous algae (EFA) were noted as a serious problem to reduce the production and quality of K. alvarezii. The morphological studies revealed that the main epiphyte on K. alvarezii was Neosiphonia savatieri in China. Though the harmful effects of EFA on the production of K. alvarezii have been reported, the detailed mechanism of the N. savatieri in limiting the production of K. alvarezii has not been studied yet. The present paper studied the effects of N. savatieri infection on photosynthetic behaviors in K. alvarezii by detecting chlorophyll fluorescence transient in vivo. The results revealed that damage of oxygen-evolving complex (OEC), decrease of active reaction centers (RCs), and the plastoquinone (PQ) pool as well as significant reduction in the performance indexes (PI) of PSII were caused by the infection of N. savatieri. The influence of N. savatieri on photosynthetic activity of K. alvarezii should be one of the important reasons to reduce the production of K. alvarezii infected by N. savatieri.

  12. Changes of Photosynthetic Behaviors in Kappaphycus alvarezii Infected by Epiphyte

    PubMed Central

    Pang, Tong; Liu, Jianguo; Liu, Qian; Lin, Wei

    2011-01-01

    Epiphytic filamentous algae (EFA) were noted as a serious problem to reduce the production and quality of K. alvarezii. The morphological studies revealed that the main epiphyte on K. alvarezii was Neosiphonia savatieri in China. Though the harmful effects of EFA on the production of K. alvarezii have been reported, the detailed mechanism of the N. savatieri in limiting the production of K. alvarezii has not been studied yet. The present paper studied the effects of N. savatieri infection on photosynthetic behaviors in K. alvarezii by detecting chlorophyll fluorescence transient in vivo. The results revealed that damage of oxygen-evolving complex (OEC), decrease of active reaction centers (RCs), and the plastoquinone (PQ) pool as well as significant reduction in the performance indexes (PI) of PSII were caused by the infection of N. savatieri. The influence of N. savatieri on photosynthetic activity of K. alvarezii should be one of the important reasons to reduce the production of K. alvarezii infected by N. savatieri. PMID:21845201

  13. The Primitive Thylakoid-Less Cyanobacterium Gloeobacter Is a Common Rock-Dwelling Organism.

    PubMed

    Mareš, Jan; Hrouzek, Pavel; Kaňa, Radek; Ventura, Stefano; Strunecký, Otakar; Komárek, Jiří

    2013-01-01

    Cyanobacteria are an ancient group of photosynthetic prokaryotes, which are significant in biogeochemical cycles. The most primitive among living cyanobacteria, Gloeobacter violaceus, shows a unique ancestral cell organization with a complete absence of inner membranes (thylakoids) and an uncommon structure of the photosynthetic apparatus. Numerous phylogenetic papers proved its basal position among all of the organisms and organelles capable of plant-like photosynthesis (i.e., cyanobacteria, chloroplasts of algae and plants). Hence, G. violaceus has become one of the key species in evolutionary study of photosynthetic life. It also numbers among the most widely used organisms in experimental photosynthesis research. Except for a few related culture isolates, there has been little data on the actual biology of Gloeobacter, being relegated to an "evolutionary curiosity" with an enigmatic identity. Here we show that members of the genus Gloeobacter probably are common rock-dwelling cyanobacteria. On the basis of morphological, ultrastructural, pigment, and phylogenetic comparisons of available Gloeobacter strains, as well as on the basis of three new independent isolates and historical type specimen, we have produced strong evidence as to the close relationship of Gloeobacter to a long known rock-dwelling cyanobacterial morphospecies Aphanothece caldariorum. Our results bring new clues to solving the 40 year old puzzle of the true biological identity of Gloeobacter violaceus, a model organism with a high value in several biological disciplines. A probable broader distribution of Gloeobacter in common wet-rock habitats worldwide is suggested by our data, and its ecological meaning is discussed taking into consideration the background of cyanobacterial evolution. We provide observations of previously unknown genetic variability and phenotypic plasticity, which we expect to be utilized by experimental and evolutionary researchers worldwide.

  14. Canopy light heterogeneity drives leaf anatomical, eco-physiological, and photosynthetic changes in olive trees grown in a high-density plantation.

    PubMed

    Larbi, Ajmi; Vázquez, Saúl; El-Jendoubi, Hamdi; Msallem, Monji; Abadía, Javier; Abadía, Anunciación; Morales, Fermín

    2015-02-01

    In the field, leaves may face very different light intensities within the tree canopy. Leaves usually respond with light-induced morphological and photosynthetic changes, in a phenomenon known as phenotypic plasticity. Canopy light distribution, leaf anatomy, gas exchange, chlorophyll fluorescence, and pigment composition were investigated in an olive (Olea europaea, cvs. Arbequina and Arbosana) orchard planted with a high-density system (1,250 trees ha(-1)). Sampling was made from three canopy zones: a lower canopy (<1 m), a central one (1-2 m), and an upper one (>2 m). Light interception decreased significantly in the lower canopy when compared to the central and top ones. Leaf angle increased and photosynthetic rates and non-photochemical quenching (NPQ) decreased significantly and progressively from the upper canopy to the central and the lower canopies. The largest leaf areas were found in the lower canopy, especially in the cultivar Arbequina. The palisade and spongy parenchyma were reduced in thickness in the lower canopy when compared to the upper one, in the former due to a decrease in the number of cell layers from three to two (clearly distinguishable in the light and fluorescence microscopy images). In both cultivars, the concentration of violaxanthin-cycle pigments and β-carotene was higher in the upper than in the lower canopy. Furthermore, the de-epoxidized forms zeaxanthin and antheraxanthin increased significantly in those leaves from the upper canopy, in parallel to the NPQ increases. In conclusion, olive leaves react with morphological and photosynthetic changes to within-crown light gradients. These results strengthen the idea of olive trees as "modular organisms" that adjust the modules morphology and physiology in response to light intensity.

  15. Worldwide variation in within-canopy photosynthetic acclimation: differences in temporal and environmental controls among plant functional types

    NASA Astrophysics Data System (ADS)

    Niinemets, Ülo; Keenan, Trevor

    2017-04-01

    Major light gradients, characteristically 10- to 50-fold, constitute the most prominent feature of plant canopies. These gradients drive within-canopy variation in foliage structural, chemical and physiological traits. As a key acclimation response to variation in light availability, foliage photosynthetic capacity per area (Aarea) increases with increasing light availability within the canopy, maximizing whole canopy photosynthesis. Recently, a worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types was constructed and within-canopy variation in photosynthetic acclimation was characterized (Niinemets Ü, Keenan TF, Hallik L (2015) Tansley review. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. The New Phytologist 205: 973-993). However, the understanding of how within-canopy photosynthetic gradients vary during the growing season and in response to site and stand characteristics is still limited. Here we analyzed temporal, environmental and site (nutrient availability, stand density, ambient CO2 concentration, water availability) sources of variation in within-canopy photosynthetic acclimation in different plant functional types. Variation in key structural (leaf dry mass per unit area, MA), chemical (nitrogen content per dry mass, NM, and area, NA) and physiological (photosynthetic nitrogen use efficiency, EN) photosynthetic capacity per dry mass, Amass and area, Aarea) was examined. The analysis demonstrates major, typically 1.5-2-fold, time-, environment and site-dependent modifications in within-canopy variation in foliage photosynthetic capacity. However, the magnitude and direction of temporal and environmental variations in plasticity significantly varied among functional types. Species with longer leaf life span and low rates of canopy expansion or flush-type canopy

  16. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Resende de Sousa, Celio Helder; Hilker, Thomas; Waring, Richard; Mendes De Moura, Yhasmin; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.

  17. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin

    PubMed Central

    de Sousa, Celio Helder Resende; Hilker, Thomas; Waring, Richard; de Moura, Yhasmin Mendes; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (ε) at four sites in the Amazon Basin: r2 values ranged from 0.37 to 0.51 for northern flux sites and to 0.78 for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics. PMID:29375895

  18. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin.

    PubMed

    de Sousa, Celio Helder Resende; Hilker, Thomas; Waring, Richard; de Moura, Yhasmin Mendes; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (ε) at four sites in the Amazon Basin: r 2 values ranged from 0.37 to 0.51 for northern flux sites and to 0.78 for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.

  19. Observations of volatile organic compounds over the North Atlantic Ocean: relationships to dominant cyanobacterial populations.

    NASA Astrophysics Data System (ADS)

    Swarthout, R.; Rossell, R.; Sive, B. C.; Zhou, Y.; Reddy, C. M.; Valentine, D. L.; Cox, D.

    2017-12-01

    Marine cyanobacteria are abundant primary producers that can have a major influence on the oceanic biogeochemical cycles. In particular, the prominent cyanobacterial genera Prochlorococcus, Synechococcus, and Trichodesmium can impact the air-sea flux of volatile organic compounds (VOCs) including reactive compounds, such as isoprene, that control the oxidative capacity of the atmosphere and climate-relevant compounds, such as dimethyl sulfide. These groups of cyanobacteria have been estimated to increase in abundance by up to 29% by the end of the century as a result of rising sea surface temperatures and dissolved carbon dioxide concentrations. Given their current and predicted future abundance, understanding the role of different cyanobacterial populations on VOC emissions from the ocean is critical in understanding the future oxidative capacity of the remote atmosphere and climate feedback cycles. During the May 2017 Phosphorus, Hydrocarbons, and Transcriptomics cruise aboard the R/V Neil Armstrong, 160 whole air canister samples were collected along a transect through the North Atlantic from Woods Hole, MA to Bermuda and back with 24-hour stops at nine stations encompassing different nutrient regimes and cyanobacterial populations. At each station, a diurnal time series of samples was collected and higher frequency sampling was conducted during transits of the north wall. Canister samples were analyzed on a five-detector gas chromatography system for over 80 individual VOCs including biogenics, aromatics, chlorinated and brominated compounds, and sulfur containing compounds. Trends in reactive and climate-relevant VOCs will be discussed as a function of the predominant cyanobacterial populations at each sample location. These data provide increased information on the spatial and diurnal variability of trace gases associated with these globally important photosynthetic cyanobacteria.

  20. Photorespiration Is Crucial for Dynamic Response of Photosynthetic Metabolism and Stomatal Movement to Altered CO2 Availability.

    PubMed

    Eisenhut, Marion; Bräutigam, Andrea; Timm, Stefan; Florian, Alexandra; Tohge, Takayuki; Fernie, Alisdair R; Bauwe, Hermann; Weber, Andreas P M

    2017-01-09

    The photorespiratory pathway or photorespiration is an essential process in oxygenic photosynthetic organisms, which can reduce the efficiency of photosynthetic carbon assimilation and is hence frequently considered as a wasteful process. By comparing the response of the wild-type plants and mutants impaired in photorespiration to a shift in ambient CO 2 concentrations, we demonstrate that photorespiration also plays a beneficial role during short-term acclimation to reduced CO 2 availability. The wild-type plants responded with few differentially expressed genes, mostly involved in drought stress, which is likely a consequence of enhanced opening of stomata and concomitant water loss upon a shift toward low CO 2 . In contrast, mutants with impaired activity of photorespiratory enzymes were highly stressed and not able to adjust stomatal conductance to reduced external CO 2 availability. The transcriptional response of mutant plants was congruent, indicating a general reprogramming to deal with the consequences of reduced CO 2 availability, signaled by enhanced oxygenation of ribulose-1,5-bisphosphate and amplified by the artificially impaired photorespiratory metabolism. Central in this reprogramming was the pronounced reallocation of resources from growth processes to stress responses. Taken together, our results indicate that unrestricted photorespiratory metabolism is a prerequisite for rapid physiological acclimation to a reduction in CO 2 availability. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.