Sample records for abundant water resources

  1. Bringing abundance into environmental politics: Constructing a Zionist network of water abundance, immigration, and colonization.

    PubMed

    Alatout, Samer

    2009-06-01

    For more than five decades, resource scarcity has been the lead story in debates over environmental politics. More importantly, and whenever environmental politics implies conflict, resource scarcity is constructed as the culprit. Abundance of resources, if at all visited in the literature, holds less importance. Resource abundance is seen, at best, as the other side of scarcity--maybe the successful conclusion of multiple interventions that may turn scarcity into abundance. This paper reinstates abundance as a politico-environmental category in its own right. Rather than relegating abundance to a second-order environmental actor that matters only on occasion, this paper foregrounds it as a crucial element in modern environmental politics. On the substantive level, and using insights from science and technology studies, especially a slightly modified actor-network framework, I describe the emergence and consolidation of a Zionist network of abundance, immigration, and colonization in Palestine between 1918 and 1948. The essential argument here is that water abundance was constructed as fact, and became a political rallying point around which a techno-political network emerged that included a great number of elements. To name just a few, the following were enrolled in the service of such a network: geologists, geophysicists, Zionist settlement experts, Zionist organizations, political and technical categories of all sorts, Palestinians as the negated others, Palestinian revolts in search of political rights, the British Mandate authorities, the hydrological system of Palestine, and the absorptive capacity of Palestine, among others. The point was to successfully articulate these disparate elements into a network that seeks opening Palestine for Jewish immigration, redefining Palestinian geography and history through Judeo-Christian Biblical narratives, and, in the process, de-legitimizing political Palestinian presence in historic Palestine.

  2. Modeling the relationship between water level, wild rice abundance, and waterfowl abundance at a central North American wetland

    USGS Publications Warehouse

    Aagaard, Kevin; Eash, Josh D.; Ford, Walt; Heglund, Patricia J.; McDowell, Michelle; Thogmartin, Wayne E.

    2018-01-01

    Recent evidence suggests wild rice (Zizania palustris), an important resource for migrating waterfowl, is declining in parts of central North America, providing motivation to rigorously quantify the relationship between waterfowl and wild rice. A hierarchical mixed-effects model was applied to data on waterfowl abundance for 16 species, wild rice stem density, and two measures of water depth (true water depth at vegetation sampling locations and water surface elevation). Results provide evidence for an effect of true water depth (TWD) on wild rice abundance (posterior mean estimate for TWD coefficient, β TWD = 0.92, 95% confidence interval = 0.11—1.74), but not for an effect of wild rice stem density or water surface elevation on local waterfowl abundance (posterior mean values for relevant parameters overlapped 0). Refined protocols for sampling design and more consistent sampling frequency to increase data quality should be pursued to overcome issues that may have obfuscated relationships evaluated here.

  3. [Effects of macro-jellyfish abundance dynamics on fishery resource structure in the Yangtze River estuary and its adjacent waters].

    PubMed

    Shan, Xiu-Juan; Zhuang, Zhi-Meng; Jin, Xian-Shi; Dai, Fang-Qun

    2011-12-01

    Based on the bottom trawl survey data in May 2007 and May and June 2008, this paper analyzed the effects of the abundance dynamics of macro-jellyfish on the species composition, distribution, and abundance of fishery resource in the Yangtze River estuary and its adjacent waters. From May 2007 to June 2008, the average catch per haul and the top catch per haul of macro-jellyfish increased, up to 222.2 kg x h(-1) and 1800 kg x h(-1) in June 2008, respectively. The macro-jellyfish were mainly distributed in the areas around 50 m isobath, and not beyond 100 m isobath where was the joint front of the coastal waters of East China Sea, Yangtze River runoff, and Taiwan Warm Current. The main distribution area of macro-jellyfish in June migrated northward, as compared with that in May, and the highest catches of macro-jellyfish in May 2007 and May 2008 were found in the same sampling station (122.5 degrees E, 28.5 degrees N). In the sampling stations with higher abundance of macro-jellyfish, the fishery abundance was low, and the fishery species also changed greatly, mainly composed by small-sized species (Trachurus japonicus, Harpadon nehereus, and Acropoma japonicum) and pelagic species (Psenopsis anomala, Octopus variabilis) and Trichiurus japonicus, and P. anomala accounted for 23.7% of the total catch in June 2008. Larimichthys polyactis also occupied higher proportion of the total catch in sampling stations with higher macro-jellyfish abundance, but the demersal species Lophius litulon was not found, and a few crustaceans were collected. This study showed that macro-jellyfish had definite negative effects on the fishery community structure and abundance in the Yangtze River estuary fishery ecosystem, and further, changed the energy flow patterns of the ecosystem through cascading trophic interactions. Therefore, macro-jellyfish was strongly suggested to be an independent ecological group when the corresponding fishery management measures were considered.

  4. California Water Resources Development.

    DTIC Science & Technology

    1977-01-01

    does not remain on the ground below 4,000 feet. The zone of heavy snowfall is from 7,000 to 8,000 feet. Melting of the normally deep snowpack in these...advanced cargoCaiornia has abundant water, metal , nonmetallic min- handling schniques indicate that major improvements erals, fuel and forestry resources...conceived by the De - California includes improvement and maintenance of bris Commission as a result of studies directed by all major coastal harbors in

  5. Water - Essential Resource of the Southern Flint River Basin, Georgia

    USGS Publications Warehouse

    Warner, Debbie; Norton, Virgil

    2004-01-01

    Introduction Abundant water resources of the Flint River Basin have played a major role in the history and development of southwestern Georgia. The Flint River-along with its tributaries, wetlands, and swamps-and the productive aquifers of the river basin are essential components of the area's diverse ecosystems. These resources also are necessary for sustained agricultural, industrial, and municipal activities. Increasing, and in some cases conflicting, demand for water makes careful monitoring and wise planning and management of southwestern Georgia's water resources critical to the ecological and economic future of the area. This poster presents the major issues associated with increasing competition for water resources in the southern Flint River Basin.

  6. Floral resource availability from groundcover promotes bee abundance in coffee agroecosystems.

    PubMed

    Fisher, Kaleigh; Gonthier, David J; Ennis, Katherine K; Perfecto, Ivette

    2017-09-01

    Patterns of bee abundance and diversity across different spatial scales have received thorough research consideration. However, the impact of short- and long-term temporal resource availability on biodiversity has been less explored. This is highly relevant in tropical agricultural systems for pollinators, as many foraging periods of pollinators extend beyond flowering of any single crop species. In this study, we sought to understand how bee communities in tropical agroecosystems changed between seasons, and if short- and long-term floral resource availability influenced their diversity and abundance. We used a threshold analysis approach in order to explore this relationship at two time scales. This study took place in a region dominated by coffee agroecosystems in Southern Mexico. This was an ideal system because the landscape offers a range of coffee management regimes that maintain heterogeneity in floral resource availability spatially and temporally. We found that the bee community varies significantly between seasons. There were higher abundances of native social, solitary and managed honey bees during the dry season when coffee flowers. Additionally, we found that floral resources from groundcover, but not trees, were associated with bee abundance. Further, the temporal scale of the availability of these resources is important, whereby short-term floral resource availability appears particularly important in maintaining high bee abundance at sites with lower seasonal complementarity. We argue that in addition to spatial resource heterogeneity, temporal resource heterogeneity is critical in explaining bee community patterns, and should thus be considered to promote pollinator conservation. © 2017 by the Ecological Society of America.

  7. Tipping Points in Resource Abundance Drive Irreversible Changes in Community Structure.

    PubMed

    Haney, Seth D; Siepielski, Adam M

    2018-05-01

    Global climate change has made what were seemingly extraordinary environmental conditions, such as prolonged droughts, commonplace. One consequence of extreme environmental change is concomitant changes in resource abundance. How will such extreme resource changes impact biodiversity? We developed a trait-based consumer-resource model to examine how resource abundance affects the potential for adaptive evolution and coexistence among competitors. We found that moderate changes in resource abundance have little effect on trait evolution. However, when resource scarcities were sufficiently extreme, a critical transition-a tipping point-occurred, which caused consumer traits to diverge and restructured the community in a way that outlasted the scarcity. Therefore, even though traits can evolve in response to minor resource fluctuations, large environmental shifts may be necessary for producing long-lasting impacts on community structure. These results may also help to illuminate patterns of stasis frequently observed in nature, despite the considerable evidence demonstrating rapid evolutionary change.

  8. Synopsis of ground-water and surface-water resources of North Dakota

    USGS Publications Warehouse

    Winter, T.C.; Benson, R.D.; Engberg, R.A.; Wiche, G.J.; Emerson, D.G.; Crosby, O.A.; Miller, J.E.

    1984-01-01

    This report describes the surface- and ground-water resources of North Dakota and the limitations of our understanding of these resources. Ground water and surface water are actually one resource, because they are often hydraulically interconnected. They are discussed separately for convenience. In general, the surface-water resources of the mainstem of the Missouri river are abundant and suitable for most uses. Other rivers may be important locally as water-supply sources, but the quantities of flow are small, quite variable in time, and generally of an unsuitable quality for most uses. Streamflow characteristics of North Dakota reflect its arid to semiarid climate (annual precipitation varies from 13 to 20 inches from west to east across the State), cold winters (usually including a significant snowpack available for spring snowmelt runoff), and the seasonal distribution of annual precipitation (almost 50 percent falls from Nky to July).Significant volumes of shallow ground water, of variable quality are found in the glacial-drift aquifers in parts of central, northern, and eastern North Dakota. Existing information provides only a limited capability to assess the long-term reliability of these scattered aquifers. There are significant indications, however, of water-quality problems related to sustained production of wells if long-term utilization of these aquifers is planned. A summary of the general suitability for use of surface water and ground water is given in Table E1.

  9. Financial development and oil resource abundance-growth relations: evidence from panel data.

    PubMed

    Law, Siong Hook; Moradbeigi, Maryam

    2017-10-01

    This study investigates whether financial development dampens the negative impact of oil resource abundance on economic growth. Because of substantial cross-sectional dependence in our data, which contain a core sample of 63 oil-producing countries from 1980 through 2010, we use the common correlated effect mean group (CCEMG) estimator to account for the high degree of heterogeneity and drop the outlier countries. The empirical results reveal that oil resource abundance affects the growth rate in output contingent on the degree of development in financial markets. More developed financial markets can channel the revenues from oil into more productive activities and thus offset the negative effects of oil resource abundance on economic growth. Thus, better financial development can reverse resource curse or enhance resource blessing in oil-rich economies.

  10. Guide to Louisiana's ground-water resources

    USGS Publications Warehouse

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  11. Water resources management: the challenge of integration

    NASA Astrophysics Data System (ADS)

    Kgarebe, Boitumelo V.

    That water is life can no longer be considered to be a cliché, but is a reality and a statement of fact. Water is the most abundant resource on earth, but there are more than 5 billion people worldwide who don't have access to a safe supply of drinking water. Most of these people are in the developing world in particular Asia and Africa. It has long been recognized that water has both an economic and social component. These must be balanced and weighed equitably in order to fuel development that is sustainable and that benefits all. It is on these ideals that such initiatives like the Global Water Partnership, Water for All, and the principles embodied in documents like Agenda 21, are centred around.

  12. Abundance models improve spatial and temporal prioritization of conservation resources.

    PubMed

    Johnston, Alison; Fink, Daniel; Reynolds, Mark D; Hochachka, Wesley M; Sullivan, Brian L; Bruns, Nicholas E; Hallstein, Eric; Merrifield, Matt S; Matsumoto, Sandi; Kelling, Steve

    2015-10-01

    Conservation prioritization requires knowledge about organism distribution and density. This information is often inferred from models that estimate the probability of species occurrence rather than from models that estimate species abundance, because abundance data are harder to obtain and model. However, occurrence and abundance may not display similar patterns and therefore development of robust, scalable, abundance models is critical to ensuring that scarce conservation resources are applied where they can have the greatest benefits. Motivated by a dynamic land conservation program, we develop and assess a general method for modeling relative abundance using citizen science monitoring data. Weekly estimates of relative abundance and occurrence were compared for prioritizing times and locations of conservation actions for migratory waterbird species in California, USA. We found that abundance estimates consistently provided better rankings of observed counts than occurrence estimates. Additionally, the relationship between abundance and occurrence was nonlinear and varied by species and season. Across species, locations prioritized by occurrence models had only 10-58% overlap with locations prioritized by abundance models, highlighting that occurrence models will not typically identify the locations of highest abundance that are vital for conservation of populations.

  13. Science to support the understanding of Ohio's water resources

    USGS Publications Warehouse

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  14. Water resources of Manatee County, Florida. Water-resources investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.P.

    1983-03-01

    Rapid development of Manatee County in southwest Florida is creating water-resource problems. The report presents an evaluation of the water resources and potential effects of water-resource developments. Most streams in the county have small drainage basins and low yields. The principal aquifers are the surficial, minor artesian, and the Floridan. The Floridan aquifer is the major source of irrigation water in the county. The minor artesian aquifer is a highly developed source of water for small rural supplies. Withdrawals of 20 to 50 million gallons per day from the Floridan aquifer since the 1950's have caused declines in the potentiometricmore » surface of about 20 to 50 feet. The quality of ground water is good except in the coastal and southern parts of the county.« less

  15. Aquifer water abundance evaluation using a fuzzy- comprehensive weighting method

    NASA Astrophysics Data System (ADS)

    Wei, Z.

    2016-08-01

    Aquifer water abundance evaluation is a highly relevant issue that has been researched for many years. Despite prior research, problems with the conventional evaluation method remain. This paper establishes an aquifer water abundance evaluation method that combines fuzzy evaluation with a comprehensive weighting method to overcome both the subjectivity and lack of conformity in determining weight by pure data analysis alone. First, this paper introduces the principle of a fuzzy-comprehensive weighting method. Second, the example of well field no. 3 (of a coalfield) is used to illustrate the method's process. The evaluation results show that this method is can more suitably meet the real requirements of aquifer water abundance assessment, leading to more precise and accurate evaluations. Ultimately, this paper provides a new method for aquifer water abundance evaluation.

  16. Mars atmospheric water vapor abundance: 1996-1997

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  17. Valuing water resources in Switzerland using a hedonic price model

    NASA Astrophysics Data System (ADS)

    van Dijk, Diana; Siber, Rosi; Brouwer, Roy; Logar, Ivana; Sanadgol, Dorsa

    2016-05-01

    In this paper, linear and spatial hedonic price models are applied to the housing market in Switzerland, covering all 26 cantons in the country over the period 2005-2010. Besides structural house, neighborhood and socioeconomic characteristics, we include a wide variety of new environmental characteristics related to water to examine their role in explaining variation in sales prices. These include water abundance, different types of water bodies, the recreational function of water, and water disamenity. Significant spatial autocorrelation is found in the estimated models, as well as nonlinear effects for distances to the nearest lake and large river. Significant effects are furthermore found for water abundance and the distance to large rivers, but not to small rivers. Although in both linear and spatial models water related variables explain less than 1% of the price variation, the distance to the nearest bathing site has a larger marginal contribution than many neighborhood-related distance variables. The housing market shows to differentiate between different water related resources in terms of relative contribution to house prices, which could help the housing development industry make more geographically targeted planning activities.

  18. Water resources of the Lake Erie shore region in Pennsylvania

    USGS Publications Warehouse

    Mangan, John William; Van Tuyl, Donald W.; White, Walter F.

    1952-01-01

    An abundant supply of water is available to the Lake Erie Shore region in Pennsylvania. Lake i£rie furnishes an almost inexhaustible supply of water of satisfactory chemical quality. Small quantities of water are available from small streams in the area and from the ground. A satisfactory water supply is one of the factors that affect the economic growth of a region. Cities and towns must have adequate amounts of pure water for human consumption. Industries must have suitable water ih sufficient quantities for all purposes. In order to assure. success and economy, the development of water resources should be based on adequate knowledge of the quantity and quality of the water. As a nation, we can not afford to run the risk of dissipating our resources, especially in times of national emergency, by building projects that are not founded on sound engineering and adequate water-resources information. The purpose of this report is to summarize and interpret all available water-resources information for the Lake Erie Shore region in Pennsylvania. The report will be useful for initial guidance in the location or expansion of water facilities for defense and nondefense industries and the municipalities upon which they are dependent. It will also be useful in evaluating the adequacy of the Geological Survey's part of the basic research necessary to plan the orderly development of the water resources of the Lake Erie Shore region. Most of the data contained inthis report have been obtained'by the U. S. Geological Survey in cooperation with the Pennsylvania Department of Forests and Waters, the Pennsylvania Department of Internal Affairs, and the Pennsylvania State Planning Board, Department of Commerce. The Pennsylv~nia Department of Health furnished information on water pollution. The report was prepared in the Water Resources Division of the U. S. Geological Survey b:y John W. Mangan (Surface Water). Donald W. VanTuyl (Ground Water). and Walter F. White, Jr. (Quality of

  19. Front Range Infrastructure Resources Project: water-resources activities

    USGS Publications Warehouse

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  20. Temporal variation in bird and resource abundance across an elevational gradient in Hawaii

    USGS Publications Warehouse

    Hart, Patrick J.; Woodworth, Bethany L.; Camp, Richard J.; Turner, Kathryn; McClure, Katherine; Goodall, Katherine; Henneman, Carlene; Spiegel, Caleb; Lebrun, Jaymi; Tweed, Erik; Samuel, Michael

    2011-01-01

    We documented patterns of nectar availability and nectarivorous bird abundance over ~3 years at nine study sites across an 1,800-m elevational gradient on Hawaii Island to investigate the relationship between resource variation and bird abundance. Flower density (flowers ha-1) and nectar energy content were measured across the gradient for the monodominant 'Ōhi'a (Metrosideros polymorpha). Four nectarivorous bird species were captured monthly in mist nets and surveyed quarterly with point-transect distance sampling at each site to examine patterns of density and relative abundance. Flowering peaks were associated with season but not rainfall or elevation. Bird densities peaked in the winter and spring of each year at high elevations, but patterns were less clear at middle and low elevations. Variability in bird abundance was generally best modeled as a function of elevation, season, and flower density, but the strength of the latter effect varied with species. The low elevations had the greatest density of flowers but contained far fewer individuals of the two most strongly nectarivorous species. There is little evidence of large-scale altitudinal movement of birds in response to 'Ōhi'a flowering peaks. The loose relationship between nectar and bird abundance may be explained by a number of potential mechanisms, including (1) demographic constraints to movement; (2) nonlimiting nectar resources; and (3) the presence of an "ecological trap," whereby birds are attracted by the high resource abundance of, but suffer increased mortality at, middle and low elevations as a result of disease.

  1. Searching for Lunar Water: The Lunar Volatile Resources Analysis Package

    NASA Technical Reports Server (NTRS)

    Morse, A. D.; Barber, S. J.; Dewar, K. R.; Pillinger, J. M.; Sheridan, S.; Wright, I, P.; Gibson, E. K.; Merrifield, J. A.; Howe, C. J.; Waugh, L. J.; hide

    2012-01-01

    The ESA Lunar Lander has been conceived to demonstrate an autonomous landing capability. Once safely on the Moon the scientific payload will conduct investigations aimed at preparing the way for human exploration. As part of the provisional payload an instrument known as The Lunar Volatile Resources Analysis Package (L-VRAP) will analyse surface and exospheric volatiles. The presence and abundance of lunar water is an important consideration for ISRU (In Situ Resource Utilisation) since this is likely to be part of a strategy for supporting long-term human exploration of the Moon.

  2. The nexus between integrated natural resources management and integrated water resources management in southern Africa

    NASA Astrophysics Data System (ADS)

    Twomlow, Stephen; Love, David; Walker, Sue

    The low productivity of smallholder farming systems and enterprises in the drier areas of the developing world can be attributed mainly to the limited resources of farming households and the application of inappropriate skills and practices that can lead to the degradation of the natural resource base. This lack of development, particularly in southern Africa, is of growing concern from both an agricultural and environmental perspective. To address this lack of progress, two development paradigms that improve land and water productivity have evolved, somewhat independently, from different scientific constituencies. One championed by the International Agricultural Research constituency is Integrated Natural Resource Management (INRM), whilst the second championed predominantly by Environmental and Civil Engineering constituencies is Integrated Water Resources Management (IWRM). As a result of similar objectives of working towards the millennium development goals of improved food security and environmental sustainability, there exists a nexus between the constituencies of the two paradigms, particularly in terms of appreciating the lessons learned. In this paper lessons are drawn from past INRM research that may have particular relevance to IWRM scientists as they re-direct their focus from blue water issues to green water issues, and vice-versa. Case studies are drawn from the management of water quality for irrigation, green water productivity and a convergence of INRM and IWRM in the management of gold panning in southern Zimbabwe. One point that is abundantly clear from both constituencies is that ‘one-size-fits-all’ or silver bullet solutions that are generally applicable for the enhancement of blue water management/formal irrigation simply do not exist for the smallholder rainfed systems.

  3. Water resources scientific information center

    USGS Publications Warehouse

    Cardin, C. William; Campbell, J.T.

    1986-01-01

    The Water Resources Scientific Information Center (WRSIC) acquires, abstracts and indexes the major water resources related literature of the world, and makes information available to the water resources community and the public. A component of the Water Resources Division of the US Geological Survey, the Center maintains a searchable computerized bibliographic data base, and publishers a monthly journal of abstracts. Through its services, the Center is able to provide reliable scientific and technical information about the most recent water resources developments, as well as long-term trends and changes. WRSIC was established in 1966 by the Secretary of the Interior to further the objectives of the Water Resources Research Act of 1964--legislation that encouraged research in water resources and the prevention of needless duplication of research efforts. It was determined the WRSIC should be the national center for information on water resources, covering research reports, scientific journals, and other water resources literature of the world. WRSIC would evaluate all water resources literature, catalog selected articles, and make the information available in publications or by computer access. In this way WRSIC would increase the availability and awareness of water related scientific and technical information. (Lantz-PTT)

  4. Water Resource Adaptation Program

    EPA Science Inventory

    The Water Resource Adaptation Program (WRAP) contributes to the U.S. Environmental Protection Agency’s (U.S. EPA) efforts to provide water resource managers and decision makers with the tools needed to adapt water resources to demographic and economic development, and future clim...

  5. The Water-Energy-Food Nexus in a Rapidly Developing Resource Sector

    NASA Astrophysics Data System (ADS)

    Allen, D. M.; Kirste, D. M.

    2014-12-01

    Technological advances and access to global markets have changed the rate at which resource exploitation takes place. The environmental impact of the rapid development and distribution of resources such as minerals and hydrocarbons has led to a greater potential for significant stress on water resources both in terms of quality and quantity. How and where those impacts manifest is crucial to determining appropriate risk management strategies. North East British Columbia has an abundance of shale gas reserves that are anticipated to be exploited at a large scale in coming years, primarily for export as liquefied natural gas (LNG). However, there is growing concern that fracking and other activities related to shale gas development pose risks to water quality and quantity in the region. Water lies at the center of the water-energy-food nexus, with an accelerating water demand for fracking and industrial operations as well as for domestic, environmental and agricultural uses. Climate change is also anticipated to alter the hydrologic regime, posing added stress to the water resource. This case study examines the water-energy-food nexus in the context of a region that is impacted by a rapidly developing resource sector, encompassing water demand/supply, climate change, interaction between deep aquifers and shallow aquifers/surface waters, water quality concerns related to fracking, land use disturbance, and community impacts. Due to the rapid rate of development, there are significant knowledge gaps in our understanding of the water resource. Currently agencies are undertaking water resource assessments and establishing monitoring sites. This research aims to assess water security in North East British Columbia in a coordinated fashion through various partnerships. In addition to collecting baseline knowledge and data, the study will evaluate risk and resilience indicators in relation to water security. A risk assessment framework specific to the shale gas development

  6. Save Our Water Resources.

    ERIC Educational Resources Information Center

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  7. Preliminary research on quantitative methods of water resources carrying capacity based on water resources balance sheet

    NASA Astrophysics Data System (ADS)

    Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai

    2018-06-01

    Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.

  8. NASA Water Resources Program

    NASA Technical Reports Server (NTRS)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  9. Water resources transfers through Chinese interprovincial and foreign food trade.

    PubMed

    Dalin, Carole; Hanasaki, Naota; Qiu, Huanguang; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2014-07-08

    China's water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability--with abundant agricultural land and little water resources in the north--increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities' virtual water content to build China's domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China's domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China's soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km(3)/y irrigation water savings, 41 km(3)/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements.

  10. Water-resources programs and hydrologic-information needs, Marion County, Indiana, 1987

    USGS Publications Warehouse

    Duwelius, R.F.

    1990-01-01

    Water resources are abundant in Marion County, Indiana, and have been developed for public and industrial supply, energy generation, irrigation, and recreation. The largest water withdrawals are from surface water, and the two largest water uses are public supply and cooling water for electrical-generating plants. Water-resources programs in the county are carried out by Federal, State and local agencies to address issues of surface and groundwater availability and quality. The programs of each agency are related to the functions and goals of the agency. Although each agency has specific information needs to fulfill its functions, sometimes these needs overlap, and there are times when the same hydrologic information benefits all. Overlapping information needs and activities create opportunities for interagency coordination and cooperation. Such cooperation could lead to a savings of dollars spent on water-resources programs and could assure an improved understanding of the water resources of the county. Representatives from four agencies-- the Indiana Department of Environmental Management, the Indiana Department of Natural Resources, the Indianapolis Department of Public Works, and the U.S. Geological Survey--met four times in 1987 to describe their own water-resources programs, to identify hydrologic-information needs, and to contact other agencies with related programs. This report presents the interagency findings and is intended to further communication among water resource agencies by identifying current programs and common needs for hydrologic information. Hydrologic information needs identified by the agency representatives include more precise methods for determining the volume of water withdrawals and for determining the volume of industrial and municipal discharges to surface water. Maps of flood-prone areas need to be updated as more of the county is developed. Improved aquifer maps of the inter-till aquifers are needed, and additional observation

  11. Effects of meteorological droughts on agricultural water resources in southern China

    NASA Astrophysics Data System (ADS)

    Lu, Houquan; Wu, Yihua; Li, Yijun; Liu, Yongqiang

    2017-05-01

    With the global warming, frequencies of drought are rising in the humid area of southern China. In this study, the effects of meteorological drought on the agricultural water resource based on the agricultural water resource carrying capacity (AWRCC) in southern China were investigated. The entire study area was divided into three regions based on the distributions of climate and agriculture. The concept of the maximum available water resources for crops was used to calculate AWRCC. Meanwhile, an agricultural drought intensity index (ADI), which was suitable for rice planting areas, was proposed based on the difference between crop water requirements and precipitation. The actual drought area and crop yield in drought years from 1961 to 2010 were analyzed. The results showed that ADI and AWRCC were significantly correlated with the actual drought occurrence area and food yield in the study area, which indicated ADI and AWRCC could be used in drought-related studies. The effects of seasonal droughts on AWRCC strongly depended on both the crop growth season and planting structure. The influence of meteorological drought on agricultural water resources was pronounced in regions with abundant water resources, especially in Southwest China, which was the most vulnerable to droughts. In Southwest China, which has dry and wet seasons, reducing the planting area of dry season crops and rice could improve AWRCC during drought years. Likewise, reducing the planting area of double-season rice could improve AWRCC during drought years in regions with a double-season rice cropping system. Our findings highlight the importance of adjusting the proportions of crop planting to improve the utilization efficiency of agricultural water resources and alleviate drought hazards in some humid areas.

  12. Water Resources Data--Nebraska, Water Year 2002

    USGS Publications Warehouse

    Hitch, D.E.; Hull, S.H.; Walczyk, V.C.

    2002-01-01

    The Water Resources Discipline of the U.S. Geological Survey (USGS), in cooperation with State and local agencies, obtains a large amount of data pertaining to the water resources of Nebraska each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ?Water Resources Data - Nebraska.' The Nebraska water resources data report for water year 2002 includes records of stage, discharge, and water quality of streams; stage and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 96 continuous and 5 crest-state gaging stations, and 3 miscellaneous and 55 low-flow sites; stream water quality for 23 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 1 lake and 1 reservoir; ground-water levels for 43 observation wells; and ground-water quality for 115 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, state and Federal agencies.

  13. Monitoring waterbird abundance in wetlands: The importance of controlling results for variation in water depth

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2008-01-01

    Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed - predicted abundance)/(observed + predicted abundance)) ?? 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands. ?? 2008 Elsevier B.V.

  14. Science to support the understanding of Ohio's water resources, 2016-17

    USGS Publications Warehouse

    Shaffer, Kimberly; Kula, Stephanie P.; Shaffer, Kimberly; Kula, Stephanie P.

    2016-12-19

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. Although rainfall in normal years can support these activities and needs, occasional floods and droughts can disrupt streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie; it has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all of the rural population obtains drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policy makers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of the use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2016) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  15. Water - an inexhaustible resource?

    NASA Astrophysics Data System (ADS)

    Le Divenah, C.; Esperou, E.

    2012-04-01

    We have chosen to present the topic "Water", by illustrating problems that will give better opportunities for interdisciplinary work between Natural Science (Physics, Chemistry, Biology and Geology) teachers at first, but also English teachers and maybe others. Water is considered in general, in all its shapes and states. The question is not only about drinking water, but we would like to demonstrate that water can both be a fragile and short-lived resource in some ways, and an unlimited energy resource in others. Water exists on Earth in three states. It participates in a large number of chemical and physical processes (dissolution, dilution, biogeochemical cycles, repartition of heat in the oceans and the atmosphere, etc.), helping to maintain the homeostasis of the entire planet. It is linked to living beings, for which water is the major compound. The living beings essentially organized themselves into or around water, and this fact is also valid for human kind (energy, drinking, trade…). Water can also be a destroying agent for living beings (tsunamis, mud flows, collapse of electrical dams, pollution...) and for the solid earth (erosion, dissolution, fusion). I) Water, an essential resource for the human kind After having highlighted the disparities and geopolitical problems, the pupils will study the chemistry of water with its components and their origins (isotopes, water trip). Then the ways to make it drinkable will be presented (filtration, decantation, iceberg carrying…) II) From the origin of water... We could manage an activity where different groups put several hypotheses to the test, with the goal to understand the origin(s?) of water on Earth. Example: Isotopic signature of water showing its extraterrestrial origin.. Once done, we'll try to determine the origin of drinking water, as a fossil resource. Another use of isotopes will allow them to evaluate the drinking water age, to realize how precious it can be. III) Water as a sustainable energy

  16. An innovative method for water resources carrying capacity research--Metabolic theory of regional water resources.

    PubMed

    Ren, Chongfeng; Guo, Ping; Li, Mo; Li, Ruihuan

    2016-02-01

    The shortage and uneven spatial and temporal distribution of water resources has seriously restricted the sustainable development of regional society and economy. In this study, a metabolic theory for regional water resources was proposed by introducing the biological metabolism concept into the carrying capacity of regional water resources. In the organic metabolic process of water resources, the socio-economic system consumes water resources, while products, services and pollutants, etc. are output. Furthermore, an evaluation index system which takes into the characteristics of the regional water resources, the socio-economic system and the sustainable development principle was established based on the proposed theory. The theory was then applied to a case study to prove its availability. Further, suggestions aiming at improving the regional water carrying capacity were given on the basis of a comprehensive analysis of the current water resources situation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Water resources transfers through Chinese interprovincial and foreign food trade

    PubMed Central

    Dalin, Carole; Hanasaki, Naota; Qiu, Huanguang; Mauzerall, Denise L.; Rodriguez-Iturbe, Ignacio

    2014-01-01

    China’s water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability—with abundant agricultural land and little water resources in the north—increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities’ virtual water content to build China’s domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China’s domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China’s soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km3/y irrigation water savings, 41 km3/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements. PMID:24958864

  18. Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology.

    PubMed

    Ogilvie, Jane E; Griffin, Sean R; Gezon, Zachariah J; Inouye, Brian D; Underwood, Nora; Inouye, David W; Irwin, Rebecca E

    2017-12-01

    Climate change can influence consumer populations both directly, by affecting survival and reproduction, and indirectly, by altering resources. However, little is known about the relative importance of direct and indirect effects, particularly for species important to ecosystem functioning, like pollinators. We used structural equation modelling to test the importance of direct and indirect (via floral resources) climate effects on the interannual abundance of three subalpine bumble bee species. In addition, we used long-term data to examine how climate and floral resources have changed over time. Over 8 years, bee abundances were driven primarily by the indirect effects of climate on the temporal distribution of floral resources. Over 43 years, aspects of floral phenology changed in ways that indicate species-specific effects on bees. Our study suggests that climate-driven alterations in floral resource phenology can play a critical role in governing bee population responses to global change. © 2017 John Wiley & Sons Ltd/CNRS.

  19. Water-resources activities in Ohio, 1986 (water fact sheet)

    USGS Publications Warehouse

    Hindall, S.M.

    1986-01-01

    The Ohio District of the Water Resources Division, U.S. Geological Survey, provides information on Ohio 's water resources for the overall benefit of the State and the Nation. An integral part of the Survey 's mission is to conduct investigations of the Nation 's land, mineral, and water resources, and to publish and disseminate the information needed to understand, to plan the use of, and to manage these resources. The activities fall into eight broad categories: collection of hydrologic data; water resources investigations and assessments; basic and problem-oriented hydrologic and water related research; acquisition of information useful in predicting and delineating water related natural hazards; coordination of the activities of all Federal agencies in the acquisition of water data, and operation of water information centers; dissemination of data and the results of investigations; provision of scientific and technical assistance in hydrologic studies; and the administration of the State Water Resources Research Institute Program and the National Water Resources Research Grant Program. (Lantz-PTT)

  20. New Earth-abundant Materials for Large-scale Solar Fuels Generation.

    PubMed

    Prabhakar, Rajiv Ramanujam; Cui, Wei; Tilley, S David

    2018-05-30

    The solar resource is immense, but the power density of light striking the Earth's surface is relatively dilute, necessitating large area solar conversion devices in order to harvest substantial amounts of power for renewable energy applications. In addition, energy storage is a key challenge for intermittent renewable resources such as solar and wind, which adds significant cost to these energies. As the majority of humanity's present-day energy consumption is based on fuels, an ideal solution is to generate renewable fuels from abundant resources such as sunlight and water. In this account, we detail our recent work towards generating highly efficient and stable Earth-abundant semiconducting materials for solar water splitting to generate renewable hydrogen fuel.

  1. The scaling of urban surface water abundance and impairment with city size

    NASA Astrophysics Data System (ADS)

    Steele, M. K.

    2018-03-01

    Urbanization alters surface water compared to nonurban landscapes, yet little is known regarding how basic aquatic ecosystem characteristics, such as the abundance and impairment of surface water, differ with population size or regional context. This study examined the abundance, scaling, and impairment of surface water by quantifying the stream length, water body area, and impaired stream length for 3520 cities in the United States with populations from 2500 to 18 million. Stream length, water body area, and impaired stream length were quantified using the National Hydrography Dataset and the EPA's 303(d) list. These metrics were scaled with population and city area using single and piecewise power-law models and related to biophysical factors (precipitation, topography) and land cover. Results show that abundance of stream length and water body area in cities actually increases with city area; however, the per person abundance decreases with population size. Relative to population, impaired stream length did not increase until city populations were > 25,000 people, then scaled linearly with population. Some variation in abundance and impairment was explained by biophysical context and land cover. Development intensity correlated with stream density and impairment; however, those relationships depended on the orientation of the land covers. When high intensity development occupied the local elevation highs (+ 15 m) and undeveloped land the elevation lows, the percentage of impaired streams was less than the opposite land cover orientation (- 15 m) or very flat land. These results show that surface water abundance and impairment across contiguous US cities are influenced by city size and by biophysical setting interacting with land cover intensity.

  2. Water Resources Management for Shale Energy Development

    NASA Astrophysics Data System (ADS)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  3. Developing Our Water Resources

    ERIC Educational Resources Information Center

    Volker, Adriaan

    1977-01-01

    Only very recently developed as a refined scientific discipline, hydrology has to cope with a complexity of problems concerning the present and future management of a vital natural resource, water. This article examines available water supplies and the problems and prospects of water resource development. (Author/MA)

  4. Water Resource Sustainability Conference 2015

    Science.gov Websites

    | Honolulu, Hawaii Presented By Water Resources Research Center (WRRC), Hawaii and American Samoa Water and Environmental Research Institute (WERI), Guam Puerto Rico Water Resources and Environmental Research Institute (PRWRERI), Puerto Rico The Virgin Islands Water Resources Research Institute (VI-WRRI), U. S. Virgin

  5. Water Resource Impacts Embedded in the Western US Electrical Energy Trade; Current Patterns and Adaptation to Future Drought

    NASA Astrophysics Data System (ADS)

    Adams, E. A.; Herron, S.; Qiu, Y.; Tidwell, V. C.; Ruddell, B. L.

    2013-12-01

    Water resources are a key element in the global coupled natural-human (CNH) system, because they are tightly coupled with the world's social, environmental, and economic subsystems, and because water resources are under increasing pressure worldwide. A fundamental adaptive tool used especially by cities to overcome local water resource scarcity is the outsourcing of water resource impacts through substitutionary economic trade. This is generally understood as the indirect component of a water footprint, and as ';virtual water' trade. This work employs generalized CNH methods to reveal the trade in water resource impacts embedded in electrical energy within the Western US power grid, and utilizes a general equilibrium economic trade model combined with drought and demand growth constraints to estimate the future status of this trade. Trade in embedded water resource impacts currently increases total water used for electricity production in the Western US and shifts water use to more water-limited States. Extreme drought and large increases in electrical energy demand increase the need for embedded water resource impact trade, while motivating a shift to more water-efficient generation technologies and more water-abundant generating locations. Cities are the largest users of electrical energy, and in the 21st Century will outsource a larger fraction of their water resource impacts through trade. This trade exposes cities to risks associated with disruption of long-distance transmission and distant hydrological droughts.

  6. Remote-Sensing and Automated Water Resources Tracking: Near Real-Time Decision Support for Water Managers Facing Drought and Flood

    NASA Astrophysics Data System (ADS)

    Reiter, M. E.; Elliott, N.; Veloz, S.; Love, F.; Moody, D.; Hickey, C.; Fitzgibbon, M.; Reynolds, M.; Esralew, R.

    2016-12-01

    Innovative approaches for tracking the Earth's natural resources, especially water which is essential for all living things, are essential during a time of rapid environmental change. The Central Valley is a nexus for water resources in California, draining the Sacramento and San Joaquin River watersheds. The distribution of water throughout California and the Central Valley, while dynamic, is highly managed through an extensive regional network of canals, levees, and pumps. Water allocation and delivery is determined through a complex set of rules based on water contracts, historic priority, and other California water policies. Furthermore, urban centers, agriculture, and the environment throughout the state are already competing for water, particularly during drought. Competition for water is likely to intensify as California is projected to experience continued increases in demand due to population growth and more arid growing conditions, while also having reduced or modified water supply due to climate change. As a result, it is difficult to understand or predict how water will be used to fulfill wildlife and wetland conservation needs. A better understanding of the spatial distribution of water in near real-time can facilitate adaptation of water resource management to changing conditions on the landscape, both over the near- and long-term. The Landsat satellite mission delivers imagery every 16-days from nearly every place on the earth at a high spatial resolution. We have integrated remote sensing of satellite data, classification modeling, bioinformatics, optimization, and ecological analyses to develop an automated near real-time water resources tracking and decision-support system for the Central Valley of California. Our innovative system has applications for coordinated water management in the Central Valley to support people, places, and wildlife and is being used to understand the factors that drive variation in the distribution and abundance of water

  7. Water Resources Management In The Eastern Himalayan Urban Ecosystem

    NASA Astrophysics Data System (ADS)

    Bomjan, S.

    The Himalayan ecosystem is one of the most important and threatened ecosystems on the earth. In this region, the scarcity of water in general, and drinking water in par- ticular is affecting common people and drawing the attention of researchers. Given the present situation and governance, in the near future it is most likely to deteriorate further. With expanding population and urbanization, accelerating human activities, and increasing per capita water consumption, problem of water supply in the moun- tain households will be certainly acute in the coming years. This crisis of decreasing availability of water is not only going to hamper the economic development of the region, but is also likely to threaten the very survival of the already marginalised and deprived people who are also on the brink of poverty and are incapable of coping with such crisis. Sustainable water harvesting and management of water resources offers the best hope for meeting the challenges of the growing water crisis. For this appropriate policy intervention, use of latest technology, application of tools like GIS and information from the satellite imageries, community participation and use of tra- ditional knowledge and traditional water management practices will be essential to overcome the challenge of looming water crisis. Darjiling Himalaya, located in the eastern Himalayas has a fragile environment and it is witnessing serious problems both in quality and quantity of water supply. Weak institutional arrangements, lack of awareness among citizens and a gap in the effective arrangements are huge stumbling blocks. This region is endowed with abundance of water resources and rich ecosystem. Therefore, this calls for an effective and participatory water management system with due attention given to the upgradation and expansion of the existing infrastructure. This paper takes a stock of the existing water resources in the Darjiling Himalaya, especially around the town of Darjiling, discusses

  8. Preliminary Martian Atmospheric Water Vapour Column Abundances with Mars Climate Sounder

    NASA Astrophysics Data System (ADS)

    Lolachi, Ramin; Irwin, P. G. J.; Teanby, N.; Calcutt, S.; Howett, C. J. A.; Bowles, N. E.; Taylor, F. W.; Schofield, J. T.; Kleinboehl, A.; McCleese, D. J.

    2007-12-01

    Mars Climate Sounder (MCS) is an infra-red radiometer on board NASA's Mars Reconnaissance Orbiter (MRO) launched in August 2005 and now orbiting Mars in a near circular polar orbit. MCS has nine spectral channels in the range 0.3-50 µm. Goals of MCS include global characterization of atmospheric temperature, dust and water profiles observing temporal and spatial variation. Using Oxford University's multivariate retrieval algorithm, NEMESIS, we present preliminary determinations of the water vapour column abundance in the Martian atmosphere during the period September-October 2006 (Ls range 111-129°, i.e. northern hemisphere summer). A combination of spectral channels inside and outside the water vapour rotation band (at 50 µm) are used to retrieve the column abundances mainly using nadir observations (as aerosol opacity is less important relative to water vapour opacity in nadir viewing geometry). We then compare these column abundances to earlier results from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) and the Thermal Emission Spectrometer (TES) on Mars Global Surveyor.

  9. Water resources

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Rango, A.

    1973-01-01

    The application of ERTS-1 imagery to the conservation and control of water resources is discussed. The effects of exisiting geology and land use in the water shed area on the hydrologic cycle and the general characteristics of runoff are described. The effects of floods, snowcover, and glaciers are analyzed. The use of ERTS-1 imagery to map surface water and wetland areas to provide rapid inventorying over large regions of water bodies is reported.

  10. viral abundance distribution in deep waters of the Northern of South China Sea

    NASA Astrophysics Data System (ADS)

    He, Lei; Yin, Kedong

    2017-04-01

    Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.

  11. Water in Massive protostellar objects: first detection of THz water maser and water inner abundance.

    NASA Astrophysics Data System (ADS)

    Herpin, Fabrice

    2014-10-01

    The formation massive stars is still not well understood. Despite numerous water line observations with Herschel telescope, over a broad range of energies, in most of the observed sources the WISH-KP (Water In Star-forming regions with Herschel, Co-PI: F. Herpin) observations were not able to trace the emission from the hot core. Moreover, water maser model predict that several THz water maser should be detectable in these objects. We aim to detect for the first time the THz maser lines o-H2O 8(2,7)- 7(3,4) at 1296.41106 GHz and p-H2O 7(2,6)- 6(3,3) at 1440.78167 GHz as predicted by the model. We propose two sources for a northern flight as first priority and two other sources for a possible southern flight. This will 1) constrain the maser theory, 2) constrain the physical conditions and water abundance in the inner layers of the prostellar environnement. In addition, we will use the p-H2O 3(3,1)- 4(0,4) thermal line at 1893.68651 GHz (L2 channel) in order to probe the physical conditions and water abundance in the inner layers of the prostellar objects where HIFI-Herschel has partially failed.

  12. Analyzing water resources

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report on water resources discusses problems in water measurement demand, use, and availability. Also discussed are sensing accuracies, parameter monitoring, and status of forecasting, modeling, and future measurement techniques.

  13. Water resources of Clallam County, Washington; Phase I report

    USGS Publications Warehouse

    Drost, B.W.

    1983-01-01

    An inventory of the water resources of Clallam County, Washington, showed that sufficient water is available to supply all present demands. Domestic water supplies can be obtained from wells drilled 100 ft or less into glacial and alluvial deposits; in areas underlain by bedrock, wells more than 100 ft deep can generally supply one home per well. Surface water is abundant, and is the source for most public water systems. Extreme low flows were observed only in small drainage basins in bedrock in the mountainous interior and along parts of the coastline in the Strait of Juan de Fuca. The quality of ground and surface waters is generally excellent. In coastal areas, some wells may yield water with large concentrations of chloride and dissolved solids. A quarter of the wells tested had excessive concentrations of iron and (or) manganese. High values of turbidity, color, and coliform bacteria are widespread surface water problems, but standard filtering and chlorination treatment make the water suitable for public supplies. High concentrations of coliform bacteria apparently originate naturally in soils. High ammonia concentration observed at one site is probably caused by sewage disposal practices. (USGS)

  14. Water resource management: an Indian perspective.

    PubMed

    Khadse, G K; Labhasetwar, P K; Wate, S R

    2012-10-01

    Water is precious natural resource for sustaining life and environment. Effective and sustainable management of water resources is vital for ensuring sustainable development. In view of the vital importance of water for human and animal life, for maintaining ecological balance and for economic and developmental activities of all kinds, and considering its increasing scarcity, the planning and management of water resource and its optimal, economical and equitable use has become a matter of the utmost urgency. Management of water resources in India is of paramount importance to sustain one billion plus population. Water management is a composite area with linkage to various sectors of Indian economy including the agricultural, industrial, domestic and household, power, environment, fisheries and transportation sector. The water resources management practices should be based on increasing the water supply and managing the water demand under the stressed water availability conditions. For maintaining the quality of freshwater, water quality management strategies are required to be evolved and implemented. Decision support systems are required to be developed for planning and management of the water resources project. There is interplay of various factors that govern access and utilization of water resources and in light of the increasing demand for water it becomes important to look for holistic and people-centered approaches for water management. Clearly, drinking water is too fundamental and serious an issue to be left to one institution alone. It needs the combined initiative and action of all, if at all we are serious in socioeconomic development. Safe drinking water can be assured, provided we set our mind to address it. The present article deals with the review of various options for sustainable water resource management in India.

  15. Water resources in the Everglades

    USGS Publications Warehouse

    Schneider, William J.

    1966-01-01

    Aerial photography is playing an important role in the evaluation of the water resources of the almost-inaccessible 1,400 square miles of Everglades in southern Florida. Color, infrared, and panchromatic photographs show salient features that permit evaluation of the overall water resources picture. The fresh water-salt water interface, drainage patterns, ecologic changes resulting from flood and drought, quantities of flow, and other hydrologic features are easily observed or measured from the photographs. Such data permit areal extension of very limited point observations of water resources data, and will assist in providing the necessary guidelines for decisions in water management in the Everglades.

  16. Effects of effluent water on the abundance of cowpea insect pests.

    PubMed

    Tiroesele, Bamphitlhi; Sitwane, Monametsi; Obopile, M; Ullah, Muhammad Irfan; Ali, Sajjad

    2017-10-03

    Botswana experiences low and unreliable rainfall. Thus, the use of effluent water in agriculture is increasingly important. Insect damage is the major constraint for cowpea grain production in the most cowpea-producing lands. We investigated the effects of effluent water on insect pest abundance on cowpea (Vigna unguiculata) under field conditions. The experiment was laid out in a randomized complete block design with 100, 75, 50, and 25% of effluent water and 0% (control-clean tap water) treatments. Treatments with 100% effluent water resulted in a significant increase in insect pest populations as compared with the control. These results show that the use of effluent water to irrigate crops may increase incidence, abundance, and damage caused by insect pests possibly by decreasing plant vigor. The use of effluent water in agriculture should be addressed in a wise way.

  17. Splash! Water Resource Education.

    ERIC Educational Resources Information Center

    Southwest Florida Water Management District, Brooksville.

    This set of activities is designed to bring water resource education into the middle school classroom using an interdisciplinary approach. The packet contains timely, localized information about the water resources of west central Florida. Each activity is aligned to middle-school Sunshine State Standards. These hands-on, minds-on activities can…

  18. Nonlinear Spectral Mixture Modeling to Estimate Water-Ice Abundance of Martian Regolith

    NASA Astrophysics Data System (ADS)

    Gyalay, Szilard; Chu, Kathryn; Zeev Noe Dobrea, Eldar

    2017-10-01

    We present a novel technique to estimate the abundance of water-ice in the Martian permafrost using Phoenix Surface Stereo Imager multispectral data. In previous work, Cull et al. (2010) estimated the abundance of water-ice in trenches dug by the Mars Phoenix lander by modeling the spectra of the icy regolith using the radiative transfer methods described in Hapke (2008) with optical constants for Mauna Kea palagonite (Clancy et al., 1995) as a substitute for unknown Martian regolith optical constants. Our technique, which uses the radiative transfer methods described in Shkuratov et al. (1999), seeks to eliminate the uncertainty that stems from not knowing the composition of the Martian regolith by using observations of the Martian soil before and after the water-ice has sublimated away. We use observations of the desiccated regolith sample to estimate its complex index of refraction from its spectrum. This removes any a priori assumptions of Martian regolith composition, limiting our free parameters to the estimated real index of refraction of the dry regolith at one specific wavelength, ice grain size, and regolith porosity. We can then model mixtures of regolith and water-ice, fitting to the original icy spectrum to estimate the ice abundance. To constrain the uncertainties in this technique, we performed laboratory measurements of the spectra of known mixtures of water-ice and dry soils as well as those of soils after desiccation with controlled viewing geometries. Finally, we applied the technique to Phoenix Surface Stereo Imager observations and estimated water-ice abundances consistent with pore-fill in the near-surface ice. This abundance is consistent with atmospheric diffusion, which has implications to our understanding of the history of water-ice on Mars and the role of the regolith at high latitudes as a reservoir of atmospheric H2O.

  19. Linking water resources to food security through virtual water

    NASA Astrophysics Data System (ADS)

    Tamea, Stefania

    2014-05-01

    The largest use of global freshwater resources is related to food production. While each day we drink about 2 liters of water, we consume (eating) about 4000 liters of ''virtual water'', which represents the freshwater used to produce crop-based and livestock-based food. Considering human water consumption as a whole, most part originates from agriculture (85.8%), and only minor parts come from industry (9.6%) or households (4.6%). These numbers shed light on the great pressure of humanity on global freshwater resources and justify the increasing interest towards this form of environmental impact, usually known as ''water footprint''. Virtual water is a key variable in establishing the nexus between water and food. In fact, water resources used for agricultural production determine local food availability, and impact the international trade of agricultural goods. Trade, in turn, makes food commodities available to nations which are not otherwise self-sufficient, in terms of water resources or food, and it establishes an equilibrium between food demand and production at the global scale. Therefore, food security strongly relies on international food trade, but also on the use of distant and foreign water resources, which need to be acknowledged and investigated. Virtual water embedded in production and international trade follows the fate of food on the trade network, generating virtual flows of great magnitude (e.g., 2800 km3 in 2010) and defining local and global virtual water balances worldwide. The resulting water-food nexus is critical for the societal and economic development, and it has several implications ranging from population dynamics to the competing use of freshwater resources, from dietary guidelines to globalization of trade, from externalization of pollution to policy making and to socio-economic wealth. All these implications represent a great challenge for future research, not only in hydrology but in the many fields related to this

  20. Lunar Water Resource Demonstration

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  1. Estimation of marine mineral resources abundance using back-scattering intensity of Deep-tow Side Scan Sonar

    NASA Astrophysics Data System (ADS)

    Yoo, C. M.; Joo, J.; Hyeong, K.; Chi, S. B.

    2016-12-01

    Manganese nodule, also known as polymetallic nodule, contains precious elements in high contents and is regarded as one of the most important future mineral resources. It occurs throughout the world oceans, but economically feasible deposits show limited distribution only in several deepsea basins including Clarion-Clipperton Fracture Zone (CCFZ) in northeast equatorial Pacific. Estimation of resources potential is one of the key factors prerequisite for economic feasibility study. Nodule abundance is commonly estimated from direct nodule sampling, however it is difficult to obtain statistically robust data because of highly variable spatial distribution and high cost of direct sampling. Variogram analysis indicates 3.5×3.5km sampling resolution to obtain indicated category of resources data, which requires over 1,000 sampling operations to cover the potential exploitation area with mining life of 20-30 years. High-resolution acoustic survey, bathymetry and back-scattered intensity, can provide high-resolution resources data with the definition of obstacles, such as faults and scarps, for operation of nodule collecting robots. We operated 120 kHz deep-tow side scan sonar (DTSSS) with spatial resolution of 1×1m in a representative area. Sea floor images were also taken continuously by deep-tow camera from selected tracks, converted to nodule abundance using image analysis program and conversion equation, and compared with acoustic data. Back-scattering intensity values could be divided into several group and translated into nodule abundance with high confidence level. Our result indicates that high resolution acoustic survey is appropriate tool for reliable assessment of manganese nodule abundance and definition of minable area.

  2. Can water-level management reduce malaria mosquito abundance around large dams in sub-Saharan Africa?

    PubMed Central

    Wilson, G. Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene

    2018-01-01

    with lower mosquito larval abundance. Water level management could thus serve as a potential control measure for malaria vectors around reservoirs by regulating the persistence of shallow shoreline breeding habitats. Dam operators and water resource managers should consider incorporating water level management as a malaria control mechanism into routine dam operations to manage the risk of malaria transmission to human populations around reservoirs. PMID:29672560

  3. Scientific Allocation of Water Resources.

    ERIC Educational Resources Information Center

    Buras, Nathan

    Oriented for higher education students, researchers, practicing engineers and planners, this book surveys the state of the art of water resources engineering. A broad spectrum of issues is embraced in the treatment of water resources: quantity aspects as well as quality aspects within a systems approach. Using a rational mode for water resources…

  4. Interdisciplinary Methods in Water Resources

    ERIC Educational Resources Information Center

    Cosens, Barbara; Fiedler, Fritz; Boll, Jan; Higgins, Lorie; Johnson, Gary; Kennedy, Brian; Strand, Eva; Wilson, Patrick; Laflin, Maureen

    2011-01-01

    In the face of a myriad of complex water resource issues, traditional disciplinary separation is ineffective in developing approaches to promote a sustainable water future. As part of a new graduate program in water resources, faculty at the University of Idaho have developed a course on interdisciplinary methods designed to prepare students for…

  5. Climate Action Benefits: Water Resources

    EPA Pesticide Factsheets

    This page provides background on the relationship between water resources and climate change and describes what the CIRA Water Resources analyses cover. It provides links to the subsectors Inland Flooding, Drought, and Supply and Demand.

  6. Catalysts Based on Earth-Abundant Metals for Visible Light-Driven Water Oxidation Reaction.

    PubMed

    Lin, Junqi; Han, Qing; Ding, Yong

    2018-06-04

    Exploration of water oxidation catalyst (WOC) with excellent performance is the key for the overall water splitting reaction, which is a feasible strategy to convert solar energy to chemical energy. Although some compounds composed of noble metals, mainly Ru and Ir, have been reported to catalyze water oxidation with high efficiency, catalysts based on low-cost and earth-abundant transition metals are essential for realizing economical and large-scale light-driven water splitting. Various WOCs containing earth-abundant metals (mainly Mn, Fe, Co, Ni, Cu) have been utilized for visible light-driven water oxidation in recent years. In this Personal Account, we summarize our recent developments in WOCs based on earth-abundant transition metals including polyoxometalates (POMs), metal oxides or bimetal oxides, and metal complexes containing multidentate ligand scaffolds for visible light-driven water oxidation reaction. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Water, Ohio's Remarkable Resource.

    ERIC Educational Resources Information Center

    Groves, Carrie J.

    Information on water and water resources in Ohio is presented in seven sections. Water from Ohio streams, water storage, lakes in Ohio, and ground water are discussed in the first section ("Water, A Part of the Earth"). A brief discussion on the ecosystem is provided in the second section ("Water and Life"). Topics discussed in…

  8. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-02-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  9. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-12-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  10. Connecticut Institute of Water Resources

    Science.gov Websites

    Research Act of 1964. The general purpose of the institutes is to promote research related to water , watershed, and related upland issues, and share research results and information regarding water resources CTIWR Annual Reports Project Publications INFORMATION Seminars Resource Links U.S. Congress Water

  11. Total Water Management: The New Paradigm for Urban Water Resources Planning

    EPA Science Inventory

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  12. Water resources activities, Georgia District, 1986

    USGS Publications Warehouse

    Casteel, Carolyn A.; Ballew, Mary D.

    1987-01-01

    The U.S. Geological Survey, through its Water Resources Division , investigates the occurrence, quantity, quality, distribution, and movement of the surface and underground water that composes the Nation 's water resources. Much of the work is a cooperative effort in which planning and financial support are shared by state and local governments and other federal agencies. This report contains a brief description of the water-resources investigations in Georgia in which the Geological Survey participates, and a list of selected references. Water-resources data for the 1985 water year for Georgia consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and groundwater levels. These data include discharge records for 108 gaging stations; water quality for 43 continuous stations, 109 periodic stations, and miscellaneous sites; peak stage and discharge only for 130 crest-stage partial-record stations and 44 miscellaneous sites; and water levels of 27 observation wells. Nineteen Georgia District projects are summarized. (Lantz-PTT)

  13. Water resources thesaurus: A vocabulary for indexing and retrieving the literature of water resources research and development

    USGS Publications Warehouse

    ,

    1980-01-01

    This Water Resources Thesaurus encompasses such broad research areas as the hydrologic cycle, supply of and demand for water, conservation and best use of available supplies of water, methods of increasing supplies, and the economic, legal, social, engineering, recreational, biological, geographical, ecological, and qualitative aspects of water resources. This volume represents a major revision of the previous edition of the Thesaurus, published in 1971. The principal source of terms for this edition has been the indexing used in Selected Water Resources Abstracts (SWRA). Since its inception in 1968, SWRA has indexed tens of thousands of publications. Its indexing terminology has been developed by expert abstracters and researchers, and represents the range of disciplines related to research, development, and management of water resources.

  14. Water-resources activities in Florida, 1988-89

    USGS Publications Warehouse

    Glenn, Mildred E.

    1989-01-01

    This report contains summary statements of water resources activities in Florida conducted by the Water Resources Division of the U.S. Geological Survey in cooperation with Federal, State , and local agencies during 1988. These activities are part of the Federal program of appraising the Nation 's water resources. Included are brief descriptions of the nature and scope of all active studies, summaries of significant results for 1988 and anticipated accomplishments during 1989. Water resources appraisals in Florida are highly diversified, ranging from hydrologic records networks to interpretive appraisals of water resources and applied research to develop investigative techniques. Thus, water-resources investigations range from basic descriptive water-availability studies for areas of low-intensity water development and management to sophisticated cause and effect studies in areas of high-intensity water development and management. The interpretive reports and records that are products of the investigations are a principal hydrologic foundation upon which the plans for development, management, and protection of Florida 's water resources may be used. Water data and information required to implement sound water-management programs in highly urbanized areas relate to the quantity and quality of storm runoff, sources of aquifer contamination, injection of wastes into deep strata, underground storage of freshwater, artificial recharge of aquifers, environmental effects of reuse of water, and effects of land development on changes in ground-and surface-water quality. In some parts of the State broad areas are largely rural. Future growth is anticipated in many of these. This report is intended to inform those agencies vitally interested in the water resources of Florida as to the current status and objectives of the U.S. Geological Survey cooperative program. The mission of this program is to collect, interpret, and publish information on water resources. Almost all of

  15. Water resources of Duval County, Florida

    USGS Publications Warehouse

    Phelps, G.G.

    1994-01-01

    The report describes the hydrology and water resources of Duval County, the development of its water supplies, and water use within the county. Also included are descriptions of various natural features of the county (such as topography and geology), an explanation of the hydrologic cycle, and an interpretation of the relationship between them. Ground-water and surface-water resources and principal water-quality features within the county are also discussed. The report is intended to provide the general public with an overview of the water resources Of Duval County, and to increase public awareness of water issues. Information is presented in nontechnical language to enable the general reader to understand facts about water as a part of nature, and the problems associated with its development and use.

  16. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...

  17. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...

  18. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...

  19. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...

  20. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...

  1. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    NASA Astrophysics Data System (ADS)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; Bender, Steve; Lemmon, Mark; Wiens, Roger C.; Maurice, Sylvestre; Gasnault, Olivier; Lasue, Jeremie; Meslin, Pierre-Yves; Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Martínez, Germán M.; DeFlores, Lauren; Blaney, Diana; Johnson, Jeffrey R.; Bell, James F.

    2018-06-01

    We derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 Ls = 291° (March 30, 2013) to Mars Year 33 Ls= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model, using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO2 absorptions and the known CO2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus

  2. Hot water in the Long Valley Caldera—The benefits and hazards of this large natural resource

    USGS Publications Warehouse

    Evans, William C.; Hurwitz, Shaul; Bergfeld, Deborah; Howle, James F.

    2018-03-26

    The volcanic processes that have shaped the Long Valley Caldera in eastern California have also created an abundant supply of natural hot water. This natural resource provides benefits to many users, including power generation at the Casa Diablo Geothermal Plant, warm water for a state fish hatchery, and beautiful scenic areas such as Hot Creek gorge for visitors. However, some features can be dangerous because of sudden and unpredictable changes in the location and flow rate of boiling water. The U.S. Geological Survey monitors several aspects of the hydrothermal system in the Long Valley Caldera including temperature, flow rate, and water chemistry.

  3. Water resources activities of the USGS, 1987

    USGS Publications Warehouse

    Moore, John E.; Cardin, C. William

    1987-01-01

    Effective management of water resources requires an understanding of hydrologic systems and the factors that determine the distribution, availability, and quality of water. Within the Federal Government, the U.S. Geological Survey has the principal responsibility for providing hydrologic information and for appraising the Nation's water resources. The water resources activities of the U.S. Geological Survey are diverse, ranging from research investigations of specific aspects of the hydrologic cycle to large programs of regional water-resources investigations, such as the Regional Aquifer System Analyses.This report describes the U.S. Geological Survey's water resources activities. Some activities, such as the acid rain program, are mandated by line items in the Survey's fiscal year 1987 budget. Others, such as floods, sediment, and snow and ice, are topics of general interest to the water resources community. Still others are related to current water issues, such as nonpoint sources of pollution, the irrigation drainage problem of the western San Joaquin Valley, and national ground-water protection.In many cases, there is considerable overlap in the topical descrip-tions. The Survey's water resources research program, for example, conducts investigations that are applicable to virtually all of the activities listed in this book. Similarly, projects in the Federal-State Cooperative Program cover multiple aspects of water resources. For these reasons, the sums associated with funding for each of the activities listed exceeds by a considerable amount the Survey's budget for water resources activities.The report first describes the water-resources mission of the U.S. Geological Survey and discusses the principal sources of funds that support the activities. The remainder of the report consists of descriptions of 39 of the most significant water resources activities. An index appears at the end of the report.Each description of a significant water activity has the

  4. Cyanobacteria abundance and its relationship to water quality in the Mid-Cross River floodplain, Nigeria.

    PubMed

    Okogwu, Okechukwu I; Ugwumba, Alex O

    2009-01-01

    The physicochemical variables and cyanobacteria of Mid-Cross River, Nigeria, were studied in six stations between March 2005 and August 2006 to determine the relationship between water quality and cyanobacteria abundance. Canonical Correspondence Analysis (CCA) showed that biological oxygen demand (BOD), dissolved oxygen, pH, water velocity, width and depth were important environmental factors that influenced cyanobacteria abundance. Trace metals, phosphate and nitrate increased significantly from values of previous studies indicating increased eutrophication of the river but were weakly correlated with cyanobacteria abundance and could be scarcely regarded as regulating factors. A higher cyanobacteria abundance was recorded during the wet season in most of the sampled stations. The dominant cyanobacteria included Microcystis aeruginosa, Aphanizomenon flos-aquae, Oscillatoria limnetica and Anabaena spiroides. The toxins produced by these species could degrade water quality. The factors favouring cyanobacteria abundance were identified as increased pH, width and depth. Increase in cyanobacteria abundance was associated with reduction in dissolved oxygen and increase in BOD values.

  5. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  6. Contamination of water resources by pathogenic bacteria

    PubMed Central

    2014-01-01

    Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540

  7. Effect of water irrigation volume on Capsicum frutescens growth and plankton abundance in aquaponics system

    NASA Astrophysics Data System (ADS)

    Andriani, Y.; Dhahiyat, Y.; Zahidah; Subhan, U.; Iskandar; Zidni, I.; Mawardiani, T.

    2018-03-01

    This study aimed to understand Capsicum frutescens growth and plankton abundance in aquaponics culture. A Completely Randomized Design (CRD) with six treatments in triplicates comprising of treatment A (positive control using organic liquid fertilizer), B (negative control without fertilizer), C (drip irrigation aquaponics with a water debit of 100 ml/day/plant), D (drip irrigation aquaponics with a water debit of 150 ml/day/plant), E (drip irrigation with a water debit of 200 ml/day/plant), and F (drip irrigation aquaponics with a water debit of 250 ml/day/plant) was applied. The water used in treatments C, D, E, and F contained comet fish feces as fertilizer. C. frutescens growth and plankton abundance were observed. Analysis was conducted using analysis of variance for plant productivity and descriptive analysis for plankton abundance and water quality. The results of this study showed that the highest plant growth was seen in plants receiving F treatment with 50 ml/day drip irrigation. However, no significant difference was found when compared to the positive control with organic artificial fertilizer. Eleven types of phytoplankton and six types of zooplankton were found, with Stanieria sp. as the most abundant phytoplankton and Brachionus sp. and Epistylis sp. as the most abundant zooplanktons.

  8. Integrated water resources modelling for assessing sustainable water governance

    NASA Astrophysics Data System (ADS)

    Skoulikaris, Charalampos; Ganoulis, Jacques; Tsoukalas, Ioannis; Makropoulos, Christos; Gkatzogianni, Eleni; Michas, Spyros

    2015-04-01

    Climatic variations and resulting future uncertainties, increasing anthropogenic pressures, changes in political boundaries, ineffective or dysfunctional governance of natural resources and environmental degradation are some of the most fundamental challenges with which worldwide initiatives fostering the "think globally, act locally" concept are concerned. Different initiatives target the protection of the environment through sustainable development; Integrated Water Resources Management (IWRM) and Transboundary Water Resources Management (TWRM) in the case of internationally shared waters are frameworks that have gained wide political acceptance at international level and form part of water resources management planning and implementation on a global scale. Both concepts contribute in promoting economic efficiency, social equity and environmental sustainability. Inspired by these holistic management approaches, the present work describes an effort that uses integrated water resources modelling for the development of an integrated, coherent and flexible water governance tool. This work in which a sequence of computer based models and tools are linked together, aims at the evaluation of the sustainable operation of projects generating renewable energy from water as well as the sustainability of agricultural demands and environmental security in terms of environmental flow under various climatic and operational conditions. More specifically, catchment hydrological modelling is coupled with dams' simulation models and thereafter with models dedicated to water resources management and planning,while the bridging of models is conducted through geographic information systems and custom programming tools. For the case of Mesta/Nestos river basin different priority rules in the dams' operational schedule (e.g. priority given to power production as opposed to irrigation needs and vice versa), as well as different irrigation demands, e.g. current water demands as opposed to

  9. Constraining Water Vapor Abundance on Mars using a Coupled Heat-Water Transport Model and Seasonal Frost Observations

    NASA Astrophysics Data System (ADS)

    Bapst, J.; Byrne, S.

    2016-12-01

    The stability of water ice on Mars' surface is determined by its temperature and the density of water vapor at the bottom of the atmosphere. Multiple orbiting instruments have been used to study column-integrated water abundance in the martian atmosphere, resolving the global annual water cycle. However, poor knowledge of the vertical distribution of water makes constraining its abundance near the surface difficult. One must assume a mixing regime to produce surface vapor density estimates. More indirectly, one can use the appearance and disappearance of seasonal water frost, along with ice stability models, to estimate this value. Here, we use derived temperature and surface reflectance data from MGS TES to constrain a 1-D thermal diffusion model, which is coupled to an atmospheric water transport model. TES temperatures are used to constrain thermal properties of our modeled subsurface, while changes in TES albedo can be used to determine the timing of water frost. We tune the density of water vapor in the atmospheric model to match the observed seasonal water frost timing in the northern hemisphere, poleward of 45°N. Thus, we produce a new estimate for the water abundance in the lower atmosphere of Mars and how it varies seasonally and geographically. The timing of water frost can be ambiguous in TES data, especially at lower latitudes where the albedo contrast between frosted and unfrosted surfaces is lower (presumably due to lesser areal coverage of water frost). The uncertainty in frost timing with our approach is <20° LS ( 40 sols), and will be used to define upper and lower bounds in our estimate of vapor density. The implications of our derived vapor densities on the stability of surface and subsurface water ice will be discussed.

  10. Summer Watering Patterns of Mule Deer in the Great Basin Desert, USA: Implications of Differential Use by Individuals and the Sexes for Management of Water Resources

    PubMed Central

    Shields, Andrew V.; Larsen, Randy T.; Whiting, Jericho C.

    2012-01-01

    Changes in the abundance and distribution of free water can negatively influence wildlife in arid regions. Free water is considered a limiting factor for mule deer (Odocoileus hemionus) in the Great Basin Desert. Consequently, a better understanding of differential use of water by individuals and the sexes could influence the conservation and management of mule deer and water resources in their habitats. We deployed remote cameras at all known water sources (13 wildlife water developments and 4 springs) on one mountain range in western Utah, USA, during summer from 2007 to 2011 to document frequency and timing of water use, number of water sources used by males and females, and to estimate population size from individually identified mule deer. Male and female mule deer used different water sources but visited that resource at similar frequencies. Individual mule deer used few water sources and exhibited high fidelity to that resource. Wildlife water developments were frequently used by both sexes. Our results highlight the differing use of water sources by sexes and individual mule deer. This information will help guide managers when siting and reprovisioning wildlife water developments meant to benefit mule deer and will contribute to the conservation and management of this species. PMID:23125557

  11. Summer watering patterns of mule deer in the Great Basin Desert, USA: implications of differential use by individuals and the sexes for management of water resources.

    PubMed

    Shields, Andrew V; Larsen, Randy T; Whiting, Jericho C

    2012-01-01

    Changes in the abundance and distribution of free water can negatively influence wildlife in arid regions. Free water is considered a limiting factor for mule deer (Odocoileus hemionus) in the Great Basin Desert. Consequently, a better understanding of differential use of water by individuals and the sexes could influence the conservation and management of mule deer and water resources in their habitats. We deployed remote cameras at all known water sources (13 wildlife water developments and 4 springs) on one mountain range in western Utah, USA, during summer from 2007 to 2011 to document frequency and timing of water use, number of water sources used by males and females, and to estimate population size from individually identified mule deer. Male and female mule deer used different water sources but visited that resource at similar frequencies. Individual mule deer used few water sources and exhibited high fidelity to that resource. Wildlife water developments were frequently used by both sexes. Our results highlight the differing use of water sources by sexes and individual mule deer. This information will help guide managers when siting and reprovisioning wildlife water developments meant to benefit mule deer and will contribute to the conservation and management of this species.

  12. Stochastic Optimization For Water Resources Allocation

    NASA Astrophysics Data System (ADS)

    Yamout, G.; Hatfield, K.

    2003-12-01

    For more than 40 years, water resources allocation problems have been addressed using deterministic mathematical optimization. When data uncertainties exist, these methods could lead to solutions that are sub-optimal or even infeasible. While optimization models have been proposed for water resources decision-making under uncertainty, no attempts have been made to address the uncertainties in water allocation problems in an integrated approach. This paper presents an Integrated Dynamic, Multi-stage, Feedback-controlled, Linear, Stochastic, and Distributed parameter optimization approach to solve a problem of water resources allocation. It attempts to capture (1) the conflict caused by competing objectives, (2) environmental degradation produced by resource consumption, and finally (3) the uncertainty and risk generated by the inherently random nature of state and decision parameters involved in such a problem. A theoretical system is defined throughout its different elements. These elements consisting mainly of water resource components and end-users are described in terms of quantity, quality, and present and future associated risks and uncertainties. Models are identified, modified, and interfaced together to constitute an integrated water allocation optimization framework. This effort is a novel approach to confront the water allocation optimization problem while accounting for uncertainties associated with all its elements; thus resulting in a solution that correctly reflects the physical problem in hand.

  13. Water resources activities in Kentucky, 1993-94

    USGS Publications Warehouse

    Maglothin, L. S.; Forbes, R.W.

    1994-01-01

    The U.S. Geological Survey (USGS) is the principal Federal water-resources data collection and investigation agency. Through the Water Resources Division District Office in Kentucky, the USGS investigates the occurrence, distribution, quantity, movement, and chemical and biological quality of surface and ground water in the State. The mission of this program is to collect, interpret, and publish information on water resources. Almost all research and data collection is a cooperative effort in which planning and financial support are shared by State and local agencies and governments. Other activities are funded by other Federal agencies or by direct Congressional appropriation. This report is intended to inform the public and cooperating agencies, vitally interested in the water resources of Kentucky, as to the current status of the Distfict's data collection and investigation program. Included in the report are summaries of water-resources activities in Kentucky conducted by the USGS. Also included is a description of the USGS mission and program, District organization, funding sources and cooperating agencies, and a list of USGS publications relevant to the water resources of the State.

  14. Water Resources of Ouachita Parish

    USGS Publications Warehouse

    Tomaszewski, Dan J.; Lovelace, John K.; Griffith, Jason M.

    2009-01-01

    Ouachita Parish, located in north-central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 152 million gallons per day (Mgal/d) were withdrawn from water sources in Ouachita Parish. About 84 percent (128 Mgal/d) was withdrawn from surface water, and 16 percent (24 Mgal/d) was withdrawn from groundwater. Power generation (87 Mgal/d) accounted for 58 percent of the total water withdrawn. Withdrawals for other uses included public supply (22 Mgal/d), industrial (24 Mgal/d), and irrigation (18 Mgal/d). This fact sheet summarizes basic information on the water resources of Ouachita Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports.

  15. Water for the Nation: An overview of the USGS Water Resources Division

    USGS Publications Warehouse

    ,

    1998-01-01

    The Water Resources Division (WRD) of the U.S. Geological Survey (USGS) provides reliable, impartial, timely information needed to understand the Nation's water resources. WRD actively promotes the use of this information by decisionmakers to: * Minimize the loss of life and property as a result of water-related hazards such as floods, droughts, and land movement. * Effectively manage ground-water and surface-water resources for domestic, agricultural, commercial, industrial, recreational, and ecological uses. * Protect and enhance water resources for human health, aquatic health, and environmental quality. * Contribute to wise physical and economic development of the Nation's resources for the benefit of present and future generations.

  16. Water, Society and the future of water resources research (Invited)

    NASA Astrophysics Data System (ADS)

    Brown, C. M.

    2013-12-01

    The subject of water and society is broad, but at heart is the study of water as a resource, essential to human activities, a vital input to food and energy production, the sustaining medium for ecosystems and yet also a destructive hazard. Society demands, withdraws, competes, uses and wastes the resource in dynamic counterpart. The science of water management emerges from this interface, a field at the nexus of engineering and geoscience, with substantial influence from economics and other social sciences. Within this purview are some of the most pressing environmental questions of our time, such as adaptation to climate change, direct and indirect connections between water and energy policy, the continuing dependence of agriculture on depletion of the world's aquifers, the conservation or preservation of ecosystems within increasingly human-influenced river systems, and food security and poverty reduction for the earth's poorest inhabitants. This presentation will present and support the hypothesis that water resources research is a scientific enterprise separate from, yet closely interrelated to, hydrologic science. We will explore the scientific basis of water resources research, review pressing research questions and opportunities, and propose an action plan for the advancement of the science of water management. Finally, the presentation will propose a Chapman Conference on Water and Society: The Future of Water Resources Research in the spring of 2015.

  17. Discussion on water resources value accounting and its application

    NASA Astrophysics Data System (ADS)

    Guo, Biying; Huang, Xiaorong; Ma, Kai; Gao, Linyun; Wang, Yanqiu

    2018-06-01

    The exploration of the compilation of natural resources balance sheet has been proposed since 2013. Several elements of water resources balance sheet have been discussed positively in China, including basic concept, framework and accounting methods, which focused on calculating the amount of water resources with statistical methods but lacked the analysis of the interrelationship between physical volume and magnitude of value. Based on the study of physical accounting of water resources balance sheet, the connotation of water resources value is analyzed in combination with research on the value of water resources in the world. What's more, the theoretical framework, form of measurement and research methods of water resources value accounting are further explored. Taking Chengdu, China as an example, the index system of water resources balance sheet in Chengdu which includes both physical and valuable volume is established to account the depletion of water resources, environmental damage and ecological water occupation caused by economic and social water use. Moreover, the water resources balance sheet in this region which reflects the negative impact of the economy on the environment is established. It provides a reference for advancing water resources management, improving government and social investment, realizing scientific and rational allocation of water resources.

  18. Origin and abundance of water in carbonaceous asteroids

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Bekaert, David V.; Piani, Laurette

    2018-01-01

    The origin and abundance of water accreted by carbonaceous asteroids remains underconstrained, but would provide important information on the dynamic of the protoplanetary disk. Here we report the in situ oxygen isotopic compositions of aqueously formed fayalite grains in the Kaba and Mokoia CV chondrites. CV chondrite bulk, matrix and fayalite O-isotopic compositions define the mass-independent continuous trend (δ17O = 0.84 ± 0.03 × δ18O - 4.25 ± 0.1), which shows that the main process controlling the O-isotopic composition of the CV chondrite parent body is related to isotopic exchange between 16O-rich anhydrous silicates and 17O- and 18O-rich fluid. Similar isotopic behaviors observed in CM, CR and CO chondrites demonstrate the ubiquitous nature of O-isotopic exchange as the main physical process in establishing the O-isotopic features of carbonaceous chondrites, regardless of their alteration degree. Based on these results, we developed a new approach to estimate the abundance of water accreted by carbonaceous chondrites (quantified by the water/rock ratio) with CM (0.3-0.4) ≥ CR (0.1-0.4) ≥ CV (0.1-0.2) > CO (0.01-0.10). The low water/rock ratios and the O-isotopic characteristics of secondary minerals in carbonaceous chondrites indicate they (i) formed in the main asteroid belt and (ii) accreted a locally derived (inner Solar System) water formed near the snowline by condensation from the gas phase. Such results imply low influx of D- and 17O- and 18O-rich water ice grains from the outer part of the Solar System. The latter is likely due to the presence of a Jupiter-induced gap in the protoplanetary disk that limited the inward drift of outer Solar System material at the exception of particles with size lower than 150 μm such as presolar grains. Among carbonaceous chondrites, CV chondrites show O-isotopic features suggesting potential contribution of 17-18O-rich water that may be related to their older accretion relative to other hydrated

  19. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  20. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  1. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  2. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  3. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  4. Bacterial abundance and diversity in pond water supplied with different feeds

    NASA Astrophysics Data System (ADS)

    Qin, Ya; Hou, Jie; Deng, Ming; Liu, Quansheng; Wu, Chongwei; Ji, Yingjie; He, Xugang

    2016-10-01

    The abundance and diversity of bacteria in two types of ponds were investigated by quantitative PCR and Illumina MiSeq sequencing. The results revealed that the abundance of bacterial 16S rRNA genes in D ponds (with grass carp fed sudan grass) was significantly lower than that in E ponds (with grass carp fed commercial feed). The microbial communities were dominated by Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria in both E and D ponds, while the abundance of some genera was significantly different between the two types of ponds. Specifically, some potential pathogens such as Acinetobacter and Aeromonas were found to be significantly decreased, while some probiotics such as Comamonadaceae unclassified and Bacillales unclassified were significantly increased in D ponds. In addition, water quality of D ponds was better than that of E ponds. Temperature, dissolved oxygen and nutrients had significant influence on bacterial communities. The differences in bacterial community compositions between the two types of ponds could be partially explained by the different water conditions.

  5. Water Resources Availability in Kabul, Afghanistan

    NASA Astrophysics Data System (ADS)

    Akbari, A. M.; Chornack, M. P.; Coplen, T. B.; Emerson, D. G.; Litke, D. W.; Mack, T. J.; Plummer, N.; Verdin, J. P.; Verstraeten, I. M.

    2008-12-01

    The availability of water resources is vital to the rebuilding of Kabul, Afghanistan. In recent years, droughts and increased water use for drinking water and agriculture have resulted in widespread drying of wells. Increasing numbers of returning refugees, rapid population growth, and potential climate change have led to heightened concerns for future water availability. The U.S. Geological Survey, with support from the U.S. Agency for International Development, began collaboration with the Afghanistan Geological Survey and Ministry of Energy and Water on water-resource investigations in the Kabul Basin in 2004. This has led to the compilation of historic and recent water- resources data, creation of monitoring networks, analyses of geologic, geophysical, and remotely sensed data. The study presented herein provides an assessment of ground-water availability through the use of multidisciplinary hydrogeologic data analysis. Data elements include population density, climate, snowpack, geology, mineralogy, surface water, ground water, water quality, isotopic information, and water use. Data were integrated through the use of conceptual ground-water-flow model analysis and provide information necessary to make improved water-resource planning and management decisions in the Kabul Basin. Ground water is currently obtained from a shallow, less than 100-m thick, highly productive aquifer. CFC, tritium, and stable hydrogen and oxygen isotopic analyses indicate that most water in the shallow aquifer appears to be recharged post 1970 by snowmelt-supplied river leakage and secondarily by late winter precipitation. Analyses indicate that increasing withdrawals are likely to result in declining water levels and may cause more than 50 percent of shallow supply wells to become dry or inoperative particularly in urbanized areas. The water quality in the shallow aquifer is deteriorated in urban areas by poor sanitation and water availability concerns may be compounded by poor well

  6. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    DOE PAGES

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; ...

    2017-11-03

    In this work, we derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 L s = 291° (March 30, 2013) to Mars Year 33 L s= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model,more » using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO 2 absorptions and the known CO 2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large

  7. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.

    In this work, we derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 L s = 291° (March 30, 2013) to Mars Year 33 L s= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model,more » using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO 2 absorptions and the known CO 2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large

  8. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  9. Protecting water resources with smart growth.

    DOT National Transportation Integrated Search

    2004-05-01

    Protecting Water Resources with : Smart Growth is intended for audiences already familiar with smart : growth, who now seek specific ideas : on how techniques for smarter growth : can be used to protect their water : resources. This document is one...

  10. Integrated Water Resources Simulation Model for Rural Community

    NASA Astrophysics Data System (ADS)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  11. Water Resources of Rapides Parish

    USGS Publications Warehouse

    Griffith, J.M.

    2009-01-01

    Rapides Parish, located in central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 443 million gallons per day (Mgal/d) were withdrawn from water sources in Rapides Parish. About 92 percent (409 Mgal/d) was withdrawn from surface water, and 8 percent (34 Mgal/d) was withdrawn from groundwater. Withdrawals for power generation accounted for 91 percent (403 Mgal/d) of the total water withdrawn. Withdrawals for other uses included public supply (27 Mgal/d), irrigation (9 Mgal/d), and aquaculture (3 Mgal/d). Water withdrawals in the parish generally increased from 1960 to 1995 and decreased from 1995 to 2005. This fact sheet summarizes basic information on the water resources of Rapides Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  12. Water guns affect abundance and behavior of bigheaded carp and native fish differently

    USGS Publications Warehouse

    Rivera, Jose; Glover, David C.; Kocovsky, Patrick; Garvey, James E.; Gaikowski, Mark; Jensen, Nathan R.; Adams, Ryan F.

    2018-01-01

    Water guns have shown the potential to repel nuisance aquatic organisms. This study examines the effects of exposure to a 1966.4 cm3 seismic water gun array (two guns) on the abundance and behavior of Bighead Carp Hypophthalmichthys nobilis, Silver Carp H. molitrix (collectively referred to as bigheaded carp) and native fishes (e.g., Smallmouth Buffalo Ictiobus bubalus). Water guns were deployed in a channel that connects the Illinois River to backwater quarry pits that contained a large transient population of bigheaded carp. To evaluate the effect of water guns, mobile side-looking split-beam hydroacoustic surveys were conducted before, during and between replicated water gun firing periods. Water guns did not affect abundance of bigheaded carp, but abundance of native fish detected during the firing treatment was 43 and 34% lower than the control and water guns off treatments, respectively. The proximity of bigheaded carp to the water gun array was similar between the water guns on and water guns off treatments. In contrast, the closest detected native fish were detected farther from the water guns during the water guns on treatment (mean ± SE, 32.38 ± 3.32 m) than during the water guns off treatment (15.04 ± 1.59 m). The water gun array had a greater impact on native fish species than on bigheaded carp. Caution should be taken to the extrapolation of these results to other fish species and to fish exposed to water guns in different environments (e.g., reduced shoreline interaction) or exposure to a larger array of water guns, or for use of water guns for purposes other than a barrier.

  13. OVERVIEW OF USEPA'S WATER SUPPLY & WATER RESOURCES DIVISION PROGRAM

    EPA Science Inventory

    The United States Environmental Protection Agency's (USEPA) Water Supply and Water Resources Division (WSWRD) conducts a wide range of research on regulated and unregulated contaminants in drinking water, water distribution systems, homeland security, source water protection, and...

  14. Sensitivity and Tolerance of Riparian Arthropod Communities to Altered Water Resources along a Drying River

    PubMed Central

    McCluney, Kevin E.; Sabo, John L.

    2014-01-01

    Background Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community composition, diversity, and abundance of particular taxa of arthropods, but these observations have not yet been tested manipulatively. Methods and Results In this study, we constructed artificial pools in the stream bed adjacent to a drying section of the San Pedro River and maintained them as the river dried. We compared pitfall trapped arthropods near artificial pools to adjacent control sites where surface waters temporarily dried. Assemblage composition changed differentially at multiple taxonomic levels, resulting in different assemblages at pools than at control sites, with multiple taxa and richness of carabid beetle genera increasing at pools but not at controls that dried. On the other hand, predator biomass, particularly wolf spiders, and diversity of orders and families were consistently higher at control sites that dried. These results suggest an important role for colonization dynamics of pools, as well as the ability of certain taxa, particularly burrowing wolf spiders, to withstand periods of temporary drying. Conclusions Overall, we found some agreement between this manipulative study of water resources and a previous analysis of river drying that showed shifts in composition, changes in diversity, and declines in abundance of certain taxa (e.g. carabid beetles). However, colonization dynamics of pools, as well as compensatory strategies of predatory wolf spiders seem to have led to patterns that do not match previous research, with control sites maintaining high diversity, despite drying. Tolerance of river drying by some species may allow persistence of substantial diversity in the face of short

  15. Sensitivity and tolerance of Riparian arthropod communities to altered water resources along a drying river.

    PubMed

    McCluney, Kevin E; Sabo, John L

    2014-01-01

    Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community composition, diversity, and abundance of particular taxa of arthropods, but these observations have not yet been tested manipulatively. In this study, we constructed artificial pools in the stream bed adjacent to a drying section of the San Pedro River and maintained them as the river dried. We compared pitfall trapped arthropods near artificial pools to adjacent control sites where surface waters temporarily dried. Assemblage composition changed differentially at multiple taxonomic levels, resulting in different assemblages at pools than at control sites, with multiple taxa and richness of carabid beetle genera increasing at pools but not at controls that dried. On the other hand, predator biomass, particularly wolf spiders, and diversity of orders and families were consistently higher at control sites that dried. These results suggest an important role for colonization dynamics of pools, as well as the ability of certain taxa, particularly burrowing wolf spiders, to withstand periods of temporary drying. Overall, we found some agreement between this manipulative study of water resources and a previous analysis of river drying that showed shifts in composition, changes in diversity, and declines in abundance of certain taxa (e.g. carabid beetles). However, colonization dynamics of pools, as well as compensatory strategies of predatory wolf spiders seem to have led to patterns that do not match previous research, with control sites maintaining high diversity, despite drying. Tolerance of river drying by some species may allow persistence of substantial diversity in the face of short-term drying. The long-term effects of drying

  16. Game Theory in water resources management

    NASA Astrophysics Data System (ADS)

    Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George

    2015-04-01

    Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will

  17. Water resources of Tangipahoa Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-25

    Information concerning the availability, use, and quality of water in Tangipahoa Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  18. Water resources of Livingston Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-27

    Information concerning the availability, use, and quality of water in Livingston Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  19. Water Resources of Ascension Parish

    USGS Publications Warehouse

    Griffith, J.M.; Fendick, R.B.

    2009-01-01

    Ascension Parish, located along the banks of the Mississippi River in south-central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 202 million gallons per day (Mgal/d) were withdrawn from water sources in Ascension Parish. About 94 percent (190 Mgal/d) was withdrawn from surface water, and 6 percent (12 Mgal/d) was withdrawn from groundwater. Additional water is supplied to Ascension Parish for public-supply use from East Baton Rouge Parish. Withdrawals for industrial use accounted for 95 percent (192 Mgal/d) of the total water withdrawn. Withdrawals for other uses included public-supply (4 Mgal/d), rural-domestic (3 Mgal/d), and aquaculture (3 Mgal/d). Water withdrawals in the parish generally increased from 1960 to 1995 and decreased from 1995 to 2005. This fact sheet summarizes basic information on the water resources of Ascension Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  20. Learning about water resource sharing through game play

    NASA Astrophysics Data System (ADS)

    Ewen, Tracy; Seibert, Jan

    2016-10-01

    Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be enacted. Both students and professionals learning about water resource management can benefit from playing games, through the process of understanding both the complexity of sharing of resources between different groups and decision outcomes. Here we address how games can be used to teach about water resource sharing, through both playing and developing water games. An evaluation of using the web-based game Irrigania in the classroom setting, supported by feedback from several educators who have used Irrigania to teach about the sustainable use of water resources, and decision making, at university and high school levels, finds Irrigania to be an effective and easy tool to incorporate into a curriculum. The development of two water games in a course for masters students in geography is also presented as a way to teach and communicate about water resource sharing. Through game development, students learned soft skills, including critical thinking, problem solving, team work, and time management, and overall the process was found to be an effective way to learn about water resource decision outcomes. This paper concludes with a discussion of learning outcomes from both playing and developing water games.

  1. Analyses on Water Vapor Resource in Chengdu City

    NASA Astrophysics Data System (ADS)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  2. Ground-Water Resources of Saipan, Commonwealth of the Northern Meriana Islands

    USGS Publications Warehouse

    Carruth, Rob

    2003-01-01

    Introduction Saipan has an area of 48 mi2 and is the largest of the 14 islands in the Commonwealth of the Northern Mariana Islands (CNMI). The island is formed by volcanic rocks overlain by younger limestones. The island is situated in the western Pacific Ocean at latitude 15?12'N and longitude 145?45'E, about 3,740 mi west-southwest of Honolulu and midway between Japan and New Guinea (fig. 1). The climate on Saipan is classified as tropical marine with an average temperature of 80?F. The natural beauty of the island and surrounding waters are the basis for a growing tourist-based economy. The resulting rapid development and increases in resident and tourist populations have added stresses to the island's limited water supplies. Freshwater resources on Saipan are not readily observable because, aside from the abundant rainfall, most freshwater occurs as ground water. Fresh ground water is found in aquifers composed mainly of fragmental limestones. About 90 percent of the municipal water supply comes from 140 shallow wells that withdraw about 11 Mgal/d. The chloride concentration of water withdrawn from production wells ranges from less than 100 mg/L for wells in the Akgak and Capital Hill well fields, to over 2,000 mg/L from wells in the Puerto Rico, Maui IV, and Marpi Quarry well fields. The chloride concentrations and rates of ground-water production are not currently adequate for providing island residents with a potable 24-hour water supply and future demands are expected to be higher. To better understand the ground-water resources of the island, and water resources on tropical islands in general, the U.S. Geological Survey (USGS) entered into a cooperative program with the Commonwealth Utilities Corporation (CUC). The objective of the program, initiated in 1989, is to assess the ground-water resources of Saipan and to make hydrologic information available to the CUC in support of their ongoing efforts to improve the quality and quantity of the municipal water

  3. Amendment soil with biochar to control antibiotic resistance genes under unconventional water resources irrigation: Proceed with caution.

    PubMed

    Cui, Er-Ping; Gao, Feng; Liu, Yuan; Fan, Xiang-Yang; Li, Zhong-Yang; Du, Zhen-Jie; Hu, Chao; Neal, Andrew L

    2018-05-10

    The spread of antibiotic resistance genes (ARGs) has become a cause for serious concern because of its potential risk to public health. The use of unconventional water resources (e.g., reclaimed water or piggery wastewater) in agriculture to relieve groundwater shortages may result in an accumulation of ARGs in soil. Biochar addition has been proven to be a beneficial method to alleviate the pollution of ARGs in manure-amended soil. However, the role of biochar on ARGs in soil-plant systems repeatedly irrigated with unconventional water resources is unknown. Under reclaimed water or piggery wastewater irrigation, rhizobox experiments using maize plants in soil amended with biochar were conducted to investigate the variation of typical ARGs (tet and sul genes) in soil-plant systems during a 60-day cultivation, and ARGs was characterized by high-throughput qPCR with a 48 (assays) × 108 (samples) array. Only piggery wastewater irrigation significantly increased the abundance of ARGs in rhizosphere and bulk soils and root endophytes. Following 30-day cultivation, the abundance of ARGs in soil was significantly lower due to biochar addition. However, by day 60, the abundance of ARGs in soil supplemented with biochar was significantly higher than in the control soils. Antibiotics, bio-available heavy metals, nutrients, bacterial community, and mobile gene elements (MGEs) were detected and analyzed to find factors shaping ARGs dynamics. The behavior of ARGs were associated with antibiotics but not with bio-available heavy metals. The correlation between ARGs and available phosphorus was stronger than that of ARGs with total phosphorus. MGEs had good relationship with ARGs, and MGEs shifts contributed most to ARGs variation in soil and root samples. In summary, this study provides insights into potential options for biochar use in agricultural activities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Ground-water models for water resources planning

    USGS Publications Warehouse

    Moore, John E.

    1980-01-01

    In the past decade hydrologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the groundwater system. These models have been used to provide information and predictions for water managers. Too frequently, groundwater was neglected in water-resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface water supplies. Now, however, with newly developed digital groundwater models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last 10 years from simple one-layer flow models to three-dimensional simulations of groundwater flow which may include solute transport, heat transport, effects of land subsidence, and encroachment of salt water. This paper illustrates, through case histories, how predictive groundwater models have provided the information needed for the sound planning and management of water resources in the United States. (USGS)

  5. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the Staff) serves the Council and the Chairman in the performance of...

  6. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the Staff) serves the Council and the Chairman in the performance of...

  7. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the Staff) serves the Council and the Chairman in the performance of...

  8. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the Staff) serves the Council and the Chairman in the performance of...

  9. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the Staff) serves the Council and the Chairman in the performance of...

  10. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources materials. Supplement 31, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected…

  11. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 32, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  12. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 34, 1988.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  13. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 30, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected materials related…

  14. Using NASA Products of the Water Cycle for Improved Water Resources Management

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  15. Scenario-based Water Resources Management Using the Water Value Concept

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard

    2013-04-01

    The Saskatchewan River is the key water resource for the 3 prairie provinces of Alberta, Saskatchewan and Manitoba in Western Canada, and thus it is necessary to pursue long-term regional and watershed-based planning for the river basin. The water resources system is complex because it includes multiple components, representing various demand sectors, including the environment, which impose conflicting objectives, and multiple jurisdictions. The biophysical complexity is exacerbated by the socioeconomic dimensions associated for example with impacts of land and water management, value systems including environmental flows, and policy and governance dimensions.. We focus on the South Saskatchewan River Basin (SSRB) in Alberta and Saskatchewan, which is already fully allocated in southern Alberta and is subject to increasing demand due to rapid economic development and a growing population. Multiple sectors and water uses include agricultural, municipal, industrial, mining, hydropower, and environmental flow requirements. The significant spatial variability in the level of development and future needs for water places different values on water across the basin. Water resources planning and decision making must take these complexities into consideration, yet also deal with a new dimension—climate change and its possible future impacts on water resources systems. There is a pressing need to deal with water in terms of its value, rather than a mere commodity subject to traditional quantitative optimization. In this research, a value-based water resources system (VWRS) model is proposed to couple the hydrological and the societal aspects of water resources in one integrated modeling tool for the SSRB. The objective of this work is to develop the VWRS model as a negotiation, planning, and management tool that allows for the assessment of the availability, as well as the allocation scenarios, of water resources for competing users under varying conditions. The proposed

  16. Review of factors affecting the distribution and abundance of waterfowl in shallow-water habitats of Chesapeake Bay

    USGS Publications Warehouse

    Perry, M.C.; Deller, A.S.

    1996-01-01

    Long-term trends of waterfowl populations in Chesapeake Bay demonstrate the importance of shallow-water habitats for waterfowl species. Although recent increases in field feeding by geese and swans lessened the importance of shallow-water areas for these species, most duck species depend almost exclusively on shallow-water habitats. Many factors influenced the distribution and abundance of waterfowl in shallow-water habitats. Habitat degradation resulted in the decline in numbers of most duck species and a change in distribution of some species. Increased numbers of mallards (Anas platyrhynchos) in recent decades probably resulted from release programs conducted by the Maryland Department of Natural Resources and private individuals. Studies of food habits since 1885 showed a decline in submerged-aquatic vegetation in the diet of some species, such as the canvasback (Aythya valisineria ), and an increase in the proportions of invertebrates in the diet. Diversity of food organisms for many waterfowl species has declined. Surveys of vegetation and invertebrates in the Chesapeake Bay generally reflect a degradation of shallow-water habitat. Human population increases in the Chesapeake Bay watershed directly and indirectly affected waterfowl distribution and abundance. The increase of exotic plant and invertebrate species in the bay, in most cases, benefited waterfowl populations. Increased contaminants have reduced the quality and quantity of habitat, although serious attempts to reverse this trend are underway. The use of shallow-water habitats by humans for fishing, hunting, boating, and other recreational and commercial uses reduced the use of shallow-water habitats by waterfowl. Humans can lessen the adverse influences on the valuable shallow-water habitats by restricting human population growth near these habitats and improving the water quality of the bay tributaries. Other affirmative actions that will improve these areas for waterfowl include greater

  17. Water Resources Research Center

    Science.gov Websites

    Untitled Document  Search Welcome to the University of Hawai'i at Manoa Water Resources Research Center and contracts. Our Focus is to: Serve as the Water Research Center in Hawaii and in this capacity to coordinate and conduct research to identify, characterize, and quantify water-related problems in the state

  18. Water Resources Council Proposed Principles and Standards for Planning Water and Related Land Resources. Notice of Public Review and Hearing.

    ERIC Educational Resources Information Center

    National Archives and Records Services (GSA), Washington, DC. Office of the Federal Register.

    Presented in this notice of a public review and hearing are the proposed Principles and Standards for planning water and related land resources of the United States. Developed by the Water Resources Council pursuant to the Water Resources Planning Act of 1965 (Public Law 89-80), the purpose is to achieve objectives, determined cooperatively,…

  19. Water abstraction affects abundance, size-structure and growth of two threatened cyprinid fishes

    PubMed Central

    Merciai, Roberto; Molons-Sierra, Carlota; Sabater, Sergi; García-Berthou, Emili

    2017-01-01

    Hydrologic alteration is a major threat to freshwater biota, and particularly fish, in many river courses around the world. We analyzed and compared the effects of water abstraction on two threatened cyprinid fishes of contrasting ecology (the Mediterranean barbel Barbus meridionalis and the Catalan chub Squalius laietanus) in a Mediterranean stream. We compared abundance, size-structure, growth, and condition of both species across perennial and artificially intermittent reaches affected by water abstraction. Both species were less abundant, had scarce large individuals, and displayed slower growth rates (length-at-age) in intermittent reaches, showing clear detrimental effects of water diversion. Mixed-effect models of scale increments showed variation among individuals and among sites, years and age classes for both species. The larger-sized, water-column species (chub) disappeared or was rare in many intermittent reaches. The barbel present in intermittent reaches showed better somatic condition than in sites with permanent flow, perhaps due to reduced competition after rewetting or colonization by better fitted individuals. This benthic, rheophilic species seems more resilient to moderate water abstraction than chub. Many effects of water flow intermittency were only detected on fish life-history traits when accounting for natural, often non-linear, variation, along upstream-downstream gradients. Our results suggest that abundance was the strongest indicator of effects of water abstraction on fish populations, whereas condition was a more labile trait, rapidly recovering from anthropogenic disturbance. PMID:28414787

  20. Water resources of Calcasieu Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2017-01-12

    Information concerning the availability, use, and quality of water in Calcasieu Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://dx.doi.org/10.5066/F7P55KJN) are the primary sources of the information presented here.

  1. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 33, 1988.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to hazardous materials,…

  2. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    USGS Publications Warehouse

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  3. A General Water Resources Regulation Software System in China

    NASA Astrophysics Data System (ADS)

    LEI, X.

    2017-12-01

    To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.

  4. Water footprint as a tool for integrated water resources management

    NASA Astrophysics Data System (ADS)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  5. Reconciling LCROSS and Orbital Neutron Water Abundance Estimates in Cabeus Crater

    NASA Technical Reports Server (NTRS)

    Elphic, Richard; Teodoro, Luis F.; Eke, Vincent R.; Paige, David A.; Siegler, Matthew A.; Colaprete, Anthony

    2011-01-01

    The Lunar Prospector Neutron Spectrometer (LPNS) first revealed Cabeus crater (84.9 deg S, 35.5degW) as having the highest inferred hydrogen on the Moon. Because of the broad LPNS footprint (approximately 40 km FWHM), the apparent peak water-equivalent hydrogen (WEH) concentration is only approximately 0.25 wt%, but could be much higher in smaller areas than the spectrometer footprint. Earlier image reconstruction work suggested that areas within permanent shadow have abundances approximately 1 wt% WEH. However, the LCROSS impact yielded total water estimates, ice plus vapor, of between 3 and 10 wt%. The large disagreement between LCROSS and apparent orbital values imply that either the ice is buried, by perhaps as much as 50 to 100 cm; or the ice distribution within Cabeus is spatially inhomogeneous, or both. Modeling reveals that the areal extent of a "shallow permafrost zone" is far greater than the area of permanent shadow. Ice can be virtually stable for billions of years within a few tens of centimeters of the surface in these areas. However, the LCROSS impact took place in an area of permanent shadow. If stably-trapped volatiles can be found in locales that receive occasional, oblique sunlight, landed missions may target these sites and eventual resource exploitation may be done more easily. Are orbital neutron data consistent with areally-extensive, volatile-rich cold traps? Orbital epithermal neutron data over the northern half of Cabeus (near the LCROSS impact site) are consistent with 0.2 wt% WEH or less in the "permafrost zone" near the crater. On the other hand, pixon reconstructions that confine the hydrogen enhancements to permanent shadow result in higher abundance estimates -- around 1 wt% if homogeneously mixed. But if the PSR abundance is increased to 10 wt%, consistent with the sum of all H-bearing compounds seen by LCROSS, a much larger-than-observed reduction in neutron count rate would be seen from orbit. It is likely that volatiles are

  6. Water resources data-Maine, water year 2003

    USGS Publications Warehouse

    Stewart, G.J.; Caldwell, J.M.; Cloutier, A.R.

    2004-01-01

    This volume of the annual hydrologic data report of Maine is one of a series of annual reports that document data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

  7. 18 CFR 701.3 - Purpose of the Water Resources Council.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Purpose of the Water Resources Council. 701.3 Section 701.3 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.3 Purpose of the Water Resources Council. It is the purpose of the...

  8. 18 CFR 701.3 - Purpose of the Water Resources Council.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Purpose of the Water Resources Council. 701.3 Section 701.3 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.3 Purpose of the Water Resources Council. It is the purpose of the...

  9. 18 CFR 701.3 - Purpose of the Water Resources Council.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Purpose of the Water Resources Council. 701.3 Section 701.3 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.3 Purpose of the Water Resources Council. It is the purpose of the...

  10. 18 CFR 701.3 - Purpose of the Water Resources Council.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Purpose of the Water Resources Council. 701.3 Section 701.3 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.3 Purpose of the Water Resources Council. It is the purpose of the...

  11. 18 CFR 701.3 - Purpose of the Water Resources Council.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Purpose of the Water Resources Council. 701.3 Section 701.3 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.3 Purpose of the Water Resources Council. It is the purpose of the...

  12. Ground-water resources of Kansas

    USGS Publications Warehouse

    Moore, R.C.; Lohman, S.W.; Frye, J.C.; Waite, H.A.; McLaughlin, Thad G.; Latta, Bruce

    1940-01-01

    Importance of ground-water resources.—The importance of Kansas' ground-water resources may be emphasized from various viewpoints and in different ways. More than three-fourths of the public water supplies of Kansas are obtained from wells. In 1939, only 60 out of 375 municipal water supplies in Kansas, which is 16 percent, utilized surface waters. If the water wells of the cities and those located on all privately owned land in the state were suddenly destroyed, making it necessary to go to streams, springs, lakes (which are almost all artificial), and ponds for water supply domestic, stock, and industrial use, there would be almost incalculable difficulty and expense. If one could not go to springs, or dig new wells, or use any surface water derived from underground flow, much of Kansas would become uninhabitable.  These suggested conditions seem absurd, but they emphasize our dependence on ground-water resources. Fromm a quantitative standpoint, ground-water supplies existent in Kansas far outweigh surface waters that are present in the state at any one time. No exact figures for such comparison can be given, but, taking 384 square miles as the total surface water area of the state and estimating an average water depth of five feet, the computed volume of surface waters is found to be 1/100th of that of the conservatively estimated ground-water storage in Kansas. The latter takes account only of potable fresh water and is based on an assumed mean thickness of ten feet of reservoir having an effective porosity of twenty percent. It is to be remembered, however, that most of the surface water is run-off, which soon leaves the state, stream valleys being replenished from rainfall and flow from ground-water reservoirs. Most of the ground-water supplies, on the other hand, have existed for many years with almost no appreciable movement--in fact, it is reasonably certain that some well water drawn from beneath the surface of Kansas in 1940 represents rainfall in

  13. Water Resources of Lafayette Parish

    USGS Publications Warehouse

    Fendick, Robert B.; Griffith, Jason M.; Prakken, Lawrence B.

    2011-01-01

    Fresh groundwater and surface water resources are available in Lafayette Parish, which is located in south-central Louisiana. In 2005, more than 47 million gallons per day (Mgal/d) were withdrawn from water sources in Lafayette Parish. About 92 percent (43.7 Mgal/d) of withdrawals was groundwater, and 8 percent (3.6 Mgal/d) was surface water. Public-supply withdrawals accounted for nearly 49 percent (23 Mgal/d) of the total groundwater use, with the cities of Lafayette and Carencro using about 21 Mgal/d. Withdrawals for other uses included about 10.4 Mgal/d for rice irrigation and about 8.4 Mgal/d for aquaculture. Water withdrawals in Lafayette Parish increased from 33 Mgal/d in 1995 to about 47 Mgal/d in 2005. This fact sheet summarizes information on the water resources of Lafayette Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  14. U.S. Geological Survey water resources Internet tools

    USGS Publications Warehouse

    Shaffer, Kimberly H.

    2013-11-07

    The U.S. Geological Fact Sheet (USGS) provides a wealth of information on hydrologic data, maps, graphs, and other resources for your State.Sources of water resources information are listed below.WaterWatchWaterQualityWatchGroundwater WatchWaterNowWaterAlertUSGS Flood Inundation MapperNational Water Information System (NWIS)StreamStatsNational Water Quality Assessment (NAWOA)

  15. Water Resources Data for California, 1969; Part 2: Water Quality Records

    USGS Publications Warehouse

    1970-01-01

    Water-resources investigations of the U.S. Geological Survey include the collection of water-quality data on the chemical and physical characteristics of surface and ground-water supplies of the Nation. Theses data for the 1969 water year for the quality of surface water in California are presented in this report. Data for a few water-quality stations in bordering States are also included. The data were collected by the Water Resources Division of the Geological Survey under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  16. EPA's Safe and Sustainable Water Resources Research Program: Water Systems Research

    EPA Science Inventory

    Water systems challenged by limited resources, aging infrastructure, shifting demographics, climate change, and extreme weather events need transformative approaches to meet public health and environmental goals, while optimizing water treatment and maximizing resource recovery a...

  17. History of the State Water Resources Research Institute Program

    USGS Publications Warehouse

    Burton, J.S.

    1984-01-01

    The State Water Resources Research Institute Program, established in 1964, consists of 54 Water Resources Research Institutes located at land-grant universities in each of the 50 states and Puerto Rico, the District of Columbia, Guam, and the Virgin Islands. The program evolved from the Water Resources Research Act of 1964, as amended, the Water Research and Development Act of 1978, Public Law 94-457, and the Water Research and Development Act of 1984. These laws authorize the following components of the Institute Program: (1) the annual allotment and matching grants program for the institutes and (2) the additional and saline water research programs for organizations in addition to the State Water Resources Research Institutes. This report summarizes the legislative history, budget history, research program development, and program accomplishments. The State Water Resources Research Program has been administered to by the Office of Water Resources Research (OWRR) (1964-1974), the Office of Water Research and Technology (OWRT) (1974-1982), the Office of Water Policy (OWP) (1982-1983) , and the U.S. Geological Survey (USGS) (1983-present). (USGS)

  18. Water Resources Data, Alaska, Water Year 2000

    USGS Publications Warehouse

    Meyer, D.F.; Hess, D.L.; Schellekens, M.F.; Smith, C.W.; Snyder, E.F.; Solin, G.L.

    2001-01-01

    Water-resources data for the 2000 water year for Alaska consists of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 106 gaging stations; stage or contents only at 4 gaging stations; water quality at 31 gaging stations; and water levels for 30 observation wells and 1 water-quality well. Also included are data for 47 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  19. U.S. Geological Survey Ground-Water Resources Program, 2001

    USGS Publications Warehouse

    Grannemann, Norman G.

    2001-01-01

    Ground water is among the Nation's most important natural resources. It provides drinking water to urban and rural communities, supports irrigation and industry, sustains the flow of streams and rivers, and maintains riparian and wetland ecosystems. In many areas of the Nation, the future sustainability of ground-water resources is at risk from over use and contamination. Because ground-water systems typically respond slowly to human actions and climate variability, a long-term perspective is needed to manage this valuable resource. The U.S. Geological Survey Ground-Water Resources Program provides regional evaluations, fundamental data, and predictive tools to help assure the sustainability of our Nation's ground-water resources.

  20. Water resources of Sedgwick County, Kansas

    USGS Publications Warehouse

    Bevans, H.E.

    1989-01-01

    Hydrologic data from streams, impoundments, and wells are interpreted to: (1) document water resources characteristics; (2) describe causes and extent of changes in water resources characteristics; and (3) evaluate water resources as sources of supply. During 1985, about 134,200 acre-ft of water (84% groundwater) were used for public (42%), irrigation, (40%), industrial (14%), and domestic (4%) supplies. Streamflow and groundwater levels are related directly to precipitation, and major rivers are sustained by groundwater inflow. Significant groundwater level declines have occurred only in the Wichita well field. The Arkansas and Ninnescah Rivers have sodium chloride type water; the Little Arkansas River, calcium bicarbonate type water. Water quality characteristics of water in small streams and wells depend primarily on local geology. The Wellington Formation commonly yields calcium sulfate type water; Ninnescah Shale and unconsolidated deposits generally yield calcium bicarbonate type water. Sodium chloride and calcium sulfate type water in the area often have dissolved-solids concentrations exceeding 1,000 mg/L. Water contamination by treated sewage effluent was detected inparts of the Arkansas River, Little Arkansas River, and Cowskin Creek. Nitrite plus nitrate as nitrogen contamination was detected in 11 of 101 wells; oilfield brine was detected in the Wichita-Valley Center Floodway, Prairie Creek, Whitewater Creek, and 16 of 101 wells; and agricultural pesticides were detected in 8 of 14 impoundments and 5 of 19 wells. Generally, the water is acceptable for most uses. (USGS)

  1. Finding water scarcity amid abundance using human-natural system models.

    PubMed

    Jaeger, William K; Amos, Adell; Bigelow, Daniel P; Chang, Heejun; Conklin, David R; Haggerty, Roy; Langpap, Christian; Moore, Kathleen; Mote, Philip W; Nolin, Anne W; Plantinga, Andrew J; Schwartz, Cynthia L; Tullos, Desiree; Turner, David P

    2017-11-07

    Water scarcity afflicts societies worldwide. Anticipating water shortages is vital because of water's indispensable role in social-ecological systems. But the challenge is daunting due to heterogeneity, feedbacks, and water's spatial-temporal sequencing throughout such systems. Regional system models with sufficient detail can help address this challenge. In our study, a detailed coupled human-natural system model of one such region identifies how climate change and socioeconomic growth will alter the availability and use of water in coming decades. Results demonstrate how water scarcity varies greatly across small distances and brief time periods, even in basins where water may be relatively abundant overall. Some of these results were unexpected and may appear counterintuitive to some observers. Key determinants of water scarcity are found to be the cost of transporting and storing water, society's institutions that circumscribe human choices, and the opportunity cost of water when alternative uses compete. Published under the PNAS license.

  2. Improved methods for national water assessment, water resources contract: WR15249270

    USGS Publications Warehouse

    Thomas, Harold A.

    1981-01-01

    The purpose of our research is to develop methods to make National Water Assessment more useful in estimating water availability for economic growth and more helpful in determining the effect of water resource development upon the environmental quality of related land resources. There are serious questions pertaining to the 1975 Water Assessment and these amplify the significance of decisions made as to the planning and scheduling of the next assessment.

  3. Integration of hydrogeology and soil science for sustainable water resources-focus on water quantity

    USDA-ARS?s Scientific Manuscript database

    Increased biofuel production has heightened awareness of the strong linkages between crop water use and depletion of water resources. Irrigated agriculture consumed 90% of global fresh water resources during the past century. Addressing crop water use and depletion of groundwater resources requires ...

  4. Developing the greatest Blue Economy: Water productivity, fresh water depletion, and virtual water trade in the Great Lakes basin

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Ruddell, B. L.; Mubako, S. T.

    2016-12-01

    The Great Lakes basin hosts the world's most abundant surface fresh water reserve. Historically an industrial and natural resource powerhouse, the region has suffered economic stagnation in recent decades. Meanwhile, growing water resource scarcity around the world is creating pressure on water-intensive human activities. This situation creates the potential for the Great Lakes region to sustainably utilize its relative water wealth for economic benefit. We combine economic production and trade datasets with water consumption data and models of surface water depletion in the region. We find that, on average, the current economy does not create significant impacts on surface waters, but there is some risk that unregulated large water uses can create environmental flow impacts if they are developed in the wrong locations. Water uses drawing on deep groundwater or the Great Lakes themselves are unlikely to create a significant depletion, and discharge of groundwater withdrawals to surface waters offsets most surface water depletion. This relative abundance of surface water means that science-based management of large water uses to avoid accidentally creating "hotspots" is likely to be successful in avoiding future impacts, even if water use is significantly increased. Commercial water uses are the most productive, with thermoelectric, mining, and agricultural water uses in the lowest tier of water productivity. Surprisingly for such a water-abundant economy, the region is a net importer of water-derived goods and services. This, combined with the abundance of surface water, suggests that the region's water-based economy has room to grow in the 21st century.

  5. Water resources data, Utah, water year 1989

    USGS Publications Warehouse

    ReMillard, M.D.; Herbert, L.R.; Sandberg, G.W.; Birdwell, G.A.

    1990-01-01

    Water resources data for the 1989 water year for Utah consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water quality of ground water. This report contains discharge records for 185 gaging stations; stage and contents for 22 lakes and reservoirs; water quality for 21 hydrologic stations and 217 wells; miscellaneous temperature measurements and field determinations for 147 stations; and water levels for 29 observations wells. Additional water data were collected at various sites not involved in the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Utah.

  6. Water resources data, Kansas, water year 2004

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2005-01-01

    Water-resources data for the 2004 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 155 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 14 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 16 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 29 high-flow partial-record stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  7. Water Resources Data, Nebraska, Water Year 2003

    USGS Publications Warehouse

    Hitch, D.E.; Hull, S.H.; Walczyk, V.C.; Miller, J.D.; Drudik, R.A.

    2004-01-01

    The Nebraska water resources data report for water year 2003 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 103 continuous and 5 crest-stage gaging stations, and 5 miscellaneous sites; stream water quality for 14 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 40 observation wells; and ground-water quality for 132 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, State, and Federal agencies.

  8. Water resources data, Nebraska, water year 2004

    USGS Publications Warehouse

    Hitch, D. E.; Soensken, P.J.; Sebree, S.K.; Wilson, K.E.; Walczyk, V.C.; Drudik, R.A.; Miller, J.D.; Hull, S.H.

    2005-01-01

    The Nebraska water resources data report for water year 2004 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 101 continuous and 5 crest-stage gaging stations, and 6 miscellaneous sites; stream water quality for 7 gaging stations and 40 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 74 observation wells; and ground-water quality for 200 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating Federal, State, and local agencies.

  9. Water Resources Data, Louisiana, Water Year 2002

    USGS Publications Warehouse

    Goree, B.B.; Lovelace, W.M.; Montgomery, P.A.; Resweber, J.C.; Labbe, Charles K.; Walters, David J.

    2003-01-01

    Water resources data for the 2002 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 85 gaging stations; stage only for 79 gaging stations and 7 lakes; water quality for 52 surface-water stations (including 40 gaging stations) and 104 wells; and water levels for 300 observation wells. Also included are data for 143 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  10. Water resources data, Louisiana, water year 2004

    USGS Publications Warehouse

    Baumann, Todd; Goree, B.B.; Lovelace, W.M.; Montogmery, P.A.; Resweber, J.C.; Ross, Garron B.; Ward, Aub N.; Walters, David J.

    2005-01-01

    Water resources data for the 2004 water year for Louisiana consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 77 gaging stations; stage only for 86 gaging stations and 7 lakes; water quality for 60 surface-water stations (including 42 gaging stations) and 112 wells; and water levels for 304 observation wells. Also included are data for 158 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  11. GIS and Game Theory for Water Resource Management

    NASA Astrophysics Data System (ADS)

    Ganjali, N.; Guney, C.

    2017-11-01

    In this study, aspects of Game theory and its application on water resources management combined with GIS techniques are detailed. First, each term is explained and the advantages and limitations of its aspect is discussed. Then, the nature of combinations between each pair and literature on the previous studies are given. Several cases were investigated and results were magnified in order to conclude with the applicability and combination of GIS- Game Theory- Water Resources Management. It is concluded that the game theory is used relatively in limited studies of water management fields such as cost/benefit allocation among users, water allocation among trans-boundary users in water resources, water quality management, groundwater management, analysis of water policies, fair allocation of water resources development cost and some other narrow fields. Also, Decision-making in environmental projects requires consideration of trade-offs between socio-political, environmental, and economic impacts and is often complicated by various stakeholder views. Most of the literature on water allocation and conflict problems uses traditional optimization models to identify the most efficient scheme while the Game Theory, as an optimization method, combined GIS are beneficial platforms for agent based models to be used in solving Water Resources Management problems in the further studies.

  12. 33 CFR 209.345 - Water resource policies and authorities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Water resource policies and... ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.345 Water resource policies and authorities... other Non-Federal Entities on Authorized Water Resources Projects.” (3) Section 221, FCA of 1970 (Pub. L...

  13. Managing Scarce Water Resources in China's Coal Power Industry.

    PubMed

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.

  14. Managing Scarce Water Resources in China's Coal Power Industry

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.

  15. Water Quality Monitoring by Satellite

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  16. Higher Resolution for Water Resources Studies

    NASA Astrophysics Data System (ADS)

    Dumenil-Gates, L.

    2009-12-01

    The Earth system science community is providing an increasing range of science results for the benefit of achieving the Millennium Development Goals. In addressing questions such as reducing poverty and hunger, achieving sustainable global development, or by defining adaptation strategies for climate change, one of the key issues will be the quantitative description and understanding of the global water cycle, which will allow useful projections of available future water resources for several decades ahead. The quantities of global water cycle elements that we observe today - and deal with in hydrologic and atmospheric modeling - are already very different from the natural flows as human influence on the water cycle by storage, consumption and edifice has been going on for millennia, and climate change is expected to add more uncertainty. In this case Tony Blair’s comment that perhaps the most worrying problem is climate change does not cover the full story. We shall also have to quantify how the human demand for water resources and alterations of the various elements of the water cycle may proceed in the future: will there be enough of the precious water resource to sustain current and future demands by the various sectors involved? The topics that stakeholders and decision makers concerned with managing water resources are interested in cover a variety of human uses such as agriculture, energy production, ecological flow requirements to sustain biodiversity and ecosystem services, or human cultural aspects, recreation and human well-being - all typically most relevant at the regional or local scales, this being quite different from the relatively large-scale that the IPCC assessment addresses. Halfway through the Millennium process, the knowledge base of the global water cycle is still limited. The sustainability of regional water resources is best assessed through a research program that combines high-resolution climate and hydrologic models for expected

  17. Water resources data, Indiana, water year 1982

    USGS Publications Warehouse

    Miller, R.L.; Hoggatt, R.E.; Nell, G.E.

    1983-01-01

    Water resources data for the 1982 water year for Indiana consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels in wells. This report contains discharge records for 176 gaging stations, stage and contents for 9 lakes and reservoirs, releases from 8 flood control reservoirs, water quality for 26 gaging stations, and water levels for 87 observation wells. Also included are 71 crest-stage partial-record stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Indiana.

  18. Water resources data, Indiana, water year 1983

    USGS Publications Warehouse

    Miller, R.L.; Hoggatt, R.E.; Nell, G.E.

    1984-01-01

    Water resources data for the 1983 water year for Indiana consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels in wells. This report contains discharge records for 174 gaging stations, stage and contents for 9 lake and reservoirs, releases from 7 flood control reservoirs, water quality for 5 gaging stations, and water levels for 84 observation wells. Also included are 23 crest-stage partial-record stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Indiana.

  19. Water resources in the next millennium

    NASA Astrophysics Data System (ADS)

    Wood, Warren

    As pressures from an exponentially increasing population and economic expectations rise against a finite water resource, how do we address management? This was the main focus of the Dubai International Conference on Water Resources and Integrated Management in the Third Millennium in Dubai, United Arab Emirates, 2-6 February 2002. The invited forum attracted an eclectic mix of international thinkers from five continents. Presentations and discussions on hydrology policy/property rights, and management strategies focused mainly on problems of water supply, irrigation, and/or ecosystems.

  20. Agricultural water requirements for commercial production of cranberries

    USDA-ARS?s Scientific Manuscript database

    Abundant water resources are essential for the commercial production of cranberries, which use irrigated water for frost protection, soil moisture management, and harvest and winter floods. Given water resource demands in southeastern Massachusetts, we sought to quantify the annual water requirement...

  1. What is Neptune's D/H ratio really telling us about its water abundance?

    NASA Astrophysics Data System (ADS)

    Ali-Dib, Mohamad; Lakhlani, Gunjan

    2018-05-01

    We investigate the deep-water abundance of Neptune using a simple two-component (core + envelope) toy model. The free parameters of the model are the total mass of heavy elements in the planet (Z), the mass fraction of Z in the envelope (fenv), and the D/H ratio of the accreted building blocks (D/Hbuild).We systematically search the allowed parameter space on a grid and constrain it using Neptune's bulk carbon abundance, D/H ratio, and interior structure models. Assuming solar C/O ratio and cometary D/H for the accreted building blocks are forming the planet, we can fit all of the constraints if less than ˜15 per cent of Z is in the envelope (f_{env}^{median} ˜ 7 per cent), and the rest is locked in a solid core. This model predicts a maximum bulk oxygen abundance in Neptune of 65× solar value. If we assume a C/O of 0.17, corresponding to clathrate-hydrates building blocks, we predict a maximum oxygen abundance of 200× solar value with a median value of ˜140. Thus, both cases lead to oxygen abundance significantly lower than the preferred value of Cavalié et al. (˜540× solar), inferred from model-dependent deep CO observations. Such high-water abundances are excluded by our simple but robust model. We attribute this discrepancy to our imperfect understanding of either the interior structure of Neptune or the chemistry of the primordial protosolar nebula.

  2. ORTHO-TO-PARA ABUNDANCE RATIO OF WATER ION IN COMET C/2001 Q4 (NEAT): IMPLICATION FOR ORTHO-TO-PARA ABUNDANCE RATIO OF WATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Kobayashi, Hitomi

    2012-04-20

    The ortho-to-para abundance ratio (OPR) of cometary molecules is considered to be one of the primordial characteristics of cometary ices, and contains information concerning their formation. Water is the most abundant species in cometary ices, and OPRs of water in comets have been determined from infrared spectroscopic observations of H{sub 2}O rovibrational transitions so far. In this paper, we present a new method to derive OPR of water in comets from the high-dispersion spectrum of the rovibronic emission of H{sub 2}O{sup +} in the optical wavelength region. The rovibronic emission lines of H{sub 2}O{sup +} are sometimes contaminated by othermore » molecular emission lines but they are not affected seriously by telluric absorption compared with near-infrared observations. Since H{sub 2}O{sup +} ions are mainly produced from H{sub 2}O by photoionization in the coma, the OPR of H{sub 2}O{sup +} is considered to be equal to that of water based on the nuclear spin conservation through the reaction. We have developed a fluorescence excitation model of H{sub 2}O{sup +} and applied it to the spectrum of comet C/2001 Q4 (NEAT). The derived OPR of water is 2.54{sup +0.32}{sub -0.25}, which corresponds to a nuclear spin temperature (T{sub spin}) of 30{sup +10}{sub -4} K. This is consistent with the previous value determined in the near-infrared for the same comet (OPR = 2.6 {+-} 0.3, T{sub spin} = 31{sup +11}{sub -5} K).« less

  3. Finding water scarcity amid abundance using human–natural system models

    PubMed Central

    Amos, Adell; Bigelow, Daniel P.; Chang, Heejun; Conklin, David R.; Haggerty, Roy; Langpap, Christian; Moore, Kathleen; Mote, Philip W.; Nolin, Anne W.; Plantinga, Andrew J.; Schwartz, Cynthia L.; Tullos, Desiree; Turner, David P.

    2017-01-01

    Water scarcity afflicts societies worldwide. Anticipating water shortages is vital because of water’s indispensable role in social-ecological systems. But the challenge is daunting due to heterogeneity, feedbacks, and water’s spatial-temporal sequencing throughout such systems. Regional system models with sufficient detail can help address this challenge. In our study, a detailed coupled human–natural system model of one such region identifies how climate change and socioeconomic growth will alter the availability and use of water in coming decades. Results demonstrate how water scarcity varies greatly across small distances and brief time periods, even in basins where water may be relatively abundant overall. Some of these results were unexpected and may appear counterintuitive to some observers. Key determinants of water scarcity are found to be the cost of transporting and storing water, society’s institutions that circumscribe human choices, and the opportunity cost of water when alternative uses compete. PMID:29078299

  4. Water resources activities in Kentucky, 1986

    USGS Publications Warehouse

    Faust, R. J.

    1986-01-01

    The U.S. Geological Survey, Water Resources Division, conducts three major types of activities in Kentucky in order to provide hydrologic information and understanding needed for the best management of Kentucky 's and the Nation 's water resources. These activities are: (1) Data collection and dissemination; (2) Water-resources appraisals (interpretive studies); and (3) Research. Activities described in some detail following: (1) collection of surface - and groundwater data; (2) operation of stations to collect data on water quality, atmospheric deposition, and sedimentation; (3) flood investigations; (4) water use; (5) small area flood hydrology; (6) feasibility of disposal of radioactive disposal in deep crystalline rocks; (7) development of a groundwater model for the Louisville area; (8) travel times for streams in the Kentucky River Basin; (9) the impact of sinkholes and streams on groundwater flow in a carbonate aquifer system; (10) sedimentation and erosion rates at the Maxey Flats Radioactive Waste Burial site; and (11) evaluation of techniques for evaluating the cumulative impacts of mining as applied to coal fields in Kentucky. (Lantz-PTT)

  5. Modeling resource basis for social and economic development strategies: Water resource case

    NASA Astrophysics Data System (ADS)

    Kosolapova, Natalia A.; Matveeva, Ludmila G.; Nikitaeva, Anastasia Y.; Molapisi, Lesego

    2017-10-01

    The article substantiates that the effectiveness of implementing socio-economic development strategies is to a large extent determined by the adequate provision of basic resources. The key role of water resources in economic strategic development is empirically illustrated. The article demonstrates the practicability of strategic management of water resources based on the principle of a combination of river basin management approaches and the consideration of regional development strategies. The Game Theory technique was used to develop economic and mathematical tools for supporting decision-making in meeting the needs of regional consumers under water balance deficit conditions. The choice of methods was determined from two positions: the methods should allow for the possibility of multi-variant solutions for the selection of optimal options for the distribution of limited water resources between different consumers; the methods should be orientated on the maximum possible harmonization of multidirectional and multi-scale interests of the subjects in the water management system of the different regions (including the state) in order to achieve a balance. The approbation of developing a toolkit for the example of the regions located in the Don and Kuban river basins resulted in the appropriate selection of priority regions for the allocation of water resources in terms of strategic management as well as the determination of measures of ensuring the sustainable use of the river basins under consideration. The proposed tools can be used for coordinating decisions on the water supply of regional economic systems with actual and projected indicators of socio-economic development of the respective regions for a strategic perspective.

  6. Accelerated Capacity Development in Water Resources Education: the experiences of the Ethiopian Institute of Water Resources

    NASA Astrophysics Data System (ADS)

    Alamirew, T.; Mekonnen, G.; Viglione, A.

    2012-04-01

    Ethiopia recently recognises that the water resources development is the major entry point in poverty alleviation and sustainable development. Water in Ethiopia plays a key role in the Water-Energy-Food-nexus. Over 98% of the electricity in the country is generated using hydropower and yet about 2000 MW has been developed. Out of the 3.5 Mha potentially irrigable land, only 0.25 Mha has been developed to date. Access to drinking water supply coverage is among the lowest in the world. One of the limiting factors in harnessing the resource base is the absence of water professionals to face the fast growing demand in education, research, development in the water sector. Recognising this, in collaboration with University of Connecticut of the United States, Addis Ababa University launched the Ethiopian Institute of Water Resources (EIWR) by enrolling 18 PhD and 24 MSc students. The program is unique in that much of the course instructors are coming from US and European Universities, but deliver courses together with Ethiopian collaborators. This is supposed to facilitate knowledge and experience transfer from the US/EU scientist to Ethiopian counterparts. The theses/dissertations are designed to focus on Ethiopia's immediate hydrological problems on selected basins, and will be coordinated by three advisors for each PhD - one from US/EU, one from Ethiopian Universities, and one water professional from the sector. We report here the lessons learned in setting up the EIWR institute and the education program.

  7. Protecting Our Water Resources.

    ERIC Educational Resources Information Center

    Jewett, Jon

    1996-01-01

    Describes the watershed management approach for preserving water resources. Considers pollution sources ranging from industrial discharge to agricultural leachate and runoff and evaluates its impact on the total watershed environment. (JRH)

  8. Evaluating participation in water resource management: A review

    NASA Astrophysics Data System (ADS)

    Carr, G.; BlöSchl, G.; Loucks, D. P.

    2012-11-01

    Key documents such as the European Water Framework Directive and the U.S. Clean Water Act state that public and stakeholder participation in water resource management is required. Participation aims to enhance resource management and involve individuals and groups in a democratic way. Evaluation of participatory programs and projects is necessary to assess whether these objectives are being achieved and to identify how participatory programs and projects can be improved. The different methods of evaluation can be classified into three groups: (i) process evaluation assesses the quality of participation process, for example, whether it is legitimate and promotes equal power between participants, (ii) intermediary outcome evaluation assesses the achievement of mainly nontangible outcomes, such as trust and communication, as well as short- to medium-term tangible outcomes, such as agreements and institutional change, and (iii) resource management outcome evaluation assesses the achievement of changes in resource management, such as water quality improvements. Process evaluation forms a major component of the literature but can rarely indicate whether a participation program improves water resource management. Resource management outcome evaluation is challenging because resource changes often emerge beyond the typical period covered by the evaluation and because changes cannot always be clearly related to participation activities. Intermediary outcome evaluation has been given less attention than process evaluation but can identify some real achievements and side benefits that emerge through participation. This review suggests that intermediary outcome evaluation should play a more important role in evaluating participation in water resource management.

  9. Water Resources Data, Kansas, Water Year 2001

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.

    2002-01-01

    Water-resources data for the 2001 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 145 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 19 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 140 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  10. Water Resources Data, Kansas, Water Year 2002

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2003-01-01

    Water-resources data for the 2002 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 149 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 142 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  11. Water Resources Data, Kansas, Water Year 1999

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.; Carlson, M.D.

    2000-01-01

    Water-resources data for the 1999 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 143 gaging stations; elevation and contents at 19 watershed lakes and reservoirs; and water-level data at 19 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 4 stations. Also included are data for 26 high-flow and 2 low-flow partial-record stations; and 2 chemical quality of precipitation stations. Miscellaneous onsite water-quality data were collected at 132 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with State, local, and Federal agencies in Kansas.

  12. Water resources of Iberia Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2017-02-24

    IntroductionInformation concerning the availability, use, and quality of water in Iberia Parish, Louisiana, is critical for proper water-resource management. This fact sheet summarizes the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish for water managers, parish residents, and others to assist in stewardship of this vital resource. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System are the primary sources of the information presented here.In 2010, about 31.24 million gallons per day (Mgal/d) of water were withdrawn in Iberia Parish, Louisiana, including about 23.13 Mgal/d from groundwater sources and 8.11 Mgal/d from surface-water sources. Withdrawals for public supply and industrial use each accounted for about 32 percent of the total water withdrawn. Other water-use categories included rural domestic, livestock, rice irrigation, general irrigation, and aquaculture. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals in Iberia Parish peaked at about 58.57 Mgal/d in 1975.

  13. Warming will alter water resources

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    Drastic changes in water resources in all regions of the United States will be the most severe effect of global warming, according to a study reported January 16 at the meeting of the American Association for the Advancement of Science in San Francisco. However, said the scientists on the AAAS panel on climate and U.S. water resources, strong governmental involvement can greatly reduce the water supply problems climate change will bring.The natural variability of present and future climate was the starting point for the AAAS study. The panel pointed out that it is difficult to identify the direction of potential change for many of the possible consequences of the greenhouse effect, partly because recent history provides little evidence of strong responses to such changes.

  14. Water Resources Data--Kansas, Water Year 2003

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2004-01-01

    Water-resources data for the 2003 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 148 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 12 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 27 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 138 stations, and suspended-sediment concentration for 11 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  15. Water resources management. (Arabic version). World Bank policy paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-10-01

    A new approach, recognizing that water is a scarce natural resource-subject to many interdependencies in conveyance and use-should be adopted by the World Bank and its member countries. Chapter 2 discusses the management problems that have beset the sector in many countries and how these are being aggravated by increasing demands for water and rising costs of new supplies. Chapter 3 outlines the strategy for improving the management of water resources. Chapter 4 spells out the role of the World Bank in helping countries implement better approaches to water resources management. Five appendixes discuss in detail market failures and publicmore » policy; lessons learned about the relation among water, people, and the environment; privatization and user participation; Bank guidelines related to water resources; and Bank experience with investments in water resources.« less

  16. Water resources of St. Helena Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-27

    Information concerning the availability, use, and quality of water in St. Helena Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  17. Water resources of East Feliciana Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2017-01-12

    Information concerning the availability, use, and quality of water in East Feliciana Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information is presented on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  18. Assessment of Atmospheric Water Vapor Abundance Above RSL Locations on Mars

    NASA Astrophysics Data System (ADS)

    Berdis, Jodi R.; Murphy, Jim; Wilson, Robert John

    2016-10-01

    The possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs)1 are investigated. These RSLs appear during local spring and summer on downward slopes, and have been linked to liquid water which leaves behind streaks of briny material. Viking Orbiter Mars Atmospheric Water Detector (MAWD)2 and Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES)3-5 derived water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, and Coprates Chasma) exhibit episodic enhanced local water vapor abundance during southern summer solstice (Ls = 270°) and autumnal equinox (Ls = 360°) when RSLs are observed to develop6,7. Any detected atmospheric water vapor signal would expand upon current knowledge of RSLs, while non-detection would provide upper limits on RSL water content. Viking Orbiter Infrared Thermal Mapper (IRTM) and MGS TES derived temperature values are also investigated due to the appearance of active RSLs after the surface temperature of the slopes exceeds 250 K1.A high spatial resolution Martian atmospheric numerical model will be employed to assess the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. The ability of past and future orbiter-based instruments to detect such water vapor quantities will be assessed.References1. McEwen, A. et al. 2011, Sci., 333, 7402. Jakosky, B. & Farmer, C. 1982, JGR, 87, 29993. Christensen, P. et al. 1992, JGR, 97, 77194. Christensen, P. et al. 2001, JGR, 106, 238235. Smith, M. 2002, JGR, 107, 51156. Ojha, L. et al. 2015, Nature Geosci., 8, 8297. Stillman, D. et al. 2014, Icarus, 233, 328

  19. Sustainability assessment of regional water resources under the DPSIR framework

    NASA Astrophysics Data System (ADS)

    Sun, Shikun; Wang, Yubao; Liu, Jing; Cai, Huanjie; Wu, Pute; Geng, Qingling; Xu, Lijun

    2016-01-01

    Fresh water is a scarce and critical resource in both natural and socioeconomic systems. Increasing populations combined with an increasing demand for water resources have led to water shortages worldwide. Current water management strategies may not be sustainable, and comprehensive action should be taken to minimize the water budget deficit. Sustainable water resources management is essential because it ensures the integration of social, economic, and environmental issues into all stages of water resources management. This paper establishes the indicators to evaluate the sustainability of water utilization based on the Drive-Pressure-Status-Impact-Response (DPSIR) model. Based on the analytic hierarchy process (AHP) method, a comprehensive assessment of changes to the sustainability of the water resource system in the city of Bayannur was conducted using these indicators. The results indicate that there is an increase in the driving force of local water consumption due to changes in society, economic development, and the consumption structure of residents. The pressure on the water system increased, whereas the status of the water resources continued to decrease over the study period due to the increasing drive indicators. The local government adopted a series of response measures to relieve the decreasing water resources and alleviate the negative effects of the increasing driver in demand. The response measures improved the efficiency of water usage to a large extent, but the large-scale expansion in demands brought a rebounding effect, known as ;Jevons paradox; At the same time, the increasing emissions of industrial and agriculture pollutants brought huge pressures to the regional water resources environment, which caused a decrease in the sustainability of regional water resources. Changing medium and short-term factors, such as regional economic pattern, technological levels, and water utilization practices, can contribute to the sustainable utilization of

  20. Manatee County government's commitment to Florida's water resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunsicker, C.

    1998-07-01

    With ever increasing development demands in coastal areas and subsequent declines in natural resources, especially water, coastal communities must identify creative options for sustaining remaining water resources and an accepted standard of living. The Manatee County agricultural reuse project, using reclaimed wastewater is part of a water resource program, is designed to meet these challenges. The reuse system works in concert with consumer conservation practices and efficiency of use measures which are being implemented by all public and private sector water users in this southwest Florida community.

  1. Water Resources Research October 1, 1979 - September 30, 1980: Summary statements of research activities by the Water Resources Division

    USGS Publications Warehouse

    ,

    1981-01-01

    Research in the WRD had its beginnings in the late 1950's when the "core research" line item was added to the Congressional budget. Since this time the Federal program has grown from a "basic sciences" program to one that includes a broad spectrum of basic and applied scientific investigations. Water resources research in WRD includes the study of water in all its phases and uses the basic sciences of mathematics, chemistry, physics, biology, geology and engineering to gain a fundamental understanding of the processes that affect the movement of water and its chemical constituents through hydrologic systems. The basic knowledge and methodologies derived from water resources research are applicable not only to the solution of current problems associated with the Nation's water resources, but also to anticipated hydrologic issues.

  2. Annual water-resources review, White Sands Missile Range: 1971

    USGS Publications Warehouse

    Cruz, R.R.

    1972-01-01

    This report presents water-resource information that was collected at White Sands Missile Range during 1971 and early 1972 by personnel of the U.S. Geological Survey, Water Resources Division. Data on ground-water pumpage and resulting water-level fluctuation, chemical quality, percipitation, and surface-water runoff are summarized in the report. The data were obtained as a result of the continuing water-resources basic-data collection program sponsored by the Facilities Engineering Directorate, White Sands Missile Range.

  3. Toward Sustainable Water Resource Management: Challenges and Opportunities

    EPA Science Inventory

    The United States has derived significant economic benefit from an abundant and high-quality water supply. The ability of the nation to continue this pace into the future is uncertain because of a number of significant challenges. These include increasing water demand because of ...

  4. Water Resources Data, Kansas, Water Year 2000

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.; Carlson, M.D.

    2001-01-01

    Water-resources data for the 2000 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 144 complete-record gaging stations; elevation and contents at 19 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 8 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, and miscellaneous onsite water-quality data collected at 134 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  5. Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow

    NASA Astrophysics Data System (ADS)

    Green, Robert O.; Painter, Thomas H.; Roberts, Dar A.; Dozier, Jeff

    2006-10-01

    From imaging spectrometer data, we simultaneously estimate the abundance of the three phases of water in an environment that includes melting snow, basing the analysis on the spectral shift in the absorption coefficient between water vapor, liquid water, and ice at 940, 980, and 1030 nm respectively. We apply a spectral fitting algorithm that measures the expressed abundance of the three phases of water to a data set acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Mount Rainier, Washington, on 14 June 1996. Precipitable water vapor varies from 1 mm over the summit of Mount Rainier to 10 mm over the lower valleys to the northwest. Equivalent path absorption of liquid water varies from 0 to 13 mm, with the zero values over rocky areas and high-elevation snow and the high values associated with liquid water held in vegetation canopies and in melting snow. Ice abundance varies from 0 to 30 mm equivalent path absorption in the snow- and glacier-covered portions of Mount Rainier. The water and ice abundances are related to the amount of liquid water and the sizes of the ice grains in the near-surface layer. Precision of the estimates, calculated over locally homogeneous areas, indicates an uncertainty of better than 1.5% for all three phases, except for liquid water in vegetation, where an optimally homogeneous site was not found. The analysis supports new strategies for hydrological research and applications as imaging spectrometers become more available.

  6. Student Understanding of Water and Water Resources: A Review of the Literature.

    ERIC Educational Resources Information Center

    Brody, Michael J.

    This paper reviews the educational research related to student understanding of water and water resources. The literature is drawn primarily from science and environmental education literature and is divided into student knowledge of: physical and chemical properties, biology, earth systems and water resources. The majority of work has been in the…

  7. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Presented is a compilation of over 3,000 abstracts on print and non-print materials related to water quality and water resources education. Entries are included from all levels of governmental sources, private concerns, and educational institutions. Each entry includes: title, author, cross references, descriptors, and availability. (CLS)

  8. Handling Uncertain Gross Margin and Water Demand in Agricultural Water Resources Management using Robust Optimization

    NASA Astrophysics Data System (ADS)

    Chaerani, D.; Lesmana, E.; Tressiana, N.

    2018-03-01

    In this paper, an application of Robust Optimization in agricultural water resource management problem under gross margin and water demand uncertainty is presented. Water resource management is a series of activities that includes planning, developing, distributing and managing the use of water resource optimally. Water resource management for agriculture can be one of the efforts to optimize the benefits of agricultural output. The objective function of agricultural water resource management problem is to maximizing total benefits by water allocation to agricultural areas covered by the irrigation network in planning horizon. Due to gross margin and water demand uncertainty, we assume that the uncertain data lies within ellipsoidal uncertainty set. We employ robust counterpart methodology to get the robust optimal solution.

  9. Application of remote sensing to water resources problems

    NASA Technical Reports Server (NTRS)

    Clapp, J. L.

    1972-01-01

    The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.

  10. Regional Water-Resources Studies in Nevada

    USGS Publications Warehouse

    Bauer, Eva M.; Watermolen, Shannon C.

    2007-01-01

    Introduction: Water-resources information for the State of Nevada should be readily accessible to community planners and the general public in a user-friendly web environment and should be actively managed and maintained with accurate historic and current hydrologic data. The USGS, in cooperation with State of Nevada and local government agencies, has established a data framework that provides critical hydrologic information to meet the challenges of water resources planning for Nevada.

  11. Integrating Green and Blue Water Management Tools for Land and Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Jewitt, G. P. W.

    2009-04-01

    The role of land use and land use change on the hydrological cycle is well known. However, the impacts of large scale land use change are poorly considered in water resources planning, unless they require direct abstraction of water resources and associated development of infrastructure e.g. Irrigation Schemes. However, large scale deforestation for the supply of raw materials, expansion of the areas of plantation forestry, increasing areas under food production and major plans for cultivation of biofuels in many developing countries are likely to result in extensive land use change. Given the spatial extent and temporal longevity of these proposed developments, major impacts on water resources are inevitable. It is imperative that managers and planners consider the consequences for downstream ecosystems and users in such developments. However, many popular tools, such as the vitual water approach, provide only coarse scale "order of magnitude" type estimates with poor consideration of, and limited usefulness, for land use planning. In this paper, a framework for the consideration of the impacts of large scale land use change on water resources at a range of temporal and spatial scales is presented. Drawing on experiences from South Africa, where the establishment of exotic commercial forest plantations is only permitted once a water use license has been granted, the framework adopts the "green water concept" for the identification of potential high impact areas of land use change and provides for integration with traditional "blue water" water resources planning tools for more detailed planning. Appropriate tools, ranging from simple spreadsheet solutions to more sophisticated remote sensing and hydrological models are described, and the application of the framework for consideration of water resources impacts associated with the establishment of large scale tectona grandis, sugar cane and jatropha curcas plantations is illustrated through examples in Mozambique

  12. Exceptionally high abundances of microplastics in the oligotrophic Israeli Mediterranean coastal waters.

    PubMed

    van der Hal, Noam; Ariel, Asaf; Angel, Dror L

    2017-03-15

    Seasonal sea surface microplastic distribution was recorded at 17 sites along the Israeli Mediterranean coast. Microplastics (0.3-5mm) were found in all samples, with a mean abundance of 7.68±2.38particles/m 3 or 1,518,340particles/km 2 . Some areas had higher abundances of microplastics than others, although differences were neither consistent nor statistically significant. In some cases microplastic particles were found floating in large patches. One of these patches contained an extraordinary number of plastic particles; 324particles/m 3 or 64,812,600particles/km 2 . Microplastic abundances in Israeli coastal waters are disturbingly high; mean values were 1-2 orders of magnitude higher than abundances reported in other parts of the world. Light-colored (white or transparent) fragments were by far more abundant than all other microplastic colors and types. The results of this study underline the need for action to reduce the flux of plastics to the marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Water resources data, North Carolina, water year 2004. Volume 2: Ground-water records

    USGS Publications Warehouse

    Howe, S.S.; Breton, P.L.; Chapman, M.J.

    2005-01-01

    Water-resources data for the 2004 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 217 gaging stations; stage and contents for 58 lakes and reservoirs; stage only records for 22 gaging stations; elevations for 9 stations; water quality for 39 gaging stations and 5 miscellaneous sites, and continuous water quality for 35 sites; and continuous precipitation at 127 sites. Volume 2 contains ground-water-level data from 161 observation wells, ground-water-quality data from 38 wells, continuous water quality for 7 sites and continuous precipitation at 7 sites. Additional water data were collected at 51 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  14. Inland water resources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The work is reported of the panel concerning the application of space technology to the improved management of the nation's inland resources. The progress since the 1967-68 study is briefly reviewed. The data needed for the management of inlet water ways, and the potential benefits of better management are discussed along with 16 proposed demonstration projects.

  15. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia

    PubMed Central

    Januar, Indra; Wild, Christian; Kunzmann, Andreas

    2016-01-01

    Declining water quality is one of the main reasons of coral reef degradation in the Thousand Islands off the megacity Jakarta, Indonesia. Shifts in benthic community composition to higher soft coral abundances have been reported for many degraded reefs throughout the Indo-Pacific. However, it is not clear to what extent soft coral abundance and physiology are influenced by water quality. In this study, live benthic cover and water quality (i.e. dissolved inorganic nutrients (DIN), turbidity (NTU), and sedimentation) were assessed at three sites (< 20 km north of Jakarta) in Jakarta Bay (JB) and five sites along the outer Thousand Islands (20–60 km north of Jakarta). This was supplemented by measurements of photosynthetic yield and, for the first time, respiratory electron transport system (ETS) activity of two dominant soft coral genera, Sarcophyton spp. and Nephthea spp. Findings revealed highly eutrophic water conditions in JB compared to the outer Thousand Islands, with 44% higher DIN load (7.65 μM/L), 67% higher NTU (1.49 NTU) and 47% higher sedimentation rate (30.4 g m−2 d−1). Soft corals were the dominant type of coral cover within the bay (2.4% hard and 12.8% soft coral cover) compared to the outer Thousand Islands (28.3% hard and 6.9% soft coral cover). Soft coral abundances, photosynthetic yield, and ETS activity were highly correlated with key water quality parameters, particularly DIN and sedimentation rates. The findings suggest water quality controls the relative abundance and physiology of dominant soft corals in JB and may thus contribute to phase shifts from hard to soft coral dominance, highlighting the need to better manage water quality in order to prevent or reverse phase shifts. PMID:27904802

  16. Ground-water resources of the Pascagoula River basin, Mississippi and Alabama

    USGS Publications Warehouse

    Newcome, Roy

    1967-01-01

    Abundant ground-water resources underlie the Pascagoula River basin. These resources have been developed intensively in only a few places--namely, Hattiesburg, Laurel, Meridian, and Pascagoula. Seepage from the ground water reservoirs sustains the base flows of the Leaf, Chickasawhay, Pascagoula, and Escatawpa Rivers and their tributaries. The fresh-water-bearing section is 300 to 3,500 feet thick and is composed chiefly of sand and clay of Eocene to Recent age. Major rock units represented are the Wilcox, Claiborne, Jackson, and Vicksburg Groups and formations of Miocene and Pliocene ages. Aquifers in the Claiborne Group provide water for all purposes in the northern third of the basin. The Claiborne is underlain by the potentially important but virtually untapped Wilcox Group. Miocene aquifers are the main source of water supplies in the southern half of the basin, but Pliocene aquifers furnish most supplies in the Jackson County area at the basin's southern extremity. Much of the fresh-water section has undergone no water-supply development because of the great depth of many aquifers and the availability, at shallow depths, of supplies adequate for present needs. However, a large part of any substantial increase in ground-water withdrawal will probably come from wells deeper than those commonly drilled in the region. Ground-water levels are within 50 feet of the surface in most places, and flowing wells are common in the valleys and near the coast. Water-level declines due to pumping have become serious problems only in a few localities of heavy withdrawal. In most of these places redistribution of pumpage would alleviate the problem of excessive drawdown. Although few wells in the basin yield more than 500 gallons per minute, yields of 2,000 gallons per minute or more could be reasonably expected from efficiently constructed wells almost anywhere in the region. Total ground-water pumpage is estimated to be about 60 million gallons per day. Potential pumpage is

  17. NASA Earth Resources Survey Symposium. Volume 1-D: Water resources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Conference papers on water resources and management are summarized. Summaries cover land use, flood control and prediction, watersheds and the effects of snow melt, soil moisture content, and the usefulness of satellite remote sensors in detecting ground and surface water.

  18. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC; Notice of Application...: Eagle Creek Hydropower, LLC; Eagle Creek Land Resources, LLC; and Eagle Creek Water Resources, LLC. e... Contact: Robert Gates, Senior Vice President-- Operations, Eagle Creek Hydropower, LLC, Eagle Creek Water...

  19. Water Resources Data - New Jersey, Water Year 1999, Volume 3, Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Romanok, K.M.; Riskin, M.L.; Mattes, G.L.; Thomas, A.M.; Gray, B.J.

    2000-01-01

    Water-resources data for the 1999 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 1999 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 133 surface-water stations, 46 miscellaneous surface-water sites, 30 ground-water stations, 41 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 17 continuous-monitoring stations. Locations of water-quality stations are shown in figures 11 and 17-20. Locations of miscellaneous water-quality sites are shown in figures 29-32 and 34. These data represent the part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  20. NASA's Applied Sciences for Water Resources

    NASA Technical Reports Server (NTRS)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  1. Compilation of Water-Resources Data for Montana, Water Year 2006

    USGS Publications Warehouse

    Ladd, P. B.; Berkas, W.R.; White, M.K.; Dodge, K.A.; Bailey, F.A.

    2007-01-01

    The U.S. Geological Survey, Montana Water Science Center, in cooperation with other Federal, State, and local agencies, and Tribal governments, collects a large amount of data pertaining to the water resources of Montana each water year. This report is a compilation of Montana site-data sheets for the 2006 water year, which consists of records of stage and discharge of streams; water quality of streams and ground water; stage and contents of lakes and reservoirs; water levels in wells; and precipitation data. Site-data sheets for selected stations in Canada and Wyoming also are included in this report. The data for Montana, along with data from various parts of the Nation, are included in 'Water-Resources Data for the United States, Water Year 2006', which is published as U.S. Geological Survey Water-Data Report WDR-US-2006 and is available at http://pubs.water.usgs.gov/wdr2006. Additional water year 2006 data collected at crest-stage gage and miscellaneous-measurement stations were collected but were not published. These data are stored in files of the U.S. Geological Survey Montana Water Science Center in Helena, Montana, and are available on request.

  2. Evaluation and Prediction of Water Resources Based on AHP

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Sun, Anqi

    2017-01-01

    Nowadays, the shortage of water resources is a threat to us. In order to solve the problem of water resources restricted by varieties of factors, this paper establishes a water resources evaluation index model (WREI), which adopts the fuzzy comprehensive evaluation (FCE) based on analytic hierarchy process (AHP) algorithm. After considering influencing factors of water resources, we ignore secondary factors and then hierarchical approach the main factors according to the class, set up a three-layer structure. The top floor is for WREI. Using analytic hierarchy process (AHP) to determine weight first, and then use fuzzy judgment to judge target, so the comprehensive use of the two algorithms reduce the subjective influence of AHP and overcome the disadvantages of multi-level evaluation. To prove the model, we choose India as a target region. On the basis of water resources evaluation index model, we use Matlab and combine grey prediction with linear prediction to discuss the ability to provide clean water in India and the trend of India’s water resources changing in the next 15 years. The model with theoretical support and practical significance will be of great help to provide reliable data support and reference for us to get plans to improve water quality.

  3. Water Resources Data, New Jersey, Water Year 2003; Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Hoppe, Heidi L.; Heckathorn, Heather A.; Riskin, Melissa L.; Gray, Bonnie J.; Melvin, Emma-Lynn; Liu, Nicholas A.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2003 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 123 continuing-record surface-water stations, 35 ground-water sites, records of daily statistics of temperature and other physical measurements from 20 continuous-recording stations, and 5 special-study sites consisting of 2 surface-water sites, 1 spring site, and 240 groundwater sites. Locations of water-quality stations are shown in figures 21-25. Locations of special-study sites are shown in figures 49-53. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  4. Water Resources Data, New Jersey, Water Year 2005Volume 3 - Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Heckathorn, Heather A.; Lewis, Jason M.; Gray, Bonnie J.; Feinson, Lawrence S.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2005 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 30 ground-water sites, records of daily statistics of temperature and other physical measurements from 9 continuous-recording stations, and 5 special studies that included 89 stream, 11 lake, and 29 ground-water sites. Locations of water-quality stations are shown in figures 23-25. Locations of special-study sites are shown in figures 41-46. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  5. Water Resources Data for Alaska, Water Year 1996

    USGS Publications Warehouse

    Linn, K.R.; Shaw, S.K.; Swanner, W.C.; Rickman, R.L.; Schellekens, M.F.

    1997-01-01

    Water resources data for the 1996 water year for Alaska consist of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground water. This volume contains records for water discharge at 85 gaging stations; stage or contents only at 5 gaging stations; water quality at 19 gaging stations; and water levels for 49 observation wells. Also included are data for 56 crest-stage partial-record stations and 2 lakes. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  6. Water resources, chapter 2, part B

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Various applications and projected applications of active microwave instruments for studying water resources. Most applications involve use of an imaging system operating primarily at wavelengths of less than 30 cm (i.e., K-, X-, and L-bands). Discussion is also included concerning longer wavelength nonimaging systems for use in sounding polar glaciers and icecaps (e.g., Greenland and the Antarctic). The section is divided into six topics: (1) stream runoff, drainage basin analysis, and floods, (2) lake detection and fluctuating levels, (3) coastal processes and wetlands, (4) seasonally and permanently frozen (permafrost) ground, (5) solid water resources (snow, ice, and glaciers), and (6) water pollution.

  7. Water accounting for stressed river basins based on water resources management models.

    PubMed

    Pedro-Monzonís, María; Solera, Abel; Ferrer, Javier; Andreu, Joaquín; Estrela, Teodoro

    2016-09-15

    Water planning and the Integrated Water Resources Management (IWRM) represent the best way to help decision makers to identify and choose the most adequate alternatives among other possible ones. The System of Environmental-Economic Accounting for Water (SEEA-W) is displayed as a tool for the building of water balances in a river basin, providing a standard approach to achieve comparability of the results between different territories. The target of this paper is to present the building up of a tool that enables the combined use of hydrological models and water resources models to fill in the SEEA-W tables. At every step of the modelling chain, we are capable to build the asset accounts and the physical water supply and use tables according to SEEA-W approach along with an estimation of the water services costs. The case study is the Jucar River Basin District (RBD), located in the eastern part of the Iberian Peninsula in Spain which as in other many Mediterranean basins is currently water-stressed. To guide this work we have used PATRICAL model in combination with AQUATOOL Decision Support System (DSS). The results indicate that for the average year the total use of water in the district amounts to 15,143hm(3)/year, being the Total Water Renewable Water Resources 3909hm(3)/year. On the other hand, the water service costs in Jucar RBD amounts to 1634 million € per year at constant 2012 prices. It is noteworthy that 9% of these costs correspond to non-conventional resources, such as desalinated water, reused water and water transferred from other regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. U.S. Geological Survey water resources activities in Florida, 1985-86

    USGS Publications Warehouse

    Glenn, M. E.

    1986-01-01

    This report contains summary statements of water resources activities in Florida conducted by the Water Resources Division of the U.S. Geological Survey in cooperation with Federal, State , and local agencies during 1985-86. These activities are part of the Federal program of appraising the Nation 's water resources. Water resources appraisals in Florida are highly diversified, ranging from hydrologic records networks to interpretive appraisals of water resources and applied research to develop investigative techniques. Thus, water resource investigations range from basic descriptive water-availability studies for areas of low-intensity water development and management to sophisticated cause and effect studies in areas of high-intensity water development and management. The interpretive reports and records that are products of the investigations are a principal hydrologic foundation upon which the plans for development, management, and protection of Florida 's water resources may be based. (Lantz-PTT)

  9. Water Resources Data, California, Water Year 1989. Volume 5. Ground-Water Data

    USGS Publications Warehouse

    Lamb, C.E.; Johnson, J.A.; Fogelman, R.P.; Grillo, D.A.

    1990-01-01

    Water resources data for the 1989 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in weils. Volume 5 contains water levels for 1,037 observation wells and water-quality data for 254 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperatine State and Federal agencies in California.

  10. Concept and Connotation of Water Resources Carrying Capacity in Water Ecological Civilization Construction

    NASA Astrophysics Data System (ADS)

    Chao, Zhilong; Song, Xiaoyu; Feng, Xianghua

    2018-01-01

    Water ecological civilization construction is based on the water resources carrying capacity, guided by the sustainable development concept, adhered to the human-water harmony thoughts. This paper has comprehensive analyzed the concept and characteristics of the carrying capacity of water resources in the water ecological civilization construction, and discussed the research methods and evaluation index system of water carrying capacity in the water ecological civilization construction, finally pointed out that the problems and solutions of water carrying capacity in the water ecological civilization construction and put forward the future research prospect.

  11. Water resources data, Puerto Rico and the U.S. Virgin Islands, water year 2004

    USGS Publications Warehouse

    Figueroa-Alamo, Carlos; Aquino, Zaida; Guzman-Rios, Senen; Sanchez, Ana V.

    2006-01-01

    The Caribbean Water Science Center of the U.S. Geological Survey (USGS), in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 89 streamflow-gaging stations, daily sediment records for 13 sediment stations, stage records for 18 reservoirs, and (2) water-quality records for 20 streamflow-gaging stations, and for 38 ungaged stream sites, 13 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 72 observation wells. Water-resources data for Puerto Rico for calendar years 1958-67 were released in a series of reports entitled 'Water Records of Puerto Rico.' Water-resources data for the U.S. Virgin Islands for the calendar years 1962-69 were released in a report entitled 'Water Records of U.S. Virgin Islands.' Included were records of streamflow, ground-water levels, and water-quality data for both surface and ground water. Beginning with the 1968 calendar year, surface-water records for Puerto Rico were released separately on an annual basis. Ground-water level records and water-quality data for surface and ground water were released in companion reports covering periods of several years. Data for the 1973-74 reports were published under separate covers. Water-resources data reports for 1975 to 2003 water years consist of one volume each and contain data for streamflow, water quality, and ground water.

  12. Assessing The Ecosystem Service Freshwater Production From An Integrated Water Resources Management Perspective. Case Study: The Tormes Water Resources System (Spain)

    NASA Astrophysics Data System (ADS)

    Momblanch, Andrea; Paredes-Arquiola, Javier; Andreu, Joaquín; Solera, Abel

    2014-05-01

    The Ecosystem Services are defined as the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfil human life. A strongly related concept is the Integrated Water Resources Management. It is a process which promotes the coordinated development and management of water, land and related resources in order to maximise the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. From these definitions, it is clear that in order to cover so many water management and ecosystems related aspects the use of integrative models is increasingly necessary. In this study, we propose to link a hydrologic model and a water allocation model in order to assess the Freshwater Production as an Ecosystem Service in anthropised river basins. First, the hydrological model allows determining the volume of water generated by each sub-catchment; that is, the biophysical quantification of the service. This result shows the relevance of each sub-catchment as a source of freshwater and how this could change if the land uses are modified. On the other hand, the water management model allocates the available water resources among the different water uses. Then, it is possible to provide an economic value to the water resources through the use of demand curves, or other economic concepts. With this second model, we are able to obtain the economical quantification of the Ecosystem Service. Besides, the influence of water management and infrastructures on the service provision can be analysed. The methodology is applied to the Tormes Water Resources System, in Spain. The software used are EVALHID and SIMGES, for hydrological and management aspects, respectively. Both models are included in the Decision Support System Shell AQUATOOL for water resources planning and management. A scenario approach is presented to illustrate the potential of the methodology, including the current

  13. Water resources data, North Carolina, water year 2002. Volume 1B: Surface-water records

    USGS Publications Warehouse

    Ragland, B.C.; Barker, R.G.; Robinson, J.B.

    2003-01-01

    Water-resources data for the 2002 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 211 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 20 gaging stations; water quality for 52 gaging stations and 7 miscellaneous sites, and continuous water quality for 30 sites; and continuous precipitation at 109 sites. Volume 2 contains ground-water-level data from 143 observation wells and ground-water-quality data from 72 wells. Additional water data were collected at 85 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  14. Water Resources Data, Florida, Water Year 2003, Volume 4. Northwest Florida

    USGS Publications Warehouse

    prepared by Blum, Darlene A.; Alvarez, A. Ernie

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local agencies, obtains a large amount of data on the water resources of the State of Florida each water year. These data, accumulated during many water years, constitute a valuable database that is used by water-resources managers, emergency-management officials, and many others to develop an improved understanding of water resources within the State. This report series for the 2003 water year for the state of Florida consists of records for continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water for 133 surface-water sites and 308 wells. This volume (Volume 4, Northwest Florida)contains records of continuous or daily discharge for 72 streams, periodic discharge for 3 stream, continuous or daily stage for 13 streams, periodic stage for 0 stream, peak stage and discharge for 28 streams, continuous or daily elevations for 1 lake, periodic elevations for 0 lakes, continuous ground-water levels for 3 wells, periodic ground-water levels for 0 wells, and quality-of-water for 3 surface-water sites and 0 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Florida.

  15. Water Resources Research supports water economics submissions

    NASA Astrophysics Data System (ADS)

    Griffin, Ronald C.

    2012-09-01

    AGU's international interdisciplinary journal Water Resources Research (WRR) publishes original contributions in hydrology; the physical, chemical, and biological sciences; and the social and policy sciences, including economics, systems analysis, sociology, and law. With the rising relevance of water economics and related social sciences, the editors of WRR continue to encourage submissions on economics and policy. WRR was originally founded in the mid 1960s by Walter Langbein and economist Allen Kneese. Several former WRR editors have been economists—including David Brookshire, Ron Cummings, and Chuck Howe—and many landmark articles in water economics have been published in WRR.

  16. Conservation and maintenance of soil and water resources

    Treesearch

    Brian G. Tavernia; Mark D. Nelson; Titus S. Seilheimer; Dale D. Gormanson; Charles H. (Hobie) Perry; Peter V. Caldwell; Ge. Sun

    2016-01-01

    Forest ecosystem productivity and functioning depend on soil and water resources. But the reverse is also true—forest and land-use management activities can significantly alter forest soils, water quality, and associated aquatic habitats (Ice and Stednick 2004, Reid 1993, Wigmosta and Burges 2001). Soil and water resources are protected through the allocation of land...

  17. USEPA’s Water Resource Adaptation Program (WRAP) — Drinking Water Research and Global Climate Change

    EPA Science Inventory

    The Water Resource Adaptation Program (WRAP) contributes to EPA’s efforts to provide water resource managers and decision makers with the tools they need to adapt water resources (e.g., watersheds and infrastructure) to future climate change and demographic and economic developme...

  18. Water resources data, Kentucky. Water year 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at amore » regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.« less

  19. Water resources data, North Carolina, water year 2001. Volume 1A: Surface-water records

    USGS Publications Warehouse

    Ragland, B.C.; Walters, D.A.; Cartano, G.D.; Taylor, J.E.

    2002-01-01

    Water-resources data for the 2001 water year for North Carolina consist of records of stage, discharge, water-quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground water levels and water-quality of ground-water. Volume 1 contains discharge records for 209 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 52 gaging stations; water quality for 101 gaging stations and 91 miscellaneous sites; continuous daily tide stage at 4 sites; and continuous precipitation at 98 sites. Volume 2 contains ground-water-level data from 136 observation wells and ground-water-quality data from 68 wells. Additional water data were collected at 84 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  20. Water Resources Data Massachusetts and Rhode Island Water Year 1999

    USGS Publications Warehouse

    Socolow, R.S.; Zanca, J.L.; Murino, Domenic; Ramsbey, L.R.

    2000-01-01

    INTRODUCTION The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Massachusetts and Rhode Island each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the States. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled 'Water Resources Data-Massachusetts and Rhode Island.' Hydrologic data are also available through the Massachusetts-Rhode Island District Home Page on the world-wide web (http://ma.water.usgs.gov). Historical data and real-time data (for sites equipped with satellite gage-height telemeter) are also available. The home page also contains a link to the U.S. Geological Survey National Home Page where streamflow data from locations throughout the United States can be retrieved. This report series includes records of stage, discharge, and water quality of streams; contents of lakes and reservoirs; water levels of ground-water wells; and water quality of ground-water wells. This volume contains discharge records at 90 gaging stations; stage records at 2 gaging stations; monthend contents of 4 lakes and reservoirs; water quality at 31 gaging stations; water quality at 27 observation wells; and water levels for 139 observation wells. Locations of these sites are shown in figures 1 and 2. Short-term water-quality data were collected at 21 gaging stations and 27 observation wells and are shown in figure 3. Miscellaneous hydrologic data were collected at various sites that were not involved in the systematic data-collection program and are published as miscellaneous discharge measurements. The data in this report represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies

  1. Water resource sensitivity from a Mediterranean perspective

    NASA Astrophysics Data System (ADS)

    Lyon, S. W.; Klein, J.; Archibald, J. A.; Walter, T.

    2012-12-01

    The water cycle in semiarid environments is intimately connected to plant-water interactions making these regions sensitive to both future climatic changes and landuse alterations. This study explores the sensitivity of water resource availability from a Mediterranean perspective using the Navarino Environmental Observatory (NEO) in Costa Navarino, Greece as a large-scale laboratory for developing and testing the potential resource impacts of various landuse/climatic trajectories. Direct measurements of evapotranspiration were combined with Penman-Monteith estimates to compare water vapor flux variability across the gradient of current management conditions found within the NEO landscape. These range from native, non-managed vegetation to historic, traditionally managed agriculture to modern, actively managed recreational lands. These management conditions greatly impact the vertical flux of water vapor in this semiarid landscape. Our evapotranspiration estimates were placed into a process-based modeling framework to characterize the current state of regional water resource availability and simulate future trajectories (and the associated uncertainties) in response to landuse/climatic changes. This region is quite sensitive with regards to water cycle modifications due to the anthropogenic redistribution of water within and across the landscape. Such sensitivity typifies that expected for much of the Mediterranean region, highlighting the NEO as a potential key location for future observation and investigation.

  2. 78 FR 67393 - Change in Discount Rate for Water Resources Planning

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal water resources planning. The discount rate...

  3. Application and Prospect of Big Data in Water Resources

    NASA Astrophysics Data System (ADS)

    Xi, Danchi; Xu, Xinyi

    2017-04-01

    Because of developed information technology and affordable data storage, we h ave entered the era of data explosion. The term "Big Data" and technology relate s to it has been created and commonly applied in many fields. However, academic studies just got attention on Big Data application in water resources recently. As a result, water resource Big Data technology has not been fully developed. This paper introduces the concept of Big Data and its key technologies, including the Hadoop system and MapReduce. In addition, this paper focuses on the significance of applying the big data in water resources and summarizing prior researches by others. Most studies in this field only set up theoretical frame, but we define the "Water Big Data" and explain its tridimensional properties which are time dimension, spatial dimension and intelligent dimension. Based on HBase, the classification system of Water Big Data is introduced: hydrology data, ecology data and socio-economic data. Then after analyzing the challenges in water resources management, a series of solutions using Big Data technologies such as data mining and web crawler, are proposed. Finally, the prospect of applying big data in water resources is discussed, it can be predicted that as Big Data technology keeps developing, "3D" (Data Driven Decision) will be utilized more in water resources management in the future.

  4. Summary appraisals of the Nation's ground-water resources; Caribbean region

    USGS Publications Warehouse

    Gómez-Gómez, Fernando; Heisel, James E.

    1980-01-01

    Ground-water resources will continue to be important within the region. In order to meet future needs, it is necessary that hydrologic principles be applied in managing the total water resource. Optimal use of the water resources can be accomplished through conjunctive use of surface and ground waters and through conservation practices. Optimal use may involve artificial recharge, ground-water salvage, saline-ground-water mining, use of seawater, desalination of saline ground water, waste-water reuse, and use of underground space for temporary storage of wastes, which could otherwise contaminate valuable water supplies.

  5. On the abundance of planetary water and exo-life after Kepler

    NASA Astrophysics Data System (ADS)

    Wandel, Amri

    2015-08-01

    Combining the recent results of the Kepler mission on the abundance of small planets within the Habitable Zone with a Drake-equation formalism I derive the space density of planets with surface water and biotic planets as a function of the yet unknown probabilities for the evolution of an Earthlike atmosphere and biosphere, respectively. I describe how these probabilities may be estimated by future spectral observations of exoplanet biomarkers such as atmospheric oxygen and water. I find that planets with surface liquid water may be expected within 10 light years and biotic planets within 10 -- 100 light years from Earth. ArXiv 1412.1302.

  6. Water Resources Data, Alabama, Water Year 2004

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2005-01-01

    Water resources data for the 2004 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations, for 19 partial-record or miscellaneous streamflow stations; (2) stage and content records for 16 lakes and reservoirs and stage at 44 stations; (3) water-quality records for 21 streamflow-gaging stations, for 11 ungaged streamsites, and for 1 precipitation stations; (4) water temperature at 20 surface-water stations; (5) specific conductance and dissolved oxygen at 20 stations; (6) turbidity at 5 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observa-tion wells; and (9) water-quality records for 6 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous sur-face-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  7. Water Resources Data, Alabama, Water Year 2005

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2006-01-01

    Water resources data for the 2005 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations and 23 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 44 stations; (3) water-quality records for 125 streamflow-gaging stations and 67 ungaged streamsites; (4) water temperature at 179 surface-water stations; (5) specific conductance at 180 stations; (6) dissolved oxygen at 17 stations; (7) turbidity at 52 stations; (8) sediment data at 2 stations; (9) water-level records for 2 recording observation wells; and (10) water-quality records for 6 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface- water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  8. Water resources planning in a strategic context: Linking the water sector to the national economy

    NASA Astrophysics Data System (ADS)

    Rogers, Peter; Hurst, Christopher; Harshadeep, Nagaraja

    1993-07-01

    In many parts of the developing world investment in water resources takes a large proportion of the available public investment funds. As the conflicts for funds between the water and other sectors become more severe, the traditional ways of analyzing and planning water investments has to move away from project-by-project (or even a river basin-by-river basin) approaches to include the relationships of water investments to other sectors and to overall national development policies. Current approaches to water resources investments are too narrow. There is a need for ways to expand the strategic thinking of water sector managers. This paper develops a water resources planning methodology with the primary objective of giving insights into the linking of water sector investments and macroeconomic policies. The model optimizes the present value of investments for water resources development, while embedding a macroeconomic model into the framework to allow for an examination of the interactions between water investments, the growth in the agricultural sector, and the performance of the overall economy. A case study of Bangladesh is presented which shows how strategic thinking could lead to widely differing implications for water investments than would conventional water resources systems planning models.

  9. Analysis and Research on the Optimal Allocation of Regional Water Resources

    NASA Astrophysics Data System (ADS)

    rui-chao, Xi; yu-jie, Gu

    2018-06-01

    Starting from the basic concept of optimal allocation of water resources, taking the allocation of water resources in Tianjin as an example, the present situation of water resources in Tianjin is analyzed, and the multi-objective optimal allocation model of water resources is used to optimize the allocation of water resources. We use LINGO to solve the model, get the optimal allocation plan that meets the economic and social benefits, and put forward relevant policies and regulations, so as to provide theoretical which is basis for alleviating and solving the problem of water shortage.

  10. Estimating Water Ice Abundance from Short-Wave Infrared Spectra of Drill Cuttings at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Colaprete, Anthony; Kleinhenz, Julie; Cook, Amanda

    2017-01-01

    NASA's Resource Prospector (RP) mission intends to visit a lunar polar region to characterize the volatile distribution. Part of the RP payload, the Near-infrared Volatile Spectrometer System (NIRVSS) is a spectrometer operating from 1600-3400 nm that provides sensitivity to water ice, and other volatiles. For multiple years, the NIRVSS system has been incorporated into on-going RP payload testing in a cryogenic vacuum facility at Glenn Research Center. Soil tubes of lunar simulants, prepared with known amounts of water, are placed in the vacuum chamber and cooled to cryogenic temperatures (soil temperatures of 110-170 K) and placed under low vacuum (a few x 10(exp -6) Torr). During these tests NIRVSS continuously measures spectra of soil cuttings emplaced onto the surface by a drill. Real time processing of NIRVSS spectra produces two spectral parameters associated with water ice absorption features near 2000 and 3000 nm that can be used to inform decision making activities such as delivery of the soil to a sealable container. Post-test collection and analyses of the soils permit characterization the water content as a function of depth. These water content profiles exhibit the characteristics of a vacuum desiccation zone to depths of about 40 cm. Subsequent to completion of the tests, NIRVSS spectra are processed to produce two spectral parameters associated with water ice absorption features near 2000 and 3000 nm. These features can be evaluated as a function of time, and correlated with drill depth, and other measurements, throughout the drilling activities. Until now no effort was attempted to quantitatively relate these parameters to water abundance. This is the focus of our efforts to be presented.

  11. Estimating Water Ice Abundance from Short-wave Infrared Spectra of Drill Cuttings at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Roush, T. L.; Colaprete, A.; Kleinhenz, J.; Cook, A.

    2017-12-01

    NASA's Resource Prospector (RP) mission intends to visit a lunar polar region to characterize the volatile distribution. Part of the RP payload, the Near-infrared Volatile Spectrometer System (NIRVSS) is a spectrometer operating from 1600-3400 nm that provides sensitivity to water ice, and other volatiles. For multiple years, the NIRVSS system has been incorporated into on-going RP payload testing in a cryogenic vacuum facility at Glenn Research Center. Soil tubes of lunar simulants, prepared with known amounts of water, are placed in the vacuum chamber and cooled to cryogenic temperatures (soil temperatures of 110-170° K) and placed under low vacuum (a few x 10-6 Torr). During these tests NIRVSS continuously measures spectra of soil cuttings emplaced onto the surface by a drill. Real time processing of NIRVSS spectra produces two spectral parameters associated with water ice absorption features near 2000 and 3000 nm that can be used to inform decision-making activities such as delivery of the soil to a sealable container. Post-test collection and analyses of the soils permit characterization the water content as a function of depth. These water content profiles exhibit the characteristics of a vacuum desiccation zone to depths of about 40 cm. Subsequent to completion of the tests, NIRVSS spectra are processed to produce two spectral parameters associated with water ice absorption features near 2000 and 3000 nm. These features can be evaluated as a function of time, and correlated with drill depth, and other measurements, throughout the drilling activities. Until now no effort was attempted to quantitatively relate these parameters to water abundance. This is the focus of our efforts to be presented.

  12. Water Resources Data, Alabama, Water Year 2002

    USGS Publications Warehouse

    Pearman, J.L.; Stricklin, V.E.; Psinakis, W.L.

    2003-01-01

    Water resources data for the 2002 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 131 streamflow-gaging stations, for 41 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 47 stations; (3) water-quality records for 12 streamflow-gaging stations, for 17 ungaged streamsites, and for 2 precipitation stations; (4) water temperature at 14 surfacewater stations; (5) specific conductance and dissolved oxygen at 12 stations; (6) turbidity at 3 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observation wells; and (9) water-quality records for 21 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  13. Water Resources Data, Alabama, Water Year 2003

    USGS Publications Warehouse

    Psinakis, W.L.; Lambeth, D.S.; Stricklin, V.E.; Treece, M.W.

    2004-01-01

    Water resources data for the 2003 water year for Alabama consist of records of stage, discharge, and water quality of streams; stages and contents of lakes and reservoirs; and water levels in wells. This report includes records on both surface and ground water in the State. Specifically, it contains: (1) discharge records for 130 streamflow-gaging stations, for 29 partial-record or miscellaneous streamflow stations; (2) stage and content records for 14 lakes and reservoirs and stage at 46 stations; (3) water-quality records for 12 streamflow-gaging stations, for 29 ungaged streamsites, and for 1 precipitation stations; (4) water temperature at 12 surfacewater stations; (5) specific conductance and dissolved oxygen at 12 stations; (6) turbidity at 3 stations; (7) sediment data at 6 stations; (8) water-level records for 2 recording observation wells; and (9) water-quality records for 9 ground-water stations. Also included are lists of active and discontinued continuous-record surface-water-quality stations, and partial-record and miscellaneous surface-water-quality stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Alabama.

  14. Bringing ecosystem services into integrated water resources management.

    PubMed

    Liu, Shuang; Crossman, Neville D; Nolan, Martin; Ghirmay, Hiyoba

    2013-11-15

    In this paper we propose an ecosystem service framework to support integrated water resource management and apply it to the Murray-Darling Basin in Australia. Water resources in the Murray-Darling Basin have been over-allocated for irrigation use with the consequent degradation of freshwater ecosystems. In line with integrated water resource management principles, Australian Government reforms are reducing the amount of water diverted for irrigation to improve ecosystem health. However, limited understanding of the broader benefits and trade-offs associated with reducing irrigation diversions has hampered the planning process supporting this reform. Ecosystem services offer an integrative framework to identify the broader benefits associated with integrated water resource management in the Murray-Darling Basin, thereby providing support for the Government to reform decision-making. We conducted a multi-criteria decision analysis for ranking regional potentials to provide ecosystem services at river basin scale. We surveyed the wider public about their understanding of, and priorities for, managing ecosystem services and then integrated the results with spatially explicit indicators of ecosystem service provision. The preliminary results of this work identified the sub-catchments with the greatest potential synergies and trade-offs of ecosystem service provision under the integrated water resources management reform process. With future development, our framework could be used as a decision support tool by those grappling with the challenge of the sustainable allocation of water between irrigation and the environment. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Policy Sciences in Water Resources Research

    NASA Astrophysics Data System (ADS)

    Cummings, Ronald G.

    1984-07-01

    As the newly appointed Policy Sciences Editor for this journal, I would like to take this opportunity to introduce myself to WRR's readership as well as to offer a few comments concerning my views of policy sciences in water resources research. I am an economist working in the area of natural resources and environmental management. As such, I've spent a good part of my research career working with noneconomists. During 1969-1972, I worked in Mexico with hydrologists and engineers from Mexico's Water Resources Ministry in efforts to assess management/investment programs for reservoir systems and systems for interbasin water transfers. Between 1972 and 1975, while serving as Chairman of the Department of Resource Economics at the University of Rhode Island, my research involved collaborative efforts with biologists and soil scientists in studies concerning the conjunctive management of reservoirs for agricultural and lagoon systems and the control of salinity levels in soils and aquifers. Since 1975, at which time I joined the faculty at the University of New Mexico, I have worked with engineers at the Los Alamos National Laboratory in developing operation/management models for hot, dry rock geothermal systems and, more recently, with legal scholars and hydrologists in analyses of water rights issues. Thus I am comfortable with and appreciative of research conducted by my colleagues in systems engineering, operations research, and hydrology, as well as those in economics, law, and other social sciences.

  16. Space-Confined Earth-Abundant Bifunctional Electrocatalyst for High-Efficiency Water Splitting.

    PubMed

    Tang, Yanqun; Fang, Xiaoyu; Zhang, Xin; Fernandes, Gina; Yan, Yong; Yan, Dongpeng; Xiang, Xu; He, Jing

    2017-10-25

    Hydrogen generation from water splitting could be an alternative way to meet increasing energy demands while also balancing the impact of energy being supplied by fossil-based fuels. The efficacy of water splitting strongly depends on the performance of electrocatalysts. Herein, we report a unique space-confined earth-abundant electrocatalyst having the bifunctionality of simultaneous hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), leading to high-efficiency water splitting. Outperforming Pt/C or RuO 2 catalysts, this mesoscopic, space-confined, bifunctional configuration is constructed from a monolithic zeolitic imidazolate framework@layered double hydroxide (ZIF@LDH) precursor on Ni foam. Such a confinement leads to a high dispersion of ultrafine Co 3 O 4 nanoparticles within the N-doped carbon matrix by temperature-dependent calcination of the ZIF@LDH. We demonstrate that the OER has an overpotential of 318 mV at a current density of 10 mA cm -2 , while that of HER is -106 mV @ -10 mA cm -2 . The voltage applied to a two-electrode cell for overall water splitting is 1.59 V to achieve a stable current density of 10 mA cm -2 while using the monolithic catalyst as both the anode and the cathode. It is anticipated that our space-confined method, which focuses on earth-abundant elements with structural integrity, may provide a novel and economically sound strategy for practical energy conversion applications.

  17. Water resources data West Virginia water wear 2001

    USGS Publications Warehouse

    Ward, S.M.; Taylor, B.C.; Crosby, G.R.

    2002-01-01

    Water-resources data for the 2001 water year for West Virginia consist of records of discharge and water quality of streams and water levels of observation wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 7 streamflow-gaging stations; annual maximum discharge at 18 crest-stage partial-record stations; water-quality records for 4 stations; and water-level records for 10 observation wells. Locations of these sites are shown on figures 4 and 5. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  18. Water footprints as an indicator for the equitable utilization of shared water resources. (Case study: Egypt and Ethiopia shared water resources in Nile Basin)

    NASA Astrophysics Data System (ADS)

    Sallam, Osama M.

    2014-12-01

    The question of "equity." is a vague and relative term in any event, criteria for equity are particularly difficult to determine in water conflicts, where international water law is ambiguous and often contradictory, and no mechanism exists to enforce principles which are agreed-upon. The aim of this study is using the water footprints as a concept to be an indicator or a measuring tool for the Equitable Utilization of shared water resources. Herein Egypt and Ethiopia water resources conflicts in Nile River Basin were selected as a case study. To achieve this study; water footprints, international virtual water flows and water footprint of national consumption of Egypt and Ethiopia has been analyzed. In this study, some indictors of equitable utilization has been gained for example; Egypt water footprint per capita is 1385 CM/yr/cap while in Ethiopia is 1167 CM/yr/cap, Egypt water footprint related to the national consumption is 95.15 BCM/yr, while in Ethiopia is 77.63 BCM/yr, and the external water footprints of Egypt is 28.5%, while in Ethiopia is 2.3% of the national consumption water footprint. The most important conclusion of this study is; natural, social, environmental and economical aspects should be taken into account when considering the water footprints as an effective measurable tool to assess the equable utilization of shared water resources, moreover the water footprints should be calculated using a real data and there is a necessity to establishing a global water footprints benchmarks for commodities as a reference.

  19. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2002

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2004-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2002.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 28 streamflow stations, 27 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 102 observation wells.

  20. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2001

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2001.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 23 streamflow stations, 20 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 103 observation wells.

  1. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 1999

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    2000-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 1999.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 76 streamflow gaging stations, daily sediment records for 25 streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 107 observation wells.

  2. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2000

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    2001-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2000.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 85 streamflow gaging stations, daily sediment records for 26 streamflow stations, 21 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 108 observation wells.

  3. Water resources data, Puerto Rico and the U.S. Virgin Islands, Water Year 1998

    USGS Publications Warehouse

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Vachier, Ricardo J.; Sanchez, Ana V.

    1999-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 1998.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 76 streamflow gaging stations, daily sediment records for 27 streamflow stations, 99 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 16 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 97 observation wells.

  4. Water resources data, Arkansas, 2002

    USGS Publications Warehouse

    Brossett, T.H.; Evans, D.A.

    2003-01-01

    Water resources data for the 2002 water year for Arkansas consist of records of discharge and water quality (physical measurements and chemical concentrations) of streams, water quality of lakes, and groundwater levels and ground-water quality. Data from selected sites in Missouri and Oklahoma also are included. This report contains daily discharge records for 108 surface-water gaging stations and 87 peak-discharge partial-record stations, water-quality data for 65 surface-water stations and 5 wells, and water levels for 15 observation wells. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. Note: Historically, this report has been published as a paper report. Beginning with the 2002 water year report, these reports will be available from the World Wide Web at http://ar.water.usgs.gov.

  5. Water resources data, Maryland and Delaware, water year 1997, volume 2. ground-water data

    USGS Publications Warehouse

    Smigaj, Michael J.; Saffer, Richard W.; Starsoneck, Roger J.; Tegeler, Judith L.

    1998-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Maryland and Delaware each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data - Maryland and Delaware.' This series of annual reports for Maryland and Delaware began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the l975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. In the 1989 water year, the report format was changed to two volumes. Both volumes contained data on quantities of surface water, quality of surface and ground water, and ground-water levels. Volume 1 contained data on the Atlantic Slope Basins (Delaware River thru Patuxent River) and Volume 2 contained data on the Monongahela and Potomac River basins. Beginning with the 1991 water year, Volume 1 contains all information on quantities of surface water and surface- water-quality data and Volume 2 contains ground-water levels and ground-water-quality data. This report is Volume 2 in our 1998 series and includes records of water levels and water quality of ground-water wells and springs. It contains records for water levels at 397 observation wells, discharge data for 6 springs, and water quality at 107 wells. Location of ground-water level wells are shown on figures 3 and 4. The location for the ground-water-quality sites are shown on figures 5

  6. Water Budgets: Foundations for Effective Water-Resources and Environmental Management

    USGS Publications Warehouse

    Healy, Richard W.; Winter, Thomas C.; LaBaugh, James W.; Franke, O. Lehn

    2007-01-01

    INTRODUCTION Water budgets provide a means for evaluating availability and sustainability of a water supply. A water budget simply states that the rate of change in water stored in an area, such as a watershed, is balanced by the rate at which water flows into and out of the area. An understanding of water budgets and underlying hydrologic processes provides a foundation for effective water-resource and environmental planning and management. Observed changes in water budgets of an area over time can be used to assess the effects of climate variability and human activities on water resources. Comparison of water budgets from different areas allows the effects of factors such as geology, soils, vegetation, and land use on the hydrologic cycle to be quantified. Human activities affect the natural hydrologic cycle in many ways. Modifications of the land to accommodate agriculture, such as installation of drainage and irrigation systems, alter infiltration, runoff, evaporation, and plant transpiration rates. Buildings, roads, and parking lots in urban areas tend to increase runoff and decrease infiltration. Dams reduce flooding in many areas. Water budgets provide a basis for assessing how a natural or human-induced change in one part of the hydrologic cycle may affect other aspects of the cycle. This report provides an overview and qualitative description of water budgets as foundations for effective water-resources and environmental management of freshwater hydrologic systems. Perhaps of most interest to the hydrologic community, the concepts presented are also relevant to the fields of agriculture, atmospheric studies, meteorology, climatology, ecology, limnology, mining, water supply, flood control, reservoir management, wetland studies, pollution control, and other areas of science, society, and industry. The first part of the report describes water storage and movement in the atmosphere, on land surface, and in the subsurface, as well as water exchange among these

  7. On the matter of sustainable water resources management

    EPA Science Inventory

    This chapter attempts to develop the concept of sustainability and make it operational in the realm of water resources management. Water is unique in its primacy among natural resources as an essential component of life itself. Due to its equally unique chemical and physical prop...

  8. Education Highlights: Non-Traditional Water Resources

    ScienceCinema

    Maldonado, Nicole; MacDonell, Margaret

    2018-06-25

    Argonne intern Nicole Virella Maldonado from the University of Puerto Rico-San Juan, Río Piedras campus, worked with Argonne mentor Margaret MacDonell in studying the use of nontraditional waters for energy and agriculture, including impaired and reclaimed waters. This research will help communities preserve their limited fresh water resources for other uses.

  9. Education Highlights: Non-Traditional Water Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maldonado, Nicole; MacDonell, Margaret

    Argonne intern Nicole Virella Maldonado from the University of Puerto Rico-San Juan, Río Piedras campus, worked with Argonne mentor Margaret MacDonell in studying the use of nontraditional waters for energy and agriculture, including impaired and reclaimed waters. This research will help communities preserve their limited fresh water resources for other uses.

  10. The use of an integrated variable fuzzy sets in water resources management

    NASA Astrophysics Data System (ADS)

    Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang

    2018-06-01

    Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.

  11. An Index-Based Assessment of Agricultural Water Scarcity for Sustainable Water Resource Management

    NASA Astrophysics Data System (ADS)

    Kim, S. E.; Lee, D. K.; Kim, K. S.; Hyun, S.; Kim, Y.

    2017-12-01

    Global precipitation pattern is changing due to climate change, causing drought and water scarcity all around the world. As water is mandatory to all lives, water availability is becoming essential and so is sustainable water resource management. Especially in agriculture, water resource management is crucial, as it is directly connected to the production. However, many studies about water scarcity show limits by focusing on current situation and overlooking future possibilities of water availability. Also, most of the studies about water scarcity use single index or model. To overcome these shortcomings, we assessed agricultural water scarcity considering future climate, using water scarcity indices. We assessed present and future water scarcity using several indices and compared the results derived from each index. The study area of this research is South Korea, as drought is a prominent problem in agricultural sector. Precipitation in Korea is concentrated in summer, causing severe drought in spring and fall. Rainfall density in Korea is increasing with climate change, and sustainable water resource management is inevitable. In this research, we used irrigational demand along with current and future crop production of 2030 and 2050 as water demand. We projected the future (2020-2100) runoff of dams located in Korea as water demand under future scenarios, RCP 4.5 and 8.5. The result showed severe water scarcity in Southern area of Korea both in the present and the future. It was due to increase of water demand and decrease of precipitation. It indicates that the water scarcity gets more intense in the future, and emphasizes the importance of water resource management of the southern part. This research will be valuable in establishing water resource management in agricultural sector for sustainable water availability in the future.

  12. Effect of Environmental Factors on Cyanobacterial Abundance and Cyanotoxins Production in Natural and Drinking Water, Bangladesh.

    PubMed

    Affan, Abu; Khomavis, Hisham S; Al-Harbi, Salim Marzoog; Haque, Mahfuzul; Khan, Saleha

    2015-02-01

    Cyanobacterial blooms commonly appear during the summer months in ponds, lakes and reservoirs in Bangladesh. In these areas, fish mortality, odorous water and fish and human skin irritation and eye inflammation have been reported. The influence of physicochemical factors on the occurrence of cyanobacteria and its toxin levels were evaluated in natural and drinking water in Bangladesh. A highly sensitive immunosorbent assay was used to detect microcystins (MCs). Cyanobacteria were found in 22 of 23 samples and the dominant species were Microcystis aeruginosa, followed by Microcystisflosaquae, Anabeana crassa and Aphanizomenon flosaquae. Cyanobacterial abundance varied from 39 to 1315 x 10(3) cells mL(-1) in natural water and 31 to 49 x 10(3) cells mL(-1) in tap water. MC concentrations were 25-82300 pg mL(-1) with the highest value measured in the fish research pond, followed by Ishakha Lake. In tap water, MC concentrations ranged from 30-32 pg mL(-1). The correlation between nitrate-nitrogen (NO3-N) concentration and cyanobacterial cell abundance was R2 = 0.62 while that between cyanobacterial abundance and MC concentration was R2 = 0.98. The increased NO3-N from fish feed, organic manure, poultry and dairy farm waste and fertilizer from agricultural land eutrophicated the water bodies and triggered cyanobacterial bloom formation. The increased amount of cyanobacteria produced MCs, subsequently reducing the water quality.

  13. Thresholds in the response of free-floating plant abundance to variation in hydraulic connectivity, nutrients, and macrophyte abundance in a large floodplain river

    USGS Publications Warehouse

    Giblin, Shawn M.; Houser, Jeffrey N.; Sullivan, John F.; Langrehr, H.A.; Rogala, James T.; Campbell, Benjamin D.

    2014-01-01

    Duckweed and other free-floating plants (FFP) can form dense surface mats that affect ecosystem condition and processes, and can impair public use of aquatic resources. FFP obtain their nutrients from the water column, and the formation of dense FFP mats can be a consequence and indicator of river eutrophication. We conducted two complementary surveys of diverse aquatic areas of the Upper Mississippi River as an in situ approach for estimating thresholds in the response of FFP abundance to nutrient concentration and physical conditions in a large, floodplain river. Local regression analysis was used to estimate thresholds in the relations between FFP abundance and phosphorus (P) concentration (0.167 mg l−1L), nitrogen (N) concentration (0.808 mg l−1), water velocity (0.095 m s−1), and aquatic macrophyte abundance (65 % cover). FFP tissue concentrations suggested P limitation was more likely in spring, N limitation was more likely in late summer, and N limitation was most likely in backwaters with minimal hydraulic connection to the channel. The thresholds estimated here, along with observed patterns in nutrient limitation, provide river scientists and managers with criteria to consider when attempting to modify FFP abundance in off-channel areas of large river systems.

  14. [Book review] Politics and water resources

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1964-01-01

    Arizona is a state in which development has proceeded sufficiently rapidly relative to the available water supply that its water problems are as acute as those of nearly any other state in the Union. Owing to the fact that, in the past, the principal use of water was for irrigation, and that the areas where the water has been utilized were geographically separated from the mountain zones where the water originated, surface water resources were developed fairly early in the state’s history.

  15. A tentative discussion on the monitoring of water resources in China

    NASA Astrophysics Data System (ADS)

    Yang, Jianqing; Dai, Ning; Wu, Mengying; Wang, Guangsheng

    2016-10-01

    With the rapid economy development and social civilization progress, the Chinese Government also is improving ecological environmental conditions. More efforts have been made to solve water problems through the implementation of stringent water resources management, as a key government policy on water. Thus, monitoring of water resources has been strengthened, being a main component of the hydrological work in recent years. Compared with routine hydrological monitoring, water resources monitoring pays more attention to the quantity and quality variations of regional waters, to reflect the status of water in river basins and administrative regions. In this paper, the overall layout of the hydrometric network in China is presented, monitoring efforts of the natural water cycle and water consumptions are analyzed, methodologies of water resources monitoring, which are commonly applied in the country, are summed up. Taking the hydrometric network planning on interprovincial boundary waterbodies as example, a summary of the planning at interprovincial boundary river sections is presented. The planning can meet the need of water resources management of administrative divisions. It can also improve the overall water resources monitoring for the country.

  16. Seasonal variation in composition and abundance of harmful dinoflagellates in Yemeni waters, southern Red Sea.

    PubMed

    Alkawri, Abdulsalam

    2016-11-15

    General abundance and species composition of a dinoflagellate community in Yemeni coastal waters of Al Salif (southern Red Sea) were studied with a view to understand the annual variations in particular the toxic species. Dinoflagellates were more abundant among phytoplankton. Thirty five dinoflagellate taxa were identified, among which 12 were reported as potentially toxic species. A significant change in seasonal abundance was recorded with the maximum (2.27∗10 6 cellsl -1 ) in May, and the minimum (2.50∗10 2 cellsl -1 ) recorded in January. Kryptoperidinium foliaceum, which was reported for the first time from the Red Sea, was the most abundant species with a maximum in May 2013 (2.26∗10 6 cellsl -1 ). Spearman's rank correlation analysis indicates that, total harmful dinoflagellate cells, K. foliaceum, Prorocentrum gracile and Prorocentrum micans were significantly correlated with temperature. This study suggests that Yemeni waters should be monitored to investigate harmful species and to identify areas and seasons at higher risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Assessment of water resources potential of Ceará state (Brazil)

    NASA Astrophysics Data System (ADS)

    Araujo, Angelo; Pereira, Diamantino; Pereira, Paulo

    2016-04-01

    A methodological approach and results on water resources assessment in large areas are described with the case study of Ceará State (148,016 km2, northeast Brazil), where the scarceness of water resources is one of the main challenges in territorial planning and development. This work deals with the quantification and the mapping of water resources potential, being part of methodological approaches applied to the quantification of hydric diversity and geodiversity. Water resources potential is here considered as the sum of the hydric elements rainfall, groundwater specific discharge, water reservoirs, and river hierarchy. The assessment was based in a territorial organization by drainage sub-basins and in vector maps generated and treated with GIS software. Rainfall, groundwater specific discharge and hydrographical data were obtained in official institutions and allowed the construction of the annual mean rainfall map for a forty year period (1974-2014), the annual mean groundwater specific discharge map for a thirty-four year period, and the river and drainage basin hierarchy maps. These delivered rainfall, groundwater specific discharge, water reservoirs and river hierarchy partial indices expressed on quantitative maps with normalized values distributed by level 3 drainage basins. The sum of the partial indices originated the quantitative map of water resources potential index and by the Gaussian interpolation of this quantitative data a map of hydric diversity in Ceará state was created. Therefore, the water resources potential index is higher in 4 regions of the state (Noroeste Cearense, Zona Metropolitana de Fortaleza e da Zona Norte, Vale do Jaguaribe and Zonas Centro-sul e Sul Cearense). The index is low or very low in the whole region of Sertões Cearenses, confirming the important role of climatic features in hydrological diversity. Water resources management must consider technical tools for water resources assessment, in the line of other methods for

  18. Wyoming Water Resources Data, Water Year 2002, Volume 2. Ground Water

    USGS Publications Warehouse

    Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.

    2003-01-01

    Water resources data for the 2002 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 156 gaging stations; water quality for 33 gaging stations and 34 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  19. Water Resources Data, Wyoming, Water Year 2001, Volume 1. Surface Water

    USGS Publications Warehouse

    Swanson, R.B.; Woodruff, R.E.; Laidlaw, G.A.; Watson, K.R.; Clark, M.L.

    2002-01-01

    Water resources data for the 2001 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 151 gaging stations, stage and contents for 12 lakes and reservoirs, and water quality for 33 gaging stations and 32 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  20. Wyoming Water Resources Data, Water Year 2003, Volume 2. Ground Water

    USGS Publications Warehouse

    Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.

    2004-01-01

    Water resources data for the 2003 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 160 gaging stations; water quality for 42 gaged stations and 28 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  1. Wyoming Water Resources Data, Water Year 2000, Volume 2. Ground Water

    USGS Publications Warehouse

    Mason, J.P.; Swanson, R.B.; Roberts, S.C.

    2001-01-01

    Water resources data for the 2000 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 141 gaging stations; stage and contents for 15 lakes and reservoirs; and water quality for 22 gaging stations and 21 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  2. Water resources data for Indiana, 1968

    USGS Publications Warehouse

    ,

    1969-01-01

    The surface-water records for the 1968 water year for gaging stations, partial-record stations, and miscellaneous sties within the State of Indiana are given in this report. For convenience there are also included records for a few pertinent gaging stations in bordering States. Water-resources investigations of the U.S. Geological Survey include the collection of water quality data on the chemical and physical characteristics of surface- and ground-water supplies of the Nation. These data for the 1968 water year for the quality of surface water in Indiana are presented in this report.

  3. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    NASA Astrophysics Data System (ADS)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  4. Water Resources Data, West Virginia, Water Year 2003

    USGS Publications Warehouse

    Ward, S.M.; Rosier, M.T.; Crosby, G.R.

    2004-01-01

    Water-resources data for the 2003 water year for West Virginia consists of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 70 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 16 crest-stage partial-record stations; stage records for 6 detention reservoirs; water-quality records for 2 stations; and water-level records for 8 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water data were collected at various sites, not involved in the systematic data-collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  5. Water resources data-West Virginia, water year 2004

    USGS Publications Warehouse

    Ward, S.M.; Rosier, M.T.; Crosby, G.R.

    2005-01-01

    Water-resources data for the 2004 water year for West Virginia consist of records of stream discharge, reservoir and ground-water levels, and water quality of streams and ground-water wells. This report contains discharge records for 65 streamflow-gaging stations; discharge records provided by adjacent states for 8 streamflow-gaging stations; annual maximum discharge at 17 crest-stage partial-record stations; stage records for 14 detention reservoirs; water-quality records for 2 stations; and water-level records for 10 observation wells. Locations of streamflow, detention reservoir, and water-quality stations are shown on figure 4. Locations of ground-water observation wells are shown on figure 5. Additional water-quality data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in West Virginia.

  6. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    NASA Astrophysics Data System (ADS)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  7. Mortality risk and social network position in resident killer whales: sex differences and the importance of resource abundance.

    PubMed

    Ellis, S; Franks, D W; Nattrass, S; Cant, M A; Weiss, M N; Giles, D; Balcomb, K C; Croft, D P

    2017-10-25

    An individual's ecological environment affects their mortality risk, which in turn has fundamental consequences for life-history evolution. In many species, social relationships are likely to be an important component of an individual's environment, and therefore their mortality risk. Here, we examine the relationship between social position and mortality risk in resident killer whales ( Orcinus orca ) using over three decades of social and demographic data. We find that the social position of male, but not female, killer whales in their social unit predicts their mortality risk. More socially integrated males have a significantly lower risk of mortality than socially peripheral males, particularly in years of low prey abundance, suggesting that social position mediates access to resources. Male killer whales are larger and require more resources than females, increasing their vulnerability to starvation in years of low salmon abundance. More socially integrated males are likely to have better access to social information and food-sharing opportunities which may enhance their survival in years of low salmon abundance. Our results show that observable variation in the social environment is linked to variation in mortality risk, and highlight how sex differences in social effects on survival may be linked to sex differences in life-history evolution. © 2017 The Authors.

  8. Mortality risk and social network position in resident killer whales: sex differences and the importance of resource abundance

    PubMed Central

    Franks, D. W.; Nattrass, S.; Weiss, M. N.; Giles, D.; Balcomb, K. C.; Croft, D. P.

    2017-01-01

    An individual's ecological environment affects their mortality risk, which in turn has fundamental consequences for life-history evolution. In many species, social relationships are likely to be an important component of an individual's environment, and therefore their mortality risk. Here, we examine the relationship between social position and mortality risk in resident killer whales (Orcinus orca) using over three decades of social and demographic data. We find that the social position of male, but not female, killer whales in their social unit predicts their mortality risk. More socially integrated males have a significantly lower risk of mortality than socially peripheral males, particularly in years of low prey abundance, suggesting that social position mediates access to resources. Male killer whales are larger and require more resources than females, increasing their vulnerability to starvation in years of low salmon abundance. More socially integrated males are likely to have better access to social information and food-sharing opportunities which may enhance their survival in years of low salmon abundance. Our results show that observable variation in the social environment is linked to variation in mortality risk, and highlight how sex differences in social effects on survival may be linked to sex differences in life-history evolution. PMID:29070720

  9. Water resources of West Baton Rouge Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-11-23

    Information concerning the availability, use, and quality of water in West Baton Rouge Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  10. Water Resources Data, Georgia, 2002--Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2002

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2002-01-01

    Water resources data for the 2002 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2002, including: discharge records of 154 gaging stations; stage for 165 gaging stations; precipitation for 105 gaging stations; information for 20 lakes and reservoirs; continuous water-quality records for 27 stations; the annual peak stage and annual peak discharge for 72 crest-stage partial-record stations; and miscellaneous streamflow measurements at 50 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2002, including continuous water-level records of 155 ground-water wells and periodic records at 132 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  11. Water Resources Data, Georgia, 2003, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2003

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2004-01-01

    Water resources data for the 2003 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2003, including: discharge records of 163 gaging stations; stage for 187 gaging stations; precipitation for 140 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 40 stations; the annual peak stage and annual peak discharge for 65 crest-stage partial-record stations; and miscellaneous streamflow measurements at 36 stations, and miscellaneous water-quality data at 162 stations in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2003, including continuous water-level records of 156 ground-water wells and periodic records at 130 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  12. Water Resources Risks and the Climate Resilience Toolkit: Tools, Case Studies, and Partnerships

    NASA Astrophysics Data System (ADS)

    Read, E. K.; Blodgett, D. L.; Booth, N.

    2014-12-01

    The Water Resources Risk topic of the Climate Resilience Toolkit (CRT) is designed to provide decision support, technical, and educational resources to communities, water resource managers, policy analysts, and water utilities working to increase the resilience of water resources to climate change. We highlight the partnerships (between federal and state agencies, non-governmental organizations, and private partners), tools (e.g., downscaled climate products, historical and real-time water data, and decision support) and success stories that are informing the CRT Water Resources Risks Theme content, and identify remaining needs in available resources for building resilience of water resources to climate change. The following questions will frame the content of the Water Resources Risk CRT: How are human and natural components of the hydrologic cycle changing? How can communities and water managers plan for uncertain future conditions? How will changing water resources impact food production, energy resources, ecosystems, and human health? What water resources data are of high value to society and are they easily accessible? Input on existing tools, resources, or potential partnerships that could be used to further develop content and fill gaps in the Water Resources CRT is welcome. We also invite ideas for water resources 'innovation challenges', in which technology developers work to create tools to that enhance the capacity of communities and managers to increase resilience of water resources at the local and regional scales.

  13. Risk, Robustness and Water Resources Planning Under Uncertainty

    NASA Astrophysics Data System (ADS)

    Borgomeo, Edoardo; Mortazavi-Naeini, Mohammad; Hall, Jim W.; Guillod, Benoit P.

    2018-03-01

    Risk-based water resources planning is based on the premise that water managers should invest up to the point where the marginal benefit of risk reduction equals the marginal cost of achieving that benefit. However, this cost-benefit approach may not guarantee robustness under uncertain future conditions, for instance under climatic changes. In this paper, we expand risk-based decision analysis to explore possible ways of enhancing robustness in engineered water resources systems under different risk attitudes. Risk is measured as the expected annual cost of water use restrictions, while robustness is interpreted in the decision-theoretic sense as the ability of a water resource system to maintain performance—expressed as a tolerable risk of water use restrictions—under a wide range of possible future conditions. Linking risk attitudes with robustness allows stakeholders to explicitly trade-off incremental increases in robustness with investment costs for a given level of risk. We illustrate the framework through a case study of London's water supply system using state-of-the -art regional climate simulations to inform the estimation of risk and robustness.

  14. Water Market-scale Agricultural Planning: Promoting Competing Water Resource Use Efficiency Through Agro-Economics

    NASA Astrophysics Data System (ADS)

    Delorit, J. D.; Block, P. J.

    2017-12-01

    Where strong water rights law and corresponding markets exist as a coupled econo-legal mechanism, water rights holders are permitted to trade allocations to promote economic water resource use efficiency. In locations where hydrologic uncertainty drives the assignment of annual per-water right allocation values by water resource managers, collaborative water resource decision making by water rights holders, specifically those involved in agricultural production, can result in both resource and economic Pareto efficiency. Such is the case in semi-arid North Chile, where interactions between representative farmer groups, treated as competitive bilateral monopolies, and modeled at water market-scale, can provide both price and water right allocation distribution signals for unregulated, temporary water right leasing markets. For the range of feasible per-water right allocation values, a coupled agricultural-economic model is developed to describe the equilibrium distribution of water, the corresponding market price of water rights and the net surplus generated by collaboration between competing agricultural uses. Further, this research describes a per-water right inflection point for allocations where economic efficiency is not possible, and where price negotiation among competing agricultural uses is required. An investigation of the effects of water right supply and demand inequality at the market-scale is completed to characterize optimal market performance under existing water rights law. The broader insights of this research suggest that water rights holders engaged in agriculture can achieve economic benefits from forming crop-type cooperatives and by accurately assessing the economic value of allocation.

  15. Sustainable water services and interaction with water resources in Europe and in Brazil

    NASA Astrophysics Data System (ADS)

    Barraqué, B.; Formiga Johnsson, R. M.; Britto, A. L.

    2007-09-01

    The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services - including public water supply, sewage collection and treatment, and in large cities, storm water control -, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  16. Constraining the Surficial Liquid Water and Resulting Atmospheric Water Vapor Abundance at Recurring Slope Lineae (RSL) Locations on Mars

    NASA Astrophysics Data System (ADS)

    Berdis, Jodi; Murphy, Jim; Wilson, Robert John

    2017-10-01

    Possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs) are investigated in this study. RSLs appear during local spring and summer on downward, equator-facing slopes at southern mid-latitudes (~31-52°S Stillman et al. 2014), and have been linked to liquid water which leaves behind streaks of briny material (McEwen et al. 2011, McEwen et al. 2014). Viking Orbiter Mars Atmospheric Water Detector (VO MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) derived atmospheric water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, Coprates Chasma) exhibit episodic, enhanced local atmospheric water vapor abundance during southern spring and summer (Ls = 180-360°) when RSLs are observed to develop (Stillman et al. 2014, Ojha et al. 2015). Significant water vapor signals at these locations might reveal RSLs as the source of the enhanced water vapor. Detected atmospheric water vapor signals would expand upon current knowledge of RSLs, whereas non-detection could provide upper limits on RSL water source content. In order to assess how much surficial RSL water would be required to produce a detectable signal, we utilize the high spatial resolution Geophysical Fluid Dynamics Laboratory Mars Climate General Circulation Model to simulate the evaporation of RSL-producing surface water and quantify the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. Finally, we will assess the ability of past and future orbiter-based instruments to detect such water vapor quantities.

  17. Estimation of crop water requirements using remote sensing for operational water resources management

    NASA Astrophysics Data System (ADS)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-06-01

    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  18. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    EPA Science Inventory

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  19. Sustaining water resources in South East England

    NASA Astrophysics Data System (ADS)

    Rodda, John C.

    2006-07-01

    The South East of England is one of the driest regions of the UK and it is also one of the most densely populated. As a consequence the available water resource per head of population is about half of the figure used by the World Bank to indicate that a country is suffering water stress. The South East Plan, prepared by the South East England Regional Assembly, proposes to increase the population of the region by about 1 million by 2026. This paper considers the ability of the Region's water resources to cope with this growth.

  20. Virginia Water Resources Research Center - at Virginia Tech since 1965

    Science.gov Websites

    Virginia Water Resources Research Center at Virginia Tech since 1965 Search for: Search Skip to collaborative research, extension, and education programs to develop solutions to water resource challenges. We Monitoring Council Conference: March 21, 2018 The Virginia Water Resources Research Center at Virginia Tech

  1. Effect on water resources from upstream water diversion in the Ganges basin.

    PubMed

    Adel, M M

    2001-01-01

    Bangladesh faces at least 30 upstream water diversion constructions of which Farakka Barrage is the major one. The effects of Farakka Barrage on water resources, socioeconomy, and culture have been investigated downstream in the basins of the Ganges and its distributaries. A diversion of up to 60% of the Ganges water over 25 yr has caused (i) reduction of water in surface water resources, (ii) increased dependence on ground water, (iii) destruction of the breeding and raising grounds for 109 species of Gangetic fishes and other aquatic species and amphibians, (iv) increased malnutrition, (v) deficiency in soil organic matter content, (vi) change in the agricultural practices, (vii) eradication of inland navigable routes, (viii) outbreak of waterborne diseases, (ix) loss of professions, and (x) obstruction to religious observances and pastimes. Further, arsenopyrites buried in the prebarrage water table have come in contact with air and formed water-soluble compounds of arsenic. Inadequate recharging of ground water hinders the natural cleansing of arsenic, and threatens about 75,000,000 lives who are likely to use water contaminated with up to 2 mg/L of arsenic. Furthermore, the depletion of surface water resources has caused environmental heating and cooling effects. Apart from these effects, sudden releases of water by the barrage during the flood season cause devestating floods. In consideration of such a heavy toll for the areas downstream, strict international rules have to be laid down to preserve the riparian ecosystems.

  2. Seagrass distribution and abundance in Eastern Gulf of Mexico coastal waters

    NASA Astrophysics Data System (ADS)

    Iverson, Richard L.; Bittaker, Henry F.

    1986-05-01

    The marine angiosperms Thalassia testudinum, Syringodium filiforme, and Halodule wrightii form two of the largest reported seagrass beds along the northwest and southern coasts of Florida where they cover about 3000 square km in the Big Bend area and about 5500 square km in Florida Bay, respectively. Most of the leaf biomass in the Big Bend area and outer Florida Bay was composed of Thalassia testudinum and Syringodium filiforme which were distributed throughout the beds but which were more abundant in shallow depths. A short-leaved form of Halodule wrightii grew in monotypic stands in shallow water near the inner edges of the beds, while Halophila decipiens and a longer-leaved variety of H. wrightii grew scattered throughout the beds, in monotypic stands near the outer edges of the beds, and in deeper water outside the beds. Halophila engelmanni was observed scattered at various depths throughout the seagrass beds and in monospecific patches in deep water outside the northern bed. Ruppia maritima grew primarily in brackish water around river mouths. The cross-shelf limits of the two major seagrass beds are controlled nearshore by increased water turbidity and lower salinity around river mouths and off-shore by light penetration to depths which receive 10% or more of sea surface photosynthetically active radiation. Seagrasses form large beds only along low energy reaches of the coast. The Florida Bay seagrass bed contained about twice the short-shoot density of both Thalassia testudinum and Syringodium filiforme, for data averaged over all depths, and about four times the average short-shoot density of both species in shallow water compared with the Big Bend seagrass bed. The differences in average seagrass abundance between Florida Bay and the Big Bend area may be a consequence of the effects of greater seasonal solar radiation and water temperature fluctuations experienced by plants in the northern bed, which lies at the northern distribution limit for American

  3. Water resources data for Oregon, water year 2004

    USGS Publications Warehouse

    Herrett, Thomas A.; Hess, Glenn W.; House, Jon G.; Ruppert, Gregory P.; Courts, Mary-Lorraine

    2005-01-01

    The annual Oregon water data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, Tribal, and Federal agencies and the private sector for developing and managing our Nation's land and water resources. This report contains water year 2004 data for both surface and ground water, including discharge records for 209 streamflow-gaging stations, 42 partial-record or miscellaneous streamflow stations, and 9 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 15 lakes and reservoirs; water-level records from 12 long-term observation wells; and water-quality records collected at 133 streamflow-gaging stations and 1 atmospheric deposition station.

  4. STATE WATER RESOURCES RESEARCH INSTITUTE PROGRAM: GROUND WATER RESEARCH.

    USGS Publications Warehouse

    Burton, James S.; ,

    1985-01-01

    This paper updates a review of the accomplishments of the State Water Resources Research Program in ground water contamination research. The aim is to assess the progress made towards understanding the mechanisms of ground water contamination and based on this understanding, to suggest procedures for the prevention and control of ground water contamination. The following research areas are covered: (1) mechanisms of organic contaminant transport in the subsurface environment; (2) bacterial and viral contamination of ground water from landfills and septic tank systems; (3) fate and persistence of pesticides in the subsurface; (4) leachability and transport of ground water pollutants from coal production and utilization; and (5) pollution of ground water from mineral mining activities.

  5. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    USGS Publications Warehouse

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  6. Water abundance and accretion history of terrestrial planets

    NASA Technical Reports Server (NTRS)

    Waenke, H.; Dreibus, G.

    1994-01-01

    According to a widespread believe, Earth's water was either added in form of a late volatile-rich veneer or as we have argued repeatedly that of all the water which was added to the Earth only that portion remained which was added towards the end of accretion when the mean oxygen fugacity of the accreting material became so high that metallic iron could not exist any longer. Prior to this moment, all the water in the latter scenario would have been used up for the oxidation of iron. Fe + H2O yields FeO + H2. Huge quantities of hydrogen would continuously be produced in this scenario which escaped. In the same moment the hydrogen on its way to the surface would lead to an efficient degassing of the growing Earth's mantle. The fact that - assuming C1 abundances - the amount of iridium in the Earth's mantle agrees, within a factor of two with the total water inventory of the Earth's mantle and crust is taken as evidence for the validity of such a scenario. In both scenarios, the Earth's mantle would remain dry and devoid of other volatiles. Some species soluble in metallic iron like carbon and hydrogen will probably partly enter the core in some portions. It is generally assumed that today a considerable portion of the earth's total water inventory resides in the mantle. It is also clear that over the history of the Earth the water of the Earth's oceans has been recycled many times through the mantle. This is the consequence of plate subduction. In a similar way mantle convection was probably responsible to being water into the originally dry mantle. As a consequence, today the Earth is wet both inside and outside.

  7. Water Resources Management and Hydrologic Design Under Uncertain Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Teegavarapu, R. S.

    2008-05-01

    The impact of climate change on hydrologic design and management of water resource systems could be one of the important challenges faced by future practicing hydrologists and water resources managers. Many water resources managers currently rely on the historical hydrological data and adaptive real-time operations without consideration of the impact of climate change on major inputs influencing the behavior of hydrologic systems and the operating rules. Issues such as risk, reliability and robustness of water resources systems under different climate change scenarios were addressed in the past. However, water resources management with the decision maker's preferences attached to climate change has never been dealt with. This presentation discusses issues related to impacts of climate change on water resources management and application of a soft-computing approach, fuzzy set theory, for climate-sensitive management of water resources systems. A real-life case study example is presented to illustrate the applicability of soft-computing approach for handling the decision maker's preferences in accepting or rejecting the magnitude and direction of climate change.

  8. Applications of NASA GSFC's Land Information System (LIS) for water resources management in Korea and East-Asia

    NASA Astrophysics Data System (ADS)

    Kang, D. H.; Hwang, E.; Jung, H. C.; Kim, E. J.; Peters-Lidard, C. D.; Kumar, S.; Chae, H.; Baeck, S. H.

    2017-12-01

    NASA has contributed to resolve global water issues by utilizing their long-term legacy of remote sensing technologies supported by a state of art software engineering. In this context, NASA Goddard Space Flight Center has developed a land surface model framework to monitor and predict water hazards such as flood and drought with the Land Information System (hereafter LIS) applied to North America and beyond it to include a global coverage. However, it is still challenging to apply the LIS to East-Asia where a rice-paddy agriculture is prevalent compared to other parts of the world, but retains a high population density in this region. Thus, this paper introduces recent efforts from the Korea Water Resources Corporation (K-water) in S. Korea to establish the LIS in East-Asia including Korea, aiming at producing surface hydrology datasets in Asia. One of the ultimate goals of this project is to manage the water hazards in Korea and to provide the water resources dataset in East-Asia by adapting the LIS with their abundantly available hydrometeorological observations to support the LIS applications. Preliminary results from initiating efforts since the beginning of 2017 between NASA and K-water are addressed in the paper to review the possible outcomes after this ongoing project to benefit both entities. Acknowledgements This research was supported by a grant (17AWMP-B079625-04) from Water Management Research Program sponsored by Ministry of Land, Infrastructure and Transport of Korean government.

  9. Monograph for using paleoflood data in Water Resources Applications

    USGS Publications Warehouse

    Swain, R.E.; Jarrett, R.D.

    2004-01-01

    The Environmental and Water Resources Institute (EWRI) Technical Committee on Surface Water Hydrology is sponsoring a Task Committee on Paleoflood Hydrology to prepare a monograph entitled, "Use of Paleoflood and Historical Data in Water Resources Applications." This paper introduces the subject of paleoflood hydrology and discusses the topics, which are expected to be included in the monograph. The procedure for preparing and reviewing the monograph will also be discussed. The paleoflood hydrology monograph will include a discussion of types of hydrologic and paleoflood data, paleostage indicators, flood chronology, modeling methods, interpretation issues, water resources applications and case studies, and research needs. Paleoflood data collection and analysis techniques will be presented, and various applications in water-resources investigations will be provided. An overview of several flood frequency analysis approaches, which consider historical and paleoflood data along with systematic streamflow records, will be presented. The monograph is scheduled for completion and publication in 2001. Copyright ASCE 2004.

  10. Research on evaluating water resource resilience based on projection pursuit classification model

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Zhao, Dan; Liang, Xu; Wu, Qiuchen

    2016-03-01

    Water is a fundamental natural resource while agriculture water guarantees the grain output, which shows that the utilization and management of water resource have a significant practical meaning. Regional agricultural water resource system features with unpredictable, self-organization, and non-linear which lays a certain difficulty on the evaluation of regional agriculture water resource resilience. The current research on water resource resilience remains to focus on qualitative analysis and the quantitative analysis is still in the primary stage, thus, according to the above issues, projection pursuit classification model is brought forward. With the help of artificial fish-swarm algorithm (AFSA), it optimizes the projection index function, seeks for the optimal projection direction, and improves AFSA with the application of self-adaptive artificial fish step and crowding factor. Taking Hongxinglong Administration of Heilongjiang as the research base and on the basis of improving AFSA, it established the evaluation of projection pursuit classification model to agriculture water resource system resilience besides the proceeding analysis of projection pursuit classification model on accelerating genetic algorithm. The research shows that the water resource resilience of Hongxinglong is the best than Raohe Farm, and the last 597 Farm. And the further analysis shows that the key driving factors influencing agricultural water resource resilience are precipitation and agriculture water consumption. The research result reveals the restoring situation of the local water resource system, providing foundation for agriculture water resource management.

  11. Are sustainable water resources possible in northwestern India?

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Devineni, N.; Perveen, S.; Robertson, A. W.; Lall, U.

    2012-12-01

    Sustainable water resources can have many definitions with the simplest as a supply-demand problem, with climate dictating the supply of water and human water use the demand. One sign of a system that is not sustainable would be falling groundwater tables, as is the case in northwest India. This region serves as the country's breadbasket, and irrigated agriculture is ubiquitous. The state of Punjab alone produces 22% of the country's wheat and 13% of all the country's grains while only accounting for 1.5% of the country's area. Although the region receives an average precipitation of 600mm per year, it is dominated by monsoonal rainfall with streamflow augmented by upstream snowmelt and glacial melt in spring and summer that is released from a large dam into canals. Large agricultural water demands occur both during the rainy season as well as during the drier winter season. Water and food security are inextricably linked here, and when considering how to manage water sustainably, the consequences on agriculture must also be considered. In this study, we evaluate what a sustainable water resources system would look like in this region, accounting for current climate, crop water demands, and available reservoir storage. The effects of multiple water-saving scenarios are considered, such as crop choice, cropped area, and the use of forecasts in irrigation scheduling. We find that the current system is untenable and hard decisions will have to be made by policymakers in order to halt the depletion of groundwater and manage the region's water resources in a sustainable, effective manner. This work serves as a prototype for evaluating water resources in other regions with high seasonal variability in rainfall and streamflow and large irrigation demands.

  12. Water Resources Data, Montana, 2002

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2003-01-01

    Water resources data for Montana for the 2002 water year consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This report contains discharge records for 244 streamflow-gaging stations; stage or content records for 9 lakes and large reservoirs and content for 31 smaller reservoirs; water-quality records for 142 streamflow stations (42 ungaged), 9 ground-water wells, and 3 lakes; precipitation records for 2 atmospheric-deposition stations; and water-level records for 53 observation wells. Additional water year 2002 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  13. Interaction of the Global Energy and Water Cycle Experiment (GEWEX) Water Resources Applications Project (WRAP) and Coordinated Enhanced Observing Project (CEOP) in Support of Water Resource Management and Planning

    NASA Astrophysics Data System (ADS)

    Martz, L.

    2004-05-01

    The Water Resources Applications Project (WRAP) has been developed within the Global Energy and Water Cycle Experiment (GEWEX) to facilitate the testing of GEWEX products and their transfer to operational water managers. The WRAP activity builds upon projects within the GEWEX Continental Scale Experiments (CSEs), and facilitates dialogue between these CSEs and their local water management communities regarding their information needs and opportunities for GEWEX products to meet those needs. Participating Continental Scale Experiments are located in the United States, the Mackenzie River Basin in Canada, the Amazon River Basin in Brazil, the Baltic Sea drainage area, eastern Asia and the Murray-Darling Basin in Australia. In addition, the development of WRAP is facilitating the transfer of techniques and demonstration projects to other areas through collaboration with IAHS, UNESCO/WMO HELP, WMO Hydrology and WWAP. The initiation of CEOP presents a significant new opportunity for collaborations to support the application of global hydro-climatological scientific data and techniques to water resource management. Some important scientific and operational issues identified by water resource management professionals in earlier workshops will be reviewed, some scientific initiatives needed to address these issues will be presented, and some case study examples of the application of GEWEX knowledge to water resource problems will be presented. Against this background, the unique opportunities that CEOP provides to improve our use and management of water resources globally will be discussed.

  14. Water Resources Data for Oregon, Water Year 2002

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2003-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in the State and contains discharge records for 181 stream-gaging stations, 47 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records for 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  15. Water Resources Data for Oregon, Water Year 2003

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2004-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in Oregon and contains discharge records for 199 stream-gaging stations, 25 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records collected at 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  16. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    PubMed Central

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to −25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g−1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  17. Associations between water physicochemistry and Prymnesium parvum presence, abundance, and toxicity in west Texas reservoirs

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Toxic blooms of golden alga (Prymnesium parvum) have caused substantial ecological and economic harm in freshwater and marine systems throughout the world. In North America, toxic blooms have impacted freshwater systems including large reservoirs. Management of water chemistry is one proposed option for golden alga control in these systems. The main objective of this study was to assess physicochemical characteristics of water that influence golden alga presence, abundance, and toxicity in the Upper Colorado River basin (UCR) in Texas. The UCR contains reservoirs that have experienced repeated blooms and other reservoirs where golden alga is present but has not been toxic. We quantified golden alga abundance (hemocytometer counts), ichthyotoxicity (bioassay), and water chemistry (surface grab samples) at three impacted reservoirs on the Colorado River; two reference reservoirs on the Concho River; and three sites at the confluence of these rivers. Sampling occurred monthly from January 2010 to July 2011. Impacted sites were characterized by higher specific conductance, calcium and magnesium hardness, and fluoride than reference and confluence sites. At impacted sites, golden alga abundance and toxicity were positively associated with salinity-related variables and blooms peaked at ~10°C and generally did not occur above 20°C. Overall, these findings suggest management of land and water use to reduce hardness or salinity could produce unfavorable conditions for golden alga.

  18. Current perspectives in contaminant hydrology and water resources sustainability

    USGS Publications Warehouse

    Bradley, Paul M.

    2013-01-01

    Human society depends on liquid freshwater resources to meet drinking, sanitation and hygiene, agriculture, and industry needs. Improved resource monitoring and better understanding of the anthropogenic threats to freshwater environments are critical to efficient management of freshwater resources and ultimately to the survival and quality of life of the global human population. This book helps address the need for improved freshwater resource monitoring and threat assessment by presenting current reviews and case studies focused on the fate and transport of contaminants in the environment and on the sustainability of groundwater and surface-water resources around the world. It is intended for students and professionals working in hydrology and water resources management.

  19. Water resources by orbital remote sensing: Examples of applications

    NASA Technical Reports Server (NTRS)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  20. Water Resources Research Institute | Mississippi State University

    Science.gov Websites

    Welcome The Mississippi Water Resources Research Institute provides a statewide center of expertise with water policy issues supports state water agencies' mission with research on problems encountered in water and associated land-use and serves as a repository of knowledge for use in education

  1. Water resources (Chapter 12)

    Treesearch

    Thomas C. Brown; Romano Foti; Jorge Ramirez

    2012-01-01

    In this chapter, we focus on the vulnerability of U.S. freshwater supplies considering all lands, not just forest and rangelands. We do not assess the condition of those lands or report on how much of our water supply originates on lands of different land covers or ownerships, because earlier Resources Planning Act (RPA) Assessment work addressed these topics....

  2. Water resources of Orleans Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.; Lovelace, John K.

    2014-01-01

    Information concerning the availability, use, and quality of water in Orleans Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  3. Water resources of Caldwell Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Caldwell Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  4. Water resources of Vermilion Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Vermilion Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  5. Water resources of Terrebonne Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; Lovelace, John K.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Terrebonne Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends,and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System http://waterdata.usgs.gov/nwis are the primary sources of the information presented here.

  6. Water resources of Acadia Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Larry B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Acadia Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  7. Water resources of Sabine Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.; Lovelace, John K.

    2014-01-01

    Information concerning the availability, use, and quality of water in Sabine Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s (USGS) National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  8. Science to Help Understand and Manage Important Ground-Water Resources

    USGS Publications Warehouse

    Nickles, James

    2008-01-01

    Throughout California, as pressure on water resources continues to grow, water-supply agencies are looking to the state?s biggest ?reservoir? ? its ground-water basins ? for supply and storage. To better utilize that resource, the Sweetwater Authority and other local partners, including the city of San Diego and Otay Water Districts, are working with the U.S. Geological Survey (USGS) to develop the first comprehensive study of the coastal ground-water resources of southern San Diego County. USGS research is providing the integrated geologic and hydrologic knowledge necessary to help effectively utilize this resource on a coordinated, regional basis. USGS scientists are building a real-time well-monitoring network and gathering information about how the aquifers respond to different pumping and recharge-management strategies. Real-time ground-water levels are recorded every hour and are viewable on a project web site (http://ca.water.usgs.gov/sandiego/index.html). Data from the wells are helping to define the geology and hydrogeology of the area, define ground-water quality, and assess ground-water levels. The wells also are strategi-cally placed and designed to be usable by the local agencies for decades to come to help manage surface-water and ground-water operations. Additionally, the knowledge gained from the USGS study will help local, state, and federal agencies; water purveyors; and USGS scientists to understand the effects of urbanization on the local surface-water, ground-water, and biological resources, and to better critique ideas and opportuni-ties for additional ground-water development in the San Diego area.

  9. Performance assessment of Saskatchewan's water resource system under uncertain inter-provincial water supply

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Nazemi, Ali; Wheater, Howard

    2014-05-01

    The trans-boundary Saskatchewan River Basin supports livelihoods and the economy of the province of Saskatchewan, Canada. Water users include irrigated agriculture, hydropower, potash mining, urban centers, and ecosystem services. Water availability in Saskatchewan is highly dependent on the flows from the upstream province of Alberta. These flows mostly originate from the Rocky Mountains headwaters and are highly regulated, due to intensive water use and redistribution before they get to the Alberta/Saskatchewan border. Warming climate and increasing water demands in Alberta have changed the incoming flow characteristics from Alberta to Saskatchewan. It is critical to assess the performance and the viability of Saskatchewan's water resources system under uncertain future inter-provincial inflows. For this purpose, a possible range of future changes in the inflows from Alberta to Saskatchewan is considered in this study. The considered changes include various combinations of shifts in the timing of the annual peak and volumetric change in the annual flow volumes. These shifts are implemented using a copula-based stochastic simulation method to generate multiple realizations of weekly flow series at two key locations of inflow to Saskatchewan's water resources system, in a way that the spatial dependencies between weekly inflows are maintained. Each flow series is of 31-years length and constitutes a possible long term water availability scenario. The stochastically generated flows are introduced as an alternative to the historical inflows for water resources planning and management purposes in Saskatchewan. Both historical and reconstructed inflows are fed into a Sustainability-oriented Water Allocation, Management, and Planning (SWAMP) model to analyze the effects of inflow changes on Saskatchewan's water resources system. The SWAMP model was developed using the System Dynamics approach and entails irrigation/soil moisture, non-irrigation uses and economic

  10. University of Idaho Water of the West Initiative: Development of a sustainable, interdisciplinary water resources program

    NASA Astrophysics Data System (ADS)

    Boll, J.; Cosens, B.; Fiedler, F.; Link, T.; Wilson, P.; Harris, C.; Tuller, M.; Johnson, G.; Kennedy, B.

    2006-12-01

    Recently, an interdisciplinary group of faculty from the University of Idaho was awarded a major internal grant for their project "Water of the West (WoW)" to launch an interdisciplinary Water Resources Graduate Education Program. This Water Resources program will facilitate research and education to influence both the scientific understanding of the resource and how it is managed, and advance the decision-making processes that are the means to address competing societal values. By educating students to integrate environmental sciences, socio-economic, and political issues, the WoW project advances the University's land grant mission to promote economic and social development in the state of Idaho. This will be accomplished through novel experiential interdisciplinary education activities; creation of interdisciplinary research efforts among water resources faculty; and focusing on urgent regional problems with an approach that will involve and provide information to local communities. The Water Resources Program will integrate physical and biological sciences, social science, law, policy and engineering to address problems associated with stewardship of our scarce water resources. As part of the WoW project, faculty will: (1) develop an integrative problem-solving framework; (2) develop activities to broaden WR education; (3) collaborate with the College of Law to offer a concurrent J.D. degree, (4) develop a virtual system of watersheds for teaching and research, and (5) attract graduate students for team-based education. The new program involves 50 faculty from six colleges and thirteen departments across the university. This university-wide initiative is strengthened by collaboration with the Idaho Water Resources Research Institute, and participation from off-campus Centers in Idaho Falls, Boise, Twin Falls, and Coeur d'Alene. We hope this presentation will attract university faculty, water resources professionals, and others for stimulating discussions on

  11. Evolving urban water and residuals management paradigms: water reclamation and reuse, decentralization, and resource recovery.

    PubMed

    Daigger, Glen T

    2009-08-01

    Population growth and improving standards of living, coupled with dramatically increased urbanization, are placing increased pressures on available water resources, necessitating new approaches to urban water management. The tradition linear "take, make, waste" approach to managing water increasingly is proving to be unsustainable, as it is leading to water stress (insufficient water supplies), unsustainable resource (energy and chemicals) consumption, the dispersion of nutrients into the aquatic environment (especially phosphorus), and financially unstable utilities. Different approaches are needed to achieve economic, environmental, and social sustainability. Fortunately, a toolkit consisting of stormwater management/rainwater harvesting, water conservation, water reclamation and reuse, energy management, nutrient recovery, and source separation is available to allow more closed-loop urban water and resource management systems to be developed and implemented. Water conservation and water reclamation and reuse (multiple uses) are becoming commonplace in numerous water-short locations. Decentralization, enabled by new, high-performance treatment technologies and distributed stormwater management/rainwater harvesting, is furthering this transition. Likewise, traditional approaches to residuals management are evolving, as higher levels of energy recovery are desired, and nutrient recovery and reuse is to be enhanced. A variety of factors affect selection of the optimum approach for a particular urban area, including local hydrology, available water supplies, water demands, local energy and nutrient-management situations, existing infrastructure, and utility governance structure. A proper approach to economic analysis is critical to determine the most sustainable solutions. Stove piping (i.e., separate management of drinking, storm, and waste water) within the urban water and resource management profession must be eliminated. Adoption of these new approaches to urban

  12. Analysis of Water Resource Utilization Potential for Jiangsu Coastal Area ' in Nantong City

    NASA Astrophysics Data System (ADS)

    Ren, Li; Liu, Jin-Tao; Ni, Jian-Jun

    2015-04-01

    Along with the advance of the growth of population and social economy, requirements for water quality and quantity in coastal areas is getting higher and higher, but due to the uneven distribution of rainfall years and water exploitation, use and management level, the influence of the shortage of water resources is increasingly prominent, seriously restricting the social and economic sustainable development in this region. Accordingly, water resource utilization potential in Jiangsu coastal region is vital for water security in the region. Taking Nantong City as the study area, the regional water resources development and utilization status were evaluated. In this paper, the meaning of water resources, water resources development and utilization, and water resources development and utilization of the three stages of concepts such as system were discussed. Then the development and utilization of regional water resource evaluation were carried out, and the significance of regional society, economy, resources and environment and its development status quo of water resources were exploited. According to conditions and area source, an evaluation index system for development and utilization of water resources of Nantong was built up. The index layer was composed of 16 indicators. In this study, analytic hierarchy process (AHP) was used to determine of weights of indicators at all levels in the index system. Multistage fuzzy comprehensive evaluation model was selected to evaluate the water resources development and utilization status of Nantong, and then water resource utilization potential of Nantong was analyzed.

  13. A framework for unravelling the complexities of unsustainable water resource use

    NASA Astrophysics Data System (ADS)

    Dermody, Brian; Bierkens, Marc; Wassen, Martin; Dekker, Stefan

    2016-04-01

    The majority of unsustainable water resource use is associated with food production, with the agricultural sector accounting for up to 70% of total freshwater use by humans. Water resource use in food production emerges as a result of dynamic interactions between humans and their environment in importing and exporting regions as well as the physical and socioeconomic trade infrastructure linking the two. Thus in order to understand unsustainable water resource use, it is essential to understand the complex socioecological food production and trade system. We present a modelling framework of the food production and trade system that facilitates an understanding of complex socioenvironmental processes that lead to unsustainable water resource use. Our framework is based on a coupling of the global hydrological model PC Raster Global Water Balance (PCR-GLOBWB) with a multi-agent socioeconomic food production and trade network. In our framework, agents perceive environmental conditions. They make food supply decisions based upon those perceptions and the heterogeneous socioeconomic conditions in which they exist. Agent decisions modify land and water resources. Those environmental changes feedback to influence decision making further. The framework presented has the potential to go beyond a diagnosis of the causes of unsustainable water resource and provide pathways towards a sustainable food system in terms of water resources.

  14. The New Jersey Water Resources Research Institute at Rutgers NJAES

    Science.gov Websites

    Rutgers New Jersey Agricultural Experiment Station [The New Jersey Water Resources Research wetland Program Areas The New Jersey Water Resources Research Institute (NJWRRI) is a federally-funded water in the state. Its mission is to: sponsor research on all aspects of water quality, water quantity

  15. 75 FR 82066 - Change in Discount Rate for Water Resources Planning

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a...

  16. 78 FR 16706 - Change in Discount Rate for Water Resources Planning

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a...

  17. 76 FR 73674 - Change in Discount Rate for Water Resources Planning

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a...

  18. 75 FR 8106 - Change in Discount Rate for Water Resources Planning

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a...

  19. Water resources review: Wheeler Reservoir, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is onemore » in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.« less

  20. Modeling species richness and abundance of phytoplankton and zooplankton in radioactively contaminated water bodies.

    PubMed

    Shuryak, Igor

    2018-06-05

    Water bodies polluted by the Mayak nuclear plant in Russia provide valuable information on multi-generation effects of radioactive contamination on freshwater organisms. For example, lake Karachay was probably the most radioactive lake in the world: its water contained ∼2 × 10 7 Bq/L of radionuclides and estimated dose rates to plankton exceeded 5 Gy/h. We performed quantitative modeling of radiation effects on phytoplankton and zooplankton species richness and abundance in Mayak-contaminated water bodies. Due to collinearity between radioactive contamination, water body size and salinity, we combined these variables into one (called HabitatFactors). We employed a customized machine learning approach, where synthetic noise variables acted as benchmarks of predictor performance. HabitatFactors was the only predictor that outperformed noise variables and, therefore, we used it for parametric modeling of plankton responses. Best-fit model predictions suggested 50% species richness reduction at HabitatFactors values corresponding to dose rates of 10 4 -10 5  μGy/h for phytoplankton, and 10 3 -10 4  μGy/h for zooplankton. Under conditions similar to those in lake Karachay, best-fit models predicted 81-98% species richness reductions for various taxa (Cyanobacteria, Bacillariophyta, Chlorophyta, Rotifera, Cladocera and Copepoda), ∼20-300-fold abundance reduction for total zooplankton, but no abundance reduction for phytoplankton. Rotifera was the only taxon whose fractional abundance increased with contamination level, reaching 100% in lake Karachay, but Rotifera species richness declined with contamination level, as in other taxa. Under severe radioactive and chemical contamination, one species of Cyanobacteria (Geitlerinema amphibium) dominated phytoplankton, and rotifers from the genus Brachionus dominated zooplankton. The modeling approaches proposed here are applicable to other radioecological data sets. The results provide quantitative information

  1. Review of Ghana's water resources: the quality and management with particular focus on freshwater resources

    NASA Astrophysics Data System (ADS)

    Yeleliere, E.; Cobbina, S. J.; Duwiejuah, A. B.

    2018-06-01

    Freshwater resources are continually decreasing in quality and quantity. Approximately, 1% of this freshwater is accessible in lakes, river channels and underground for domestic use. The study reviewed literature on water resources with focus on freshwater, the quality of our freshwater in terms of physical, chemical and biological variables, the main mechanisms of management, and the challenges associated with these mechanisms as well as blending integrated water management with the indigenous or traditional management of water resources for sustainable development and peaceful co-existence. Also the review offered potent recommendations for policy makers to consider sustainable management of freshwater resources. A total of 95 articles were downloaded from Google scholar in water-related issues. The search took place from June to September 2017, and research articles from 1998 to 2018 were reviewed. Basically Ghana is made up of three discharge or outlet systems, namely the Coastal River Systems which is the least and Volta constituting the largest and with the South-Western been the intermediate. Also, freshwater resources usage can be put into two main categories, namely ex situ (withdrawal use) and in situ or in-stream use, and could also be referred to as the consumptive and non-consumptive use, respectively. With the exception of localised pollution engineered by illegal mining and other nuisance perpetuated by indigenes, the quality of water (surface and groundwater) in Ghana is generally better. The review outlined high microbial contamination of water as almost all surface waters are contaminated with either E. coli, faecal coliforms or total coliforms or all. However, these contaminations were more prevalent in surface water than groundwater.

  2. Water on Mars: Volatile history and resource availability

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    1991-01-01

    The existence of water on Mars is undisputed today. Measurements of atmospheric water vapor have shown that the abundance varies with location and season in a systematic way which depends on processes of exchange with the polar caps, regolith, and atmosphere. Channels, which give the appearance of having been carved by water or of having had water involved in their formation, appear in various locations on the surface; some were formed by catastrophic outflow of water from beneath the surface, while others form valley networks which give the appearance of having formed over long periods of time primarily early in the planet's history. The north polar residual cap consists of water ice, possibly containing an amount of water equivalent to a global layer several tens of meters thick. Finally, water is observed within the regolith, as adsorbed water or as water of hydration.

  3. Evaluation of water resources around Barapukuria coal mine industrial area, Dinajpur, Bangladesh

    NASA Astrophysics Data System (ADS)

    Howladar, M. Farhad; Deb, Pulok Kanti; Muzemder, A. T. M. Shahidul Huqe; Ahmed, Mushfique

    2014-09-01

    Water is a very important natural resource which can be utilized in renewable or non-renewable forms but before utilizing, the evaluation of the quality of this resource is crucial for a particular use. However, the problems of water quality are more severe in areas where the mining and mineral processes' industries are present. In mining processes, several classes of wastes are produced which may turn into ultimately the sources of water quality and environmental degradation. In consequences, the evaluations of water quality for livestock, drinking, irrigation purposes and environmental implications have been carried out around the Barapukuria Coal Mining Industry under different methods and techniques such as primarily the field investigation; secondly the laboratory chemical analysis and thirdly justified the suitability of the laboratory analysis with statistical representation and correlation matrix, Schoeller plot, Piper's Trilinear diagram, Expanded Durov diagram, Wilcox diagram, US salinity diagram, Doneen's chart and others. The results of all surface and ground water samples analysis show that the characteristics and concentrations of all the major physical and chemical parameters such as pH, EC, TDS, Na+, K+, Ca2+, Mg2+, Fetotal, Cl-, HCO3 -, CO3 2- and SO4 2- are varied from one sample to other but well analogous with the WHO and EQS standard limit for all purposes in the area where the abundance of the major ions is as follows: Ca2+ > Na+ > Mg2+ > K+ > Fetotal = HCO3 - > SO4 2- > Cl- > CO3 2-. The graphical exposition of analytical data demonstrates two major hydrochemical facies for example: calcium-bicarbonate (Ca2+- HCO3 -) and magnesium-bicarbonate (Mg2+- HCO3 -) type facies which directly support the shallow recently recharged alkaline water around the industry. The calculated values for the evaluation classification of water based on TDS, Na%, EC, SAR, PI, RSC, MH, and TH replicate good to excellent use of water for livestock, drinking and

  4. Temporal variations in the abundance and composition of biofilm communities colonizing drinking water distribution pipes.

    PubMed

    Kelly, John J; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter.

  5. Water resources of Allen Parish

    USGS Publications Warehouse

    Prakken, Lawrence B.; Griffith, Jason M.; Fendick, Robert B.

    2012-01-01

    In 2005, approximately 29.2 million gallons per day (Mgal/d) of water were withdrawn in Allen Parish, Louisiana, including about 26.8 Mgal/d from groundwater sources and 2.45 Mgal/d from surface-water sources. Rice irrigation accounted for 74 percent (21.7 Mgal/d) of the total water withdrawn. Other categories of use included public supply, industrial, rural domestic, livestock, general irrigation, and aquaculture. Water-use data collected at 5-year intervals from 1960 to 2005 indicate water withdrawals in the parish were greatest in 1960 (119 Mgal/d) and 1980 (98.7 Mgal/d). The substantial decrease in surface-water use between 1960 and 1965 is primarily attributable to rice-irrigation withdrawals declining from 61.2 to 6.74 Mgal/d. This fact sheet summarizes information on the water resources of Allen Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  6. Integrated water resources management and infrastructure planning for water security in Southern Africa

    NASA Astrophysics Data System (ADS)

    Mapani, Benjamin; Magole, Lapologang; Makurira, Hodson; Meck, Maideyi; Mkandawire, Theresa; Mul, Marloes; Ngongondo, Cosmo

    2017-08-01

    This volume has brought together papers that are peer reviewed emanating from the WaterNet/WARFSA/GWP-SA 16th Symposium. The papers cover the following themes: Hydrology, Water and Environment, Water and Land, Water and Society, Water Supply and Sanitation and Water Resources Management.

  7. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  8. Lunar Water Resource Demonstration (LWRD)

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2009-01-01

    Lunar Water Resource Demonstration (LWRD) is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). RESOLVE is an ISRU ground demonstration: (1) A rover to explore a permanently shadowed crater at the south or north pole of the Moon (2) Drill core samples down to 1 meter (3) Heat the core samples to 150C (4) Analyze gases and capture water and/or hydrogen evolved (5) Use hydrogen reduction to extract oxygen from regolith

  9. Water resources data for New Mexico, water year 1975

    USGS Publications Warehouse

    ,

    1976-01-01

    Water resources data for the 1975 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 201 gaging stations; stage and contents far 23 lakes and reservoirs; water quality for 62 gaging stations, 77 partial-record flow stations, 1 reservoir, 47 springs and 197 wells; and water levels for 93 observation wells. Also included are 162 crest-stage partial-record stations and 2 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic da,ta collection program, and are pu,blis"Q,ed as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico.

  10. Balancing water resource conservation and food security in China

    PubMed Central

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L.; Rodriguez-Iturbe, Ignacio

    2015-01-01

    China’s economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China’s future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities’ virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km3/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%. PMID:25825748

  11. Balancing water resource conservation and food security in China.

    PubMed

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

  12. Water Resources Data, North Dakota, Water Year 1998. Volume 2. Ground Water

    USGS Publications Warehouse

    Harkness, R.E.; Wald, J.D.

    2000-01-01

    This edition of the annual hydrologic data report of North Dakota is one of a series of annual reports that document hydrologic data collected from the U.S. Geological Survey's collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by Federal, State, local agencies, and the private sector for developing and managing land and water resources in North Dakota. 

  13. Water Resources Data, North Dakota, Water Year 2000. Volume 2. Ground Water

    USGS Publications Warehouse

    Harkness, R.E.; Wald, J.D.

    2001-01-01

    This edition of the annual hydrologic data report of North Dakota is one of a series of annual reports that document hydrologic data collected from the U.S. Geological Survey's collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by Federal, State, local agencies, and the private sector for developing and managing land and water resources in North Dakota. 

  14. Water Matters. Water Resources Teacher's Guide, Vol. 1.

    ERIC Educational Resources Information Center

    Kauffman, Sue Cox

    This teachers guide is designed to accompany a series of posters developed through the U.S. Geological Survey's Water Resources Education Initiative, a cooperative effort between public and private education interests. It provides teacher guidance, background information, suggestions for a variety of classroom activities, and supplemental resource…

  15. Comprehensive benefit analysis of regional water resources based on multi-objective evaluation

    NASA Astrophysics Data System (ADS)

    Chi, Yixia; Xue, Lianqing; Zhang, Hui

    2018-01-01

    The purpose of the water resources comprehensive benefits analysis is to maximize the comprehensive benefits on the aspects of social, economic and ecological environment. Aiming at the defects of the traditional analytic hierarchy process in the evaluation of water resources, it proposed a comprehensive benefit evaluation of social, economic and environmental benefits index from the perspective of water resources comprehensive benefit in the social system, economic system and environmental system; determined the index weight by the improved fuzzy analytic hierarchy process (AHP), calculated the relative index of water resources comprehensive benefit and analyzed the comprehensive benefit of water resources in Xiangshui County by the multi-objective evaluation model. Based on the water resources data in Xiangshui County, 20 main comprehensive benefit assessment factors of 5 districts belonged to Xiangshui County were evaluated. The results showed that the comprehensive benefit of Xiangshui County was 0.7317, meanwhile the social economy has a further development space in the current situation of water resources.

  16. Water resources of St. Tammany Parish, Louisiana

    USGS Publications Warehouse

    Griffith, Jason M.

    2009-01-01

    This fact sheet summarizes basic information on the water resources of St. Tammany Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  17. Water-resources optimization model for Santa Barbara, California

    USGS Publications Warehouse

    Nishikawa, Tracy

    1998-01-01

    A simulation-optimization model has been developed for the optimal management of the city of Santa Barbara's water resources during a drought. The model, which links groundwater simulation with linear programming, has a planning horizon of 5 years. The objective is to minimize the cost of water supply subject to: water demand constraints, hydraulic head constraints to control seawater intrusion, and water capacity constraints. The decision variables are montly water deliveries from surface water and groundwater. The state variables are hydraulic heads. The drought of 1947-51 is the city's worst drought on record, and simulated surface-water supplies for this period were used as a basis for testing optimal management of current water resources under drought conditions. The simulation-optimization model was applied using three reservoir operation rules. In addition, the model's sensitivity to demand, carry over [the storage of water in one year for use in the later year(s)], head constraints, and capacity constraints was tested.

  18. WATER: Water Activities Teaching Environmental Responsibility: Teacher Resource, Environmental Science.

    ERIC Educational Resources Information Center

    Kramer, Ed, Ed.; And Others

    This activity book was developed as part of an effort to protect water quality of the Stillwater River, Ohio, through a Watershed Protection Project. It is designed to raise teachers' and students' awareness and trigger a sense of stewardship towards the preservation of water resources. The activities are generally appropriate for elementary age…

  19. European attitudes to water pricing: Internalizing environmental and resource costs.

    PubMed

    Kejser, Anne

    2016-12-01

    Efficient use of the water resource requires internalization of all costs in the price of water, including environmental and resource costs. However, water resource management tends to be highly political and increasing water prices are a sensitive and complicated policy matter. Hence, there is a need for increased understanding of the implementation process and the attitudes towards implementation among the general public. This paper explores the spatial heterogeneity in the public attitude towards internalizing environmental and resource costs in the price of water across the EU regions. Within an extensive spatial dataset constructed for the purpose, we estimate the effect of individual information levels and affordability concerns on the attitude towards environmental water pricing. Information about water problems is found to have a significant and positive effect on attitudes as is affordability concern, which may be explained by expectations of inequity measures to come in place in parallel with increasing water prices. Overall these results support the hypothesis that lack of information and affordability concern could lead to resistance towards efficient water pricing among the general public. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Water-resources investigations in North Dakota; fiscal year 1984

    USGS Publications Warehouse

    Hall, L.A.; Kuzniar, R.K.

    1984-01-01

    The U.S. Geological Survey, through its Water Resources Division, investigates the occurrence, quantity, quality, distribution, and movement of the surface and underground water that composes the Nation's water resources. This publication contains a brief description of the ongoing investigations of the North Dakota District.Much of the Geological Survey program is conducted in cooperation with other Federal agencies and several state agencies. The publications resulting from the program are listed periodically in a miscellaneous release titled, "Water Resources Investigations of the U.S. Geological Survey, 19XX." The last such release was issued in 1982. They are also listed in a monthly nationwide release titled, "New Publications of the Geological Survey, List XXX--Publications issued in month 19XX."

  1. Geologic controls on supercritical geothermal resources above magmatic intrusions

    PubMed Central

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-01-01

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle–ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg−1, depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems. PMID:26211617

  2. Geologic controls on supercritical geothermal resources above magmatic intrusions.

    PubMed

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-07-27

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle-ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg(-1), depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems.

  3. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  4. Quantitative water quality with ERTS-1. [Kansas water resources

    NASA Technical Reports Server (NTRS)

    Yarger, H. L.; Mccauley, J. R.; James, G. W.; Magnuson, L. M.; Marzolf, G. R.

    1974-01-01

    Analyses of ERTS-1 MSS computer compatible tapes of reservoir scenes in Kansas along with ground truth show that MSS bands and band ratios can be used for reliable prediction of suspended loads up to at least 900 ppm. The major reservoirs in Kansas, as well as in other Great Plains states, are playing increasingly important roles in flood control, recreation, agriculture, and urban water supply. Satellite imagery is proving useful for acquiring timely low cost water quality data required for optimum management of these fresh water resources.

  5. Advancing Cyberinfrastructure to support high resolution water resources modeling

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Ogden, F. L.; Jones, N.; Horsburgh, J. S.

    2012-12-01

    Addressing the problem of how the availability and quality of water resources at large scales are sensitive to climate variability, watershed alterations and management activities requires computational resources that combine data from multiple sources and support integrated modeling. Related cyberinfrastructure challenges include: 1) how can we best structure data and computer models to address this scientific problem through the use of high-performance and data-intensive computing, and 2) how can we do this in a way that discipline scientists without extensive computational and algorithmic knowledge and experience can take advantage of advances in cyberinfrastructure? This presentation will describe a new system called CI-WATER that is being developed to address these challenges and advance high resolution water resources modeling in the Western U.S. We are building on existing tools that enable collaboration to develop model and data interfaces that link integrated system models running within an HPC environment to multiple data sources. Our goal is to enhance the use of computational simulation and data-intensive modeling to better understand water resources. Addressing water resource problems in the Western U.S. requires simulation of natural and engineered systems, as well as representation of legal (water rights) and institutional constraints alongside the representation of physical processes. We are establishing data services to represent the engineered infrastructure and legal and institutional systems in a way that they can be used with high resolution multi-physics watershed modeling at high spatial resolution. These services will enable incorporation of location-specific information on water management infrastructure and systems into the assessment of regional water availability in the face of growing demands, uncertain future meteorological forcings, and existing prior-appropriations water rights. This presentation will discuss the informatics

  6. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions

    NASA Astrophysics Data System (ADS)

    Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli

    2018-01-01

    Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were

  7. Water resources of Webster Parish

    USGS Publications Warehouse

    Prakken, Lawrence B.; Griffith, Jason M.

    2011-01-01

    In 2005, about 9.52 million gallons per day (Mgal/d) of water were withdrawn in Webster Parish, Louisiana (fig. 1), including about 9.33 Mgal/d from groundwater sources and 0.19 Mgal/d from surface-water sources1 (table 1). Publicsupply use accounted for about 70 percent of the total water withdrawn. Other categories of use included industrial, rural domestic, livestock, general irrigation, and aquaculture (table 2). Water-use data collected at 5-year intervals from 1960 to 2005 indicate water withdrawals in Webster Parish decreased substantially from 1970 to 1980; surface-water withdrawals for industrial use decreased from about 37 to 0 Mgal/d because of a paper mill closure in 1979. From 1980 to 2000, total water withdrawals in the parish ranged from 7 to 8 Mgal/d (fig. 2). This fact sheet summarizes basic information on the water resources of Webster Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  8. Assessment of Resources and Needs for Water Development

    ERIC Educational Resources Information Center

    United Nations and Water, 1977

    1977-01-01

    Presents a brief history of water resource utilization, the present availability and uses of water, and strategies for water management. Three characteristic features of water demand management are explained: (1) emphasis on non-structural measures; (2) multi-dimensional organization and policies; (3) emphasis on research. (MA)

  9. The Influence of Heavy Metals and Water Parameters on the Composition and Abundance of Water Bugs (Insecta: Hemiptera) in the Kerian River Basin, Perak, Malaysia

    PubMed Central

    Ishadi, Nur Adibah Mohd; Rawi, Che Salmah Md; Ahmad, Abu Hassan; Abdul, Nurul Huda

    2014-01-01

    The hemipteran (Insecta) diversity in the upper part of the Kerian River Basin was low with only 8 families and 16 genera recorded at 4 study sites from 3 rivers. Water bug composition varied among sampling sites (Kruskal-Wallis χ 2 = 0.00, p<0.05) but was not affected by wet-dry seasons (Z = 0.00, p>0.05). All recorded water parameters were weakly associated with generic abundance but the biochemical oxygen demand (BOD), chemical oxygen demand (COD), Water Quality Index (WQI) and heavy metals (zinc and manganese) showed relatively strong positive or negative relations with hemipteran diversity and richness (H’ and R2). Within the ranges of measured water parameters, the WQI was negatively associated with hemipteran diversity and richness, implying the tolerance of the water bugs to the level of pollution encountered in the river basin. Based on its highest abundance and occurrence (ISI), Rhagovelia was the most important genus and along with Rheumatogonus and Paraplea, these genera were common at all study sites. In conclusion, habitat availability and suitability together with some environmental parameters influenced the abundance and composition of hemipterans in this river basin. PMID:27073600

  10. Robust Abundance Estimation in Animal Abundance Surveys with Imperfect Detection

    EPA Science Inventory

    Surveys of animal abundance are central to the conservation and management of living natural resources. However, detection uncertainty complicates the sampling process of many species. One sampling method employed to deal with this problem is depletion (or removal) surveys in whi...

  11. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  12. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  13. Water Resources Data: New Jersey, Water Year 1998, Volume 1, Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; Centinaro, G.L.; Dudek, J.F.; Corcino, V.; Stekroadt, G.C.; McTigure, R.C.

    1999-01-01

    This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

  14. Modeling water resources as a constraint in electricity capacity expansion models

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Macknick, J.; Cohen, S.; Tidwell, V. C.; Woldeyesus, T.; Martinez, A.

    2013-12-01

    In the United States, the electric power sector is the largest withdrawer of freshwater in the nation. The primary demand for water from the electricity sector is for thermoelectric power plant cooling. Areas likely to see the largest near-term growth in population and energy usage, the Southwest and the Southeast, are also facing freshwater scarcity and have experienced water-related power reliability issues in the past decade. Lack of water may become a barrier for new conventionally-cooled power plants, and alternative cooling systems will impact technology cost and performance. Although water is integral to electricity generation, it has long been neglected as a constraint in future electricity system projections. Assessing the impact of water resource scarcity on energy infrastructure development is critical, both for conventional and renewable energy technologies. Efficiently utilizing all water types, including wastewater and brackish sources, or utilizing dry-cooling technologies, will be essential for transitioning to a low-carbon electricity system. This work provides the first demonstration of a national electric system capacity expansion model that incorporates water resources as a constraint on the current and future U.S. electricity system. The Regional Electricity Deployment System (ReEDS) model was enhanced to represent multiple cooling technology types and limited water resource availability in its optimization of electricity sector capacity expansion to 2050. The ReEDS model has high geographic and temporal resolution, making it a suitable model for incorporating water resources, which are inherently seasonal and watershed-specific. Cooling system technologies were assigned varying costs (capital, operations and maintenance), and performance parameters, reflecting inherent tradeoffs in water impacts and operating characteristics. Water rights supply curves were developed for each of the power balancing regions in ReEDS. Supply curves include costs

  15. Application of SWMM in Water Resources Management: A Community Scale Study

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Hua; Tung, Ching-Pin

    2015-04-01

    Under the impacts of climate change, water resource management faces a serious challenge. Due to extremely events, the water supply system is hard to maintain stable water supply. In order to decrease the pressure of centralized water supply system, the water demand management should be strengthened. The storm water management model (SWMM) is widely used to simulate surface runoff, and it has been improved to have the ability of continuous simulation. In this study, storm water management model (SWMM) is applied to simulate surface runoff and integrated into the framework of water resource management for a rural community scale. In a rural community, the surface runoff may be collected and treated by wetlands for later uses. The reclaimed water from wetlands may become a new water resource for non-contact domestic water uses, or be reused to meet irrigating water demand. Thus, the water demand from the centralized system can be reduced, and the water supply system may have lower risk under the climate change. On the other hand, SWMM can simulate the measures of low impact development (LID), such as bio-retention cell, green roof, rain barrel etc. The decentralized measures, LID, may not only reduce the runoff and delay the peak flow, and but also provide the service of water supply. In this study, LID is applied to water resource management of a rural community, and combined with the centralized water supply system. The results show the application of SWMM to water resources management in a community scale study. Besides, the effectiveness of LID on water supply is also evaluated.

  16. Climate Change and Water Resources Management: A Federal Perspective

    USGS Publications Warehouse

    Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.

    2009-01-01

    Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.

  17. Study on Cloud Water Resources and Precipitation Efficiency Characteristic over China

    NASA Astrophysics Data System (ADS)

    Zhou, Y., Sr.; Cai, M., Jr.

    2017-12-01

    The original concept and quantitative assessment method of cloud water resource and its related physical parameters are proposed based on the atmospheric water circulation and precipitation enhancement. A diagnosis method of the three-dimensional (3-D) cloud and cloud water field are proposed , based on cloud observation and atmospheric reanalysis data. Furthermore, using analysis data and precipitation products, Chinese cloud water resources in 2008-2010 are assessed preliminarily. The results show that: 1. Atmospheric water cycle and water balance plays an important part of the climate system. Water substance includes water vapor and hydrometeors, and the water cycle is the process of phase transition of water substances. Water vapor changes its phase into solid or liquid hydrometeors by lifting and condensation, and after that, the hydrometeors grow lager through cloud physical processes and then precipitate to ground, which is the mainly resource of available fresh water .Therefore, it's far from enough to only focus on the amount of water vapor, more attention should be transfered to the hydrometeors (cloud water resources) which is formed by the process of phase transition including lifting and condensation. The core task of rainfall enhancement is to develop the cloud water resources and raise the precipitation efficiency by proper technological measures. 2. Comparing with the water vapor, the hydrometeor content is much smaller. Besides, the horizontal delivery amount also shows two orders of magnitude lower than water vapor. But the update cycle is faster and the precipitation efficiency is higher. The amount of cloud water resources in the atmosphere is determined by the instantaneous quantity, the advection transport, condensation and precipitation from the water balance.The cloud water resources vary a lot in different regions. In southeast China, hydrometeor has the fastest renewal cycle and the highest precipitation efficiency. The total amount of

  18. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    PubMed Central

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  19. Water Resources Data for California, Water Year 1987. Volume 5. Ground-water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Fogelman, R.P.; Grillo, D.A.

    1989-01-01

    Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 5 contains water levels for 786 observation wells and water-quality data for 168 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  20. Water Resources Data for California, Water Year 1986. Volume 5. Ground-Water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Keeter, G.L.; Grillo, D.A.

    1988-01-01

    Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 5 contains water levels for 765 observation wells and water-quality data for 174 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  1. Water resources data--North Dakota water year 2005, Volume 1. Surface water

    USGS Publications Warehouse

    Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.

    2006-01-01

    Water-resources data for the 2005 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 107 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 31 crest-stage stations; and water quality for 93 streamflow-gaging stations, 6 river-stage stations, 15 lake or reservoir stations, and about 50 miscellaneous sample sites on lakes and wetlands. Data are included for 8 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  2. Scale and modeling issues in water resources planning

    USGS Publications Warehouse

    Lins, H.F.; Wolock, D.M.; McCabe, G.J.

    1997-01-01

    Resource planners and managers interested in utilizing climate model output as part of their operational activities immediately confront the dilemma of scale discordance. Their functional responsibilities cover relatively small geographical areas and necessarily require data of relatively high spatial resolution. Climate models cover a large geographical, i.e. global, domain and produce data at comparatively low spatial resolution. Although the scale differences between model output and planning input are large, several techniques have been developed for disaggregating climate model output to a scale appropriate for use in water resource planning and management applications. With techniques in hand to reduce the limitations imposed by scale discordance, water resource professionals must now confront a more fundamental constraint on the use of climate models-the inability to produce accurate representations and forecasts of regional climate. Given the current capabilities of climate models, and the likelihood that the uncertainty associated with long-term climate model forecasts will remain high for some years to come, the water resources planning community may find it impractical to utilize such forecasts operationally.

  3. Floral abundance, richness, and spatial distribution drive urban garden bee communities.

    PubMed

    Plascencia, M; Philpott, S M

    2017-10-01

    In urban landscapes, gardens provide refuges for bee diversity, but conservation potential may depend on local and landscape features. Foraging and population persistence of bee species, as well as overall pollinator community structure, may be supported by the abundance, richness, and spatial distribution of floral resources. Floral resources strongly differ in urban gardens. Using hand netting and pan traps to survey bees, we examined whether abundance, richness, and spatial distribution of floral resources, as well as ground cover and garden landscape surroundings influence bee abundance, species richness, and diversity on the central coast of California. Differences in floral abundance and spatial distribution, as well as urban cover in the landscape, predicted different bee community variables. Abundance of all bees and of honeybees (Apis mellifera) was lower in sites with more urban land cover surrounding the gardens. Honeybee abundance was higher in sites with patchy floral resources, whereas bee species richness and bee diversity was higher in sites with more clustered floral resources. Surprisingly, bee species richness and bee diversity was lower in sites with very high floral abundance, possibly due to interactions with honeybees. Other studies have documented the importance of floral abundance and landscape surroundings for bees in urban gardens, but this study is the first to document that the spatial arrangement of flowers strongly predicts bee abundance and richness. Based on these findings, it is likely that garden managers may promote bee conservation by managing for floral connectivity and abundance within these ubiquitous urban habitats.

  4. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    NASA Astrophysics Data System (ADS)

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  5. Water resources data Virginia water year 2005 Volume 2. Ground-water level and ground-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 349 observation wells and water quality at 29 wells. Locations of these wells are shown on figures 3 through 8. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  6. Near real time water resources data for river basin management

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  7. Impact of future energy policy on water resources in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Rivotti, Pedro; Karatayev, Marat; Sobral Mourão, Zenaida; Shah, Nilay; Clarke, Michèle; Konadu, D. Dennis

    2017-04-01

    As part of its commitment to become one of the top-30 developed countries in the world, Kazakhstan set out an ambitious target of increasing the share of renewables and alternative sources of energy in its power generation mix to 50% by 2050. This vision greatly contrasts with the current situation, with coal and natural gas power plants producing around 90% of total electricity in 2016. While this transition provides a unique opportunity to improve the sustainability of the national energy system, major natural resources challenges currently faced in the country should be taken into account. Particularly in the case of water resources management, the current system is characterised by significant losses, heavy reliance on irrigation for the agricultural sector, unevenly distributed surface water, vulnerability to climate change and variations in transboundary inflows, amongst other issues. In this context, this study aims to investigate the future availability of water resources to support food production and the transition to a new energy system. Given the challenges mentioned above, tackling this question requires an integrated analysis of the water-energy-food systems in Kazakhstan. This is done in three stages: (1) characterising the water supply and demand in the country; (2) establishing the linkages between water resources and activities in the power production and agricultural sectors; and (3) identifying potential conflicts at the nexus between water, energy and food, taking into account future energy policy scenarios, trends for food production and water resource use.

  8. Can individual and social patterns of resource use buffer animal populations against resource decline?

    PubMed

    Banks, Sam C; Lindenmayer, David B; Wood, Jeff T; McBurney, Lachlan; Blair, David; Blyton, Michaela D J

    2013-01-01

    Species in many ecosystems are facing declines of key resources. If we are to understand and predict the effects of resource loss on natural populations, we need to understand whether and how the way animals use resources changes under resource decline. We investigated how the abundance of arboreal marsupials varies in response to a critical resource, hollow-bearing trees. Principally, we asked what mechanisms mediate the relationship between resources and abundance? Do animals use a greater or smaller proportion of the remaining resource, and is there a change in cooperative resource use (den sharing), as the availability of hollow trees declines? Analyses of data from 160 sites surveyed from 1997 to 2007 showed that hollow tree availability was positively associated with abundance of the mountain brushtail possum, the agile antechinus and the greater glider. The abundance of Leadbeater's possum was primarily influenced by forest age. Notably, the relationship between abundance and hollow tree availability was significantly less than 1:1 for all species. This was due primarily to a significant increase by all species in the proportional use of hollow-bearing trees where the abundance of this resource was low. The resource-sharing response was weaker and inconsistent among species. Two species, the mountain brushtail possum and the agile antechinus, showed significant but contrasting relationships between the number of animals per occupied tree and hollow tree abundance. The discrepancies between the species can be explained partly by differences in several aspects of the species' biology, including body size, types of hollows used and social behaviour as it relates to hollow use. Our results show that individual and social aspects of resource use are not always static in response to resource availability and support the need to account for dynamic resource use patterns in predictive models of animal distribution and abundance.

  9. Can Individual and Social Patterns of Resource Use Buffer Animal Populations against Resource Decline?

    PubMed Central

    Banks, Sam C.; Lindenmayer, David B.; Wood, Jeff T.; McBurney, Lachlan; Blair, David; Blyton, Michaela D. J.

    2013-01-01

    Species in many ecosystems are facing declines of key resources. If we are to understand and predict the effects of resource loss on natural populations, we need to understand whether and how the way animals use resources changes under resource decline. We investigated how the abundance of arboreal marsupials varies in response to a critical resource, hollow-bearing trees. Principally, we asked what mechanisms mediate the relationship between resources and abundance? Do animals use a greater or smaller proportion of the remaining resource, and is there a change in cooperative resource use (den sharing), as the availability of hollow trees declines? Analyses of data from 160 sites surveyed from 1997 to 2007 showed that hollow tree availability was positively associated with abundance of the mountain brushtail possum, the agile antechinus and the greater glider. The abundance of Leadbeater’s possum was primarily influenced by forest age. Notably, the relationship between abundance and hollow tree availability was significantly less than 1∶1 for all species. This was due primarily to a significant increase by all species in the proportional use of hollow-bearing trees where the abundance of this resource was low. The resource-sharing response was weaker and inconsistent among species. Two species, the mountain brushtail possum and the agile antechinus, showed significant but contrasting relationships between the number of animals per occupied tree and hollow tree abundance. The discrepancies between the species can be explained partly by differences in several aspects of the species’ biology, including body size, types of hollows used and social behaviour as it relates to hollow use. Our results show that individual and social aspects of resource use are not always static in response to resource availability and support the need to account for dynamic resource use patterns in predictive models of animal distribution and abundance. PMID:23320100

  10. Water Resources Data for California, Water Year 1988. Volume 5. Ground-Water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Fogelman, R.P.; Grillo, D.A.

    1989-01-01

    Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water-quality in wells. Volume 5 contains water levels for 980 observation wells and water-quality data for 239 observation monitoring wells. These data represent that part of the National water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  11. Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities

    DTIC Science & Technology

    2016-02-09

    favorable benefit -cost ratio. 31 Local sponsors assume any rehabilitation cost for damage to an active project attributable to deficient maintenance...infrastructure activities are not traditional Corps water resources projects, they are not subject to the Corps planning process (e.g., a benefit -cost...Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities Nicole T. Carter Specialist in Natural Resources Policy

  12. How important are peatlands globally in providing drinking water resources?

    NASA Astrophysics Data System (ADS)

    Xu, Jiren; Morris, Paul; Holden, Joseph

    2017-04-01

    The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource

  13. An ontology for component-based models of water resource systems

    NASA Astrophysics Data System (ADS)

    Elag, Mostafa; Goodall, Jonathan L.

    2013-08-01

    Component-based modeling is an approach for simulating water resource systems where a model is composed of a set of components, each with a defined modeling objective, interlinked through data exchanges. Component-based modeling frameworks are used within the hydrologic, atmospheric, and earth surface dynamics modeling communities. While these efforts have been advancing, it has become clear that the water resources modeling community in particular, and arguably the larger earth science modeling community as well, faces a challenge of fully and precisely defining the metadata for model components. The lack of a unified framework for model component metadata limits interoperability between modeling communities and the reuse of models across modeling frameworks due to ambiguity about the model and its capabilities. To address this need, we propose an ontology for water resources model components that describes core concepts and relationships using the Web Ontology Language (OWL). The ontology that we present, which is termed the Water Resources Component (WRC) ontology, is meant to serve as a starting point that can be refined over time through engagement by the larger community until a robust knowledge framework for water resource model components is achieved. This paper presents the methodology used to arrive at the WRC ontology, the WRC ontology itself, and examples of how the ontology can aid in component-based water resources modeling by (i) assisting in identifying relevant models, (ii) encouraging proper model coupling, and (iii) facilitating interoperability across earth science modeling frameworks.

  14. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Watermore » Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.« less

  15. Accurate experimental determination of the isotope effects on the triple point temperature of water. I. Dependence on the 2H abundance

    NASA Astrophysics Data System (ADS)

    Faghihi, V.; Peruzzi, A.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; van Geel, J.; Meijer, H. A. J.

    2015-12-01

    Variation in the isotopic composition of water is one of the major contributors to uncertainty in the realization of the triple point of water (TPW). Although the dependence of the TPW on the isotopic composition of the water has been known for years, there is still a lack of a detailed and accurate experimental determination of the values for the correction constants. This paper is the first of two articles (Part I and Part II) that address quantification of isotope abundance effects on the triple point temperature of water. In this paper, we describe our experimental assessment of the 2H isotope effect. We manufactured five triple point cells with prepared water mixtures with a range of 2H isotopic abundances encompassing widely the natural abundance range, while the 18O and 17O isotopic abundance were kept approximately constant and the 18O  -  17O ratio was close to the Meijer-Li relationship for natural waters. The selected range of 2H isotopic abundances led to cells that realised TPW temperatures between approximately  -140 μK to  +2500 μK with respect to the TPW temperature as realized by VSMOW (Vienna Standard Mean Ocean Water). Our experiment led to determination of the value for the δ2H correction parameter of A2H  =  673 μK / (‰ deviation of δ2H from VSMOW) with a combined uncertainty of 4 μK (k  =  1, or 1σ).

  16. Water Resources Data North Dakota Water Year 2002 Volume 1. Surface Water

    USGS Publications Warehouse

    Harkness, R.E.; Lundgren, R.F.; Norbeck, S.W.; Robinson, S.M.; Sether, B.A.

    2003-01-01

    Water-resources data for the 2002 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 106 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 96 streamflow-gaging stations, 3 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  17. Water Resources Data North Dakota Water Year 2003, Volume 1. Surface Water

    USGS Publications Warehouse

    Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.

    2004-01-01

    Water-resources data for the 2003 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 108 streamflow-gaging stations; stage only for 24 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 32 crest-stage stations; and water-quality for 99 streamflow-gaging stations, 5 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  18. Water Resources Data North Dakota Water Year 2001, Volume 1. Surface Water

    USGS Publications Warehouse

    Harkness, R.E.; Berkas, W.R.; Norbeck, S.W.; Robinson, S.M.

    2002-01-01

    Water-resources data for the 2001 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 103 streamflow-gaging stations; stage only for 20 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 94 streamflow-gaging stations, 2 river-stage stations, 9 lake or reservoir stations, 7 miscellaneous sample sites on rivers, and 58 miscellaneous sample sites on lakes and wetlands. Data are included for 9 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  19. Methodology of risk assessment of loss of water resources due to climate changes

    NASA Astrophysics Data System (ADS)

    Israfilov, Yusif; Israfilov, Rauf; Guliyev, Hatam; Afandiyev, Galib

    2016-04-01

    For sustainable development and management of rational use of water resources of Azerbaijan Republic it is actual to forecast their changes taking into account different scenarios of climate changes and assessment of possible risks of loss of sections of water resources. The major part of the Azerbaijani territory is located in the arid climate and the vast majority of water is used in the national economic production. An optimal use of conditional groundwater and surface water is of great strategic importance for economy of the country in terms of lack of common water resources. Low annual rate of sediments, high evaporation and complex natural and hydrogeological conditions prevent sustainable formation of conditioned resources of ground and surface water. In addition, reserves of fresh water resources are not equally distributed throughout the Azerbaijani territory. The lack of the common water balance creates tension in the rational use of fresh water resources in various sectors of the national economy, especially in agriculture, and as a result, in food security of the republic. However, the fresh water resources of the republic have direct proportional dependence on climatic factors. 75-85% of the resources of ground stratum-pore water of piedmont plains and fracture-vein water of mountain regions are formed by the infiltration of rainfall and condensate water. Changes of climate parameters involve changes in the hydrological cycle of the hydrosphere and as a rule, are reflected on their resources. Forecasting changes of water resources of the hydrosphere with different scenarios of climate change in regional mathematical models allowed estimating the extent of their relationship and improving the quality of decisions. At the same time, it is extremely necessary to obtain additional data for risk assessment and management to reduce water resources for a detailed analysis, forecasting the quantitative and qualitative parameters of resources, and also for

  20. Water resources and hydrology of Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.; Gulick, V. C.; Kargel, J. S.; Strom, R. G.

    1991-01-01

    The surface of Mars has been extensively modified by a large variety of water erosional and depositional processes. Although liquid water is presently unstable on the planet's surface, in its cold, hyperarid climate, there is abundant geomorphological evidence of past fluvial valley development multiple episodes of catastrophic flooding, periglacial landforms, ice-related permafrost, lake deposits, eroded impact craters and possible glacial landforms throughout much of Mars' geological history. The amount of water required to form such features is estimated to be equivalent to a planet-wide layer approximately 50 meters deep. Some of this water undoubtedly was removed from the planet by atmospheric escape processes, but much probably remains in the subsurface of Mars. Jakosky summarized the present partitioning of water on Mars, expressed as an average global depth, as follows: in the polar caps, 30 meters; in the megaregolith, 500 to 1000 meters; structurally bound in clays, 10 meters; and in high latitude regolith, a few meters. However, most of this water is probably in the form of ice, except in anomalous areas of possible near surface liquid water, and in regions where hydrothermal systems are still active. The best locations for prospecting are those areas where water or ice is sufficiently concentrated at shallow enough depths to make it feasible to pump out or mine.

  1. Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities

    DTIC Science & Technology

    2017-02-27

    of Engineers: Water Resource Authorizations, Appropriations, and Activities Congressional Research Service Summary The U.S. Army Corps of......Engineers: Water Resource Authorizations, Appropriations, and Activities Congressional Research Service 1 Army Corps of Engineers The U.S. Army Corps of

  2. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    PubMed

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  3. Key issues for determining the exploitable water resources in a Mediterranean river basin.

    PubMed

    Pedro-Monzonís, María; Ferrer, Javier; Solera, Abel; Estrela, Teodoro; Paredes-Arquiola, Javier

    2015-01-15

    One of the major difficulties in water planning is to determine the water availability in a water resource system in order to distribute water sustainably. In this paper, we analyze the key issues for determining the exploitable water resources as an indicator of water availability in a Mediterranean river basin. Historically, these territories are characterized by heavily regulated water resources and the extensive use of unconventional resources (desalination and wastewater reuse); hence, emulating the hydrological cycle is not enough. This analysis considers the Jucar River Basin as a case study. We have analyzed the different possible combinations between the streamflow time series, the length of the simulation period and the reliability criteria. As expected, the results show a wide dispersion, proving the great influence of the reliability criteria used for the quantification and localization of the exploitable water resources in the system. Therefore, it is considered risky to provide a single value to represent the water availability in the Jucar water resource system. In this sense, it is necessary that policymakers and stakeholders make a decision about the methodology used to determine the exploitable water resources in a river basin. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Water resources of Claiborne Parish, Louisiana

    USGS Publications Warehouse

    Fendick, Robert B.; Prakken, Lawrence B.; Griffith, Jason M.

    2013-01-01

    This fact sheet summarizes basic information on the water resources of Claiborne Parish. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Cited References section. In 2010, about 2.60 million gallons per day (Mgal/d) of water were withdrawn in Claiborne Parish, Louisiana, including about 2.42 Mgal/d from groundwater sources and 0.18 Mgal/d from surface-water sources. Public-supply use accounted for about 84 percent of the total water withdrawn. Other categories of use included industrial, rural domestic, livestock, and general irrigation. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that total water withdrawals in the parish have ranged from about 2.6 to 3.9 Mgal/d.

  5. Water Resources of Beauregard Parish

    USGS Publications Warehouse

    Prakken, Lawrence B.; Griffith, Jason M.; Fendick, Robert B.

    2012-01-01

    In 2005, about 30.6 million gallons per day (Mgal/d) of water was withdrawn in Beauregard Parish, Louisiana, including about 30.4 Mgal/d from groundwater sources and 0.1 Mgal/d from surface water sources. Industrial use, primarily for wood products, accounted for about 72 percent (22.0 Mgal/d) of the total water withdrawn. Other categories of use included public supply, rural domestic, livestock, rice irrigation, general irrigation, and aquaculture. Water-use data collected at 5-year intervals from 1960 to 2005 indicate water withdrawals in the parish peaked at about 43.5 Mgal/d in 1985. The large increase in groundwater usage from 1970 to 1975 was primarily due to industrial withdrawals, which increased from 3.64 Mgl/d in 1970 to 29.0 Mgal/d in 1975. This fact sheet summarizes information on the water resources of Beauregard Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  6. Impact of Unconventional Energy Development using Hydraulic Fracturing on Louisiana Water Resources Availability.

    NASA Astrophysics Data System (ADS)

    Unruh, H. G., Sr.; Habib, E. H.; Borrok, D. M.

    2017-12-01

    Unconventional oil and gas extraction around United States has been deployed significantly in the recent years. The current study focuses on the impact of Hydraulic fracturing (HF) on the sustainability of water resources in Louisiana. This impact is measured by quantifying the stress for current and future scenarios of HF water use in the two-main shale plays in Louisiana, the Haynesville and Tuscaloosa. The assessment is conducted at the HUC-12 fine catchment spatial scale. Initially, sectored stress metrics were calculated for surface and groundwater, respectively, without including HF water use. Demand sectors involved in this first stress estimation are power generation, public supply, industrial, etc. Once both stress metrics were estimated with the reported water sources and uses in Louisiana corresponding to the 2010 year, several scenarios for both sources were evaluated. In the first scenario, a peak year (2011) of HF water use was added as a water demand new category into the stress calculation matrices. The results indicate that a significant variability in the calculated stress metric with and without HF is reflected only for the groundwater sector. On the other hand, surface water sector doesn't seem to be affected for the HF water use. However, this apparent abundant surface water in the catchment, the location of the wells is not always adjacent to the body of water, and then trucking or piping of water may be required. For this reason, availability of groundwater in situ is a relevant factor in terms of production cost. Additional tested scenarios consist of increasing the number of wells in both shale play locations. Existing wells scenario calculates the stress including the water use of the total number of wells that currently exist in both shale plays in a short period (one year). The other additional tested scenario consists of increase of 100% of the required number of wells to extract the expected total shale play capacity. Results of the

  7. Application of Decision Support Tools for Integrated Water Resources Management

    EPA Science Inventory

    Integrated Water Resources Management (IWRM) involves “a process which promotes the coordinated development and management of water, land, and related resources in order to maximize the resultant economic and social welfare in an equitable manner without compromising the su...

  8. New aerial survey and hierarchical model to estimate manatee abundance

    USGS Publications Warehouse

    Langimm, Cahterine A.; Dorazio, Robert M.; Stith, Bradley M.; Doyle, Terry J.

    2011-01-01

    of detection of individual manatees within a group also differed among surveys, ranging from a low of 0.27 on 11 January to a high of 0.73 on 8 August. During winter surveys, abundance was always higher inland at Port of the Islands (POI), a manatee warm-water aggregation site, than in the other habitat types. During warm-season surveys, highest abundances were estimated in offshore habitat where manatees forage on seagrass. Manatees continued to use POI in summer, but in lower numbers than in winter, possibly to drink freshwater. Abundance in other inland systems and inshore bays was low compared to POI in winter and summer, possibly because of low availability of freshwater. During cold weather, maps of patch abundance of paired surveys showed daily changes in manatee distribution associated with rapid changes in air and water temperature as manatees sought warm water with falling temperatures and seagrass areas with increasing temperatures. Within a habitat type, some patches had higher manatee abundance suggesting differences in quality, possibly due to freshwater flow. If hydrological restoration alters the location of quality habitat, postrestoration comparisons using our methods will document how manatees adjust to new resources, providing managers with information on spatial needs for further monitoring or management. Total abundance for the entire area was similar among survey dates. Credible intervals however were large on a few surveys, and may limit our ability to statistically detect trends in total abundance. Additional modeling of abundance with time- and patch-specific covariates of salinity, water temperature, and seagrass abundance will directly link manatee abundance with physical and biological changes due to restoration and should decrease uncertainty of estimates.

  9. Evaluation of Water Resources Carrying Capacity in Shandong Province Based on Fuzzy Comprehensive Evaluation

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Gao, Qian; Zhu, Mingyue; Li, Xiumei

    2018-06-01

    Water resources carrying capacity is the maximum available water resources supporting by the social and economic development. Based on investigating and statisticing on the current situation of water resources in Shandong Province, this paper selects 13 factors including per capita water resources, water resources utilization, water supply modulus, rainfall, per capita GDP, population density, per capita water consumption, water consumption per million yuan, The water consumption of industrial output value, the agricultural output value of farmland, the irrigation rate of cultivated land, the water consumption rate of ecological environment and the forest coverage rate were used as the evaluation factors. Then,the fuzzy comprehensive evaluation model was used to analyze the water resources carrying capacity Force status evaluation. The results showed : The comprehensive evaluation results of water resources in Shandong Province were lower than 0.6 in 2001-2009 and higher than 0.6 in 2010-2015, which indicating that the water resources carrying capacity of Shandong Province has been improved.; In addition, most of the years a value of less than 0.6, individual years below 0.4, the interannual changes are relatively large, from that we can see the level of water resources is generally weak, the greater the interannual changes in Shandong Province.

  10. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.

    PubMed

    Ye, Quanliang; Li, Yi; Zhuo, La; Zhang, Wenlong; Xiong, Wei; Wang, Chao; Wang, Peifang

    2018-02-01

    This study provides an innovative application of virtual water trade in the traditional allocation of physical water resources in water scarce regions. A multi-objective optimization model was developed to optimize the allocation of physical water and virtual water resources to different water users in Beijing, China, considering the trade-offs between economic benefit and environmental impacts of water consumption. Surface water, groundwater, transferred water and reclaimed water constituted the physical resource of water supply side, while virtual water flow associated with the trade of five major crops (barley, corn, rice, soy and wheat) and three livestock products (beef, pork and poultry) in agricultural sector (calculated by the trade quantities of products and their virtual water contents). Urban (daily activities and public facilities), industry, environment and agriculture (products growing) were considered in water demand side. As for the traditional allocation of physical water resources, the results showed that agriculture and urban were the two predominant water users (accounting 54% and 28%, respectively), while groundwater and surface water satisfied around 70% water demands of different users (accounting 36% and 34%, respectively). When considered the virtual water trade of eight agricultural products in water allocation procedure, the proportion of agricultural consumption decreased to 45% in total water demand, while the groundwater consumption decreased to 24% in total water supply. Virtual water trade overturned the traditional components of water supplied from different sources for agricultural consumption, and became the largest water source in Beijing. Additionally, it was also found that environmental demand took a similar percentage of water consumption in each water source. Reclaimed water was the main water source for industrial and environmental users. The results suggest that physical water resources would mainly satisfy the consumption

  11. Environmental sustainability control by water resources carrying capacity concept: application significance in Indonesia

    NASA Astrophysics Data System (ADS)

    Djuwansyah, M. R.

    2018-02-01

    This paper reviews the use of Water Resources carrying capacity concept to control environmental sustainability with the particular note for the case in Indonesia. Carrying capacity is a capability measure of an environment or an area to support human and the other lives as well as their activities in a sustainable manner. Recurrently water-related hazards and environmental problems indicate that the environments are exploited over its carrying capacity. Environmental carrying capacity (ECC) assessment includes Land and Water Carrying Capacity analysis of an area, suggested to always refer to the dimension of the related watershed as an incorporated hydrologic unit on the basis of resources availability estimation. Many countries use this measure to forecast the future sustainability of regional development based on water availability. Direct water Resource Carrying Capacity (WRCC) assessment involves population number determination together with their activities could be supported by available water, whereas indirect WRCC assessment comprises the analysis of supply-demand balance status of water. Water resource limits primarily environmental carrying capacity rather than the land resource since land capability constraints are easier. WRCC is a crucial factor known to control land and water resource utilization, particularly in a growing densely populated area. Even though capability of water resources is relatively perpetual, the utilization pattern of these resources may change by socio-economic and cultural technology level of the users, because of which WRCC should be evaluated periodically to maintain usage sustainability of water resource and environment.

  12. Water for the cities - The outlook

    USGS Publications Warehouse

    Schneider, William Joseph; Spieker, Andrew Maute

    1969-01-01

    Rapid expansion of urban areas, particularly in the large metropolitan complexes of the United States, is placing urban political entities in ever closer juxtaposition to each other. The large demand for water for each entity is resulting in competition for available sources and is rapidly reaching critical proportions. Increasing awareness of the role of water in our society further complicates this competition. Pollution abatement, recreation, wildlife conservation, and aesthetics are demands now recognized by both rural and urban areas. Future development of water resources must consider regional demands and resources. Only in this way can our reasonably abundant water resources meet the severe demands imposed by our rapidly expanding urban areas.

  13. Water-resources investigations in Wisconsin, 1993

    USGS Publications Warehouse

    Maertz, D.E.

    1993-01-01

    OBJECTIVE: The objectives of this study are to provide continuous discharge records for selected rivers at specific sites to supply the needs for: regulation, analytical studies, definition of statistical properties, trends analysis, determination of the occurrence, and distribution of water in streams for planning. The project is also designed to determine lake levels and to provide discharge for floods, low-flow conditions, and for water-quality investigations. Requests for streamflow data and information relating to streamflow in Wisconsin are answered. Basic data are published annually in "Water Resources Data Wisconsin."

  14. Puerto Rico water resources planning model program description

    USGS Publications Warehouse

    Moody, D.W.; Maddock, Thomas; Karlinger, M.R.; Lloyd, J.J.

    1973-01-01

    Because the use of the Mathematical Programming System -Extended (MPSX) to solve large linear and mixed integer programs requires the preparation of many input data cards, a matrix generator program to produce the MPSX input data from a much more limited set of data may expedite the use of the mixed integer programming optimization technique. The Model Definition and Control Program (MODCQP) is intended to assist a planner in preparing MPSX input data for the Puerto Rico Water Resources Planning Model. The model utilizes a mixed-integer mathematical program to identify a minimum present cost set of water resources projects (diversions, reservoirs, ground-water fields, desalinization plants, water treatment plants, and inter-basin transfers of water) which will meet a set of future water demands and to determine their sequence of construction. While MODCOP was specifically written to generate MPSX input data for the planning model described in this report, the program can be easily modified to reflect changes in the model's mathematical structure.

  15. Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: Distribution, abundance, and origins

    PubMed Central

    Li, Shuai; Milliken, Ralph E.

    2017-01-01

    A new thermal correction model and experimentally validated relationships between absorption strength and water content have been used to construct the first global quantitative maps of lunar surface water derived from the Moon Mineralogy Mapper near-infrared reflectance data. We find that OH abundance increases as a function of latitude, approaching values of ~500 to 750 parts per million (ppm). Water content also increases with the degree of space weathering, consistent with the preferential retention of water originating from solar wind implantation during agglutinate formation. Anomalously high water contents indicative of interior magmatic sources are observed in several locations, but there is no global correlation between surface composition and water content. Surface water abundance can vary by ~200 ppm over a lunar day, and the upper meter of regolith may contain a total of ~1.2 × 1014 g of water averaged over the globe. Formation and migration of water toward cold traps may thus be a continuous process on the Moon and other airless bodies. PMID:28924612

  16. Continuous real-time water information: an important Kansas resource

    USGS Publications Warehouse

    Loving, Brian L.; Putnam, James E.; Turk, Donita M.

    2014-01-01

    Continuous real-time information on streams, lakes, and groundwater is an important Kansas resource that can safeguard lives and property, and ensure adequate water resources for a healthy State economy. The U.S. Geological Survey (USGS) operates approximately 230 water-monitoring stations at Kansas streams, lakes, and groundwater sites. Most of these stations are funded cooperatively in partnerships with local, tribal, State, or other Federal agencies. The USGS real-time water-monitoring network provides long-term, accurate, and objective information that meets the needs of many customers. Whether the customer is a water-management or water-quality agency, an emergency planner, a power or navigational official, a farmer, a canoeist, or a fisherman, all can benefit from the continuous real-time water information gathered by the USGS.

  17. Evaluation of the state water-resources research institutes

    USGS Publications Warehouse

    Ertel, M.O.

    1988-01-01

    Water resources research institutes, as authorized by the Water Resources Research Act of 1984 (Public Law 98-242), are located in each state and in the District of Columbia, Guam, Puerto Rico , and the Virgin Islands. Public Law 98-242 mandated an onsite evaluation of each of these institutes to determine whether ' . . .the quality and relevance of its water resources research and its effectiveness as an institution for planning, conducting, and arranging for research warrant its continued support in the national interest. ' The results of these evaluations, which were conducted between September 1985 and June 1987, are summarized. The evaluation teams found that all 54 institutes are meeting the basic objectives of the authorizing legislation in that they: (1) use the grant funds to support research that addresses water problems of state and regional concern; (2) provide opportunities for training of water scientists through student involvement on research projects; and (3) promote the application of research results through preparation of technical reports and contributions to the technical literature. The differences among institutes relate primarily to degrees of effectiveness, and most often are determined by the financial, political, and geographical contexts in which the institutes function and by the quality of their leadership. (Lantz-PTT)

  18. A review of water resources of the Umiat area, northern Alaska

    USGS Publications Warehouse

    Williams, John R.

    1970-01-01

    Surface-water supplies from the Colville River, small tributary creeks, and lakes are abundant in summer but limited in winter by low or zero flow in streams and thick ice cover on lakes. Fresh ground water occurs in unfrozen zones in alluvium and in the upper part of bedrock beneath the Colville River and beneath lakes that do not freeze to the bottom in winter. These unfrozen zones, forming depressions in the upper surface of permafrost, are maintained by flow of heat from bodies of surface water into subjacent alluvium and bedrock. Brackish or saline ground water occurs in bedrock beneath as much as 1,055 feet of permafrost in the Arctic foothills and beneath 750 to 800 feet of permafrost beneath low terraces of the Colville River valley. The foothill area is unfavorable for developing supplies of potable ground water because of the great depth to water, predominance of brackish or saline water, and low potential yield of the bedrock. In the Colville River valley, shallow unfrozen alluvium beneath the river and deep lakes will yield abundant year-round supplies of ground water, but the bedrock below permafrost yields less than 10 gpm (gallons per minute) of saline or brackish water.

  19. Water Resources Data, Pennsylvania, Water Year 1999. Volume 1. Delaware River Basin

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2000-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 74 continuous-record streamflow-gaging stations, 7 partial-record stations, and 13 special study and miscellaneous streamflow sites; (2) elevation and contents records for 14 lakes and reservoirs; (3) water-quality records for 29 gaging stations and 11 ungaged streamsites; (4) water-quality records for 87 special-study stations;(5) water-level records for 55 network observation wells; and (6) water-quality analyses of ground water from 11 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-99-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA

  20. Water Resources Data, Pennsylvania, Water Year 2001. Volume 1. Delaware River Basin

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2002-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 77 continuous-record streamflow-gaging stations, 7 partial-record stations, and 46 special study and miscellaneous streamflow sites; (2) elevation and contents records for 13 lakes and reservoirs; (3) water-quality records for 28 gaging stations and 11 ungaged streamsites; (4) water-quality records for 27 special-study stations; (5) water-level records for 56 network observation wells; and (6) water-quality analyses of ground water from 111 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-01-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield

  1. Water resources data, Pennsylvania, water year 2000, Volume 1. Delaware River Basin

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2001-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 76 continuous-record streamflow-gaging stations, 7 partial-record stations, and 13 special study and miscellaneous streamflow sites; (2) elevation and contents records for 14 lakes and reservoirs; (3) water-quality records for 28 gaging stations and 14 ungaged streamsites; (4) water-quality records for 77 special-study stations; (5) water-level records for 53 network observation wells; and (6) water-quality analyses of ground water from 101 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-00-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The

  2. Water resources vulnerability assessment in the Adriatic Sea region: the case of Corfu Island.

    PubMed

    Kanakoudis, Vasilis; Tsitsifli, Stavroula; Papadopoulou, Anastasia; Cencur Curk, Barbara; Karleusa, Barbara

    2017-09-01

    Cross-border water resources management and protection is a complicated task to achieve, lacking a common methodological framework. Especially in the Adriatic region, water used for drinking water supply purposes pass from many different countries, turning its management into a hard task to achieve. During the DRINKADRIA project, a common methodological framework has been developed, for efficient and effective cross-border water supply and resources management, taking into consideration different resources types (surface and groundwater) emphasizing in drinking water supply intake. The common methodology for water resources management is based on four pillars: climate characteristics and climate change, water resources availability, quality, and security. The present paper assesses both present and future vulnerability of water resources in the Adriatic region, with special focus on Corfu Island, Greece. The results showed that climate change is expected to impact negatively on water resources availability while at the same time, water demand is expected to increase. Water quality problems will be intensified especially due to land use changes and salt water intrusion. The analysis identified areas where water resources are more vulnerable, allowing decision makers develop management strategies.

  3. Water resources of St. James Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in St. James Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  4. Water resources of St. Mary Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.; Lovelace, John K.

    2014-01-01

    Information concerning the availability, use, and quality of water in St. Mary Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for management of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  5. Water resources of De Soto Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in De Soto Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata. usgs.gov/nwis) are the primary sources of the information presented here.

  6. Water resources of Jefferson Davis Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2014-01-01

    Information concerning the availability, use, and quality of water in Jefferson Davis Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  7. Water resources of St. Charles Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in St. Charles Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  8. Water resources of La Salle Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in La Salle Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  9. Water resources of West Feliciana Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; Lovelace, John K.; Tomaszewski, Dan J.; Griffith, Jason M.

    2014-01-01

    Information concerning the availability, use, and quality of water in West Feliciana Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is discussed. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  10. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  11. Community composition, abundance and biomass of zooplankton in Zhangzi Island waters, Northern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Yin, Jiehui; Zhang, Guangtao; Li, Chaolun; Wang, Shiwei; Zhao, Zengxia; Wan, Aiyong

    2017-09-01

    Samples were collected monthly from the sea area around Zhangzi Island, northern Yellow Sea, from July 2009 to June 2010. Vertical net towing was used to examine spatial and temporal variability in zooplankton abundance and biomass. Overall, Calanus sinicus and Saggita crassa were the dominant species found during the study period, while the amphipod Themisto gracilipes was dominant in winter and spring. Vast numbers of the ctenophore species of the genus Beroe were found in October and November. It was not possible to count them, but they constituted a large portion of the total zooplankton biomass. Zooplankton species diversity was highest in October, and species evenness was highest in April. Zooplankton abundance (non-jellyfish) and biomass were highest in June and lowest in August, with annual averages of 131.3 ind./m³ and 217.5 mg/m³, respectively. Water temperature may be responsible for the variations in zooplankton abundance and biomass. Beroe biomass was negatively correlated with other zooplankton abundance. Longterm investigations will be carried out to learn more about the influence of the environment on zooplankton assemblages.

  12. Water, Energy, and Food Nexus: Modeling of Inter-Basin Resources Trading

    NASA Astrophysics Data System (ADS)

    KIm, T. W.; Kang, D.; Wicaksono, A.; Jeong, G.; Jang, B. J.; Ahn, J.

    2016-12-01

    The water, energy, and food (WEF) nexus is an emerging issue in the concern of fulfilling the human requirements with a lack of available resources. The WEF nexus concept arises to develop a sustainable resources planning and management. In the concept, the three valuable resources (i.e. water, energy, and food) are inevitably interconnected thus it becomes a challenge for researchers to understand the complicated interdependency. A few studies have been committed for interpreting and implementing the WEF nexus using a computer based simulation model. Some of them mentioned that a trade-off is one alternative solution that can be taken to secure the available resources. Taking a concept of inter-basin water transfer, this study attempts to introduce an idea to develop a WEF nexus model for inter-basin resources trading simulation. Using the trading option among regions (e.g., cities, basins, or even countries), the model provides an opportunity to increase overall resources availability without draining local resources. The proposed model adopted the calculation process of an amount of water, energy, and food from a nation-wide model, with additional input and analysis process to simulate the resources trading between regions. The proposed model is applied for a hypothetic test area in South Korea for demonstration purposes. It is anticipated that the developed model can be a decision tool for efficient resources allocation for sustainable resources management. Acknowledgements This study was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of the Korean government.

  13. Water resources of the Roseau River Watershed, Northwestern Minnesota

    USGS Publications Warehouse

    Winter, Thomas C.; Maclay, R.W.; Pike, G.M.

    1967-01-01

    This report is a general appraisal of the water resources in the Roseau River watershed unit. Detailed studies of water movement through the ground-water reservoir are needed for more exact determination of the amount of water immediately available and the specific effects of water-management practices.

  14. Climate Change Impacts on Water Resources and Water Supply Security through Adaptation

    EPA Science Inventory

    This presentation is to describe the water resources adaptation program (WRAP) at the U.S.EPA National Risk Management Research Laboratory, and to highlight initial research results on hydroclimatic periodicity and changes and on adaptation measures including sustainable water in...

  15. Water resources data for Kansas, water year 1973; Part 2, Water quality records

    USGS Publications Warehouse

    Diaz, A.M.; Albert, C.D.

    1974-01-01

    Water-resources data for the 1973 water year for Kansas include records of data for the chemical and physical characteristics of surface and ground water. Data on the quality of surface water (chemical, microbiological, temperature, and sediment) were collected from designated sampling sites at predetermined intervals such as once daily, weekly, monthly, or less frequently, and at some sites data were recorded on punched paper tape at 60-minute intervals. Records are given for 70 sampling stations of which 7 are partial-record stations, and for 51 miscellaneous sites. Miscellaneous temperatures of streamflow are given for 77 gaging stations, and records of chemical analyses are given for 224 ground-water sites. Locations of surface water-quality stations are shown in Figure 1, page 2. Records for pertinent water-quality stations in bordering States are also included. The records were collected by the Water Resources Division of the U.S. Geological Survey under the direction of C. W. Lane, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Kansas. Kansas District personnel who contributed significantly to the collection and preparation of data included in this report were: B. L. Day, L. R. Shelton, M. L. Penny, L. R. Stringer, and D. J. Dark (Kansas State Department of Health).The Geological Survey has published records of chemical quality, suspended sediment, and water temperatures since 1941 in annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Beginning with the 1964 water year, water-quality records also have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. These records will be published later in Geological

  16. Study on characteristics of water resources in Beijing in recent 15 years

    NASA Astrophysics Data System (ADS)

    Chuan, L. M.; Zheng, H. G.; Zhao, J. J.; Wang, A. L.; Zhang, X. J.

    2018-02-01

    In order to understand the characteristics of water supply and water usage in Beijing in recent 15 years, a variety of statistical datasets were collected and field investigations were carried out, to analyze the total water resource, the characteristics and trends of water resource supply, utilization and distribution during 2000-2014. The results showed that the total amount of water resources in Beijing is maintained at 1.61~3.95 billion m3, and the surface water accounts for about 1/3, and the groundwater accounts for 2/3. Agricultural water and living water were the dominated consumption in the past 15 years in Beijing, accounted for 35.3% and 38.9% of the total amount, followed by industrial water, which accounting for 17.9% of total water consumption, and water used in environment is relatively small, only accounting for 7.8% of the total amount. This study can provide theoretical support for the establishment and management of water conservation policies and the rational utilization of water resources in Beijing.

  17. Adaptation of water resource systems to an uncertain future

    NASA Astrophysics Data System (ADS)

    Walsh, C. L.; Blenkinsop, S.; Fowler, H. J.; Burton, A.; Dawson, R. J.; Glenis, V.; Manning, L. J.; Kilsby, C. G.

    2015-09-01

    Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days, and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth the median number of drought order occurrences may increase five-fold. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be insufficient on their own to adapt to uncertainties in the projected changes in climate and population. For example, a 30

  18. Payments for Ecosystem Services for watershed water resource allocations

    NASA Astrophysics Data System (ADS)

    Fu, Yicheng; Zhang, Jian; Zhang, Chunling; Zang, Wenbin; Guo, Wenxian; Qian, Zhan; Liu, Laisheng; Zhao, Jinyong; Feng, Jian

    2018-01-01

    Watershed water resource allocation focuses on concrete aspects of the sustainable management of Ecosystem Services (ES) that are related to water and examines the possibility of implementing Payment for Ecosystem Services (PES) for water ES. PES can be executed to satisfy both economic and environmental objectives and demands. Considering the importance of calculating PES schemes at the social equity and cooperative game (CG) levels, to quantitatively solve multi-objective problems, a water resources allocation model and multi-objective optimization are provided. The model consists of three modules that address the following processes: ① social equity mechanisms used to study water consumer associations, ② an optimal decision-making process based on variable intervals and CG theory, and ③ the use of Shapley values of CGs for profit maximization. The effectiveness of the proposed methodology for realizing sustainable development was examined. First, an optimization model with water allocation objective was developed based on sustainable water resources allocation framework that maximizes the net benefit of water use. Then, to meet water quality requirements, PES cost was estimated using trade-off curves among different pollution emission concentration permissions. Finally, to achieve equity and supply sufficient incentives for water resources protection, CG theory approaches were utilized to reallocate PES benefits. The potential of the developed model was examined by its application to a case study in the Yongding River watershed of China. Approximately 128 Mm3 of water flowed from the upper reach (Shanxi and Hebei Provinces) sections of the Yongding River to the lower reach (Beijing) in 2013. According to the calculated results, Beijing should pay USD6.31 M (¥39.03 M) for water-related ES to Shanxi and Hebei Provinces. The results reveal that the proposed methodology is an available tool that can be used for sustainable development with resolving PES

  19. Collection, storage, retrieval, and publication of water-resources data

    USGS Publications Warehouse

    Showen, C. R.

    1978-01-01

    This publication represents a series of papers devoted to the subject of collection, storage, retrieval, and publication of hydrologic data. The papers were presented by members of the U.S. Geological Survey at the International Seminar on Organization and Operation of Hydrologic Services, Ottawa, Canada, July 15-16, 1976, sponsored by the World Meteorological Organization. The first paper, ' Standardization of Hydrologic Measurements, ' by George F. Smoot discusses the need for standardization of the methods and instruments used in measuring hydrologic data. The second paper, ' Use of Earth Satellites for Automation of Hydrologic Data Collection, ' by Richard W. Paulson discusses the use of inexpensive battery-operated radios to transmit realtime hydrologic data to earth satellites and back to ground receiving stations for computer processing. The third paper, ' Operation Hydrometeorological Data-Collection System for the Columbia River, ' by Nicholas A. Kallio discusses the operation of a complex water-management system for a large river basin utilizing the latest automatic telemetry and processing devices. The fourth paper, ' Storage and Retrieval of Water-Resources Data, ' by Charles R. Showen discusses the U.S. Geological Survey 's National Water Data Storage and Retrieval System (WATSTORE) and its use in processing water resources data. The final paper, ' Publication of Water Resources Data, ' by S. M. Lang and C. B. Ham discusses the requirement for publication of water-resources data to meet the needs of a widespread audience and for archival purposes. (See W78-09324 thru W78-09328) (Woodard-USGS)

  20. Water Environment Improvement for Rural Areas in Developing Countries through Intensive Use of the Existing Water Resources

    NASA Astrophysics Data System (ADS)

    Higashino, Hideaki; Motojima, Hideko; Ozaki, Masuo; Mursan, Anwar

    Securing safe water is an urgent issue to be solved in rural societies in developing countries. Conventional water environment improvement through public works, putting priority on development of water resources, such as construction of dams, well digging, etc., has shown successful results in one hand. However, on the other hand, they generally require large investment cost, long time for administrative process. In addition, inequity of benefit to residents is associated as a potential problem. Meanwhile, intensive use of the existing water resources, with cheap cost and simple technologies, can be effective alternative measures against water shortage where development of water resources is restricted. From the viewpoint, the Study is being conducted to propose water environment improvement through intensive use of the existing water resources. According to the results of the on-site survey conducted in the West Nusa Tenggara Province, Indonesia, it was found out that water environment in the province is deteriorating due to development of beef cattle raising and deforestation. In this paper, the results of the on-site survey are summarized and the water environment improvement plan to mitigate the present status is presented.

  1. A Diagnostic Assessment of Evolutionary Multiobjective Optimization for Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Reed, P.; Hadka, D.; Herman, J.; Kasprzyk, J.; Kollat, J.

    2012-04-01

    This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with 4 or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are provided for which modern MOEAs should serve as tools and benchmarks in the future water resources literature.

  2. The development of water services and their interaction with water resources in European and Brazilian cities

    NASA Astrophysics Data System (ADS)

    Barraqué, B.; Formiga Johnsson, R. M.; Nogueira de Paiva Britto, A. L.

    2008-08-01

    The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  3. Science to support the understanding of Ohio's water resources, 2014-15

    USGS Publications Warehouse

    Shaffer, Kimberly; Kula, Stephanie P.

    2014-01-01

    The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decision makers, policy makers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of the use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2014) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  4. Generation of SEEAW asset accounts based on water resources management models

    NASA Astrophysics Data System (ADS)

    Pedro-Monzonís, María; Solera, Abel; Andreu, Joaquín

    2015-04-01

    One of the main challenges in the XXI century is related with the sustainable use of water. This is due to the fact that water is an essential element for the life of all who inhabit our planet. In many cases, the lack of economic valuation of water resources causes an inefficient water use. In this regard, society expects of policymakers and stakeholders maximise the profit produced per unit of natural resources. Water planning and the Integrated Water Resources Management (IWRM) represent the best way to achieve this goal. The System of Environmental-Economic Accounting for Water (SEEAW) is displayed as a tool for water allocation which enables the building of water balances in a river basin. The main concern of the SEEAW is to provide a standard approach which allows the policymakers to compare results between different territories. But building water accounts is a complex task due to the difficulty of the collection of the required data. Due to the difficulty of gauging the components of the hydrological cycle, the use of simulation models has become an essential tool extensively employed in last decades. The target of this paper is to present the building up of a database that enables the combined use of hydrological models and water resources models developed with AQUATOOL DSSS to fill in the SEEAW tables. This research is framed within the Water Accounting in a Multi-Catchment District (WAMCD) project, financed by the European Union. Its main goal is the development of water accounts in the Mediterranean Andalusian River Basin District, in Spain. This research pretends to contribute to the objectives of the "Blueprint to safeguard Europe's water resources". It is noteworthy that, in Spain, a large part of these methodological decisions are included in the Spanish Guideline of Water Planning with normative status guaranteeing consistency and comparability of the results.

  5. Ground Water on Tropical Pacific Islands - Understanding a Vital Resource

    USGS Publications Warehouse

    Tribble, Gordon

    2008-01-01

    To a casual observer, tropical Pacific islands seem idyllic. Closer scrutiny reveals that their generally small size makes them particularly vulnerable to economic and environmental stresses imposed by rapidly growing populations, increasing economic development, and global climate change. On these islands, freshwater is one of the most precious resources. Ground water is the main source of drinking water on many islands, and for quite a few islands, it is the only reliable source of water throughout the year. Faced with a growing demand for this valuable resource, and the potential negative effects on its availability and quality from changes in global climate, increasingly sophisticated management approaches will be needed to ensure a dependable supply of freshwater for the residents of these islands. Much scientific information has been collected by the U.S. Geological Survey (USGS) and other organizations about the ground-water resources of tropical Pacific islands. The aim of this Circular is to give members of the public, policymakers, and other stakeholders knowledge that will help ensure that this information can be used to make informed decisions about the management of these life-giving resources. As the demand for freshwater grows, new monitoring and research efforts will be needed to (1) characterize the extent and sustainability of ground-water resources on different tropical Pacific islands, (2) better understand linkages between ground-water discharge and freshwater and nearshore ecosystems, and (3) prepare for the effects of climate change, which will likely include the loss of habitable land and reduced areas for the accumulation of ground water as a result of rising sea levels.

  6. Philippines -- country wide water development projects and funds needed. Water crisis in Manila coincide with parliamentarians seminar on water resources and population.

    PubMed

    1997-01-01

    The Philippines' Clean Water Act was developed to protect the country's remaining water resources by institutionalizing mechanisms to monitor, regulate, and control human and industrial activities which contribute to the ongoing environmental degradation of marine and freshwater resources. Approximately 70 participants attended the Philippine Parliamentarians' Conference on Water Resources, Population and Development held December 3-4, 1997, at the Sulo Hotel in Quezon City. Participants included the legislative staff of the members of the House of Representatives and the Senate, Committee Secretaries of the House and Senate, and government and nongovernmental organization officials. Following the opening programs, panel discussions were held on the role of nongovernmental organizations as legitimate monitors of governments' activities; the need to evaluate water sector assessment methods, water policy and strategy, and water legislation standards; and waste water treatment and sewerage systems used in households and industries. The following issues were raised during the conference's open forum: the need to implement new methods in water resource management; the handling of water for both economic and social purposes; the need to implement guidelines, policies, and pricing mechanisms on bottled water; regulating the construction of recreational facilities such as golf courses; and transferring watershed rehabilitation from the Department of Environment and Natural Resources to local water districts. A declaration was prepared and signed by the participants at the close of the conference.

  7. Managing Senegalese water resources: Definition and relative importance of information needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engi, D.

    1998-09-01

    This report provides an overview of the results of the Vital Issues process as implemented for the Senegal Water Resources Management Initiative, a collaborative effort between the Senegalese Ministry of Water Resources and Sandia National Laboratories. This Initiative is being developed to assist in the development of an efficient and sustainable water resources management system for Senegal. The Vital Issues process was used to provide information for the development of a proposal that will recommend actions to address the key management issues and establish a state-of-the-art decision support system (DSS) for managing Senegal`s water resources. Three Vital Issues panel meetingsmore » were convened to (1) develop a goal statement and criteria for identifying and ranking the issues vital to water resources management in Senegal; (2) define and rank the issues, and (3) identify and prioritize a preliminary list of information needed to address the vital issues. The selection of panelists from the four basic institutional perspectives (government, industry, academe, and citizens` interest groups) ensured a high level of stakeholder representation on the panels.« less

  8. Interventions and Interactions: Understanding Coupled Human-Water Dynamics for Improved Water Resources Management in the Himalayas

    NASA Astrophysics Data System (ADS)

    Crootof, A.

    2017-12-01

    Understanding coupled human-water dynamics offers valuable insights to address fundamental water resources challenges posed by environmental change. With hydropower reshaping human-water interactions in mountain river basins, there is a need for a socio-hydrology framework—which examines two-way feedback loops between human and water systems—to more effectively manage water resources. This paper explores the cross-scalar interactions and feedback loops between human and water systems in river basins affected by run-of-the-river hydropower and highlights the utility of a socio-hydrology perspectives to enhance water management in the face of environmental change. In the Himalayas, the rapid expansion of run-of-the-river hydropower—which diverts streamflow for energy generation—is reconfiguring the availability, location, and timing of water resources. This technological intervention in the river basin not only alters hydrologic dyanmics but also shapes social outcomes. Using hydropower development in the highlands of Uttarakhand, India as a case study, I first illustrate how run-of-the-river projects transform human-water dynamics by reshaping the social and physical landscape of a river basin. Second, I emphasize how examining cross-scalar feedbacks among structural dynamics, social outcomes, and values and norms in this coupled human-water system can inform water management. Third, I present hydrological and social literature, raised separately, to indicate collaborative research needs and knowledge gaps for coupled human-water systems affected by run-of-the-river hydropower. The results underscore the need to understand coupled human-water dynamics to improve water resources management in the face of environmental change.

  9. Correlation Between Existence of Reef Sharks with Abundance of Reef Fishes in South Waters of Morotai Island (North Moluccas)

    NASA Astrophysics Data System (ADS)

    Mukharror, Darmawan Ahmad; Tiara Baiti, Isnaini; Ichsan, Muhammad; Pridina, Niomi; Triutami, Sanny

    2017-10-01

    Despite increasing academic research citation on biology, abundance, and the behavior of the blacktip reef sharks, the influence of reef fish population on the density of reef sharks: Carcharhinus melanopterus and Triaenodon obesus population in its habitat were largely unassessed. This present study examined the correlation between abundance of reef fishes family/species with the population of reef sharks in Southern Waters of Morotai Island. The existence of reef sharks was measured with the Audible Stationary Count (ASC) methods and the abundance of reef fishes was surveyed using Underwater Visual Census (UVC) combined with Diver Operated Video (DOV) census. The coefficient of Determination (R2) was used to investigate the degree of relationships between sharks and the specific reef fishes species. The research from 8th April to 4th June 2015 showed the strong positive correlations between the existence of reef sharks with abundance of reef fishes. The correlation values between Carcharhinus melanopterus/Triaenodon obesus with Chaetodon auriga was 0.9405, blacktip/whitetip reef sharks versus Ctenochaetus striatus was 0.9146, and Carcharhinus melanopterus/Triaenodon obesus to Chaetodon kleinii was 0.8440. As the shark can be worth more alive for shark diving tourism than dead in a fish market, the abundance of these reef fishes was important as an early indication parameter of shark existence in South Water of Morotai Island. In the long term, this highlights the importance of reef fishes abundance management in Morotai Island’s Waters to enable the establishment of appropriate and effective reef sharks conservation.

  10. Advanced Water Purification System for In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  11. Seasonal abundance and vertical distribution of capelin (Mallotus villosus) in relation to water temperature at a coastal site off eastern Newfoundland

    USGS Publications Warehouse

    Methven, David A.; Piatt, John F.

    1991-01-01

    The seasonal abundance and vertical distribution of capelin in relation to water temperature have been investigated by conducting repeated hydroacoustic surveys at a coastal site off eastern Newfoundland. Water temperatures were warmer in 1983 than in 1984 as indicated by the earlier appearance and greater depth of the seasonal thermocline. Correspondingly, schools of capelin appeared earlier, were more abundant, and extended deeper in the water column in 1983 than in 1984. Most capelin were found between the surface and the 5°C isotherm. In both years, initial peaks of capelin abundance occurred when nearshore water temperatures increased from about 0-1°C to above 6°C and, at or near, periods of maximum tidal oscillation. Short-term variations in the depth of the 5°C isotherm were related to nearshore wind-induced upwelling events. Annual variations corresponded to the volume of cold (>0°C) water and sea-ice transported south by the Labrador Current.

  12. Water Resources Data, Massachusetts and Rhode Island, Water Year 2003

    USGS Publications Warehouse

    Socolow, R.S.; Zanca, J.L.; Driskell, T.R.; Ramsbey, L.R.

    2004-01-01

    Water resources data for the 2003 water year for Massachusetts and Rhode Island consists of records of stage, discharge, and water quality of streams; contents of lakes and reservoirs; and water levels of ground-water wells. This report contains discharge records for 108 gaging stations, stage records for 2 gaging stations, stage records for 3 ponds; monthend contents of 1 reservoir, precipitation totals at 8 gaging stations; water quality for 27 gaging stations, air temperature at 2 climatological stations; water levels for 129 observation wells, and ground-water quality for 15 wells. Miscellaneous hydrologic data were collected at various sites that were not a part of the systematic data-collection program and are published as miscellaneous discharge measurements and miscellaneous surface-water-quality data. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Massachusetts and Rhode Island.

  13. User's Guide to the Water-Analysis Screening Tool (WAST): A Tool for Assessing Available Water Resources in Relation to Aquatic-Resource Uses

    USGS Publications Warehouse

    Stuckey, Marla H.; Kiesler, James L.

    2008-01-01

    A water-analysis screening tool (WAST) was developed by the U.S. Geological Survey, in partnership with the Pennsylvania Department of Environmental Protection, to provide an initial screening of areas in the state where potential problems may exist related to the availability of water resources to meet current and future water-use demands. The tool compares water-use information to an initial screening criteria of the 7-day, 10-year low-flow statistic (7Q10) resulting in a screening indicator for influences of net withdrawals (withdrawals minus discharges) on aquatic-resource uses. This report is intended to serve as a guide for using the screening tool. The WAST can display general basin characteristics, water-use information, and screening-indicator information for over 10,000 watersheds in the state. The tool includes 12 primary functions that allow the user to display watershed information, edit water-use and water-supply information, observe effects downstream from edited water-use information, reset edited values to baseline, load new water-use information, save and retrieve scenarios, and save output as a Microsoft Excel spreadsheet.

  14. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  15. Water resource monitoring in Iran using satellite altimetry and satellite gravimetry (GRACE)

    NASA Astrophysics Data System (ADS)

    Khaki, Mehdi; Sneeuw, Nico

    2015-04-01

    Human civilization has always been in evolution by having direct access to water resources throughout history. Water, with its qualitative and quantitative effects, plays an important role in economic and social developments. Iran with an arid and semi-arid geographic specification is located in Southwest Asia. Water crisis has appeared in Iran as a serious problem. In this study we're going to use various data sources including satellite radar altimetry and satellite gravimetry to monitor and investigate water resources in Iran. Radar altimeters are an invaluable tool to retrieve from space vital hydrological information such as water level, volume and discharge, in particular from regions where the in situ data collection is difficult. Besides, Gravity Recovery and Climate Experiment (GRACE) provide global high resolution observations of the time variable gravity field of the Earth. This information is used to derive spatio-temporal changes of the terrestrial water storage body. This study isolates the anthropogenic perturbations to available water supplies in order to quantify human water use as compared to available resources. Long-term monitor of water resources in Iran is contain of observing freshwaters, lakes and rivers as well as exploring ground water bodies. For these purposes, several algorithms are developed to quantitatively monitor the water resources in Iran. The algorithms contain preprocessing on datasets, eliminating biases and atmospheric corrections, establishing water level time series and estimating terrestrial water storage considering impacts of biases and leakage on GRACE data. Our primary goal in this effort is to use the combination of satellite radar altimetry and GRACE data to study on water resources as well as methods to dealing with error sources include cross over errors and atmospheric impacts.

  16. Resources for National Water Savings for Outdoor Water Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melody, Moya; Stratton, Hannah; Williams, Alison

    2014-05-01

    In support of efforts by the U.S. Environmental Agency's (EPA's) WaterSense program to develop a spreadsheet model for calculating the national water and financial savings attributable to WaterSense certification and labeling of weather-based irrigation controllers, Lawrence Berkeley National Laboratory reviewed reports, technical data, and other information related to outdoor water use and irrigation controllers. In this document we categorize and describe the reviewed references, highlighting pertinent data. We relied on these references when developing model parameters and calculating controller savings. We grouped resources into three major categories: landscapes (section 1); irrigation devices (section 2); and analytical and modeling efforts (sectionmore » 3). Each category is subdivided further as described in its section. References are listed in order of date of publication, most recent first.« less

  17. 75 FR 27575 - Agency Information Collection Activities: State Water Resources Research Institute Program Annual...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ...). SUPPLEMENTARY INFORMATION: I. Abstract The Water Resources Research Act of 1984, as amended (42 U.S.C. 10301 et seq.), authorizes a water resources research institute or center in each of the 50 states, the... state water resources research institutes authorized by the Water Resources Research Act of 1983, as...

  18. Understanding and managing the food-energy-water nexus - opportunities for water resources research

    NASA Astrophysics Data System (ADS)

    Cai, Ximing; Wallington, Kevin; Shafiee-Jood, Majid; Marston, Landon

    2018-01-01

    Studies on the food, energy, and water (FEW) nexus lay a shared foundation for researchers, policy makers, practitioners, and stakeholders to understand and manage linked production, utilization, and security of FEW systems. The FEW nexus paradigm provides the water community specific channels to move forward in interdisciplinary research where integrated water resources management (IWRM) has fallen short. Here, we help water researchers identify, articulate, utilize, and extend our disciplinary strengths within the broader FEW communities, while informing scientists in the food and energy domains about our unique skillset. This paper explores the relevance of existing and ongoing scholarship within the water community, as well as current research needs, for understanding FEW processes and systems and implementing FEW solutions through innovations in technologies, infrastructures, and policies. Following the historical efforts in IWRM, hydrologists, water resources engineers, economists, and policy analysts are provided opportunities for interdisciplinary studies among themselves and in collaboration with energy and food communities, united by a common path to achieve sustainability development goals.

  19. Water resources of Prince William Forest Park, Virginia

    USGS Publications Warehouse

    Brown, G. Allan

    1981-01-01

    Prince William Forest Park is in the southern part of Prince William County, Va. Its natural beauty and nearness to Washington, D.C. have made it one of the most popular recreation areas in northern Virginia. To help the National Park Service plan the development of new facilities and effectively manage its total resources, the U.S. Geological Survey made a hydrologic study of the park from October 1972 to November 1975. The overall objective of the Survey 's study was to evalute the quantity and quality of the park 's water resources. Available information was compiled and analyzed, and new data on streamflow, ground-water levels, and the chemical quality of water were collected. Test wells were drilled and aquifer tests made at the sites of wells to evaluate the occurrence and availability of ground water. (USGS)

  20. Water resources data of the Seward area, Alaska

    USGS Publications Warehouse

    Dearborn, Larry L.; Anderson, Gary S.; Zenone, Chester

    1979-01-01

    Seward, Alaska, obtains a water supply of about 2 million gallons per day primarily from Marathon Springs and the Fort Raymond well field. The springs have supplied up to 800 gallons per minute, and the city 's deep wells currently have a combined capacity of about 3,000 gallons per minute. Freshwater is abundant in the area; future public supplies could be derived from both shallow and deep ground water and from stream impoundment with diversion. High deep-aquifer transmissivity at the Fort Raymond well field indicates that additional wells could be developed there. Water quality is generally not a problem for public consumption. A flood potential exists along several streams having broad alluvial fans. (Woodard-USGS)

  1. Effects of virtual water flow on regional water resources stress: A case study of grain in China.

    PubMed

    Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute

    2016-04-15

    Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Water on Mars - Volatile history and resource availability

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    1990-01-01

    An attempt is made to define the available deposits of water in the near-surface region of Mars which will be available to human exploration missions. The Martian seasonal water cycle is reviewed, and geochemical and geological constraints on the availability of water are examined. It is concluded that the only sure source of water in amounts significant as a resource are in the polar ice deposits.

  3. Water Resources Data, New Jersey, Water Year 2002, Volume 1. Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Spehar, A.B.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.; Holzer, G.K.

    2003-01-01

    Water-resources data for the 2002 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 93 gaging stations; tide summaries at 31 gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 104 crest-stage partial-record stations and stage-only at 31 tidal crest-stage gages. Locations of these sites are shown in figures 8-11. Additional water data were collected at various sites that are not part of the systematic data-collection program. Discharge measurements were made at 201 low-flow partial-record stations and 121 miscellaneous sites.

  4. EPA's Safe and Sustainable Water Resources Research Program

    EPA Science Inventory

    Increasing demands for sources of clean water—combined with changing land use practices, population growth, aging infrastructure, and climate change and variability—pose significant threats to our water resources. Failure to manage the Nation’s waters in an inte...

  5. Climate Forecasts and Water Resource Management: Applications for a Developing Country

    NASA Astrophysics Data System (ADS)

    Brown, C.; Rogers, P.

    2002-05-01

    While the quantity of water on the planet earth is relatively constant, the demand for water is continuously increasing. Population growth leads to linear increases in water demand, and economic growth leads to further demand growth. Strzepek et al. calculate that with a United Nations mean population estimate of 8.5 billion people by 2025 and globally balanced economic growth, water use could increase by 70% over that time (Strzepek et al., 1995). For developing nations especially, supplying water for this growing demand requires the construction of new water supply infrastructure. The prospect of designing and constructing long life-span infrastructure is clouded by the uncertainty of future climate. The availability of future water resources is highly dependent on future climate. With realization of the nonstationarity of climate, responsible design emphasizes resiliency and robustness of water resource systems (IPCC, 1995; Gleick et al., 1999). Resilient systems feature multiple sources and complex transport and distribution systems, and so come at a high economic and environmental price. A less capital-intense alternative to creating resilient and robust water resource systems is the use of seasonal climate forecasts. Such forecasts provide adequate lead time and accuracy to allow water managers and water-based sectors such as agriculture or hydropower to optimize decisions for the expected water supply. This study will assess the use of seasonal climate forecasts from regional climate models as a method to improve water resource management in systems with limited water supply infrastructure

  6. Infrared photography and imagery in water resources research

    USGS Publications Warehouse

    Robinove, Charles J.

    1965-01-01

    Infrared photography has restricted usefulness in general water resources studies but is particularly useful in special problems such as shoreline mapping. Infrared imagery is beginning to be used in water resources studies for the identification of surface and sub surface thermal anomalies as expressed at the surface and the measurement of apparent water surface temperatures. It will attain its maximum usefulness only when interpretation criteria for infrared imagery are fully developed. Several important hydrologic problems to which infrared imagery may be applied are: (1) determination of circulation and cooling of water in power plant cooling ponds, (2) measurement of river temperature and temperature decline downstream from power plants discharging heated water, (3) identification of submarine springs along coasts, and (4) measurement of temperature differences along streams as indicators of effluent seepage of ground water. Although it is possible at this time to identify many features of importance to hydrology by the use of infrared imagery, the task remaining is to develop criteria to show the hydrologic significance of the features.

  7. Water-resources data for the United States: water year 2011

    USGS Publications Warehouse

    ,

    2011-01-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by NWISWeb. Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. From 1962 until 2005, reports were published by State as paper documents, although most reports since the mid-1990s are also available in electronic form through this web page. Reports prior to 1962 were published in occasional USGS Water-Supply Papers and other reports.

  8. Water-resources data for the United States: water year 2010

    USGS Publications Warehouse

    ,

    2010-01-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by NWISWeb. Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. From 1962 until 2005, reports were published by State as paper documents, although most reports since the mid-1990s are also available in electronic form through this web page. Reports prior to 1962 were published in occasional USGS Water-Supply Papers and other reports.

  9. Water-resources data for the United States: water year 2007

    USGS Publications Warehouse

    ,

    2007-01-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by NWISWeb. Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. From 1962 until 2005, reports were published by State as paper documents, although most reports since the mid-1990s are also available in electronic form through this web page. Reports prior to 1962 were published in occasional USGS Water-Supply Papers and other reports.

  10. Water-resources data for the United States: water year 2008

    USGS Publications Warehouse

    ,

    2008-01-01

    Water resources data are published annually for use by engineers, scientists, managers, educators, and the general public. These archival products supplement direct access to current and historical water data provided by NWISWeb. Beginning with Water Year 2006, annual water data reports are available as individual electronic Site Data Sheets for the entire Nation for retrieval, download, and localized printing on demand. National distribution includes tabular and map interfaces for search, query, display and download of data. From 1962 until 2005, reports were published by State as paper documents, although most reports since the mid-1990s are also available in electronic form through this web page. Reports prior to 1962 were published in occasional USGS Water-Supply Papers and other reports.

  11. Smart Markets for Water Resources

    NASA Astrophysics Data System (ADS)

    Raffensperger, John

    2017-04-01

    Commercial water users often want to trade water, but their trades can hurt other users and the environment. So government has to check every transaction. This checking process is slow and expensive. That's why "free market" water trading doesn't work, especially with trading between a single buyer and a single seller. This talk will describe a water trading mechanism designed to solve these problems. The trading mechanism is called a "smart market". A smart market allows simultaneous many-to-many trades. It can reduce the transaction costs of water trading, while improving environmental outcomes. The smart market depends on a combination of recent technologies: hydrology simulation, computer power, and the Internet. Our smart market design uses standard hydrological models, user bids from a web page, and computer optimization to maximize the economic value of water while meeting all environmental constraints. Before the smart market can be implemented, however, users and the water agency must meet six critical prerequisites. These prerequisites may be viewed as simply good water management that should be done anyway. I will describe these prerequisites, and I will briefly discuss common arguments against water markets. This talk will be an abstract of a forthcoming book, "Smart Markets for Water Resources: A Manual for Implementation," by John F. Raffensperger and Mark W. Milke, from Springer Publishing.

  12. CURRENT CONDITIONS AND RESIDENCE PREFERENCES OR CITIZENS' PERCEPTIONS ON NONCONVENTIONAL WATER RESOURCES

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Yoshiaki; Aramaki, Toshiya

    Preferences or perceptions of ordinary citizens on three kinds of nonconventional water resources including rainwater, permissible groundwater exuding to underground railway stations and tunnels and reclaimed wastewater were investigated by use of the Internet survey method. The survey results were analysed with analytical hierar chal process (AHP) and willingness to pay (WTP). Weight vectors of natural environment and people's lives were found larger than other three first order evaluation conditions, society, economics and technology. The order of the weight vector values for the three water resources were rainwater, reclaimed wastewater and permissible groundwater. That for the five water usages were agricultural and horticulture water, water storage in preparation for disaster, toilet flushing water, environment water and sprinkler water for washing road and cooling atmosphere temperature. The difference between toilet flushing water and environment water was not significant by 5% significance. The analyzed data showed that differences between the weight vector values of the alternatives (water resources and their usages) became small by increasing the number of the evaluation conditions, which would be a topic to be resolved for AHP application to actual public projects. For water resources, WTP with public budgets was Japanese Yen (JY) 53,100-55,100 person-1 year-1, and WTP with private finances was JY 19,100-20,800 person-1 year-1. For water usages, public WTP was JY 20,400-47,200 person-1 year-1 and private WTP was JY 8,400-16,000 person-1 year-1. The orders of WTP values were similar to the orders of the weight vector values for both water resources and their usages obtained by the AHP analysis. Effective dissemination subjects and objects of the nonconventional water resources and their usages were extracted by the analysis for attributes including sex, age, living area, occupation and education.

  13. Water-resources activities of the U.S. Geological Survey

    USGS Publications Warehouse

    Appel, D. H.

    1990-01-01

    The U.S. Geological Survey (USGS) has been active in West Virginia since the early 1900's. During recent years, the District completed several investigations as well as initiated others. An intense effort has been made to publish interpretive reports and data on a near-current basis. As a result of this effort, a significant number of water resources reports were completed and/or published during the 1989 fiscal year. This report contains a complete list of USGS reports addressing West Virginia hydrology as of December 1989. The mission of the Water Resources Division is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation 's water resources for the overall benefit of the people in the United States. This is accomplished, in large part , through cooperation with other Federal and non-Federal agencies, by: (1) Collecting, on a systematic basis, data needed for the continuing determination and evaluation of the quantity, quality, and use of the Nation 's water resources; (2) Conducting analytical and interpretive water resource appraisals describing the occurrence, availability, and the physical, chemical, and biological characteristics of surface and groundwater; (3) conducting supportive basic and problem-oriented research in hydraulics, hydrology, and related fields of science to improve the scientific basis for investigations and measurement techniques and to understand hydrologic systems sufficiently well to quantitatively predict their response to stress, either natural or manmade; (4) disseminating the water data and the results of these investigations and research through reports, maps, computerized information services, and other forms of public releases; (5) Coordinating the activities of Federal agencies in the acquisition of water data for streams, lakes, reservoirs, estuaries, and groundwaters; and (6) Providing scientific and technical assistance in hydrologic fields to other Federal

  14. Public participation in water resources management: Restructuring model of upstream Musi watershed

    NASA Astrophysics Data System (ADS)

    Andriani, Yuli; Zagloel, T. Yuri M.; Koestoer, R. H.; Suparmoko, M.

    2017-11-01

    Water is the source of life needed by living things. Human as one of living most in needs of water. Because the population growth follows the geometrical progression, while the natural resource increases calculates the arithmetic. Humans besides needing water also need land for shelter and for their livelihood needs, such as gardening or rice farmers. If the water absorption area is reduced, water availability will decrease. Therefore it is necessary to conduct an in-depth study of water resources management involving the community. The purpose of this study is to analyze community participation in water resources management, so that its availability can still meet the needs of living and sustainable. The method that used the level of community participation according to Arstein theory. The results obtained that community participation is at the level of partnership and power delegation. This level of participation is at the level of participation that determines the sustainability of water resources for present and future generations.

  15. Recent Progress in Energy-Driven Water Splitting.

    PubMed

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng-Duei; Liu, Shuhua; Teng, Choon Peng; Han, Ming-Yong

    2017-05-01

    Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.

  16. Water resources of Plaquemines Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Larry B.

    2013-01-01

    In 2010, about 85.1 million gallons per day (Mgal/d) of water were withdrawn in Plaquemines Parish, Louisiana. Surface-water sources accounted for almost all withdrawals; groundwater sources accounted for only 0.04 Mgal/d. Industrial use accounted for about 92 percent of the total water withdrawn. Other categories of use included public supply, rural domestic, and livestock. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals in Plaquemines Parish peaked at about 177 Mgal/d in 1975. The peak resulted primarily from an increase in industrial surface-water withdrawals from about 23.8 Mgal/d in 1970 to 171 Mgal/d in 1975. Since 1975, water withdrawals have ranged from about 157 to 85.1 Mgal/d, with industrial surface-water withdrawals accounting for most of the variation. This fact sheet summarizes basic information on the water resources of Plaquemines Parish. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  17. Studies on water resources carrying capacity in Tuhai river basin based on ecological footprint

    NASA Astrophysics Data System (ADS)

    Wang, Chengshuai; Xu, Lirong; Fu, Xin

    2017-05-01

    In this paper, the method of the water ecological footprint (WEF) was used to evaluate water resources carrying capacity and water resources sustainability of Tuhai River Basin in Shandong Province. The results show that: (1) The WEF had a downward trend in overall volatility in Tuhai River Basin from 2003 to 2011. Agricultural water occupies high proportion, which was a major contributor to the WEF, and about 86.9% of agricultural WEF was used for farmland irrigation; (2) The water resources carrying capacity had a downward trend in general, which was mostly affected by some natural factors in this basin such as hydrology and meteorology in Tuhai River Basin; (3) Based on analysis of water resources ecological deficit, it can be concluded that the water resources utilization mode was in an unhealthy pattern and it was necessary to improve the utilization efficiency of water resources in Tuhai River Basin; (4) In view of water resources utilization problems in the studied area, well irrigation should be greatly developed at the head of Yellow River Irrigation Area(YRIA), however, water from Yellow River should be utilized for irrigation as much as possible, combined with agricultural water-saving measures and controlled exploiting groundwater at the tail of YRIA. Therefore, the combined usage of surface water and ground water of YRIA is an important way to realize agricultural water saving and sustainable utilization of water resources in Tuhai River Basin.

  18. Lunar Water Resource Demonstration (LWRD) Test Results

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Captain, Janine E.; Quinn, Jacqueline W.; Gibson, Tracy L.; Perusich, Stephen A.; Weis, Kyle H.

    2009-01-01

    NASA has undertaken the In-Situ Resource Utilization (lSRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The RESOLVE chemical processing system was mounted within the CMU rover "Scarab" and successfully demonstrated on Hawaii's Mauna Kea volcano in November 2008. This technology could be used on Mars as well. As described at the 2008 Mars Society Convention, the Lunar Water Resource Demonstration (LWRD) supports the objectives of the RESOLVE project by capturing and quantifying water and hydrogen released by regolith upon heating. Field test results for the quantification of water using LWRD showed that the volcanic ash (tephra) samples contained 0.15-0.41% water, in agreement with GC water measurements. Reduction of the RH in the surge tank to near zero during recirculation show that the water is captured by the water beds as desired. The water can be recovered by heating the Water Beds to 230 C or higher. Test results for the capture and quantification of pure hydrogen have shown that over 90% of the hydrogen can be captured and 98% of the absorbed hydrogen can be recovered upon heating the hydride to 400 C and desorbing the hydrogen several times into the evacuated surge tank. Thus, the essential requirement of capturing hydrogen and recovering it has been demonstrated. ,

  19. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches.

    PubMed

    Oster, Ryan J; Wijesinghe, Rasanthi U; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2014-12-16

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10 E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  20. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework.

    PubMed

    Xinchun, Cao; Mengyang, Wu; Xiangping, Guo; Yalian, Zheng; Yan, Gong; Nan, Wu; Weiguang, Wang

    2017-12-31

    An indicator, agricultural water stress index (AWSI), was established based blue-green water resources and water footprint framework for regional water scarcity in agricultural production industry evaluation. AWSI is defined as the ratio of the total agricultural water footprint (AWF) to water resources availability (AWR) in a single year. Then, the temporal and spatial patterns of AWSI in China during 1999-2014 were analyzed based on the provincial AWR and AWF quantification. The results show that the annual AWR in China has been maintained at approximately 2540Gm 3 , of which blue water accounted for >70%. The national annual AWF was approximately 1040Gm 3 during the study period and comprised 65.6% green, 12.7% blue and 21.7% grey WFs The space difference in both the AWF for per unit arable land (AWFI) and its composition was significant. National AWSI was calculated as 0.413 and showed an increasing trend in the observed period. This index increased from 0.320 (mid-water stress level) in 2000 to 0.490 (high water stress level) in the present due to the expansion of the agricultural production scale. The Northern provinces, autonomous regions and municipalities (PAMs) have been facing high water stress, particularly the Huang-Huai-Hai Plain, which was at a very high water stress level (AWSI>0.800). Humid South China faces increasingly severe water scarcity, and most of the PAMs in the region have converted from low water stress level (AWSI=0.100-0.200) to mid water stress level (AWSI=0.200-0.400). The AWSI is more appropriate for reflecting the regional water scarcity than the existing water stress index (WSI) or the blue water scarcity (BWS) indicator, particularly for the arid agricultural production regions due to the revealed environmental impacts of agricultural production. China should guarantee the sustainable use of agricultural water resources by reducing its crop water footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Participatory Water Resources Modeling in a Water-Scarce Basin (Rio Sonora, Mexico) Reveals Uncertainty in Decision-Making

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Vivoni, E. R.; Halvorsen, K. E.; Kossak, D.

    2014-12-01

    The Rio Sonora Basin (RSB) in northwest Mexico has a semi-arid and highly variable climate along with urban and agricultural pressures on water resources. Three participatory modeling workshops were held in the RSB in spring 2013. A model of the water resources system, consisting of a watershed hydrology model, a model of the water infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants were asked to design water resources management strategies by choosing from a range of supply augmentation and demand reduction measures associated with water conservation. Participants assessed water supply reliability, measured as the average daily supply divided by daily demand for historical and future periods, by probing with the climate and development scenarios. Pre- and post-workshop-surveys were developed and administered, based on conceptual models of workshop participants' beliefs regarding modeling and local water resources. The survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops. The selected water resources strategies varied widely among participants. Wastewater reuse for industry and aquifer recharge were popular options, but significant numbers of participants thought that inter-basin transfers and desalination were viable. The majority of participants indicated that substantial increases in agricultural water efficiency could be achieved. On average, participants chose strategies that produce reliabilities over the historical and future periods of 95%, but more than 20% of participants were apparently satisfied with reliabilities lower than 80%. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region.

  2. Framework for Assessing Water Resource Sustainability in River Basins

    NASA Astrophysics Data System (ADS)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  3. Analyses of impacts of China's international trade on its water resources and uses

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Y.; Yang, H.; Shi, M. J.; Zehnder, A. J. B.; Abbaspour, K. C.

    2011-04-01

    This study provides an insight into the impact of China's international trade of goods and services on its water resources and uses. Virtual water flows associated with China's international trade are quantified in an input-output framework. The analysis is scaled down to the sectoral and provincial levels to trace the origins and destinations of virtual water flows associated with the international trade. The results reveal that China is a net virtual water exporter of 4.7 × 1010 m3 year-1, accounting for 2.1% of its total water resources and 8.9% of the total water use. Water scarce regions tend to have higher percentages of virtual water export relative to their water resources and water uses. In the water scarce Huang-Huai-Hai region, the net virtual water export accounts for 7.9% of the region's water resources and 11.2% of its water uses. For individual sectors, major net virtual water exporters are those where agriculture provides raw materials in the initial process of the production chain and/or pollution intensity is high. The results suggest that China's economic gains from being a world "manufacture factory" have come at a high cost to its water resources and through pollution to its environment.

  4. Relating river geomorphology to the abundance of periphyton in New Zealand rivers

    NASA Astrophysics Data System (ADS)

    Hoyle, Jo; Hicks, Murray; Kilroy, Cathy

    2013-04-01

    Aquatic plants (including both periphyton and macrophytes) are a natural component of stream and river systems. However, abundant growth of instream plants can have detrimental impacts on the values of rivers. For example, periphyton in rivers provides basal resources for food webs and provides an important ecological service by removing dissolved nutrients and contaminants from the water column. However, high abundance of periphyton can have negative effects on habitat quality, water chemistry and biodiversity, and can reduce recreation and aesthetic values. The abundance of periphyton in rivers is influenced by a number of factors, but two key factors can be directly influenced by human activities: flow regimes and nutrient concentrations. Establishing quantitative relationships between periphyton abundance and these factors has proven to be difficult but remains an urgent priority due to the need to manage the ecological impacts of water abstraction and eutrophication of rivers worldwide. This need is particularly strong in New Zealand, where there is increasing demand for water for industry, power generation and agriculture. However, we currently have limited ability to predict the effects of changes in the mid-range flow regime on the presence/absence, abundance and composition of aquatic plants. Current water allocation limits are based on simple flow statistics, such as multiples of the median flow, but these are regional averages and can be quite unreliable on a site-specific basis. This stems largely from our limited ability to transform flow data into ecologically meaningful physical processes that directly affect plants (e.g., drag, abrasion, bed movement). The research we will present examines whether geomorphic variables, such as frequency of bed movement, are useful co-predictors in periphyton abundance-flow relationships. We collected topographic survey data and bed sediment data for 20 study reaches in the Manawatu-Wanganui region of New Zealand

  5. The U.S. Geological Survey Federal-State cooperative water-resources program

    USGS Publications Warehouse

    Gilbert, Bruce K.; Buchanan, Thomas J.

    1981-01-01

    The U.S. Geological Survey Federal-State Cooperative Water Resources Program is a partnership between the Geological Survey and State and local agencies for the collection of the hydrologic information needed for the continuing determination and evaluation of the quantity, quality, and use of the Nation 's water resources. The Cooperative Program has served the Nation for more than 80 years, and in 1981 more than 800 State and local agencies have cooperative programs with the Geological Survey with total funding over $80 million. The process of project selection in the Cooperative Water Resources Program is a mutual effort in which Geological Survey represents national interests, including the needs of other Federal agencies, and the cooperator represents State and local interests. The result is a balanced program that involves careful evaluation of needs, priorities, and resources. The cost sharing ratio of 50-50 is examined and determined to be the best ratio to effectively assess the Nation 's water resources. The Cooperative Program is and has been relevant to the problems of the day. Much of the current technology in ground-water management, ground-water quality, and flood-plain management--to name a few--was developed as part of the Cooperative Program. (USGS)

  6. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  7. California Institute for Water Resources - California Institute for Water

    Science.gov Websites

    Information Nitrogen Management Rosenberg Forum Follow us on Twitter Join Email List 174446display Resources Publications Keep in Touch QUICK LINKS Our Blog: The Confluence Drought & Water Information Nitrogen Management Rosenberg Forum Follow us on Twitter Join Email List 174446display Share Print Site Map

  8. Applications of space technology to water resources management

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1977-01-01

    Space technology transfer is discussed in terms of applying visible and infrared remote sensing measurement to water resources management. Mapping and monitoring of snowcovered areas, hydrologic land use, and surface water areas are discussed, using information acquired from LANDSAT and NOAA satellite systems.

  9. Hydrological Modeling and WEB-GIS for the Water Resource Management

    NASA Astrophysics Data System (ADS)

    Pierleoni, A.; Bellezza, M.; Casadei, S.; Manciola, P.

    2006-12-01

    Water resources are a strategically natural resource although they can be extremely susceptible to degradation. As a matter of fact the increasing demand from multipurpose uses, which often are in competition amongst themselves, seems to affect the concept of sustainability per se', thus highlighting phenomena of quality-quantity degradation of water resources. In this context, the issue of water resource management rises to a more important role, especially when, other then the traditional uses for civil, industrial and agronomic purposes, environmental demands are taken into consideration. In particular, for environmental demands we mean: to preserve minimal flows, to conserve ecosystems and biodiversities, to protect and improve the environment and finally also the recreational facilities. In the present work, two software tools are presented; they combine the scientific aspect of the issues with a feasible and widely accessible application of the mathematical modeling in techno-operative fields within a sustainable management policy of the water resource at the basin scale. The first evaluation model of the available superficial water resource bases its algorithms upon regionalization procedures of flow parameters deduced from the geomorphologic features of the soil of the basin (BFI, Area) and presents, as output, a set of duration curves (DC) of the natural, measurable (natural after withdrawal), and residual (discharge usable for dissipative use) flow. The hydrological modeling combined with a GIS engine allows to process the dataset and regionalize the information of each section of the hydrographic network, in order to attain information about the effect of upriver withdrawals, in terms of evaluation parameters (measurable DC) to maintain an optimal water supply all along the entire downstream network. This model, projected with a WEB interface developed in PERL and connected to a MySQL database, has also been tested at the basin and sub-basin scale as an

  10. Guide to North Dakota's ground-water resources

    USGS Publications Warehouse

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  11. Water resource conflicts in the Middle East.

    PubMed

    Drake, C

    1997-01-01

    This article discusses the causes and sources of water resource conflict in the 3 major international river basins of the Middle East: the Tigris-Euphrates, the Nile, and the Jordan-Yarmuk. The physical geography of the Middle East is arid due to descending air, northeast trade winds, the southerly location, and high evaporation rates. Only Turkey, Iran, and Lebanon have adequate rainfall for population needs. Their mountainous geography and more northerly locations intercept rain and snow bearing westerly winds in winter. Parts of every other country are vulnerable to water shortages. Rainfall is irregular. Water resource conflicts are due to growing populations, economic development, rising standards of living, technological developments, political fragmentation, and poor water management. Immigration to the Jordan-Yarmuk watershed has added to population growth in this location. Over 50% of the population in the Middle East lives in urban areas where populations consume 10-12 times more water than those in rural areas. Water is wasted in irrigation schemes and huge dams with reservoirs where increased evaporation occurs. Technology results in greater water extraction of shallow groundwater and pollution of rivers and aquifers. British colonial government control led to reduced friction in most of the Nile basin. Now all ethnic groups have become more competitive and nationalistic. The Cold War restrained some of the conflict. Israel obtains 40% of its water from aquifers beneath the West Bank and Gaza. Geopolitical factors determine the mutual goodwill in managing international water. The 3 major water basins in the Middle East pose the greatest risk of water disputes. Possible solutions include conservation, better management, prioritizing uses, technological solutions, increased cooperation among co-riparians, developing better and enforceable international water laws, and reducing population growth rates.

  12. Managing Nicaraguan Water Resources Definition and Relative Importance of Information Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engi, D.; Guillen, S.M.; Vammen, K.

    1999-01-01

    This report provides an overview of the results of the Vital the Nicaraguan Water Resources Management Initiative, Issues process as implemented for a collaborative effort between the Nicaraguan Ministry of Environment and Natural Resources and Sandia National Laboratories. This initiative is being developed to assist in the development of an efficient and sustainable water resources management system for Nicamgua. The Vital Issues process was used to provide information for developing a project that will develop and implement an advanced information system for managing Nicaragua's water resources. Three Vital Issues panel meetings were convened to 1) develop a mission statement andmore » evaluation criteria for identifying and ranking the issues vital to water resources management in Nicaragua 2) define and rank the vital issues; and 3) identify a preliminary list of information needed to address the vital issues. The selection of panelists from the four basic institutional perspectives- government, industiy, academe, and citizens' groups (through nongovernmental organizations (NGOs))-ensured a high level of stakeholder representation on the panels. The already existing need for a water resource management information system has been magnified in the aftemnath of Hurricane Mitch. This information system would be beneficial for an early warning system in emergencies, and the modeling and simulation capabilities of the system would allow for advanced planning. Additionally, the outreach program will provide education to help Nicaraguan improve their water hygiene practices.« less

  13. Water-resources investigations in Wisconsin

    USGS Publications Warehouse

    Maertz, D.E.

    1996-01-01

    OBJECTIVE: The objectives of this study are to provide continuous discharge records for selected rivers at specific sites to supply the needs for regulation, analytical studies, definition of statistical properties, trends analysis, determination of the occurrence, and distribution of water in streams for planning. The project is also LOCATION: Statewide PROJECT CHIEF: Barry K. Holmstrom PERIOD OF PROJECT: July 1913-Continuing designed to determine lake levels and to provide discharge for floods, low-flow conditions, and for waterquality investigations. Requests for streamflow data and information relating to streamflow in Wisconsin are answered. Basic data are published annually in the report "Water Resources Data-Wisconsin."

  14. A review on water pricing problem for sustainable water resource

    NASA Astrophysics Data System (ADS)

    Hek, Tan Kim; Ramli, Mohammad Fadzli; Iryanto

    2017-05-01

    A report that presented at the World Forum II at The Hague in March 2000, said that it would be water crisis around the world and some countries will be lack of water in 2025, as a result of global studies. Inefficient using of water and considering water as free goods which means it can be used as much as we want without any lost. Thus, it causes wasteful consumption and low public awareness in using water without effort to preserve and conserve the water resources. In addition, the excessive exploitation of ground water for industrial facilities also leads to declining of available freshwater. Therefore, this paper reviews some problems arise all over the world regarding to improper and improving management, policies and methods to determine the optimum model of freshwater price in order to avoid its wasteful thus ensuring its sustainability. In this paper, we also proposed a preliminary model of water pricing represents a case of Medan, North Sumatera, Indonesia.

  15. Integrating policy, disintegrating practice: water resources management in Botswana

    NASA Astrophysics Data System (ADS)

    Swatuk, Larry A.; Rahm, Dianne

    Botswana is generally regarded as an African ‘success story’. Nearly four decades of unabated economic growth, multi-party democracy, conservative decision-making and low-levels of corruption have made Botswana the darling of the international donor community. One consequence of rapid and sustained economic development is that water resources use and demands have risen dramatically in a primarily arid/semi-arid environment. Policy makers recognize that supply is limited and that deliberate steps must be taken to manage demand. To this end, and in line with other members of the Southern African Development Community (SADC), Botswana devised a National Water Master Plan (NWMP) and undertook a series of institutional and legal reforms throughout the 1990s so as to make water resources use more equitable, efficient and sustainable. In other words, the stated goal is to work toward Integrated Water Resources Management (IWRM) in both policy and practice. However, policy measures have had limited impact on de facto practice. This paper reflects our efforts to understand the disjuncture between policy and practice. The information presented here combines a review of primary and secondary literatures with key informant interviews. It is our view that a number of constraints-cultural, power political, managerial-combine to hinder efforts toward sustainable forms of water resources use. If IWRM is to be realized in the country, these constraints must be overcome. This, however, is no small task.

  16. Adaptation of water resource systems to an uncertain future

    NASA Astrophysics Data System (ADS)

    Walsh, Claire L.; Blenkinsop, Stephen; Fowler, Hayley J.; Burton, Aidan; Dawson, Richard J.; Glenis, Vassilis; Manning, Lucy J.; Jahanshahi, Golnaz; Kilsby, Chris G.

    2016-05-01

    Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth, and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local-scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames Basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth, the median number of drought order occurrences may increase 5-fold by the 2050s. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. A decrease in per capita demand of 3.75 % reduces the median frequency of drought order measures by 50 % by the 2020s. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be

  17. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wei; Minnick, Matthew; Geza, Mengistu

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings frommore » the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  18. Science center capabilities to monitor and investigate Michigan’s water resources, 2016

    USGS Publications Warehouse

    Giesen, Julia A.; Givens, Carrie E.

    2016-09-06

    Michigan faces many challenges related to water resources, including flooding, drought, water-quality degradation and impairment, varying water availability, watershed-management issues, stormwater management, aquatic-ecosystem impairment, and invasive species. Michigan’s water resources include approximately 36,000 miles of streams, over 11,000 inland lakes, 3,000 miles of shoreline along the Great Lakes (MDEQ, 2016), and groundwater aquifers throughout the State.The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as tribes and universities, to provide scientific information used to manage the water resources of Michigan. To effectively assess water resources, the USGS uses standardized methods to operate streamgages, water-quality stations, and groundwater stations. The USGS also monitors water quality in lakes and reservoirs, makes periodic measurements along rivers and streams, and maintains all monitoring data in a national, quality-assured, hydrologic database.The USGS in Michigan investigates the occurrence, distribution, quantity, movement, and chemical and biological quality of surface water and groundwater statewide. Water-resource monitoring and scientific investigations are conducted statewide by USGS hydrologists, hydrologic technicians, biologists, and microbiologists who have expertise in data collection as well as various scientific specialties. A support staff consisting of computer-operations and administrative personnel provides the USGS the functionality to move science forward. Funding for USGS activities in Michigan comes from local and State agencies, other Federal agencies, direct Federal appropriations, and through the USGS Cooperative Matching Funds, which allows the USGS to partially match funding provided by local and State partners.This fact sheet provides an overview of the USGS current (2016) capabilities to monitor and study Michigan’s vast water resources. More

  19. Water Resources: the Central Component of the WEF Nexus?

    NASA Astrophysics Data System (ADS)

    Ding, K.; Gunda, T.; Hornberger, G. M.

    2017-12-01

    Increasing population growth, consumption of natural resources, and deterioration of the environment coupled with climate change impacts (such as increased variability in precipitation) will challenge our abilities to provide water, energy and food (WEF) to the global populace. Less developed areas, such as the countries in Sub-Saharan Africa, are particularly vulnerable to such resource issues due to immature governance and management structures and strategies. We introduce an integrated approach to resource security analysis, which traditionally has focused on the WEF components separately and apply the methods to a suite of countries in Sub-Saharan Africa. Specifically, we evaluate the inter-connected nature of WEF securities by considering physical, demographic, socioeconomic, health, and institutional parameters related to each of the resource securities and by analyzing the relationships among the metrics. For example, reported food deficits for countries are strongly correlated with reported levels of access to safe drinking water. Multivariate statistical analyses are applied to identify relationships among resources and to develop indices that robustly and comprehensively capture the WEF nexus. Our results indicate that water plays the central role in the WEF nexus, due to its extensive use for both food and energy production in these countries. This approach provides a framework for analyzing the WEF nexus in other regions of the world.

  20. Ground-water resources data for Warren County, Pennsylvania

    USGS Publications Warehouse

    Moore, M.E.; Buckwalter, T.F.

    1996-01-01

    This report presents lithologic, hydrologic, and chemical data collected during a study of the ground-water resources of Warren County, Pa. The study was conducted during 1983-90 by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey, and the Warren County Commissioners. The data include information on aquifers, water levels, and yields for about 600 wells, and records for 57 springs. Descriptions of aquifer lithology and chemical analyses of water samples collected at well and spring sites are provided. Chemical analyses include major cations, anions, nutrients, and selected trace elements. Also included are data on concentrations of volatile organic compounds, dissolved methane, ethane, propane, and total organic carbon. The report presents a summary of the source and significance of selected chemical constituents in ground water, a listing of Federal drinking water standards, and information on selected methods of removing or reducing concentrations of undesirable chemical constituents from water. Daily ground- water levels for five observation wells are tabulated. Maps of Warren County show the location of townships, boroughs, and 7-1/2-minute quadrangles. Data-collection sites are shown on 18 figures. A glossary is provided for readers unfamiliar with ground-water terminology.