Sample records for abutment screw coated

  1. Carbon film coating of abutment surfaces: effect on the abutment screw removal torque.

    PubMed

    Corazza, Pedro Henrique; de Moura Silva, Alecsandro; Cavalcanti Queiroz, José Renato; Salazar Marocho, Susana María; Bottino, Marco Antonia; Massi, Marcos; de Assunção e Souza, Rodrigo Othávio

    2014-08-01

    To evaluate the effect of diamond-like carbon (DLC) coating of prefabricated implant abutment on screw removal torque (RT) before and after mechanical cycling (MC). Fifty-four abutments for external-hex implants were divided among 6 groups (n = 9): S, straight abutment (control); SC, straight coated abutment; SCy, straight abutment and MC; SCCy, straight coated abutment and MC; ACy, angled abutment and MC; and ACCy, angled coated abutment and MC. The abutments were attached to the implants by a titanium screw. RT values were measured and registered. Data (in Newton centimeter) were analyzed with analysis of variance and Dunnet test (α = 0.05). RT values were significantly affected by MC (P = 0.001) and the interaction between DLC coating and MC (P = 0.038). SCy and ACy showed the lowest RT values, statistically different from the control. The abutment coated groups had no statistical difference compared with the control. Scanning electron microscopy analysis showed DLC film with a thickness of 3 μm uniformly coating the hexagonal abutment. DLC film deposited on the abutment can be used as an alternative procedure to reduce abutment screw loosening.

  2. Loosening torque of Universal Abutment screws after cyclic loading: influence of tightening technique and screw coating.

    PubMed

    Bacchi, Atais; Regalin, Alexandre; Bhering, Claudia Lopes Brilhante; Alessandretti, Rodrigo; Spazzin, Aloisio Oro

    2015-10-01

    The purpose of this study was to evaluate the influence of tightening technique and the screw coating on the loosening torque of screws used for Universal Abutment fixation after cyclic loading. Forty implants (Titamax Ti Cortical, HE, Neodent) (n=10) were submerged in acrylic resin and four tightening techniques for Universal Abutment fixation were evaluated: A - torque with 32 Ncm (control); B - torque with 32 Ncm holding the torque meter for 20 seconds; C - torque with 32 Ncm and retorque after 10 minutes; D - torque (32 Ncm) holding the torque meter for 20 seconds and retorque after 10 minutes as initially. Samples were divided into subgroups according to the screw used: conventional titanium screw or diamond like carbon-coated (DLC) screw. Metallic crowns were fabricated for each abutment. Samples were submitted to cyclic loading at 10(6) cycles and 130 N of force. Data were analyzed by two-way ANOVA and Tukey's test (5%). The tightening technique did not show significant influence on the loosening torque of screws (P=.509). Conventional titanium screws showed significant higher loosening torque values than DLC (P=.000). The use of conventional titanium screw is more important than the tightening techniques employed in this study to provide long-term stability to Universal Abutment screws.

  3. Loosening torque of Universal Abutment screws after cyclic loading: influence of tightening technique and screw coating

    PubMed Central

    Regalin, Alexandre; Bhering, Claudia Lopes Brilhante; Alessandretti, Rodrigo; Spazzin, Aloisio Oro

    2015-01-01

    PURPOSE The purpose of this study was to evaluate the influence of tightening technique and the screw coating on the loosening torque of screws used for Universal Abutment fixation after cyclic loading. MATERIALS AND METHODS Forty implants (Titamax Ti Cortical, HE, Neodent) (n=10) were submerged in acrylic resin and four tightening techniques for Universal Abutment fixation were evaluated: A - torque with 32 Ncm (control); B - torque with 32 Ncm holding the torque meter for 20 seconds; C - torque with 32 Ncm and retorque after 10 minutes; D - torque (32 Ncm) holding the torque meter for 20 seconds and retorque after 10 minutes as initially. Samples were divided into subgroups according to the screw used: conventional titanium screw or diamond like carbon-coated (DLC) screw. Metallic crowns were fabricated for each abutment. Samples were submitted to cyclic loading at 106 cycles and 130 N of force. Data were analyzed by two-way ANOVA and Tukey's test (5%). RESULTS The tightening technique did not show significant influence on the loosening torque of screws (P=.509). Conventional titanium screws showed significant higher loosening torque values than DLC (P=.000). CONCLUSION The use of conventional titanium screw is more important than the tightening techniques employed in this study to provide long-term stability to Universal Abutment screws. PMID:26576253

  4. Effects of abutment screw coating on implant preload.

    PubMed

    Park, Jae-Kyoung; Choi, Jin-Uk; Jeon, Young-Chan; Choi, Kyung-Soo; Jeong, Chang-Mo

    2010-08-01

    The aim of the present study was to investigate the effects of tungsten carbide carbon (WC/CTa) screw surface coating on abutment screw preload in three implant connection systems in comparison to noncoated titanium alloy (Ta) screws. Preload of WC/CTa abutment screws was compared to noncoated Ta screws in three implant connection systems. The differences in preloads were measured in tightening rotational angle, compression force, initial screw removal torque, and postload screw removal torque after 1 million cyclic loads. Preload loss percent was calculated to determine the efficacy of maintaining the preload of two abutment screw types in relation to implant connection systems. WC/CTa screws provided 10 degrees higher tightening rotational angle than Ta screws in all three connection systems. This difference was statistically significant (p < 0.05). External-hex butt joint implant connections had a higher compression force than the two internal conical implant connections. WC/CTa screws provided a statistically significantly higher compression force than Ta screws in all three implant connections (p < 0.05). Ta screws required statistically higher removal torque than WC/CTa screws in all three implant connections (p < 0.05); however, Ta screws needed statistically lower postload removal torque than WC/CTa screws in all three implant connections (p < 0.05). Ta screws had a statistically higher preload loss percent than WC/CTa screws in all three implant connections (p < 0.05), indicating that WC/CTa screws were superior in maintaining the preload than Ta screws. Within the limits of present study, the following conclusions were made: (1) WC/CTa screws provided higher preload than noncoated Ta screws in all three implant connection systems. (2) The initial removal torque for Ta screws required higher force than WC/CTa screws, whereas postload removal torque for Ta screws was lower than WC/CTa screws. Calculated Ta screw preload loss percent was higher than for WC

  5. Coating dental implant abutment screws with diamondlike carbon doped with diamond nanoparticles: the effect on maintaining torque after mechanical cycling.

    PubMed

    Lepesqueur, Laura Soares; de Figueiredo, Viviane Maria Gonçalves; Ferreira, Leandro Lameirão; Sobrinho, Argemiro Soares da Silva; Massi, Marcos; Bottino, Marco Antônio; Nogueira Junior, Lafayette

    2015-01-01

    To determine the effect of maintaining torque after mechanical cycling of abutment screws that are coated with diamondlike carbon and coated with diamondlike carbon doped with diamond nanoparticles, with external and internal hex connections. Sixty implants were divided into six groups according to the type of connection (external or internal hex) and the type of abutment screw (uncoated, coated with diamondlike carbon, and coated with diamondlike carbon doped with diamond nanoparticles). The implants were inserted into polyurethane resin and crowns of nickel chrome were cemented on the implants. The crowns had a hole for access to the screw. The initial torque and the torque after mechanical cycling were measured. The torque values maintained (in percentages) were evaluated. Statistical analysis was performed using one-way analysis of variance and the Tukey test, with a significance level of 5%. The largest torque value was maintained in uncoated screws with external hex connections, a finding that was statistically significant (P = .0001). No statistically significant differences were seen between the groups with and without coating in maintaining torque for screws with internal hex connections (P = .5476). After mechanical cycling, the diamondlike carbon with and without diamond doping on the abutment screws showed no improvement in maintaining torque in external and internal hex connections.

  6. Improving the long-term stability of Ti6Al4V abutment screw by coating micro/nano-crystalline diamond films.

    PubMed

    Xie, Youneng; Zhou, Jing; Wei, Qiuping; Yu, Z M; Luo, Hao; Zhou, Bo; Tang, Z G

    2016-10-01

    Abutment screw loosening is the most common complication of implanting teeth. Aimed at improving the long-term stability of them, well-adherent and homogeneous micro-crystalline diamond (MCD) and nano-crystalline diamond (NCD) were deposited on DIO(®) (Dong Seo, Korea) abutment screws using a hot filament chemical vapor deposition (HFCVD) system. Compared with bare DIO(®) screws, diamond coated ones showed higher post reverse toque values than the bare ones (p<0.05) after cyclic loading one million times under 100N, and no obvious flaking happened after loading test. Diamond coated disks showed lower friction coefficients of 0.15 and 0.18 in artificial saliva when countered with ZrO2 than that of bare Ti6Al4V disks of 0.40. Though higher cell apoptosis rate was observed on film coated disks, but no significant difference between MCD group and NCD group. And the cytotoxicity of diamond films was acceptable for the fact that the cell viability of them was still higher than 70% after cultured for 72h. It can be inferred that coating diamond films might be a promising modification method for Ti6Al4V abutment screws. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Comparative effect of implant-abutment connections, abutment angulations, and screw lengths on preloaded abutment screw using three-dimensional finite element analysis: An in vitro study.

    PubMed

    Kanneganti, Krishna Chaitanya; Vinnakota, Dileep Nag; Pottem, Srinivas Rao; Pulagam, Mahesh

    2018-01-01

    The purpose of this study is to compare the effect of implant-abutment connections, abutment angulations, and screw lengths on screw loosening (SL) of preloaded abutment using three dimensional (3D) finite element analysis. 3D models of implants (conical connection with hex/trilobed connections), abutments (straight/angulated), abutment screws (short/long), and crown and bone were designed using software Parametric Technology Corporation Creo and assembled to form 8 simulations. After discretization, the contact stresses developed for 150 N vertical and 100 N oblique load applications were analyzed, using ABAQUS. By assessing damage initiation and shortest fatigue load on screw threads, the SL for 2.5, 5, and 10 lakh cyclic loads were estimated, using fe-safe program. The obtained values were compared for influence of connection design, abutment angulation, and screw length. In straight abutment models, conical connection showed more damage (14.3%-72.3%) when compared to trilobe (10.1%-65.73%) at 2.5, 5, and 10 lakh cycles for both vertical and oblique loads, whereas in angulated abutments, trilobe (16.1%-76.9%) demonstrated more damage compared to conical (13.5%-70%). Irrespective of the connection type and abutment angulation, short screws showed more percentage of damage compared to long screws. The present study suggests selecting appropriate implant-abutment connection based on the abutment angulation, as well as preferring long screws with more number of threads for effective preload retention by the screws.

  8. The influence of abutment screw tightening on screw joint configuration.

    PubMed

    Lang, Lisa A; Wang, Rui-Feng; May, Kenneth B

    2002-01-01

    Limiting abutment-to-implant hexagonal discrepancies and rotational movement of the abutment around the implant to less than 5 degrees would result in a more stable screw joint. However, the exact relationship after abutment screw tightening is unknown, as is the effect of a counter-torque device in limiting abutment movement during screw tightening. This study examined the orientation of the abutment hexagon to the implant hexagon after tightening of the abutment screw for several abutment systems with and without the use of a counter-torque device. Thirty conical self-tapping implants (3.75 x 10.0 mm) and 10 wide-platform Brånemark System implants (5.0 x 10.0 mm), along with 10 abutment specimens from the CeraOne, Estheticone, Procera, and AuraAdapt systems, were selected for this investigation. The implants were placed in a holding device prior to tightening of the abutments. When the tightening torque recommended for each abutment system was reached with the use of a torque controller, each implant abutment specimen was removed from the holding device and embedded in a hard resin medium. The specimens were sectioned in a horizontal direction at the level of the hexagons and cleansed of debris prior to examination. The hexagon orientations were assessed as the degree and direction of rotation of the abutment hexagon around the implant hexagon. The range of the maximum degrees of rotation for all 4 abutment groups tightened with or without the counter-torque device was slightly more than 3.53 degrees. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees with or without the use of the counter-torque device. The hexagon-to-hexagon orientation measured as rotational fit on all abutment systems was below the 5 degrees suggested as optimal for screw joint stability. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees regardless of whether the counter-torque device was used.

  9. Effects of Screw Configuration on the Preload Force of Implant-Abutment Screws.

    PubMed

    Zipprich, Holger; Rathe, Florian; Pinz, Sören; Schlotmann, Luca; Lauer, Hans-Christoph; Ratka, Christoph

    The aim of this study was to investigate the effects of tightening torque, screw head angle, and thread number on the preload force of abutment screws. The test specimens consisted of three self-manufactured components (ie, a thread sleeve serving as an implant analog, an abutment analog, and an abutment screw). The abutment screws were fabricated with metric M1.6 external threads. The thread number varied between one and seven threads. The screw head angles were produced in eight varying angles (30 to 180 degrees). A sensor unit simultaneously measured the preload force of the screw and the torsion moment inside the screw shank. The tightening of the screw with the torque wrench was performed in five steps (15 to 35 Ncm). The torque wrench was calibrated before each step. Only the tightening torque and screw head angle affected the resulting preload force of the implant-abutment connection. The thread number had no effect. There was an approximately linear correlation between tightening torque and preload force. The tightening torque and screw head angle were the only study parameters that affected the resulting preload force of the abutment screw. The results obtained from this experiment are valid only for a single torque condition. Further investigations are needed that analyze other parameters that affect preload force. Once these parameters are known, it will add value for a strong, but detachable connection between the implant and abutment. Short implants and flat-to-flat connections especially will benefit significantly from this knowledge.

  10. The applicability of PEEK-based abutment screws.

    PubMed

    Schwitalla, Andreas Dominik; Abou-Emara, Mohamed; Zimmermann, Tycho; Spintig, Tobias; Beuer, Florian; Lackmann, Justus; Müller, Wolf-Dieter

    2016-10-01

    The high-performance polymer PEEK (poly-ether-ether-ketone) is more and more being used in the field of dentistry, mainly for removable and fixed prostheses. In cases of screw-retained implant-supported reconstructions of PEEK, an abutment screw made of PEEK might be advantageous over a conventional metal screw due to its similar elasticity. Also in case of abutment screw fracture, a screw of PEEK could be removed more easily. M1.6-abutment screws of four different PEEK compounds were subjected to tensile tests to set their maximum tensile strengths in relation to an equivalent stress of 186MPa, which is aused by a tightening torque of 15Ncm. Two screw types were manufactured via injection molding and contained 15% short carbon fibers (sCF-15) and 40% (sCF-40), respectively. Two screw types were manufactured via milling and contained 20% TiO2 powder (TiO2-20) and >50% parallel orientated, continuous carbon fibers (cCF-50). A conventional abutments screw of Ti6Al4V (Ti; CAMLOG(®) abutment screw, CAMLOG, Wimsheim, Germany) served as control. The maximum tensile strength was 76.08±5.50MPa for TiO2-20, 152.67±15.83MPa for sCF-15, 157.29±20.11MPa for sCF-40 and 191.69±36.33MPa for cCF-50. The maximum tensile strength of the Ti-screws amounted 1196.29±21.4MPa. The results of the TiO2-20 and the Ti screws were significantly different from the results of the other samples, respectively. For the manufacturing of PEEK abutment screws, PEEK reinforced by >50% continuous carbon fibers would be the material of choice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System.

    PubMed

    Sim, Bo Kyun; Kim, Bongju; Kim, Min Jeong; Jeong, Guk Hyun; Ju, Kyung Won; Shin, Yoo Jin; Kim, Man Yong; Lee, Jong-Ho

    2017-01-01

    The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA) and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA.

  12. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System

    PubMed Central

    Kim, Bongju; Shin, Yoo Jin

    2017-01-01

    The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA) and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA. PMID:29065610

  13. Does Abutment Collar Length Affect Abutment Screw Loosening After Cyclic Loading?

    PubMed

    Siadat, Hakimeh; Pirmoazen, Salma; Beyabanaki, Elaheh; Alikhasi, Marzieh

    2015-07-01

    A significant vertical space that is corrected with vertical ridge augmentation may necessitate selection of longer abutments, which would lead to an increased vertical cantilever. This study investigated the influence of different abutment collar heights on single-unit dental implant screw-loosening after cyclic loading. Fifteen implant-abutment assemblies each consisted of an internal hexagonal implant were randomly assigned to 3 groups: Group1, consisting of 5 abutments with 1.5 mm gingival height (GH); Group2, 5 abutments with 3.5 mm GH; and Group3, 5 abutments with 5.5 mm GH. Each specimen was mounted in transparent auto-polymerizing acrylic resin block, and the abutment screw was tightened to 35 Ncm with an electric torque wrench. After 5 minutes, initial torque loss (ITL) was recorded for all specimens. Metal crowns were fabricated with 45° occlusal surface and were placed on the abutments. A cyclic load of 75 N and frequency of 1 Hz were applied perpendicular to the long axis of each specimen. After 500 000 cycles, secondary torque loss (STL) was recorded. One-way ANOVA analysis was used to evaluate the effects of abutment collar height before and after cyclic loading. One-way ANOVA showed that ITL among the groups was not significantly different (P = .52), while STL was significantly different among the groups (P = .008). Post-hoc Tukey HSD tests showed that STL values were significantly different between the abutments with 1.5 mm GH (Group1) and with 5.5 mm GH (Group3) (P = .007). A paired comparison t-test showed that cyclic loading significantly influenced the STL in comparison with the ITL in each group. Within the limitations of this study, it can be concluded that increase in height of the abutment collar could adversely affect the torque loss of the abutment screw.

  14. Esthetic abutment design for angulated screw channels: A technical report.

    PubMed

    Sakamoto, Satoshi; Ro, Munehiko; Al Ardah, Aladdin; Goodacre, Charles

    2017-11-15

    Angulated screw channel system abutments (ASCs) have recently been introduced to address the problem with visible screw access that may compromise esthetics. ASCs allow the screw access to be modified up to 25 degrees relative to the implant axis. However, a widened channel, which may cause thinning of the facial ceramic, is needed at the implant screw head to allow for proper engagement of the screwdriver. This technical report introduces a custom titanium insert design, the Satoshi Sakamoto (SS) abutment. The SS abutment consists of a custom titanium metal insert and zirconia coping in which the access hole is located in an esthetic position with an ASC system. The SS abutment results in a crown with more normal crown dimensions that also provides more space for the soft tissues. This SS abutment design allows clinicians to obtain screw-retained restorations with optimal esthetics and mechanical strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Influence of abutment screw preload on stress distribution in marginal bone.

    PubMed

    Khraisat, Ameen

    2012-01-01

    Changes in an implant assembly after abutment connection might possibly cause deformation in the implant/abutment joint and even in the marginal bone. The aim of this study was to evaluate the influence of abutment screw preload through the implant collar on marginal bone stress without external load application. Models of three implant parts made of titanium (implant, abutment, and abutment screw) and cortical bone were built and positioned with computer-aided design software. Meshing and generation of boundary conditions, loads, and interactions were performed. Each part was meshed independently. The sole load applied to the model was a torque of 32 Ncm on the abutment screw about its axis of rotation. The implant collar was deformed axially after the screw was tightened (3 μm). This deformation resulted in 60 MPa of stress in the marginal bone. Moreover, pressure on the marginal bone in a radial direction was observed. It can be concluded that, without any external load application, abutment screw preload exerts stresses on the implant collar and the marginal bone. These findings should help guide the development of new implant/abutment joint designs that exert less stress on the marginal bone.

  16. Removal torque of zirconia abutment screws under dry and wet conditions.

    PubMed

    Nigro, Frederico; Sendyk, Claudio L; Francischone, Carlos Eduardo; Francischone, Carlos Eduardo

    2010-01-01

    The aim of this study was to verify whether screw abutment lubrication can generate higher preload values compared to non-lubricated screws, a titanium abutment was screwed onto an implant analog and scanned with the Procera System to generate 20 zirconia abutments. MKIII Brånemark implants were clamped to a precision torque device, and the abutments were distributed in dry and wet groups with 10 specimens each. In the wet groups, the inner threads of the implants were filled with artificial saliva. All abutments were fastened with a Torqtite screw under 32 Ncm. Ten detorque measurements were performed per group pushing the reverse button of the Torque controller soon after screw tightening with values registered. The mean detorque values were calculated and compared by a Student's t test (α=0.05). The wet condition presented significantly higher mean detorque than the dry condition (31.5 ± 1.2 versus 27.5 ± 1.5 Ncm, respectively; p=0.0000024). In conclusion, there was always a loss in the initial torque values when the removal torque was measured under both conditions. The wet condition presented higher mean torque than the dry condition. Better preload values were established in the wet group, suggesting that the abutment screw must be lubricated in saliva to avoid further loosening.

  17. Evaluation of screw loosening on new abutment screws and after successive tightening.

    PubMed

    Barbosa, Gustavo Seabra; Silva-Neto, João Paulo da; Simamoto-Júnior, Paulo Cezar; Neves, Flávio Domingues das; Mattos, Maria da Gloria Chiarello de; Ribeiro, Ricardo Faria

    2011-01-01

    This study evaluated the loss of the torque applied after use of new screws and after successive tightening. Four infrastructures (IE), using UCLA castable abutment type, were cast in cobalt-chromium alloy and new abutment screws (G1) were used in a first moment. Subsequently, the same abutment screws were used a second time (G2) and more than two times (G3). The values of the torques applied and detorques were measured with a digital torque wrench to obtain the values of initial tightening loss (%). Data were analyzed by ANOVA and Tukey's test (?=0.05). Significant differences were observed between the G1 (50.71% ± 11.36) and G2 (24.01% ± 3.33) (p=0.000) and between G1 (50.71% ± 11.36) and G3 (25.60% ± 4.64) (p=0.000). There was no significant difference between G2 and G3 (p=0.774). Within the limitations of the study, it may be concluded that the percentage of the initial torque loss is lower when screws that already suffered the application of an initial torque were used, remaining stable after application of successive torques.

  18. Effect of Repeated Screw Joint Closing and Opening Cycles and Cyclic Loading on Abutment Screw Removal Torque and Screw Thread Morphology: Scanning Electron Microscopy Evaluation.

    PubMed

    Arshad, Mahnaz; Mahgoli, Hosseinali; Payaminia, Leila

    To evaluate the effect of repeated screw joint closing and opening cycles and cyclic loading on abutment screw removal torque and screw thread morphology using scanning electron microscopy (SEM). Three groups (n = 10 in each group) of implant-abutment-abutment screw assemblies were created. There were also 10 extra abutment screws as new screws in group 3. The abutment screws were tightened to 12 Ncm with an electronic torque meter; then they were removed and removal torque values were recorded. This sequence was repeated 5 times for group 1 and 15 times for groups 2 and 3. The same screws in groups 1 and 2 and the new screws in group 3 were then tightened to 12 Ncm; this was also followed by screw tightening to 30 Ncm and retightening to 30 Ncm 15 minutes later. Removal torque measurements were performed after screws were subjected to cyclic loading (0.5 × 10⁶ cycles; 1 Hz; 75 N). Moreover, the surface topography of one screw from each group before and after cyclic loading was evaluated with SEM and compared with an unused screw. All groups exhibited reduced removal torque values in comparison to insertion torque in each cycle. However, there was a steady trend of torque loss in each group. A comparison of the last cycle of the groups before loading showed significantly greater torque loss value in the 15th cycle of groups 2 and 3 compared with the fifth cycle of group 1 (P < .05). Nonetheless, torque loss values after loading were not shown to be significantly different from each other. Using a new screw could not significantly increase the value of removal torque. It was concluded that restricting the amount of screw tightening is more important than replacing the screw with a new one when an abutment is definitively placed.

  19. Implant abutment deformation during prosthetic cylinder screw tightening: an in vitro study.

    PubMed

    Neto, Rafael Tobias Moretti; Moura, Marcio Silva; Souza, Edson Antonio Capello; Rubo, José Henrique

    2009-01-01

    Nonpassive fit frameworks are believed to lead to implant overload and consequently loss of osseointegration. This is one of the most commonly reported failures of implant prostheses. In an ideal situation of passive fit, when torque is applied to bring the abutment-cylinder interface together some amount of deformation can be expected, and it should be homogeneous along the periphery of the abutment. The aim of this study was to verify the amount of abutment deformation that can be expected when a free-standing cylinder is screwed into place. This could give insight into what should be accepted as passive fit. Strain gauges were bonded to the sides of five standard abutments that had machined palladium-silver cylinders or cobalt-chromium cast cylinders screwed into place. Measurements were taken to verify the deformation at each site. Values of abutment deformation after abutment screw tightening ranged from -127.70 to -590.27 microepsilon. The deformation recorded for palladium-silver prosthetic cylinder tightening ranged from 56.905 to -381.50 microepsilon (mean: 173.298 microepsilon) and from -5.62638 to -383.86 microepsilon (mean: 200.474 microepsilon) for cobalt-chromium cylinders. There was no statistically significant difference among the two groups. Both abutment screw tightening and prosthetic cylinder screw tightening result in abutment deformation, which is compressive most of the time.

  20. Preload, Coefficient of Friction, and Thread Friction in an Implant-Abutment-Screw Complex.

    PubMed

    Wentaschek, Stefan; Tomalla, Sven; Schmidtmann, Irene; Lehmann, Karl Martin

    To examine the screw preload, coefficient of friction (COF), and tightening torque needed to overcome the thread friction of an implant-abutment-screw complex. In a customized load frame, 25 new implant-abutment-screw complexes including uncoated titanium alloy screws were torqued and untorqued 10 times each, applying 25 Ncm. Mean preload values decreased significantly from 209.8 N to 129.5 N according to the number of repetitions. The overall COF increased correspondingly. There was no comparable trend for the thread friction component. These results suggest that the application of a used implant-abutment-screw complex may be unfavorable for obtaining optimal screw preload.

  1. Influence of repeated screw tightening on bacterial leakage along the implant-abutment interface.

    PubMed

    do Nascimento, Cássio; Pedrazzi, Vinícius; Miani, Paola Kirsten; Moreira, Larissa Daher; de Albuquerque, Rubens Ferreira

    2009-12-01

    Bacterial penetration along the implant-abutment interface as a consequence of abutment screw loosening has been reported in a number of recent studies. The aim of this in vitro study was to investigate the influence of repeated tightening of the abutment screw on leakage of Streptococcus mutans along the interface between implants and pre-machined abutments. Twenty pre-machined abutments with a plastic sleeve were used. The abutment screws were tightened to 32 N cm in group 1 (n=10 - control) and to 32 N cm, loosened and re-tightened with the same torque twice in group 2 (n=10). The assemblies were completely immersed in 5 ml of Tryptic Soy Broth medium inoculated with S. mutans and incubated for 14 days. After this period, contamination of the implant internal threaded chamber was evaluated using the DNA Checkerboard method. Microorganisms were found on the internal surfaces of both groups evaluated. However, bacterial counts in group 2 were significantly higher than that in the control group (P<0.05). These results suggest that bacterial leakage between implants and abutments occurs even under unloaded conditions and at a higher intensity when the abutment screw is tightened and loosened repeatedly.

  2. The influence of implant-abutment connection on the screw loosening and microleakage.

    PubMed

    Tsuruta, Katsuhiro; Ayukawa, Yasunori; Matsuzaki, Tatsuya; Kihara, Masafumi; Koyano, Kiyoshi

    2018-04-09

    There are some spaces between abutment and implant body which can be a reservoir of toxic substance, and they can penetrate into subgingival space from microgap at the implant-abutment interface. This penetration may cause periimplantitis which is known to be one of the most important factors associated with late failure. In the present study, three kinds of abutment connection system, external parallel connection (EP), internal parallel connection (IP), and internal conical connection (CC), were studied from the viewpoint of microleakage from the gap between the implant and the abutment and in connection with the loosening of abutment screw. We observed dye leakage from abutment screw hole to outside through microgap under the excessive compressive and tensile load and evaluated the anti-leakage characteristics of these connection systems. During the experiment, one abutment screw for EP and two screws for IP, out of seven samples in each group, were fractured. After the 2000 cycles of compressive tensile loadings, removal torque value (RTV) of abutment screw represented no statistical differences among three groups. Standard deviation was largest in the RTV of EP and smallest in that of CC. The results of microleakage of toluidine blue from implant-abutment connection indicated that microleakage generally increased as loading procedure progressed. The amount of microleakage was almost plateau at 2000 cycles in CC, but still increasing in other two groups. The value of microleakage greatly scattered in EP, but the deviation of that in CC is significantly smaller. At 500 cycles of loading, there were no significant differences in the amount of microleakage among the groups, but at 1000, 1500, and 2000 cycles of loading, the amount of microleakage in CC was significantly smaller than that in IP. Throughout the experiment, the amount of microleakage in EP was largest, but no statistical difference was indicated due to the high standard deviation. Within the

  3. Evaluation of torque maintenance of abutment and cylinder screws with Morse taper implants.

    PubMed

    Ferreira, Mayara Barbosa; Delben, Juliana Aparecida; Barão, Valentim Adelino Ricardo; Faverani, Leonardo Perez; Dos Santos, Paulo Henrique; Assunção, Wirley Gonçalves

    2012-11-01

    The screw loosening of implant-supported prostheses is a common mechanical failure and is related to several factors as insertion torque and preload. The aim of this study was to evaluate the torque maintenance of retention screws of tapered abutments and cylinders of Morse taper implants submitted to retightening and detorque measurements. Two groups were obtained (n = 12): group I-tapered abutment connected to the implant with titanium retention screw and group II-cylinder with metallic base connected to tapered abutment with titanium retention screw. The detorque values were measured by an analogic torque gauge after 3 minutes of torque insertion. The detorque was measured 10 times for each retention screw of groups I and II, totalizing 120 detorque measurements in each group. Data were submitted to ANOVA and Fisher exact test (P < 0.05). Both groups presented reduced detorque value (P < 0.05) in comparison to the insertion torque in all measurement periods. There was a statistically significant difference (P < 0.05) between the detorque values of the first measurement and the other measurement periods for the abutment screw. However, there was no statistically significant difference (P > 0.05) for the detorque values of all measurement periods for the cylinder screw. In conclusion, the abutment and cylinder screws exhibited torque loss after insertion, which indicates the need for retightening during function of the implant-supported prostheses.

  4. Influence of the implant abutment types and the dynamic loading on initial screw loosening

    PubMed Central

    Kim, Eun-Sook

    2013-01-01

    PURPOSE This study examined the effects of the abutment types and dynamic loading on the stability of implant prostheses with three types of implant abutments prepared using different fabrication methods by measuring removal torque both before and after dynamic loading. MATERIALS AND METHODS Three groups of abutments were produced using different types of fabrication methods; stock abutment, gold cast abutment, and CAD/CAM custom abutment. A customized jig was fabricated to apply the load at 30° to the long axis. The implant fixtures were fixed to the jig, and connected to the abutments with a 30 Ncm tightening torque. A sine curved dynamic load was applied for 105 cycles between 25 and 250 N at 14 Hz. Removal torque before loading and after loading were evaluated. The SPSS was used for statistical analysis of the results. A Kruskal-Wallis test was performed to compare screw loosening between the abutment systems. A Wilcoxon signed-rank test was performed to compare screw loosening between before and after loading in each group (α=0.05). RESULTS Removal torque value before loading and after loading was the highest in stock abutment, which was then followed by gold cast abutment and CAD/CAM custom abutment, but there were no significant differences. CONCLUSION The abutment types did not have a significant influence on short term screw loosening. On the other hand, after 105 cycles dynamic loading, CAD/CAM custom abutment affected the initial screw loosening, but stock abutment and gold cast abutment did not. PMID:23509006

  5. In vitro evaluation of reverse torque value of abutment screw and marginal opening in a screw- and cement-retained implant fixed partial denture design.

    PubMed

    Kim, Seok-Gyu; Park, Jae-Uk; Jeong, Jae-Heon; Bae, Chang; Bae, Tae-Soo; Chee, Winston

    2009-01-01

    The purpose of this study was to evaluate the clinical efficacy of implant prostheses retained by screws and cement (SCPs) by examining the reverse torque values (RTVs) of the abutment screws and the marginal openings of the implant prostheses. Two implants (3.8 x 13 mm; Camlog Biotechnologies) were embedded in an acrylic resin block 5 mm apart. Eighteen copies of this resin specimen were fabricated and randomly divided into two groups. Two-unit implant prostheses with two different designs-purely cement-retained implant prostheses (group 1) and SCPs (group 2)-were made out of type IV gold alloy and placed on the implants. After tightening to about 30 Ncm, the preloading RTVs of the abutment screws were measured. After retightening the abutment screws or cementing the prostheses, followed by cyclic loading, the postloading RTVs of the abutment screws were examined. Also, the marginal openings of the prostheses in the two groups were measured under a stereomicroscope. These measurements were compared statistically. The postloading RTVs and their differences from the preloading RTVs of the abutment screws demonstrated no significant differences between groups (P > .05). Group 2 prostheses showed significantly smaller marginal openings than group 1 prostheses (P < .05). The forces generated when torquing the abutment screw of the SCP did not cause more loosening of the abutment screws than the purely cement-retained implant prosthesis. The SCP showed better marginal adaptation of the cement-retained part than the purely cement-retained implant prosthesis, possibly as a result of the screw-retained abutment seating the restoration. Within the limitations of this in vitro test, the SCP showed no significant difference in RTV of the abutment screw and a smaller marginal gap compared to a purely cement-retained implant prosthesis.

  6. Preloads generated with repeated tightening in three types of screws used in dental implant assemblies.

    PubMed

    Byrne, Declan; Jacobs, Stuart; O'Connell, Brian; Houston, Frank; Claffey, Noel

    2006-01-01

    Abutment screw loosening, especially in the case of cemented single tooth restorations, is a cause of implant restoration failure. This study compared three screws (titanium alloy, gold alloy, and gold-coated) with similar geometry by recording the preload induced when torques of 10, 20, and 35 Ncm were used for fixation. Two abutment types were used-prefabricated preparable abutments and cast-on abutments. A custom-designed rig was used to measure preload in the abutment-screw-implant assembly with a strain gauge. Ten screws of each type were sequentially tightened to 10, 20, and 35 Ncm on ten of the two abutment types. The same screws were then loosened and re-tightened. This procedure was repeated. Thus, each screw was tightened on three occasions to the three insertion torques. A linear regression model was used to analyze the effects on preload values of screw type and abutment type for each of the three insertion torques. The results indicated that the gold-coated screw generated the highest preloads for all insertion torques and for each tightening episode. Further analysis focused on the effects of screw type and abutment type for each episode of tightening and for each fixation torque. The gold-coated screw, fixed to the prefabricated abutment, displayed higher preloads for the first tightening at 10, 20, and 35 Ncm. Conversely, the same screw fixed to the cast-on abutment showed higher values for the second and third tightening for all fixation torques. All screws showed decay in preload with the number of times tightened. Given the higher preloads generated using the gold-coated screw with both abutment types, it is more likely that this type of screw will maintain a secure joint when tightened for the second and third time. All screw types displayed some decay in preload with repeated tightening, irrespective of abutment type and insertion torque. The gold-coated screw showed markedly higher preloads for all insertion torques and for all instances of

  7. Effect of lubricant on the reliability of dental implant abutment screw joint: An in vitro laboratory and three-dimension finite element analysis.

    PubMed

    Wu, Tingting; Fan, Hongyi; Ma, Ruiyang; Chen, Hongyu; Li, Zhi; Yu, Haiyang

    2017-06-01

    Biomechanical factors play a key role in the success of dental implants. Fracture and loosening of abutment screws are major issues. This study investigated the effect of lubricants on the stability of dental implant-abutment connection. As lubricants, graphite and vaseline were coated on the abutment screw surface, respectively, and a blank without lubricant served as the control. The total friction coefficient (μ tot ), clamping force, fatigue behavior and detorque of the joint combined with dynamic cyclic loading were measured under different lubricating conditions. Further, a three-dimensional finite element analysis was used to investigate stress distribution, in conjunction with experimental images. The results showed that the lubricant reduced μ tot , which in turn led to an increase in clamping force. Decrease in loading increased the fatigue life of the screw. However, use of lubricant at high load reduced the fatigue life. Ductile fracture at the first thread of the screw was the chief failure mode, which was due to maximum von Mises stress. Higher stress levels occurred in the lubricant groups. Lubricated screws resulted in lower detorque which made the joint easier to loosen. In conclusion, the lubricant cannot effectively improve the reliability of dental implant-abutment connection. Keeping the interfaces of implant-screw uncontaminated and strengthening the surface of the screw may be recommend for clinical operation and future design. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Acrylic resin guide for locating the abutment screw access channel of cement-retained implant prostheses.

    PubMed

    Ahmed, Ayman; Maroulakos, Georgios; Garaicoa, Jorge

    2016-05-01

    Abutment screw loosening represents a common and challenging technical complication of cement-retained implant prostheses. This article describes the fabrication of a simple and accurate poly(methyl methacrylate) guide for identifying the location and angulation of the abutment screw access channel of a cement-retained implant prosthesis with a loosened abutment screw. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Influence of abutment type and esthetic veneering on preload maintenance of abutment screw of implant-supported crowns.

    PubMed

    Delben, Juliana Aparecida; Barão, Valentim Adelino Ricardo; Dos Santos, Paulo Henrique; Assunção, Wirley Gonçalves

    2014-02-01

    The effect of veneering materials on screw joint stability remains inconclusive. Thus, this study evaluated the preload maintenance of abutment screws of single crowns fabricated with different abutments and veneering materials. Sixty crowns were divided into five groups (n = 12): UCLA abutment in gold alloy with ceramic (group GC) and resin (group GR) veneering, UCLA abutment in titanium with ceramic (group TiC) and resin (group TiR) veneering, and zirconia abutment with ceramic veneering (group ZiC). Abutment screws made of gold were used with a 35 Ncm insertion torque. Detorque measurements were obtained initially and after mechanical cycling. Data were analyzed by ANOVA and Fisher's exact test at a significance level of 5%. For the initial detorque means (in Ncm), group TiC (21.4 ± 1.78) exhibited statistically lower torque maintenance than groups GC (23.9 ± 0.91), GR (24.1 ± 1.34), and TiR (23.2 ± 1.33) (p < 0.05, Fisher's exact test). Group ZiC (21.9 ± 2.68) exhibited significantly lower torque maintenance than groups GC, GR, and TiR (p < 0.05, Fisher's exact test). After mechanical cycling, there was a statistically significant difference between groups TiC (22.1 ± 1.86) and GR (23.8 ± 1.56); between groups ZiC (21.7 ± 2.02) and GR; and also between groups ZiC and TiR (23.6 ± 1.30) (p < 0.05, Fisher's exact test). Detorque reduction occurred regardless of abutment type and veneering material. More irregular surfaces in the hexagon area of the castable abutments were observed. The superiority of any veneering material concerning preload maintenance was not established. © 2013 by the American College of Prosthodontists.

  10. Abutments with reduced diameter for both cement and screw retentions: analysis of failure modes and misfit of abutment-crown-connections after cyclic loading.

    PubMed

    Moris, Izabela Cristina Maurício; Faria, Adriana Cláudia Lapria; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira

    2017-04-01

    The aim of this study was to analyze failure modes and misfit of abutments with reduced diameter for both cement and screw retentions after cyclic loading. Forty morse-taper abutment/implant sets of titanium were divided into four groups (N = 10): G4.8S-4.8 abutment with screw-retained crown; G4.8C-4.8 abutment with cemented crown; G3.8S-3.8 abutment with screw-retained crown; and G3.8C-3.8 abutment with cemented crown. Copings were waxed on castable cylinders and cast by oxygen gas flame and injected by centrifugation. After, esthetic veneering ceramic was pressed on these copings for obtaining metalloceramic crowns of upper canine. Cemented crowns were cemented on abutments with provisional cement (Temp Bond NE), and screw-retained crowns were tightened to their abutments with torque recommended by manufacturer (10 N cm). The misfit was measured using a stereomicroscope in a 10× magnification before and after cyclic loading (300,000 cycles). Tests were visually monitored, and failures (decementation, screw loosening and fractures) were registered. Misfit was analyzed by mixed linear model while failure modes by chi-square test (α = 0.05). Cyclic loading affected misfit of 3.8C (P ≤ 0.0001), 3.8S (P = 0.0055) and 4.8C (P = 0.0318), but not of 4.8S (P = 0.1243). No differences were noted between 3.8S with 4.8S before (P = 0.1550) and after (P = 0.9861) cyclic loading, but 3.8C was different from 4.8C only after (P = 0.0015) loading. Comparing different types of retentions at the same diameter abutment, significant difference was noted before and after cyclic loading for 3.8 and 4.8 abutments. Analyzing failure modes, retrievable failures were present at 3.8S and 3.8C groups, while irretrievable were only present at 3.8S. The cyclic loading decreased misfit of cemented and screw-retained crowns on reduced diameter abutments, and misfit of cemented crowns is greater than screw-retained ones. Abutments of reduced diameter failed more than

  11. Mechanics of the taper integrated screwed-in (TIS) abutments used in dental implants.

    PubMed

    Bozkaya, Dinçer; Müftü, Sinan

    2005-01-01

    The tapered implant-abutment interface is becoming more popular due to the mechanical reliability of retention it provides. Consequently, understanding the mechanical properties of the tapered interface with or without a screw at the bottom has been the subject of a considerable amount of studies involving experiments and finite element (FE) analysis. This paper focuses on the tapered implant-abutment interface with a screw integrated at the bottom of the abutment. The tightening and loosening torques are the main factors in determining the reliability and the stability of the attachment. Analytical formulas are developed to predict tightening and loosening torque values by combining the equations related to the tapered interface with screw mechanics equations. This enables the identification of the effects of the parameters such as friction, geometric properties of the screw, the taper angle, and the elastic properties of the materials on the mechanics of the system. In particular, a relation between the tightening torque and the screw pretension is identified. It was shown that the loosening torque is smaller than the tightening torque for typical values of the parameters. Most of the tightening load is carried by the tapered section of the abutment, and in certain combinations of the parameters the pretension in the screw may become zero. The calculations performed to determine the loosening torque as a percentage of tightening torque resulted in the range 85-137%, depending on the values of taper angle and the friction coefficient.

  12. Effect of cement washout on loosening of abutment screws and vice versa in screw- and cement- retained implant-supported dental prosthesis

    PubMed Central

    Kim, Seok-Gyu; Son, Mee-Kyoung

    2015-01-01

    PURPOSE The purpose of this study was to examine the abutment screw stability of screw- and cement-retained implant-supported dental prosthesis (SCP) after simulated cement washout as well as the stability of SCP cements after complete loosening of abutment screws. MATERIALS AND METHODS Thirty-six titanium CAD/CAM-made implant prostheses were fabricated on two implants placed in the resin models. Each prosthesis is a two-unit SCP: one screw-retained and the other cemented. After evaluating the passive fit of each prosthesis, all implant prostheses were randomly divided into 3 groups: screwed and cemented SCP (Control), screwed and noncemented SCP (Group 1), unscrewed and cemented SCP (Group 2). Each prosthesis in Control and Group 1 was screwed and/or cemented, and the preloading reverse torque value (RTV) was evaluated. SCP in Group 2 was screwed and cemented, and then unscrewed (RTV=0) after the cement was set. After cyclic loading was applied, the postloading RTV was measured. RTV loss and decementation ratios were calculated for statistical analysis. RESULTS There was no significant difference in RTV loss ratio between Control and Group 1 (P=.16). No decemented prosthesis was found among Control and Group 2. CONCLUSION Within the limits of this in vitro study, the stabilities of SCP abutment screws and cement were not significantly changed after simulated cement washout or screw loosening. PMID:26140172

  13. Comparative Analysis of Screw Loosening With Prefabricated Abutments and Customized CAD/CAM Abutments.

    PubMed

    Paek, Janghyun; Woo, Yi-Hyung; Kim, Hyeong-Seob; Pae, Ahran; Noh, Kwantae; Lee, Hyeonjong; Kwon, Kung-Rock

    2016-12-01

    The aim of this study was to determine the stability of computer-aided design and manufacturing (CAD/CAM) and prefabricated abutment by measuring removal torque before and after cyclic loading. Three types of fixture and 2 types of abutments were used. Removable torque was measured after cyclic loading for 5000 cycles between 25 and 250 N for each group. The same procedure was performed twice. First, removal torque values (Newton centimeter) were measured for stock versus custom abutments as follows: group 1: 27.17 versus 26.67, group 2: 26.27 versus 26.33, and group 3: 37.33 versus 36.67. Second removal torque values (Newton centimeter) were also measured: group 1: 23 versus 23.5, group 2: 22.5 versus 22.33, and group 3: 32.67 versus 32.5. There was no significant difference between the stock and custom abutments in either the first or second removal torque values and also no significant difference among initial tightening torque, first or second removal torque (P > 0.05). With precise control of CAD/CAM abutments, good screw joint stability can be achieved.

  14. The effect of 3 torque delivery systems on gold screw preload at the gold cylinder-abutment screw joint.

    PubMed

    Tan, Keson B; Nicholls, Jack I

    2002-01-01

    This study measured the gold screw preload at the gold cylinder-abutment screw joint interface obtained by 3 torque delivery systems. Using a precalibrated, strain-gauged standard abutment as the load cell, 3 torque delivery systems tested were shown to have significant differences in gold screw preload when a gold cylinder was attached. Mean preloads measured were 291.2 N for hand torque drivers set at 10 Ncm, 340.3 N for electronic torque controllers at low setting/10 Ncm, 384.4 N for electronic torque controllers at high setting/10 Ncm; and 140.8 N for hand-tightening with a prosthetic slot screwdriver. Significant differences in screw preload were also found between operators using a hand torque driver. Hand-tightening delivered insufficient preload and cannot be recommended for final gold screw tightening. Different electronic torque controller units set at 10 Ncm induced mean gold screw preloads that ranged from 264.1 N to as high as 501.2 N. Electronic torque controllers should be regularly recalibrated to ensure optimal output.

  15. Stress distribution pattern of screw-retained restorations with segmented vs. non-segmented abutments: A finite element analysis

    PubMed Central

    Aalaei, Shima; Rajabi Naraki, Zahra; Nematollahi, Fatemeh; Beyabanaki, Elaheh; Shahrokhi Rad, Afsaneh

    2017-01-01

    Background. Screw-retained restorations are favored in some clinical situations such as limited inter-occlusal spaces. This study was designed to compare stresses developed in the peri-implant bone in two different types of screw-retained restorations (segmented vs. non-segmented abutment) using a finite element model. Methods. An implant, 4.1 mm in diameter and 10 mm in length, was placed in the first molar site of a mandibular model with 1 mm of cortical bone on the buccal and lingual sides. Segmented and non-segmented screw abutments with their crowns were placed on the simulated implant in each model. After loading (100 N, axial and 45° non-axial), von Mises stress was recorded using ANSYS software, version 12.0.1. Results. The maximum stresses in the non-segmented abutment screw were less than those of segmented abutment (87 vs. 100, and 375 vs. 430 MPa under axial and non-axial loading, respectively). The maximum stresses in the peri-implant bone for the model with segmented abutment were less than those of non-segmented ones (21 vs. 24 MPa, and 31 vs. 126 MPa under vertical and angular loading, respectively). In addition, the micro-strain of peri-implant bone for the segmented abutment restoration was less than that of non-segmented abutment. Conclusion. Under axial and non-axial loadings, non-segmented abutment showed less stress concentration in the screw, while there was less stress and strain in the peri-implant bone in the segmented abutment. PMID:29184629

  16. Removal torque evaluation of three different abutment screws for single implant restorations after mechanical cyclic loading.

    PubMed

    Paepoemsin, T; Reichart, P A; Chaijareenont, P; Strietzel, F P; Khongkhunthian, P

    2016-01-01

    The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer's recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading.

  17. Removal torque evaluation of three different abutment screws for single implant restorations after mechanical cyclic loading

    PubMed Central

    PAEPOEMSIN, T.; REICHART, P. A.; CHAIJAREENONT, P.; STRIETZEL, F. P.; KHONGKHUNTHIAN, P.

    2016-01-01

    SUMMARY Purpose The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. Methods The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer’s recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Results Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Conclusions Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading. PMID:28042450

  18. Effect of modifying the screw access channels of zirconia implant abutment on the cement flow pattern and retention of zirconia restorations.

    PubMed

    Wadhwani, Chandur; Chung, Kwok-Hung

    2014-07-01

    The effect of managing the screw access channels of zirconia implant abutments in the esthetic zone has not been extensively evaluated. The purpose of this study was to determine the effect of an insert placed within the screw access channel of an anterior zirconia implant abutment on the amount of cement retained within the restoration-abutment system and on the dislodging force. Thirty-six paired zirconia abutments and restorations were fabricated by computer-aided design and computer-aided manufacturing and were divided into 3 groups: open abutment, with the screw access channel unfilled; closed abutment, with the screw access channel sealed; and insert abutment, with a thin, tubular metal insert projection continuous with the screw head and placed into the abutment screw access channel. The restorations were cemented to the abutments with preweighed eugenol-free zinc oxide cement (TempBond NE). Excess cement was removed, and the weight of the cement that remained in the restoration-abutment system was measured. Vertical tensile dislodging forces were recorded at a crosshead speed of 5 mm/min after incubation in a 37°C water bath for 24 hours. The specimens were examined for the cement flow pattern into the screw access channel after dislodgement. Data were analyzed with ANOVA, followed by multiple comparisons by using the Tukey honestly significant difference test (α = .05). The mean (standard deviation) of retentive force values ranged from 108.1 ± 29.9 N to 148.3 ± 21.0 N. The retentive force values differed significantly between the insert abutment and both the open abutment (P < .05) and closed abutment groups (P < .01). Distinct patterns of cement failure were noted. The weight of the cement that remained in the system differed significantly, with both open abutment and insert abutment being greater than closed abutment (P < .05). Modifying the internal configuration of the screw access channel of an esthetic zirconia implant abutment with a metal

  19. PRELOAD AND TORQUE REMOVAL EVALUATION OF THREE DIFFERENT ABUTMENT SCREWS FOR SINGLE STANDING IMPLANT RESTORATIONS

    PubMed Central

    Stüker, Rafael Augusto; Teixeira, Eduardo Rolim; Beck, João Carlos Pinheiro; da Costa, Nilza Pereira

    2008-01-01

    Several authors still consider the mechanical problems of fracture and component loosening as the main causes of failure of implant-supported restorations. The purpose of this in vitro study was to compare the preload of three types of screw for transmucosal abutment attachment used in single implant-supported prosthesis through strain gauge and removal torque measurements. Three external hex fixtures were used, and each received a transmucosal abutment (Cera One®), which was fixed to the implant with its respective screw: Group A- gold screw, Group B- titanium screw and Group C- surface-treated titanium screw (Ti-Tite®). Ten screws of each type were attached applying a 30.07±0.28 Ncm torque force and maintained in position for 5 minutes. After this, the preload values were measured using strain gauges and a measurement cell. Gold screws presented higher preload values (131.72±8.98 N), followed by surface-treated titanium screws (97.78±4.68 N) and titanium screws (37.03±5.69 N). ANOVA (p<0.05) and Tukey's test (p<0.05) were applied. Statistically significant differences were found among the groups for both preload and removal torque values. In conclusion, gold screws may be indicated to achieve superior longevity of the abutment-implant connection and, consequently, prosthetic restoration due to greater preload values yielded. PMID:19089290

  20. Immediate prosthesis over implants retained using abutments with flexible screws: A preliminary study.

    PubMed

    Peñarrocha-Oltra, David; Serra-Pastor, Blanca; Balaguer-Martí, José-Carlos; Peñarrocha-Diago, Miguel; Agustín-Panadero, Rubén

    2017-12-01

    Immediate loading protocols for the rehabilitation of edentulous or partially edentulous patients have become very popular, due to the conveniences they afford in comparison with conventional loading techniques. A preliminary study was carried out with 8 patients subjected to dental implant treatment with an immediate loading protocol involving a novel system of abutments with flexible screws. Implant survival was analyzed, together with marginal bone loss and patient and dentist satisfaction. A total of 35 implants were subjected to immediate loading using the abutments with flexible screws. The mean patient and dentist satisfaction score was 9.1 and 8.5, respectively. After 12 months the dental implant survival rate was 95.8%, with a mean marginal bone loss of 0.51 ± 0.12 mm. The novel system of abutments with flexible screws offers a good alternative to conventional immediate loading, since it allows rapid and simple manufacture of a reliable passive fit, fixed interim prosthesis after surgery. Key words: Dental implants, Flexafit®, Immediate loading, Immediate prosthesis.

  1. Heat generation during removal of an abutment screw fragment from dental implants.

    PubMed

    Arias, Sergio R; Rueggeberg, Frederick A; Mettenburg, Donald; Sharawy, Mohamed; Looney, Stephen; Elsayed, Ranya; Elsalanty, Mohammed E

    2018-04-01

    Little information is available on the effect of drilling speed on surrounding bone during the removal of an abutment screw fragment. The purpose of this in vitro study was to compare, in vitro, the peak temperature increase during the removal of fractured abutment screws from implants placed in a porcine mandible, using drilling speeds of 600 or 2000 rpm. Twenty 4.3×13-mm dental implants were placed in 10 dissected porcine mandibles: 2 implants per mandible, 1 on each side. Localized defects were created in 20 surface-treated abutment screws, which were then tightened into each implant until a reproducible fracture occurred in each screw. The fractured screws were removed with a handpiece removal kit and irrigated with room-temperature water at either 600 or 2000 rpm. The temperature rise at the implant surface was measured at 3 levels with 3 type-K thermocouples. Repeated measure ANOVA was performed with the Tukey-Kramer post hoc test for mean pair-wise comparisons (α=.05 for all tests). Mean peak temperatures were significantly higher at 2000 rpm than at 600 rpm in the mid-body (P<.001) and crestal (P=.003) regions but not in the apical (P=.225) implant locations. No significant differences in mean peak temperatures were found among the 3 locations using 600 rpm (P=.179). In the 2000-rpm group, mean peak temperature in the mid-body area was consistently higher than that in the apical (P<.001) area, and more instances of temperature rise above 56°C and 60°C were observed. In 1 implant from this group, the estimated peak temperature exceeded the bone damage threshold value (50°C for 30 seconds). A drilling speed of 2000 rpm during the removal of abutment screw fragments caused overheating of the outer surface of the implant which may damage the surrounding bone; a speed of 600 rpm appears to be safe. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. In Vitro Evaluation of Manual Torque Values Applied to Implant-Abutment Complex by Different Clinicians and Abutment Screw Loosening.

    PubMed

    Dincer Kose, Onur; Karataslı, Burcin; Demircan, Sabit; Kose, Taha Emre; Cene, Erhan; Aya, Serhan Aydın; Erdem, Mehmet Ali; Cankaya, Abdulkadir Burak

    2017-01-01

    Preload is applied to screws manually or using a torque wrench in dental implant systems, and the preload applied must be appropriate for the purpose. The aim of this study was to assess screw loosening and bending/torsional moments applied by clinicians of various specialties following application of manual tightening torque to combinations of implants and abutments. Ten-millimeter implants of 3.7 and 4.1 mm diameters and standard or solid abutments were used. Each group contained five implant-abutment combinations. The control and experimental groups comprised 20 and 160 specimens, respectively. Implants in the experimental group were tightened by dentists of different specialties. Torsional and bending moments during tightening were measured using a strain gauge. Control group and implants with preload values close to the ideal preload were subjected to a dynamic loading test at 150 N, 15 Hz, and 85,000 cycles. The implants that deformed in this test were examined using an optical microscope to assess deformities. Manual tightening did not yield the manufacturer-recommended preload values. Dynamic loading testing suggested early screw loosening/fracture in samples with insufficient preload.

  3. In Vitro Evaluation of Manual Torque Values Applied to Implant-Abutment Complex by Different Clinicians and Abutment Screw Loosening

    PubMed Central

    Demircan, Sabit; Cene, Erhan; Aya, Serhan Aydın; Erdem, Mehmet Ali; Cankaya, Abdulkadir Burak

    2017-01-01

    Preload is applied to screws manually or using a torque wrench in dental implant systems, and the preload applied must be appropriate for the purpose. The aim of this study was to assess screw loosening and bending/torsional moments applied by clinicians of various specialties following application of manual tightening torque to combinations of implants and abutments. Ten-millimeter implants of 3.7 and 4.1 mm diameters and standard or solid abutments were used. Each group contained five implant-abutment combinations. The control and experimental groups comprised 20 and 160 specimens, respectively. Implants in the experimental group were tightened by dentists of different specialties. Torsional and bending moments during tightening were measured using a strain gauge. Control group and implants with preload values close to the ideal preload were subjected to a dynamic loading test at 150 N, 15 Hz, and 85,000 cycles. The implants that deformed in this test were examined using an optical microscope to assess deformities. Manual tightening did not yield the manufacturer-recommended preload values. Dynamic loading testing suggested early screw loosening/fracture in samples with insufficient preload. PMID:28473988

  4. Experimental conical-head abutment screws on the microbial leakage through the implant-abutment interface: an in vitro analysis using target-specific DNA probes.

    PubMed

    Pita, Murillo S; do Nascimento, Cássio; Dos Santos, Carla G P; Pires, Isabela M; Pedrazzi, Vinícius

    2017-07-01

    The aim of this in vitro study was to identify and quantify up to 38 microbial species from human saliva penetrating through the implant-abutment interface in two different implant connections, external hexagon and tri-channel internal connection, both with conventional flat-head or experimental conical-head abutment screws. Forty-eight two-part implants with external hexagon (EH; n = 24) or tri-channel internal (TI; n = 24) connections were investigated. Abutments were attached to implants with conventional flat-head or experimental conical-head screws. After saliva incubation, Checkerboard DNA-DNA hybridization was used to identify and quantify up to 38 bacterial colonizing the internal parts of the implants. Kruskal-Wallis test followed by Bonferroni's post-tests for multiple comparisons was used for statistical analysis. Twenty-four of thirty-eight species, including putative periodontal pathogens, were found colonizing the inner surfaces of both EH and TI implants. Peptostreptococcus anaerobios (P = 0.003), Prevotella melaninogenica (P < 0.0001), and Candida dubliniensis (P < 0.0001) presented significant differences between different groups. Means of total microbial count (×10 4 , ±SD) for each group were recorded as follows: G1 (0.27 ± 2.04), G2 (0 ± 0), G3 (1.81 ± 7.50), and G4 (0.35 ± 1.81). Differences in the geometry of implant connections and abutment screws have impacted the microbial leakage through the implant-abutment interface. Implants attached with experimental conical-head abutment screws showed lower counts of microorganisms when compared with conventional flat-head screws. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Critical bending moment of implant-abutment screw joint interfaces: effect of torque levels and implant diameter.

    PubMed

    Tan, Ban Fui; Tan, Keson B; Nicholls, Jack I

    2004-01-01

    Critical bending moment (CBM), the moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured with 2 types of implants and 2 types of abutments. Using 4 test groups of 5 implant-abutment pairs, CBM at the implant-abutment screw joint was measured at 25%, 50%, 75%, and 100% of the manufacturer's recommended torque levels. Regular Platform (RP) Nobel Biocare implants (3.75 mm diameter), Wide Platform (WP) Nobel Biocare implants (5.0 mm diameter), CeraOne abutments, and Multiunit abutments were used. Microstrain was measured as loads were applied to the abutment at various distances from the implant-abutment interface. Strain instrumentation logged the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated 5 times. For the CeraOne-RP group, the mean CBMs were 17.09 Ncm, 35.35 Ncm, 45.63 Ncm, and 62.64 Ncm at 25%, 50%, 75%, and 100% of the recommended torque level, respectively. For the CeraOne-WP group, mean CBMs were 28.29 Ncm, 62.97 Ncm, 92.20 Ncm, and 127.41 Ncm; for the Multiunit-RP group, 16.08 Ncm, 21.55 Ncm, 34.12 Ncm, and 39.46 Ncm; and for the Multiunit-WP group, 15.90 Ncm, 32.86 Ncm, 43.29 Ncm, and 61.55 Ncm at the 4 different torque levels. Two-way analysis of variance (ANOVA) (P < .001) revealed significant effects for the test groups (F = 2738.2) and torque levels (F = 2969.0). The methodology developed in this study allows confirmation of the gap opening of the screw joint for the test groups and determination of CBM at different torque levels. CBM was found to differ among abutment systems, implant diameters, and torque levels. The torque levels recommended by the manufacturer should followed to ensure screw joint integrity.

  6. Immediate prosthesis over implants retained using abutments with flexible screws: A preliminary study

    PubMed Central

    Peñarrocha-Oltra, David; Serra-Pastor, Blanca; Balaguer-Martí, José-Carlos; Agustín-Panadero, Rubén

    2017-01-01

    Background Immediate loading protocols for the rehabilitation of edentulous or partially edentulous patients have become very popular, due to the conveniences they afford in comparison with conventional loading techniques. Material and Methods A preliminary study was carried out with 8 patients subjected to dental implant treatment with an immediate loading protocol involving a novel system of abutments with flexible screws. Implant survival was analyzed, together with marginal bone loss and patient and dentist satisfaction. Results A total of 35 implants were subjected to immediate loading using the abutments with flexible screws. The mean patient and dentist satisfaction score was 9.1 and 8.5, respectively. After 12 months the dental implant survival rate was 95.8%, with a mean marginal bone loss of 0.51 ± 0.12 mm. Conclusions The novel system of abutments with flexible screws offers a good alternative to conventional immediate loading, since it allows rapid and simple manufacture of a reliable passive fit, fixed interim prosthesis after surgery. Key words:Dental implants, Flexafit®, Immediate loading, Immediate prosthesis. PMID:29410752

  7. The effects of loading on the preload and dimensions of the abutment screw for a 3-unit cantilever-fixed prosthesis design.

    PubMed

    Setia, Gaurav; Yousef, Hoda; Ehrenberg, David; Luke, Allyn; Weiner, Saul

    2013-08-01

    The purpose of this study was to use an in vitro model system to compare the effects on the screw torque and screw dimensions within 2 commercially available implant systems from occlusal loading on a cantilevered-fixed partial denture. Cantilevered implant-supported 3-unit prostheses with 2 premolar abutments and 1 premolar pontic (7.3 mm in length) were made on resin casts containing 2 implant analogs for 2 implant systems: BioLok Silhouette Tapered Implant System (Birmingham, AL) and Zimmer Tapered Screw-Vent Implant System (Carlsbad, CA) with 10 samples in each group. Each sample was loaded with either of 2 protocols: (1) a load of 50 N on the cantilevered pontic unit and (2) a loading of 150 N on all 3 units. The outcome measures were (1) changes in residual torque of the abutment screws and (2) changes in screw dimension. The BioLok Silhouette Tapered Implant group demonstrated slight but statistically significant torque loss 18.8% to 28.5% in both abutment screws for both protocols, P ≤ 0.05, without any changes in screw dimension. In the Zimmer Tapered Screw-Vent Implant group, there was a significant elongation of the abutment screws and a markedly significant 44.4%, (P ≤ 0.01) loss in torque in the mesial screw and a 28.5%, (P ≤ 0.05) loss in torque in the distal screw when the cantilever alone was loaded. Differences in screw design influence the maintenance of preload and distortion of the shank. The influence of the interface design, namely an internal hex of 1 mm versus an external hex did not influence the preload. Cantilevered prostheses can cause loss of torque and dimensional changes in abutment screws.

  8. Effect of abutment screw length and cyclic loading on removal torque in external and internal hex implants.

    PubMed

    Mohammed, Hnd Hadi; Lee, Jin-Han; Bae, Ji-Myung; Cho, Hye-Won

    2016-02-01

    The purpose of this study was to evaluate the effects of abutment screw length and cyclic loading on the removal torque (RTV) in external hex (EH) and internal hex (IH) implants. Forty screw-retained single crowns were connected to external and internal hex implants. The prepared titanium abutment screws were classified into 8 groups based on the number of threads (n = 5 per group): EH 12.5, 6.5, 3.5, 2.5 and IH 6.5, 5, 3.5, 2.5 threads. The abutment screws were tightened with 20 Ncm torque twice with 10-minute intervals. After 5 minutes, the initial RTVs of the abutment screws were measured with a digital torque gauge (MGT12). A customized jig was constructed to apply a load along the implant long axis at the central fossa of the maxillary first molar. The post-loading RTVs were measured after 16,000 cycles of mechanical loading with 50 N at a 1-Hz frequency. Statistical analysis included one-way analysis of variance and paired t-tests. The post-loading RTVs were significantly lower than the initial RTVs in the EH 2.5 thread and IH 2.5 thread groups (P<.05). The initial RTVs exhibited no significant differences among the 8 groups, whereas the post-loading RTVs of the EH 6.5 and EH 3.5 thread groups were higher than those of the IH 3.5 thread group (P<.05). Within the limitations of this study, the external hex implants with short screw lengths were more advantageous than internal hex implants with short screw lengths in torque maintenance after cyclic loading.

  9. Effect of abutment screw length and cyclic loading on removal torque in external and internal hex implants

    PubMed Central

    Mohammed, Hnd Hadi; Lee, Jin-Han; Bae, Ji-Myung

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the effects of abutment screw length and cyclic loading on the removal torque (RTV) in external hex (EH) and internal hex (IH) implants. MATERIALS AND METHODS Forty screw-retained single crowns were connected to external and internal hex implants. The prepared titanium abutment screws were classified into 8 groups based on the number of threads (n = 5 per group): EH 12.5, 6.5, 3.5, 2.5 and IH 6.5, 5, 3.5, 2.5 threads. The abutment screws were tightened with 20 Ncm torque twice with 10-minute intervals. After 5 minutes, the initial RTVs of the abutment screws were measured with a digital torque gauge (MGT12). A customized jig was constructed to apply a load along the implant long axis at the central fossa of the maxillary first molar. The post-loading RTVs were measured after 16,000 cycles of mechanical loading with 50 N at a 1-Hz frequency. Statistical analysis included one-way analysis of variance and paired t-tests. RESULTS The post-loading RTVs were significantly lower than the initial RTVs in the EH 2.5 thread and IH 2.5 thread groups (P<.05). The initial RTVs exhibited no significant differences among the 8 groups, whereas the post-loading RTVs of the EH 6.5 and EH 3.5 thread groups were higher than those of the IH 3.5 thread group (P<.05). CONCLUSION Within the limitations of this study, the external hex implants with short screw lengths were more advantageous than internal hex implants with short screw lengths in torque maintenance after cyclic loading. PMID:26949489

  10. Detorque evaluation of dental abutment screws after immersion in a fluoridated artificial saliva solution.

    PubMed

    Duarte, Antônio R C; Neto, João P Silva; Souza, Júlio C M; Bonachela, Wellington C

    2013-06-01

    Implant-abutment connections still present failures in the oral cavity due to the loosening of mechanical integrity by detorque and corrosion of the abutment screws. The objective of this study was to evaluate the detorque of dental abutment screws before and after immersion in fluoridated solutions. Five commercial implant-abutment assemblies were assessed in this investigation: (C) Conexão®, (E) Emfils®, (I) INP®, (S) SIN®, and (T) Titanium Fix®. The implants were embedded in an acrylic resin and then placed in a holding device. The abutments were first connected to the implants and torqued to 20 Ncm using a handheld torque meter. The detorque values of the abutments were evaluated after 10 minutes. After applying a second torque of 20 Ncm, implant-abutment assemblies were withdrawn every 3 hours for 12 hours in a fluoridated solution over a period of 90 days. After that period, detorque of the abutments was examined. Scanning electronic microscopy (SEM) associated to energy dispersive spectroscopy (EDS) was applied to inspect the surfaces of abutments. Detorque values of systems C, E, and I immersed in the fluoridated solution were significantly higher than those of the initial detorque. ANOVA demonstrated no significant differences in detorque values between designs S and T. Signs of localized corrosion could not be detected by SEM although chemical analysis by EDS showed the presence of elements involved in corrosive processes. An increase of detorque values recorded on abutments after immersion in fluoridated artificial saliva solutions was noticed in this study. Regarding chemical analysis, such an increase of detorque can result from a corrosion layer formed between metallic surfaces at static contact in the implant-abutment joint during immersion in the fluoridated solutions. © 2012 by the American College of Prosthodontists.

  11. Influence of Different Screw Torque Levels on the Biomechanical Behavior of Tapered Prosthetic Abutments.

    PubMed

    Herbst, Paulo Eduardo; de Carvalho, Eduardo Bortolas; Salatti, Rafael C; Valgas, Laiz; Tiossi, Rodrigo

    To study the force used for tightening tapered one-piece prosthetic abutments and their influence on the removal torque value and stress level of the prosthetic abutment after cyclic loading. Fourteen implants and prosthetic abutments were divided into two groups (n = 7): G1, 20 Ncm; and G2, 32 Ncm (manufacturer recommended). A 20-mm T-shaped horizontal bar was adapted to the abutments. A 12-Hz cyclic loading was applied to the specimens in an electrodynamic testing system with the maximum number of cycles set to 10 6 . Specimens were inclined by 15 degrees from the vertical axis, and a 5-mm off-center vertical load was applied to generate a combination of bending and torquing moments on the tapered connections. Progressive loads (from 164.85 to 362.85 N) were applied when the previous sample survived 10 6 cycles. The paired t test compared the screw removal torque with the initial tightening torque for each group (α = .05). A finite element analysis (FEA) of the mechanical testing analyzed the regions of stress concentration. No specimens failed after 10 6 cyclic loadings. The mean screw removal torque for both groups was similar to the initial abutment torque value applied for each group (G1, 20.36 ± 8.73 Ncm; and G2, 35.61 ± 6.99 Ncm) (P > .05). FEA showed similar stress behavior for both groups in the study despite the different simulated screw preloads (G1: 200 N; G2: 320 N). The coronal region of the implant body presented the highest strain values in both groups. Tightening tapered one-piece prosthetic abutments at 20 and 32 Ncm maintains a stable connection after cyclic loading. The stresses generated by the different tightening forces during cyclic loading are highest at the coronal level of the connection.

  12. Evaluation of the sealing capability of implants to titanium and zirconia abutments against Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum under different screw torque values.

    PubMed

    Smith, Nicole A; Turkyilmaz, Ilser

    2014-09-01

    When evaluating long-term implant success, clinicians have always been concerned with the gap at the implant-abutment junction, where bacteria can accumulate and cause marginal bone loss. However, little information regarding bacterial leakage at the implant-abutment junction, or microgap, is available. The purpose of this study was to evaluate sealing at 2 different implant-abutment interfaces under different screw torque values. Twenty sterile zirconia abutments and 20 sterile titanium abutments were screwed into 40 sterile implants and placed in test tubes. The ability of a bacterial mixture of Prevotella intermedia, Porphyromonas gingivalis, and Fusobacterium nucleatum to leak through an implant-titanium abutment seal under 20 and 35 Ncm torque values and an implant-zirconia abutment seal under 20 and 35 Ncm torque values was evaluated daily until leakage was noted. Once a unit demonstrated leakage, a specimen was plated. After 4 days, the number of colonies on each plate was counted with an electronic colony counter. Plating was used to verify whether or not bacterial leakage occurred and when leakage first occurred. The implant-abutment units were removed and rinsed with phosphate buffered saline solution and evaluated with a stereomicroscope. The marginal gap between the implant and the abutment was measured and correlated with the amount of bacterial leakage. The data were analyzed with ANOVA. Bacterial leakage was noted in all specimens, regardless of material or screw torque value. With titanium abutments, changing the screw torque value from 20 to 35 Ncm did not significantly affect the amount of bacterial leakage. However, with zirconia abutments, changing the screw torque value from 20 to 35 Ncm was statistically significant (P<.017). Overall, the marginal gap noted was larger at the zirconia-abutment interface (5.25 ±1.99 μm) than the titanium-abutment interface (12.38 ±3.73 μm), irrespective of the screw torque value. Stereomicroscopy revealed a

  13. Probabilistic analysis of preload in the abutment screw of a dental implant complex.

    PubMed

    Guda, Teja; Ross, Thomas A; Lang, Lisa A; Millwater, Harry R

    2008-09-01

    Screw loosening is a problem for a percentage of implants. A probabilistic analysis to determine the cumulative probability distribution of the preload, the probability of obtaining an optimal preload, and the probabilistic sensitivities identifying important variables is lacking. The purpose of this study was to examine the inherent variability of material properties, surface interactions, and applied torque in an implant system to determine the probability of obtaining desired preload values and to identify the significant variables that affect the preload. Using software programs, an abutment screw was subjected to a tightening torque and the preload was determined from finite element (FE) analysis. The FE model was integrated with probabilistic analysis software. Two probabilistic analysis methods (advanced mean value and Monte Carlo sampling) were applied to determine the cumulative distribution function (CDF) of preload. The coefficient of friction, elastic moduli, Poisson's ratios, and applied torque were modeled as random variables and defined by probability distributions. Separate probability distributions were determined for the coefficient of friction in well-lubricated and dry environments. The probabilistic analyses were performed and the cumulative distribution of preload was determined for each environment. A distinct difference was seen between the preload probability distributions generated in a dry environment (normal distribution, mean (SD): 347 (61.9) N) compared to a well-lubricated environment (normal distribution, mean (SD): 616 (92.2) N). The probability of obtaining a preload value within the target range was approximately 54% for the well-lubricated environment and only 0.02% for the dry environment. The preload is predominately affected by the applied torque and coefficient of friction between the screw threads and implant bore at lower and middle values of the preload CDF, and by the applied torque and the elastic modulus of the abutment

  14. An Indirect Method to Measure Abutment Screw Preload: A Pilot Study Based on Micro-CT Scanning.

    PubMed

    Rezende, Carlos Eduardo E; Griggs, Jason Alan; Duan, Yuanyuan; Mushashe, Amanda M; Nolasco, Gisele Maria Correr; Borges, Ana Flávia Sanches; Rubo, José Henrique

    2015-01-01

    This study aimed to measure the preload in different implant platform geometries based on micro-CT images. External hexagon (EH) implants and Morse Tapered (MT) implants (n=5) were used for the preload measurement. The abutment screws were scanned in micro-CT to obtain their virtual models, which were used to record their initial length. The abutments were screwed on the implant with a 20 Ncm torque and the set composed by implant, abutment screw and abutment were taken to the micro-CT scanner to obtain virtual slices of the specimens. These slices allowed the measurement of screw lengths after torque application and based on the screw elongation. Preload values were calculated using the Hooke's Law. The preloads of both groups were compared by independent t-test. Removal torque of each specimen was recorded. To evaluate the accuracy of the micro-CT technique, three rods with known lengths were scanned and the length of their virtual model was measured and compared with the original length. One rod was scanned four times to evaluate the measuring method variation. There was no difference between groups for preload (EH = 461.6 N and MT = 477.4 N), but the EH group showed higher removal torque values (13.8 ± 4.7 against 8.2 ± 3.6 N cm for MT group). The micro-CT technique showed a variability of 0.053% and repeatability showed an error of 0.23 to 0.28%. Within the limitations of this study, there was no difference between external hexagon and Morse taper for preload. The method using micro-CT may be considered for preload calculation.

  15. In-vitro development of a temporal abutment screw to protect osseointegration in immediate loaded implants.

    PubMed

    García-Roncero, Herminio; Caballé-Serrano, Jordi; Cano-Batalla, Jordi; Cabratosa-Termes, Josep; Figueras-Álvarez, Oscar

    2015-04-01

    In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants.

  16. Load Fatigue Performance Evaluation on Two Internal Tapered Abutment-Implant Connection Implants Under Different Screw Tightening Torques.

    PubMed

    Jeng, Ming-Dih; Liu, Po-Yi; Kuo, Jia-Hum; Lin, Chun-Li

    2017-04-01

    This study evaluates the load fatigue performance of different abutment-implant connection implant types-retaining-screw (RS) and taper integrated screwed-in (TIS) types under 3 applied torque levels based on the screw elastic limit. Three torque levels-the recommended torque (25 Ncm), 10% less, and 10% more than the ratio of recommended torque to screw elastic limits of different implants were applied to the implants to perform static and dynamic testing according to the ISO 14801 method. Removal torque loss was calculated for each group after the endurance limitation was reached (passed 5 × 10 6 cycles) in the fatigue test. The static fracture resistance results showed that the fracture resistance in the TIS-type implant significantly increased (P < .05) when the abutment screw was inserted tightly. The dynamic testing results showed that the endurance limitations for the RS-type implant were 229 N, 197 N, and 224 N and those for the TIS-type implant were 322 N, 364 N, and 376 N when the screw insertion torques were applied from low to high. The corresponding significant (P < .05) removal torque losses for the TIS-type implant were 13.2%, 5.3%, and 2.6% but no significant difference was found for the RS-type implant. This study concluded that the static fracture resistance and dynamic endurance limitation of the TIS-type implant (1-piece solid abutment) increased when torque was applied more tightly on the screw. Less torque loss was also found when increasing the screw insertion torque.

  17. Bacterial adhesion on commercially pure titanium and anatase-coated titanium healing screws: an in vivo human study.

    PubMed

    Scarano, Antonio; Piattelli, Adriano; Polimeni, Antonella; Di Iorio, Donato; Carinci, Francesco

    2010-10-01

    Little is known about the mechanisms of bacterial interaction with implant materials in the oral cavity. Other surface characteristics, in addition to surface roughness, seem to be extremely important in relation to plaque formation. Different adhesion affinities of bacteria were reported for different materials. Anatase is a nanoparticle that can be applied to titanium surfaces as a coating. The anatase coating gives special characteristics to the implant surface, including some genetic effects on osteoblasts. In this study, the antibacterial effect of anatase is investigated. The aim of this study is to characterize the percentages of surfaces covered by bacteria on commercially pure (cp) titanium and anatase-coated healing screws. Ten patients participated in this study. The protocol of the study was approved by the ethics committee of the University of Chieti-Pescara. A total of 20 healing screws (10 test and 10 control screws) were used in the study. The control screws were made of cp titanium, whereas the test screws were coated with anatase. Cleaning procedures and agents for chemical plaque control were not applied to the healing screws for the complete duration of the test period. After 7 days, all healing screws were removed, substituted, and processed under scanning electron microscopy for evaluation of the portions of the surfaces covered by bacteria. The supracrestal screw surfaces covered by bacteria on test specimens were not significantly lower than those of control screws (P = 0.174). The subcrestal screw surfaces and threads covered by bacteria on test specimens were significantly lower than those of control screws, and P values were 0.001 and 0.000, respectively. Results show that anatase could be a suitable material for coating implant abutments, with a low colonization potential.

  18. Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems.

    PubMed

    Jo, Jae-Young; Yang, Dong-Seok; Huh, Jung-Bo; Heo, Jae-Chan; Yun, Mi-Jung; Jeong, Chang-Mo

    2014-12-01

    This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.

  19. In-vitro development of a temporal abutment screw to protect osseointegration in immediate loaded implants

    PubMed Central

    2015-01-01

    PURPOSE In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. MATERIALS AND METHODS Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. RESULTS Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. CONCLUSION Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants. PMID:25932315

  20. Influence of abutment materials on the implant-abutment joint stability in internal conical connection type implant systems

    PubMed Central

    Jo, Jae-Young; Yang, Dong-Seok; Huh, Jung-Bo; Heo, Jae-Chan; Yun, Mi-Jung

    2014-01-01

    PURPOSE This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material. PMID:25551010

  1. Effects of Repeated Screw Tightening on Implant Abutment Interfaces in Terms of Bacterial and Yeast Leakage in Vitro: One-Time Abutment Versus the Multiscrewing Technique.

    PubMed

    Calcaterra, Roberta; Di Girolamo, Michele; Mirisola, Concetta; Baggi, Luigi

    2016-01-01

    Screw loosening can damage the interfaces of implant components, resulting in susceptibility to contamination of the internal parts by microorganisms. The aim of this study was to investigate the impact of abutment screw retightening on the leakage of two different types of bacteria, Streptococcus sanguinis and Fusobacterium nucleatum, and of the yeast Candida albicans. Two types of implant-abutment systems with tube-in-tube interfaces were tested. Groups A and B each used a different type of system that consisted of 20 different pieces that were assembled according to the manufacturer's torque recommendations; four samples in each group were closed just one time, four samples three times, four samples five times, four samples seven times, and four samples nine times. The implants of groups A and B were contaminated with 0.1 μL of microbial solution just before being assembled for the last time to minimize the possibility of contamination. Results showed a direct correlation between the number of colony-forming units grown in the plates and the closing/opening cycles of the implant-abutment systems. Within the limitations of this study, the results indicate the possibility that repeated closing/opening cycles of the implant-abutment unit may influence bacterial/yeast leakage, most likely as a consequence of decreased precision of the coupling between the abutment and the internal part of the dental implant. These findings suggest that a one-time abutment technique may avoid microbiologic leakage in cases of implant-abutment systems with tube-in-tube interfaces.

  2. Preload evaluation of different screws in external hexagon joint.

    PubMed

    Assunção, Wirley Gonçalves; Delben, Juliana Aparecida; Tabata, Lucas Fernando; Barão, Valentim Adelino Ricardo; Gomes, Erica Alves; Garcia, Idelmo Rangel

    2012-02-01

    This study compared the maintenance of tightening torque in different retention screw types of implant-supported crowns. Twelve metallic crowns in UCLA abutments cast with cobalt-chromium alloy were attached to external hexagon osseointegrated implants with different retention screws: group A: titanium alloy retention screw; group B: gold alloy retention screw with gold coating; group C: titanium alloy retention screw with diamond-like carbon film coating; and group D: titanium alloy retention screw with aluminum titanium nitride coating. Three detorque measurements were obtained after torque insertion in each replica. Data were evaluated by analysis of variance (ANOVA), Tukey's test (P < 0.05), and t test (P < 0.05). Detorque value reduced in all groups (P < 0.05). Group A retained the highest percentage of torque in comparison with the other groups (P < 0.05). Groups B and D retained the lowest percentage of torque without statistically significant difference between them (P > 0.05). All screw types exhibited reduction in the detorque value. The titanium screw maintained the highest percentage of torque whereas the gold-coated screw and the titanium screw with aluminum titanium nitride coating retained the lowest percentage.

  3. In vitro effect of chlorhexidine gel on torque and detorque values of implant abutment screw.

    PubMed

    Asli, Hamid Neshandar; Saberi, Bardia Vadiati; Fatemi, Arezoo Sadat

    2017-01-01

    Use of chlorhexidine (CHX) gel to eliminate the malodor of implant cavity may decrease the friction coefficient and effective preload and result in abutment screw loosening. This study aimed to assess the effect of CHX gel on the preload, torque, and detorque values. This in vitro experimental study was conducted on three groups of five implants. Group A (G1) was the control group and no material was applied to the implant cavity. In Group B (G2), implant cavity was filled with saliva before abutment screw tightening. In Group C (G3), implant cavity was first filled with saliva and then with CHX gel. The abutments were torqued to 24 N/cm2 according to the manufacturer's instructions and were then loosened. These processes were repeated five times. The ratio of the mean percentage of detorque to torque values was measured in all groups. The collected data were analyzed using ANOVA and post hoc Tukey's test. No significant difference was noted between G1 and G2. Group G2 had significantly higher detorque value (p < 0.05). ANOVA detected a significant difference in the mean torque (p < 0.05) and detorque (p < 0.001) values among the three groups. G3 showed maximum difference between torque and detorque values; the minimum difference was noted in G2. Application of CHX gel (to decrease the malodor of the implant cavity) decreases the detorque and preload values and increases the risk of screw loosening.

  4. Loss of preload in screwed implant joints as a function of time and tightening/untightening sequences.

    PubMed

    Bernardes, Sérgio Rocha; da Gloria Chiarello de Mattos, Maria; Hobkirk, John; Ribeiro, Ricardo Faria

    2014-01-01

    The purpose of this study was to determine whether abutment screw tightening and untightening influenced loss of preload in three different implant/abutment interfaces, or on the implant body. Five custom-fabricated machined titanium implants were used, each with its respective abutment, with different connection types, retention screws, and torque values (external hexagon with titanium screw/32 Ncm, external hexagon with coated screw/32 Ncm, internal hexagon/20 Ncm and internal conical/20 and 32 Ncm). Each implant tested had two strain gauges attached and was submitted to five tightening/untightening sequences. External hexagons resulted in the lowest preload values generated in the implant cervical third (mean of 27.75 N), while the internal hexagon had the highest values (mean of 219.61 N). There was no immediate significant loss of preload after screw tightening. Tightening/untightening sequences, regardless of the implant/abutment interface design or type of screw used in the study, did not result in any significant loss of initial preload. Conical implant connections demonstrated greater structural reinforcement within the internal connections.

  5. Dynamic nature of abutment screw retightening: finite element study of the effect of retightening on the settling effect.

    PubMed

    Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Safari, Hamed; Samandari, Mohammad Mahdi; Geramipanah, Farideh

    2015-05-01

    A fundamental problem in fully understanding the dynamic nature of screw loosening is lack of recognition of the entire process of screw tightening and retightening. The purpose of this study was to explain the dynamic nature of abutment screw retightening by using finite element methods to investigate the effect of the coefficient of friction and retightening on the settling effect. Precise computer models were designed of a Straumann dental implant, a directly attached crown, an abutment screw, and the bone surrounding the implant. All threaded interfaces were designed with a spiral thread helix with a specific coefficient of static and kinetic friction, and the surfaces were characterized as fine, regular, and rough. Abaqus software was used for dynamic simulation, which involved applying rotational displacement to the abutment screw and torque controlling during the steps of tightening, relaxation, retightening, and second relaxation and at different coefficients of friction. The obtained torque and preload values were compared to the predicted values. When surfaces changed from fine to rough, the remaining torque and preload decreased, and the settling effect increased. Upon retightening, the remaining torque and preload increased, and the settling effect also decreased. The reduction of the coefficient of friction contributes to increases in the preload and decreases in the settling effect. Retightening reduced the settling effect and had an insignificant effect on the preload. At high coefficients of friction, the retightening effect was intensified. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Effect of the Coronal Wall Thickness of Dental Implants on the Screw Joint Stability in the Internal Implant-Abutment Connection.

    PubMed

    Lee, Ji-Hye; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2016-01-01

    To evaluate the effect of implant coronal wall thickness on load-bearing capacity and screw joint stability. Experimental implants were customized after investigation of the thinnest coronal wall thickness of commercially available implant systems with a regular platform diameter. Implants with four coronal wall thicknesses (0.2, 0.3, 0.4, and 0.5 mm) were fabricated. Three sets of tests were performed. The first set was a failure test to evaluate load-bearing capacity and elastic limit. The second and third sets were cyclic and static loading tests. After abutment screw tightening of each implant, vertical cyclic loading of 250 N or static loading from 250 to 800 N was applied. Coronal diameter expansion, axial displacement, and removal torque values of the implants were compared. Repeated measures analysis of variance (ANOVA) was used for statistical analysis (α = .05). Implants with 0.2-mm coronal wall thickness demonstrated significantly low load-bearing capacity and elastic limit (both P < .05). These implants also showed significantly large coronal diameter expansion and axial displacement after screw tightening (both P < .05). Greater vertical load and thinner coronal wall thickness significantly increased coronal diameter expansion of the implant, axial displacement of the abutment, and removal torque loss of the abutment screw (all P < .05). Implant coronal wall thickness of 0.2 mm produces significantly inferior load-bearing capacity and screw joint stability.

  7. The influence of abutment angulation on screw loosening of implants in the anterior maxilla.

    PubMed

    Ha, Chun-Yeo; Lim, Yung-Jun; Kim, Myung-Joo; Choi, Jung-Han

    2011-01-01

    This study compared the removal torque values (RTVs) of different abutments (straight, angled, and gold premachined UCLA-type) in external- and internal-hex implants after dynamic cyclic loading with the clinical situation of the anterior maxilla simulated. An ideal cast of a maxilla with a missing right central incisor was fabricated in dental stone, and an implant analog was embedded in this model at a 15-degree angle labial to the long axis of the left central incisor. Thirty external-hex and 30 internal-hex implants were used. A total of 10 straight abutments, 10 angled abutments, and 10 gold premachined UCLA-type abutments of each system and 60 abutment screws were tested. Initial RTVs were measured after each assembly was tightened to 30 Ncm. Straight abutments and angled abutments were prepared and gold-premachined UCLA-type abutments were waxed and cast with low-fusing gold alloy for the central incisor. RTVs were then measured again. After each assembly was tightened, a metal crown was temporarily cemented. After cyclic loading of 20 to 200 N was applied 1 million times, RTVs were measured for a third time. Statistical analysis (alpha = .05) was performed to evaluate the results. The angled abutment group showed significantly higher RTVs than the straight abutment and gold premachined UCLA-type abutment groups in external-hex implants. However, no significant difference in RTVs was found among abutments in internal-hex implants. The time of analysis of RTV was found to significantly influence mean RTVs. Mean RTVs of external- and internal-hex implants showed significant differences. Within the limitations of this study, there were significant differences in RTVs among different abutment groups in external-hex implants. There were no significant differences in RTVs among different abutment groups in internal-hex implants.

  8. Torque loss of different abutment sizes before and after cyclic loading.

    PubMed

    Moris, Izabela Cristina; Faria, Adriana Cláudia; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina

    2015-01-01

    The aim of this study was to compare 3.8- and 4.8-mm abutments submitted to simulations of masticatory cycles to examine whether abutment diameter and cemented vs screw-retained crowns affect torque loss of the abutments and crowns. Forty implant/abutment sets were divided into the following groups (n = 10 in each group): (1) G4.8S included 4.8-mm abutment with screw-retained crown; (2) G4.8C included 4.8-mm abutment with cemented crown; (3) G3.8S included 3.8-mm abutment with screw-retained crown; and (4) G3.8C included 3.8-mm abutment with cemented crown. All abutments were tightened with torque values of 20 Ncm, and 10 Ncm for screw-retained crowns. Torque loss was measured before and after cycling loading (300,000 cycles). Torque loss of screw-retained crowns significantly increased after cycling in abutments of groups G3.8S (P ≤ .05) and G4.8S (P = .001). No difference was noted between the abutments before cycling (P = .735), but G3.8S abutments presented greater torque loss than the other groups after cycling (P = .008). Significant differences were noted in the abutment torque loss before and after cycling loading only for the G3.8C group (P ≤ .05). The abutment diameter affects torque loss of screw-retained crowns and leads to failure during the test; mechanical cycling increases torque loss of abutment screw and screw-retained crowns.

  9. [Dynamic analysis of the rigid fixed bridge and related tissue after intrusion of abutment with micro screw implant].

    PubMed

    Zhu, Lin; Xu, Pei-cheng; Lu, Liu-lei

    2013-08-01

    To study the variety of mechanical behavior of fixed bridge after abutments being intruded by micro screw implant and to provide theoretical principles for clinical practice of teeth preparation after intrusion of abutments under dynamic loads. Two-dimensional images of maxilla, teeth and supporting tissues of healthy people were scanned by spiral CT and were synthesized by Mimics10.01, Ansys13.0, etc. The three-dimensional finite element mathematical model of rigid fixed bridge repairing on double end of maxillary molar was developed. Under the condition of 10% simulative abutment alveolar absorption, vertical and oblique dynamic forces were applied in a circle of mastication(0.875 s) to build mathematical model after the abutment had been intruded for 0.5, 1.0, 1.5 and 2.0 mm. Stress variety of prosthesis, teeth, periodontal ligaments and supporting tissues were compared before and after intrusion of abutments. Stress variety of the prosthesis occurred, which had close relationship with the structure of prosthesis and teeth, the areas of periodontal ligaments increased, stress on the whole decreased along with the increase of the length of intrusion. With time accumulating, the stress value in prosthesis, teeth, periodontal ligaments and supporting tissues increased gradually and loads in oblique direction induced peak value stress in a masticatory cycle. Some residual stress left after unloading. By preparing the fixed bridge after abutment intrusion by micro screw implant, the service life of abutment and fixed bridge prosthesis can be reduced. The abutment and its related tissue have time-dependent mechanical behaviors during one mastication. The influence of oblique force on stress was greater than vertical force. There is some residual stress left after one mastication period. With the increase of the intrusion on abutment, residual stress reduced.

  10. Axial displacement of abutments into implants and implant replicas, with the tapered cone-screw internal connection, as a function of tightening torque.

    PubMed

    Dailey, Bruno; Jordan, Laurence; Blind, Olivier; Tavernier, Bruno

    2009-01-01

    The passive fit of a superstructure on implant abutments is essential to success. One source of error when using a tapered cone-screw internal connection may be the difference between the tightening torque level applied to the abutments by the laboratory technician compared to that applied by the treating clinician. The purpose of this study was to measure the axial displacement of tapered cone-screw abutments into implants and their replicas as a function of the tightening torque level. Twenty tapered cone-screw abutments were selected. Two groups were created: 10 abutments were secured into 10 implants, and 10 abutments were secured into 10 corresponding implant replicas. Each abutment was tightened in increasing increments of 5 Ncm, from 0 Ncm to 45 Ncm, with a torque controller. The length of each sample was measured repeatedly with an Electronic Digital Micrometer. The mean axial displacement for the implant group and the replica group was calculated. The data were analyzed by the Mann-Whitney and Spearman tests. For both groups, there was always an axial displacement of the abutment upon each incremental application of torque. The mean axial displacement values varied between 7 and 12 microm for the implant group and between 6 and 21 microm for the replica group at each 5-Ncm increment. From 0 to 45 Ncm, the total mean axial displacement values were 89 microm for the implant group and 122 microm for the replica group. There was a continuous axial displacement of the abutments into implants and implant replicas when the applied torque was raised from 0 to 45 Ncm. Torque applied above the level recommended by the manufacturer increased the difference in displacement between the two groups.

  11. Does Ferrule Effect Affect Implant-Abutment Stability?

    PubMed

    Mohajerfar, Maryam; Beyabanaki, Elaheh; Geramy, Allahyar; Siadat, Hakimeh; Alikhasi, Marzieh

    2016-12-01

    This study investigated the influence of placing implant-supported crowns on the torque loss of the abutment screw before and after loading. Twenty implant-abutment assemblies were randomly assigned to two groups. The first group was consisted of abutments with abutment-level finishing line (abutment-level), and in the second group the crown margin was placed on the implant shoulder (implant-level). Initial torque loss was recorded for all specimens. After 500000 cyclic load of 75 N and frequency of 2 Hz, post loading torque loss was recorded. Finite element model of each group was also modeled and screw energy, and stress were analyzed and compared between two groups. ANOVA for repeated measurements showed that the torque loss did not change significantly after cyclic loading (P=0.73). Crown margin also had no significant effect on the torque loss (P=0.56). However, the energy and stress of screw in abutment-level model (4.49 mJ and 22.74 MPa) was higher than implant-level model (3.52 mJ and 20.81 MPa). Although embracing the implant with crown produced less stress and energy in the abutment-implant screw, it did not have any significant influence on the torque loss of the screw. Copyright© 2016 Dennis Barber Ltd

  12. Can the Hydroxyapatite-Coated Skin-Penetrating Abutment for Bone Conduction Hearing Implants Integrate with the Surrounding Skin?

    PubMed

    van Hoof, Marc; Wigren, Stina; Duimel, Hans; Savelkoul, Paul H M; Flynn, Mark; Stokroos, Robert Jan

    2015-01-01

    Percutaneous implants, such as bone conduction hearing implants, suffer from complications that include inflammation of the surrounding skin. A sealed skin-abutment interface can prevent the ingress of bacteria, which should reduce the occurrence of peri-abutment dermatitis. It was hypothesized that a hydroxyapatite (HA)-coated abutment in conjunction with soft tissue preservation surgery should enable integration with the adjacent skin. Previous research has confirmed that integration is never achieved with as-machined titanium abutments. Here, we investigate, in vivo, if skin integration is achievable in patients using a HA-coated abutment. One titanium abutment (control) and one HA-coated abutment (case) together with the surrounding skin were surgically retrieved from two patients who had a medical indication for this procedure. Histological sections of the skin were investigated using light microscopy. The abutment was qualitatively analyzed using scanning electron microscopy. The titanium abutment only had a partial and thin layer of attached amorphous biological material. The HA-coated abutment was almost fully covered by a pronounced thick layer of organized skin, composed of different interconnected structural layers. Proof-of-principle evidence that the HA-coated abutment can achieve integration with the surrounding skin was presented for the first time.

  13. Evaluation of Titanium-Coated Pedicle Screws: In Vivo Porcine Lumbar Spine Model.

    PubMed

    Kim, Do-Yeon; Kim, Jung-Ryul; Jang, Kyu Yun; Kim, Min Gu; Lee, Kwang-Bok

    2016-07-01

    Many studies have addressed the problem of loosening pedicle screws in spinal surgery, which is a serious concern. Titanium coating of medical implants (arthroplasty) is common, but few studies involving in vivo spine models have been reported. We evaluated the radiological, mechanical, and histological characteristics of titanium-coated pedicle screws compared with uncoated or hydroxyapatite-coated pedicle screws. Three different types of pedicle screws, i.e., uncoated, hydroxyapatite-coated, and titanium-coated, were implanted into the lumbar 3-4-5 levels of 9 mature miniature pigs. Radiological evaluation of loosening of pedicle screws was performed. Peak torsional extraction torque was tested in the 42 screws from 7 miniature pigs at 12 weeks postoperatively. The implant-bone interface of the remaining 12 pedicle screws from 2 miniature pigs in each group was assessed by micro-computed tomography and histologic studies. The incidence of loosening at 12 weeks postoperatively was not significantly different between the titanium-coated pedicle screw group and the other groups. The titanium-coated pedicle screw group exhibited the greatest mean extraction torsional peak torque at 12 weeks postoperatively (P < 0.05). Quantitative micro-computed tomography data were greatest in the titanium-coated pedicle screw group (P < 0.05). Histologic findings showed osteointegration with densely packed new bone formation at the screw coating-bone interface in the titanium-coated pedicle screw group. Fixation strength was greatest in the titanium-coated pedicle screw group. Osteointegration at the interface between the titanium-coated implant and bone produced prominent and firm bonding. The titanium-coated pedicle screw is a promising device for application in spinal surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Failure modes of Y-TZP abutments with external hex implant-abutment connection determined by fractographic analysis.

    PubMed

    Basílio, Mariana de Almeida; Delben, Juliana Aparecida; Cesar, Paulo Francisco; Rizkalla, Amin Sami; Santos Junior, Gildo Coelho; Arioli Filho, João Neudenir

    2016-07-01

    Yttria-stabilized tetragonal zirconia (Y-TZP) was introduced as ceramic implant abutments due to its excellent mechanical properties. However, the damage patterns for Y-TZP abutments are limited in the literature. Fractographic analyses can provide insights as to the failure origin and related mechanisms. The purpose of this study was to analyze fractured Y-TZP abutments to establish fractographic patterns and then possible reasons for failure. Thirty two prefabricated Y-TZP abutments on external hex implants were retrieved from a single-load-to failure test according to the ISO 14801. Fractographic analyses were conducted under polarized-light estereo and scanning electro microscopy. The predominant fracture pattern was abutment fracture at the connecting region. Classic fractographic features such as arrest lines, hackle, and twist hackle established that failure started where Y-TZP abutments were in contact with the retention screw edges. The abutment screw design and the loading point were the reasons for localized stress concentration and fracture patterns. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Mechanical behavior of single-layer ceramized zirconia abutments for dental implant prosthetic rehabilitation

    PubMed Central

    Jiménez-Melendo, Manuel; Llena-Blasco, Oriol; Bruguera, August; Llena-Blasco, Jaime; Yáñez-Vico, Rosa-María; García-Calderón, Manuel; Vaquero-Aguilar, Cristina; Velázquez-Cayón, Rocío; Gutiérrez-Pérez, José-Luis

    2014-01-01

    Objectives: This study was undertaken to characterize the mechanical response of bare (as-received) and single-layer ceramized zirconia abutments with both internal and external connections that have been developed to enhanced aesthetic restorations. Material and Methods: Sixteen zirconia implant abutments (ZiReal Post®, Biomet 3i, USA) with internal and external connections have been analyzed. Half of the specimens were coated with a 0.5mm-thick layer of a low-fusing fluroapatite ceramic. Mechanical tests were carried out under static (constant cross-head speed of 1mm/min until fracture) and dynamic (between 100 and 400N at a frequency of 1Hz) loading conditions. The failure location was identified by electron microscopy. The removal torque of the retaining screws after testing was also evaluated. Results: The average fracture strength was above 300N for all the abutments, regardless of connection geometry and coating. In most of the cases (94%), failure occurred by abutment fracture. No significant differences were observed either in fatigue behavior and removal torque between the different abutment groups. Conclusions: Mechanical behavior of Zireal zirconia abutments is independent of the type of internal/external connection and the presence/absence of ceramic coating. This may be clinically valuable in dental rehabilitation to improve the aesthetic outcome of zirconia-based dental implant systems. Key words:Dental implant, zirconia, ceramic structure, mechanical properties. PMID:25674313

  16. SEM and fractography analysis of screw thread loosening in dental implants.

    PubMed

    Scarano, A; Quaranta, M; Traini, T; Piattelli, M; Piattelli, A

    2007-01-01

    Biological and technical failures of implants have already been reported. Mechanical factors are certainly of importance in implant failures, even if their exact nature has not yet been established. The abutment screw fracture or loosening represents a rare, but quite unpleasant failure. The aim of the present research is an analysis and structural examination of screw thread or abutment loosening compared with screw threads or abutment without loosening. The loosening of screw threads was compared to screw thread without loosening of three different implant systems; Branemark (Nobel Biocare, Gothenburg, Sweden), T.B.R. implant systems (Benax, Ancona, Italy) and Restore (Lifecore Biomedical, Chaska, Minnesota, USA). In this study broken screws were excluded. A total of 16 screw thread loosenings were observed (Group I) (4 Branemark, 4 T.B.R and 5 Restore), 10 screw threads without loosening were removed (Group II), and 6 screw threads as received by the manufacturer (unused) (Group III) were used as control (2 Branemark, 2 T.B.R and 2 Restore). The loosened abutment screws were retrieved and analyzed under SEM. Many alterations and deformations were present in concavities and convexities of screw threads in group I. No macroscopic alterations or deformations were observed in groups II and III. A statistical difference of the presence of microcracks were observed between screw threads with an abutment loosening and screw threads without an abutment loosening.

  17. Reliability and Failure Modes of a Hybrid Ceramic Abutment Prototype.

    PubMed

    Silva, Nelson Rfa; Teixeira, Hellen S; Silveira, Lucas M; Bonfante, Estevam A; Coelho, Paulo G; Thompson, Van P

    2018-01-01

    A ceramic and metal abutment prototype was fatigue tested to determine the probability of survival at various loads. Lithium disilicate CAD-milled abutments (n = 24) were cemented to titanium sleeve inserts and then screw attached to titanium fixtures. The assembly was then embedded at a 30° angle in polymethylmethacrylate. Each (n = 24) was restored with a resin-cemented machined lithium disilicate all-ceramic central incisor crown. Single load (lingual-incisal contact) to failure was determined for three specimens. Fatigue testing (n = 21) was conducted employing the step-stress method with lingual mouth motion loading. Failures were recorded, and reliability calculations were performed using proprietary software. Probability Weibull curves were calculated with 90% confidence bounds. Fracture modes were classified with a stereomicroscope, and representative samples imaged with scanning electron microscopy. Fatigue results indicated that the limiting factor in the current design is the fatigue strength of the abutment screw, where screw fracture often leads to failure of the abutment metal sleeve and/or cracking in the implant fixture. Reliability for completion of a mission at 200 N load for 50K cycles was 0.38 (0.52% to 0.25 90% CI) and for 100K cycles was only 0.12 (0.26 to 0.05)-only 12% predicted to survive. These results are similar to those from previous studies on metal to metal abutment/fixture systems where screw failure is a limitation. No ceramic crown or ceramic abutment initiated fractures occurred, supporting the research hypothesis. The limiting factor in performance was the screw failure in the metal-to-metal connection between the prototyped abutment and the fixture, indicating that this configuration should function clinically with no abutment ceramic complications. The combined ceramic with titanium sleeve abutment prototype performance was limited by the fatigue degradation of the abutment screw. In fatigue, no ceramic crown or ceramic

  18. Diamondlike carbon coating as a galvanic corrosion barrier between dental implant abutments and nickel-chromium superstructures.

    PubMed

    Ozkomur, Ahmet; Erbil, Mehmet; Akova, Tolga

    2013-01-01

    The objectives of this study were to evaluate the galvanic corrosion behavior between titanium and nickel-chromium (Ni-Cr) alloy, to investigate the effect of diamondlike carbon (DLC) coating over titanium on galvanic corrosion behavior between titanium and Ni-Cr alloy, and to evaluate the effect of DLC coating over titanium abutments on the fit and integrity of prosthetic assemblies by scanning electron microcopy (SEM). Five Ni-Cr and 10 titanium disks with a diameter of 5 mm and thickness of 3 mm were prepared. DLC coating was applied to five titanium disks. Electrode samples were prepared, and open circuit potential measurements, galvanic current measurements over platinum electrodes, and potentiodynamic polarization tests were carried out. For the SEM evaluation, 20 Ni-Cr alloy and 10 gold alloy superstructures were cast and prepared over 30 abutments. DLC coating was applied to 10 of the abutments. Following the fixation of prosthetic assemblies, the samples were embedded in acrylic resin and cross sectioned longitudinally. Internal fit evaluations were carried out through examination of the SEM images. Titanium showed more noble and electrochemically stable properties than Ni-Cr alloy. DLC coating over the cathode electrode served as an insulating film layer over the surface and prevented galvanic coupling. Results of the SEM evaluations indicated that the DLC-coated and titanium abutments showed no statistically significant difference in fit. Hence, no adverse effects on the adaptation of prosthetic components were found with the application of DLC coating over abutment surfaces. DLC coating might serve as a galvanic corrosion barrier between titanium abutments and Ni-Cr superstructures.

  19. Influence of the implant-abutment connection design and diameter on the screw joint stability.

    PubMed

    Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung; Jeong, Chang-Mo

    2014-04-01

    This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). THE POSTLOAD REMOVAL TORQUE VALUE WAS HIGH IN THE FOLLOWING ORDER WITH REGARD TO MAGNITUDE: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.

  20. Influence of the implant-abutment connection design and diameter on the screw joint stability

    PubMed Central

    Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung

    2014-01-01

    PURPOSE This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). RESULTS The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate. PMID:24843398

  1. Critical bending moment of four implant-abutment interface designs.

    PubMed

    Lee, Frank K; Tan, Keson B; Nicholls, Jack I

    2010-01-01

    Critical bending moment (CBM), defined as the bending moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured for four different implants and their single-tooth replacement abutments. CBM at the implant-abutment screw joint for four implant-abutment test groups was measured in vitro at 80%, 100%, and 120% of the manufacturers' recommended torque levels. Regular-platform implants with their corresponding single-tooth abutments were used. Microstrain was measured while known loads were applied to the abutment at known distances from the implant-abutment interface. Strain instrumentation was used to record the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated five times for the five samples in each group. For the Branemark/CeraOne assemblies, the mean CBMs were 72.14 Ncm, 102.21 Ncm, and 119.13 Ncm, respectively, at 80%, 100%, and 120% of the manufacturer's recommended torque. For the Replace/Easy assemblies, mean CBMs were 86.20 Ncm, 109.92 Ncm, and 120.93 Ncm; for the Biomet 3i/STA assemblies, they were 67.97 Ncm, 83.14 Ncm, and 91.81 Ncm; and for the Lifecore/COC assemblies, they were 58.32 Ncm, 76.79 Ncm, and 78.93 Ncm. Two-way analysis of variance revealed significant effects for the test groups and torque levels. Subsequent tests confirmed that significant differences existed between test groups and torque levels. The results appear to confirm the primary role of the compressive preload imparted by the abutment screw in maintaining screw joint integrity. CBM was found to differ among implant systems and torque levels. Torque levels recommended by the manufacturer should be followed to ensure screw joint integrity.

  2. Evaluation of stability of interface between CCM (Co-Cr-Mo) UCLA abutment and external hex implant.

    PubMed

    Yoon, Ki-Joon; Park, Young-Bum; Choi, Hyunmin; Cho, Youngsung; Lee, Jae-Hoon; Lee, Keun-Woo

    2016-12-01

    The purpose of this study is to evaluate the stability of interface between Co-Cr-Mo (CCM) UCLA abutment and external hex implant. Sixteen external hex implant fixtures were assigned to two groups (CCM and Gold group) and were embedded in molds using clear acrylic resin. Screw-retained prostheses were constructed using CCM UCLA abutment and Gold UCLA abutment. The external implant fixture and screw-retained prostheses were connected using abutment screws. After the abutments were tightened to 30 Ncm torque, 5 kg thermocyclic functional loading was applied by chewing simulator. A target of 1.0 × 10 6 cycles was applied. After cyclic loading, removal torque values were recorded using a driving torque tester, and the interface between implant fixture and abutment was evaluated by scanning electronic microscope (SEM). The means and standard deviations (SD) between the CCM and Gold groups were analyzed with independent t-test at the significance level of 0.05. Fractures of crowns, abutments, abutment screws, and fixtures and loosening of abutment screws were not observed after thermocyclic loading. There were no statistically significant differences at the recorded removal torque values between CCM and Gold groups ( P >.05). SEM analysis revealed that remarkable wear patterns were observed at the abutment interface only for Gold UCLA abutments. Those patterns were not observed for other specimens. Within the limit of this study, CCM UCLA abutment has no statistically significant difference in the stability of interface with external hex implant, compared with Gold UCLA abutment.

  3. The Influence of Torque Tightening on the Position Stability of the Abutment in Conical Implant-Abutment Connections.

    PubMed

    Hogg, Wiebke Semper; Zulauf, Kris; Mehrhof, Jürgen; Nelson, Katja

    2015-01-01

    The influence of repeated system-specific torque tightening on the position stability of the abutment after de- and reassembly of the implant components was evaluated in six dental implant systems with a conical implant-abutment connection. An established experimental setup was used in this study. Rotation, vertical displacement, and canting moments of the abutment were observed; they depended on the implant system (P = .001, P < .001, P = .006, respectively). Repeated torque tightening of the abutment screw does not eliminate changes in position of the abutment.

  4. FEA and microstructure characterization of a one-piece Y-TZP abutment.

    PubMed

    da Silva, Lucas Hian; Ribeiro, Sebastião; Borges, Alexandre Luís Souto; Cesar, Paulo Francisco; Tango, Rubens Nisie

    2014-11-01

    The most important drawback of dental implant/abutment assemblies is the need for a fixing screw. This study aimed to develop an esthetic one-piece Y-TZP abutment to suppress the use of the screw. Material characterization was performed using a bar-shaped specimen obtained by slip-casting to validate the method prior to prototype abutment fabrication by the same process. The mechanical behavior of the prototype abutment was verified and compared with a conventional abutment by finite element analysis (FEA). The abutment was evaluated by micro-CT analysis and its density was measured. FEA showed stress concentration at the first thread pitch during installation and in the cervical region during oblique loading for both abutments. However, stress concentration was observed at the base of the screw head and stem in the conventional abutment. The relative density for the fabricated abutment was 95.68%. Micro-CT analysis revealed the presence of elongated cracks with sharp edges over the surface and porosity in the central region. In the light of these findings, the behavior of a one-piece abutment is expected to be better than that of the conventional model. New studies should be conducted to clarify the performance and longevity of this one-piece Y-TZP abutment. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Bioactive ceramic coating of cancellous screws improves the osseointegration in the cancellous bone.

    PubMed

    Lee, Jae Hyup; Nam, Hwa; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Chang, Bong-Soon; Lee, Choon-Ki

    2011-05-01

    A number of methods for coating implants with bioactive ceramics have been reported to improve osseointegration in bone, but the effects of bioactive ceramic coatings on the osseointegration of cancellous screws are not known. Accordingly, biomechanical and histomorphometric analyses of the bone-screw interface of uncoated cancellous screws and cancellous screws coated with four different bioactive ceramics were performed. After coating titanium alloy cancellous screws with calcium pyrophosphate (CPP), CaO-SiO(2)-B(2)O(3) glass-ceramics (CSG), apatite-wollastonite 1:3 glass-ceramics (W3G), and CaO-SiO(2)-P(2)O(5)-B(2)O(3) glass-ceramics (BGS-7) using an enameling method, the coated and the uncoated screws were inserted into the proximal tibia and distal femur metaphysis of seven male mongrel dogs. The torque values of the screws were measured at the time of insertion and at removal after 8 weeks. The bone-screw contact ratio was analyzed by histomorphometry. There was no significant difference in the insertion torque between the uncoated and coated screws. The torque values of the CPP and BGS-7 groups measured at removal after 8 weeks were significantly higher than those of the uncoated group. Moreover, the values of the CPP and BGS-7 groups were significantly higher than the insertion torques. The fraction of bone-screw interface measured from the undecalcified histological slide showed that the CPP, W3G, and BGS-7 groups had significantly higher torque values in the cortical bone area than the uncoated group, and the CPP and BGS-7 groups had significantly higher torque values in the cancellous bone area than the uncoated group. In conclusion, a cancellous screw coated with CPP and BGS-7 ceramic bonds directly to cancellous bone to improve the bone-implant osseointegration. This may broaden the indications for cancellous screws by clarifying their contribution to improving osseointegration, even in the cancellous bone area.

  6. Evaluation of stability of interface between CCM (Co-Cr-Mo) UCLA abutment and external hex implant

    PubMed Central

    Yoon, Ki-Joon; Park, Young-Bum; Choi, Hyunmin; Cho, Youngsung; Lee, Jae-Hoon

    2016-01-01

    PURPOSE The purpose of this study is to evaluate the stability of interface between Co-Cr-Mo (CCM) UCLA abutment and external hex implant. MATERIALS AND METHODS Sixteen external hex implant fixtures were assigned to two groups (CCM and Gold group) and were embedded in molds using clear acrylic resin. Screw-retained prostheses were constructed using CCM UCLA abutment and Gold UCLA abutment. The external implant fixture and screw-retained prostheses were connected using abutment screws. After the abutments were tightened to 30 Ncm torque, 5 kg thermocyclic functional loading was applied by chewing simulator. A target of 1.0 × 106 cycles was applied. After cyclic loading, removal torque values were recorded using a driving torque tester, and the interface between implant fixture and abutment was evaluated by scanning electronic microscope (SEM). The means and standard deviations (SD) between the CCM and Gold groups were analyzed with independent t-test at the significance level of 0.05. RESULTS Fractures of crowns, abutments, abutment screws, and fixtures and loosening of abutment screws were not observed after thermocyclic loading. There were no statistically significant differences at the recorded removal torque values between CCM and Gold groups (P>.05). SEM analysis revealed that remarkable wear patterns were observed at the abutment interface only for Gold UCLA abutments. Those patterns were not observed for other specimens. CONCLUSION Within the limit of this study, CCM UCLA abutment has no statistically significant difference in the stability of interface with external hex implant, compared with Gold UCLA abutment. PMID:28018564

  7. Bone Loss at Implant with Titanium Abutments Coated by Soda Lime Glass Containing Silver Nanoparticles: A Histological Study in the Dog

    PubMed Central

    Martinez, Arturo; Guitián, Francisco; López-Píriz, Roberto; Bartolomé, José F.; Cabal, Belén; Esteban-Tejeda, Leticia; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments. Three implants were placed in each mandible quadrant: in 2 of them, Glass/n-Ag coated abutments were connected to implant platform, 1 was covered with a Ti-mechanized abutment. Experimental peri-implantitis was induced in all implants after the submarginal placement of cotton ligatures, and three months after animals were euthanatized. Thickness and morphology of coating was studied in abutment cross-sections by SEM. Histology and histo-morphometric studies were carried on in undecalfied ground slides. After the induced peri-implantitis: 1.The abutment coating shown losing of thickness and cracking. 2. The histometry showed a significant less bone loss in the implants with glass/n-Ag coated abutments. A more symmetric cone of bone resorption was observed in the coated group. There were no significant differences in the peri-implantitis histological characteristics between both groups of implants. Within the limits of this in-vivo study, it could be affirmed that abutments coated with biocide soda-lime-glass-silver nanoparticles can reduce bone loss in experimental peri-implantitis. This achievement makes this coating a suggestive material to control peri-implantitis development and progression. PMID:24466292

  8. Effect of intentional abutment disconnection on the micro-movements of the implant-abutment assembly: a 3D digital image correlation analysis.

    PubMed

    Messias, Ana; Rocha, Salomão; Calha, Nuno; Neto, Maria Augusta; Nicolau, Pedro; Guerra, Fernando

    2017-01-01

    Implant-abutment assembly stability is critical for the success of implant-supported rehabilitation. The intentional removal of the prosthetic components may hamper the achievement of the essential stability due to preload reduction in the screw joint and implant-screw mating surface changes. To evaluate the effect of intentional abutment disconnection and reconnection in the stability of internal locking hex implants and corresponding abutments using the method of 3D digital image correlation. Ten conical shape and internal hexagon connection implants were embedded in acrylic resin and assembled to prosthetic abutments with 30 Ncm torque and assigned to two groups: group 1 - tested for static load-bearing capacity at 30° off-axis for two times and group 2 - underwent intentional disconnection and reconnection between tests. Micro-movements were captured with two high-speed photographic cameras and analyzed with video correlation system in three spacial axes U, V and W. Screw abutment and internal implant thread morphology was observed with a field-emission scanning electron microscopy. After the intentional disconnection of the abutment, group 2 showed generally higher maximum displacements for U and V directions. Under 50N load, mean difference was 24.7 μm (P = 0.008) for U direction and -7.7 μm (P = 0.008) for V direction. No significant differences were found for maximum and minimum displacements in the W direction. Mean displacement of the speckle surface presented was statistically different in the two groups (P = 0.016). SEM revealed non-homogenous screw surfaces with scoring on group 2 plus striations and debris in the implant threads. Micro-movements were higher for the group submitted to intentional disconnection and reconnection of the abutment, particularly under average bite forces. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Comparative Evaluation of Fracture Resistance and Mode of Failure of Zirconia and Titanium Abutments with Different Diameters.

    PubMed

    Shabanpour, Reza; Mousavi, Niloufar; Ghodsi, Safoura; Alikhasi, Marzieh

    2015-08-01

    The purpose of the current study was to compare the fracture resistance and mode of failure of zirconia and titanium abutments with different diameters. Fourteen groups of abutments including prefabricated zirconia, copy-milled zirconia and titanium abutments of an implant system (XiVE, Dentsply) were prepared in different diameters. An increasing vertical load was applied to each specimen until failure occurred. Fracture resistance was measured in each group using the universal testing machine. Moreover, the failure modes were studied and categorized as abutment screw fracture, connection area fracture, abutment body fracture, abutment body distortion, screw distortion and connection area distortion. Groups were statistically compared using univariate and post-hoc tests. The level of statistical significance was set at 5%. Fabrication method (p = 0.03) and diameter (p < 0.001) had significant effect on the fracture resistance of abutments. Fracture resistance of abutments with 5.5 mm diameter was higher than other diameters (p < 0.001). The observed modes of failure were dependent on the abutment material as well. All of the prefabricated titanium abutments fractured within the abutment screw. Abutment screw distortion, connection area fracture, and abutment body fracture were the common failure type in other groups. Diameter had a significant effect on fracture resistance of implant abutments, as abutments with greater diameters were more resistant to static loads. Copy-milled abutments showed lower fracture resistance as compared to other experimental groups. Although zirconia abutments have received great popularity among clinicians and even patients selecting them for narrow implants should be with caution.

  10. Screw vs cement-implant-retained restorations: an experimental study in the beagle. Part 2. Immunohistochemical evaluation of the peri-implant tissues.

    PubMed

    Assenza, Bartolomeo; Artese, Luciano; Scarano, Antonio; Rubini, Corrado; Perrotti, Vittoria; Piattelli, Maurizio; Thams, Ulf; San Roman, Fidel; Piccirilli, Marcello; Piattelli, Adriano

    2006-01-01

    Crestal bone loss has been reported to occur around dental implants. Even if the causes of this bone loss are not completely understood, the presence of a microgap between implant and abutment with a possible contamination of the internal portion of the implants has been suggested. The aim of this study was to see if there were differences in the vascular endothelial growth factor (VEGF) expression, microvessel density (MVD), proliferative activity (MIB-1), and inflammatory infiltrate in the soft tissues around implants with screwed and cemented abutments. Sandblasted and acid-etched implants were inserted in the mandibles of 6 Beagle dogs. Ten 3.5- x 10-mm root-form implants were inserted in each mandible. A total of 60 implants (30 with screwed abutments and 30 with cemented abutments) were used. After 12 months, all the bridges were removed and all abutments were checked for mobility. A total of 8 loosened screws (27%) were found in the screwed abutments, whereas no loosening was observed in cemented abutments. A gingival biopsy was performed in 8 implants with cemented abutments, in 8 implants with screwed abutments, and in 8 implants with unscrewed abutments. No statistically significant differences were found in the inflammatory infiltrate and in the MIB-1 among the different groups. No statistically significant difference was found in the MVD between screwed and cemented abutments (P = .2111), whereas there was a statistically significant difference in MVD between screwed and unscrewed abutments (P = .0277) and between cemented and unscrewed abutments (P = .0431). A low intensity of VEGF was prevalent in screwed and in cemented abutments, whereas a high intensity of VEGF was prevalent in unscrewed abutments. These facts could be explained by the effects induced, in the abutments that underwent a screw loosening, by the presence of bacteria inside the hollow portion of the implants or by enhanced reparative processes.

  11. Custom-made laser-welded titanium implant prosthetic abutment.

    PubMed

    Iglesia-Puig, Miguel A

    2005-10-01

    A technique to create an individually modified implant prosthetic abutment is described. An overcasting is waxed onto a machined titanium abutment, cast in titanium, and joined to it with laser welding. With the proposed technique, a custom-made titanium implant prosthetic abutment is created with adequate volume and contour of metal to support a screw-retained, metal-ceramic implant-supported crown.

  12. Surface characteristics of clinically used dental implant screws

    NASA Astrophysics Data System (ADS)

    Han, Myung-Ju; Choe, Han-Cheol; Chung, Chae-Heon

    2005-12-01

    Surface alteration of implant screws after function may be associated with mechanicalffailure. This type of metal fatigue appears to be the most common cause of structural failure. The purpose of this study was to evaluate surface alteration of implant screws after function through an examination of used and unused implant screws via scanning electron microscopy (SEM). In this study, abutment screws (Steri-oss, 3i, USA), gold retaining screws (3i, USA), and titanium retaining screws (3i, USA) were retrieved from patients, New, unused abutment, and retaining screws were prepared for a control group. Each of the old, used screws was retrieved with a screwdriver. The retrieved implant complex of a Steri-oss system was also prepared for this study. SEM investigation and energy dispersive spectroscopy (EDS) analysis of the abutment and retaining screws were then performed, as well as SEM investigation of a cross-sectioned sample of the retrieved implant complex in the case of new, unused implant screws, as-manufactured circumferential grooves were regularly examined and screw threads were sharply maintained. Before ultrasonic cleansing of old, used implant screws, there was a large amount of debris accumulation and corrosion products. After ultrasonic cleansing of old, used implant screws, circumferential grooves were examined were found to be randomly deepened and scratching increased. Also, dull screw fhreads were observed. More surface alterations after function were observed in titanium screws than in gold screws. Furthermore, more surface alteration was observed when the screws were retrieved with a driver than without a driver. These surface alterations after function may result in screw instability. Regular cleansing and exchange of screws is therefore recommended. We also recommend the use of gold screws over titanium screws, and careful manipulation of the driver.

  13. Clinical Performance of One-Piece, Screw-Retained Implant Crowns Based on Hand-Veneered CAD/CAM Zirconia Abutments After a Mean Follow-up Period of 2.3 Years.

    PubMed

    Schnider, Nicole; Forrer, Fiona Alena; Brägger, Urs; Hicklin, Stefan Paul

    The aim of this study was to evaluate the clinical performance of one-piece, screw-retained implant crowns based on hand-veneered computer-aided design/computer-aided manufacture (CAD/CAM) zirconium dioxide abutments with a crossfit connection at least 1 year after insertion of the crown. Consecutive patients who had received at least one Straumann bone level implant and one-piece, screw-retained implant crowns fabricated with CARES zirconium dioxide abutments were reexamined. Patient satisfaction, occlusal and peri-implant parameters, mechanical and biologic complications, radiologic parameters, and esthetics were recorded. A total of 50 implant crowns in the anterior and premolar region were examined in 41 patients. The follow-up period of the definitive reconstructions ranged from 1.1 to 3.8 years. No technical and no biologic complications had occurred. At the reexamination, 100% of the implants and reconstructions were in situ. Radiographic evaluation revealed a mean distance from the implant shoulder to the first visible bone-to-implant contact of 0.06 mm at the follow-up examination. Screw-retained crowns based on veneered CAD/CAM zirconium dioxide abutments with a crossfit connection seem to be a promising way to replace missing teeth in the anterior and premolar region. In the short term, neither failures of components nor complications were noted, and the clinical and radiographic data revealed stable hard and soft tissue conditions.

  14. Torque removal evaluation of prosthetic screws after tightening and loosening cycles: an in vitro study.

    PubMed

    Cardoso, Mayra; Torres, Marcelo Ferreira; Lourenço, Eduardo José Veras; de Moraes Telles, Daniel; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria

    2012-04-01

    The aim of this study was to evaluate the variation in removal torque of implant prosthetic abutment screws after successive tightening and loosening cycles, in addition to evaluating the influence of the hexagon at the abutment base on screw removal torque. Twenty hexagonal abutments were tightened to 20 regular external hex implants with a titanium alloy screw, with an insertion torque of 32 N cm, measured with a digital torque gauge. The implant/abutment/screw assemblies were divided into two groups: (1) abutments without hexagon at the base and (2) abutments with a hexagon at the base. Each assembly received a provisional restoration and was submitted to mechanical loading cycles. After this, the screws were removed and the removal torque was measured. This sequence was repeated 10 times, then the screw was replaced by a new one, and another cycle was performed. Linear regression analysis was performed. Removal torque values tended to decrease as the number of insertion/removal cycles increased, for both groups. Comparisons of the slopes and the intercepts between groups showed no statistical difference. There was no significant difference between the mean values of last five cycles and the 11th cycle. Within the limitations of this in vitro study, it was concluded that (1) repeated insertion/removal cycles promoted gradual reduction in removal torque of screws, (2) replacing the screw with a new one after 10 cycles did not increase resistance to loosening, and (3) removal of the hexagon from the abutment base had no effect on the removal torque of the screws. © 2011 John Wiley & Sons A/S.

  15. Cone-morse implant connection system significantly reduces bacterial leakage between implant and abutment: an in vitro study.

    PubMed

    Baj, A; Bolzoni, A; Russillo, A; Lauritano, D; Palmieri, A; Cura, F; Silvestre, F J; Giannì, A B

    2017-01-01

    Osseointegrated implants are very popular dental treatments today in the world. In osseointegrated implants, the occlusal forces are transmitted from prosthesis through an abutment to a dental implant. The abutment is connected to the implant by mean of a screw. A screw is the most used mean for connecting an implant to an abutment. Frequently the screws break and are lost. There is an alternative to screw retained abutment systems: the cone-morse connection (CMC). The CMC, thanks to the absence of the abutment screw, guarantees no micro-gaps, no micro-movements, and a reduction of bacterial leakage between implant and abutment. As P. gingivalis and T. forsythia penetration might have clinical relevance, it was the purpose of this investigation to evaluate molecular leakage of these two bacteria in a new CMC implants systems (Leone Spa®, Florence, Italy). To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Four cone-morse Leone implants (Leone® Spa, Florence, Italy) were immerged in a bacterial culture for 24 h and bacteria amount was then measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 3% for P. gingivalis and 4% for T. forsythia. Cone-morse connection implant system has very low bacterial leakage percentage and is similar to one-piece implants.

  16. Three-Dimensional Finite Element Analysis on Stress Distribution of Internal Implant-Abutment Engagement Features.

    PubMed

    Cho, Sung-Yong; Huh, Yun-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    To investigate the stress distribution in an implant-abutment complex with a preloaded abutment screw by comparing implant-abutment engagement features using three-dimensional finite element analysis (FEA). For FEA modeling, two implants-one with a single (S) engagement system and the other with a double (D) engagement system-were placed in the human mandibular molar region. Two types of abutments (hexagonal, conical) were connected to the implants. Different implant models (a single implant, two parallel implants, and mesial and tilted distal implants with 1-mm bone loss) were assumed. A static axial force and a 45-degree oblique force of 200 N were applied as the sum of vectors to the top of the prosthetic occlusal surface with a preload of 30 Ncm in the abutment screw. The von Mises stresses at the implant-abutment and abutment-screw interfaces were measured. In the single implant model, the S-conical abutment type exhibited broader stress distribution than the S-hexagonal abutment. In the double engagement system, the stress concentration was high in the lower contact area of the implant-abutment engagement. In the tilted implant model, the stress concentration point was different from that in the parallel implant model because of the difference in the bone level. The double engagement system demonstrated a high stress concentration at the lower contact area of the implant-abutment interface. To decrease the stress concentration, the type of engagement features of the implant-abutment connection should be carefully considered.

  17. Salvaging an angled implant abutment with damaged internal threads: a clinical report.

    PubMed

    Imam, Ahmad Y; Yilmaz, Burak; Özçelik, Tuncer Burak; McGlumphy, Edwin

    2013-05-01

    This clinical report describes a technique to fit an existing fixed detachable implant-supported prosthesis to a zygomatic implant abutment with stripped internal threads. The threads of the abutment were retapped and a wide diameter/wide head retaining screw was used to secure the existing prosthesis on the abutment. Care is needed in the retrieval of broken screws so as not to damage the internal threads of the implants, which might lead to irreversible complications. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  18. Implant-Abutment Contact Surfaces and Microgap Measurements of Different Implant Connections Under 3-Dimensional X-Ray Microtomography.

    PubMed

    Scarano, Antonio; Valbonetti, Luca; Degidi, Marco; Pecci, Raffaella; Piattelli, Adriano; de Oliveira, P S; Perrotti, Vittoria

    2016-10-01

    The presence of a microgap between implant and abutment could produce a bacterial reservoir which could interfere with the long-term health of the periimplant tissues. The aim of this article was to evaluate, by x-ray 3-dimensional microtomography, implant-abutment contact surfaces and microgaps at the implant-abutment interface in different types of implant-abutment connections. A total of 40 implants were used in this in vitro study. Ten implants presented a screw-retained internal hexagon abutment (group I), 10 had a Morse Cone taper internal connection (group II), 10 another type of Morse Cone taper internal connection (group III), and 10 had a screwed trilobed connection (group IV). In both types of Morse Cone internal connections, there was no detectable separation at the implant-abutment in the area of the conical connection, and there was an absolute congruity without any microgaps between abutment and implant. No line was visible separating the implant and the abutment. On the contrary, in the screwed abutment implants, numerous gaps and voids were present. The results of this study support the hypothesis that different types of implant-abutment joints are responsible for the observed differences in bacterial penetration.

  19. The effect of repeated torque in small diameter implants with machined and premachined abutments.

    PubMed

    Saboury, Abolfazl; Neshandar Asli, Hamid; Vaziri, Shahram

    2012-05-01

    Detorquing value is an important factor in the amount of preload stresses during abutment screw fastening. This study evaluated the percentage of detorque values in two-piece machined titanium and premachined cast abutments in small diameter implants. Three groups of five samples were evaluated. Group 1 (G1), machined titanium abutments, group 2 (G2), premachined cast straight abutments that cast with gold-palladium, and group 3 (G3), premachined angled cast abutments that cast with the same alloy, were angled before casting. Each abutment was torque to 24 Ncm according to the manufacturer's instructions and detorqued five times. The means of detorquing and torquing values in all groups were recorded. The mean of detorque in each group as a percentage of the toque value was calculated. The data for all groups were compared and calculated using analysis of variance (ANOVA) and t-test. Mean detorque values in G1, G2, and G3 were 88.1 ± 1.69, 93.1 ± 2.68, and 80.9 ± 4.95%, respectively. The ANOVA showed significant differences in mean of applied detorque (p < .001) and torque (p = .06) tightening among different groups. G2 had significantly greater detorque values (p < .05). No significant differences were found between G1 and G2. Surprisingly, abutment screw fracture occurred in three samples of G3. G3 showed significant percentage torque reduction (p < .05) and exhibited abutment screw fracture during evaluation. G2 presented the lowest torque reduction. Screw fracture occurred only in G3. © 2012 Wiley Periodicals, Inc.

  20. Variation in the total lengths of abutment/implant assemblies generated with a function of applied tightening torque in external and internal implant-abutment connection.

    PubMed

    Kim, Ki-Seong; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom; Yang, Jae-Ho; Lee, Jai-Bong; Yim, Soon-Ho

    2011-08-01

    Settling (embedment relaxation), which is the main cause for screw loosening, is developed by microroughness between implant and abutment metal surface. The objective of this study was to evaluate and compare the relationship between the level of applied torque and the settling of abutments into implants in external and internal implant-abutment connection. Five different implant-abutment connections were used (Ext, External butt joint + two-piece abutment; Int-H2, Internal hexagon + two-piece abutment; Int-H1, Internal hexagon + one-piece abutment; Int-O2, Internal octagon + two-piece abutment; Int-O1, Internal octagon + one-piece abutment). All abutments of each group were assembled and tightened with corresponding implants by a digital torque gauge. The total lengths of implant-abutment samples were measured at each torque (5, 10, 30 N cm and repeated 30 N cm with 10-min interval) by an electronic digital micrometer. The settling values were calculated by changes between the total lengths of implant-abutment samples. All groups developed settling with repeated tightening. The Int-H2 group showed markedly higher settling for all instances of tightening torque and the Ext group was the lowest. Statistically significant differences were found in settling values between the groups and statistically significant increases were observed within each group at different tightening torques (P<0.05). After the second tightening of 30 N cm, repeated tightening showed almost constant settling values. Results from the present study suggested that to minimize the settling effect, abutment screws should be retightened at least twice at 30 N cm torque at a 10-min interval in all laboratory and clinical procedures. © 2010 John Wiley & Sons A/S.

  1. A rationale method for evaluating unscrewing torque values of prosthetic screws in dental implants

    PubMed Central

    SALIBA, Felipe Miguel; CARDOSO, Mayra; TORRES, Marcelo Ferreira; TEIXEIRA, Alexandre Carvalho; LOURENÇO, Eduardo José Veras; TELLES, Daniel de Moraes

    2011-01-01

    Objectives Previous studies that evaluated the torque needed for removing dental implant screws have not considered the manner of transfer of the occlusal loads in clinical settings. Instead, the torque used for removal was applied directly to the screw, and most of them omitted the possibility that the hexagon could limit the action of the occlusal load in the loosening of the screws. The present study proposes a method for evaluating the screw removal torque in an anti-rotational device independent way, creating an unscrewing load transfer to the entire assembly, not only to the screw. Material and methods Twenty hexagonal abutments without the hexagon in their bases were fixed with a screw to 20 dental implants. They were divided into two groups: Group 1 used titanium screws and Group 2 used titanium screws covered with a solid lubricant. A torque of 32 Ncm was applied to the screw and then a custom-made wrench was used for rotating the abutment counterclockwise, to loosen the screw. A digital torque meter recorded the torque required to loosen the abutment. Results There was a significant difference between the means of Group 1 (38.62±6.43 Ncm) and Group 2 (48.47±5.04 Ncm), with p=0.001. Conclusion This methodology was effective in comparing unscrewing torque values of the implant-abutment junction even with a limited sample size. It confirmed a previously shown significant difference between two types of screws. PMID:21437472

  2. Comparison of fracture resistance of pressable metal ceramic custom implant abutment with a commercially fabricated CAD/CAM zirconia implant abutment.

    PubMed

    Protopapadaki, Maria; Monaco, Edward A; Kim, Hyeong-Il; Davis, Elaine L

    2013-11-01

    The predictable nature of the hot pressing ceramic technique has several applications, but no study was identified that evaluated its application to the fabrication of custom implant abutments. The purpose of this study was to compare the fracture resistance of an experimentally designed pressable metal ceramic custom implant abutment (PR) with that of a duplicate zirconia abutment (ZR). Two groups of narrow platform (NP) (Nobel Replace) implant abutment specimens were fabricated (n=10). The experimental abutment (PR) had a metal substructure cast with ceramic alloy (Lodestar) and veneered with leucite pressable glass ceramic (InLine PoM). Each PR abutment was individually scanned and 10 duplicate CAD/CAM ZR abutments were fabricated for the control group. Ceramic crowns (n=20) with the average dimensions of a human lateral incisor were pressed with lithium disilicate glass ceramic (IPS e.max Press) and bonded on the abutments with a resin luting agent (Multilink Automix). The specimens were subjected to thermocycling, cyclic loading, and finally static loading to failure with a computer-controlled Universal Testing Machine. An independent t test (1 sided) determined whether the mean values of the fracture load differed significantly (α=.05) between the 2 groups. No specimen failed during cyclic loading. Upon static loading, the mean (SD) load to failure was significantly higher for the PR group (525.89 [143.547] N) than for the ZR group (413.70 [35.515] N) for internal connection narrow platform bone-level implants (P=.025). Failure was initiated at the screw and internal connection level for both groups. It is possible to fabricate PR abutments that are stronger than ZR abutments for Nobel Biocare internal connection NP bone-level implants. The screw and the internal connection are the weak links for both groups. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  3. The fracture strength by a torsion test at the implant-abutment interface.

    PubMed

    Watanabe, Fumihiko; Hiroyasu, Kazuhiko; Ueda, Kazuhiko

    2015-12-01

    Fractured connections between implants and implant abutments or abutment screws are frequently encountered in a clinical setting. The purpose of this study was to investigate fracture strength using a torsion test at the interface between the implant and the abutment. Thirty screw-type implant with diameters of 3.3, 3.8, 4.3, 5.0, and 6.0 mm were submitted to a torsion test. Implants of each size were connected to abutments with abutment screws tightened to 20 N · cm. Mechanical stress was applied with a rotational speed of 3.6 °/min until fracture occurred, and maximum torque (fracture torque) and torsional yield strength were measured. The mean values were calculated and then compared using Tukey's test. The abutments were then removed, and the implant-abutment interfaces were examined using a scanning electron microscope (SEM). No significant differences in mean fracture torque were found among 3.3, 3.8, and 4.3 mm-diameter implants, but significant differences were found between these sizes and 5.0 and 6.0 mm-diameter implants (p < 0.01). Concerning mean torsional yield strength, significant differences were found between 3.3, 3.8, and 4.3 mm-diameter and 5.0 and 6.0 mm-diameter implants (p < 0.01). Observations under the SEM showed that all the projections of the abutment corresponding to the internal notches of the implant body had been destroyed. Smaller diameter implants demonstrated lower fracture torque and torsional yield strength than implants with larger diameters. In internal tube-in-tube connections, three abutment projections corresponding to rotation-prevention notches were destroyed in each implant.

  4. Radiological, histological, and hematological evaluation of hydroxyapatite-coated resorbable magnesium alloy screws placed in rabbit tibia.

    PubMed

    Lim, Ho-Kyung; Byun, Soo-Hwan; Lee, Jin-Yong; Lee, Jung-Woo; Kim, Sae-Mi; Lee, Sung-Mi; Kim, Hyoun-Ee; Lee, Jong-Ho

    2017-08-01

    Titanium (Ti) screw has excellent mechanical property, and osseointegration capacity. However, they require surgery for removal. In contrast, polymer screws are resorbable, but they have poor mechanical properties. In this research, magnesium alloy screws (WE43: Mg-Y-Nd-Zr) that have advantages of titanium and polymer were manufactured. In addition, to increase biocompatibility and control degradation rate, the Mg alloy was coated with hydroxyapatite (HA). Torsion test and corrosion test were performed in vitro. For clinical, radiological and histological evaluation, on the eight rabbits, two HA-coated screws were installed in left tibia, and two noncoated screws were installed in right tibia. Each four rabbits were sacrificed 6 and 12 weeks postoperatively. For hematological evaluation, the same type of screws were installed on both legs. Complete blood count (CBC), Mg 2+ concentrate were sampled from the ear central artery on the operation day for a control point, and at 1, 2, 4, 6, 8, and 12 weeks. Mg alloy screws have no differences of biocompatibility according to the HA coating. However, resorption of screw was slower in case of the HA coating. The hematological problem related releasing of Mg was not found. The results suggest that Mg alloy screws have feasibility for clinical application. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1636-1644, 2017. © 2016 Wiley Periodicals, Inc.

  5. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    NASA Astrophysics Data System (ADS)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  6. Biomechanical evaluation of different abutment-implant connections - A nonlinear finite element analysis

    NASA Astrophysics Data System (ADS)

    Ishak, Muhammad Ikman; Shafi, Aisyah Ahmad; Rosli, M. U.; Khor, C. Y.; Zakaria, M. S.; Rahim, Wan Mohd Faizal Wan Abd; Jamalludin, Mohd Riduan

    2017-09-01

    The success of dental implant surgery is majorly dependent on the stability of prosthesis to anchor to implant body as well as the integration of implant body to bone. The attachment between dental implant body and abutment plays a vital role in attributing to the stability of dental implant system. A good connection between implant body cavity to abutment may minimize the complications of abutment loosening and implant fractures as widely reported in clinical findings. The aim of this paper is to investigate the effect of different abutment-implant connections on stress dispersion within the abutment and implant bodies as well as displacement of implant body via three-dimensional (3-D) finite element analysis (FEA). A 3-D model of mandible was reconstructed from computed tomography (CT) image datasets using an image-processing software with the selected region of interest was the left side covering the second premolar, first molar and second molar regions. The bone was modelled as compact (cortical) and porous (cancellous) structures. Besides, three implant bodies and three generic models of abutment with different types of connections - tapered interference fit (TIF), tapered integrated screwed-in (TIS) and screw retention (SR) were created using computer-aided design (CAD) software and all models were then analysed via 3D FEA software. Occlusal forces of 114.6 N, 17.2 N and 23.4 N were applied in the axial, lingual and mesio-distal directions, respectively, on the top surface of first molar crown. All planes of the mandibular bone model were rigidly fixed. The result exhibited that abutment with TIS connection produced the most favourable stress and displacement outcomes as compared to other attachment types. This is due to the existence of integrated screw at the bottom portion of tapered abutment which increases the motion resistance.

  7. The effect of the use of a counter-torque device on the abutment-implant complex.

    PubMed

    Lang, L A; May, K B; Wang, R F

    1999-04-01

    Little is known about the condition of the abutment-screw joint before loading, after the development of the preload. This study examined the tightening force transmitted to the implant with and without the use of a counter-torque device during the tightening of the abutment screw. Forty Brânemark implants and 10 CeraOne, Estheticone, Procera, and AurAdapt abutments formed the experimental populations. Samples in each group were further divided into 2 groups, 1 group was tightened with a torque controller without the use of a counter-torque device, whereas the other used the counter-torque device. Samples were positioned in a special holder within the grips of a Tohnichi BTG-6 torque gauge for measuring transmitted forces. There were significant differences (P =. 0001) in the tightening forces transmitted to the implant with and without the use of a counter-torque device when tightening the abutment screws. An average of 91% of the recommended preload tightening torque was transmitted to the implant-bone interface in the absence of a counter-torque device. In all abutment systems, less than 10% of the recommended preload tightening torque was transmitted to the implant when the counter-torque device was used.

  8. Three-Dimensional Finite Element Analysis of the Stress Distribution at the Internal Implant-Abutment Connection.

    PubMed

    Cho, Sung-Yong; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2016-01-01

    This study investigated stress distribution in four different implant-abutment interface conditions in the internal tapered connection implant system. Four different implant diameters (3.5 mm, 4.0 mm, 4.5 mm, and 5.0 mm) and two abutment types (hexagonal and conical) were simulated. Four unique implant-abutment interface conditions were assumed based on wall thickness, mating surface length, distance to the vertical stop, and abutment shape. Axial and oblique loading was applied during abutment screw preload, and the Von Mises stresses were measured at the implant-abutment and abutment-screw interfaces. The implant-abutment interface stress decreased as the wall thickness increased. As the mating surface increased, the stress distribution trended downward, and when the distance to the implant vertical stop was 0 μm, the Von Mises stress was extremely high at the vertical stop. Despite their different shapes, the abutments showed similar stress distributions. However, the maximum Von Mises stress was higher in the conical connection than in the hexagonal connection, particularly at the contralateral side to loading. To decrease the stress distribution at the implant-abutment interface, the implant wall thickness, mating surface contact length, distance to the vertical stop, and abutment shape should be carefully considered.

  9. Impact of Intentional Overload on Joint Stability of Internal Implant-Abutment Connection System with Different Diameter.

    PubMed

    Lee, Ji-Hye; Lee, Won; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2017-09-05

    To evaluate the axial displacement of the implant-abutment assembly of different implant diameter after static and cyclic loading of overload condition. An internal conical connection system with three diameters (Ø 4.0, 4.5, and 5.0) applying identical abutment dimension and the same abutment screw was evaluated. Axial displacement of abutment and reverse torque loss of abutment screw were evaluated under static and cyclic loading conditions. Static loading test groups were subjected to vertical static loading of 250, 400, 500, 600, 700, and 800 N consecutively. Cyclic loading test groups were subjected to 500 N cyclic loading to evaluate the effect of excessive masticatory loading. After abutment screw tightening for 30 Ncm, axial displacement was measured upon 1, 3, 10, and 1,000,000 cyclic loadings of 500 N. Repeated-measure ANOVA and 2-way ANOVA were used for statistical analysis (α = 0.05). The increasing magnitude of vertical load and thinner wall thickness of implant increased axial displacement of abutment and reverse torque loss of abutment screw (p < 0.05). Implants in the Ø 5.0 diameter group demonstrated significantly low axial displacement, and reverse torque loss after static loading than Ø 4.0 and Ø 4.5 diameter groups (p < 0.05). In the cyclic loading test, all diameter groups of implant showed significant axial displacement after 1 cycle of loading of 500 N (p < 0.05). There was no significant axial displacement after 3, 10, or 1,000,000 cycles of loading (p = 0.603). Implants with Ø 5.0 diameter demonstrated significantly low axial displacement and reverse torque loss after the cyclic and static loading of overload condition. © 2017 by the American College of Prosthodontists.

  10. Platform-Switching for Cemented Versus Screwed Fixed Dental Prostheses: Reliability and Failure Modes: An In Vitro Study.

    PubMed

    Anchieta, Rodolfo Brunieira; Machado, Lucas Silveira; Hirata, Ronaldo; Bonfante, Estevam Augusto; Coelho, Paulo G

    2016-08-01

    The aim of this study was to evaluate the probability of survival of cemented and screwed three-unit implant-supported fixed dental prostheses (ISFDP) using different implant-abutment horizontal matching configurations (regular vs switching platforms). One hundred and sixty-eight implants with internal hexagon connection (4 mm diameter, 10 mm length, Emfils; Colosso Evolution System, Itú, SP, Brazil) were selected for this study according to the horizontal implant-abutment matching configuration (regular or switching) and retention method and divided in four groups (n = 21 per group) as follows: 1) regular platform cemented (IRC); 2) or screw-retained (IRS); 3) switched-platform cemented (ISC); or 4) screw-retained (ISS). Regular and platform-switched abutments (Colosso evolution, 4 mm and 3.3 mm, respectively) were torqued, and 84 three-unit metal bridges were fabricated (first molar pontic). Implants were embedded in polymethyl-methacrylate resin and subjected to step-stress accelerated life testing in water. Weibull distribution was used to determine the probability of survival for a mission of 100,000 cycles at 400 N (90% two-sided confidence intervals). Polarized light and scanning electron microscopes were used for fractographic analysis. The β values of 0.50, 1.19, 1.25, and 1.95 for groups IRC, IRS, ISC, and ISS respectively, indicated that fatigue accelerated the failure for all groups, except IRC. The cement-retained groups presented significantly higher probability of survival (IRC - 98%, ISC - 59%) than screw-retained groups (IRS - 23% and ISS - 0%). Screw-retained FDPs exclusively failed by abutment-screw fractures, whereas cement-retained presented implant/screw/abutment fractures. The probability of survival of cement-retained ISFDP was higher than screw-retained, irrespective of implant-abutment horizontal configuration. © 2015 Wiley Periodicals, Inc.

  11. Effect of Cyclic Loading on Micromotion at the Implant-Abutment Interface.

    PubMed

    Karl, Matthias; Taylor, Thomas D

    2016-01-01

    Cyclic loading may cause settling of abutments mounted on dental implants, potentially affecting screw joint stability and implant-abutment micromotion. It was the goal of this in vitro study to compare micromotion of implant-abutment assemblies before and after masticatory simulation. Six groups of abutments (n = 5) for a specific tissue-level implant system with an internal octagon were subject to micromotion measurements. The implant-abutment assemblies were loaded in a universal testing machine, and an apparatus and extensometers were used to record displacement. This was done twice, in the condition in which they were received from the abutment manufacturer and after simulated loading (100,000 cycles; 100 N). Statistical analysis was based on analysis of variance, two-sample t tests (Welch tests), and Pearson product moment correlation (α = .05). The mean values for micromotion ranged from 33.15 to 63.41 μm and from 30.03 to 42.40 μm before and after load cycling. The general trend toward reduced micromotion following load cycling was statistically significant only for CAD/CAM zirconia abutments (P = .036) and for one type of clone abutment (P = .012), with no significant correlation between values measured before and after cyclic loading (Pearson product moment correlation; P = .104). While significant differences in micromotion were found prior to load cycling, no significant difference among any of the abutment types tested could be observed afterward (P > .05 in all cases). A quantifiable settling effect at the implant-abutment interface seems to result from cyclic loading, leading to a decrease in micromotion. This effect seems to be more pronounced in low-quality abutments. For the implant system tested in this study, retightening of abutment screws is recommended after an initial period of clinical use.

  12. Implant-abutment connections on single crowns: a systematic review.

    PubMed

    Ceruso, F M; Barnaba, P; Mazzoleni, S; Ottria, L; Gargari, M; Zuccon, A; Bruno, G; DI Fiore, A

    2017-01-01

    Different implant-abutment connections have been developed in the effort of reducing mechanical and biological failure. The most frequent complications are screw loosening, abutment or implant fracture and marginal bone loss due to overload and bacterial micro-leakage. Ideal connection should work as a one-piece implant avoiding the formation of a micro-gap at the implant-abutment interface. Different in vitro and in vivo researches have been published to compare the implant-abutment connections actually available: external hexagon, internal hexagon and conical finding different amount of micro-gap, micro-leakage and marginal bone loss. The aim of this article is to describe, according to the most recent literature, different kind of fixture-abutment connections and their clinical and mechanical advantages or disadvantages.

  13. Strain analysis of 9 different abutments for cement-retained crowns on an internal hexagonal implant.

    PubMed

    Salaita, Louai G; Yilmaz, Burak; Seidt, Jeremy D; Clelland, Nancy L; Chien, Hua-Hong; McGlumphy, Edwin A

    2017-08-01

    Many aftermarket abutments for cement-retained crowns are available for the tapered screw-vent implant. Aftermarket abutments vary widely, from stock to custom abutments and in materials such as zirconia, titanium, or a combination of the two. How these aftermarket abutments perform under occlusal loads with regard to strain distribution is not clear. The purpose of this in vitro study was to measure and compare the different strains placed upon the bone around implants by 9 different abutments for cement-retained crowns on an implant with an internal hexagonal platform. Nine 4.1×11.5-mm tapered screw-vent implants were placed into a 305×51×8-mm resin block for strain measurements. Five abutment specimens of each of the 9 different abutments (N=45) were evaluated with 1 of the 9 implants. Monolithic zirconia crowns were then fabricated for each of the 9 different abutments, the crowns were cyclically loaded (maximum force 225 N) at 30 degrees, twice at a frequency of 2 Hz, and the strain was measured and recorded. The strain to the resin block was determined using a 3-dimensional digital image correlation (3D DIC) technique. Commercial image correlation software was used to analyze the strain around the implants. Data for maximal and minimal principal strains were compared using analysis of variance with a Tukey-Kramer post hoc test (α=.05). Strain measurements showed no significant differences among any of the abutments for minimal (compression) principal strains (P>.05). For maximal (tensile) principal strains, the zirconia abutment showed the highest, and the patient-specific abutment showed the second-highest strain around the implant, with the zirconia being significantly greater than all abutments, with the exception of the patient-specific abutment, and the patient-specific abutment being significantly greater than the straight contoured abutment in titanium and also zirconia (P<.05). The name brand patient specific titanium and Atlantis zirconia

  14. Analysis of plastic deformation in cortical bone after insertion of coated and non-coated self-tapping orthopaedic screws.

    PubMed

    Koistinen, A P; Korhonen, H; Kiviranta, I; Kröger, H; Lappalainen, R

    2011-07-01

    Insertion of internal fracture fixation devices, such as screws, mechanically weakens the bone. Diamond-like carbon has outstanding tribology properties which may decrease the amount of damage in tissue. The purpose of this study was to investigate methods for quantification of cortical bone damage after orthopaedic bone screw insertion and to evaluate the effect of surface modification on tissue damage. In total, 48 stainless steel screws were inserted into cadaver bones. Half of the screws were coated with a smooth amorphous diamond coating. Geometrical data of the bones was determined by peripheral quantitative computed tomography. Thin sections of the bone samples were prepared after screw insertion, and histomorphometric evaluation of damage was performed on images obtained using light microscopy. Micro-computed tomography and scanning electron microscopy were also used to examine tissue damage. A positive correlation was found between tissue damage and the geometric properties of the bone. The age of the cadaver significantly affected the bone mineral density, as well as the damage perimeter and diameter of the screw hole. However, the expected positive effect of surface modification was probably obscured by large variations in the results and, thus, statistically significant differences were not found in this study. This can be explained by natural variability in bone tissue, which also made automated image analysis difficult.

  15. A comparison of preload values in gold and titanium dental implant retaining screws.

    PubMed

    Doolabh, R; Dullabh, H D; Sykes, L M

    2014-08-01

    This in vitro investigation compared the effect of using either gold or titanium retaining screws on preload in the dental implant- abutment complex. Inadequate preload can result in screw loosening, whilst fracture may occur if preload is excessive. These are the most commonly reported complications in implant-retained prostheses, and result in unscheduled, costly and time-consuming visits for the patient and the clinician. This study investigated changes in preload generation after repeated torque applications to gold and titanium screws. The test set-up consisted of an implant body, a cylindrical transmucosa abutment, and the test samples of gold and of titanium retaining screws. The implant bodies were anchored using a load cell, and the transmucosal abutments were attached using either gold or titanium retaining screws. A torque gauge was used to apply torque of 20Ncm, 32Ncm, and 40Ncm to the retaining screws. The preloads generated in each screw type were compared at each torque setting, and after repeated tightening episodes. In addition, the effect of applying torque beyond the manufacturers' recommendations was also examined. Gold retaining screws were found to achieve consistently higher preload values than titanium retaining screws. Preload values were not significantly different from the first to the tenth torque cycle. Titanium screws showed more consistent preload values, albeit lower than those of the gold screws. However due to possible galling of the internal thread of the implant body by titanium screws, gold screws remain the retaining screw of choice. Based on the findings of this study, gold retaining screws generate better preload than titanium. Torque beyond the manufacturers' recommendations resulted in a more stable implant complex. However, further investigations, with torque applications repeated until screw breakage, are needed to advise on ideal maintenance protocols.

  16. Prospective assessment of CAD/CAM zirconia abutment and lithium disilicate crown restorations: 2.4 year results.

    PubMed

    Cooper, Lyndon F; Stanford, Clark; Feine, Jocelyne; McGuire, Michael

    2016-07-01

    Single-tooth implant restorations are commonly used to replace anterior maxillary teeth. The esthetic, functional, and biologic outcomes are, in part, a function of the abutment and crown. The purpose of this clinical study was to describe the implant, abutment, and crown survival and complication rates for CAD/CAM zirconia abutment and lithium disilicate crown restorations for single-tooth implants. As part of a broader prospective investigation that enrolled and treated 141 participants comparing tissue responses at the conical interface (CI; AstraTech OsseoSpeed), flat-to-flat interface (FI; NobelSpeedy), and platform-switch interface (PS; NanoTite Certain Prevail) of single-tooth implants, computer-aided design and computer-aided manufacturing (CAD/CAM) zirconia abutments (ATLANTIS Abutment) and cemented lithium disilicate (e.max) crowns were used in the restoration of all implants. After 2.4 years in function (3 years after implant placement), the implant, abutment, and crown of 110 participants were evaluated. Technical and biologic complications were recorded. Demographic results were tabulated as percentages with mean values and standard deviations. Abutment survival was calculated with the Kaplan-Meier method. After 2.4 years, no abutments or crowns had been lost. Abutment complications (screw loosening, screw fracture, fracture) were absent for all 3 implant groups. Crown complications were limited to 2 crowns debonding and 1 with excess cement (2.5%). Five biological complications (4.0%) were recorded. The overall complication rate was 6.5%. CAD/CAM zirconia abutments restored with cemented lithium disilicate crowns demonstrated high survival on 3 different implant-abutment interface designs. No abutment or abutment screw fracture occurred. The technical complications observed after 2.4 years were minor and reversible. The use of CAD/CAM zirconia abutments with cemented lithium disilicate crowns is associated with high technical and biologic success at 2

  17. Scanning Electron Microscopy Analysis of the Adaptation of Single-Unit Screw-Retained Computer-Aided Design/Computer-Aided Manufacture Abutments After Mechanical Cycling.

    PubMed

    Markarian, Roberto Adrian; Galles, Deborah Pedroso; Gomes França, Fabiana Mantovani

    To measure the microgap between dental implants and custom abutments fabricated using different computer-aided design/computer-aided manufacture (CAD/CAM) methods before and after mechanical cycling. CAD software (Dental System, 3Shape) was used to design a custom abutment for a single-unit, screw-retained crown compatible with a 4.1-mm external hexagon dental implant. The resulting stereolithography file was sent for manufacturing using four CAD/CAM methods (n = 40): milling and sintering of zirconium dioxide (ZO group), cobalt-chromium (Co-Cr) sintered via selective laser melting (SLM group), fully sintered machined Co-Cr alloy (MM group), and machined and sintered agglutinated Co-Cr alloy powder (AM group). Prefabricated titanium abutments (TI group) were used as controls. Each abutment was placed on a dental implant measuring 4.1× 11 mm (SA411, SIN) inserted into an aluminum block. Measurements were taken using scanning electron microscopy (SEM) (×4,000) on four regions of the implant-abutment interface (IAI) and at a relative distance of 90 degrees from each other. The specimens were mechanically aged (1 million cycles, 2 Hz, 100 N, 37°C) and the IAI width was measured again using the same approach. Data were analyzed using two-way analysis of variance, followed by the Tukey test. After mechanical cycling, the best adaptation results were obtained from the TI (2.29 ± 1.13 μm), AM (3.58 ± 1.80 μm), and MM (1.89 ± 0.98 μm) groups. A significantly worse adaptation outcome was observed for the SLM (18.40 ± 20.78 μm) and ZO (10.42 ± 0.80 μm) groups. Mechanical cycling had a marked effect only on the AM specimens, which significantly increased the microgap at the IAI. Custom abutments fabricated using fully sintered machined Co-Cr alloy and machined and sintered agglutinated Co-Cr alloy powder demonstrated the best adaptation results at the IAI, similar to those obtained with commercial prefabricated titanium abutments after mechanical cycling. The

  18. Load fatigue performance of four implant-abutment interface designs: effect of torque level and implant system.

    PubMed

    Quek, H C; Tan, Keson B; Nicholls, Jack I

    2008-01-01

    Biomechanical load-fatigue performance data on single-tooth implant systems with different implant-abutment interface designs is lacking in the literature. This study evaluated the load fatigue performance of 4 implant-abutment interface designs (Brånemark-CeraOne; 3i Osseotite-STA abutment; Replace Select-Easy abutment; and Lifecore Stage-1-COC abutment system). The number of load cycles to fatigue failure of 4 implant-abutment designs was tested with a custom rotational load fatigue machine. The effect of increasing and decreasing the tightening torque by 20% respectively on the load fatigue performance was also investigated. Three different tightening torque levels (recommended torque, -20% recommended torque, +20% recommended torque) were applied to the 4 implant systems. There were 12 test groups with 5 samples in each group. The rotational load fatigue machine subjected specimens to a sinusoidally applied 35 Ncm bending moment at a test frequency of 14 Hz. The number of cycles to failure was recorded. A cutoff of 5 x 10(6) cycles was applied as an upper limit. There were 2 implant failures and 1 abutment screw failure in the Brånemark group. Five abutment screw failures and 4 implant failures was recorded for the 3i system. The Replace Select system had 1 implant failure. Five cone screw failures were noted for the Lifecore system. Analysis of variance revealed no statistically significant difference in load cycles to failure for the 4 different implant-abutment systems torqued at recommended torque level. A statistically significant difference was found between the -20% torque group and the +20% torque group (P < .05) for the 3i system. Load fatigue performance and failure location is system specific and related to the design characteristics of the implant-abutment combination. It appeared that if the implant-abutment interface was maintained, load fatigue failure would occur at the weakest point of the implant. It is important to use the torque level

  19. Two Different Percutaneous Bone-Anchored Hearing Aid Abutment Systems: Comparative Clinical Study.

    PubMed

    Polat, Beldan; İşeri, Mete; Orhan, Kadir Serkan; Yılmazer, Ayça Başkadem; Enver, Necati; Ceylan, Didem; Kara, Ahmet; Güldiken, Yahya; Çomoğlu, Şenol

    2016-04-01

    To compare two different percutaneous bone-anchored hearing aid (BAHA) abutment systems regarding operation time, scar healing, quality of life, implant stability, audiologic results, and complications. The study involves a prospective multi-center clinical evaluation. Thirty-two consecutive patients who had undergone BAHA surgery from January 2011 to January 2013 in two tertiary centers were included in the study. The Glasgow Inventory Benefit Score was used to assess the patients at least 6 months after surgery. The operation time and complications were recorded. Implant stability quotient (ISQ) values were recorded using resonance frequency analysis. Holger's classification was used to evaluate skin reactions. The mean length of the operation was 39.2±4 min for standard abutment and 18.3±5.7 min for hydroxyapatite-coated abutment. ISQ scores were significantly better for standard abutment in all tests. The mean total Glasgow Inventory Benefit Score was 39.3±19 for the standard abutment and 46.3±24.5 for the hydroxyapatite-coated abutment groups, but there was no statistical significance between the two groups. There was no difference in audiological improvement between the two groups after surgery. Hydroxyapatite-coated abutment provided a shorter operation time that was significantly different from standard abutment. There were no significant differences between standard abutment and hydroxyapatite-coated abutment regarding audiologic improvement, quality of life, loading time, and complications.

  20. Development of a new quantitative gas permeability method for dental implant-abutment connection tightness assessment

    PubMed Central

    2011-01-01

    Background Most dental implant systems are presently made of two pieces: the implant itself and the abutment. The connection tightness between those two pieces is a key point to prevent bacterial proliferation, tissue inflammation and bone loss. The leak has been previously estimated by microbial, color tracer and endotoxin percolation. Methods A new nitrogen flow technique was developed for implant-abutment connection leakage measurement, adapted from a recent, sensitive, reproducible and quantitative method used to assess endodontic sealing. Results The results show very significant differences between various sealing and screwing conditions. The remaining flow was lower after key screwing compared to hand screwing (p = 0.03) and remained different from the negative test (p = 0.0004). The method reproducibility was very good, with a coefficient of variation of 1.29%. Conclusions Therefore, the presented new gas flow method appears to be a simple and robust method to compare different implant systems. It allows successive measures without disconnecting the abutment from the implant and should in particular be used to assess the behavior of the connection before and after mechanical stress. PMID:21492459

  1. A finite element analysis of novel vented dental abutment geometries for cement‐retained crown restorations

    PubMed Central

    Rodriguez, Lucas C.; Saba, Juliana N.; Meyer, Clark A.; Chung, Kwok‐Hung; Wadhwani, Chandur

    2016-01-01

    Abstract Recent literature indicates that the long‐term success of dental implants is, in part, attributed to how dental crowns are attached to their associated implants. The commonly utilized method for crown attachment – cementation, has been criticized because of recent links between residual cement and peri‐implant disease. Residual cement extrusion from crown‐abutment margins post‐crown seating is a growing concern. This study aimed at (1) identifying key abutment features, which would improve dental cement flow characteristics, and (2) understanding how these features would impact the mechanical stability of the abutment under functional loads. Computational fluid dynamic modeling was used to evaluate cement flow in novel abutment geometries. These models were then evaluated using 3D‐printed surrogate models. Finite element analysis also provided an understanding of how the mechanical stability of these abutments was altered after key features were incorporated into the geometry. The findings demonstrated that the key features involved in improved venting of the abutment during crown seating were (1) addition of vents, (2) diameter of the vents, (3) location of the vents, (4) addition of a plastic screw insert, and (5) thickness of the abutment wall. This study culminated in a novel design for a vented abutment consisting of 8 vents located radially around the abutment neck‐margin plus a plastic insert to guide the cement during seating and provide retrievability to the abutment system.Venting of the dental abutment has been shown to decrease the risk of undetected residual dental cement post‐cement‐retained crown seating. This article will utilize a finite element analysis approach toward optimizing dental abutment designs for improved dental cement venting. Features investigated include (1) addition of vents, (2) diameter of vents, (3) location of vents, (4) addition of plastic screw insert, and (5) thickness of abutment wall. PMID

  2. A finite element analysis of novel vented dental abutment geometries for cement-retained crown restorations.

    PubMed

    Rodriguez, Lucas C; Saba, Juliana N; Meyer, Clark A; Chung, Kwok-Hung; Wadhwani, Chandur; Rodrigues, Danieli C

    2016-11-01

    Recent literature indicates that the long-term success of dental implants is, in part, attributed to how dental crowns are attached to their associated implants. The commonly utilized method for crown attachment - cementation, has been criticized because of recent links between residual cement and peri-implant disease. Residual cement extrusion from crown-abutment margins post-crown seating is a growing concern. This study aimed at (1) identifying key abutment features, which would improve dental cement flow characteristics, and (2) understanding how these features would impact the mechanical stability of the abutment under functional loads. Computational fluid dynamic modeling was used to evaluate cement flow in novel abutment geometries. These models were then evaluated using 3D-printed surrogate models. Finite element analysis also provided an understanding of how the mechanical stability of these abutments was altered after key features were incorporated into the geometry. The findings demonstrated that the key features involved in improved venting of the abutment during crown seating were (1) addition of vents, (2) diameter of the vents, (3) location of the vents, (4) addition of a plastic screw insert, and (5) thickness of the abutment wall. This study culminated in a novel design for a vented abutment consisting of 8 vents located radially around the abutment neck-margin plus a plastic insert to guide the cement during seating and provide retrievability to the abutment system.Venting of the dental abutment has been shown to decrease the risk of undetected residual dental cement post-cement-retained crown seating. This article will utilize a finite element analysis approach toward optimizing dental abutment designs for improved dental cement venting. Features investigated include (1) addition of vents, (2) diameter of vents, (3) location of vents, (4) addition of plastic screw insert, and (5) thickness of abutment wall.

  3. Fixture-abutment connection surface and micro-gap measurements by 3D micro-tomographic technique analysis.

    PubMed

    Meleo, Deborah; Baggi, Luigi; Di Girolamo, Michele; Di Carlo, Fabio; Pecci, Raffaella; Bedini, Rossella

    2012-01-01

    X-ray micro-tomography (micro-CT) is a miniaturized form of conventional computed axial tomography (CAT) able to investigate small radio-opaque objects at a-few-microns high resolution, in a non-destructive, non-invasive, and tri-dimensional way. Compared to traditional optical and electron microscopy techniques, which provide two-dimensional images, this innovative investigation technology enables a sample tri-dimensional analysis without cutting, coating or exposing the object to any particular chemical treatment. X-ray micro-tomography matches ideal 3D microscopy features: the possibility of investigating an object in natural conditions and without any preparation or alteration; non-invasive, non-destructive, and sufficiently magnified 3D reconstruction; reliable measurement of numeric data of the internal structure (morphology, structure and ultra-structure). Hence, this technique has multi-fold applications in a wide range of fields, not only in medical and odontostomatologic areas, but also in biomedical engineering, materials science, biology, electronics, geology, archaeology, oil industry, and semi-conductors industry. This study shows possible applications of micro-CT in dental implantology to analyze 3D micro-features of dental implant to abutment interface. Indeed, implant-abutment misfit is known to increase mechanical stress on connection structures and surrounding bone tissue. This condition may cause not only screw preload loss or screw fracture, but also biological issues in peri-implant tissues.

  4. Long-term cumulative survival and mechanical complications of single-tooth Ankylos Implants: focus on the abutment neck fractures.

    PubMed

    Shim, Hye Won; Yang, Byoung-Eun

    2015-12-01

    To evaluate the cumulative survival rate (CSR) and mechanical complications of single-tooth Ankylos® implants. This was a retrospective clinical study that analyzed 450 single Ankylos® implants installed in 275 patients between December 2005 and December 2012. The main outcomes were survival results CSR and implant failure) and mechanical complications (screw loosening, fracture, and cumulative fracture rate [CFR]). The main outcomes were analyzed according to age, sex, implant length or diameter, bone graft, arch, and position. The 8-year CSR was 96.9%. Thirteen (2.9%) implants failed because of early osseointegration failure in 3, marginal bone loss in 6, and abutment fracture in 4. Screw loosening occurred in 10 implants (2.2%), and 10 abutment fractures occurred. All abutment fractures were located in the neck, and concurrent screw fractures were observed. The CSR and rate of screw loosening did not differ significantly according to factors. The CFR was higher in middle-aged patients (5.3% vs 0.0% in younger and older patients); for teeth in a molar position (5.8% vs 0.0% for premolar or 1.1% for anterior position); and for larger-diameter implants (4.5% for 4.5 mm and 6.7% for 5.5 mm diameter vs 0.5% for 3.5 mm diameter) (all P<.05). The Ankylos® implant is suitable for single-tooth restoration in Koreans. However, relatively frequent abutment fractures (2.2%) were observed and some fractures resulted in implant failures. Middle-aged patients, the molar position, and a large implant diameter were associated with a high incidence of abutment fracture.

  5. Experimental research on the relationship between fit accuracy and fracture resistance of zirconia abutments.

    PubMed

    Sui, Xinxin; Wei, Huasha; Wang, Dashan; Han, Yan; Deng, Jing; Wang, Yongliang; Wang, Junjun; Yang, Jianjun

    2014-10-01

    The purpose of the study was to investigate the correlation between fit accuracy and fracture resistance of zirconia abutments, as well as its feasibility for clinical applications. Twenty self-made zirconia abutments were tested with 30 Osstem GSII implants. First, 10 Osstem GSII implants were cut into two parts along the long axis and assembled with the zirconia abutments. The microgaps between the implants and the zirconia abutments were measured under a scanning electron microscope. Second, the zirconia abutments were assembled with 20 un-cut implants and photographed before and after being fixed with a central screw of 30-Ncm torque. The dental films were measured by Digora for Windows 2.6 software. Then the fracture resistance of zirconia abutments was measured using the universal testing machine at 90°. All results were analyzed using SPSS13.0 software. The average internal-hexagon microgaps between the implants and zirconia abutments were 19.38±1.34μm. The average Morse taper microgap in the implant-abutment interface was 17.55±1.68μm. The dental film showed that the Morse taper gap in the implant-abutment interface disappeared after being fixed with a central screw of 30-Ncm torque, and the average moving distance of the zirconia abutments to the implants was 0.19±0.02mm. The average fracture resistance of zirconia abutments was 282.93±17.28N. The internal-hexagon microgap between the implants and zirconia abutments was negatively related to the fracture resistance of the abutments (r1=-0.97, p<0.01). The Morse taper microgap in the implant-abutment interface was negatively related to the fracture resistance of the abutments (r2=-0.84, p<0.01). The microgap between implant and abutment was negatively related to the fracture resistance of the abutment, while the internal-hexagon microgap has better correlation than the Morse taper microgap. The closure of microgap is helpful to improve the fracture resistance of zirconia abutments. The fracture

  6. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations.

    PubMed

    Sghaireen, Mohd G

    2015-06-01

    The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p < .05). The highest fracture loads were associated with metal-ceramic crowns supported by titanium abutments (p = .000). IPS Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.

  7. [Tensile strength of bone fixation of hydroxyapatite coated Schanz screws of the Heidelberg External Fixation System (HEFS)--comparative torque measurements in clinical use and in cadaver tibia].

    PubMed

    Placzek, R; Deuretzbacher, G; Meiss, A L

    2002-12-01

    It is claimed in the literature that hydroxyapatite(HA)-coated screws of external fixators have superior fixation strength in bone, which is postulated to lead to a substantial decrease in loosening and infection rates. We report on a study of the maximum torque values developed while inserting and removing 30 HA-coated Schanz screws of 8 Heidelberg external fixation systems applied to the tibia to correct leg length differences and axial deformities. The infection rate was determined in accordance with defined criteria, and was found to be about 20% for the HA-coated screws. Screws without infection showed an extraction torque above insertion torque, screws with infection an extraction torque below. A significant correlation (p = 0.05) was seen between infection and decrease in fixation strength (quotient: loosening torque/tightening torque). To exclude the impact of such biological processes as osteointegration and bone remodelling, the clinical results were compared with the torques measured for coated and uncoated Schanz screws in a human cadaveric tibia. A significantly higher fixation strength in bone was found for HA-coated screws in comparison with uncoated screws (p = 0.002). These data warrant a clinical study directly comparing HA-coated and uncoated Schanz screws.

  8. Long-term cumulative survival and mechanical complications of single-tooth Ankylos Implants: focus on the abutment neck fractures

    PubMed Central

    2015-01-01

    PURPOSE To evaluate the cumulative survival rate (CSR) and mechanical complications of single-tooth Ankylos® implants. MATERIALS AND METHODS This was a retrospective clinical study that analyzed 450 single Ankylos® implants installed in 275 patients between December 2005 and December 2012. The main outcomes were survival results CSR and implant failure) and mechanical complications (screw loosening, fracture, and cumulative fracture rate [CFR]). The main outcomes were analyzed according to age, sex, implant length or diameter, bone graft, arch, and position. RESULTS The 8-year CSR was 96.9%. Thirteen (2.9%) implants failed because of early osseointegration failure in 3, marginal bone loss in 6, and abutment fracture in 4. Screw loosening occurred in 10 implants (2.2%), and 10 abutment fractures occurred. All abutment fractures were located in the neck, and concurrent screw fractures were observed. The CSR and rate of screw loosening did not differ significantly according to factors. The CFR was higher in middle-aged patients (5.3% vs 0.0% in younger and older patients); for teeth in a molar position (5.8% vs 0.0% for premolar or 1.1% for anterior position); and for larger-diameter implants (4.5% for 4.5 mm and 6.7% for 5.5 mm diameter vs 0.5% for 3.5 mm diameter) (all P<.05). CONCLUSION The Ankylos® implant is suitable for single-tooth restoration in Koreans. However, relatively frequent abutment fractures (2.2%) were observed and some fractures resulted in implant failures. Middle-aged patients, the molar position, and a large implant diameter were associated with a high incidence of abutment fracture. PMID:26813443

  9. Efficacy of Sealing Agents on Preload Maintenance of Screw-Retained Implant-Supported Prostheses.

    PubMed

    Seloto, Camila Berbel; Strazzi Sahyon, Henrico Badaoui; Dos Santos, Paulo Henrique; Delben, Juliana Aparecida; Assunção, Wirley Gonçalves

    The aim of this study was to evaluate the effect of sealing agents on preload maintenance of screw joints. A total of four groups (n = 10 in each group) of abutment/implant systems, including external hexagon implants and antirotational UCLA abutments with a metallic collar in cobalt-chromium alloy, were assessed. In the control group (CG), no sealing agent was used at the abutment screw/implant interface. In the other groups, three different sealing agents were used at the abutment screw/implant interface: anaerobic sealing agent for medium torque (ASMT), anaerobic sealing agent for high torque (ASHT), and cyanoacrylate-based bonding agent (CYAB). All abutments were attached to the implants at 32 ± 1 N.cm. After 48 ± 2 hours of initial tightening, loosing torque (detorque) was measured using a digital torque wrench. Data were analyzed using Shapiro-Wilk, Wilcoxon, and Kruskal-Wallis tests, at 5% level of significance. In the CG and ASMT groups, detorque was lower than the insertion torque (24.6 ± 1.5 N.cm and 24.3 ± 1.1 N.cm, respectively). In the ASHT and CYAB groups, mean detorque increased in comparison to the insertion torque (51.0 ± 7.4 N.cm and 47.7 ± 15.1 N.cm, respectively). The ASHT was more efficient than the other sealing agents, increasing the remaining preload (detorque value) 58.88%. Although the cyanoacrylate-based bonding agent also generated high detorque values, the high standard deviation suggested its lower reliability.

  10. Self-Inflicted Drywall Screws in the Sagittal Sinus.

    PubMed

    Guppy, Kern H; Ochi, Calvin

    2018-02-01

    A 30-year-old right-handed man with a history of schizophrenia presented with 2 self-inflicted drywall screws in the skull. The patient was sleepy but easily arousable; blood tests showed he had taken methamphetamines. Computed tomography and computed tomography angiography of the head showed the frontal screw abutted left of the superior sagittal sinus, and the posterior screw went through the superior sagittal sinus with no extravasation of contrast material at either site. Both screws were removed with exposure of the sagittal sinus using U-shaped craniectomies. There was no bleeding on the removal of the screws. It appears the posterior screw entered between the leaflets of the sagittal sinus dura mater. The patient had returned to work without any sequelae 1 month after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Measurements of Repeated Tightening and Loosening Torque of Seven Different Implant/Abutment Connection Designs and Their Modifications: An In Vitro Study.

    PubMed

    Butkevica, Alena; Nathanson, Dan; Pober, Richard; Strating, Herman

    2018-02-01

    Repeated tightening and loosening of the abutment screw may alter its mechanical and physical properties affecting the optimal torque and ultimate reliability of an implant/abutment connection. The purpose of this study was to evaluate the effect of repeated tightening and loosening of implant/abutment screws on the loosening torque of implant/abutment connections of commercially available implant systems. Seven different implant/abutment connections and their modifications were tested. The screws of each system were tightened according to the manufacturer's specifications. After 20 minutes the screws were loosened. This procedure was repeated ten times, and the differences between the 1st and 10th cycle were expressed as a percentage change RTq(%) and correlated with initial torque, the number of threads, the length of shank, and thread surface area employing Spearman's analysis. All systems showed significant differences in residual torque (RTq) value (p < 0.05) between the 1st and 10th cycle except groups 6 and 11 (p > 0.05). All connections but group 3 (p = 1.000) showed a significant change from the initial torque (ITq) to the RTq values. The first successive RTq values increased in two connection groups 1 and 2. The remaining connections showed reduced RTq values ranging from -1.2 % (group 5) to -23.5% (group 6). The RTq values declined gradually with every repeated tightening in groups 1, 2, 3, 8, 9, 11, 12. In group 2, after the tenth tightening the RTq was still above the ITq value. Only length of shank demonstrated a correlation with the RTq(%) change over the successive tightening loosening cycles (p < 0.05). Repeated tightening and loosening of implant/abutment screws caused varying torque level changes among the different systems. These observations can probably be attributed to connection design. Limiting the number of tightening/loosening cycles in clinical and laboratory procedures is advisable for most of the implant systems tested. © 2016 by the

  12. Sinking and fit of abutment of locking taper implant system

    PubMed Central

    Moon, Seung-Jin; Kim, Hee-Jung; Son, Mee-Kyoung

    2009-01-01

    STATEMENT OF PROBLEM Unlike screw-retention type, fixture-abutment retention in Locking taper connection depends on frictional force so it has possibility of abutment to sink. PURPOSE In this study, Bicon® Implant System, one of the conical internal connection implant system, was used with applying loading force to the abutments connected to the fixture. Then the amount of sinking was measured. MATERIAL AND METHODS 10 Bicon® implant fixtures were used. First, the abutment was connected to the fixture with finger force. Then it was tapped with a mallet for 3 times and loads of 20 kg corresponding to masticatory force using loading application instrument were applied successively. The abutment state, slightly connected to the fixture without pressure was considered as a reference length, and every new abutment length was measured after each load's step was added. The amount of abutment sinking (mm) was gained by subtracting the length of abutment-fixture under each loading condition from reference length. RESULTS It was evident, that the amount of abutment sinking in Bicon® Implant System increased as loads were added. When loads of 20 kg were applied more than 5 - 7 times, sinking stopped at 0.45 ± 0.09 mm. CONCLUSION Even though locking taper connection type implant shows good adaption to occlusal force, it has potential for abutment sinking as loads are given. When locking taper connection type implant is used, satisfactory loads are recommended for precise abutment location. PMID:21165262

  13. Fatigue properties on the failure mode of a dental implant in a simulated body environment

    NASA Astrophysics Data System (ADS)

    Kim, Min Gun

    2011-10-01

    This study undertook a fatigue test in a simulated body environment that has reflected the conditions (such as the body fluid conditions, the micro-current of cell membranes, and the chewing force) within a living body. First, the study sought to evaluate the fatigue limit under normal conditions and in a simulated body environment, looking into the governing factors of implant fatigue strength through an observation of the fracture mode. In addition, the crack initiation behavior of a tungsten-carbide-coated abutment screw was examined. The fatigue limit of an implant within the simulated body environment decreased by 19 % compared to the limit noted under normal conditions. Several corrosion pits were observed on the abutment screw after the fatigue test in the simulated body environment. For the model used in this study, the implant fracture was mostly governed by the fatigue failure of the abutment screw; accordingly, the influence by the fixture on the fatigue strength of the implant was noted to be low. For the abutment screw coated with tungsten carbide, several times the normal amount of stress was found to be concentrated on the contact part due to the elastic interaction between the coating material and the base material.

  14. The effect of photodynamic therapy on pathogenic bacteria around peri-implant sulcus and in the cavity between abutment and implant after healing phase: A prospective clinical study.

    PubMed

    Zhou, Lin-Yi; Shi, Jun-Yu; Zhu, Yu; Qian, Shu-Jiao; Lai, Hong-Chang; Gu, Ying-Xin

    2018-05-14

    To compare levels of pathogens from peri-implant sulcus versus abutment screw cavities after photodynamic therapy. Twenty patients were included. Photodynamic therapy (PDT) was applied both in sulcus and cavities after sampling following suprastructures loading, and repeated after 2 weeks. Two samples each containing four paper points were collected for each implant at baseline, 2 weeks, 3 months: (i) peri-implant sulcus and (ii) abutment screw cavities. Seventy-five percent ethanol was applied in another 20 patients as the control group in the same way. qPCR was used to quantify periodontal pathogens: Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus mutans. PDT showed a better bacterial reduction than ethanol. P. g. and F. n. were most frequently detected, while less for S. m. P. gingivalis' proportion from both sites was significantly higher than the other two bacteria (P < 0.05), except for 2 weeks' peri-implant sulcus sample. Bacteria counts from abutment screw cavities were always less than those from peri-implant sulcus and was significantly lower for total bacteria at 3 months (P < 0.05). Total bacterial from abutment screw cavities significantly reduced at 3 months compared to baseline (P < 0.05). PDT appears to be effective in bacterial reduction compared to ethanol and can reduce P. gingivalis with short time intervals, as well as decreasing total bacteria counts within abutment screw cavities in the long run, suggesting PDT an effective way sterilizing inner surface of oral implant suprastrutures. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  15. Influence of Diamondlike Carbon Coating of Screws on Axial Tightening Force and Stress Distribution on Overdenture Bar Frameworks with Different Fit Levels and Materials.

    PubMed

    dos Santos, Mateus Bertolini Fernandes; Bacchi, Atais; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço

    2015-01-01

    The aim of this study was to evaluate the axial tightening force applied by conventional and diamondlike carbon (DLC)-coated screws and to verify, through three-dimensional finite element analysis (FEA), the stress distribution caused by different framework materials and prosthetic screws in overdenture frameworks with different misfit levels. The axial tightening force applied by the screw was evaluated by means of a titanium matrix connected to a load cell. Conventional titanium or DLC-coated screws were tightened with a digital torque wrench, and the load values were recorded. The values were applied in an FEA to a bar-clip attachment system connected to two 4.0 × 11-mm external-hexagon titanium implants placed in an anterior edentulous arch. DLC-coated and conventional screws were modeled with their respective axial forces obtained on the experimental evaluation for three bar framework materials (titanium, nickel-chromium, and cobalt-chromium) and three levels of misfit (100, 150, and 200 μm). Von Mises stresses for prosthetic components and maximum principal stress and microstrains (maximum principal strains) for bone tissue were measured. The mean force applied by the conventional screw was 25.55 N (± 1.78); the prosthetic screw coated with a DLC layer applied a mean force of 31.44 N (± 2.11), a statistically significant difference. In the FEA, the DLC screw led to higher stresses on the framework; however, the prosthetic screw suffered lower stress. No influence of screw type was seen in the bone tissue. Titanium frameworks reduced the stress transmitted to the bone tissue and the bar framework but had no influence on the screws. Higher misfit values resulted in an increased stress/strain in bone tissue and bar framework, which was not the case for retention screws.

  16. The Evaluation of Unscrewing Torque Values of Implant-Abutment Connections: An In Vitro Study.

    PubMed

    Bruna, Ezio; Fabianelli, Andrea; Mastriforti, Giacomo; Papacchini, Federica

    This study investigated the stability of titanium screws in implant-abutment connections by measuring the force necessary to induce unscrewing. A total of 60 implant-abutment couplings were assigned to two groups (n = 30 each). The sequence 10-20-32 Ncm was tested in Group 1; the sequence 10-20-32-32-32 Ncm was tested in Group 2. The force necessary to unscrew each abutment-implant sample was recorded and statistically analyzed. The significance level was set at P < .05. Significant differences were found between the two sequences. Group 2 required higher forces than Group 1 to unscrew. The stability of the implant-abutment joint may be improved by tightening with the sequence 10-20-32-32-32 Ncm.

  17. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating.

    PubMed

    Tan, Lili; Wang, Qiang; Lin, Xiao; Wan, Peng; Zhang, Guangdao; Zhang, Qiang; Yang, Ke

    2014-05-01

    In this study the loss of mechanical properties and the interface strength of coated AZ31B magnesium alloy (a magnesium-aluminum alloy) screws with surrounding host tissues were investigated and compared with non-coated AZ31B, degradable polymer and biostable titanium alloy screws in a rabbit animal model after 1, 4, 12 and 21weeks of implantation. The interface strength was evaluated in terms of the extraction torque required to back out the screws. The loss of mechanical properties over time was indicated by one-point bending load loss of the screws after these were extracted at different times. AZ31B samples with a silicon-containing coating had a decreased degradation rate and improved biological properties. The extraction torque of Ti6Al4V, poly-l-lactide (PLLA) and coated AZ31B increased significantly from 1week to 4weeks post-implantation, indicating a rapid osteosynthesis process over 3weeks. The extraction torque of coated AZ31B increased with implantation time, and was higher than that of PLLA after 4weeks of implantation, equalling that of Ti6Al4V at 12weeks and was higher at 21weeks. The bending loads of non-coated AZ31B and PLLA screws degraded sharply after implantation, and that of coated AZ31B degraded more slowly. The biodegradation mechanism, the coating to control the degradation rate and the bioactivity of magnesium alloys influencing the mechanical properties loss over time and bone-implant interface strength are discussed in this study and it is concluded that a suitable degradation rate will result in an improvement in the mechanical performance of magnesium alloys, making them more suitable for clinical application. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Salivary bacterial leakage into implant-abutment connections: preliminary results of an in vitro study.

    PubMed

    Mencio, F; Papi, P; Di Carlo, S; Pompa, G

    2016-06-01

    The occurrence of bacterial leakage in the internal surface of implants, through implant-abutment interface (IAI), is one of the parameters for analyzing the fabrication quality of the connections. The aim of this in vitro study is to evaluate two different types of implant-abutment connections: the screwed connection (Group 1) and the cemented connection (Group 2), analyzing the permeability of the IAI to bacterial colonization, using human saliva as culture medium. A total of twelve implants were tested, six in each experimental group. Five healthy patients were enrolled in this study. Two milliliters of non-stimulated saliva were collected from each subject and mixed in a test tube. After 14 days of incubation of the bacteria sample in the implant fixtures, a PCR-Real Time analysis was performed. Fisher's exact test was used to compare the proportions of implant-abutment assembled structures detected with bacterial leakage. Differences in the bacterial counts of the two groups were compared using the Mann-Whitney U test. A p value < 0.05 was considered significant. The results showed a decreased stability with the screwed implant-abutment connections compared to the cemented implant-abutment connections. A mean total bacterial count of 1.2E+07 (± 0.25E+07) for Group 1 and of 7.2E+04 (± 14.4E+04) for Group 2 was found, with a high level of significance, p = .0001. Within the limitations of this study it can be concluded that bacterial species from human saliva may penetrate along the implant-abutment interface in both connections, however the cemented connection implants showed the lowest amount of bacterial colonization.

  19. Fracture loads and failure modes of customized and non-customized zirconia abutments.

    PubMed

    Moris, Izabela Cristina Maurício; Chen, Yung-Chung; Faria, Adriana Cláudia Lapria; Ribeiro, Ricardo Faria; Fok, Alex Sui-Lun; Rodrigues, Renata Cristina Silveira

    2018-05-05

    This study aimed to evaluate the fracture load and pattern of customized and non-customized zirconia abutments with Morse-taper connection. 18 implants were divided into 3 groups according to the abutments used: Zr - with non-customized zirconia abutments; Zrc - with customized zirconia abutments; and Ti - with titanium abutments. To test their load capacity, a universal test machine with a 500-kgf load cell and a 0.5-mm/min speed were used. After, one implant-abutment assembly from each group was analyzed by Scanning Electron Microscopy (SEM). For fractographic analysis, the specimens were transversely sectioned above the threads of the abutment screw in order to examine their fracture surfaces using SEM. A significant difference was noted between the groups (Zr=573.7±11.66N, Zrc=768.0±8.72N and Ti=659.1±7.70N). Also, the zirconia abutments fractured while the titanium abutments deformed plastically. Zrc presented fracture loads significantly higher than Zr (p=0.009). All the zirconia abutments fractured below the implant platform, starting from the area of contact between the abutment and implant and propagating to the internal surface of the abutment. All the zirconia abutments presented complete cleavage in the mechanical test. Fractography detected differences in the position and pattern of fracture between the two groups with zirconia abutments, probably because of the different diameters in the transmucosal region. Customization of zirconia abutments did not affect their fracture loads, which were comparable to that of titanium and much higher than the maximum physiological limit for the anterior region of the maxilla. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  20. Thoracic Aortic Stent-Graft Placement for Safe Removal of a Malpositioned Pedicle Screw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Hongtao; Shin, Ji Hoon, E-mail: jhshin@amc.seoul.kr; Hwang, Jae-Yeon

    2010-10-15

    We describe a case of percutaneous placement of a thoracic aortic stent-graft for safe removal of a malpositioned pedicle screw in a 52-year-old man. The patient had undergone posterior thoracic spinal instrumentation for pyogenic spondylitis and spinal deformity 8 months previously. Follow-up CT images showed a malpositioned pedicle screw which was abutting the thoracic aorta at the T5 level. After percutaneous stent-graft placement, the malpositioned pedicle screw was safely and successfully removed.

  1. Long-term outcome of cemented versus screw-retained implant-supported partial restorations.

    PubMed

    Nissan, Joseph; Narobai, Demitri; Gross, Ora; Ghelfan, Oded; Chaushu, Gavriel

    2011-01-01

    The present study was designed to compare the long-term outcome and complications of cemented versus screw-retained implant restorations in partially edentulous patients. Consecutive patients with bilateral partial posterior edentulism comprised the study group. Implants were placed, and cemented or screw-retained restorations were randomly assigned to the patients in a split-mouth design. Follow-up (up to 15 years) examinations were performed every 6 months in the first year and every 12 months in subsequent years. The following parameters were evaluated and recorded at each recall appointment: ceramic fracture, abutment screw loosening, metal frame fracture, Gingival Index, and marginal bone loss. Thirty-eight patients were treated with 221 implants to support partial prostheses. No implants during the follow-up period (mean follow-up, 66 ± 47 months for screw-retained restorations [range, 18 to 180 months] and 61 ± 40 months for cemented restorations [range, 18 to 159 months]). Ceramic fracture occurred significantly more frequently (P < .001) in screw-retained (38% ± 0.3%) than in cemented (4% ± 0.1%) restorations. Abutment screw loosening occurred statistically significantly more often (P = .001) in screw-retained (32% ± 0.3%) than in cement-retained (9% ± 0.2%) restorations. There were no metal frame fractures in either type of restoration. The mean Gingival Index scores were statistically significantly higher (P < .001) for screw-retained (0.48 ± 0.5) than for cemented (0.09 ± 0.3) restorations. The mean marginal bone loss was statistically significantly higher (P < .001) for screw-retained (1.4 ± 0.6 mm) than for cemented (0.69 ± 0.5 mm) restorations. The long-term outcome of cemented implant-supported restorations was superior to that of screw-retained restorations, both clinically and biologically.

  2. Stability of Uncemented Cups - Long-Term Effect of Screws, Pegs and HA Coating: A 14-Year RSA Follow-Up of Total Hip Arthroplasty.

    PubMed

    Otten, Volker T C; Crnalic, Sead; Röhrl, Stephan M; Nivbrant, Bo; Nilsson, Kjell G

    2016-01-01

    Screws, pegs and hydroxyapatite-coating are used to enhance the primary stability of uncemented cups. We present a 14-year follow-up of 48 hips randomized to four groups: press-fit only, press-fit plus screws, press-fit plus pegs and hydroxyapatite-coated cups. Radiostereometric migration measurements showed equally good stability regardless cup augmentation. The mean wear rate was high, 0.21 mm/year, with no differences between the groups. Seven hips had radiographical osteolysis but only in hips with augmented cups. Cups without screw-holes compared with cups with screw-holes resulted in better clinical outcome at the 14-year follow-up. Thus, augmentation of uncemented cups with screws, pegs, or hydroxyapatite did not appear to improve the long-term stability compared with press-fit only. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A comparative study of gold UCLA-type and CAD/CAM titanium implant abutments

    PubMed Central

    Park, Ji-Man; Lee, Jai-Bong; Heo, Seong-Joo

    2014-01-01

    PURPOSE The aim of this study was to evaluate the interface accuracy of computer-assisted designed and manufactured (CAD/CAM) titanium abutments and implant fixture compared to gold-cast UCLA abutments. MATERIALS AND METHODS An external connection implant system (Mark III, n=10) and an internal connection implant system (Replace Select, n=10) were used, 5 of each group were connected to milled titanium abutment and the rest were connected to the gold-cast UCLA abutments. The implant fixture and abutment were tightened to torque of 35 Ncm using a digital torque gauge, and initial detorque values were measured 10 minutes after tightening. To mimic the mastication, a cyclic loading was applied at 14 Hz for one million cycles, with the stress amplitude range being within 0 N to 100 N. After the cyclic loading, detorque values were measured again. The fixture-abutment gaps were measured under a microscope and recorded with an accuracy of ±0.1 µm at 50 points. RESULTS Initial detorque values of milled abutment were significantly higher than those of cast abutment (P<.05). Detorque values after one million dynamic cyclic loadings were not significantly different (P>.05). After cyclic loading, detorque values of cast abutment increased, but those of milled abutment decreased (P<.05). There was no significant difference of gap dimension between the milled abutment group and the cast abutment group after cyclic loading. CONCLUSION In conclusion, CAD/CAM milled titanium abutment can be fabricated with sufficient accuracy to permit screw joint stability between abutment and fixture comparable to that of the traditional gold cast UCLA abutment. PMID:24605206

  4. An in vivo assessment of the effects of using different implant abutment occluding materials on implant microleakage and the peri-implant microbiome

    NASA Astrophysics Data System (ADS)

    Rubino, Caroline

    Microleakage may be a factor in the progression of peri-implant pathology. Microleakage in implant dentistry refers to the passage of bacteria, fluids, molecules or ions between the abutment-implant interface to and from the surrounding periodontal tissues. This creates a zone of inflammation and reservoir of bacteria at the implant-abutment interface. Bone loss typically occurs within the first year of abutment connection and then stabilizes. It has not yet been definitively proven that the occurrence of microleakage cannot contribute to future bone loss or impede the treatment of peri-implant disease. Therefore, strategies to reduce or eliminate microleakage are sought out. Recent evidence demonstrates that the type of implant abutment channel occluding material can affect the amount of microleakage in an in vitro study environment. Thus, we hypothesize that different abutment screw channel occluding materials will affect the amount of observed microleakage, vis-a-vis the correlation between the microflora found on the abutment screw channel occluding material those found in the peri-implant sulcus. Additional objectives include confirming the presence of microleakage in vivo and assessing any impact that different abutment screw channel occluding materials may have on the peri-implant microbiome. Finally, the present study provides an opportunity to further characterize the peri-implant microbiome. Eight fully edentulous patients restored with at dental implants supporting screw-retained fixed hybrid prostheses were included in the study. At the initial appointment (T1), the prostheses were removed and the implants and prostheses were cleaned. The prostheses were then inserted with polytetrafluoroethylene tape (PTFE, TeflonRTM), cotton, polyvinyl siloxane (PVS), or synthetic foam as the implant abutment channel occluding material and sealed over with composite resin. About six months later (T2), the prostheses were removed and the materials collected. Paper

  5. Comparison of Customized Abutments Made from Titanium and a Machinable Precious Alloy.

    PubMed

    Lee, Jee-Ho; Park, Ji-Man; Park, Eun-Jin; Koak, Jai-Young; Kim, Seong-Kyun; Heo, Seong-Joo

    2016-01-01

    To investigate the clinical usefulness, a customized abutment produced with the Pd-Ag-In alloy was compared with a customized abutment produced with the conventional titanium alloy for discoloration and mechanical accuracy. Discoloration and resistance to corrosion of the Pd-Ag-In alloy were evaluated using chemical solutions. Marginal adaptation of internal-type implants and abutments was compared using 10 titanium abutments and 10 Pd-Ag-In abutments using a surface measuring system. A detorque test was performed on 12 implant-abutment complexes of each control and experimental group to investigate screw joint stability. Cyclic loading simulating a human's mastication movement for 1 year was applied after 30 Ncm initial tightening, and the removal torque was measured using a digital torque gauge. The noninferiority test was conducted to compare the Pd-Ag-In alloy with a titanium abutment with a 10% margin. The Pd-Ag-In alloy had a warm yellow color and displayed stable resistance to discoloration and corrosion, resulting in an advantageous esthetic property. When compared to the titanium alloy, it did not show noninferiority with respect to the gap between the implant and the abutment; the gap was approximately 13.3 μm on average, which was not significantly different from those observed in previous studies. After long-term use, it displayed statistically significant noninferiority in the removal torque value compared to the titanium group. The Pd-Ag-In alloy-based customized abutment had good mechanical properties of the implant-abutment complex as well as a superior esthetic property, and can provide favorable outcomes in anterior implant restoration.

  6. The bacterial sealing capacity of morse taper implant-abutment systems in vitro.

    PubMed

    Ranieri, Rogerio; Ferreira, Andreia; Souza, Emmanuel; Arcoverde, Joao; Dametto, Fabio; Gade-Neto, Cicero; Seabra, Flavio; Sarmento, Carlos

    2015-05-01

    The use of Morse taper systems in dental implantology has been associated widely with a more precise adaptation between implants and their respective abutments. This may lead to an increase in the stability of the implant system and may also prevent microbial invasion through the implant-abutment interface. The aim of this study was to investigate in vitro the ability of four commercially available Morse taper system units to impede bacterial penetration through their implant-abutment interfaces. Abutments were screwed onto the implants, and the units were subsequently immersed in Streptococcus sanguinis bacterial broth (1 × 10(8) colony forming units/mL) for 48 hours. The units were examined by scanning electron microscopy (SEM) under three conditions: 1) with the implant-abutment components assembled as units to investigate for both the existence of microgaps and the presence of bacteria; 2) with the implants and abutments separated for examination of internal surfaces; and 3) with the implant-abutment components again assembled as units to measure any microgaps detected. The mean size of the microgaps in each unit was determined by measuring, under SEM, their width in four equidistant points. Microgaps were detected in all units with no significant differences in dimension (Kruskal-Wallis test, P >0.05). Within all units, the presence of bacteria was also observed. The seals provided by the interfaces of the commercially available Morse taper implant-abutment units tested were not sufficiently small to shield the implant from bacterial penetration.

  7. Non-linear 3D evaluation of different oral implant-abutment connections.

    PubMed

    Streckbein, P; Streckbein, R G; Wilbrand, J F; Malik, C Y; Schaaf, H; Howaldt, H P; Flach, M

    2012-12-01

    Micro-gaps and osseous overload in the implant-abutment connection are the most common causes of peri-implant bone resorption and implant failure. These undesirable events can be visualized on standardized three-dimensional finite element models and by radiographic methods. The present study investigated the influence of 7 available implant systems (Ankylos, Astra, Bego, Brånemark, Camlog, Straumann, and Xive) with different implant-abutment connections on bone overload and the appearance of micro-gaps in vitro. The individual geometries of the implants were transferred to three-dimensional finite element models. In a non-linear analysis considering the pre-loading of the occlusion screw, friction between the implant and abutment, the influence of the cone angle on bone strain, and the appearance of micro-gaps were determined. Increased bone strains were correlated with small (< 15°) cone angles. Conical implant-abutment connections efficiently avoided micro-gaps but had a negative effect on peri-implant bone strain. Bone strain was reduced in implants with greater wall thickness (Ankylos) or a smaller cone angle (Bego). The results of our in silico study provide a solid basis for the reduction of peri-implant bone strain and micro-gaps in the implant-abutment connection to improve long-term stability.

  8. In vitro and in vivo corrosion, mechanical properties and biocompatibility evaluation of MgF2-coated Mg-Zn-Zr alloy as cancellous screws.

    PubMed

    Li, Zhen; Shizhao, Sun; Chen, Minfang; Fahlman, Bradley Dean; Debao Liu; Bi, Hongwei

    2017-06-01

    Magnesium (Mg) and its alloys as biodegradable materials have received much attention in the orthopedics applications; however, the corrosion behavior of these metals in vivo remains challenging. In this work, a dense and nanoscale magnesium fluoride (MgF 2 ) coating was deposited on the surface of Mg-Zn-Zr (MZZ) alloy cancellous screw. The MZZ cancellous screw with MgF 2 coating maintained an integrated shape and high yield tensile stress after 30days immersion in SBF, comparing with the bare screw. Hydrogen releasing rate of the MZZ samples was suppressed at a lower level at the initial stage, which is in favour of the adhesion of the cells. And in vivo experiments indicated that MgF 2 -coated MZZ screws presented advantages in cytocompatibility, osteoconductivity and osteogenesis of cancellous bone in rabbits. Corrosion rate in vivo perfusion environment increased very slowly with time in long-term study, which was an opposite trend in vitro static immersion test. Moreover, maximum corrosion rate (CR max ), a critical calculation method of corrosion rate was introduced to predict fracture regions of the sample. The MZZ alloy with MgF 2 coating possesses a great potential for clinical applications for internal fracture fixation repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. In Vitro Microbiological Analysis of Bacterial Seal in Hybrid Zirconia Abutment Tapered Connection.

    PubMed

    Harlos, Maurício Marcelo; Bezerra da Silva, Thiago; Peruzzo, Daiane C; Napimoga, Marcelo H; Joly, Julio Cesar; Martinez, Elizabeth F

    2017-04-01

    The aim of this study was to evaluate the bacterial seal at the implant-hybrid zirconia abutment interface and Morse taper-type connections through in vitro microbiological analysis. Sixteen implants and their respective abutments were divided into 3 groups: test (10 sets), positive control (3 sets), and negative control (3 sets). In the test group, 10 implants were contaminated with Escherichia coli using a sterile inoculating loop to the inner portion of the implants, followed by torque application to the abutment (30 N·cm). The positive controls were also contaminated, but no torque was applied to the abutment screw. The negative control consisted of uncontaminated sets. All specimens were immersed in test tubes containing 5 mL brain heart infusion (BHI) broth, maintained in a microbiological incubator for 14 days at 37°C under aerobic conditions, and monitored every 24 hours for evidence of bacterial growth. During the 14 days of incubation, no significant increase in the number of cloudy culture media was observed in the test group (P = 0.448). No significant difference in broth turbidity ratio was observed (P > 0.05). Hybrid zirconia abutments can create an effective seal at the tapered abutment-implant interface with a 30-N·cm installation torque.

  10. Three-Dimensional Displacement of Nine Different Abutments for an Implant with an Internal Hexagon Platform.

    PubMed

    Gilbert, Andy B; Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L; Chien, Hua-Hong

    2015-01-01

    Clinicians need to know whether there are any differences among the many abutment options available for restoring a particular implant. This study aims to compare nine abutments for one implant system for positional changes between hand tightening and torqueing. Nine Tapered Screw-Vent (TSV) implants were placed into a resin block. Five specimens of nine different abutments (n = 45) were tried in one of the nine implants. Initially, the abutments were torqued to 20 Ncm to represent hand tightening. Abutments were tightened to 30 Ncm using a torque driver as recommended by the manufacturer for final seating. Images were recorded in 12-second intervals for approximately 10 minutes after the torque was applied. The spatial relationship of the abutments to the resin block was determined using three-dimensional digital image correlation. Commercial image correlation software was used to analyze the displacements. Mean displacements for the nine different abutments were calculated in all three dimensions and for overall displacement in space. A t test with a step-down Bonferroni correction was used for a pairwise comparison of each abutment's mean displacements to the other abutments to determine statistical differences (α = .05). The Atlantis titanium, Inclusive titanium, and Legacy zirconia abutments showed mean displacements that were statistically significantly higher than other abutments in the horizontal direction. The overall three-dimensional displacement of the Atlantis titanium abutment after an applied 30-Ncm torque was significantly higher than that of six of the other eight abutments (P < .0144). Within the limitations of this in vitro study, the Zimmer PSA demonstrated less displacement between hand tightening and torqueing than the Atlantis titanium or Inclusive titanium abutments when used to restore a TSV implant.

  11. Stresses in Implant-Supported Fixed Complete Dentures with Different Screw-Tightening Sequences and Torque Application Modes.

    PubMed

    Barcellos, Leonardo H; Palmeiro, Marina Lobato; Naconecy, Marcos M; Geremia, Tomás; Cervieri, André; Shinkai, Rosemary S

    2018-05-17

    To compare the effects of different screw-tightening sequences and torque applications on stresses in implant-supported fixed complete dentures supported by five abutments. Strain gauges fixed to the abutments were used to test the sequences 2-4-3-1-5; 1-2-3-4-5; 3-2-4-1-5; and 2-5-4-1-3 with direct 10-Ncm torque or progressive torque (5 + 10 Ncm). Data were analyzed using analysis of variance and standardized effect size. No effects of tightening sequence or torque application were found except for the sequence 3-2-4-1-5 and some small to moderate effect sizes. Screw-tightening sequences and torque application modes have only a marginal effect on residual stresses.

  12. Effects of artificial aging conditions on yttria-stabilized zirconia implant abutments.

    PubMed

    Basílio, Mariana de Almeida; Cardoso, Kátia Vieira; Antonio, Selma Gutierrez; Rizkalla, Amin Sami; Santos Junior, Gildo Coelho; Arioli Filho, João Neudenir

    2016-08-01

    Most ceramic abutments are fabricated from yttria-stabilized tetragonal zirconia (Y-TZP). However, Y-TZP undergoes hydrothermal degradation, a process that is not well understood. The purpose of this in vitro study was to assess the effects of artificial aging conditions on the fracture load, phase stability, and surface microstructure of a Y-TZP abutment. Thirty-two prefabricated Y-TZP abutments were screwed and tightened down to external hexagon implants and divided into 4 groups (n = 8): C, control; MC, mechanical cycling (1×10(6) cycles; 10 Hz); AUT, autoclaving (134°C; 5 hours; 0.2 MPa); and TC, thermal cycling (10(4) cycles; 5°/55°C). A single-load-to-fracture test was performed at a crosshead speed of 0.5 mm/min to assess the assembly's resistance to fracture (ISO Norm 14801). X-ray diffraction (XRD) analysis was applied to observe and quantify the tetragonal-monoclinic (t-m) phase transformation. Representative abutments were examined with high-resolution scanning electron microscopy (SEM) to observe the surface characteristics of the abutments. Load-to-fracture test results (N) were compared by ANOVA and Tukey test (α=.05). XRD measurements revealed the monoclinic phase in some abutments after each aging condition. All the aging conditions reduced the fracture load significantly (P<.001). Mechanical cycling reduced the fracture load more than autoclaving (P=.034). No differences were found in the process of surface degradation among the groups; however, the SEM detected grinding-induced surface flaws and microcracks. The resistance to fracture and the phase stability of Y-TZP implant abutments were susceptible to hydrothermal and mechanical conditions. The surface microstructure of Y-TZP abutments did not change after aging conditions. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Influence of implant location on the clinical outcomes of implant abutments: a systematic review and meta-analysis

    PubMed Central

    ElHoussiney, Amr G; Zhang, He; Song, Jinlin; Ji, Ping; Wang, Lu; Yang, Sheng

    2018-01-01

    Purpose To compare the failure events and incidence of complications of different abutment materials in anterior and posterior regions. Failure was defined as complete loss of the abutment requiring replacement by a new abutment. Materials and methods Electronic searches using PubMed/Medline and Google Scholar complemented with manual searches were performed with specific search terms. Searches were restricted to publications in English between January 2006 and March 2016. Results A total of 863 and 1,264 implants were inserted in the anterior and posterior regions, respectively, in a total of 1,529 patients. No titanium abutments failed in anterior or posterior regions. On the other hand, 1.6% of zirconia abutments failed in the anterior region and 1.5% failed in the posterior region. Technical complications occurred mostly in the posterior region and mostly involved zirconia abutment. Meta-analysis was possible only for zirconia-abutment failure, due to considerable heterogeneity of studies and outcome variables. No significant difference in failure rate was found between anterior and posterior zirconia abutments (risk ratio 1.53, 95% CI 0.49–4.77; P=0.47). Conclusion This systematic review and meta-analysis showed similar outcomes of different abutment materials when used in anterior and posterior regions in terms of failure events and biological and aesthetic complications. The only significant finding was the increased incidence of technical complications in the posterior region, mostly involving zirconia abutments. Abutment-screw loosening was the most common technical complication. PMID:29520162

  14. Effect of framework soldering on the deformation of implant abutments after framework seating: a study with strain gauges.

    PubMed

    Mendes, Stella de N C; Edwards Rezende, Carlos E; Moretti Neto, Rafael T; Capello Sousa, Edson A; Henrique Rubo, José

    2013-04-01

    Passive fit has been considered an important requirement for the longevity of implant-supported prostheses. Among the different steps of prostheses construction, casting is a feature that can influence the precision of fit and consequently the uniformity of possible deformation among abutments upon the framework connection. This study aimed at evaluating the deformation of abutments after the connection of frameworks either cast in one piece or after soldering. A master model was used to simulate a human mandible with 5 implants. Ten frameworks were fabricated on cast models and divided into 2 groups. Strain gauges were attached to the mesial and distal sides of the abutments to capture their deformation after the framework's screw retentions were tightened to the abutments. The mean values of deformation were submitted to a 3-way analysis of variance that revealed significant differences between procedures and the abutment side. The results showed that none of the frameworks presented a complete passive fit. The soldering procedure led to a better although uneven distribution of compression strains on the abutments.

  15. Intended and Achieved Torque of Implant Abutment's Screw using Manual Wrenches in Simulated Clinical Setting.

    PubMed

    Al-Otaibi, Hanan N

    2016-11-01

    To measure the difference between the intended torque and the achieved torque by the operator using the spring-style mechanical torque-limiting device (MTLD). Inexperienced and experienced clinicians used one spring-type MTLD to torque two abutment screws of each anterior and posterior implants, which were attached to two digital torque meters through a jaw model. The jaw model was part of a preclinical bench manikin attached to a dental chair. The intended torque value was 35 N cm (recommended by manufacturer) and the technique of torquing was observed for all the participants (instantaneous and repeated). The mean torque value was calculated for each subject for the anterior and posterior implants independently; t-test was used to compare between the intended and achieved torque values and to compare between the experienced and inexperienced clinicians (p ≤ 0.05). Thirty-seven clinicians participated, with an overall mean torque value of 34.30 N cm. The mean torque value of the achieved torque (34.30 ± 4.13 N cm) was statistically significantly less than the intended torque (p = 0.041). The male clinicians produced more statistically significantly accurate torque value (34.54 ± 3.78 N cm) than the female clinicians (p = 0.034), and the experienced clinicians produced more accurate torque values (34.9 ± 5.13 N cm) than the inexperienced clinicians (p = 0.048). Within the limitation of this study, the use of MTLDs did not always produce consistent torque values and the technique by which the operators use the MTLD might affect the torque value.

  16. Effect of Abutment Modification and Cement Type on Retention of Cement-Retained Implant Supported Crowns

    PubMed Central

    Farzin, Mitra; Torabi, Kianoosh; Ahangari, Ahmad Hasan; Derafshi, Reza

    2014-01-01

    Objective: Provisional cements are commonly used to facilitate retrievability of cement-retained fixed implant restorations; but compromised abutment preparation may affect the retention of implant-retained crowns.The purpose of this study was to investigate the effect of abutment design and type of luting agent on the retentive strength of cement-retained implant restorations. Materials and Method: Two prefabricated abutments were attached to their corresponding analogs and embedded in an acrylic resin block. The first abutment (control group) was left intact without any modifications. The screw access channel for the first abutment was completely filled with composite resin. In the second abutment, (test group) the axial wall was partially removed to form an abutment with 3 walls. Wax models were made by CAD/CAM. Ten cast copings were fabricated for each abutment. The prepared copings were cemented on the abutments by Temp Bond luting agent under standardized conditions (n=20). The assemblies were stored in 100% humidity for one day at 37°C prior to testing. The cast crown was removed from the abutment using an Instron machine, and the peak removal force was recorded. Coping/abutment specimens were cleaned after testing, and the testing procedure was repeated for Dycal luting agent (n=20). Data were analyzed with two- way ANOVA (α=0.05). Results: There was no significant difference in the mean transformed retention (Ln-R) between intact abutments (4.90±0.37) and the abutments with 3 walls (4.83±0.25) using Dycal luting agent. However, in TempBond group, the mean transformed retention (Ln-R) was significantly lower in the intact abutment (3.9±0.23) compared to the abutment with 3 walls (4.13±0.33, P=0.027). Conclusion: The retention of cement-retained implant restoration can be improved by the type of temporary cement used. The retention of cast crowns cemented to implant abutments with TempBond is influenced by the wall removal. PMID:25628660

  17. Dynamic fatigue performance of implant-abutment assemblies with different tightening torque values.

    PubMed

    Xia, Dandan; Lin, Hong; Yuan, Shenpo; Bai, Wei; Zheng, Gang

    2014-01-01

    Implant-abutment assemblies are usually subject to long-term cyclic loading. To evaluate the dynamic fatigue performance of implant-abutment assemblies with different tightening torque values, thirty implant-abutment assemblies (Zimmer Dental, Carlsbad, CA, USA) were randomly assigned to three tightening groups (24 Ncm; 30 Ncm; 36 Ncm), each consisted of 10 implants. Five specimens from each group were unscrewed, and their reverse torque values recorded. The remaining specimens were subjected to a load between 30 N~300 N at a loading frequency of 15 Hz for 5 × 10(6) cycles. After fatigue tests, residual reverse torque values were recorded if available. In the 24 Ncm tightening group, all the implants fractured at the first outer thread of the implant after fatigue loading, with fatigue crack propagation at the fractured surface showed by SEM observation. For the 30 Ncm and 36 Ncm tightening groups, a statistical significant difference (p<0.05) between the unloaded and loaded groups was revealed. Compared with the unloaded specimens, the specimens went through fatigue loading had decreased reverse torque values. It was demonstrated that insufficient torque will lead to poor fatigue performance of dental implant-abutment assemblies and abutment screws should be tightened to the torque recommended by the manufacturer. It was also concluded that fatigue loading would lead to preload loss.

  18. The influence of different screw tightening forces on the vertical misfit of implant-supported frameworks.

    PubMed

    Vasconcellos, Diego Klee de; Bottino, Marco Antonio; Nishioka, Renato Sussumu; Valandro, Luiz Felipe; Costa, Elza Maria Valadares da

    2005-06-01

    The present in vitro study was designed to compare the differences in the vertical misfit of implant-supported frameworks using three different forces for tightening the bridge locking screws: fastening by hand until first resistance, and using torque drivers with 10 and 20Ncm. The investigation was conducted based on the results given by 9 six-unit nickel-chromium (2 abutments/ 4 pontics) screw-retained implant-supported frameworks. The structures were exposed to simulated porcelain firings. The marginal misfit measurements were made using a traveling measuring microscope at selected screw tightening forces: fastening by hand until first resistance, and using torque drivers with 10 and 20Ncm. The results were submitted to one-way ANOVA with repeated measures on one factor, and post hoc pairwise comparisons using Tukey test (5%). The mean marginal misfit of the frameworks, fastening the screws by hand until first resistance, was 41.56µm (SD±12.45µm). The use of torque driver devices caused a significant reduction in marginal opening (p<0.05). With the lowest torque available (10Ncm), the mean marginal discrepancy at the abutment-framework interface was reduced an average of 52% to a mean marginal opening of 19.71µm (SD±2.97µm). After the use of the 20Ncm torque driver, the mean marginal discrepancy of the frameworks was reduced an average of 69% to a mean marginal opening of 12.82µm (SD±4.0µm). Comparing the use of torque drivers with 10 and 20 Ncm torque, the means are not significantly different from one another. The seating force has an important effect on the vertical misfit measurements, once it may considerably narrow the vertical misfit gaps at the abutment-framework interface, thus leading to a misjudgment of the real marginal situation.

  19. Influence of space size of abutment screw access channel on the amount of extruded excess cement and marginal accuracy of cement-retained single implant restorations.

    PubMed

    Al Amri, Mohammad D; Al-Johany, Sulieman S; Al-Qarni, Mohammed N; Al-Bakri, Ahmed S; Al-Maflehi, Nassr S; Abualsaud, Haythem S

    2018-02-01

    The detrimental effect of extruded excess cement on peri-implant tissue has been well documented. Although several techniques have been proposed to reduce this effect by decreasing the amount of extruded cement, how the space size of the abutment screw access channel (SAC) affects the amount of extruded cement and marginal accuracy is unclear. The purpose of this in vitro study was to evaluate the effect of the size of the unfilled space of the abutment SAC on the amount of extruded excess cement and the marginal accuracy of zirconia copings. Twelve implant replicas and corresponding standard abutments were attached and embedded in acrylic resin blocks. Computer-aided design and computer-aided manufacturing (CAD-CAM) zirconia copings with a uniform 30-μm cement space were fabricated by 1 dental technician using the standard method. The copings were temporarily cemented 3 times at different sizes of the left space of the SAC as follows: the nonspaced group (NS), in which the entire SAC was completely filled, the 1-mm-spaced group (1MMS), and the 2-mm-spaced group (2MMS). Abutments and crowns were ultrasonically cleaned, steam cleaned, and air-dried. The excess cement was collected and weighed. To measure the marginal accuracy, 20 measurements were made every 18 degrees along the coping margin at ×300 magnification and compared with the pre-cementation readings. One-way ANOVA was calculated to determine whether the amount of extruded excess cement differed among the 3 groups, and the Tukey test was applied for multiple comparisons (α=.05). The mean weights (mg) of extruded excess cement were NS (33.53 ±1.5), 1MMS (22.97 ±5.4), and 2MMS (15.17 ±5.9). Multiple comparisons showed significant differences in the amount of extruded excess cement among the 3 test groups (P<.001). The mean marginal discrepancy (μm) of the pre-cemented group (29.5 ±8.2) was significantly different (P<.01) from that of the NS (72.3 ±13.7), the 1MMS (70.1 ±19), and the 2MMS group

  20. Displacement comparison of CAD-CAM titanium and zirconia abutments to implants with different conical connections.

    PubMed

    Yilmaz, Burak; Hashemzadeh, Shervin; Seidt, Jeremy D; Clelland, Nancy L

    2018-04-01

    To compare the displacements of CAD-CAM zirconia and titanium abutments into different internal connection systems after torquing. OsseoSpeed EV and OsseoSpeed TX implants (n=10) were placed in resin blocks. Zirconia and titanium abutments (n=5) were first hand tightened and then tightened to the recommended torque (20Ncm for TX and 25Ncm for EV). Displacements of abutments between screw tightening by hand and torque driver was measured using three-dimensional digital image correlation (3D DIC) technique. Displacements were measured in U (front/back), V (into/outward), W (right/left) directions and 3-dimensionally (3D). ANOVA with restricted maximum likelihood estimation method was used to analyze the data. Bonferroni-corrected t tests was used to determine the statistical differences (α=0.05). 3D displacement of zirconia and titanium abutments was significantly greater in OsseoSpeed EV implant (P<0.001). Displacement of zirconia and titanium abutments was not significantly different within implant systems, 3D (P≥0.386) and in each direction (P≥0.382). In U and V directions, zirconia and titanium abutments displaced significantly more towards negative in OsseoSpeed EV implant (P<0.019). Within the OsseoSpeed TX system, abutments displaced significantly more in V direction compared to the U and W (P≤0.005), and within the Osseospeed EV system, abutment displacements were significantly different amongst directions and displacements in V were the greatest (P<0.001). Abutments displaced more in the implant that required higher torque values to tighten the abutment. The amount of displacement in both systems was clinically small. Abutment material did not affect the magnitude of displacement. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  1. The influence of screw type, alloy and cylinder position on the marginal fit of implant frameworks before and after laser welding.

    PubMed

    Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso

    2006-04-01

    Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected prosthetic components. Five specimens were one-piece cast in titanium and five in cobalt-chromium alloy. On each specimen, tests were conducted with hexagonal titanium and slotted gold screws separately, performing a total of thirty tested screws. Measurements at the interfaces were performed using an optical microscope with 5mm accuracy. After sectioning, specimens were laser welded and new measurements were obtained. Data were submitted to a four-way ANOVA and Tukey's multiple comparisons test (alpha=0.05). Slotted and hexagonal screws did not present significant differences regarding to the fit of cylinders cast in titanium, either in one-piece casting framework or after laser welding. When slotted and hexagonal screws were tested on the cobalt-chromium specimens, statistically significant differences were found for the one-piece casting condition, with the slotted screws presenting better fit (24.13 microm) than the hexagonal screws (27.93 microm). Besides, no statistically significant differences were found after laser welding. 1) The use of different metal alloys do exert influence on the marginal fit, 2) The slotted and hexagonal screws play the exclusive role of fixing the prosthesis, and did not improve the fit of cylinders, and 3) cylinder position did not affect marginal fit values.

  2. Wear at the titanium-titanium and the titanium-zirconia implant-abutment interface: a comparative in vitro study.

    PubMed

    Stimmelmayr, Michael; Edelhoff, Daniel; Güth, Jan-Frederik; Erdelt, Kurt; Happe, Arndt; Beuer, Florian

    2012-12-01

    The purpose of this study was to determine and measure the wear of the interface between titanium implants and one-piece zirconia abutments in comparison to titanium abutments. 6 implants were secured into epoxy resin blocks. The implant interface of these implants and 6 corresponding abutments (group Zr: three one-piece zirconia abutments; group Ti: three titanium abutments) were examined by a microscope and scanning electron micrograph (SEM). Also the implants and the abutments were scanned by 3D-Micro Computer Tomography (CT). The abutments were connected to the implants and cyclically loaded with 1,200,000 cycles at 100N in a two-axis fatigue testing machine. Afterwards, all specimens were unscrewed and the implants and abutments again were scanned by microscope, SEM and CT. The microscope and SEM images were compared, the CT data were superimposed and the wear was calculated by inspection software. The statistical analysis was carried out with an unpaired t-test. Abutment fracture or screw loosening was not observed during cyclical loading. Comparing the microscope and SEM images more wear was observed on the implants connected to zirconia abutments. The maximum wear on the implant shoulder calculated by the inspection software was 10.2μm for group Zr, and 0.7μm for group Ti. The influence of the abutment material on the measured wear was statistically significant (p≤0.001; Levene-test). Titanium implants showed higher wear at the implant interface following cyclic loading when connected to one-piece zirconia implant abutments compared to titanium abutments. The clinical relevance is not clear; hence damage of the internal implant connection could result in prosthetic failures up to the need of implant removal. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Effect of cyclic load on vertical misfit of prefabricated and cast implant single abutment

    PubMed Central

    DE JESUS TAVAREZ, Rudys Rodolfo; BONACHELA, Wellington Cardoso; XIBLE, Anuar Antônio

    2011-01-01

    Objective The purpose of this in vitro study was to evaluate misfit alterations at the implant/abutment interface of external and internal connection implant systems when subjected to cyclic loading. Material and Methods Standard metal crowns were fabricated for 5 groups (n=10) of implant/abutment assemblies: Group 1, external hexagon implant and UCLA cast-on premachined abutment; Group 2, internal hexagon implant and premachined abutment; Group 3, internal octagon implant and prefabricated abutment; Group 4, external hexagon implant and UCLA cast-on premachined abutment; and Group 5, external hexagon implant and Ceraone abutment. For groups 1, 2, 3 and 5, the crowns were cemented on the abutments and in group 4 crowns were screwed directly on the implant. The specimens were subjected to 500,000 cycles at 19.1 Hz of frequency and non-axial load of 133 N in a MTS 810 machine. The vertical misfit (μm) at the implant/abutment interface was evaluated before (B) and after (A) application of the cyclic loading. Data were analyzed statistically by using two-away ANOVA and Tukey’s post-hoc test (p<0.05). Results Before loading values showed no difference among groups 2 (4.33±3.13), 3 (4.79±3.43) and 5 (3.86±4.60); between groups 1 (12.88±6.43) and 4 (9.67±3.08), and among groups 2, 3 and 4. However, groups 1 and 4 were significantly different from groups 2, 3 and 5. After loading values of groups 1 (17.28±8.77) and 4 (17.78±10.99) were significantly different from those of groups 2 (4.83±4.50), 3 (8.07±4.31) and 5 (3.81±4.84). There was a significant increase in misfit values of groups 1, 3 and 4 after cyclic loading, but not for groups 2 and 5. Conclusion The cyclic loading and type of implant/abutment connection may develop a role on the vertical misfit at the implant/abutment interface. PMID:21437464

  4. Investigating the micromorphological differences of the implant-abutment junction and their clinical implications: a pilot study.

    PubMed

    Mattheos, Nikos; Li, Xiaona; Zampelis, Antonios; Ma, Li; Janda, Martin

    2016-11-01

    The aim of this pilot study was to investigate the morphological micro-features of three commercially available implant-abutment joints, using compatible and original prosthetic components. Furthermore, possible correlations between the micromorphology and potential functional complications were investigated with the use of finite element analysis. Three abutments (one original and two compatibles) were torqued on original Straumann RN implants, as according to each of the manufacturer's instructions. The implant-abutment units were sliced in the microtome and photographed under different magnifications (10×-500×) through a scanning electron microscope. Finite element analysis models were reconstructed for each of the implant-abutment units using the precise measurements from the SEM. Differences in stress, strain and deformation for the three different abutments were then calculated using ANSYS Workbench v13. Major dimensional differences were identified between all studied contact areas of the three units. The tight contact in the implant shoulder was similar in all three units, but engagement of the internal connection and, in particular, the anti-rotation elements was seriously compromised in the compatible abutments. One compatible abutment demonstrated compromised engagement of the abutment screw as well. Equivalent stress and strain in the FEA were much higher for the compatible abutments. An evaluation of the sequence of preload application revealed differences in the pattern of deformation between the original and compatible abutments, which can have serious clinical implications. Compatible abutments can present critical morphological differences from the original ones. The differences in the cross-sectional geometry result in large differences in the overall contact areas, both in terms of quality and quantity which could have serious implications for the long-term stability of the prosthesis. © 2015 John Wiley & Sons A/S. Published by John Wiley

  5. Influence of Abutment Color and Mucosal Thickness on Soft Tissue Color.

    PubMed

    Ferrari, Marco; Carrabba, Michele; Vichi, Alessandro; Goracci, Cecilia; Cagidiaco, Maria Crysanti

    Zirconia (ZrO₂) and titanium nitride (TiN) implant abutments were introduced mainly for esthetic purposes, as titanium's gray color can be visible through mucosal tissues. This study was aimed at assessing whether ZrO₂ and TiN abutments could achieve better esthetics in comparison with titanium (Ti) abutments, regarding the appearance of soft tissues. Ninety patients were included in the study. Each patient was provided with an implant (OsseoSpeed, Dentsply Implant System). A two-stage surgical technique was performed. Six months later, surgical reentry was performed. After 1 week, provisional restorations were screwed onto the implants. After 8 weeks, implant-level impressions were taken and soft tissue thickness was recorded, ranking thin (≤ 2 mm) or thick (≥ 2 mm). Patients were randomly allocated to three experimental groups, based on abutment type: (1) Ti, (2) TiN, and (3) ZrO₂. After 15 weeks, the final restorations were delivered. The mucosal area referring to each abutment was measured for color using a clinical spectrophotometer (Easyshade, VITA); color measurements of the contralateral areas referring to natural teeth were performed at the same time. The data were collected using the Commission Internationale de l'Eclairage (CIE) L*a*b* color system, and ΔE was calculated between peri-implant and contralateral soft tissues. A critical threshold of ΔE = 3.7 was selected. The chi-square test was used to identify statistically significant differences in ΔE between thin and thick mucosal tissues and among the abutment types. Three patients were lost at follow-up. No statistically significant differences were noticed as to the abutment type (P = .966). Statistically significant differences in ΔE were recorded between thick and thin peri-implant soft tissues (P < .001). Only 2 out of 64 patients with thick soft tissues showed a ΔE higher than 3.7: 1 in the TiN group and 1 in the ZrO₂ group. All the patients with thin soft tissues reported color

  6. A three-dimensional finite element study on the stress distribution pattern of two prosthetic abutments for external hexagon implants.

    PubMed

    Moreira, Wagner; Hermann, Caio; Pereira, Jucélio Tomás; Balbinoti, Jean Anacleto; Tiossi, Rodrigo

    2013-10-01

    The purpose of this study was to evaluate the mechanical behavior of two different straight prosthetic abutments (one- and two-piece) for external hex butt-joint connection implants using three-dimensional finite element analysis (3D-FEA). Two 3D-FEA models were designed, one for the two-piece prosthetic abutment (2 mm in height, two-piece mini-conical abutment, Neodent) and another one for the one-piece abutment (2 mm in height, Slim Fit one-piece mini-conical abutment, Neodent), with their corresponding screws and implants (Titamax Ti, 3.75 diameter by 13 mm in length, Neodent). The model simulated the single restoration of a lower premolar using data from a computerized tomography of a mandible. The preload (20 N) after torque application for installation of the abutment and an occlusal loading were simulated. The occlusal load was simulated using average physiological bite force and direction (114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of 75° to the occlusal plan). The regions with the highest von Mises stress results were at the bottom of the initial two threads of both prosthetic abutments that were tested. The one-piece prosthetic abutment presented a more homogeneous behavior of stress distribution when compared with the two-piece abutment. Under the simulated chewing loads, the von Mises stresses for both tested prosthetic-abutments were within the tensile strength values of the materials analyzed which thus supports the clinical use of both prosthetic abutments.

  7. Comparison of 3D displacements of screw-retained zirconia implant crowns into implants with different internal connections with respect to screw tightening.

    PubMed

    Rebeeah, Hanadi A; Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin; Clelland, Nancy; Brantley, William

    2018-01-01

    Internal conical implant-abutment connections without horizontal platforms may lead to crown displacement during screw tightening and torque application. This displacement may affect the proximal contacts and occlusion of the definitive prosthesis. The purpose of this in vitro study was to evaluate the displacement of custom screw-retained zirconia single crowns into a recently introduced internal conical seal implant-abutment connection in 3D during hand and torque driver screw tightening. Stereolithic acrylic resin models were printed using computed tomography data from a patient missing the maxillary right central incisor. Two different internal connection implant systems (both ∼11.5 mm) were placed in the edentulous site in each model using a surgical guide. Five screw-retained single zirconia computer-aided design and computer-aided manufacturing (CAD-CAM) crowns were fabricated for each system. A pair of high-resolution digital cameras was used to record the relationship of the crown to the model. The crowns were tightened according to the manufacturers' specifications using a torque driver, and the cameras recorded their relative position again. Three-dimensional image correlation was used to measure and compare crown positions, first hand tightened and then torque driven. The displacement test was repeated 3 times for each crown. Commercial image correlation software was used to extract the data and compare the amount of displacement vertically, mesiodistally, and buccolingually. Repeated-measures ANOVA calculated the relative displacements for all 5 specimens for each implant for both crown screw hand tightening and after applied torque. A Student t test with Bonferroni correction was used for pairwise comparison of interest to determine statistical differences between the 2 implants (α=.05). The mean vertical displacements were statistically higher than the mean displacements in the mesiodistal and buccolingual directions for both implants (P<.001

  8. THE INFLUENCE OF SCREW TYPE, ALLOY AND CYLINDER POSITION ON THE MARGINAL FIT OF IMPLANT FRAMEWORKS BEFORE AND AFTER LASER WELDING

    PubMed Central

    Castilio, Daniela; Pedreira, Ana Paula Ribeiro do Vale; Rossetti, Paulo Henrique Orlato; Rossetti, Leylha Maria Nunes; Bonachela, Wellington Cardoso

    2006-01-01

    Misfit at the abutment-prosthetic cylinder interface can cause loss of preload, leading to loosening or fracture of gold and titanium screws. Objectives: To evaluate the influence of screw type, alloy, and cylinder position on marginal fit of implant frameworks before and after laser welding. Methods: After Estheticone-like abutments were screwed to the implants, thirty plastic prosthetic cylinders were mounted and waxed-up to fifteen cylindrical bars. Each specimen had three interconnected prosthetic components. Five specimens were one-piece cast in titanium and five in cobalt-chromium alloy. On each specimen, tests were conducted with hexagonal titanium and slotted gold screws separately, performing a total of thirty tested screws. Measurements at the interfaces were performed using an optical microscope with 5 μm accuracy. After sectioning, specimens were laser welded and new measurements were obtained. Data were submitted to a four-way ANOVA and Tukey's multiple comparisons test (α =0.05). Results: Slotted and hexagonal screws did not present significant differences regarding to the fit of cylinders cast in titanium, either in one-piece casting framework or after laser welding. When slotted and hexagonal screws were tested on the cobalt-chromium specimens, statistically significant differences were found for the one-piece casting condition, with the slotted screws presenting better fit (24.13μm) than the hexagonal screws (27.93 μm). Besides, no statistically significant differences were found after laser welding. Conclusions: 1) The use of different metal alloys do exert influence on the marginal fit, 2) The slotted and hexagonal screws play the exclusive role of fixing the prosthesis, and did not improve the fit of cylinders, and 3) cylinder position did not affect marginal fit values. PMID:19089035

  9. Resistance of three implant-abutment interfaces to fatigue testing

    PubMed Central

    RIBEIRO, Cleide Gisele; MAIA, Maria Luiza Cabral; SCHERRER, Susanne S.; CARDOSO, Antonio Carlos; WISKOTT, H. W. Anselm

    2011-01-01

    The design and retentive properties of implant-abutment connectors affect the mechanical resistance of implants. A number of studies have been carried out to compare the efficacy of connecting mechanisms between abutment and fixture. Objectives The aims of this study were: 1) to compare 3 implant-abutment interfaces (external hexagon, internal hexagon and cone-in-cone) regarding the fatigue resistance of the prosthetic screw, 2) to evaluate the corresponding mode of failure, and 3) to compare the results of this study with data obtained in previous studies on Nobel Biocare and Straumann connectors. Materials and Methods In order to duplicate the alternating and multivectorial intraoral loading pattern, the specimens were submitted to the rotating cantilever beam test. The implants, abutments and restoration analogs were spun around their longitudinal axes while a perpendicular force was applied to the external end. The objective was to determine the force level at which 50% of the specimens survived 106 load cycles. The mean force levels at which 50% failed and the corresponding 95% confidence intervals were determined using the staircase procedure. Results The external hexagon interface presented better than the cone-in-cone and internal hexagon interfaces. There was no significant difference between the cone-in-cone and internal hex interfaces. Conclusion Although internal connections present a more favorable design, this study did not show any advantage in terms of strength. The external hexagon connector used in this study yielded similar results to those obtained in a previous study with Nobel Biocare and Straumann systems. However, the internal connections (cone-in-cone and internal hexagon) were mechanically inferior compared to previous results. PMID:21710094

  10. 14. DETAIL, NORTH ABUTMENT, FROM EAST, SHOWING ABUTMENT, PORTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL, NORTH ABUTMENT, FROM EAST, SHOWING ABUTMENT, PORTION OF SIMPLY ORNAMENTED EAST PARAPET, AND REMNANT OF STONE MASONRY ABUTMENT OF ORIGINAL (1890) FIFTH STREET VIADUCT - Fifth Street Viaduct, Spanning Bacon's Quarter Branch Valley on Fifth Street, Richmond, Independent City, VA

  11. Incidence of undetected cement on CAD/CAM monolithic zirconia crowns and customized CAD/CAM implant abutments. A prospective case series.

    PubMed

    Wasiluk, Grzegorz; Chomik, Ewa; Gehrke, Peter; Pietruska, Małgorzata; Skurska, Anna; Pietruski, Jan

    2017-07-01

    The aim of this study was to assess the frequency of cement residues after cementation of CAD/CAM monolithic zirconia crowns on customized CAD/CAM titanium abutments. Sixty premolars and molars were restored on Astra Tech Osseospeed TX ™ implants using single monolithic zirconia crowns fixed on two types of custom-made abutments: Atlantis ™ titanium or Atlantis ™ Gold Hue. Occlusal openings providing access to the abutment screws were designed for retrievability of the crown/abutment connection. After fixation with glass ionomer cement, the crown/abutment units were unscrewed to evaluate the presence of residual cement. Dichotomous assessment of the presence or absence of cement at the crown/abutment unit and peri-implant tissues was performed. Clinically undetected cement excess was visible on 44 of 60 restorations (73.3%). There was no interdependency between residual cement presence and implant location or diameter. However, a dependency between the presence of residual cement and the aspect of the abutment/crown connection could be noted. The majority of the residues were observed on the distal (17.9%) and mesial (15%) aspects. While on the palatal/lingual aspect, the cement was visible in 8.8%; only 3.4% of all surfaces displayed cement residues. Within the limitations of the study, it can be concluded that the use of customized CAD/CAM abutments do not guarantee avoidance of subgingival cement residues after crown cementation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Method for partially coating laser diode facets

    NASA Technical Reports Server (NTRS)

    Dholakia, Anil R. (Inventor)

    1990-01-01

    Bars of integral laser diode devices cleaved from a wafer are placed with their p regions abutting and n regions abutting. A thin BeCu mask having alternate openings and strips of the same width as the end facets is used to mask the n region interfaces so that multiple bars can be partially coated over their exposed p regions with a reflective or partial reflective coating. The partial coating permits identification of the emitting facet from the fully coated back facet during a later device mounting procedure.

  13. A prospective, split-mouth study comparing tilted implants with angulated connection versus conventional implants with angulated abutment.

    PubMed

    Van Weehaeghe, Manú; De Bruyn, Hugo; Vandeweghe, Stefan

    2017-12-01

    An angulation of the implant connection could overcome the problems related to angulated abutments. This study compares conventional implants with angulated abutment to tilted implants with an angulated connection. Twenty patients were treated in the edentulous mandible. In the posterior jaw locations, one conventional tilted implant with angulated abutment and one angulated implant without abutment were placed. In the anterior jaw, two conventional implants were placed, one with and one without abutment. Implants were immediately loaded and 3 months later, the final bridge (PFM or monolithic zirconia) was placed. After a follow-up of 48 months, 17 patients were available for clinical examination. The mean overall marginal bone loss (MBL) was 1.26 mm. No significant differences in implant survival, MBL, periodontal indices, patients' satisfaction, or complications was found between implants restored on abutment or implant level, between the posteriorly located angulated implant nor angulated abutment, and between both anterior implants with or without abutment. The posterior implants demonstrated less MBL compared to the anterior implants (P < .001). There was no significant difference in MBL between the implants restored with zirconia or PFM bridges (P = .294). Overall mean pocket depth was 2.83 mm. More plaque was found in the PFM group compared to the full-zirconia group, at the bridge (P = .042) and the implants (P = .029). There was no difference between both materials in pocket depth (P = .635) or bleeding (P = .821). One zirconia bridge fractured, two angulated abutment were replaced and four loose bridge screws connected to the angulated abutments had to be tightened. Patients were overall satisfied (4.74/5). An implant with angulated connection may results in a stronger connection but does not affect the marginal bone loss. No difference in MBL was seen between implants restored on abutment or implant level. Zirconia seems to reduce

  14. In vivo degradation of a new concept of magnesium-based rivet-screws in the minipig mandibular bone.

    PubMed

    Schaller, Benoit; Saulacic, Nikola; Beck, Stefan; Imwinkelried, Thomas; Goh, Bee Tin; Nakahara, Ken; Hofstetter, Willy; Iizuka, Tateyuki

    2016-12-01

    Self-tapping of magnesium screws in hard bone may be a challenge due to the limited torsional strength of magnesium alloys in comparison with titanium. To avoid screw failure upon implantation, the new concept of a rivet-screw was applied to a WE43 magnesium alloy. Hollow cylinders with threads on the outside were expanded inside drill holes of minipig mandibles. During the expansion with a hexagonal mandrel, the threads engaged the surrounding bone and the inside of the screw transformed into a hexagonal screw drive to allow further screwing in or out of the implant. The in vivo degradation of the magnesium implants and the performance of the used coating were studied in a human standard-sized animal model. Four magnesium alloy rivet-screws were implanted in each mandible of 12 minipigs. Six animals received the plasmaelectrolytically coated magnesium alloy implants; another six received the uncoated magnesium alloy rivet-screws. Two further animals received one titanium rivet-screw each as control. In vivo radiologic examination was performed at one, four, and eight weeks. Euthanasia was performed for one group of seven animals (three animals with coated, three with uncoated magnesium alloy implants and one with titanium implant) at 12weeks and for the remaining seven animals at 24weeks. After euthanasia, micro-computed tomography and histological examination with histomorphometry were performed. Significantly less void formation as well as higher bone volume density (BV/TV) and bone-implant contact area (BIC) were measured around the coated implants compared to the uncoated ones. The surface coating was effective in delaying degradation despite plastic deformation. The results showed potential for further development of magnesium hollow coated screws for bone fixation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Oral mucosa tissue response to titanium cover screws.

    PubMed

    Olmedo, Daniel G; Paparella, María L; Spielberg, Martín; Brandizzi, Daniel; Guglielmotti, María B; Cabrini, Rómulo L

    2012-08-01

    Titanium is the most widely used metal in dental implantology. The release of particles from metal structures into the biologic milieu may be the result of electrochemical processes (corrosion) and/or mechanical disruption during insertion, abutment connection, or removal of failing implants. The aim of the present study is to evaluate tissue response of human oral mucosa adjacent to titanium cover screws. One hundred fifty-three biopsies of the supra-implant oral mucosa adjacent to the cover screw of submerged dental implants were analyzed. Histologic studies were performed to analyze epithelial and connective tissue as well as the presence of metal particles, which were identified using microchemical analysis. Langerhans cells, macrophages, and T lymphocytes were studied using immunohistochemical techniques. The surface of the cover screws was evaluated by scanning electron microscopy (SEM). Forty-one percent of mucosa biopsies exhibited metal particles in different layers of the section thickness. Particle number and size varied greatly among specimens. Immunohistochemical study confirmed the presence of macrophages and T lymphocytes associated with the metal particles. Microchemical analysis revealed the presence of titanium in the particles. On SEM analysis, the surface of the screws exhibited depressions and irregularities. The biologic effects seen in the mucosa in contact with the cover screws might be associated with the presence of titanium or other elements, such as aluminum or vanadium. The potential long-term biologic effects of particles on soft tissues adjacent to metallic devices should be further investigated because these effects might affect the clinical outcome of the implant.

  16. Measurement of the rotational misfit and implant-abutment gap of all-ceramic abutments.

    PubMed

    Garine, Wael N; Funkenbusch, Paul D; Ercoli, Carlo; Wodenscheck, Joseph; Murphy, William C

    2007-01-01

    The specific aims of this study were to measure the implant and abutment hexagonal dimensions, to measure the rotational misfit between implant and abutments, and to correlate the dimension of the gap present between the abutment and implant hexagons with the rotational misfit of 5 abutment-implant combinations from 2 manufacturers. Twenty new externally hexed implants (n = 10 for Nobel Biocare; n = 10 for Biomet/3i) and 50 new abutments were used (n = 10; Procera Zirconia; Procera Alumina; Esthetic Ceramic Abutment; ZiReal; and GingiHue post ZR Zero Rotation abutments). The mating surfaces of all implants and abutments were imaged with a scanning electron microscope before and after rotational misfit measurements. The distances between the corners and center of the implant and abutment hexagon were calculated by entering their x and y coordinates, measured on a measuring microscope, into Pythagoras' theorem. The dimensional difference between abutment and implant hexagons was calculated and correlated with the rotational misfit, which was recorded using a precision optical encoder. Each abutment was rotated (3 times/session) clockwise and counterclockwise until binding. Analysis of variance and Student-Newman-Keuls tests were used to compare rotational misfit among groups (alpha = .05). With respect to rotational misfit, the abutment groups were significantly different from one another (P < .001), with the exception of the Procera Zirconia and Esthetic Ceramic groups (P = .4). The mean rotational misfits in degrees were 4.13 +/- 0.68 for the Procera Zirconia group, 3.92 +/- 0.62 for the Procera Alumina group, 4.10 +/- 0.67 for the Esthetic Ceramic group, 3.48 +/- 0.40 for the ZiReal group, and 1.61 +/- 0.24 for the GingiHue post ZR group. There was no correlation between the mean implant-abutment gap and rotational misfit. Within the limits of this study, machining inconsistencies of the hexagons were found for all implants and abutments tested. The GingiHue Post

  17. An In Vitro Evaluation of the Loosening of Different Interchangeable Abutments in Internal-Connection-Type Implants.

    PubMed

    Park, Ji-Man; Baek, Chang-Hyun; Heo, Seong-Joo; Kim, Seong-Kyun; Koak, Jai-Young; Kim, Shin-Koo; Belser, Urs C

    The aim of this study was to compare the loosening of interchangeable one-piece abutments connected to internal-connection-type implants after cyclic loading. Four implant abutment groups (n = 7 in each group) with Straumann tissue-level implants were assessed: Straumann solid abutment (group S), Southern Implants solid abutment (group SI), Implant Direct straight abutment (group ID), and Blue Sky Bio regular platform abutment (group BSB). The implant was firmly held in a special jig to ensure fixation. Abutment screws were tightened to manufacturers' recommended torque with a digital torque gauge. The hemispherical loading members were fabricated for the load cell of a universal testing machine to evenly distribute the force on the specimens and to fulfill the ISO 14801:2007 standard. A cyclic loading of 25 N at 30 degrees to the implant's long axis was applied for a duty of a half million cycles. Tightening torques were measured prior to the loading. Removal torques were measured after cyclic loading. The data were analyzed with one-way analysis of variance (ANOVA), and the significance level was set at P < .05. The mean removal torques after cyclic loading were 34.0 ± 1.1 Ncm (group S), 25.0 ± 1.5 Ncm (group SI), 23.9 ± 2.1 Ncm (group ID), and 27.9 ± 1.3 Ncm (group BSB). Removal torques of each group were statistically different in the order of group S > group BSB > groups SI and ID (P < .05). The mean reduction rates were -2.9% ± 3.2% (group S), -21.9% ± 4.8% (group SI), -20.2% ± 7.2% (group ID), and -6.9% ± 4.3% (group BSB) after a half million cycles, respectively. Reduction rates of groups S and BSB were statistically lower than those of groups SI and ID (P < .01). The standard deviation of group S was lower than group BSB. The removal torque of the original Straumann abutment was significantly higher than those of the copy abutments. The reduction rate of the groups S and BSB abutments was lower than those of the other copy abutments.

  18. Connective Tissue Characteristics around Healing Abutments of Different Geometries: New Methodological Technique under Circularly Polarized Light.

    PubMed

    Delgado-Ruiz, Rafael Arcesio; Calvo-Guirado, Jose Luis; Abboud, Marcus; Ramirez-Fernandez, Maria Piedad; Maté-Sánchez de Val, José Eduardo; Negri, Bruno; Gomez-Moreno, Gerardo; Markovic, Aleksa

    2015-08-01

    To describe contact, thickness, density, and orientation of connective tissue fibers around healing abutments of different geometries by means of a new method using coordinates. Following the bilateral extraction of mandibular premolars (P2, P3, and P4) from six fox hound dogs and a 2-month healing period, 36 titanium implants were inserted, onto which two groups of healing abutments of different geometry were screwed: Group A (concave abutments) and Group B (wider healing abutment). After 3 months the animals were sacrificed and samples extracted containing each implant and surrounding soft and hard tissues. Histological analysis was performed without decalcifying the samples by means of circularly polarized light under optical microscope and a system of vertical and horizontal coordinates across all the connective tissue in an area delimited by the implant/abutment, epithelium, and bone tissue. In no case had the connective tissue formed a connection to the healing abutment/implant in the internal zone; a space of 35 ± 10 μm separated the connective tissue fibers from the healing abutment surface. The total thickness of connective tissue in the horizontal direction was significantly greater in the medial zone in Group B than in Group A (p < .05). The orientation of the fibers varied according to the coordinate area so that internal coordinates showed a higher percentage of parallel fibers in Group A (p < .05) and a higher percentage of oblique fibers in Group B (p < .05); medial coordinates showed more oblique fibers (p < .05); and the area of external coordinates showed the highest percentage of perpendicular fibers (p < .05). The fiber density was higher in the basal and medial areas (p < .05). Abutment geometry influences the orientation of collagen fibers; therefore, an abutment with a profile wider than the implant platform favors oblique and perpendicular orientation of collagen fibers and greater connective tissue thickness

  19. Comparison of the fracture resistance of dental implants with different abutment taper angles.

    PubMed

    Wang, Kun; Geng, Jianping; Jones, David; Xu, Wei

    2016-06-01

    To investigate the effects of abutment taper angles on the fracture strength of dental implants with TIS (taper integrated screwed-in) connection. Thirty prototype cylindrical titanium alloy 5.0mm-diameter dental implants with different TIS-connection designs were divided into six groups and tested for their fracture strength, using a universal testing machine. These groups consisted of combinations of 3.5 and 4.0 mm abutment diameter, each with taper angles of 6°, 8° or 10°. 3-Dimensional finite element analysis (FEA) was also used to analyze stress states at implant-abutment connection areas. In general, the mechanical tests found an increasing trend of implant fracture forces as the taper angle enlarged. When the abutment diameter was 3.5 mm, the mean fracture forces for 8° and 10° taper groups were 1638.9 N ± 20.3 and 1577.1 N ± 103.2, respectively, both larger than that for the 6° taper group of 1475.0 N ± 24.4, with the largest increasing rate of 11.1%. Furthermore, the difference between 8° and 6° taper groups was significant, based on Tamhane's multiple comparison test (P<0.05). In 4.0 mm-diameter abutment groups, as the taper angle was enlarged from 6° to 8° and 10°, the mean fracture value was increased from 1066.7 N ± 56.1 to 1241.4 N ± 6.4 and 1419.3 N ± 20.0, with the largest increasing rate of 33.1%, and the differences among the three groups were significant (P<0.05). The FEA results showed that stress values varied in implants with different abutment taper angles and supported the findings of the static tests. In conclusion, increases of the abutment taper angle could significantly increase implant fracture resistance in most cases established in the study, which is due to the increased implant wall thickness in the connection part resulting from the taper angle enlargement. The increasing effects were notable when a thin implant wall was present to accommodate wide abutments. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fracture Resistance of Implant Abutments Following Abutment Alterations by Milling the Margins: An In Vitro Study.

    PubMed

    Patankar, Anuya; Kheur, Mohit; Kheur, Supriya; Lakha, Tabrez; Burhanpurwala, Murtuza

    2016-12-01

    This in vitro study evaluated the effect of different levels of preparation of an implant abutment on its fracture resistance. The study evaluated abutments that incorporated a platform switch (Myriad Plus Abutments, Morse Taper Connection) and Standard abutments (BioHorizons Standard Abutment, BioHorizons Inc). Each abutment was connected to an appropriate implant and mounted in a self-cured resin base. Based on the abutment preparation depths, 3 groups were created for each abutment type: as manufactured, abutment prepared 1 mm apical to the original margin, and abutment prepared 1.5 mm to the original margin. All the abutments were prepared in a standardized manner to incorporate a 0.5 mm chamfer margin uniformly. All the abutments were torqued to 30 Ncm on their respective implants. They were then subjected to loading until failure in a universal testing machine. Abutments with no preparation showed the maximum resistance to fracture for both groups. As the preparation depth increased, the fracture resistance decreased. The fracture resistance of implant abutment junction decreases as the preparation depth increases.

  1. Soft tissues stability of cad-cam and stock abutments in anterior regions: 2-year prospective multicentric cohort study.

    PubMed

    Lops, Diego; Bressan, Eriberto; Parpaiola, Andrea; Sbricoli, Luca; Cecchinato, Denis; Romeo, Eugenio

    2015-12-01

    Aim of this study was to verify if the type of implant abutment manufacturing, stock or cad-cam, could influence the maintenance of stable gingival margins around single restorations in anterior areas. After 16 weeks of healing, implants (Osseospeed, Astra Tech Dental Implant) were positioned. Depending on the different fixture inclination and the thickness of buccal peri-implant soft tissue, abutment selection resulted in four groups: Group 1 (patients with zirconia ZirDesign(®) stock abutments), Group 2 (titanium stock TiDesign(®) abutments), Group 3 (zirconia cad-cam abutments), and Group 4 (titanium cad-cam abutments). The following parameters were assessed: buccal gingival margin modification (BGM). The modification of the implant gingival margin was followed at 1 and 2 years of follow-up. A computerized analysis was performed for measurements. Differences between soft tissue margin at baseline and after 2 years measured the gingival margin recession. A general linear model was used to evaluate each group in relation to gingival recession after two years. Tukey's post hoc test was used to compare the mean REC indexes of each group of abutments. Seventy-two healthy patients (39 males and 33 females; mean age of 46 years) scheduled for single gap rehabilitation in anterior areas were enrolled. A 100% of implant survival rate was observed after 24 months of function. One failure occurred due to fracture of a Zirconia cad-cam abutment. Moreover, two abutment screw unscrewing were observed. Both for zirconia and titanium stock abutments (Group 1 and 2), the mean recession of implant buccal soft tissue was of 0.3 mm (SD of 0.3 and 0.4 mm, respectively). Soft tissue mean recession of zirconia and titanium cad-cam abutments (Group 3 and 4) was of 0.1 and -0.3 mm, respectively (SD of 0.3 and 0.4 mm, respectively). REC values of cad-cam titanium abutments (Group 4) were significantly lower than that of Group 1 (-0.57 mm), Group 2 (-0.61 mm), and Group 3 (-0.40 mm

  2. A simplified method to reduce prosthetic misfit for a screw-retained, implant-supported complete denture using a luting technique and laser welding.

    PubMed

    Longoni, Salvatore; Sartori, Matteo; Davide, Roberto

    2004-06-01

    An important aim of implant-supported prostheses is to achieve a passive fit of the framework with the abutments to limit the amount of stress transfer to the bone-implant interface. An efficient and standardized technique is proposed. A definitive screw-retained, implant-supported complete denture was fabricated for an immediately loaded provisional screw-retained implant-supported complete denture. Precise fit was achieved by the use of industrial titanium components and the passivity, by an intraoral luting sequence and laser welding.

  3. [Dental implant restoration abutment selection].

    PubMed

    Bin, Shi; Hao, Zeng

    2017-04-01

    An increasing number of implant restoration abutment types are produced with the rapid development of dental implantology. Although various abutments can meet different clinical demands, the selection of the appropriate abutment is both difficult and confusing. This article aims to help clinicians select the appropriate abutment by describing abutment design, types, and selection criteria.

  4. Influence of different tightening forces before laser welding to the implant/framework fit.

    PubMed

    da Silveira-Júnior, Clebio Domingues; Neves, Flávio Domingues; Fernandes-Neto, Alfredo Júlio; Prado, Célio Jesus; Simamoto-Júnior, Paulo César

    2009-06-01

    The aim of the present study was to evaluate the influence of abutment screw tightening force before laser welding procedures on the vertical fit of metal frameworks over four implants. To construct the frameworks, prefabricated titanium abutments and cylindrical titanium bars were joined by laser welding to compose three groups: group of manual torque (GMT), GT10 and GT20. Before welding, manual torque simulating routine laboratory procedure was applied to GTM. In GT10 and GT20, the abutment screws received 10 and 20 Ncm torque, respectively. After welding, the implant/framework interfaces were assessed by optical comparator microscope using two methods. First, the single screw test (SST) was used, in which the interfaces of the screwed and non-screwed abutments were assessed, considering only the abutments at the framework extremities. Second, the interfaces of all the abutments were evaluated when they were screwed. In the SST, intergroup analysis (Kruskal Wallis) showed no significant difference among the three conditions of tightening force; that is, the different tightening force before welding did not guarantee smaller distortions. Intragroup analysis (Wilcoxon) showed that for all groups, the interfaces of the non-screwed abutments were statistically greater than the interfaces of the screwed abutments, evidencing distortions in all the frameworks. ANOVA was applied for the comparison of interfaces when all the abutments were screwed and showed no significant difference among the groups. Under the conditions of this study, pre-welding tightness on abutment screws did not influence the vertical fit of implant-supported metal frameworks.

  5. Proposal for monitoring concrete painting as a preventive maintenance tool (Abutments and pier caps).

    DOT National Transportation Integrated Search

    2017-07-01

    One of the growing number of preventive bridge maintenance activities conducted by the Kentucky Transportation Cabinet (KYTC) is washing and applying thin film protective coatings to bridge abutments and piers. Previous work conducted by Kentucky Tra...

  6. 6. VIEW OF SOUTH ABUTMENT. MASONRY ON BOTH ABUTMENTS IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF SOUTH ABUTMENT. MASONRY ON BOTH ABUTMENTS IS LAID UP IN SEMI-COURSED RUBBLE PATTERN. VIEW LOOKING SOUTHEAST. - Montgomery County Bridge No. 221, Metz Road spanning Towamencin Creek, Skippack, Montgomery County, PA

  7. Evaluation of Heat Transfer to the Implant-Bone Interface During Removal of Metal Copings Cemented onto Titanium Abutments.

    PubMed

    Cakan, Umut; Cakan, Murat; Delilbasi, Cagri

    2016-01-01

    The aim of this investigation was to measure the temperature increase due to heat transferred to the implant-bone interface when the abutment screw channel is accessed or a metal-ceramic crown is sectioned buccally with diamond or tungsten carbide bur using an air rotor, with or without irrigation. Cobalt-chromium copings were cemented onto straight titanium abutments. The temperature changes during removal of the copings were recorded over a period of 1 minute. The sectioning of coping with diamond bur and without water irrigation generated the highest temperature change at the cervical part of the implant. Both crown removal methods resulted in an increase in temperature at the implant-bone interface. However, this temperature change did not exceed 47°C, the potentially damaging threshold for bone reported in the literature.

  8. Displacement of screw-retained single crowns into implants with conical internal connections.

    PubMed

    Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L

    2013-01-01

    Internal conical implant-abutment connections without platforms may lead to axial displacement of crowns during screw tightening. This displacement may affect proximal contacts, incisal edge position, or occlusion. This study aimed to measure the displacement of screw-retained single crowns into an implant in three dimensions during screw tightening by hand or via torque driver. A stereolithic acrylic resin cast was created using computed tomography data from a patient missing the maxillary right central incisor. A 4.0- × 11-mm implant was placed in the edentulous site. Five porcelain-fused-to-metal single crowns were made using "cast-to" abutments. Crowns were tried on the stereolithic model, representing the patient, and hand tightened. The spatial relationship of crowns to the model after hand tightening was determined using three-dimensional digital image correlation (3D DIC), an optical measurement technique. The crowns were then tightened using a torque driver to 20 Ncm and the relative crown positions were again recorded. Testing was repeated three times for each crown, and displacement of the crowns was compared between the hand-tightened and torqued states. Commercial image correlation software was used to analyze the data. Mean vertical and horizontal crown displacement values were calculated after torqueing. The interproximal contacts were evaluated before and after torquing using an 8-μm aluminum foil shim. There were vertical and horizontal differences in crown positions between hand tightening and torqueing. Although these were small in magnitude, detectable displacements occurred in both apical and facial directions. After hand tightening, the 8-μm shim could be dragged without tearing. However, after torque tightening, the interproximal contacts were too tight and the 8-μm shim could not be dragged without tearing. Differences between hand tightening and torque tightening should be taken into consideration during laboratory and clinical

  9. Degradation behaviour of LAE442-based plate-screw-systems in an in vitro bone model.

    PubMed

    Wolters, Leonie; Besdo, Silke; Angrisani, Nina; Wriggers, Peter; Hering, Britta; Seitz, Jan-Marten; Reifenrath, Janin

    2015-04-01

    The use of absorbable implant materials for fixation after bone fracture helps to avoid a second surgery for implant removal and the risks and costs involved. Magnesium (Mg) is well known as a potential metallic material for degradable implants. The aim of the present in vitro study was to evaluate if degradable LAE442-based magnesium plate-screw-systems are suitable candidates for osteosynthesis implants in load-bearing bones. The corrosion behaviour was tested concerning the influence of different surface treatments, coatings and screw torques. Steel plates and screws of the same size served as control. Plates without special treatment screwed on up to a specified torque of 15cNm or 7cNm, NaOH treated plates (15cNm), magnesium fluoride coated plates (15cNm) and steel plates as control (15cNm) were examined in pH-buffered, temperature-controlled SBF solution for two weeks. The experimental results indicate that the LAE442 plates and screws coated with magnesium fluoride revealed a lower hydrogen evolution in SBF solution as well as a lower weight loss and volume decrease in μ-computed tomography (μCT). The nanoindentation and SEM/EDX measurements at several plate areas showed no significant differences. Summarized, the different screw torques did not affect the corrosion behaviour differently. Also the NaOH treatment seemed to have no essential influence on the degradation kinetics. The plates coated with magnesium fluoride showed a decreased corrosion rate. Hence, it is recommended to consider this coating for the next in vivo study. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Microleakage of the prosthetic abutment/implant interface with internal and external connection: in vitro study.

    PubMed

    Larrucea Verdugo, Carlos; Jaramillo Núñez, Guido; Acevedo Avila, Ariel; Larrucea San Martín, Carlo

    2014-09-01

    This study determined the degree of marginal microleakage of the abutment-implant interface on platforms with Morse taper connection and external connection. For this in vitro study, 42 implants, 21 with external connection and 21 with Morse taper connection, were used, immersed in acrylic resin cylinders. Each implant was joined by a prosthetic abutment screw tightened at different degrees, forming the six study groups: (1) External connection, manual tightening (2) External connection, 20 Newton (N) tightening (3) External connection, 30 N tightening (4) Morse taper connection, manual tightening (5) Morse taper connection, 20 N tightening (6) orse taper connection, 30 N tightening. All samples were subjected to load cycling and thermocycling. Then, they were submerged in a solution of 0.2% methylene blue for 24 h. Finally, the microleakage was measured via 20× optical microscopy in each study group, average was obtained, and Mann-Whitney test was applied. Statistically significant differences (P < 0.001) were found between the levels of microleakage presented in the Morse taper connection implants (1.48) and external connection implants (2.8) in all three types of tightening. Microleakage levels decreases when increasing torque is applied to the screws. Morse taper connection implants showed lower levels of microleakage than external connection implants; also, it was observed that microleakage decreases in the way torque increases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. [Effect of zirconia abutment angulation on stress distribution in the abutment and the bone around implant: a finite element study].

    PubMed

    Yang, Yan-zhong; Tian, Xiao-hua; Zhou, Yan-min

    2015-08-01

    To investigate the effect of three different zirconia angular abutments on the stress distribution in bone and abutment using three-dimensional finite element analysis, and provide instruction for clinical application. Finite element analysis (FEA) was applied to analyze the stress distribution of three different zirconia/titanium angular abutments and bone around implant. The maximum Von Minses stress that existed in abutment, bolt and bone of the angular abutment model was significantly higher than that existed in the straight abutment model. The maximum Von Minses stress that existed in abutment, bolt and bone of the 20 ° angular abutment model was significantly higher than that existed in 15 ° angular abutment model. There was no significant difference between zirconia abutment model and titanium abutment model. The abutment angulation has a significant influence on the stress distribution in the abutment, bolt and bone, and exacerbates as the angulation increases, which suggest that we should take more attention to the implant orientation and use straight abutment or little angular abutment. The zirconia abutment can be used safely, and there is no noticeable difference between zirconia abutment and titanium abutment on stress distribution.

  12. The influence of removable partial dentures on the periodontal health of abutment and non-abutment teeth.

    PubMed

    Dula, Linda J; Shala, Kujtim Sh; Pustina-Krasniqi, Teuta; Bicaj, Teuta; Ahmedi, Enis F

    2015-01-01

    The aim of this study was to evaluate the influence of removable partial dentures (RPD) on the periodontal health of abutment and non-abutment teeth. A total 107 patients with RPD participated in this study. It was examined 138 RPD, they were 87 with clasp-retained and 51 were RPD with attachments. The following periodontal parameters were evaluated for abutment and non-abutment teeth, plaque index (PLI), calculus index (CI), bleeding on probing (BOP), probing depth (PD) (mm) and tooth mobility (TM) index. These clinical measurements were taken immediately before insertion the RPD, then one and 3 months after insertion. The level of significance was set at (P < 0.05). The mean scores for PLI, CI, BOP, PD, and TM index, of the abutment teeth and non-abutment teeth were no statistically significant at the time of insertion of RPD. After 1-month, PLI was statistically significant (0.57 ± 0.55 for abutment and 0.30 ± 0.46 for non-abutment teeth). After 3 months, there were significant differences between abutment and non-abutment teeth with regard to the BOP (1.53 ± 0.50 and 1.76 ± 0.43 respectively), PD (0.28 ± 0.45 and 0.12 ± 0.33 respectively) and PLI (1.20 ± 0.46 and 0.75 ± 0.64 respectively). No significant mean difference in TM and CI was found between the abutment and non-abutment teeth (P > 0.05). With carefully planned prosthetic treatment and adequate maintenance of the oral and denture hygiene, we can prevent the periodontal diseases.

  13. The influence of removable partial dentures on the periodontal health of abutment and non-abutment teeth

    PubMed Central

    Dula, Linda J.; Shala, Kujtim Sh.; Pustina–Krasniqi, Teuta; Bicaj, Teuta; Ahmedi, Enis F.

    2015-01-01

    Objective: The aim of this study was to evaluate the influence of removable partial dentures (RPD) on the periodontal health of abutment and non-abutment teeth. Materials and Methods: A total 107 patients with RPD participated in this study. It was examined 138 RPD, they were 87 with clasp-retained and 51 were RPD with attachments. The following periodontal parameters were evaluated for abutment and non-abutment teeth, plaque index (PLI), calculus index (CI), bleeding on probing (BOP), probing depth (PD) (mm) and tooth mobility (TM) index. These clinical measurements were taken immediately before insertion the RPD, then one and 3 months after insertion. The level of significance was set at (P < 0.05). Results: The mean scores for PLI, CI, BOP, PD, and TM index, of the abutment teeth and non-abutment teeth were no statistically significant at the time of insertion of RPD. After 1-month, PLI was statistically significant (0.57 ± 0.55 for abutment and 0.30 ± 0.46 for non-abutment teeth). After 3 months, there were significant differences between abutment and non-abutment teeth with regard to the BOP (1.53 ± 0.50 and 1.76 ± 0.43 respectively), PD (0.28 ± 0.45 and 0.12 ± 0.33 respectively) and PLI (1.20 ± 0.46 and 0.75 ± 0.64 respectively). No significant mean difference in TM and CI was found between the abutment and non-abutment teeth (P > 0.05). Conclusions: With carefully planned prosthetic treatment and adequate maintenance of the oral and denture hygiene, we can prevent the periodontal diseases. PMID:26430367

  14. The Biocompatibility of Degradable Magnesium Interference Screws: An Experimental Study with Sheep

    PubMed Central

    Thormann, Ulrich; Alt, Volker; Heimann, Lydia; Gasquere, Cyrille; Heiss, Christian; Szalay, Gabor; Franke, Jörg; Schnettler, Reinhard; Lips, Katrin Susanne

    2015-01-01

    Screws for ligament reconstruction are nowadays mostly made of poly-L-lactide (PLLA). However, magnesium-based biomaterials are gathering increased interest in this research field because of their good mechanical property and osteoanabolic influence on bone metabolism. The aim of this pilot study was to evaluate the biocompatibility of an interference screw for ligament reconstruction made of magnesium alloy W4 by diecasting and milling and using different PEO-coatings with calcium phosphates. PLLA and titanium screws were used as control samples. The screws were implanted in the femur condyle of the hind leg of a merino sheep. The observation period was six and twelve weeks and one year. Histomorphometric, immunohistochemical, immunofluorescence, and molecular biological evaluation were conducted. Further TEM analysis was done. In all magnesium screws a clinically relevant gas formation in the vicinity of the biomaterial was observed. Except for the PLLA and titanium control samples, no screw was fully integrated in the surrounding bone tissue. Regarding the fabrication process, milling seems to produce less gas liberation and has a better influence on bone metabolism than diecasting. Coating by PEO with calcium phosphates could not reduce the initial gas liberation but rather reduced the bone metabolism in the vicinity of the biomaterial. PMID:25717474

  15. Pedicle screws with a thin hydroxyapatite coating for improving fixation at the bone-implant interface in the osteoporotic spine: experimental study in a porcine model.

    PubMed

    Ohe, Makoto; Moridaira, Hiroshi; Inami, Satoshi; Takeuchi, Daisaku; Nohara, Yutaka; Taneichi, Hiroshi

    2018-03-30

    OBJECTIVE Instrumentation failure caused by the loosening of pedicle screws (PSs) in patients with osteoporosis is a serious problem after spinal surgery. The addition of a thin hydroxyapatite (HA) surface coating applied by using a sputtering process was reported recently to be a promising method for providing bone conduction around an implant without a significant risk of coating-layer breakage. In this study, the authors evaluated the biomechanical and histological features of the bone-implant interface (BII) of PSs with a thin HA coating in an in vivo porcine osteoporotic spine model. METHODS Three types of PSs (untreated/standard [STPS], sandblasted [BLPS], and HA-coated [HAPS] PSs) were implanted into the thoracic and lumbar spine (T9-L6) of 8 mature Clawn miniature pigs (6 ovariectomized [osteoporosis group] and 2 sham-operated [control group] pigs). The spines were harvested from the osteoporosis group at 0, 2, 4, 8, 12, or 24 weeks after PS placement and from the control group at 0 or 24 weeks. Their bone mineral density (BMD) was measured by peripheral quantitative CT. Histological evaluation of the BIIs was conducted by performing bone volume/tissue volume and bone surface/implant surface measurements. The strength of the BII was evaluated with extraction torque testing. RESULTS The BMD decreased significantly in the osteoporosis group (p < 0.01). HAPSs exhibited the greatest mean extraction peak torque at 8 weeks, and HAPSs and BLPSs exhibited significantly greater mean torque than the STPSs at 12 weeks (p < 0.05). The bone surface/implant surface ratio was significantly higher for HAPSs than for STPSs after 2 weeks (p < 0.05), and bonding between bone and the implant surface was maintained until 24 weeks with no detachment of the coating layer. In contrast, the bone volume/tissue volume ratio was significantly higher for HAPSs than for BLPSs or STPSs only at 4 weeks. CONCLUSIONS Using PSs with a thin HA coating applied using a sputtering process

  16. Biomechanical Comparison of External Fixation and Compression Screws for Transverse Tarsal Joint Arthrodesis.

    PubMed

    Latt, L Daniel; Glisson, Richard R; Adams, Samuel B; Schuh, Reinhard; Narron, John A; Easley, Mark E

    2015-10-01

    Transverse tarsal joint arthrodesis is commonly performed in the operative treatment of hindfoot arthritis and acquired flatfoot deformity. While fixation is typically achieved using screws, failure to obtain and maintain joint compression sometimes occurs, potentially leading to nonunion. External fixation is an alternate method of achieving arthrodesis site compression and has the advantage of allowing postoperative compression adjustment when necessary. However, its performance relative to standard screw fixation has not been quantified in this application. We hypothesized that external fixation could provide transverse tarsal joint compression exceeding that possible with screw fixation. Transverse tarsal joint fixation was performed sequentially, first with a circular external fixator and then with compression screws, on 9 fresh-frozen cadaveric legs. The external fixator was attached in abutting rings fixed to the tibia and the hindfoot and a third anterior ring parallel to the hindfoot ring using transverse wires and half-pins in the tibial diaphysis, calcaneus, and metatarsals. Screw fixation comprised two 4.3 mm headless compression screws traversing the talonavicular joint and 1 across the calcaneocuboid joint. Compressive forces generated during incremental fixator foot ring displacement to 20 mm and incremental screw tightening were measured using a custom-fabricated instrumented miniature external fixator spanning the transverse tarsal joint. The maximum compressive force generated by the external fixator averaged 186% of that produced by the screws (range, 104%-391%). Fixator compression surpassed that obtainable with screws at 12 mm of ring displacement and decreased when the tibial ring was detached. No correlation was found between bone density and the compressive force achievable by either fusion method. The compression across the transverse tarsal joint that can be obtained with a circular external fixator including a tibial ring exceeds that

  17. Evaluation in a Dog Model of Three Antimicrobial Glassy Coatings: Prevention of Bone Loss around Implants and Microbial Assessments

    PubMed Central

    López-Píriz, Roberto; Solá-Linares, Eva; Rodriguez-Portugal, Mercedes; Malpica, Beatriz; Díaz-Güemes, Idoia; Enciso, Silvia; Esteban-Tejeda, Leticia; Cabal, Belén; Granizo, Juan José; Moya, José Serafín; Torrecillas, Ramón

    2015-01-01

    Objectives The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss. Methods Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period. Results During experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42). Significance Antimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression. PMID:26489088

  18. Evaluation in a Dog Model of Three Antimicrobial Glassy Coatings: Prevention of Bone Loss around Implants and Microbial Assessments.

    PubMed

    López-Píriz, Roberto; Solá-Linares, Eva; Rodriguez-Portugal, Mercedes; Malpica, Beatriz; Díaz-Güemes, Idoia; Enciso, Silvia; Esteban-Tejeda, Leticia; Cabal, Belén; Granizo, Juan José; Moya, José Serafín; Torrecillas, Ramón

    2015-01-01

    The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss. Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period. During experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42). Antimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression.

  19. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws.

    PubMed

    Rizzi, Manuela; Gatti, Giorgio; Migliario, Mario; Marchese, Leonardo; Rocchetti, Vincenzo; Renò, Filippo

    2014-11-01

    Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (P<.05) after 24 hours; after 7 days, both titanium and zirconium nitride surfaces were completely covered with MC-3T3 cells. Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Support Ratio Between Abutment and Soft Tissue Under Overdentures: A Comparison Between Use of Two and Four Abutments.

    PubMed

    Abe, Manami; Yang, Tsung-Chieh; Maeda, Yoshionobu; Ando, Takanori; Wada, Masahiro

    The purpose of this preliminary in vivo study was to compare force distribution on abutments (tooth or implant) and tissues supporting overdentures with two or four abutments. A convenience sample of five subjects with tooth and/or implant-supported overdentures was enrolled. Recordings were completed on each subject using a force-measuring system mounted on a metal framework with four anteroposterior spread abutments (A), four abutments with denture bases (B), and on two anterior abutments with denture bases (C). The tissue-support ratio (TSR) was calculated as (A-B)/A or (A-C)/A. TSR values changed 1.5 to 2 times when the number of abutments was reduced from four to two. The amount of tissue strain on the posterior residual ridge increased when the number of abutments was reduced.

  1. Microbiological and clinical assessment of the abutment and non-abutment teeth of partial removable denture wearers.

    PubMed

    Costa, Luciana; do Nascimento, Cássio; de Souza, Valéria Oliveira Pagnano; Pedrazzi, Vinícius

    2017-03-01

    The aim of this study was assessing the changes in both clinical and microbiological parameters of healthy individuals after rehabilitation with removable partial denture (RPD). 11 women received unilateral or bilateral free-end saddle RPD in the mandibular arch. Clinical and microbiological parameters of abutment, non-abutment, and antagonist teeth were assessed at baseline (RPD installation) and after 7, 30, 90, and 180days of function. The Checkerboard DNA-DNA hybridization technique was used to identify and quantify up to 43 different microbial species from subgingival biofilm samples. Probing depth, gingival recession, and bleeding on probing were also investigated over time. The total and individual microbial genome counts were shown significantly increased after 180days with no significant differences between abutment, non-abutment, or antagonist teeth. Streptococcus spp., Aggregatibacter actinomycetemcomitans, and other species associated to periodontitis (Peptostreptococcus anaerobius, Prevotella nigrescens, and Tannerella forsythia), as well as opportunistic Candida spp., were recovered in moderate counts. Abutment teeth presented higher values of gingival recession when compared with non-abutment or antagonist teeth, irrespectively time of sampling (p<0.05). No significant differences were found between groups regarding bleeding on probing or probing depth over time. Overall, the microbial counts significantly increased after 6 months of denture loading for both abutment and non-abutment teeth with no significant differences regarding the microbial profile over time. Bleeding on probing and probing depth showed no significant difference between groups over time whereas gingival recession increased in the abutment teeth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Implant-level prostheses in the edentulous maxilla: a comparison with conventional abutment-level prostheses after 5 years of use.

    PubMed

    Hjalmarsson, Lars; Smedberg, Jan-Ivan; Pettersson, Mattias; Jemt, Torsten

    2011-01-01

    Long-term comparisons of frameworks at the implant or abutment level are not available, and knowledge of the clinical function of cobalt-chromium (Co-Cr) alloy frameworks is limited. Primarily, the aim of this study was to compare the 5-year clinical performance of frameworks with or without abutment connections to implants. Secondly, the outcomes of prostheses made from Co-Cr alloy with porcelain veneers to those made of commercially pure titanium (CP Ti) with acrylic veneers were compared. The test groups comprised patients treated with screw-retained fixed prostheses made at the implant level according to the Cresco method in either dental porcelain-veneered Co-Cr alloy (n = 15) or acrylic-veneered CP Ti (n = 25). A control group of 40 randomly selected patients were provided with prostheses made at the standard abutment level in CP Ti with acrylic veneers. For all patients, clinical and radiologic 5-year data were retrospectively collected and evaluated. Five-year implant cumulative survival rates (CSRs) were 98.6% and 97.6% for test and control groups, respectively (P > .05). No major differences in bone level were demonstrated between the groups after 5 years (P > .05). Significantly more complications occurred in the test groups compared to the control group (P < .01), with the most common complications being mucositis and fracture of veneers. After 5 years, the clinical outcomes of implant-level prostheses made of porcelain-veneered Co-Cr or acrylic-veneered CP Ti seem comparable to acrylic-veneered titanium prostheses made at the standard abutment level regarding implant CSR and bone levels. However, more complications were registered in implant-level prostheses compared to the standard abutment-level prostheses.

  3. Fracture resistance of implant- supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns

    PubMed Central

    Nawafleh, Noor; Öchsner, Andreas; George, Roy

    2018-01-01

    PURPOSE The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between 5℃ and 55℃. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments. PMID:29503716

  4. Dental implants as strategic supplementary abutments for implant-tooth-supported telescopic crown-retained maxillary dentures: a retrospective follow-up study for up to 9 years.

    PubMed

    Krennmair, Gerald; Krainhöfner, Martin; Waldenberger, Otmar; Piehslinger, Eva

    2007-01-01

    The aim of this retrospective study was to present the results of implants and natural teeth used as combined abutments to support maxillary telescopic prostheses. Between 1997 and 2004, 22 patients with residual maxillary teeth underwent prosthodontic rehabilitation with supplementary implant placement of implant-tooth-supported telescopic prostheses. A total of 60 supplementary implants (mean: 2.9 implants; SD: 1.6; range: 1 to 5 per patient) were placed in strategic position and connected with 48 natural abutment teeth (mean: 2.2 teeth; SD: 0.9; range: 1 to 4 per patient) using telescopic crowns. The follow-up registration included implant and natural tooth survival rates and peri-implant and periodontal parameters, along with prosthodontic maintenance. Natural tooth abutments were additionally followed to compare their periodontal parameters at baseline to the follow-up examination. After a mean of 38 months (12 to 108 months) no implants or natural tooth abutments were lost (survival rate: 100%). There was no fracture, endodontic treatment, loss, or intrusion of natural teeth used for telescopic abutments. Implant abutments showed high stability and excellent periimplant soft tissue conditions. Natural tooth abutments used for double crowns also showed uneventful progress. A low rate of prosthodontic maintenance was seen, with implant screw abutment loosening as the most severe complication (3 of 60 implants; 5%). On the basis of this retrospective clinical review, the following conclusions were drawn: (1) successful function over a prolonged period and a minor complication rate of implant-tooth-supported telescopic maxillary dentures may be anticipated, and (2) the great variety of treatment modalities offered by tooth-implant support for telescopic prostheses appears to be useful as a treatment option for the maxilla in elderly patients.

  5. Evaluation of the Effect of Axial Wall Modification and Coping Design on the Retention of Cement-retained Implant-supported Crowns

    PubMed Central

    Derafshi, Reza; Ahangari, Ahmad Hasan; Torabi, Kianoosh; Farzin, Mitra

    2015-01-01

    Background and aims. Because of compromised angulations of implants, the abutments are sometimes prepared. The purpose of this study was to investigate the effect of removing one wall of the implant abutment on the retention of cement-retained crowns. Materials and methods. Four prefabricated abutments were attached to analogues and embedded in acrylic resin blocks. The first abutment was left intact. Axial walls were partially removed from the remaining abutments to produce abutments with three walls. The screw access channel for the first and second abutments were completely filled with composite resin. For the third and fourth abutments, only partial filling was done. Wax-up models were made by CAD/CAM. Ten cast copings were fabricated for each abutment. The copings of fourth abutment had an extension into the screw access channel. Copings were cemented with Temp Bond. The castings were removed from the abutment using an Instron machine, and the peak removal force was recorded. A one-way ANOVA was used to test for a significant difference followed by the pairwise comparisons. Results. The abutments with opened screw access channel had a significantly higher retention than the two other abutments. The abutment with removed wall and no engagement into the hole by the castings exhibited the highest retention. Conclusion. Preserving the opening of screw access channel significantly increases the retention where one of the axial walls of implant abutments for cement-retained restorations is removed during preparation. PMID:25973152

  6. Wear at the Implant-Abutment Interface of Zirconia Abutments Manufactured by Three CAD/CAM Systems.

    PubMed

    Pinheiro Tannure, Ana Luiza; Cunha, Alfredo Gonçalves; Borges Junior, Luiz Antônio; da Silva Concílio, Laís Regiane; Claro Neves, Ana Christina

    To evaluate the changes in the external-hexagon surface of the titanium (Ti) implant before and after mechanical cycling, when coupled with zirconia (Zr) abutments (A) manufactured by three computer-aided design/computer-aided manufacturing (CAD/CAM) systems (Neodent Digital, Zirkonzahn, and AmannGirrbach) and the ZrTi abutment manufactured by Neodent. Four groups were formed (n = 6): titanium implant with Zr AmannGirrbach abutment (AZrAG), with Zr Zirkonzahn abutment (AZrZ), with Zr Neodent abutment (AZrN), and with Zr abutment with infrastructure in Ti Neodent (AZrTiN). Standardized abutments were made from three identical abutments milled in wax. Images of the surface of each side of the hexagons of the implant were obtained by scanning electron microscopy, before and after mechanical cycling, to evaluate the parameters: (1) scratches in the hexagon face; (2) hexagon superior shoulder kneading; (3) hexagon shoulder wear; (4) alterations on the hexagon base; and (5) scratches on the hexagon top. The abutments were coupled with the implants, and Cr-Co crowns were cemented. The implant/abutment/crown assemblies were submitted to mechanical cycling (400 N, 8.0 Hz) for 1 million cycles. The observed changes were classified as follows: absence (0), mild (1), moderate (2), and severe (3). The results were analyzed using the Mann-Whitney, Kruskal-Wallis, and Dunn tests (P < .05). For parameter 1, a significant difference (P = .008) was observed between AZrZ and AZrAG, with more scratches in AZrZ; and between AZrN and AZrTiN (P = .006), with more scratches in AZrN. For parameter 2, a significant difference (P < .05) was observed between AZrZ and AZrAG and between AZrZ and AZrN, with greater kneading in AZrZ; among AZrN and AZrTiN, there was no significant difference (P = .103). For parameter 3, a significant difference (P < .05) was observed between AZrZ and the other groups of Zr, with more wear in AZrZ; between AZrN and AZrTiN, there was no significant difference (P

  7. Pre-load on oral implants after screw tightening fixed full prostheses: an in vivo study.

    PubMed

    Duyck, J; Van Oosterwyck, H; Vander Sloten, J; De Cooman, M; Puers, R; Naert, I

    2001-03-01

    The fit of implant supported fixed prostheses is said to be of clinical concern because of the rigid fixation of an oral implant in its surrounding bone. The influence of the torque sequence of the set screws during fixation of implant supported fixed full prostheses on the final pre-load was investigated in vitro. No significant effect of the torque sequence of the set screws on the final pre-load was observed. The main objective of this study was to quantify and qualify the pre-load in vivo on implants supporting a fixed full prosthesis. This was performed when the prostheses were supported by all five or six implants and was repeated when the prostheses were supported by only four and three implants. A total of 13 patients with a fixed full implant supported prosthesis were selected. The existing abutments were changed for strain gauged abutments. After tightening the set screws with a torque of 10 N cm, the pre-load conditions were registered. The average (SEM) axial forces and bending moments in case of five or six, four and three supporting implants were 323 N (43 N), 346 N (59 N), 307 N (60 N) 21 N cm (3 N cm) and 21 N cm (2 N cm), 23 N cm (5 N cm), respectively. In addition, the pre-load was registered after fixation of a machined gold cylinder, as delivered by the manufacturer, on each of the supporting implants, representing the 'optimal fit' situation. The corresponding average (SEM) axial forces and bending moments in case of five or six, four and three supporting implants were 426 N (36 N), 405 N (40 N), 413 N (46 N) and 8 N cm (1 N cm), 8 N cm (1 N cm), 8 N cm (1 N cm), respectively. The induced axial forces after tightening the prostheses were significantly lower then after tightening the gold cylinder in case of five or six supporting implants (P < 0.02). The induced bending moments after tightening the prostheses were statistically significantly higher (P < 0.0001) then after tightening the gold cylinder in all test conditions (five or six, four or

  8. Settling of abutments into implants and changes in removal torque in five different implant-abutment connections. Part 1: Cyclic loading.

    PubMed

    Kim, Ki-Seong; Han, Jung-Suk; Lim, Young-Jun

    2014-01-01

    The aim of this study was to evaluate and compare the settling of abutments into implants and the removal torque values (RTVs) before and after cyclic loading. Five different implant-abutment connections were tested: Ext = external butt joint + two-piece abutment; Int-H2 = internal hexagon + two-piece abutment; Int-H1 = internal hexagon + one-piece abutment; Int-O2 = internal octagon + two-piece abutment; and Int-O1 = internal octagon + one-piece abutment. Ten abutments from each group were secured to their corresponding implants (total n = 50). All samples were tested in a universal testing machine with a vertical load of 250 N for 100,000 cycles of 14 Hz. The amount of settling of the abutment into the implant was calculated from the change in the total length of the implant-abutment sample before and after loading, as measured with an electronic digital micrometer. The RTV after cyclic loading was compared to the initial RTV with a digital torque gauge. Statistical analysis was performed at a 5% significance level. A multiple-comparison test showed specific significant differences in settling values in each group after 250 N cyclic loading (Int-H1, Ext < Int-H2 < Int-O2 < Int-O1). There were statistically significant decreases in RTVs after loading compared to the initial RTVs in the Int-H2 and Int-O2 groups. No statistically significant differences were found in the Ext, Int-H1, and Int-O1 groups. The results of this study demonstrated that the settling amount and RTV (loss of preload) after cyclic loading were specific to the abutment type and related to the design characteristics of the implant-abutment connection.

  9. Dynamic locking screw improves fixation strength in osteoporotic bone: an in vitro study on an artificial bone model.

    PubMed

    Pohlemann, Tim; Gueorguiev, Boyko; Agarwal, Yash; Wahl, Dieter; Sprecher, Christoph; Schwieger, Karsten; Lenz, Mark

    2015-04-01

    The novel dynamic locking screw (DLS) was developed to improve bone healing with locked-plate osteosynthesis by equalising construct stiffness at both cortices. Due to a theoretical damping effect, this modulated stiffness could be beneficial for fracture fixation in osteoporotic bone. Therefore, the mechanical behaviour of the DLS at the screw-bone interface was investigated in an artificial osteoporotic bone model and compared with conventional locking screws (LHS). Osteoporotic surrogate bones were plated with either a DLS or a LHS construct consisting of two screws and cyclically axially loaded (8,500 cycles, amplitude 420 N, increase 2 mN/cycle). Construct stiffness, relative movement, axial screw migration, proximal (P) and distal (D) screw pullout force and loosening at the bone interface were determined and statistically evaluated. DLS constructs exhibited a higher screw pullout force of P 85 N [standard deviation (SD) 21] and D 93 N (SD 12) compared with LHS (P 62 N, SD 28, p = 0.1; D 57 N, SD 25, p < 0.01) and a significantly lower axial migration over cycles compared with LHS (p = 0.01). DLS constructs showed significantly lower axial construct stiffness (403 N/mm, SD 21, p < 0.01) and a significantly higher relative movement (1.1 mm, SD 0.05, p < 0.01) compared with LHS (529 N/mm, SD 27; 0.8 mm, SD 0.04). Based on the model data, the DLS principle might also improve in vivo plate fixation in osteoporotic bone, providing enhanced residual holding strength and reducing screw cutout. The influence of pin-sleeve abutment still needs to be investigated.

  10. Fracture strength of zirconia implant abutments on narrow diameter implants with internal and external implant abutment connections: A study on the titanium resin base concept.

    PubMed

    Sailer, Irena; Asgeirsson, Asgeir G; Thoma, Daniel S; Fehmer, Vincent; Aspelund, Thor; Özcan, Mutlu; Pjetursson, Bjarni E

    2018-04-01

    There is limited knowledge regarding the strength of zirconia abutments with internal and external implant abutment connections and zirconia abutments supported by a titanium resin base (Variobase, Straumann) for narrow diameter implants. To compare the fracture strength of narrow diameter abutments with different types of implant abutment connections after chewing simulation. Hundred and twenty identical customized abutments with different materials and implant abutment connections were fabricated for five groups: 1-piece zirconia abutment with internal connection (T1, Cares-abutment-Straumann BL-NC implant, Straumann Switzerland), 1-piece zirconia abutment with external hex connection (T2, Procera abutment-Branemark NP implant, Nobel Biocare, Sweden), 2-piece zirconia abutments with metallic insert for internal connection (T3, Procera abutment-Replace NP implant, Nobel Biocare), 2-piece zirconia abutment on titanium resin base (T4, LavaPlus abutment-VarioBase-Straumann BL-NC implant, 3M ESPE, Germany) and 1-piece titanium abutment with internal connection (C, Cares-abutment-Straumann BL-NC implant, Straumann, Switzerland). All implants had a narrow diameter ranging from 3.3 to 3.5 mm. Sixty un-restored abutments and 60 abutments restored with glass-ceramic crowns were tested. Mean bending moments were compared using ANOVA with p-values adjusted for multiple comparisons using Tukey's procedure. The mean bending moments were 521 ± 33 Ncm (T4), 404 ± 36 Ncm (C), 311 ± 106 Ncm (T1) 265 ± 22 Ncm (T3) and 225 ± 29 (T2) for un-restored abutments and 278 ± 84 Ncm (T4), 302 ± 170 Ncm (C), 190 ± 55 Ncm (T1) 80 ± 102 Ncm (T3) and 125 ± 57 (T2) for restored abutments. For un-restored abutments, C and T4 had similar mean bending moments, significantly higher than those of the three other groups (p < .05). Titanium abutments (C) had significantly higher bending moments than identical zirconia abutments (T1) (p < .05). Zirconia

  11. Mixed zirconia calcium phosphate coatings for dental implants: tailoring coating stability and bioactivity potential.

    PubMed

    Pardun, Karoline; Treccani, Laura; Volkmann, Eike; Streckbein, Philipp; Heiss, Christian; Li Destri, Giovanni; Marletta, Giovanni; Rezwan, Kurosch

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Tightening of healing abutments: influence of torque on bacterial proliferation risk, an in vitro investigation.

    PubMed

    Bousquet, Philippe; Bennasar, Isabelle Calas; Tramini, Paul; Jacquemot, Maxime; Cuisinier, Frédéric

    2014-12-01

    Gap at the implant-healing abutment junction can increase the risk of bacterial proliferation. In this study, we determined the leakage at the microgap, and we evaluated hand screwing among clinicians. The torques tested with nitrogen gas flow were 10, 15, 20, and 30 N cm, and 54 clinicians were asked to torque down a healing abutment as for a surgical procedure. There were no significant differences between 10 and 15 N cm, with a total lack of tightness. For 20 and 30 N cm, there was a notable decrease in leakage. The torque achieved by hand was <10 N cm for 61.7% of the clinicians, between 10 and 15 N cm for 29.1%, between 15 and 20 N cm for 8.0%, and between 20 and 25 N cm for 1.2%. There was a significant difference related to the strength of tightening. Under the conditions of our experiment, the gap of connection was reduced with a torque of ≥20 N cm. Only a small portion of the clinicians could obtain these values by hand. Therefore, a dynamometrical manual wrench should be used to minimize the gap during the osseointegration period.

  13. The effect of different screw-tightening techniques on the stress generated on an internal-connection implant superstructure.

    PubMed

    Choi, Jung-Han; Lim, Young-Jun; Kim, Chang-Whe; Kim, Myung-Joo

    2009-01-01

    This study evaluated the effect of different screw-tightening sequences, forces, and methods on the stresses generated on a well-fitting internal-connection implant (Astra Tech) superstructure. A metal framework directly connected to four parallel implants was fabricated on a fully edentulous mandibular resin model. Six stone casts with four implant replicas were made from a pickup impression of the superstructure to represent a "well-fitting" situation. Stresses generated by four screw-tightening sequences (1-2-3-4, 4-3-2-1, 2-4-3-1, and 2-3-1-4), two forces (10 and 20 Ncm), and two methods (one-step and two-step) were evaluated. In the two-step method, screws were tightened to the initial torque (10 Ncm) in a predetermined screw-tightening sequence and then to the final torque (20 Ncm) in the same sequence. Stresses were recorded twice by three strain gauges attached to the framework (superior face midway between abutments). Deformation data were analyzed using multiple analysis of variance at a .05 level of statistical significance. In all stone casts, stresses were produced by the superstructure connection, regardless of screw-tightening sequence, force, and method. No statistically significant differences for superstructure preload stresses were found based on screw-tightening sequences (-180.0 to -181.6 microm/m) or forces (-163.4 and -169.2 microm/m) (P > .05). However, different screw-tightening methods induced different stresses on the superstructure. The two-step screw-tightening method (-180.1 microm/m) produced significantly higher stress than the one-step method (-169.2 microm/m) (P = .0457). Within the limitations of this in vitro study, screw-tightening sequence and force were not critical factors in the stress generated on a well-fitting internal-connection implant superstructure. The stress caused by the two-step method was greater than that produced using the one-step method. Further studies are needed to evaluate the effect of screw

  14. Physicochemical and microscopic characterization of implant–abutment joints

    PubMed Central

    Lopes, Patricia A.; Carreiro, Adriana F. P.; Nascimento, Rubens M.; Vahey, Brendan R.; Henriques, Bruno; Souza, Júlio C. M.

    2018-01-01

    Objective: The purpose of this study was to investigate Morse taper implant–abutment joints by chemical, mechanical, and microscopic analysis. Materials and Methods: Surfaces of 10 Morse taper implants and the correlated abutments were inspected by field emission gun-scanning electron microscopy (FEG-SEM) before connection. The implant–abutment connections were tightened at 32 Ncm. For microgap evaluation by FEG-SEM, the systems were embedded in epoxy resin and cross-sectioned at a perpendicular plane of the implant–abutment joint. Furthermore, nanoindentation tests and chemical analysis were performed at the implant–abutment joints. Statistics: Results were statistically analyzed via one-way analysis of variance, with a significance level of P < 0.05. Results: Defects were noticed on different areas of the abutment surfaces. The minimum and maximum size of microgaps ranged from 0.5 μm up to 5.6 μm. Furthermore, defects were detected throughout the implant–abutment joint that can, ultimately, affect the microgap size after connection. Nanoindentation tests revealed a higher hardness (4.2 ± 0.4 GPa) for abutment composed of Ti6Al4V alloy when compared to implant composed of commercially pure Grade 4 titanium (3.2 ± 0.4 GPa). Conclusions: Surface defects produced during the machining of both implants and abutments can increase the size of microgaps and promote a misfit of implant–abutment joints. In addition, the mismatch in mechanical properties between abutment and implant can promote the wear of surfaces, affecting the size of microgaps and consequently the performance of the joints during mastication. PMID:29657532

  15. Physicochemical and microscopic characterization of implant-abutment joints.

    PubMed

    Lopes, Patricia A; Carreiro, Adriana F P; Nascimento, Rubens M; Vahey, Brendan R; Henriques, Bruno; Souza, Júlio C M

    2018-01-01

    The purpose of this study was to investigate Morse taper implant-abutment joints by chemical, mechanical, and microscopic analysis. Surfaces of 10 Morse taper implants and the correlated abutments were inspected by field emission gun-scanning electron microscopy (FEG-SEM) before connection. The implant-abutment connections were tightened at 32 Ncm. For microgap evaluation by FEG-SEM, the systems were embedded in epoxy resin and cross-sectioned at a perpendicular plane of the implant-abutment joint. Furthermore, nanoindentation tests and chemical analysis were performed at the implant-abutment joints. Results were statistically analyzed via one-way analysis of variance, with a significance level of P < 0.05. Defects were noticed on different areas of the abutment surfaces. The minimum and maximum size of microgaps ranged from 0.5 μm up to 5.6 μm. Furthermore, defects were detected throughout the implant-abutment joint that can, ultimately, affect the microgap size after connection. Nanoindentation tests revealed a higher hardness (4.2 ± 0.4 GPa) for abutment composed of Ti6Al4V alloy when compared to implant composed of commercially pure Grade 4 titanium (3.2 ± 0.4 GPa). Surface defects produced during the machining of both implants and abutments can increase the size of microgaps and promote a misfit of implant-abutment joints. In addition, the mismatch in mechanical properties between abutment and implant can promote the wear of surfaces, affecting the size of microgaps and consequently the performance of the joints during mastication.

  16. Removal torque of nail interlocking screws is related to screw proximity to the fracture and screw breakage.

    PubMed

    White, Alexander A; Kubacki, Meghan R; Samona, Jason; Telehowski, Paul; Atkinson, Patrick J

    2016-06-01

    Studies have shown that titanium implants can be challenging to explant due to the material's excellent biocompatibility and resulting osseointegration. Clinically, titanium alloy nail interlocking screws may require removal to dynamize a construct or revise the nail due to nonunion, infection, pain, or periprosthetic fracture. This study was designed to determine what variables influence the removal torque for titanium alloy interlocking screws. An intramedullary nail with four interlocking screws was used to stabilize a 1-cm segmental femoral defect in a canine model for 16 weeks. The animals were observed to be active following a several-day recovery after surgery. In six animals, the femora and implanted nail/screws were first tested to failure in torsion to simulate periprosthetic fracture of an implant after which the screws were then removed. In four additional animals, the screws were removed without mechanical testing. Both intraoperative insertional and extraction torques were recorded for all screws. Mechanical testing to failure broke 10/24 screws. On average, the intact screws required 70% of the insertional torque during removal while broken screws only required 16% of the insertional torque (p < 0.001). In addition, intact screws closer to the fracture required 2.8 times more removal torque than the outboard distal screw (p < 0.005). On average, the angle of rotation to peak torque was ∼80°. The peak axial load did not significantly correlate with the torque required to remove the screws. On average, the removal torque was lower than at the time of insertion, and less torque was required to remove broken screws and screws remote to the fracture. However, broken screws will require additional time to retrieve the remaining screw fragment. This study suggests that broken screws and screws in prematurely active patients will require less torque to remove. © IMechE 2016.

  17. Mechanical properties of resin glass fiber-reinforced abutment in comparison to titanium abutment

    PubMed Central

    Andreasi Bassi, Mirko; Bedini, Rossella; Pecci, Raffella; Ioppolo, Pietro; Lauritano, Dorina; Carinci, Francesco

    2015-01-01

    Purpose: So far, definitive implant abutments have been performed with high elastic modulus materials, which prevented any type of shock absorption of the chewing loads and as a consequence, the protection of the bone-fixture interface. This is particularly the case when the esthetic restorative material chosen is ceramic rather than composite resin. The adoption of an anisotropic abutment, characterized by an elastic deformability, could allow decreasing the impulse of chewing forces transmitted to the crestal bone. Materials and Methods: According to research protocol, the mechanical resistance to cyclical load was evaluated in a tooth-colored fiber-reinforced abutment (TCFRA) prototype and compared to that of a titanium abutment (TA), thus eight TCFRAs and eight TAs were adhesively cemented on as many titanium implants. The swinging that the two types of abutments showed during the application of sinusoidal load was also analyzed. Results: In the TA group, both fracture and deformation occurred in 12.5% of samples while debonding 62.5%. In the TCFRA group, only debonding was present in 37.5% of samples. In comparison to the TAs, the TCFRAs exhibited a greater swinging during the application of sinusoidal load. In the TA group, the extrusion prevailed, whereas in the TCFRA group, the intrusion was more frequent. Conclusion: The greater elasticity of TCFRA to the flexural load allows absorbing part of the transversal load applied on the fixture during the chewing function, thus reducing the stress on the bone-implant interface. PMID:26229266

  18. Ball Screw Actuator Including a Compliant Ball Screw Stop

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)

    2015-01-01

    An actuator includes a ball nut, a ball screw, and a ball screw stop. The ball nut is adapted to receive an input torque and in response rotates and supplies a drive force. The ball screw extends through the ball nut and has a first end and a second end. The ball screw receives the drive force from the ball nut and in response selectively translates between a retract position and a extend position. The ball screw stop is mounted on the ball screw proximate the first end to translate therewith. The ball screw stop engages the ball nut when the ball screw is in the extend position, translates, with compliance, a predetermined distance toward the first end upon engaging the ball nut, and prevents further rotation of the ball screw upon translating the predetermined distance.

  19. Ball Screw Actuator Including a Compliant Ball Screw Stop

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)

    2017-01-01

    An actuator includes a ball nut, a ball screw, and a ball screw stop. The ball nut is adapted to receive an input torque and in response rotates and supplies a drive force. The ball screw extends through the ball nut and has a first end and a second end. The ball screw receives the drive force from the ball nut and in response selectively translates between a retract position and a extend position. The ball screw stop is mounted on the ball screw proximate the first end to translate therewith. The ball screw stop engages the ball nut when the ball screw is in the extend position, translates, with compliance, a predetermined distance toward the first end upon engaging the ball nut, and prevents further rotation of the ball screw upon translating the predetermined distance.

  20. Displacement of Implant Abutments Following Initial and Repeated Torqueing.

    PubMed

    Yilmaz, Burak; Gilbert, Andy B; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L

    2015-01-01

    To measure and compare the three-dimensional (3D) position of nine different abutments manufactured by different manufacturers after repeated torqueing on an internal-hexagon implant. Nine tapered implants were placed into an acrylic resin block. Five specimens each of nine different abutments (n = 45) were placed into one of nine implants. The abutments were handtightened and then torqued to the manufacturer-recommended torque of 30 Ncm. After 10 minutes, 30 Ncm of torque was reapplied. Another 10 minutes elapsed before testing was completed. Images were recorded in 12-second intervals. The spatial relationship of the abutments to the resin block was determined using 3D digital image correlation. Commercial image correlation software was used to analyze the displacements. Mean displacements for the abutments were calculated in three dimensions and overall for both torque applications. Statistical comparisons were done with a t test and a step-down Bonferroni correction. The overall 3D displacement of the Atlantis Titanium abutment after the second applied torque was significantly greater than that of two of the eight other abutments. Displacement in all three dimensions for the Atlantis Titanium abutment changed direction between the first and second torque applications. All abutments moved further in the same direction except for the Atlantis Titanium abutment, which moved back toward its original hand-tightened position horizontally after the second torque application. Re-torqueing of abutments after a 10-minute interval leads to minor displacement of varying degrees between the abutment and a tapered implant. A potential effect of embedment relaxation and/or manufacturing errors should be taken into consideration when selecting an abutment for a cement-retained crown on a tapered implant. Accordingly, clinicians may benefit from adjusting cement-retained implant crowns after re-torqueing the abutments to prevent potential occlusal and interproximal contact

  1. Efficiency considerations for the purely tapered interference fit (TIF) abutments used in dental implants.

    PubMed

    Bozkaya, Dinçer; Müftü, Sinan

    2004-08-01

    A tapered interference fit provides a mechanically reliable retention mechanism for the implant-abutment interface in a dental implant. Understanding the mechanical properties of the tapered interface with or without a screw at the bottom has been the subject of a considerable amount of studies involving experiments and finite element (FE) analysis. In this paper, approximate closed-form formulas are developed to analyze the mechanics of a tapered interference fit. In particular, the insertion force, the efficiency, defined as the ratio of the pull-out force to insertion force, and the critical insertion depth, which causes the onset of plastic deformation, are analyzed. It is shown that the insertion force is a function of the taper angle, the contact length, the inner and outer radii of the implant, the static and the kinetic coefficients of friction, and the elastic modulii of the implant/abutment materials. The efficiency of the tapered interference fit, which is defined as the ratio of the pull-out force to insertion force, is found to be greater than one, for taper angles that are less than 6 deg when the friction coefficient is 0.3. A safe range of insertion forces has been shown to exist. The lower end of this range depends on the maximum pull-out force that may occur due to occlusion in the multiple tooth restorations and the efficiency of the system; and the upper end of this range depends on the plastic deformation of the abutment and the implant due to interference fit. It has been shown that using a small taper angle and a long contact length widens the safe range of insertion forces.

  2. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection: a Systematic Review and Meta-Analysis.

    PubMed

    Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted. No language or year of publication restriction was applied. The search provided 298 titles. Three studies fulfilled the inclusion criteria. The included studies were characterized by low or moderate risk of bias. Survival of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone loss around implants with a scalloped implant-abutment connection. A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must be rejected. However, further long-term randomized controlled trials assessing implant treatment outcome with the two treatment modalities are needed before definite conclusions can be provided about the beneficial use of implants with a scalloped implant-abutment connection on preservation of the peri-implant marginal bone level.

  3. The effects of simulated bone loss on the implant-abutment assembly and likelihood of fracture: an in vitro study.

    PubMed

    Manzoor, Behzad; Suleiman, Mahmood; Palmer, Richard M

    2013-01-01

    The crestal bone level around a dental implant may influence its strength characteristics by offering protection against mechanical failures. Therefore, the present study investigated the effect of simulated bone loss on modes, loads, and cycles to failure in an in vitro model. Different amounts of bone loss were simulated: 0, 1.5, 3.0, and 4.5 mm from the implant head. Forty narrow-diameter (3.0-mm) implant-abutment assemblies were tested using compressive bending and cyclic fatigue testing. Weibull and accelerated life testing analysis were used to assess reliability and functional life. Statistical analyses were performed using the Fisher-Exact test and the Spearman ranked correlation. Compressive bending tests showed that the level of bone loss influenced the load-bearing capacity of implant-abutment assemblies. Fatigue testing showed that the modes, loads, and cycles to failure had a statistically significant relationship with the level of bone loss. All 16 samples with bone loss of 3.0 mm or more experienced horizontal implant body fractures. In contrast, 14 of 16 samples with 0 and 1.5 mm of bone loss showed abutment and screw fractures. Weibull and accelerated life testing analysis indicated a two-group distribution: the 0- and 1.5-mm bone loss samples had better functional life and reliability than the 3.0- and 4.5-mm samples. Progressive bone loss had a significant effect on modes, loads, and cycles to failure. In addition, bone loss influenced the functional life and reliability of the implant-abutment assemblies. Maintaining crestal bone levels is important in ensuring biomechanical sustainability and predictable long-term function of dental implant assemblies.

  4. Biomechanical Comparison of Inter-fragmentary Compression Pressures: Lag Screw versus Herbert Screw for Anterior Odontoid Screw Fixation.

    PubMed

    Park, Jin-Woo; Kim, Kyoung-Tae; Sung, Joo-Kyung; Park, Seong-Hyun; Seong, Ki-Woong; Cho, Dae-Chul

    2017-09-01

    The purpose of the present study was to compare inter-fragmentary compression pressures after fixation of a simulated type II odontoid fracture with the headless compression Herbert screw and a half threaded cannulated lag screw. We compared inter-fragmentary compression pressures between 40- and 45-mm long 4.5-mm Herbert screws (n=8 and n=9, respectively) and 40- and 45-mm long 4.0-mm cannulated lag screws (n=7 and n=10, respectively) after insertion into rigid polyurethane foam test blocks (Sawbones, Vashon, WA, USA). A washer load cell was placed between the two segments of test blocks to measure the compression force. Because the total length of each foam block was 42 mm, the 40-mm screws were embedded in the cancellous foam, while the 45-mm screws penetrated the denser cortical foam at the bottom. This enabled us to compare inter-fragmentary compression pressures as they are affected by the penetration of the apical dens tip by the screws. The mean compression pressures of the 40- and 45-mm long cannulated lag screws were 50.48±1.20 N and 53.88±1.02 N, respectively, which was not statistically significant (p=0.0551). The mean compression pressures of the 40-mm long Herbert screw was 52.82±2.17 N, and was not statistically significant compared with the 40-mm long cannulated lag screw (p=0.3679). However, 45-mm Herbert screw had significantly higher mean compression pressure (60.68±2.03 N) than both the 45-mm cannulated lag screw and the 40-mm Herbert screw (p=0.0049 and p=0.0246, respectively). Our results showed that inter-fragmentary compression pressures of the Herbert screw were significantly increased when the screw tip penetrated the opposite dens cortical foam. This can support the generally recommended surgical technique that, in order to facilitate maximal reduction of the fracture gap using anterior odontoid screws, it is essential to penetrate the apical dens tip with the screw.

  5. Behavior and analysis of an integral abutment bridge.

    DOT National Transportation Integrated Search

    2013-08-01

    As a result of abutment spalling on the integral abutment bridge over 400 South Street in Salt Lake City, Utah, the Utah Department of Transportation (UDOT) instigated research measures to better understand the behavior of integral abutment bridges. ...

  6. Scalloped Implant-Abutment Connection Compared to Conventional Flat Implant-Abutment Connection: a Systematic Review and Meta-Analysis

    PubMed Central

    Christensen, Ann-Eva; Lorenzen, Henning

    2017-01-01

    ABSTRACT Objectives The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. Material and Methods A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted. No language or year of publication restriction was applied. Results The search provided 298 titles. Three studies fulfilled the inclusion criteria. The included studies were characterized by low or moderate risk of bias. Survival of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone loss around implants with a scalloped implant-abutment connection. Conclusions A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must be rejected. However, further long-term randomized controlled trials assessing implant treatment outcome with the two treatment modalities are needed before definite conclusions can be provided about the beneficial use of implants with a scalloped implant-abutment connection on preservation of the peri-implant marginal bone level. PMID:28496962

  7. Effects of orthopedic implants with a polycaprolactone polymer coating containing bone morphogenetic protein-2 on osseointegration in bones of sheep.

    PubMed

    Niehaus, Andrew J; Anderson, David E; Samii, Valerie F; Weisbrode, Steven E; Johnson, Jed K; Noon, Mike S; Tomasko, David L; Lannutti, John J

    2009-11-01

    To determine elution characteristics of bone morphogenetic protein (BMP)-2 from a polycaprolactone coating applied to orthopedic implants and determine effects of this coating on osseointegration. 6 sheep. An in vitro study was conducted to determine BMP-2 elution from polycaprolactone-coated implants. An in vivo study was conducted to determine the effects on osseointegration when the polycaprolactone with BMP-2 coating was applied to bone screws. Osseointegration was assessed via radiography, measurement of peak removal torque and bone mineral density, and histomorphometric analysis. Physiologic response was assessed by measuring serum bone-specific alkaline phosphatase activity and uptake of bone markers. Mean +/- SD elution on day 1 of the in vitro study was 263 +/- 152 pg/d, which then maintained a plateau at 59.8 +/- 29.1 pg/d. Mean peak removal torque for screws coated with polycalprolactone and BMP-2 (0.91 +/- 0.65 dN x m) and screws coated with polycaprolactone alone (0.97 +/- 1.30 dN.m) did not differ significantly from that for the control screws (2.34 +/- 1.62 dN x m). Mean bone mineral densities were 0.535 +/- 0.060 g/cm(2), 0.596 +/- 0.093 g/cm(2), and 0.524 +/- 0.142 g/cm(2) for the polycaprolactone-BMP-2-coated, polycaprolactone-coated, and control screws, respectively, and did not differ significantly among groups. Histologically, bone was in closer apposition to the implant with the control screws than with either of the coated screws. BMP-2 within the polycaprolactone coating did not stimulate osteogenesis. The polycaprolactone coating appeared to cause a barrier effect that prevented formation of new bone. A longer period or use of another carrier polymer may result in increased osseointegration.

  8. Clinical Characteristics of Abutment Teeth with Gingival Discoloration.

    PubMed

    Ristic, Ljubisa; Dakovic, Dragana; Postic, Srdjan; Lazic, Zoran; Bacevic, Miljana; Vucevic, Dragana

    2017-04-06

    The grey-bluish discoloration of gingiva (known as "amalgam tattoo") does not appear only in the presence of amalgam restorations. It may also be seen in cases of teeth restored with cast dowels and porcelain-fused-to-metal (PFM) restorations. The aim of this article was to determine the clinical characteristics of abutment teeth with gingival discoloration. This research was conducted on 25 patients referred for cast dowel and PFM restorations. These restorations were manufactured from Ni-Cr alloys. Ninety days after cementing the fixed prosthodontic restorations, the abutment teeth (n = 61) were divided into a group with gingival discoloration (GD) (n = 25) and without gingival discoloration (NGD) (n = 36). The control group (CG) comprised the contralateral teeth (n = 61). Plaque index, gingival index, clinical attachment level, and probing depth were assessed before fabrication and also 90 days after cementation of the PFM restorations. The gingival index, clinical attachment level, and probing depths of the abutment teeth that had GD were statistically higher before restoration, in comparison with the abutment teeth in the NGD and control groups. Ninety days after cementation, the abutment teeth with GD had significantly lower gingival indexes and probing depths, compared to the abutment teeth in the NGD group. Both abutment teeth groups (GD and NGD) had significantly higher values of clinical attachment levels when compared to the control group. There were no statistically significant differences in plaque index values between the study groups. The results of this study indicated that impairment of periodontal status of abutment teeth seemed to be related to the presence of gingival discolorations. Therefore, fabrication of fixed prosthodontic restorations requires careful planning and abutment teeth preparation to minimize the occurrence of gingival discolorations. With careful preparation of abutment teeth for cast dowels and crown restorations it may be

  9. 21 CFR 872.3630 - Endosseous dental implant abutment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...

  10. 21 CFR 872.3630 - Endosseous dental implant abutment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...

  11. 21 CFR 872.3630 - Endosseous dental implant abutment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...

  12. 21 CFR 872.3630 - Endosseous dental implant abutment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...

  13. 21 CFR 872.3630 - Endosseous dental implant abutment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...

  14. Simple New Screw Insertion Technique without Extraction for Broken Pedicle Screws.

    PubMed

    Kil, Jin-Sang; Park, Jong-Tae

    2018-05-01

    Spinal transpedicular screw fixation is widely performed. Broken pedicle screw rates range from 3%-7.1%. Several techniques have been described for extraction of broken pedicle screws. However, most of these techniques require special instruments. We describe a simple, modified technique for management of broken pedicle screws without extraction. No special instruments or drilling in an adjacent pedicle are required. We used a high-speed air drill with a round burr. With C-arm fluoroscopy guidance, the distal fragment of a broken pedicle screw was palpated using free-hand technique through the screw entry hole. A high-speed air drill with a round burr (not a diamond burr) was inserted through the hole. Drilling began slowly and continued until enough space was obtained for new screw insertion. Using this space, we performed new pedicle screw fixation medially alongside the distal fragment of the broken pedicle screw. We performed the insertion with a previously used entry hole and pathway in the pedicle. The same size pedicle screw was used. Three patients were treated with this modified technique. New screw insertion was successful in all cases after partial drilling of the distal broken pedicle screw fragment. There were no complications, such as screw loosening, dural tears, or root injury. We describe a simple, modified technique for management of broken pedicle screws without extraction. This technique is recommended in patients who require insertion of a new screw. Copyright © 2017. Published by Elsevier Inc.

  15. Torsional stiffness after subtalar arthrodesis using second generation headless compression screws: Biomechanical comparison of 2-screw and 3-screw fixation.

    PubMed

    Riedl, Markus; Glisson, Richard R; Matsumoto, Takumi; Hofstaetter, Stefan G; Easley, Mark E

    2017-06-01

    Subtalar joint arthrodesis is a common operative treatment for symptomatic subtalar arthrosis. Because excessive relative motion between the talus and calcaneus can delay or prohibit fusion, fixation should be optimized, particularly in patients at risk for subtalar arthrodesis nonunion. Tapered, fully-threaded, variable pitch screws are gaining popularity for this application, but the mechanical properties of joints fixed with these screws have not been characterized completely. We quantified the torsion resistance of 2-screw and 3-screw subtalar joint fixation using this type of screw. Ten pairs of cadaveric subtalar joints were prepared for arthrodesis and fixed using Acutrak 2-7.5 screws. One specimen from each pair was fixed with two diverging posterior screws, and the contralateral joint was fixed using two posterior screws and a third screw directed through the anterior calcaneus into the talar neck. Internal and external torsional loads were applied and joint rotation and torsional stiffness were measured at two torque levels. Internal rotation was significantly less in specimens fixed with three screws. No difference was detectable between 2-screw and 3-screw fixation in external rotation or torsional stiffness in either rotation direction. Both 2-screw and 3-screw fixation exhibited torsion resistance surpassing that reported previously for subtalar joints fixed with two diverging conventional lag screws. Performance of the tapered, fully threaded, variable pitch screws exceeded that of conventional lag screws regardless of whether two or three screws were used. Additional resistance to internal rotation afforded by a third screw placed anteriorly may offer some advantage in patients at risk for nonunion. Copyright © 2017. Published by Elsevier Ltd.

  16. Management of major vascular injury during pedicle screw instrumentation of thoracolumbar spine.

    PubMed

    Mirza, Aleem K; Alvi, Mohammed Ali; Naylor, Ryan M; Kerezoudis, Panagiotis; Krauss, William E; Clarke, Michelle J; Shepherd, Daniel L; Nassr, Ahmad; DeMartino, Randall R; Bydon, Mohamad

    2017-12-01

    Vascular injury is a rare complication of spinal instrumentation. Presentation can vary from immediate hemorrhage to pseudoaneurysm formation. In the literature, surgical approach to repair has varied based on anatomy, acuity of diagnosis, infection, and available technology. In this manuscript, we aim to describe our institutional experience with vascular injuries in thoraco-lumbar spine surgery. We report our institutional experience of three cases of vascular injury secondary to pedicle screw misplacement and their management, as well as a review of the literature. The first case had a history of previous instrumentation and presented with back pain and fever. The patient was taken for instrumentation exploration via a posterior approach. Aortic violation was discovered at T6 intraoperatively during instrumentation removal and the patient underwent emergent endovascular repair. The second case presented with chronic back pain after multiple prior posterior fusions and CT angiogram showing screw perforation on the aorta at T10. The patient underwent elective endovascular repair with synchronous removal of the instrumentation. The third case presented with radicular leg pain 6 months after L4-S1 posterior lumbar interbody fusion, with CT scan demonstrating the left S1 screw abutting the L5 nerve root and common iliac vein. The patient underwent elective instrumentation revision with intraoperative venography. Major vascular injury is a known complication of spinal surgery, especially if it involves instrumentation with pedicle screws. Treatment approach has evolved with the advancement of endovascular technology; however, open surgery remains an option when anatomy or infection is prohibitive. In the elective setting, preoperative planning with attention to surgical approach, positioning, and contingencies, should occur in a multidisciplinary fashion. Repair with an aortic stent-graft cuff may minimize unnecessary coverage of the descending thoracic aorta and

  17. Pedicle screw anchorage of carbon fiber-reinforced PEEK screws under cyclic loading.

    PubMed

    Lindtner, Richard A; Schmid, Rene; Nydegger, Thomas; Konschake, Marko; Schmoelz, Werner

    2018-03-01

    Pedicle screw loosening is a common and significant complication after posterior spinal instrumentation, particularly in osteoporosis. Radiolucent carbon fiber-reinforced polyetheretherketone (CF/PEEK) pedicle screws have been developed recently to overcome drawbacks of conventional metallic screws, such as metal-induced imaging artifacts and interference with postoperative radiotherapy. Beyond radiolucency, CF/PEEK may also be advantageous over standard titanium in terms of pedicle screw loosening due to its unique material properties. However, screw anchorage and loosening of CF/PEEK pedicle screws have not been evaluated yet. The aim of this biomechanical study therefore was to evaluate whether the use of this alternative nonmetallic pedicle screw material affects screw loosening. The hypotheses tested were that (1) nonmetallic CF/PEEK pedicle screws resist an equal or higher number of load cycles until loosening than standard titanium screws and that (2) PMMA cement augmentation further increases the number of load cycles until loosening of CF/PEEK screws. In the first part of the study, left and right pedicles of ten cadaveric lumbar vertebrae (BMD 70.8 mg/cm 3  ± 14.5) were randomly instrumented with either CF/PEEK or standard titanium pedicle screws. In the second part, left and right pedicles of ten vertebrae (BMD 56.3 mg/cm 3  ± 15.8) were randomly instrumented with either PMMA-augmented or nonaugmented CF/PEEK pedicle screws. Each pedicle screw was subjected to cyclic cranio-caudal loading (initial load ranging from - 50 N to + 50 N) with stepwise increasing compressive loads (5 N every 100 cycles) until loosening or a maximum of 10,000 cycles. Angular screw motion ("screw toggling") within the vertebra was measured with a 3D motion analysis system every 100 cycles and by stress fluoroscopy every 500 cycles. The nonmetallic CF/PEEK pedicle screws resisted a similar number of load cycles until loosening as the contralateral standard

  18. Using a guide template with a handpiece sleeve to locate the abutment screw position of a cement-retained implant restoration.

    PubMed

    Kang, Hye-Won; Lee, Du-Hyeong

    2015-09-01

    The existing techniques for drilling a screw access hole in cement-retained restorations are limited by inaccurate drill guidance and ineffective cooling of the drilling area. An approach for fabricating a guide template to provide screw retrievability using computer-aided design and computer-aided manufacturing (CAD/CAM) is described. A handpiece sleeve was made by 3-dimensional printing and incorporating it into a vacuum-formed template. The handpiece sleeve not only guides the head of the handpiece accurately but also enables the cooling water to reach the area of drilling directly. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. In vitro analysis of post-fatigue reverse-torque values at the dental abutment/implant interface for a unitarian abutment design.

    PubMed

    Cashman, Paul M; Schneider, Robert L; Schneider, Galen B; Stanford, Clark M; Clancy, James M; Qian, Fang

    2011-10-01

    This study analyzed baseline and post-fatigue reverse-torque values (RTVs) for a specific brand control abutment relative to a third party compatible abutment. The purpose of this study was to compare the abutments' fatigue resistance to simulated function, using RTVs as an indication of residual preload at the implant/abutment interface. Forty Straumann tissue-level implants were mounted in resin and divided into four groups (n = 10). Forty abutments were seated, 20 control and 20 third-party abutments, according to manufacturer guidelines. Ten abutments from each manufacturer were evaluated for RTV without fatigue loading, using a calibrated digital torque gauge to provide a baseline RTVs. Fatigue loading was carried out on the remaining ten specimens from each manufacturer according to ISO 14801 guidelines. A moving-magnet linear motor was used to load one specimen per sequence, alternating from 10 to 200 N at 15 Hz for 5×10(6) cycles. RTV was recorded post-fatigue loading. The results were subjected to two-sample t-testing and two-way ANOVA. Scanning electron microphotography was carried out on three specimens from both manufacturers at baseline and post-fatigue cycling to visualize thread geometry and the abutment/implant interface. The data indicated that mean post-fatigue RTV observed for the control group was significantly higher than the third-party group (RTV 42.65 ± 6.70 N vs. 36.25 ± 2.63 N, p= 0.0161). Visual differences at the macro/microscopic level were also apparent for thread geometry, with third-party abutments demonstrating considerably greater variation in geometrical architecture than control specimens. Within the limitations of this in vitro model, the effect of component manufacturer resulted in a significantly higher RTV in the control group (two-way ANOVA, p= 0.0032) indicating greater residual preload; however, there was no significant decrease in post-fatigue RTV for either manufacturer compared to baseline. © 2011 by The American

  20. Comparative study of torque resistance and microgaps between a combined Octatorx-cone connection and an internal hexagon implant-abutment connection.

    PubMed

    Khongkhunthian, Pathawee; Khongkhunthian, Sakornratana; Weerawatprachya, Winai; Pongpat, Kanuengnit; Aunmeungtong, Weerapan

    2015-05-01

    Although the implant-abutment connection may prevent crestal bone loss around dental implants, its failure often leads to treatment failure. Microgap and micromovement of the implant-abutment connection could be causes of bone resorption around dental implant neck. The purpose of this study was to compare torque resistance and microgaps between a new cone and index connection (Octatorx) and an internal hexagon implant-abutment connection (Internal hex). Twenty Octatorx and 20 internal hexagon connections were attached with retaining screws at 30 Ncm. In a torsion resistance test, 10 of each type of connection were attached to a universal testing machine. Torque resistance with 90 degrees per minute rotation speed was recorded. For microgap measurement, each of 10 connections was embedded in clear acrylic resin. The blocks were cut longitudinally. Twenty specimens of each connection were evaluated. Twelve measurements of microgaps (6 on each side of specimen) were recorded under scanning electron microscopy. The average torsion resistance of Octatorx (203.6 ±17.4 Ncm) was significantly greater than that of the internal hexagon (146.4 ±16.1 Ncm, P<.05). For the microgap, there was a significant difference (P=.001) between the median values of Octatorx (1.19 μm) and the internal hexagon (3.80 μm). In this study, the new connection, Octatorx, had a smaller microgap and greater torque resistance than the internal hexagon connection. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Scour around vertical wall abutment in cohesionless sediment bed

    NASA Astrophysics Data System (ADS)

    Pandey, M.; Sharma, P. K.; Ahmad, Z.

    2017-12-01

    At the time of floods, failure of bridges is the biggest disaster and mainly sub-structure (bridge abutments and piers) are responsible for this failure of bridges. It is very risky if these sub structures are not constructed after proper designing and analysis. Scour is a natural phenomenon in rivers or streams caused by the erosive action of the flowing water on the bed and banks. The abutment undermines due to river-bed erosion and scouring, which generally recognized as the main cause of abutment failure. Most of the previous studies conducted on scour around abutment have concerned with the prediction of the maximum scour depth (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005). Dey and Barbhuiya (2005) proposed a relationship for computing maximum scour depth near an abutment, based on laboratory experiments, for computing maximum scour depth around vertical wall abutment, which was confined to their experimental data only. However, this relationship needs to be also verified by the other researchers data in order to support the reliability to the relationship and its wider applicability. In this study, controlled experimentations have been carried out on the scour near a vertical wall abutment. The collected data in this study along with data of the previous investigators have been carried out on the scour near vertical wall abutment. The collected data in this study along with data of the previous have been used to check the validity of the existing equation (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005) of maximum scour depth around the vertical wall abutment. A new relationship is proposed to estimate the maximum scour depth around vertical wall abutment, it gives better results all relationships.

  2. Screw-locking wrench

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2007-01-01

    A tool comprises a first handle and a second handle, each handle extending from a gripping end portion to a working end portion, the first handle having first screw threads disposed circumferentially about an inner portion of a first through-hole at the working end portion thereof, the second handle having second screw threads disposed circumferentially about an inner portion of a second through-hole at the working end portion thereof, the first and second respective through-holes being disposed concentrically about a common axis of the working end portions. First and second screw locks preferably are disposed concentrically with the first and second respective through-holes, the first screw lock having a plurality of locking/unlocking screw threads for engaging the first screw threads of the first handle, the second screw lock having a plurality of locking/unlocking screw threads for engaging the second screw threads of the second handle. A locking clutch drive, disposed concentrically with the first and second respective through-holes, engages the first screw lock and the second screw lock. The first handle and the second handle are selectively operable at their gripping end portions by a user using a single hand to activate the first and second screw locks to lock the locking clutch drive for either clockwise rotation about the common axis, or counter-clockwise rotation about the common axis, or to release the locking clutch drive so that the handles can be rotated together about the common axis either the clockwise or counter-clockwise direction without rotation of the locking clutch drive.

  3. Upper bound of abutment scour in laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen

    2016-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a field investigation of abutment scour in South Carolina and used those data to develop envelope curves that define the upper bound of abutment scour. To expand on this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with abutment scour data from other sources and evaluate upper bound patterns with this larger data set. To facilitate this analysis, 446 laboratory and 331 field measurements of abutment scour were compiled into a digital database. This extensive database was used to evaluate the South Carolina abutment scour envelope curves and to develop additional envelope curves that reflected the upper bound of abutment scour depth for the laboratory and field data. The envelope curves provide simple but useful supplementary tools for assessing the potential maximum abutment scour depth in the field setting.

  4. Retrospective evaluation of complete-arch fixed partial dentures connecting teeth and implant abutments in patients with normal and reduced periodontal support.

    PubMed

    Cordaro, Luca; Ercoli, Carlo; Rossini, Carlo; Torsello, Ferruccio; Feng, Changyong

    2005-10-01

    The clinical outcome of complete-arch fixed prostheses supported by implants and natural tooth abutments in patients with normal or reduced periodontal support has been reported by few studies, with controversial results. The purpose of this study was to report on the implant success rate, prosthetic complications, and the occurrence of tooth intrusion, when complete-arch fixed prostheses, supported by a combination of implants and teeth, were fabricated for patients with normal and reduced periodontal support. Nineteen patients with residual teeth that served as abutments were consecutively treated with combined tooth- and implant-supported complete-arch fixed prostheses and were retrospectively evaluated after a period varying from 24 to 94 months. Nine patients showed reduced periodontal support as a result of periodontal disease and treatment (RPS group), and 10 patients had normal periodontal support of the abutment teeth (more than 2/3 of periodontal support [NPS group]). Ninety implants and 72 tooth abutments were used to support 19 fixed partial dentures. Screw- and cement-retained metal-ceramic and metal-resin prostheses were fabricated with rigid and nonrigid connectors. Implant survival and success rates, occurrence of caries and tooth intrusion, and prosthetic complications were recorded. The number of teeth, implants, prosthetic units, fixed partial dentures, and nonrigid connectors were compared with a t test to assess differences between the 2 groups, while data for the occurrence of intrusions and prosthetic complications were compared with the Fisher exact test (alpha=.05). One of the 90 implants was lost (99% survival rate) over 24 to 94 months, while 3 implants showed more than 2 mm of crestal bone loss (96% success rate) over the same period. No caries were detected, but 5.6% (4/72) of the abutment teeth exhibited intrusion. Intrusion of abutment teeth was noted in 3 patients who had normal periodontal support (13% of teeth in NPS group) of the

  5. Design of piles for integral abutment bridges.

    DOT National Transportation Integrated Search

    1984-08-01

    More and more, integral abutment bridges are being used in place : of the more traditional bridge designs with expansion releases. In : this study, states which use integral abutment bridges were surveyed : to determine their current practice in the ...

  6. Microleakage Evaluation at Implant-Abutment Interface Using Radiotracer Technique

    PubMed Central

    Siadat, Hakimeh; Arshad, Mahnaz; Mahgoli, Hossein-Ali; Fallahi, Babak

    2016-01-01

    Objectives: Microbial leakage through the implant-abutment (I-A) interface results in bacterial colonization in two-piece implants. The aim of this study was to compare microleakage rates in three types of Replace abutments namely Snappy, GoldAdapt, and customized ceramic using radiotracing. Materials and Methods: Three groups, one for each abutment type, of five implants and one positive and one negative control were considered (a total of 17 regular body implants). A torque of 35 N/cm was applied to the abutments. The samples were immersed in thallium 201 radioisotope solution for 24 hours to let the radiotracers leak through the I-A interface. Then, gamma photons received from the radiotracers were counted using a gamma counter device. In the next phase, cyclic fatigue loading process was applied followed by the same steps of immersion in the radioactive solution and photon counting. Results: Rate of microleakage significantly increased (P≤0.05) in all three types of abutments (i.e. Snappy, GoldAdapt, and ceramic) after cyclic loading. No statistically significant differences were observed between abutment types after cyclic loading. Conclusions: Microleakage significantly increases after cyclic loading in all three Replace abutments (GoldAdapt, Snappy, ceramic). Lowest microleakage before and after cyclic loading was observed in GoldAdapt followed by Snappy and ceramic. PMID:28392814

  7. A simple procedure for retrieval of a cement-retained implant-supported crown: a case report.

    PubMed

    Buzayan, Muaiyed Mahmoud; Mahmood, Wan Adida; Yunus, Norsiah Binti

    2014-02-01

    Retrieval of cement-retained implant prostheses can be more demanding than retrieval of screw-retained prostheses. This case report describes a simple and predictable procedure to locate the abutment screw access openings of cementretained implant-supported crowns in cases of fractured ceramic veneer. A conventional periapical radiography image was captured using a digital camera, transferred to a computer, and manipulated using Microsoft Word document software to estimate the location of the abutment screw access.

  8. Implant Fixture Heat Transfer During Abutment Preparation.

    PubMed

    Aleisa, Khalil; Alkeraidis, Abdullah; Al-Dwairi, Ziad Nawaf; Altahawi, Hamdi; Lynch, Edward

    2015-06-01

    The purpose of the study was to evaluate the effect of water flow rate on the heat transmission in implants during abutment preparation using a diamond bur in a high-speed dental turbine. Titanium-alloy abutments (n = 32) were connected to a titanium-alloy implant embedded in an acrylic resin within a water bath at a controlled temperature of 37°C. The specimens were equally distributed into 2 groups (16 each) according to the water flow rate used during the preparation phase. Group 1 had a water flow rate of 24 mL/min, and group 2 had a water flow rate of 40 mL/min. Each abutment was prepared in the axial plane for 1 minute and in the occlusal plane for 1 minute with a coarse tapered diamond bur using a high-speed dental handpiece. Thermocouples embedded at the cervix of the implant surface were used to record the temperature of heat transmission from the abutment preparation. Heat generation was measured at 3 distinct times (immediately and 30 seconds and 60 seconds after the end of preparation). Statistical analyses were carried out using 2-way analysis of variance and the Student t test. Water flow rates (24 mL vs 40 mL) and time interval had no statistically significant effect on the implant's temperature change during the abutment preparation stage (P = .431 and P = .064, respectively). Increasing the water flow rate from 24 to 40 mL/min had no influence on the temperature of the implant fixture recorded during preparation of the abutment.

  9. Comparison Study of Percutaneous Osseointegrated Bone Conduction Device Complications When Using the 9 mm Abutment Versus 6 mm Abutment at Initial Implantation.

    PubMed

    Wise, Sean R; LaRouere, Jacqueline S; Bojrab, Dennis I; LaRouere, Michael J

    2018-04-01

    To assess differences in the incidence, type, and management of complications encountered with implantation of percutaneous osseointegrated bone conduction devices when using a 9 mm abutment versus 6 mm abutment at initial implantation. Retrospective cohort study. One hundred thirty consecutive patients between January 2010 and December 2011 underwent single-stage percutaneous osseointegrated bone conduction device implantation using a 9 or 6 mm abutment. Clinical outcomes assessed for the two groups included the incidence, type, and management of postoperative complications. Abutment size, age, sex, indication for surgery, implant device type, duration of follow-up, and patient comorbidities were evaluated as potential factors affecting outcomes. Average duration of follow-up was 16 months (range 6-29 mo). Postoperative complications occurred in 38 (29.2%) patients. Twenty-four (18.4%) patients experienced minor complications requiring simple, local care; eight (6.1%) patients required in-office procedural intervention; and six (4.6%) patients required revision surgery in the operating room. Implant extrusion occurred in three (2.3%) patients. Eleven (8.5%) patients required placement of a longer abutment. Patients receiving the 6 mm abutment at initial surgery were significantly more likely to encounter a complication requiring in-office procedural intervention or revision surgery (p = 0.001). Minor complications after implantation of percutaneous osseointegrated bone conduction devices are common. The vast majority of these complications are due to localized skin reactions, most of which are readily addressed through local care. Patients receiving the 9 mm abutment during initial implantation are significantly less likely to require in-office procedural intervention or revision surgery postoperatively as compared with those receiving the shorter, 6 mm abutment.

  10. Detail, north abutment, from southeast, showing original squared cut stone ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, north abutment, from southeast, showing original squared cut stone masonry abutment and portion of non-original concrete apron at west base of abutment - Castle Garden Bridge, Township Route 343 over Bennetts Branch of Sinnemahoning Creek, Driftwood, Cameron County, PA

  11. Effect of varying fixture width on stress and strain distribution associated with an implant stack system.

    PubMed

    Mahon, J M; Norling, B K; Phoenix, R D

    2000-01-01

    The purpose of this investigation was to evaluate the dissipation of a force applied to an assembled stack of implant components. The stack consisted of a 10-mm threaded implant, a screw-retained abutment and a screw-retained gold crown. The dissipation of force was analyzed in relation to varying the implant diameter with and without a concomitant change in abutment diameter. Two experimental groups were evaluated. The first group consisted of 25 titanium screw-form implants (Implant Innovations, Inc.). These implants measured 10 mm in length and 3.25 mm, 3.75 mm, 4.0 mm, 5.0 mm, and 6.0 mm in diameter. The second group included 15 titanium screw-form implants (Nobel Biocare, Inc.) measuring 10 mm in length and 3.75 mm, 4.0 mm, and 5.0 mm in diameter. All implants were embedded in standardized photoelastic resin blocks. Points of interest were marked on each block using standardized templates to ensure consistency. Implants were restored using system-specific conical abutments and standardized single-unit restorations. A strain gauge was affixed to each abutment, and an eccentric load of 176 N was applied to the restoration. Periimplant stresses were measured using photoelastic analysis. Abutment strain was determined using an electronic strain indicator. Data were collated and compared using ANOVA and the Duncan multiple range statistical tests. When stress was analyzed at points on the resin-implant interface or a fixed distance from the interface, stress tended to decrease from the 5-mm-wide implant to the 6-mm-wide implant. Stress in relation to the 3.25-mm, 3.75-mm, and 4.0-mm implant was not as well defined, indicating the possibility that some deformation of implants was occurring. Increased abutment width resulted in decreased abutment strain. Therefore, using a wider abutment may be helpful in preventing preload reduction in clinical applications. This may reduce the incidence of loosening and fracture of abutment and restoration screws.

  12. 6. View of east side abutment and wing wall. The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of east side abutment and wing wall. The detail of this abutment and wing wall is the same for the similar abutment treatment at the west side. - Tipp-Elizabeth Road Bridge, Spanning Great Miami River, Tipp City, Miami County, OH

  13. Fracture resistance of zirconia-based implant abutments after artificial long-term aging.

    PubMed

    Alsahhaf, Abdulaziz; Spies, Benedikt Christopher; Vach, Kirstin; Kohal, Ralf-Joachim

    2017-02-01

    To investigate the survival rate, fracture strength, bending moments, loading to fracture and fracture modes of different designs of zirconia abutments after dynamic loading with thermocycling, and compare these values to titanium abutments. A total of 80 abutment samples were divided into 5 test groups of 16 samples in each group. The study included the following groups, "Group 1" CAD/CAM produced all-zirconia abutments, "Group 2" titanium abutments, "Group 3" zirconia-abutments adhesively luted to a titanium base, "Group 4" prefabricated all-zirconia abutments and "Group 5" zirconia-abutments glass soldered to a titanium base. Half the number of samples in each group was exposed to 1.2 million loading cycles (5-years simulation) in the chewing simulator. The samples that survived the artificial aging were later tested for fracture strength in a universal testing machine. The remaining 8 samples of the group were directly tested for fracture strength. All samples exposed to the 5-years artificial aging survived except of six samples in one group (Group 1). The surviving samples were later fracture tested in the universal testing machine. The bending moments (Ncm) values were as follow: Exposed groups: "Group 1" 94.5Ncm; "Group 2" 599.2Ncm; "Group 3" 477.5Ncm; "Group 4" 314.4Ncm; "Group 5" 509.4Ncm. Non-exposed groups: "Group 1" 269.3Ncm; "Group 2" 474.2Ncm; "Group 3" 377.6Ncm; "Group 4" 265.4Ncm; "Group 5" 372.4Ncm. Except in Group 1, the values were higher in the exposed groups, although, statistically there was no difference (p>0.05). The one-piece ZrO2-abutment group (Group 1 and Group 4) exhibited lower values, while the two-piece ZrO2-abutment groups (Group 3 and Group 5) showed similar values and fracture modes like the titanium abutment group. The titanium abutment group showed the highest values of bending moments among all groups. The implant-abutment connection area appeared to influence the bending moment value and the fracture mode of the tested

  14. Comparison of implant component fractures in external and internal type: A 12-year retrospective study.

    PubMed

    Yi, Yuseung; Koak, Jai-Young; Kim, Seong-Kyun; Lee, Shin-Jae; Heo, Seong-Joo

    2018-04-01

    The aim of this study was to compare the fracture of implant component behavior of external and internal type of implants to suggest directions for successful implant treatment. Data were collected from the clinical records of all patients who received WARANTEC implants at Seoul National University Dental Hospital from February 2002 to January 2014 for 12 years. Total number of implants was 1,289 and an average of 3.2 implants was installed per patient. Information about abutment connection type, implant locations, platform sizes was collected with presence of implant component fractures and their managements. SPSS statistics software (version 24.0, IBM) was used for the statistical analysis. Overall fracture was significantly more frequent in internal type. The most frequently fractured component was abutment in internal type implants, and screw fracture occurred most frequently in external type. Analyzing by fractured components, screw fracture was the most frequent in the maxillary anterior region and the most abutment fracture occurred in the maxillary posterior region and screw fractures occurred more frequently in NP (narrow platform) and abutment fractures occurred more frequently in RP (regular platform). In external type, screw fracture occurred most frequently, especially in the maxillary anterior region, and in internal type, abutment fracture occurred frequently in the posterior region. placement of an external type implant rather than an internal type is recommended for the posterior region where abutment fractures frequently occur.

  15. In vivo bioactivity of titanium and fluorinated apatite coatings for orthopaedic implants: a vibrational study

    NASA Astrophysics Data System (ADS)

    Taddei, Paola; Tinti, Anna; Reggiani, Matteo; Monti, Patrizia; Fagnano, Concezio

    2003-06-01

    The bone integration of implants is a complex process which depends on chemical composition and surface morphology. To accelerate osteointegration, metal implants are coated with porous metal or apatites which have been reported to increase mineralisation, improving prosthesis fixation. To study the influence of composition and morphology on the in vivo bioactivity, titanium screws coated by Plasma Flame Spraying (PFS) with titanium or fluorinated apatite (K690) were implanted in sheep tibia and femur for 10 weeks and studied by micro-Raman and IR spectroscopy. The same techniques, together with thermogravimetry, were used for characterising the pre-coating K690 powder. Contrary to the manufacturer report, the K690 pre-coating revealed to be composed of a partially fluorinated apatite containing impurities of Ca(OH) 2 and CaCO 3. By effect of PFS, the impurities were decomposed and the crystallinity degree of the coating was found to decrease. The vibrational spectra recorded on the implanted screws revealed the presence of newly formed bone; for the K690-coated screws at least, a high level of osteointegration was evidenced.

  16. Creep and shrinkage effects on integral abutment bridges

    NASA Astrophysics Data System (ADS)

    Munuswamy, Sivakumar

    Integral abutment bridges provide bridge engineers an economical design alternative to traditional bridges with expansion joints owing to the benefits, arising from elimination of expensive joints installation and reduced maintenance cost. The superstructure for integral abutment bridges is cast integrally with abutments. Time-dependent effects of creep, shrinkage of concrete, relaxation of prestressing steel, temperature gradient, restraints provided by abutment foundation and backfill and statical indeterminacy of the structure introduce time-dependent variations in the redundant forces. An analytical model and numerical procedure to predict instantaneous linear behavior and non-linear time dependent long-term behavior of continuous composite superstructure are developed in which the redundant forces in the integral abutment bridges are derived considering the time-dependent effects. The redistributions of moments due to time-dependent effects have been considered in the analysis. The analysis includes nonlinearity due to cracking of the concrete, as well as the time-dependent deformations. American Concrete Institute (ACI) and American Association of State Highway and Transportation Officials (AASHTO) models for creep and shrinkage are considered in modeling the time dependent material behavior. The variations in the material property of the cross-section corresponding to the constituent materials are incorporated and age-adjusted effective modulus method with relaxation procedure is followed to include the creep behavior of concrete. The partial restraint provided by the abutment-pile-soil system is modeled using discrete spring stiffness as translational and rotational degrees of freedom. Numerical simulation of the behavior is carried out on continuous composite integral abutment bridges and the deformations and stresses due to time-dependent effects due to typical sustained loads are computed. The results from the analytical model are compared with the

  17. Impact of abutment rotation and angulation on marginal fit: theoretical considerations.

    PubMed

    Semper, Wiebke; Kraft, Silvan; Mehrhof, Jurgen; Nelson, Katja

    2010-01-01

    Rotational freedom of various implant positional index designs has been previously calculated. To investigate its clinical relevance, a three-dimensional simulation was performed to demonstrate the influence of rotational displacements of the abutment on the marginal fit of prosthetic superstructures. Idealized abutments with different angulations (0, 5, 10, 15, and 20 degrees) were virtually constructed (SolidWorks Office Premium 2007). Then, rotational displacement was simulated with various degrees of rotational freedom (0.7, 0.95, 1.5, 1.65, and 1.85 degrees). The resulting horizontal displacement of the abutment from the original position was quantified in microns, followed by a simulated pressure-less positioning of superstructures with defined internal gaps (5 µm, 60 µm, and 100 µm). The resulting marginal gap between the abutment and the superstructure was measured vertically with the SolidWorks measurement tool. Rotation resulted in a displacement of the abutment of up to 157 µm at maximum rotation and angulation. Interference of a superstructure with a defined internal gap of 5 µm placed on the abutment resulted in marginal gaps up to 2.33 mm at maximum rotation and angulation; with a 60-µm internal gap, the marginal gaps reached a maximum of 802 µm. Simulation using a superstructure with an internal gap of 100 µm revealed a marginal gap of 162 µm at abutment angulation of 20 degrees and rotation of 1.85 degrees. The marginal gaps increased with the degree of abutment angulation and the extent of rotational freedom. Rotational displacement of the abutment influenced prosthesis misfit. The marginal gaps between the abutment and the superstructure increased with the rotational freedom of the index and the angulation of the abutment.

  18. A Comparison of Removal Rates of Headless Screws Versus Headed Screws in Calcaneal Osteotomy.

    PubMed

    Kunzler, Daniel; Shazadeh Safavi, Pejma; Jupiter, Daniel; Panchbhavi, Vinod K

    2017-11-01

    Calcaneal osteotomy has been used to successfully treat both valgus and varus hindfoot deformities. Pain associated with implanted hardware may lead to further surgical intervention for hardware removal. Headless screws have been used to reduce postoperative hardware-associated pain and accompanying hardware removal, but data proving their effectiveness in this regard is lacking. The purpose of this study is to compare the rates of removal of headed and headless screws utilized in calcaneal osteotomy. We conducted a retrospective chart review of 74 patients who underwent calcaneal osteotomy between January 2010 and December 2014. The cohort was divided into 2 groups by fixation method: a headed screw and a headless screw group. Bivariate associations between infection or hardware removal, and screw type, screw head width, gender, smoking status, alcohol, hypertension, diabetes, hyperlipidemia, age, and body mass index were assessed using t-tests and Fisher's exact/χ 2 tests for continuous and discrete variables, respectively. Headed screws were removed more frequently than headless screws (P < .0001): 15 of 30 (50%) feet that received headed screws and 4 of 44 (9%) of feet that received headless screws underwent subsequent revision for screw removal. In all cases, screws were removed because of pain. The calcaneal union rate was 100% in both cohorts. The rate of screw removal in calcaneal osteotomies is significantly lower in patients who receive headless screws than in those receiving headed screws. Level IV.

  19. Influence of Four Different Abutment Materials and the Adhesive Joint of Two-Piece Abutments on Cervical Implant Bone and Soft Tissue.

    PubMed

    Mehl, Christian; Gassling, Volker; Schultz-Langerhans, Stephan; Açil, Yahya; Bähr, Telse; Wiltfang, Jörg; Kern, Matthias

    The main aim of this study was to evaluate the influence of four different abutment materials and the adhesive joint of two-piece abutments on the cervical implant bone and soft tissue. Sixty-four titanium implants (Camlog Conelog; 4.3 ± 9 mm) were placed bone level into the edentulous arches of four minipigs. Four different types of abutments were placed at implant exposure: zirconium dioxide, lithium disilicate, and titanium bonded to a titanium luting base with resin cement; one-piece titanium abutments served as the control. The animals were sacrificed 6 months after implant exposure, and the bone-to-implant contact (BIC) area, sulcus depth, the length of the junctional epithelium and the connective tissue, the biologic width, and first cervical BIC-implant shoulder distance were measured using histomorphometry and light and fluorescence microscopy. Overall, 14 implants were lost (22%). At exposure, the implant shoulder-bone distance was 0.6 ± 0.7 mm. Six months later, the bone loss was 2.1 ± 1.2 mm measured histomorphometrically. There was a significant difference between the two measurements (P ≤ .0001). No significant influence could be found between any of the abutment materials with regard to bone loss or soft tissue anatomy (P > .05), with the exception of zirconium dioxide and onepiece titanium abutments when measuring the length of the junctional epithelium (P ≤ .01). The maxilla provided significantly more soft tissue and less bone loss compared with the mandible (P ≤ .02). All tested abutment materials and techniques seem to be comparable with regard to soft tissue properties and the cervical bone level.

  20. Esthetic and Clinical Performance of Implant-Supported All-Ceramic Crowns Made with Prefabricated or CAD/CAM Zirconia Abutments: A Randomized, Multicenter Clinical Trial.

    PubMed

    Wittneben, J G; Gavric, J; Belser, U C; Bornstein, M M; Joda, T; Chappuis, V; Sailer, I; Brägger, U

    2017-02-01

    Patients' esthetic expectations are increasing, and the options of the prosthetic pathways are currently evolving. The objective of this randomized multicenter clinical trial was to assess and compare the esthetic outcome and clinical performance of anterior maxillary all-ceramic implant crowns (ICs) based either on prefabricated zirconia abutments veneered with pressed ceramics or on CAD/CAM zirconia abutments veneered with hand buildup technique. The null hypothesis was that there is no statistically significant difference between the 2 groups. Forty implants were inserted in sites 14 to 24 (FDI) in 40 patients in 2 centers, the Universities of Bern and Geneva, Switzerland. After final impression, 20 patients were randomized into group A, restored with a 1-piece screw-retained single crown made of a prefabricated zirconia abutment with pressed ceramic as the veneering material using the cut-back technique, or group B using an individualized CAD/CAM zirconia abutment (CARES abutment; Institut Straumann AG) with a hand buildup technique. At baseline, 6 mo, and 1 y clinical, esthetic and radiographic parameters were assessed. Group A exhibited 1 dropout patient and 1 failure, resulting in a survival rate of 94.7% after 1 y, in comparison to 100% for group B. No other complications occurred. Clinical parameters presented stable and healthy peri-implant soft tissues. Overall, no or only minimal crestal bone changes were observed with a mean DIB (distance from the implant shoulder to the first bone-to-implant contact) of -0.15 mm (group A) and 0.12 mm (group B) at 1 y. There were no significant differences at baseline, 6 mo, and 1 y for DIB values between the 2 groups. Pink esthetic score (PES) and white esthetic score (WES) values at all 3 examinations indicated stability over time for both groups and pleasing esthetic outcomes. Both implant-supported prosthetic pathways represent a valuable treatment option for the restoration of single ICs in the anterior maxilla

  1. The Effect of Tissue Entrapment on Screw Loosening at the Implant/Abutment Interface of External- and Internal-Connection Implants: An In Vitro Study.

    PubMed

    Zeno, Helios A; Buitrago, Renan L; Sternberger, Sidney S; Patt, Marisa E; Tovar, Nick; Coelho, Paulo; Kurtz, Kenneth S; Tuminelli, Frank J

    2016-04-01

    To compare the removal of torque values of machined implant abutment connections (internal and external) with and without soft tissue entrapment using an in vitro model. Thirty external- and 30 internal-connection implants were embedded in urethane dimethacrylate. Porcine tissue was prepared and measured to thicknesses of 0.5 and 1.0 mm. Six groups (n = 10) were studied: External- and internal-connection implants with no tissue (control), 0.5, and 1.0 mm of tissue were entrapped at the implant/abutment interface. Abutments were inserted to 20 Ncm for all six groups. Insertion torque values were recorded using a digital torque gauge. All groups were then immersed in 1 M NaOH for 48 hours to dissolve tissue. Subsequent reverse torque measurements were recorded. Mean and standard deviation were determined for each group, and one-way ANOVA and Bonferroni test were used for statistical analysis. All 60 specimens achieved a 20-Ncm insertion torque, despite tissue entrapment. Reverse torque measurements for external connection displayed a statistically significant difference (p < 0.05) between all groups with mean reverse torque values for the control (13.71 ± 1.4 Ncm), 0.5 mm (7.83 ± 2.4 Ncm), and 1.0 mm tissue entrapment (2.29 ± 1.4 Ncm) groups. Some statistically significant differences (p < 0.05) were found between internal-connection groups. In all specimens, tissue did not completely dissolve after 48 hours. External-connection implants were significantly affected by tissue entrapment; the thicker the tissue, the lower the reverse torque values noted. Internal-connection implants were less affected by tissue entrapment. © 2015 by the American College of Prosthodontists.

  2. The effect of repeated torque tightening on total lengths of implant abutments in different internal implant‒abutment connections.

    PubMed

    Saleh Saber, Fariba; Abolfazli, Nader; Jannatii Ataei, Soheil; Taghizade Motlagh, Mahsa; Gharekhani, Vahede

    2017-01-01

    Background. Since the misfit of crown has an important role in clinical performance of implant-supported prostheses, and due to the impact of the settling effect on misfit, the aim of this study was to investigate the impact of torque forces on the total lengths of narrow and short implant abutments in different internal implant‒abutment connections. Methods. In four different implant‒abutment connections, 8 analog implants with a normal diameter (4 mm) and narrow abutment (4.5 mm) were selected from groups of internal hex, internal octagon, morse hex 6° and morse hex 11°. Each of them was mounted within plaster type IV, and 32 samples were obtained. Then, the amount of vertical displacement was measured by closing the impression copings and applying torques of 20 25 and 30 Ncm. This stage was repeated for the abutment. In the next stage, the resin pattern was built and measurements were performed after applying the torques mentioned. Finally, after making the frame, this stage was repeated, and the settling effect was statistically analyzed with ANOVA. Results. In the stages of impression coping, resin pattern and final prosthesis, HEXAGONE had significantly the highest and OCTAGONE had the lowest rates of settling, and the settling of morse hex 11° and 6° was between them. Conclusion. Octagon implant had significantly the lowest settling in various clinical and laboratory stages by applying different torques.

  3. The effect of repeated torque tightening on total lengths of implant abutments in different internal implant‒abutment connections

    PubMed Central

    Saleh Saber, Fariba; Abolfazli, Nader; Jannatii Ataei, Soheil; Taghizade Motlagh, Mahsa; Gharekhani, Vahede

    2017-01-01

    Background. Since the misfit of crown has an important role in clinical performance of implant-supported prostheses, and due to the impact of the settling effect on misfit, the aim of this study was to investigate the impact of torque forces on the total lengths of narrow and short implant abutments in different internal implant‒abutment connections. Methods. In four different implant‒abutment connections, 8 analog implants with a normal diameter (4 mm) and narrow abutment (4.5 mm) were selected from groups of internal hex, internal octagon, morse hex 6° and morse hex 11°. Each of them was mounted within plaster type IV, and 32 samples were obtained. Then, the amount of vertical displacement was measured by closing the impression copings and applying torques of 20 25 and 30 Ncm. This stage was repeated for the abutment. In the next stage, the resin pattern was built and measurements were performed after applying the torques mentioned. Finally, after making the frame, this stage was repeated, and the settling effect was statistically analyzed with ANOVA. Results. In the stages of impression coping, resin pattern and final prosthesis, HEXAGONE had significantly the highest and OCTAGONE had the lowest rates of settling, and the settling of morse hex 11° and 6° was between them. Conclusion. Octagon implant had significantly the lowest settling in various clinical and laboratory stages by applying different torques. PMID:28748052

  4. Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system.

    PubMed

    Kaneyama, Shuichi; Sugawara, Taku; Sumi, Masatoshi

    2015-03-15

    Clinical trial for midcervical pedicle screw insertion using a novel patient-specific intraoperative screw guiding device. To evaluate the availability of the "Screw Guide Template" (SGT) system for insertion of midcervical pedicle screws. Despite many efforts for accurate midcervical pedicle screw insertion, there still remain unacceptable rate of screw malpositioning that might cause neurovascular injuries. We developed patient-specific SGT system for safe and accurate intraoperative screw navigation tool and have reported its availability for the screw insertion to C2 vertebra and thoracic spine. Preoperatively, the bone image on computed tomography was analyzed and the trajectories of the screws were designed in 3-dimensional format. Three types of templates were created for each lamina: location template, drill guide template, and screw guide template. During the operations, after engaging the templates directly with the laminae, drilling, tapping, and screwing were performed with each template. We placed 80 midcervical pedicle screws for 20 patients. The accuracy and safety of the screw insertion by SGT system were evaluated using postoperative computed tomographic scan by calculation of screw deviation from the preplanned trajectory and evaluation of screw breach of pedicle wall. All templates fitted the laminae and screw navigation procedures proceeded uneventfully. All screws were inserted accurately with the mean screw deviation from planned trajectory of 0.29 ± 0.31 mm and no neurovascular complication was experienced. We demonstrated that our SGT system could support the precise screw insertion in midcervical pedicle. SGT prescribes the safe screw trajectory in a 3-dimensional manner and the templates fit and lock directly to the target laminae, which prevents screwing error along with the change of spinal alignment during the surgery. These advantages of the SGT system guarantee the high accuracy in screw insertion, which allowed surgeons to insert

  5. Do Sealing Materials Influence Superstructure Attachment in Implants?

    PubMed

    Biscoping, Stephanie; Ruttmann, Esther; Rehmann, Peter; Wöstmann, Bernd

    This study aimed to evaluate the possible effect of sealing materials on superstructure attachment (ie, tightening/loosening torque and implant-abutment gap) in two different implant systems. A silicone, a chlorhexidine gel, and an industrial lubricant were tested. A 3D microscope was used for assessment of the implant-abutment gap, and the abutment screw was tightened and loosened with a digital torque screwdriver. A total of 20 implants per test group (10 BEGO Semados RI and 10 Nobel Biocare Replace Select Straight) were evaluated. The tested sealing materials did not influence the gap between implant and abutment, but the force necessary for loosening the abutment screws decreased significantly. Sealing materials may be useful against bacteria, but probably influence torque negatively.

  6. Mechanical resistance of zirconium implant abutments: A review of the literature

    PubMed Central

    Vaquero-Aguilar, Cristina; Torres-Lagares, Daniel; Jiménez-Melendo, Manuel; Gutiérrez-Pérez, José L.

    2012-01-01

    The increase of aesthetic demands, together with the successful outcome of current implants, has renewed interest in the search for new materials with enough mechanical properties and better aesthetic qualities than the materials customarily used in implanto-prosthetic rehabilitation. Among these materials, zirconium has been used in different types of implants, including prosthetic abutments. The aim of the present review is to analyse current scientific evidence supporting the use of this material for the above mentioned purposes. We carried out the review of the literature published in the last ten years (2000 through 2010) of in vitro trials of dynamic and static loading of zirconium abutments found in the databases of Medline and Cochrane using the key words zirconium abutment, fracture resistance, fracture strength, cyclic loading. Although we have found a wide variability of values among the different studies, abutments show favourable clinical behaviour for the rehabilitation of single implants in the anterior area. Such variability may be explained by the difficulty to simulate daily mastication under in vitro conditions. The clinical evidence, as found in our study, does not recommend the use of implanto-prosthetic zirconium abutments in the molar area. Key words: Zirconium abutment, zirconium implant abutment, zirconia abutment, fracture resistance, fracture strength, cyclic loading. PMID:22143702

  7. The effect of different screw-tightening techniques on the strain generated on an internal-connection implant superstructure. Part 2: Models created with a splinted impression technique.

    PubMed

    Choi, Jung-Han

    2011-01-01

    This study aimed to evaluate the effect of different screw-tightening sequences, torques, and methods on the strains generated on an internal-connection implant (Astra Tech) superstructure with good fit. An edentulous mandibular master model and a metal framework directly connected to four parallel implants with a passive fit to each other were fabricated. Six stone casts were made from a dental stone master model by a splinted impression technique to represent a well-fitting situation with the metal framework. Strains generated by four screw-tightening sequences (1-2-3-4, 4-3-2-1, 2-4-3-1, and 2-3-1-4), two torques (10 and 20 Ncm), and two methods (one-step and two-step) were evaluated. In the two-step method, screws were tightened to the initial torque (10 Ncm) in a predetermined screw-tightening sequence and then to the final torque (20 Ncm) in the same sequence. Strains were recorded twice by three strain gauges attached to the framework (superior face midway between abutments). Deformation data were analyzed using multiple analysis of variance at a .05 level of statistical significance. In all stone casts, strains were produced by connection of the superstructure, regardless of screw-tightening sequence, torque, and method. No statistically significant differences in superstructure strains were found based on screw-tightening sequences (range, -409.8 to -413.8 μm/m), torques (-409.7 and -399.1 μm/m), or methods (-399.1 and -410.3 μm/m). Within the limitations of this in vitro study, screw-tightening sequence, torque, and method were not critical factors for the strain generated on a well-fitting internal-connection implant superstructure by the splinted impression technique. Further studies are needed to evaluate the effect of screw-tightening techniques on the preload stress in various different clinical situations.

  8. 4. South Elevation Columbia Island Abutment Four; South Elevation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. South Elevation - Columbia Island Abutment Four; South Elevation - Washington Abutment One - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  9. Improved Screw-Thread Lock

    NASA Technical Reports Server (NTRS)

    Macmartin, Malcolm

    1995-01-01

    Improved screw-thread lock engaged after screw tightened in nut or other mating threaded part. Device does not release contaminating material during tightening of screw. Includes pellet of soft material encased in screw and retained by pin. Hammer blow on pin extrudes pellet into slot, engaging threads in threaded hole or in nut.

  10. The dynamic natures of implant loading.

    PubMed

    Wang, Rui-Feng; Kang, Byungsik; Lang, Lisa A; Razzoog, Michael E

    2009-06-01

    A fundamental problem in fully understanding the dynamic nature of implant loading is the confusion that exists regarding the torque load delivered to the implant complex, the initial force transformation/stress/strain developed within the system during the implant complex assembly, and how the clamping forces at the interfaces and the preload stress impact the implant prior to any external loading. The purpose of this study was to create an accurately dimensioned finite element model with spiral threads and threaded bores included in the implant complex, positioned in a bone model, and to determine the magnitude and distribution of the force transformation/stress/strain patterns developed in the modeled implant system and bone and, thus, provide the foundational data for the study of the dynamic loading of dental implants prior to any external loading. An implant (Brånemark Mark III), abutment (CeraOne), abutment screw (Unigrip), and the bone surrounding the implant were modeled using HyperMesh software. The threaded interfaces between screw/implant and implant/bone were designed as a spiral thread helix assigned with specific coefficient of friction values. Assembly simulation using ABAQUS and LS-DYNA was accomplished by applying a 32-Ncm horizontal torque load on the abutment screw (Step 1), then decreasing the torque load to 0 Ncm to simulate the wrench removal (Step 2). The postscript data were collected and reviewed by HyperMesh. A regression analysis was used to depict the relationships between the torque load and the mechanical parameters. During the 32-Ncm tightening sequence, the abutment screw elongated 13.3 mum. The tightening torque generated a 554-N clamping force at the abutment/implant interface and a 522-N preload. The von Mises stress values were 248 MPa in the abutment at the abutment-implant interface, 765 MPa at the top of the screw shaft, 694 MPa at the bottom of the screw shaft, 1365 MPa in the top screw thread, and 21 MPa in the bone at the

  11. Comparison of fracture strength and failure mode of different ceramic implant abutments.

    PubMed

    Elsayed, Adham; Wille, Sebastian; Al-Akhali, Majed; Kern, Matthias

    2017-04-01

    The whitish color of zirconia (ZrO 2 ) abutments offers favorable esthetics compared with the grayish color of titanium (Ti) abutments. Nonetheless, ZrO 2 has greater opacity, making it difficult to achieve natural tooth color. Therefore, lithium disilicate (LaT) abutments have been suggested to replace metal abutments. The purpose of this in vitro study was to evaluate the fracture strength and failure mode of single-tooth implant restorations using ZrO 2 and LaT abutments, and to compare them with titanium (Ti) abutments. Five different types of abutments, Ti; ZrO 2 with no metal base; ZrO 2 with a metal base (ZrT); LaT; and LaT combination abutment and crown (LcT) were assembled on 40 Ti implants and restored with LaT crowns. Specimens were subjected to quasistatic loading using a universal testing machine, until the implant-abutment connection failed. As bending of the metal would be considered a clinical failure, the values of force (N) at which the plastic deformation of the metal occurred were calculated, and the rate of deformation was analyzed. Statistical analysis was done using the Mann-Whitney U test (α=.05). Group ZrO 2 revealed the lowest resistance to failure with a mean of 202 ±33 N. Groups ZrT, LaT, and LaC withstood higher forces without fracture or debonding of the ceramic suprastructure, and failure was due to deformation of metal bases, with no statistically significant differences between these groups regarding the bending behavior. Within the limitations of this in vitro study, it was concluded that LaT abutments have the potential to withstand the physiological occlusal forces that occur in the anterior region and that ZrO 2 abutments combined with Ti inserts have much higher fracture strength than pure ZrO 2 abutments. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Prosthetic management of malpositioned implant using custom cast abutment

    PubMed Central

    Chatterjee, Aishwarya; Ragher, Mallikarjuna; Patil, Sanket; Chatterjee, Debopriya; Dandekeri, Savita; Prabhu, Vishnu

    2015-01-01

    Two cases are reported with malpositioned implants. Both the implants were placed 6–7 months back. They had osseointegrated well with the surrounding bone. However, they presented severe facial inclination. Case I was restored with custom cast abutment with an auto polymerizing acrylic gingival veneer. Case II was restored with custom cast UCLA type plastic implant abutment. Ceramic was directly fired on the custom cast abutments. The dual treatment strategy resulted in functional and esthetic restorations despite facial malposition of the implants. PMID:26538957

  13. Bacterial adhesion affinities of various implant abutment materials.

    PubMed

    Yamane, Koichi; Ayukawa, Yasunori; Takeshita, Toru; Furuhashi, Akihiro; Yamashita, Yoshihisa; Koyano, Kiyoshi

    2013-12-01

    To investigate bacterial adhesion to various abutment materials. Thirty volunteers participated in this study. Resin splints were fabricated, and five types of disks were fabricated from pure titanium, gold-platinum alloy, zirconia, alumina, and hydroxyapatite with uniform surface roughness and attached to the buccal surface of each splint. After 4 days of use by the subjects, the plaque accumulated on the disk surfaces was analyzed. The bacterial community structure was evaluated using 16S rRNA gene profiling with terminal restriction fragment length polymorphism analysis. The total bacterial count on each disk was estimated using quantitative polymerase chain reaction. Terminal restriction fragment length polymorphism profiles were more similar between tested materials than between subjects, suggesting that the bacterial community structures on the abutment material were influenced more by the individuals than by the type of material. However, the total number of bacteria attached to a disk was significantly different among five materials (P < 0.001, Brunner-Langer test for longitudinal data). Fewer bacteria were attached to the gold-platinum alloy than to the other materials. Gold-platinum alloy appears to be useful material for abutments when considering the accumulation of plaque. However, alternative properties of the abutment material, such as effects on soft tissue healing, should also be taken into consideration when choosing an abutment material. © 2012 John Wiley & Sons A/S.

  14. Application of reverse engineering in the production of individual dental abutments.

    NASA Astrophysics Data System (ADS)

    Yunusov, A. V.; Kashapov, R. N.; Kashapov, L. N.; Statsenko, E. O.

    2017-09-01

    The purpose of the research is to develop a method of manufacturing individual dental abutments for a variety of dental implants. System of industrial X-ray microtomography Phoenix V|tome|X S 240 has been applied for creation of highly accurate model of the dental abutment. Scanning of dental abutment and the optimization of model was produced. The program of milling the individual abutment with a standard conical neck of hexagon was produced for the five-axis milling machine imes - icore 450i from the materials titanium and zirconium oxide.

  15. Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection.

    PubMed

    Helgeson, Melvin D; Kang, Daniel G; Lehman, Ronald A; Dmitriev, Anton E; Luhmann, Scott J

    2013-08-01

    There is currently no reliable technique for intraoperative assessment of pedicle screw fixation strength and optimal screw size. Several studies have evaluated pedicle screw insertional torque (IT) and its direct correlation with pullout strength. However, there is limited clinical application with pedicle screw IT as it must be measured during screw placement and rarely causes the spine surgeon to change screw size. To date, no study has evaluated tapping IT, which precedes screw insertion, and its ability to predict pedicle screw pullout strength. The objective of this study was to investigate tapping IT and its ability to predict pedicle screw pullout strength and optimal screw size. In vitro human cadaveric biomechanical analysis. Twenty fresh-frozen human cadaveric thoracic vertebral levels were prepared and dual-energy radiographic absorptiometry scanned for bone mineral density (BMD). All specimens were osteoporotic with a mean BMD of 0.60 ± 0.07 g/cm(2). Five specimens (n=10) were used to perform a pilot study, as there were no previously established values for optimal tapping IT. Each pedicle during the pilot study was measured using a digital caliper as well as computed tomography measurements, and the optimal screw size was determined to be equal to or the first size smaller than the pedicle diameter. The optimal tap size was then selected as the tap diameter 1 mm smaller than the optimal screw size. During optimal tap size insertion, all peak tapping IT values were found to be between 2 in-lbs and 3 in-lbs. Therefore, the threshold tapping IT value for optimal pedicle screw and tap size was determined to be 2.5 in-lbs, and a comparison tapping IT value of 1.5 in-lbs was selected. Next, 15 test specimens (n=30) were measured with digital calipers, probed, tapped, and instrumented using a paired comparison between the two threshold tapping IT values (Group 1: 1.5 in-lbs; Group 2: 2.5 in-lbs), randomly assigned to the left or right pedicle on each

  16. Minimally Invasive Sacroiliac Joint Fusion Using a Novel Hydroxyapatite-Coated Screw: Preliminary 1-Year Clinical and Radiographic Results of a 2-Year Prospective Study.

    PubMed

    Rappoport, Louis H; Luna, Ingrid Y; Joshua, Gita

    2017-05-01

    Proper diagnosis and treatment of sacroiliac joint (SIJ) pain remains a clinical challenge. Dysfunction of the SIJ can produce pain in the lower back, buttocks, and extremities. Triangular titanium implants for minimally invasive surgical arthrodesis have been available for several years, with reputed high levels of success and patient satisfaction. This study reports on a novel hydroxyapatite-coated screw for surgical treatment of SIJ pain. Data were prospectively collected on 32 consecutive patients who underwent minimally invasive SIJ fusion with a novel hydroxyapatite-coated screw. Clinical assessments and radiographs were collected and evaluated at 3, 6, and 12 months postoperatively. Mean (standard deviation) patient age was 55.2 ± 10.7 years, and 62.5% were female. More patients (53.1%) underwent left versus right SIJ treatment, mean operative time was 42.6 ± 20.4 minutes, and estimated blood loss did not exceed 50 mL. Overnight hospital stay was required for 84% of patients, and the remaining patients needed a 2-day stay (16%). Mean preoperative visual analog scale back and leg pain scores decreased significantly by 12 months postoperatively (P < 0.01). Mechanical stability was achieved in 93.3% (28/30) of patients, and all patients who were employed preoperatively returned to work within 3 months. Two patients who required revision surgery reported symptom improvement within 3 weeks and did not require subsequent surgery. Positive clinical outcomes are reported 1 year postoperatively after implantation of a novel implant to treat sacroiliac joint pain. Future clinical studies with larger samples are warranted to assess long-term patient outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effect of screw position on load transfer in lumbar pedicle screws: A non-idealized finite element analysis

    PubMed Central

    Newcomb, Anna G. U. S.; Baek, Seungwon; Kelly, Brian P.; Crawford, Neil R.

    2016-01-01

    Angled screw insertion has been advocated to enhance fixation strength during posterior spine fixation. Stresses on a pedicle screw and surrounding vertebral bone with different screw angles were studied by finite element analysis during simulated multidirectional loading. Correlations between screw-specific vertebral geometric parameters and stresses were studied. Angulations in both the sagittal and axial planes affected stresses on the cortical and cancellous bones and the screw. Pedicle screws pointing laterally (vs. straight or medially) in the axial plane during superior screw angulation may be advantageous in terms of reducing the risk of both screw loosening and screw breakage. PMID:27454197

  18. Intramedullary nails with two lag screws.

    PubMed

    Brown, C J; Wang, C J; Yettram, A L; Procter, P

    2004-06-01

    To investigate the structural integrity of intramedullary nails with two lag screws, and to give guidance to orthopaedic surgeons in the choice of appropriate devices. Alternative designs of the construct are considered, and the use of a slotted upper lag screw insertion hole is analysed. Intramedullary fixation devices with a single lag screw have been known to fail at the lag screw insertion hole. Using two lag screws is considered. It has also been proposed to use a slot in the nail for the upper lag screw to prevent the upper lag screw from sticking. Bending and torsion load cases are analysed using finite element method. Consideration of both load conditions is essential. The results present the overall stiffness of the assembly, the load sharing between lag screws, and the possibility for cut-out to occur. While the slot for the upper lag screw might be advantageous with regard to the stresses in the lag screws, it could be detrimental for cut-out occurring adjacent to the lag screws. Comparative analyses demonstrate that two lag screws may be advantageous in patients whose cancellous bone quality is good and who impose large loads on the lag screw/nail interface. However, the use of two screws might pre-dispose to failure by cut-out of the lag screws. The addition of a slotted hole for the upper lag screw appears to do nothing significant to reduce the risk of such a failure. Copyright 2004 Elsevier Ltd.

  19. Comparison of observed and predicted abutment scour at selected bridges in Maine.

    DOT National Transportation Integrated Search

    2008-01-01

    Maximum abutment-scour depths predicted with five different methods were compared to : maximum abutment-scour depths observed at 100 abutments at 50 bridge sites in Maine with a : median bridge age of 66 years. Prediction methods included the Froehli...

  20. Research and application of absorbable screw in orthopedics: a clinical review comparing PDLLA screw with metal screw in patients with simple medial malleolus fracture.

    PubMed

    Tang, Jin; Hu, Jin-feng; Guo, Wei-chun; Yu, Ling; Zhao, Sheng-hao

    2013-01-01

    To observe the therapeutic effect of absorbable screw in medial malleolus fracture and discuss its clinical application in orthopedics. A total of 129 patients with simple medial malleolus fracture were studied. Among them, 64 patients were treated with poly-D, L-lactic acid (PDLLA) absorbable screws, while the others were treated with metal screws. All the patients were followed up for 12-20 months (averaged 18.4 months) and the therapeutic effect was evaluated according to the American Orthopaedic Foot and Ankle Society clinical rating systems. In absorbable screw group, we obtained excellent and good results in 62 cases (96.88%); in steel screw group, 61 cases (93.85%) achieved excellent and good results. There was no significant difference between the two groups. In the treatment of malleolus fracture, absorbable screw can achieve the same result compared with metal screw fixation. Absorbable screw is preferred due to its advantages of safety, cleanliness and avoiding the removal procedure associated with metallic implants.

  1. Bacterial plaque colonization around dental implant surfaces.

    PubMed

    Covani, Ugo; Marconcini, Simone; Crespi, Roberto; Barone, Antonio

    2006-09-01

    To examine the distribution of bacteria into the internal and external surfaces of failed implants using histologic analysis. There were 10 failed pure titanium and 5 failed hydroxyapatite-coated titanium implants consecutively removed various years after their placement. Criteria for fixture removal were peri-implant radiolucency and clinical mobility. The mobile fixtures were retrieved with the patients under local anesthesia. Fixtures were removed maintaining the abutments with the aim to observe the bacterial infiltration at the level of abutment/implant interface and on the implant surface. A thin radiolucent space was always present around all the failed implants. The abutments screws were tightly secured in all clinical cases. The bacterial cells were composed of cocci and filaments, which were adherent to the implant surface with an orientation perpendicular to the long axis of the implant. All the specimens included in this study showed bacteria at the level of implant/abutment interface. Histologic analysis at the level of abutment/implant interface in 2-stage implants identified heavy bacterial colonization. These findings appear to support those studies showing bacteria penetration at the level of the micro-gap, which can legitimate the hypothesis that the micro-gap at the bone level could present a risk for bone loss caused by bacterial colonization.

  2. Improving the API dissolution rate during pharmaceutical hot-melt extrusion I: Effect of the API particle size, and the co-rotating, twin-screw extruder screw configuration on the API dissolution rate.

    PubMed

    Li, Meng; Gogos, Costas G; Ioannidis, Nicolas

    2015-01-15

    The dissolution rate of the active pharmaceutical ingredients in pharmaceutical hot-melt extrusion is the most critical elementary step during the extrusion of amorphous solid solutions - total dissolution has to be achieved within the short residence time in the extruder. Dissolution and dissolution rates are affected by process, material and equipment variables. In this work, we examine the effect of one of the material variables and one of the equipment variables, namely, the API particle size and extruder screw configuration on the API dissolution rate, in a co-rotating, twin-screw extruder. By rapidly removing the extruder screws from the barrel after achieving a steady state, we collected samples along the length of the extruder screws that were characterized by polarized optical microscopy (POM) and differential scanning calorimetry (DSC) to determine the amount of undissolved API. Analyses of samples indicate that reduction of particle size of the API and appropriate selection of screw design can markedly improve the dissolution rate of the API during extrusion. In addition, angle of repose measurements and light microscopy images show that the reduction of particle size of the API can improve the flowability of the physical mixture feed and the adhesiveness between its components, respectively, through dry coating of the polymer particles by the API particles. Copyright © 2014. Published by Elsevier B.V.

  3. Ultrasound melted polymer sleeve for improved screw anchorage in trabecular bone--A novel screw augmentation technique.

    PubMed

    Schmoelz, W; Mayr, R; Schlottig, F; Ivanovic, N; Hörmann, R; Goldhahn, J

    2016-03-01

    Screw anchorage in osteoporotic bone is still limited and makes treatment of osteoporotic fractures challenging for surgeons. Conventional screws fail in poor bone quality due to loosening at the screw-bone interface. A new technology should help to improve this interface. In a novel constant amelioration process technique, a polymer sleeve is melted by ultrasound in the predrilled screw hole prior to screw insertion. The purpose of this study was to investigate in vitro the effect of the constant amelioration process platform technology on primary screw anchorage. Fresh frozen femoral heads (n=6) and vertebrae (n=6) were used to measure the maximum screw insertion torque of reference and constant amelioration process augmented screws. Specimens were cut in cranio-caudal direction, and the screws (reference and constant amelioration process) were implanted in predrilled holes in the trabecular structure on both sides of the cross section. This allowed the pairwise comparison of insertion torque for constant amelioration process and reference screws (femoral heads n=18, vertebrae n=12). Prior to screw insertion, a micro-CT scan was made to ensure comparable bone quality at the screw placement location. The mean insertion torque for the constant amelioration process augmented screws in both, the femoral heads (44.2 Ncm, SD 14.7) and the vertebral bodies (13.5 Ncm, SD 6.3) was significantly higher than for the reference screws of the femoral heads (31.7 Ncm, SD 9.6, p<0.001) and the vertebral bodies (7.1 Ncm, SD 4.5, p<0.001). The interconnection of the melted polymer sleeve with the surrounding trabecular bone in the constant amelioration process technique resulted in a higher screw insertion torque and can improve screw anchorage in osteoporotic trabecular bone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Influence of reverse torque values in abutments with or without internal hexagon indexes.

    PubMed

    Cerutti-Kopplin, Daiane; Rodrigues Neto, Dimas João; Lins do Valle, Accácio; Pereira, Jefferson Ricardo

    2014-10-01

    The mechanical stability of the implant-abutment connection is of fundamental importance for successful implant-supported restorations. Therefore, understanding removal torque values is essential. The purpose of this study was to evaluate the reverse torque values of indexed and nonindexed abutments of the Morse Taper system. Twelve Morse taper implants with their respective abutments were divided into 2 groups (n=6): group NI, nonindexed abutments; and group IN, indexed abutments. Each abutment received a sequence of 2 consecutive torques for insertion (15 Ncm) at an interval of 10 minutes, and 1 reverse torque, all measured with a digital torque wrench. The Student t test with a 5% significance level was used to evaluate the data. Statistical analysis showed no significant difference in reverse torque values between nonindexed and indexed abutments (P=.57). When comparing insertion torque and reverse torque values between the groups, group NI presented a mean torque loosening percentage of 8% (P=.013), whereas group IN presented a loosening of 15.33% (P<.001). The use of indexed abutments for the Morse taper system presented similar biomechanical stability when compared with nonindexed abutments, both with a significant reduction in reverse torque values. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Performance of conical abutment (Morse Taper) connection implants: a systematic review.

    PubMed

    Schmitt, Christian M; Nogueira-Filho, Getulio; Tenenbaum, Howard C; Lai, Jim Yuan; Brito, Carlos; Döring, Hendrik; Nonhoff, Jörg

    2014-02-01

    In this systematic review, we aimed to compare conical versus nonconical implant-abutment connection systems in terms of their in vitro and in vivo performances. An electronic search was performed using PubMed, Embase, and Medline databases with the logical operators: "dental implant" AND "dental abutment" AND ("conical" OR "taper" OR "cone"). Names of the most common conical implant-abutment connection systems were used as additional key words to detect further data. The search was limited to articles published up to November 2012. Recent publications were also searched manually in order to find any relevant studies that might have been missed using the search criteria noted above. Fifty-two studies met the inclusion criteria and were included in this systematic review. As the data and methods, as well as types of implants used was so heterogeneous, this mitigated against the performance of meta-analysis. In vitro studies indicated that conical and nonconical abutments showed sufficient resistance to maximal bending forces and fatigue loading. However, conical abutments showed superiority in terms of seal performance, microgap formation, torque maintenance, and abutment stability. In vivo studies (human and animal) indicated that conical and nonconical systems are comparable in terms of implant success and survival rates with less marginal bone loss around conical connection implants in most cases. This review indicates that implant systems using a conical implant-abutment connection, provides better results in terms of abutment fit, stability, and seal performance. These design features could lead to improvements over time versus nonconical connection systems. © 2013 Wiley Periodicals, Inc.

  6. Fatigue induced changes in conical implant-abutment connections.

    PubMed

    Blum, Kai; Wiest, Wolfram; Fella, Christian; Balles, Andreas; Dittmann, Jonas; Rack, Alexander; Maier, Dominik; Thomann, Ralf; Spies, Benedikt Christopher; Kohal, Ralf Joachim; Zabler, Simon; Nelson, Katja

    2015-11-01

    Based on the current lack of data and understanding of the wear behavior of dental two-piece implants, this study aims for evaluating the microgap formation and wear pattern of different implants in the course of cyclic loading. Several implant systems with different conical implant-abutment interfaces were purchased. The implants were first evaluated using synchrotron X-ray high-resolution radiography (SRX) and scanning electron microscopy (SEM). The implant-abutment assemblies were then subjected to cyclic loading at 98N and their microgap was evaluated after 100,000, 200,000 and 1 million cycles using SRX, synchrotron micro-tomography (μCT). Wear mechanisms of the implant-abutment connection (IAC) after 200,000 cycles and 1 million cycles were further characterized using SEM. All implants exhibit a microgap between the implant and abutment prior to loading. The gap size increased with cyclic loading with its changes being significantly higher within the first 200,000 cycles. Wear was seen in all implants regardless of their interface design. The wear pattern comprised adhesive wear and fretting. Wear behavior changed when a different mounting medium was used (brass vs. polymer). A micromotion of the abutment during cyclic loading can induce wear and wear particles in conical dental implant systems. This feature accompanied with the formation of a microgap at the IAC is highly relevant for the longevity of the implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Screw-Retaining Allen Wrench

    NASA Technical Reports Server (NTRS)

    Granett, D.

    1985-01-01

    Steadying screws with fingers unnecessary. Crimp in uncompressed spring wire slightly protrudes from one facet of Allen wrench. Compressed spring retains Allen screw. Tool used with Allen-head screws in cramped spaces with little or no room for fingers to hold fastener while turned by wrench.

  8. Effect of technique and impression material on the vertical misfit of a screw-retained, three-unit implant bridge: An in vitro study

    PubMed Central

    Haghi, Hamidreza Rajati; Shiehzadeh, Masoud; Nakhaei, Mohammadreza; Ahrary, Fatemeh; Sabzevari, Saeid

    2017-01-01

    Introduction: A dental impression is a negative imprint of an oral structure that can be used to produce a positive cast of a patient's teeth as a permanent record. The accuracy of the impression affects the accuracy of the cast, and a precise impression is needed in order to create prosthesis with optimal fitting. Minimization of misfit is an important aim in prosthesis science and dental implants. The aim of this study was to evaluate the effects of the materials and techniques used to take an impression on the vertical misfit of implant-supported, screw-retained, three-unit bridges. Materials and Methods: The principal model used was an acrylic block with two ITI implants. A 1.5-mm abutment was attached to fixtures with torque of 25 N.cm. A base-metal framework was built on the abutment in the acrylic block. The abutments of the acrylic model were unscrewed and fixture-level impressions were made. The impression techniques included open/closed-tray techniques and the impression materials were polyether and polyvinyl siloxane. Forty acrylic custom trays were built for each impression. The marginal gap in the framework at three points (buccal, lingual, and distal) was measured using an optical microscope with ×250. Results: It is demonstrated that in all 360 evaluated samples, the mean vertical misfit in polyether samples of molar and premolar teeth was significantly lower than in polyvinyl siloxane (P < 0.001 and P = 0.017, respectively) in all three locations of the molar and lingual premolar examined (buccal, lingual, and distal), the mean vertical misfit of the polyether samples was significantly lower than those of polyvinyl siloxane (P < 0.01). On the other hand, although the mean vertical misfit using the open-tray technique in the molar teeth was significantly lower than with the closed-tray method (P = 0.002), no statistical difference was seen between the open-tray and closed-tray technique in general (P = 0.87). Conclusion: Within the limitations of

  9. An investigation of heat transfer to the implant-bone interface when drilling through a zirconia crown attached to a titanium or zirconia abutment.

    PubMed

    Mason, Amy G; Sutton, Alan; Turkyilmaz, Ilser

    2014-11-01

    Thermal injury to the implant-bone interface may lead to bone necrosis and loss of osseointegration. This is a concern during manipulation of the implant throughout the restorative phase of treatment. The risk of heat transfer to the implant-bone interface during abutment preparation or prosthesis removal should be considered. The purpose of the study was to examine the amount of heat transferred to the implant-bone interface when a zirconia crown is drilled to access the screw channel or section a crown with a high-speed dental handpiece. Of the 64 ceramic-veneered zirconia crowns fabricated, 32 had a coping thickness of 0.5 mm and 32 had a coping thickness of 1.0 mm. The crowns were cemented on either titanium stock abutments or zirconia stock abutments. Each group was further subdivided to evaluate heat transfer when the screw channel was accessed or the crown was sectioned with a high-speed handpiece with or without irrigation. Temperature change was recorded for each specimen at the cervical and apical aspect of the implant with thermocouples and a logging thermometer. ANOVA was used to assess the statistical significance in temperature change between the test combinations, and nonparametric Mann-Whitney U tests were used to evaluate the findings. The use of irrigation during both crown removal processes yielded an average temperature increase of 3.59 ±0.35°C. Crown removal in the absence of irrigation yielded an average temperature increase of 18.76 ±3.09°C. When all parameter combinations in the presence of irrigation were evaluated, the maximum temperature change was below the threshold of thermal injury to bone. The maximum temperature change was above the threshold for thermal injury at the coronal aspect of the implant and below the threshold at the apical aspect in the absence of irrigation. Within the limitations of this investigation, the use of irrigation with a high-speed dental handpiece to remove a ceramic-veneered zirconia crown results in

  10. Comparison of the impact of scaler material composition on polished titanium implant abutment surfaces.

    PubMed

    Hasturk, Hatice; Nguyen, Daniel Huy; Sherzai, Homa; Song, Xiaoping; Soukos, Nikos; Bidlack, Felicitas B; Van Dyke, Thomas E

    2013-08-01

    The purpose of this study was to compare the impact of the removal of biofilm with hand scalers of different material composition on the surface of implant abutments by assessing the surface topography and residual plaque after scaling using scanning electron microscopy (SEM). Titanium implant analogs from 3 manufacturers (Straumann USA LLC, Andover, Maine, Nobel BioCare USA LLC, Yorba Linda, Cali, Astra Tech Implant Systems, Dentsply, Mölndal, Sweden) were mounted in stone in plastic vials individually with authentic prosthetic abutments. Plaque samples were collected from a healthy volunteer, inoculated into growth medium and incubated with the abutments anaerobically for 1 week. A blinded, calibrated hygienist performed scaling to remove the biofilm using 6 implant scalers (in triplicate), 1 scaler for 1 abutment. The abutments were mounted on an imaging stand and processed for SEM. Images were captured in 3 randomly designated areas of interest on each abutment. Analysis of the implant polished abutment surface and plaque area measurements were performed using ImageJ image analysis software. Surface alterations were characterized by the number, length, depth and the width of the scratches observed. Glass filled resin scalers resulted in significantly more and longer scratches on all 3 abutment types compared to other scalers, while unfilled resin scalers resulted in the least surface change (p < 0.05). Filled resin-graphite reinforced scalers, carbon fiber reinforced resin scalers and titanium scalers resulted in more superficial scratches compared to glass filled resin, as well as more scratches than unfilled resin. No statistically significant differences were found between scalers and abutments with regard to plaque removal. The impact of scalers on implant abutment surfaces varies between abutment types presumably due to different surface characteristics with no apparent advantage of one abutment type over the other with regard to resistance to surface

  11. The accuracy and the safety of individualized 3D printing screws insertion templates for cervical screw insertion.

    PubMed

    Deng, Ting; Jiang, Minghui; Lei, Qing; Cai, Lihong; Chen, Li

    2016-12-01

    Clinical trial for cervical screw insertion by using individualized 3-dimensional (3D) printing screw insertion templates device. The objective of this study is to evaluate the safety and accuracy of the individualized 3D printing screw insertion template in the cervical spine. Ten patients who underwent posterior cervical fusion surgery with cervical pedicle screws, laminar screws or lateral mass screws between December 2014 and December 2015 were involved in this study. The patients were examined by CT scan before operation. The individualized 3D printing templates were made with photosensitive resin by a 3D printing system to ensure the screw shafts entered the vertebral body without breaking the pedicle or lamina cortex. The templates were sterilized by a plasma sterilizer and used during the operation. The accuracy and the safety of the templates were evaluated by CT scans at the screw insertion levels after operation. The accuracy of this patient-specific template technique was demonstrated. Only one screw axis greatly deviated from the planned track and breached the cortex of the pedicle because the template was split by rough handling and then we inserted the screws under the fluoroscopy. The remaining screws were inserted in the track as preoperative design and the screw axis deviated by less than 2 mm. Vascular or neurologic complications or injuries did not happen. And no infection, broken nails, fracture of bone structure, or screw pullout occurred. This study verified the safety and the accuracy of the individualized 3D printing screw insertion templates in the cervical spine as a kind of intraoperative screw navigation. This individualized 3D printing screw insertion template was user-friendly, moderate cost, and enabled a radiation-free cervical screw insertion.

  12. Evaluation of Maryland abutment scour equation through selected threshold velocity methods

    USGS Publications Warehouse

    Benedict, S.T.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Maryland State Highway Administration, used field measurements of scour to evaluate the sensitivity of the Maryland abutment scour equation to the critical (or threshold) velocity variable. Four selected methods for estimating threshold velocity were applied to the Maryland abutment scour equation, and the predicted scour to the field measurements were compared. Results indicated that performance of the Maryland abutment scour equation was sensitive to the threshold velocity with some threshold velocity methods producing better estimates of predicted scour than did others. In addition, results indicated that regional stream characteristics can affect the performance of the Maryland abutment scour equation with moderate-gradient streams performing differently from low-gradient streams. On the basis of the findings of the investigation, guidance for selecting threshold velocity methods for application to the Maryland abutment scour equation are provided, and limitations are noted.

  13. 19. DETAIL, WEST ABUTMENT, FROM NORTH, SHOWING SQUARED STONE MASONRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAIL, WEST ABUTMENT, FROM NORTH, SHOWING SQUARED STONE MASONRY ABUTMENT, WITH PORTION OF SUPERSTRUCTURE - Virginia Department of Transportation Bridge No. 6051, Spanning Catoctin Creek at State Route 673 (Featherbottom Road), Waterford, Loudoun County, VA

  14. Osteosynthesis of partial rib osteotomy in a miniature pig model using human standard-sized magnesium plate/screw systems: Effect of cyclic deformation on implant integrity and bone healing.

    PubMed

    Schaller, Benoit; Saulacic, Nikola; Beck, Stefan; Imwinkelried, Thomas; Liu, Edwin Wei Yang; Nakahara, Ken; Hofstetter, Willy; Iizuka, Tateyuki

    2017-06-01

    Magnesium alloys are candidates for resorbable material in bone fixation. However, the degradation and performance of osteosynthesis plate/screw systems in vivo, under cyclic deformation, is unknown. We evaluated the outcomes of human standard-sized magnesium plate/screw systems with or without plasma-electrolytic surface modifications in a miniature pig rib model. Of a total of 14 minipigs, six were implanted with coated magnesium WE43 six-hole plates/screws, six received magnesium uncoated plates/screws, and two received titanium osteosynthesis systems. The performance of the plate/screw fixation system on partially osteotomized 7th ribs was compared with that on intact 9th ribs. Radiological examinations were performed in vivo at 1, 4 and 8 weeks and after euthanasia at 12 and 24 weeks. After euthanasia the bone blocks were analyzed by computed tomography (CT), microfocus computed tomography (micro-CT), histology and histomorphometry. Follow-up post-surgery showed no trouble with wound healing. In vivo radiological examinations showed higher amounts of gas formation above the uncoated magnesium plates fixed on the partially osteotomized and intact ribs. CT scans showed no broken plates or implant displacement. The micro-CT examination demonstrated better surrounding bone properties around the coated than the uncoated magnesium implants 12 weeks after surgery. No negative influence of magnesium degradation on bone healing was observed with histological examinations. Plastic deformation during surgery and cyclic deformation did not affect the integrity of the used magnesium plates. This study showed promising results for the further development of coated magnesium plate/screw systems for bone fixation. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Load to failure of different zirconia implant abutments with titanium components.

    PubMed

    Mascarenhas, Faye; Yilmaz, Burak; McGlumphy, Edwin; Clelland, Nancy; Seidt, Jeremy

    2017-06-01

    Abutments with a zirconia superstructure and a titanium insert have recently become popular. Although they have been tested under static load, their performance under simulated mastication is not well known. The purpose of this in vitro study was to compare the cyclic load to failure of 3 types of zirconia abutments with different mechanisms of retention of the zirconia to the titanium interface. Fifteen implants (n=5 per system) and abutments (3 groups: 5 friction fit [Frft]; 5 bonded; and 5 titanium ring friction fit [Ringfrft]) were used. Abutments were thermocycled in water between 5°C and 55°C for 15000 cycles and then cyclically loaded for 20000 cycles or until failure at a frequency of 2 Hz by using a sequentially increased loading protocol up to a maximum of 720 N. The load to failure for each group was recorded, and 1-way analysis of variance was performed. The mean load-to-failure values for the Frft group was 526 N, for the Bond group 605 N, and for the Ringfrft group 288 N. A statistically significant difference was found among all abutments tested (P<.05). Abutments with the bonded connection showed the highest load-to-failure value, and the abutment with the titanium ring friction fit connection showed the lowest load-to-failure value. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Effect of Off-Axis Screw Insertion, Insertion Torque, and Plate Contouring on Locked Screw Strength

    PubMed Central

    Gallagher, Bethany; Silva, Matthew J.; Ricci, William M.

    2015-01-01

    Objectives This study quantifies the effects of insertion torque, off-axis screw angulation, and plate contouring on the strength of locking plate constructs. Methods Groups of locking screws (n = 6–11 screws) were inserted at 50%, 100%, 150%, and 200% of the manufacturer-recommended torque (3.2 Nm) into locking compression plates at various angles: orthogonal (control), 5-degree angle off-axis, and 10-degree angle off-axis. Screws were loaded to failure by a transverse force (parallel to the plate) either in the same (“+”) or opposite direction (“−”) of the initial screw angulation. Separately, locking plates were bent to 5 and 10-degree angles, with the bend apex at a screw hole. Locking screws inserted orthogonally into the apex hole at 100% torque were loaded to failure. Results Orthogonal insertion resulted in the highest average load to failure, 2577 ± 141 N (range, 2413–2778 N), whereas any off-axis insertion significantly weakened constructs (165–1285 N, at 100% torque) (P < 0.05). For “+” loading, torque beyond 100% did not increase strength, but 50% torque reduced screw strength (P < 0.05). Loading in the “−” direction consistently resulted in higher strengths than “+” loading (P < 0.05). Plate contouring of 5-degree angle did not significantly change screw strength compared with straight plates but contouring of 10-degree angle significantly reduced load to failure (P < 0.05). Conclusions To maximize the screw plate interface strength, locking screws should be inserted without cross-threading. The mechanical stability of locked screws is significantly compromised by loose insertion, off-axis insertion, or severe distortion of the locking mechanism. PMID:24343255

  17. Comparison of the compressive strength of 3 different implant design systems.

    PubMed

    Pedroza, Jose E; Torrealba, Ysidora; Elias, Augusto; Psoter, Walter

    2007-01-01

    The aims of this study were twofold: to compare the static compressive strength at the implant-abutment interface of 3 design systems and to describe the implant abutment connection failure mode. A stainless steel holding device was designed to align the implants at 30 degrees with respect to the y-axis. Sixty-nine specimens were used, 23 for each system. A computer-controlled universal testing machine (MTS 810) applied static compression loading by a unidirectional vertical piston until failure. Specimens were evaluated macroscopically for longitudinal displacement, abutment looseness, and screw and implant fracture. Data were analyzed by analysis of variance (ANOVA). The mean compressive strength for the Unipost system was 392.5 psi (SD +/-40.9), for the Spline system 342.8 psi (SD+/-25.8), and for the Screw-Vent system 269.1 psi (SD+/-30.7). The Unipost implant-abutment connection demonstrated a statistically significant superior mechanical stability (P < or = .009) compared with the Spline implant system. The Spline implant system showed a statistically significant higher compressive strength than the Screw-Vent implant system (P < or =.009). Regarding failure mode, the Unipost system consistently broke at the same site, while the other systems failed at different points of the connection. The Unipost system demonstrated excellent fracture resistance to compressive forces; this resistance may be attributed primarily to the diameter of the abutment screw and the 2.5 mm counter bore, representing the same and a unique piece of the implant. The Unipost implant system demonstrated a statistically significant superior compressive strength value compared with the Spline and Screw-Vent systems, at a 30 degrees angulation.

  18. 18. DETAIL, WEST ABUTMENT, FROM NORTHEAST, SHOWING SQUARED STONE MASONRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL, WEST ABUTMENT, FROM NORTHEAST, SHOWING SQUARED STONE MASONRY ABUTMENT, WITH STRINGERS AND LATERAL BRACING - Virginia Department of Transportation Bridge No. 6051, Spanning Catoctin Creek at State Route 673 (Featherbottom Road), Waterford, Loudoun County, VA

  19. The upper bound of abutment scour defined by selected laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen; Caldwell, Andral W.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a field investigation of abutment scour in South Carolina and used that data to develop envelope curves defining the upper bound of abutment scour. To expand upon this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with abutment-scour data from other sources and evaluate the upper bound of abutment scour with the larger data set. To facilitate this analysis, a literature review was made to identify potential sources of published abutment-scour data, and selected data, consisting of 446 laboratory and 331 field measurements, were compiled for the analysis. These data encompassed a wide range of laboratory and field conditions and represent field data from 6 states within the United States. The data set was used to evaluate the South Carolina abutment-scour envelope curves. Additionally, the data were used to evaluate a dimensionless abutment-scour envelope curve developed by Melville (1992), highlighting the distinct difference in the upper bound for laboratory and field data. The envelope curves evaluated in this investigation provide simple but useful tools for assessing the potential maximum abutment-scour depth in the field setting.

  20. Impact of abutment material on peri-implant soft tissue color. An in vitro study.

    PubMed

    Sala, Leticia; Bascones-Martínez, Antonio; Carrillo-de-Albornoz, Ana

    2017-09-01

    The objectives of the present study is to determine the differences in peri-implant soft tissue color with the utilization of titanium, titanium gold-plated, white zirconia, Vita Classical (VC) A4-shaded zirconia, and fluorescent white zirconia abutments and to establish the influence of gingival thickness on the resulting color. Four implants were contralaterally inserted in 19 fresh pig mandibles, and the color of the peri-implant mucosa with the different abutments was spectrophotometrically measured at 1-, 2-, and 3-mm height from the margin. At 1-mm height, titanium significantly differed from all zirconia abutments in lightness (L*), chroma along red axis (a*), and chroma along yellow-blue axis (b*) parameters. At 2 mm, all zirconia abutments differed from titanium in b* but only fluorescent zirconia in a*. At 3 mm, titanium differed from VC A4-shaded and fluorescent zirconia abutments in b*. At soft tissue thicknesses <1 and 1-2 mm, titanium differed from fluorescent zirconia in a* and b* and from VC A4-shaded zirconia in b*; at thickness >2 mm, no differences were found among abutments. All abutments differed from natural teeth in a* and b* at all heights and thicknesses except for fluorescent zirconia at thickness >2 mm. The Euclidean distance (ΔΕ) differed between titanium abutments and gold, VC A4, and fluorescent zirconia at <1- and 1-2-mm thicknesses. The natural gingival color was not reproduced with any abutment at gingival thicknesses <2 mm. The worst color match was with titanium abutments and the best with fluorescent zirconia, followed by VC A4-shaded zirconia. At gingival thicknesses >2 mm, no differences were detected among abutments. This study demonstrates that the type of abutment and the gingival thickness affect the resulting peri-implant gingival color.

  1. Microleakage at the Different Implant Abutment Interface: A Systematic Review

    PubMed Central

    Chowdhary, Ramesh; Kumari, Shail

    2017-01-01

    Introduction Presence of gap at the implant-abutment interface, leads to microleakage and accumulation of bacteria which can affect the success of dental implants. Aim To evaluate the sealing capability of different implant connections against microleakage. Materials and Methods In January 2017 an electronic search of literature was performed, in Medline, EBSCO host and Pubmed data base. The search was focused on ability of different implant connections in preventing microleakage. The related titles and abstracts available in English were screened, and the articles that fulfilled the inclusion criteria were selected for full text reading. Results In this systematic review, literature search initially resulted in 78 articles among which 30 articles only fulfilled the criteria for inclusion and were finally included in the review. Almost all the studies showed that there was some amount of microleakage at abutment implant interface. Microleakage was very less in Morse taper implants in comparison to other implant connections. Majority of studies showed less microleakage in static loading conditions and microleakage increases in dynamic loading conditions. Conclusion In this systematic review maximum studies showed that there was some amount of microleakage at abutment implant interface. External hexagon implants failed completely to prevent microleakage in both static and dynamic loading conditions of implants. Internal hexagon implants mainly internal conical (Morse taper) implants are very promising in case of static loading and also showed less microleakage in dynamic loading conditions. Torque recommended by manufacturer should be followed strictly to get a better seal at abutment implant interface. Zirconia abutments are more to microleakage than Titanium abutments and there use should be discouraged. Zirconia abutments should be only restricted to cases where there was very high demand of aesthetics. PMID:28764310

  2. Fracture resistance of different implant abutments supporting 
all-ceramic single crowns after aging.

    PubMed

    Stimmelmayr, Michael; Heiß, Philipp; Erdelt, Kurt; Schweiger, Josef; Beuer, Florian

    To test the mechanical properties of three different restorative materials for implant abutments supporting all-ceramic single crowns. Thirty implants with butt-joint connections were distributed into three test groups: Group A with 10 one-piece zirconia abutments, Group U with 10 titanium abutments, and Group T with 10 titanium-zirconia hybrid abutments. Monolithic zirconia single crowns were cemented and artificially aged. The crowns were loaded at a 30-degree angle in a universal testing machine until fracture or bending. Additionally, after removal of the restorations, the implant-abutment interface of the fixtures was inspected using a scanning electron microscope (SEM). In Group A, the abutments failed on average at 336.78 N, in Group U at 1000.12 N, and in Group T at 1296.55 N. The mean values between Groups T and U (P = 0.009), and between Group A and Groups T and U (P < 0.001) were significantly different. The abutments in Group A failed early due to fractures of the internal parts and parts close to the implant neck. In Groups T and U, failures occurred due to bending of the implant neck. This experimental study proves that hybrid and titanium abutments have similar mechanical properties. One-piece abutments made of zirconia showed significantly lower fracture resistance.

  3. 2D and 3D assessment of sustentaculum tali screw fixation with or without Screw Targeting Clamp.

    PubMed

    De Boer, A Siebe; Van Lieshout, Esther M M; Vellekoop, Leonie; Knops, Simon P; Kleinrensink, Gert-Jan; Verhofstad, Michael H J

    2017-12-01

    Precise placement of sustentaculum tali screw(s) is essential for restoring anatomy and biomechanical stability of the calcaneus. This can be challenging due to the small target area and presence of neurovascular structures on the medial side. The aim was to evaluate the precision of positioning of the subchondral posterior facet screw and processus anterior calcanei screw with or without a Screw Targeting Clamp. The secondary aim was to evaluate the added value of peroperative 3D imaging over 2D radiographs alone. Twenty Anubifix™ embalmed, human anatomic lower limb specimens were used. A subchondral posterior facet screw and a processus anterior calcanei screw were placed using an extended lateral approach. A senior orthopedic trauma surgeon experienced in calcaneal fracture surgery and a senior resident with limited experience in calcaneal surgery performed screw fixation in five specimens with and in five specimens without the clamp. 2D lateral and axial radiographs and a 3D recording were obtained postoperatively. Anatomical dissection was performed postoperatively as a diagnostic golden standard in order to obtain the factual screw positions. Blinded assessment of quality of fixation was performed by two surgeons. In 2D, eight screws were considered malpositioned when placed with the targeting device versus nine placed freehand. In 3D recordings, two additional screws were malpositioned in each group as compared to the golden standard. As opposed to the senior surgeon, the senior resident seemed to get the best results using the Screw Targeting Clamp (number of malpositioned screws using freehand was eight, and using the targeting clamp five). In nine out of 20 specimens 3D images provided additional information concerning target area and intra-articular placement. Based on the 3D assessment, five additional screws would have required repositioning. Except for one, all screw positions were rated equally after dissection when compared with 3D examinations

  4. Fracture resistance of inter-joined zirconia abutment of dental implant system with injection molding technique.

    PubMed

    Yang, Jianjun; Wang, Ke; Liu, Guangyuan; Wang, Dashan

    2013-11-01

    Zirconia powder in nanometers can be fabricated into inter-joined abutment of dental implant system with the injection shaping technique. This study was to detect the resistance of inter-joined zirconia abutment with different angle loading for clinical applications. The inter-joined abutments were shaped with the technique of injection of zirconia powder in nanometers. Sixty Osstem GSII 5 × 10 mm implants were used with 30 zirconia abutments and 30 Osstem GSII titanium abutments for fixation using 40 N torque force. The loading applications included 90°, 30°, and 0° formed by the long axis of abutments and pressure head of universal test machine. The fracture resistances of zirconia and titanium abutments were documented and analyzed. The inter-joined zirconia abutments were assembled to the Osstem GSII implants successfully. In the 90° loading mode, the fracture resistance of zirconia abutment group and titanium abutment group were 301.5 ± 15.4 N and 736.4 ± 120.1 N, respectively. And those in the 30° groups were 434.7 ± 36.1 N and 1073.1 ± 74 N, correspondingly. Significant difference in the two groups was found using t-test and Wilcoxon test. No damage on the abutments of the two groups but S-shaped bending on the implants was found when the 0° loading was 1300-2000 N. Through the assembly of Zirconia abutments and implants, all the components presented sufficient resistance acquired for the clinical application under loadings with different angle. © 2012 John Wiley & Sons A/S.

  5. Displacement of screw-retained splinted and nonsplinted restorations into implants with conical internal connections.

    PubMed

    Yilmaz, Burak; Seidt, Jeremy D; Clelland, Nancy L

    2014-01-01

    Variable abutment displacement could potentially affect proximal contacts, incisal edge position, or occlusion of implant-supported prostheses. This study aimed to measure and compare displacements of splinted and nonsplinted restorations into implants featuring internal conical connections as screws were tightened by hand or by torque driver. A stereolithic resin model was printed using computed tomography data from a patient missing mandibular left first and second molars. Two 5.0 × 11-mm implants were placed in the edentulous site using a surgical guide. Two sets (splinted and nonsplinted) of gold screw-retained prostheses were made indirectly to fit the implants in the stereolithic model representing the patient. The axial position of the crowns relative to a fixed location on the model was recorded following hand tightening using the three-dimensional image correlation technique and image correlation software. A pair of high-resolution digital cameras provided a synchronized view of the model during the experiment. Relative crown positions were again recorded after tightening with a torque driver to 25 Ncm. Testing was repeated randomly three times for each set of crowns. Displacement data after torque tightening were compared using a factorial analysis of variance with JMP 9.0 software (SAS) followed by a Tukey-Kramer post hoc test (α = .05). Interproximal contacts were evaluated using an 8-μm tin foil shim after tightening by hand and torque driver. Displacements for splinted and nonsplinted restorations differed only in a buccal direction. The nonsplinted crowns displaced significantly more than splinted crowns. Discernible differences were observed for the tin foil shim when dragged through proximal contacts following hand versus torque tightening. Differences between screw tightening by hand or torque driver should be taken into consideration during laboratory and clinical adjustments to prevent esthetic and functional complications.

  6. Accuracy of fit of implant-supported bars fabricated on definitive casts made by different dental stones

    PubMed Central

    Kioleoglou, Ioannis; Pissiotis, Argirios

    2018-01-01

    Background The purpose of this study was to evaluate the accuracy of fitting of an implant supported screw-retained bar made on definitive casts produced by 4 different dental stone products. Material and Methods The dental stones tested were QuickRock (Protechno), FujiRock (GC), Jade Stone (Whip Mix) and Moldasynt (Heraeus). Three external hexagon implants were placed in a polyoxymethylene block. Definitive impressions were made using monophase high viscosity polyvinylsiloxane in combination with custom trays. Then, definitive models from the different types of dental stones were fabricated. Three castable cylinders with a machined non-enganging base were cast and connected with a very small quantity of PMMA to a cast bar, which was used to verify the marginal discrepancies between the abutments and the prosthetic platforms of the implants. For that purpose special software and a camera mounted on an optical microscope were used. The gap was measured by taking 10 measurements on each abutment, after the Sheffield test was applied. Twelve definitive casts were fabricated for each gypsum product and 40 measurements were performed for each cast. Mean, minimum, and maximum values were calculated. The Shapiro-Wilk test of normality was performed. Mann-Whitney test (P<.06) was used for the statistical analysis of the measurements. Results The non-parametric Kruskal-Wallis test revealed a statistically significant effect of the stone factor on the marginal discrepancy for all Sheffield test combinations: 1. Abutment 2 when screw was fastened on abutment 1 (χ2=3, df=35.33, P<0.01), 2. Abutment 3 when the screw was fastened on abutment 1 (χ2=3, df=37.74, P<0.01), 3. Abutment 1 when the screw was fastened on abutment 3 (χ2=3, df=39.79, P<0.01), 4. Abutment 2 when the screw was fastened on abutment 3 (χ2=3, df=37.26, P<0.01). Conclusions A significant correlation exists between marginal discrepancy and different dental gypsum products used for the fabrication of

  7. GRS bridge piers and abutments.

    DOT National Transportation Integrated Search

    2001-01-01

    This report presents the following three recent projects on load testing of geosynthetic-reinforced soil (GRS) bridge abutments and piers: a full-scale bridge pier load test conducted by the Turner-Fairbank Highway Research Center, Federal Highway Ad...

  8. Shock-Absorbent Ball-Screw Mechanism

    NASA Technical Reports Server (NTRS)

    Hirr, Otto A., Jr.; Meneely, R. W.

    1986-01-01

    Actuator containing two ball screws in series employs Belleville springs to reduce impact loads, thereby increasing life expectancy. New application of springs increases reliability of equipment in which ball screws commonly used. Set of three springs within lower screw of ball-screw mechanism absorbs impacts that result when parts reach their upper and lower limits of movement. Mechanism designed with Belleville springs as shock-absorbing elements because springs have good energy-to-volume ratio and easily stacked to attain any stiffness and travel.

  9. Five-year multicenter study of magnetic attachments used for natural overdenture abutments.

    PubMed

    Gonda, T; Yang, T C; Maeda, Y

    2013-04-01

    The purpose of this study was to examine a longitudinal clinical performance of magnetic attachments used for natural overdenture abutments. The study included 131 patients who had used removable prostheses (complete overdentures 31%, partial dentures 69%) more than 5 years (40-90 years old) with 211 magnetic attachments on natural abutments (Magfit 400 or 600; Aichi Steel co., Aichi, Japan) treated in 15 clinics using a standardized protocol. Analyses were performed on the degree of patient satisfaction regarding retention, complications of magnets (corrosion, detachment from denture base), abutments (pain during mastication, periodontal pocket formation, inflammation, mobility), and dentures (fracture etc.). Ninety-seven percent of patients were satisfied with the retention and stability of their dentures. No corrosion of magnet was observed, and 19 magnets were detached. Most frequent complication of abutments was periodontal pocket formation (52%), followed by the inflammation (29%), increase in mobility (27%) and pain (4%). Magnetic attachment on natural tooth abutments provided a viable and long-term treatment option. © 2013 Blackwell Publishing Ltd.

  10. Bending moments of zirconia and titanium implant abutments supporting all-ceramic crowns after aging.

    PubMed

    Mühlemann, Sven; Truninger, Thomas C; Stawarczyk, Bogna; Hämmerle, Christoph H F; Sailer, Irena

    2014-01-01

    To test the fracture load and fracture patterns of zirconia abutments restored with all-ceramic crowns after fatigue loading, exhibiting internal and external implant-abutment connections as compared to restored and internally fixed titanium abutments. A master abutment was used for the customization of 5 groups of zirconia abutments to a similar shape (test). The groups differed according to their implant-abutment connections: one-piece internal connection (BL; Straumann Bonelevel), two-piece internal connection (RS; Nobel Biocare ReplaceSelect), external connection (B; Branemark MkIII), two-piece internal connection (SP, Straumann StandardPlus) and one-piece internal connection (A; Astra Tech AB OsseoSpeed). Titanium abutments with internal implant-abutment connection (T; Straumann Bonelevel) served as control group. In each group, 12 abutments were fabricated, mounted to the respective implants and restored with glass-ceramic crowns. All samples were embedded in acrylic holders (ISO-Norm 14801). After aging by means of thermocycling in a chewing simulator, static load was applied until failure (ISO-Norm 14801). Fracture load was analyzed by calculating the bending moments. Values of all groups were compared with one-way ANOVA followed by Scheffé post hoc test (P-value<0.05). Failure mode was analyzed descriptively. The mean bending moments were 464.9 ± 106.6 N cm (BL), 581.8 ± 172.8 N cm (RS), 556.7 ± 128.4 N cm (B), 605.4 ± 54.7 N cm (SP), 216.4 ± 90.0 N cm (A) and 1042.0 ± 86.8 N cm (T). No difference of mean bending moments was found between groups BL, RS, B and SP. Test group A exhibited significantly lower mean bending moment than the other test groups. Control group T had significantly higher bending moments than all test groups. Failure due to fracture of the abutment and/or crown occurred in the test groups. In groups BL and A, fractures were located in the internal part of the connection, whereas in groups RS and SP, a partial

  11. A comparative finite elemental analysis of glass abutment supported and unsupported cantilever fixed partial denture.

    PubMed

    Ramakrishaniah, Ravikumar; Al Kheraif, Abdulaziz A; Elsharawy, Mohamed A; Alsaleh, Ayman K; Ismail Mohamed, Karem M; Rehman, Ihtesham Ur

    2015-05-01

    The purpose of this study was to investigate and compare the load distribution and displacement of cantilever prostheses with and without glass abutment by three dimensional finite element analysis. Micro-computed tomography was used to study the relationship between the glass abutment and the ridge. The external surface of the maxilla was scanned, and a simplified finite element model was constructed. The ZX-27 glass abutment and the maxillary first and second premolars were created and modified. The solid model of the three-unit cantilever fixed partial denture was scanned, and the fitting surface was modified with reference to the created abutments using the 3D CAD system. The finite element analysis was completed in ANSYS. The fit and total gap volume between the glass abutment and dental model were determined by Skyscan 1173 high-energy spiral micro-CT scan. The results of the finite element analysis in this study showed that the cantilever prosthesis supported by the glass abutment demonstrated significantly less stress on the terminal abutment and overall deformation of the prosthesis under vertical and oblique load. Micro-computed tomography determined a gap volume of 6.74162 mm(3). By contacting the mucosa, glass abutments transfer some amount of masticatory load to the residual alveolar ridge, thereby preventing damage to the periodontal microstructures of the terminal abutment. The passive contact of the glass abutment with the mucosa not only preserves the health of the mucosa covering the ridge but also permits easy cleaning. It is possible to increase the success rate of cantilever FPDs by supporting the cantilevered pontic with glass abutments. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. The role of dental implant abutment design on the aesthetic outcome: preliminary 3-month post-loading results from a multicentre split-mouth randomised controlled trial comparing two different abutment designs.

    PubMed

    Esposito, Marco; Cardaropoli, Daniele; Gobbato, Luca; Scutellà, Fabio; Fabianelli, Andrea; Mascellani, Saverio; Delli Ficorelli, Gianluca; Mazzocco, Fabio; Sbricoli, Luca; Trullenque-Eriksson, Anna

    To evaluate whether there are aesthetic and clinical benefits to using a newly designed abutment (Curvomax), over a conventional control abutment (GingiHue). A total of 49 patients, who required at least two implants, had two sites randomised according to a split-mouth design to receive one abutment of each type at seven different centres. The time of loading (immediate, early or delayed) and of prosthesis (provisional crowns of fixed prosthesis) was decided by the clinicians, but they had to restore both implants in a similar way. Provisional prostheses were replaced by definitive ones 3 months after initial loading, when the follow-up for the initial part of this study was completed. Outcome measures were: prosthesis failures, implant failures, complications, pink esthetic score (PES), peri-implant marginal bone level changes, and patient preference. In total, 49 Curvomax and 49 GingiHue abutments were delivered. Two patients dropped out. No implant failure, prosthesis failure or complication was reported. There were no differences at 3 months post-loading for PES (difference = -0.15, 95% CI -0.55 to 0.25; P (paired t test) = 0.443) and marginal bone level changes (difference = -0.02 mm, 95% CI -0.20 to 0.16; P (paired t test) = 0.817). The majority of the patients (30) had no preference regarding the two abutment designs; 11 patients preferred the Curvomax, while five patients preferred the GingiHue abutments (P (McNemar test) = 0.210). The preliminary results of the comparison between two different abutment designs did not disclose any statistically significant differences between the evaluated abutments. However the large number of missing radiographs and clinical pictures casts doubt on the reliability of the results. Longer follow-ups of wider patient populations are needed to better understand whether there is an effective advantage with one of the two abutment designs. Conflict of interest statement: This research project was originally partially funded by

  13. Evaluation of Dynamic Characteristics of the Footbridge with Integral Abutments

    NASA Astrophysics Data System (ADS)

    Pańtak, Marek; Jarek, Bogusław

    2017-09-01

    The paper presents the results of dynamic field tests and numerical analysis of the footbridge designed as a three-span composite structure with integral abutments. The adopted design solution which has allowed to achieve a high resistance of the structure to dynamic loads and to meet the requirements of the criteria of comfort of use with a large reserve has been characterized. For comparative purposes, numerical analyzes of three construction variants of the footbridge were presented: F-1 - construction with integral abutments (realized variant), F-2 - construction with girders anchored in the abutments by means of tension rocker bearings, F-3 - construction with concrete side spans.

  14. Management of overdenture abutments health by an innovative cleaning aid

    PubMed Central

    Mall, Priyanka; Singh, Kamleshwar; Singh, Saumyendra Vikram; Agrawal, Kaushal Kishor; Siddharth, Ramashanker; Chand, Pooran

    2012-01-01

    This article describes a method for fabrication of a custom-made device for cleaning dome-shaped overdenture abutments. A kid toothbrush and a rubber cup were used for fabrication of a prophylactic device. After regular use of this device periodontal health status of the overdenture abutments patients improved satisfactorily. PMID:23230248

  15. Development of a new technique for pedicle screw and Magerl screw insertion using a 3-dimensional image guide.

    PubMed

    Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Seki, Shoji; Hori, Takeshi; Kimura, Tomoatsu

    2012-11-01

    We developed a new technique for cervical pedicle screw and Magerl screw insertion using a 3-dimensional image guide. In posterior cervical spinal fusion surgery, instrumentation with screws is virtually routine. However, malpositioning of screws is not rare. To avoid complications during cervical pedicle screw and Magerl screw insertion, the authors developed a new technique which is a mold shaped to fit the lamina. Cervical pedicle screw fixation and Magerl screw fixation provide good correction of cervical alignment, rigid fixation, and a high fusion rate. However, malpositioning of screws is not a rare occurrence, and thus the insertion of screws has a potential risk of neurovascular injury. It is necessary to determine a safe insertion procedure for these screws. Preoperative computed tomographic (CT) scans of 1-mm slice thickness were obtained of the whole surgical area. The CT data were imported into a computer navigation system. We developed a 3-dimensional full-scale model of the patient's spine using a rapid prototyping technique from the CT data. Molds of the left and right sides at each vertebra were also constructed. One hole (2.0 mm in diameter and 2.0 cm in length) was made in each mold for the insertion of a screw guide. We performed a simulated surgery using the bone model and the mold before operation in all patients. The mold was firmly attached to the surface of the lamina and the guide wire was inserted using the intraoperative image of lateral vertebra. The proper insertion point, direction, and length of the guide were also confirmed both with the model bone and the image intensifier in the operative field. Then, drilling using a cannulated drill and tapping using a cannulated tapping device were carried out. Eleven consecutive patients who underwent posterior spinal fusion surgery using this technique since 2009 are included. The screw positions in the sagittal and axial planes were evaluated by postoperative CT scan to check for

  16. Abutment Material Effect on Peri-implant Soft Tissue Color and Perceived Esthetics.

    PubMed

    Kim, Aram; Campbell, Stephen D; Viana, Marlos A G; Knoernschild, Kent L

    2016-12-01

    The purpose of this study was to evaluate the effect of implant abutment material on peri-implant soft tissue color using intraoral spectrophotometric analysis and to compare the clinical outcomes with patient and clinician perception and satisfaction. Thirty patients and four prosthodontic faculty members participated. Abutments were zirconia, gold-hued titanium, and titanium. Peri-implant mucosa color of a single anterior implant restoration was compared to the patient's control tooth. Spectrophotometric analysis using SpectroShade TM Micro data determined the color difference (ΔE, ΔL*, Δa*, Δb*) between the midfacial peri-implant soft tissue for each abutment material and the marginal gingiva of the control tooth. Color difference values of the abutment groups were compared using ANOVA (α = 0.05). Patient and clinician satisfaction surveys were also conducted using a color-correcting light source. The results of each patient and clinician survey question were compared using chi-square analysis (α = 0.05). Pearson correlation analyses identified the relationship between the total color difference (ΔE) and the patient/clinician perception and satisfaction, as well as between ΔE and tissue thickness. Zirconia abutments displayed significantly smaller spectrophotometric gingival color difference (ΔE) compared to titanium and gold-hued titanium abutments (respectively, 3.98 ± 0.99; 7.22 ± 3.31; 5.65 ± 2.11; p < 0.05). Among ΔL*, Δa*, and Δb*, only Δa* (red-green spectrum) showed significant difference between groups. There was no significant correlation between measured soft tissue thickness and ΔE, but thick gingival phenotype, determined by a probe test, demonstrated a smaller ΔE than thin phenotype (4.82 ± 1.49; 6.41 ± 3.27; p = 0.097). There was no statistical difference in patient or clinician satisfaction among abutment materials, and no correlation between ΔE and the patient and clinician satisfaction. Patient satisfaction was

  17. Comparative study on stress distribution around internal tapered connection implants according to fit of cement- and screw-retained prostheses.

    PubMed

    Lee, Mi-Young; Heo, Seong-Joo; Park, Eun-Jin; Park, Ji-Man

    2013-08-01

    The aim of this study was to compare the passivity of implant superstructures by assessing the strain development around the internal tapered connection implants with strain gauges. A polyurethane resin block in which two implants were embedded served as a measurement model. Two groups of implant restorations utilized cement-retained design and internal surface of the first group was adjusted until premature contact between the restoration and the abutment completely disappeared. In the second group, only nodules detectable to the naked eye were removed. The third group employed screw-retained design and specimens were generated by computer-aided design/computer-aided manufacturing system (n=10). Four strain gauges were fixed on the measurement model mesially and distally to the implants. The strains developed in each strain gauge were recorded during fixation of specimens. To compare the difference among groups, repeated measures 2-factor analysis was performed at a level of significance of α=.05. The absolute strain values were measured to analyze the magnitude of strain. The mean absolute strain value ranged from 29.53 to 412.94 µm/m at the different strain gauge locations. According to the result of overall comparison, the cement-retained prosthesis groups exhibited significant difference. No significant difference was detected between milled screw-retained prostheses group and cement-retained prosthesis groups. Within the limitations of the study, it was concluded that the cement-retained designs do not always exhibit lower levels of stress than screw-retained designs. The internal adjustment of a cement-retained implant restoration is essential to achieve passive fit.

  18. 23. VIEW LOOKING UPSTREAM AND TOWARD LEFT ABUTMENT OF DAM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW LOOKING UPSTREAM AND TOWARD LEFT ABUTMENT OF DAM. NOTE FORMS FOR LEFT GRAVITY ABUTMENT AT UPPER RIGHT CORNER OF PICTURE. ARCHES 3, 4, 5, AND 7 COMPLETED TO ELEVATION 1795. 5 OR 7.5 FEET BELOW TOP OF PARAPET WALL. November 29, 1938 - Bartlett Dam, Verde River, Phoenix, Maricopa County, AZ

  19. Accurate and Simple Screw Insertion Procedure With Patient-Specific Screw Guide Templates for Posterior C1-C2 Fixation.

    PubMed

    Sugawara, Taku; Higashiyama, Naoki; Kaneyama, Shuichi; Sumi, Masatoshi

    2017-03-15

    Prospective clinical trial of the screw insertion method for posterior C1-C2 fixation utilizing the patient-specific screw guide template technique. To evaluate the efficacy of this method for insertion of C1 lateral mass screws (LMS), C2 pedicle screws (PS), and C2 laminar screws (LS). Posterior C1LMS and C2PS fixation, also known as the Goel-Harms method, can achieve immediate rigid fixation and high fusion rate, but the screw insertion carries the risk of injury to neuronal and vascular structures. Dissection of venous plexus and C2 nerve root to confirm the insertion point of the C1LMS may also cause problems. We have developed an intraoperative screw guiding method using patient-specific laminar templates. Preoperative bone images of computed tomography (CT) were analyzed using three-dimensional (3D)/multiplanar imaging software to plan the trajectories of the screws. Plastic templates with screw guiding structures were created for each lamina using 3D design and printing technology. Three types of templates were made for precise multistep guidance, and all templates were specially designed to fit and lock on the lamina during the procedure. Surgery was performed using this patient-specific screw guide template system, and placement of the screws was postoperatively evaluated using CT. Twelve patients with C1-C2 instability were treated with a total of 48 screws (24 C1LMS, 20 C2PS, 4 C2LS). Intraoperatively, each template was found to exactly fit and lock on the lamina and screw insertion was completed successfully without dissection of the venous plexus and C2 nerve root. Postoperative CT showed no cortical violation by the screws, and mean deviation of the screws from the planned trajectories was 0.70 ± 0.42 mm. The multistep, patient-specific screw guide template system is useful for intraoperative screw navigation in posterior C1-C2 fixation. This simple and economical method can improve the accuracy of screw insertion, and reduce operation time and

  20. Biomechanical evaluation of a new composite bioresorbable screw.

    PubMed

    Bailey, C A; Kuiper, J H; Kelly, C P

    2006-04-01

    A new bioresorbable composite cannulated screw has been developed for small bone fracture fixation. The LG ("Little Grafter") screw is manufactured from Biosteon, which is a composite of poly L-lactic acid and hydroxyapatite. This study aimed to compare interfragmentary compression generated by this new screw with conventional metal screws commonly used in scaphoid fracture fixation. Four small metallic screws were compared with the LG screw, using a bone model produced from rigid polyurethane foam. The screws included the Acutrak, Asnis III, Herbert and Herbert-Whipple screws. The mean maximum compression forces for the LG screw, the Asnis and the Acutrak were comparable (LG 32.3 N, Asnis 32.8 N, Acutrak 38.3 N), whereas those using the Herbert and the Herbert-Whipple screw were significantly lower (Herbert 21.8 N, Herbert-Whipple 19.9 N). The bioresorbable LG screw has been shown to have good compressive properties compared to commonly used small bone fragment compression screws.

  1. Removal Torque and Biofilm Accumulation at Two Dental Implant-Abutment Joints After Fatigue.

    PubMed

    Pereira, Jorge; Morsch, Carolina S; Henriques, Bruno; Nascimento, Rubens M; Benfatti, Cesar Am; Silva, Filipe S; López-López, José; Souza, Júlio Cm

    2016-01-01

    The aim of this study was to evaluate the removal torque and in vitro biofilm penetration at Morse taper and hexagonal implant-abutment joints after fatigue tests. Sixty dental implants were divided into two groups: (1) Morse taper and (2) external hexagon implant-abutment systems. Fatigue tests on the implant-abutment assemblies were performed at a normal force (FN) of 50 N at 1.2 Hz for 500,000 cycles in growth medium containing human saliva for 72 hours. Removal torque mean values (n = 10) were measured after fatigue tests. Abutments were then immersed in 1% protease solution in order to detach the biofilms for optical density and colony-forming unit (CFU/cm²) analyses. Groups of implant-abutment assemblies (n = 8) were cross-sectioned at 90 degrees relative to the plane of the implant-abutment joints for the microgap measurement by field-emission guns scanning electron microscopy. Mean values of removal torque on abutments were significantly lower for both Morse taper (22.1 ± 0.5 μm) and external hexagon (21.1 ± 0.7 μm) abutments after fatigue tests than those recorded without fatigue tests (respectively, 24 ± 0.5 μm and 24.8 ± 0.6 μm) in biofilm medium for 72 hours (P = .04). Mean values of microgap size for the Morse taper joints were statistically signicantly lower without fatigue tests (1.7 ± 0.4 μm) than those recorded after fatigue tests (3.2 ± 0.8 μm). Also, mean values of microgap size for external hexagon joints free of fatigue were statistically signicantly lower (1.5 ± 0.4 μm) than those recorded after fatigue tests (8.1 ± 1.7 μm) (P < .05). The optical density of biofilms and CFU mean values were lower on Morse taper abutments (Abs630nm at 0.06 and 2.9 × 10⁴ CFU/cm²) than that on external hexagon abutments (Abs630nm at 0.08 and 4.5 × 10⁴ CFU/cm²) (P = .01). The mean values of removal torque, microgap size, and biofilm density recorded at Morse taper joints were lower in comparison to those recorded at external hexagon

  2. Mechanical and photoelastic analysis of conventional screws and cannulated screws for sagittal split osteotomy fixation: a comparative study.

    PubMed

    Lima, Cristina Jardelino de; Falci, Saulo Gabriel Moreira; Rodrigues, Danillo Costa; Marchiori, Érica Cristina; Moreira, Roger Willian Fernandes

    2015-12-01

    The aim of the present study was to use mechanical and photoelastic tests to compare the performance of cannulated screws with solid-core screws in sagittal split osteotomy fixation. Ten polyurethane mandibles, with a prefabricated sagittal split ramus osteotomy, were fixed with an L inverted technique and allocated to each group as follows: cannulated screw group (CSG), fixed with three 2.3-cannulated screws; and solid-core screw group (SCSG), fixed with three 2.3-solid-core screws. Vertical linear loading tests were performed. The differences between mean values were analyzed through T test for independent samples. The photoelastic test was carried out using a polariscope. The results revealed differences between the two groups only at 1 mm of displacement, in which the cannulated-screw revealed more resistance. Photoelastic test showed higher stress concentration close to mandibular branch in the solid-core group. Cannulated screws performed better than solid-core ones in a mechanical test at 1-mm displacement and photoelastic tests.

  3. Hounsfield unit of screw trajectory as a predictor of pedicle screw loosening after single level lumber interbody fusion.

    PubMed

    Sakai, Yusuke; Takenaka, Shota; Matsuo, Yohei; Fujiwara, Hiroyasu; Honda, Hirotsugu; Makino, Takahiro; Kaito, Takashi

    2018-06-01

    This study aims to clarify the clinical potential of Hounsfield unit (HU), measured on computed tomography (CT) images, as a predictor of pedicle screw (PS) loosening, compared to bone mineral density (BMD). A total of 206 screws in 52 patients (21 men and 31 women; mean age 68.2 years) were analyzed retrospectively. The screws were classified into two groups depending on their screw loosening status on 3-month follow-up CT (loosening screw group vs. non-loosening screw group). Preoperative HU of the trajectory was evaluated by superimposing preoperative and postoperative CT images using three-dimensional image analysis software. Age, sex, body mass index, screw size, BMD of lumbar, and HU of screw trajectory were analyzed in association with screw loosening. Multivariate logistic regression analysis was performed, and the thresholds for PS loosening risk factors were evaluated using a continuous numerical variable and receiver operating characteristic (ROC) curve analyses. The area under the curve (AUC) was used to determine the diagnostic performance, and values > 0.75 were considered to represent good performance. The loosening screw group contained 24 screws (12%). Multivariate analysis revealed that the significant independent risk factors were not BMD but male sex [P = 0.028; odds ratio (OR) 2.852, 95% confidence interval (CI) 1.120-7.258] and HU of screw trajectory (P = 0.006; OR 0.989, 95% CI 0.980-0.997). ROC curve analysis demonstrated that the AUC for HU of screw trajectory for women was 0.880 (95% CI 0.798-0.961). The cutoff value was 153.5. AUC for men was 0.635 (95% CI 0.449-0.821), which was not considered to be a good performance. Low HU of screw trajectories was identified as a risk factor of PS loosening for women. For female patients with low HU, additional augmentation is recommended to prevent PS loosening. Copyright © 2018 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  4. Low noise lead screw positioner

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1986-01-01

    A very precise and low noise lead screw positioner, for positioning a retroreflector in an interferometer is described. A gas source supplies inert pressurized gas, that flows through narrow holes into the clearance space between a nut and the lead screw. The pressurized gas keeps the nut out of contact with the screw. The gas flows axially along the clearance space, into the environment. The small amount of inert gas flowing into the environment minimizes pollution. By allowing such flow into the environment, no seals are required between the end of the nut and the screw.

  5. Axial displacements in external and internal implant-abutment connection.

    PubMed

    Lee, Ji-Hye; Kim, Dae-Gon; Park, Chan-Jin; Cho, Lee-Ra

    2014-02-01

    The purpose of this study was to evaluate the axial displacement of the abutments during clinical procedures by the tightening torque and cyclic loading. Two different implant-abutment connection systems were used (external butt joint connection [EXT]; internal tapered conical connection [INT]). The master casts with two implant replicas, angulated 10° from each other, were fabricated for each implant connection system. Four types of impression copings were assembled and tightened with the corresponding implants (hex transfer impression coping, non-hex transfer impression coping, hex pick-up impression coping, non-hex pick-up impression coping). Resin splinted abutments and final prosthesis were assembled. The axial displacement was measured from the length of each assembly, which was evaluated repeatedly, after 30 Ncm torque tightening. After 250 N cyclic loading of final prosthesis for 1,000,000 cycles, additional axial displacement was recorded. The mean axial displacement was statistically analyzed (repeated measured ANOVA). There was more axial displacement in the INT group than that of the EXT group in impression copings, resin splinted abutments, and final prosthesis. Less axial displacement was found at 1-piece non-hex transfer type impression coping than other type of impression copings in the INT group. There was more axial displacement at the final prosthesis than resin splinted abutments in the INT and the EXT groups. After 250 N cyclic loading of final prosthesis, the INT group showed more axial displacement than that of the EXT group. Internal tapered conical connection demonstrated a varying amount of axial displacement with tightening torque and cyclic loading. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  6. Influence of implant abutment material on the color of different ceramic crown systems.

    PubMed

    Dede, Doğu Ömür; Armağanci, Arzu; Ceylan, Gözlem; Celik, Ersan; Cankaya, Soner; Yilmaz, Burak

    2016-11-01

    Ceramics are widely used for anterior restorations; however, clinical color reproduction still constitutes a challenge particularly when the ceramic crowns are used on titanium implant abutments. The purpose of this in vitro study was to investigate the effect of implant abutment material on the color of different ceramic material systems. Forty disks (11×1.5 mm, shade A2) were fabricated from medium-opacity (mo) and high-translucency (ht) lithium disilicate (IPS e.max) blocks, an aluminous ceramic (VITA In-Ceram Alumina), and a zirconia (Zirkonzahn) ceramic system. Disks were fabricated to represent 3 different implant abutments (zirconia, gold-palladium, and titanium) and dentin (composite resin, A2 shade) as background (11×2 mm). Disk-shaped composite resin specimens in A2 shade were fabricated to represent the cement layer. The color measurements of ceramic specimens were made on composite resin abutment materials using a spectrophotometer. CIELab color coordinates were recorded, and the color coordinates measured on composite resin background served as the control group. Color differences (ΔE 00 ) between the control and test groups were calculated. The data were analyzed with 2-way analysis of variance (ANOVA) and compared with the Tukey HSD test (α=.05). The ceramics system, abutment material, and their interaction were significant for ΔE 00 values (P<.001). Clinically unacceptable results (ΔE 00 >2.25) were observed for lithium disilicate ceramics on titanium abutments (2.46-2.50). The ΔE 00 values of lithium disilicate ceramics for gold-palladium and titanium abutments were significantly higher than for other groups (P<.05). The color results (ΔE 00 >2.25) of an implant-supported lithium disilicate ceramic restoration may be clinically unacceptable if it is fabricated over a titanium abutment. Zirconia may be a more suitable abutment material for implant-supported ceramic restorations. Copyright © 2016 Editorial Council for the Journal of

  7. In Vitro and In Vivo Evaluations of Nano-Hydroxyapatite/Polyamide 66/Glass Fibre (n-HA/PA66/GF) as a Novel Bioactive Bone Screw

    PubMed Central

    Su, Bao; Peng, Xiaohua; Jiang, Dianming; Wu, Jun; Qiao, Bo; Li, Weichao; Qi, Xiaotong

    2013-01-01

    In this study, we prepared nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF) bioactive bone screws. The microstructure, morphology and coating of the screws were characterised, and the adhesion, proliferation and viability of MC3T3-E1 cells on n-HA/PA66/GF scaffolds were determined using scanning electron microscope, CCK-8 assays and cellular immunofluorescence analysis. The results confirmed that n-HA/PA66/GF scaffolds were biocompatible and had no negative effect on MC3T3-E1 cells in vitro. To investigate the in vivo biocompatibility, internal fixation properties and osteogenesis of the bioactive screws, both n-HA/PA66/GF screws and metallic screws were used to repair intercondylar femur fractures in dogs. General photography, CT examination, micro-CT examination, histological staining and biomechanical assays were performed at 4, 8, 12 and 24 weeks after operation. The n-HA/PA66/GF screws exhibited good biocompatibility, high mechanical strength and extensive osteogenesis in the host bone. Moreover, 24 weeks after implantation, the maximum push-out load of the bioactive screws was greater than that of the metallic screws. As shown by their good cytocompatibility, excellent biomechanical strength and fast formation and ingrowth of new bone, n-HA/PA66/GF screws are thus suitable for orthopaedic clinical applications. PMID:23861888

  8. Effects of abutment diameter, luting agent type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments.

    PubMed

    Safari, Sina; Hosseini Ghavam, Fereshteh; Amini, Parviz; Yaghmaei, Kaveh

    2018-02-01

    The aim of this study was to evaluate the effects of abutment diameter, cement type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. Sixty abutments with two different diameters, the height of which was reduced to 3 mm, were vertically mounted in acrylic resin blocks with matching implant analogues. The specimens were divided into 2 diameter groups: 4.5 mm and 5.5 mm (n=30). For each abutment a CAD/CAM metal coping was manufactured, with an occlusal loop. Each group was sub-divided into 3 sub-groups (n=10). In each subgroup, a different cement type was used: resin-modified glass-ionomer, resin cement and zinc-oxide-eugenol. After incubation and thermocycling, the removal force was measured using a universal testing machine at a cross-head speed of 0.5 mm/min. In zinc-oxide-eugenol group, after removal of the coping, the cement remnants were completely cleaned and the copings were re-cemented with resin cement and re-tested. Two-way ANOVA, post hoc Tukey tests, and paired t-test were used to analyze data (α=.05). The highest pulling force was registered in the resin cement group (414.8 N), followed by the re-cementation group (380.5 N). Increasing the diameter improved the retention significantly ( P =.006). The difference in retention between the cemented and recemented copings was not statistically significant ( P =.40). Resin cement provided retention almost twice as strong as that of the RMGI. Increasing the abutment diameter improved retention significantly. Re-cementation with resin cement did not exhibit any difference from the initial cementation with resin cement.

  9. Mechanical stability of a novel screw design after repeated insertion: can the double-thread screw serve as a back up?

    PubMed

    Wiendieck, Kurt; Müller, Helge; Buchfelder, Michael; Sommer, Björn

    2018-06-01

    We investigated mechanical pull-out behavior and tightening torque of a novel dual-core pedicle "6T screw" (6T). The aim of this study was to test if these changes in screw geometry are increasing the strength of the pedicle screw fixation after repeated insertion. Three different types of pedicle screws were inserted in rigid foam blocks. Tightening torque and pull-out strength were measured during two repetitive insertions of a standard 6.5×45-mm conical screw. The third insertion into the pilot hole was performed using either standard 6.5×45-mm or 7.2×45-mm conical screws or the novel 6.5×45-mm (6T) screw. Additionally, we performed a surface analysis to investigate the bone/screw interface. The maximal tightening torque at the third insertion of the novel 6T screw was 194% higher compared to the standard 6.5×45-mm conical screw and 135% higher compared to the standard 7.2×45-mm conical screw. The pull-out strength of the 6T screw showed no significant changes, and surface analysis revealed a compression of the screw-foam interface due to the different internal diameters. The modified geometrical design of the 6T screw seems to have no statistically significant effect on the pull-out strength, although it achieved a higher tightening torque. This might be due to the different pitch angle cutting a new thread into the material and also to the enlarged inner diameter.

  10. Finite Element Analysis of Osteosynthesis Screw Fixation in the Bone Stock: An Appropriate Method for Automatic Screw Modelling

    PubMed Central

    Wieding, Jan; Souffrant, Robert; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent

  11. [A computer aided design approach of all-ceramics abutment for maxilla central incisor].

    PubMed

    Sun, Yu-chun; Zhao, Yi-jiao; Wang, Yong; Han, Jing-yun; Lin, Ye; Lü, Pei-jun

    2010-10-01

    To establish the computer aided design (CAD) software platform of individualized abutment for the maxilla central incisor. Three-dimentional data of the incisor was collected by scanning and geometric transformation. Data mainly included the occlusal part of the healing abutment, the location carinae of the bedpiece, the occlusal 1/3 part of the artificial gingiva's inner surface, and so on. The all-ceramic crown designed in advanced was "virtual cutback" to get the original data of the abutment's supragingival part. The abutment's in-gum part was designed to simulate the individual natural tooth root. The functions such as "data offset", "bi-rail sweep surface" and "loft surface" were used in the process of CAD. The CAD route of the individualized all-ceramic abutment was set up. The functions and application methods were decided and the complete CAD process was realized. The software platform was basically set up according to the requests of the dental clinic.

  12. Influence of abutment materials on the resultant color of heat-pressed lithium disilicate ceramics.

    PubMed

    Shimada, Kazuki; Nakazawa, Motoko; Kakehashi, Yoshiyuki; Matsumura, Hideo

    2006-03-01

    The purpose of this study was to evaluate the influence of abutment materials on the color of IPS Empress 2 ceramic coping with different thicknesses. Ceramic coping specimens (12.0x12.0x0.8-2.0 mm) were fabricated from IPS Empress 2 material (Ingot-100, n=5/group). Abutment specimens were fabricated from a build-up composite, a gold alloy, or a silver-palladium alloy. Color was evaluated using a colorimeter according to the CIE L*a*b* system. The L*a*b* values of the ceramic coping specimens of different thicknesses on each abutment specimen were measured. Following which, the color difference (deltaE*ab) values between the ceramic coping specimens on various abutment specimens were calculated. Significant differences in deltaE*ab value were observed among different abutment specimens at certain ceramic coping thicknesses (P<0.05). Thus, it was concluded that the color of IPS Empress 2 coping material was influenced significantly by both the thickness of the coping and the color of the abutment material.

  13. Soil-structure interaction studies for understanding the behavior of integral abutment bridges.

    DOT National Transportation Integrated Search

    2012-03-01

    Integral Abutment Bridges (IAB) are bridges without any joints within the bridge deck or between the : superstructure and the abutments. An IAB provides many advantages during construction and maintenance of : a bridge. Soil-structure interactions at...

  14. Undertapping of Lumbar Pedicle Screws Can Result in Tapping With a Pitch That Differs From That of the Screw, Which Decreases Screw Pullout Force.

    PubMed

    Bohl, Daniel D; Basques, Bryce A; Golinvaux, Nicholas S; Toy, Jason O; Matheis, Erika A; Bucklen, Brandon S; Grauer, Jonathan N

    2015-06-15

    Survey of spine surgeons and biomechanical comparison of screw pullout forces. To investigate what may be a suboptimal practice regularly occurring in spine surgery. In order for a tap to function in its intended manner, the pitch of the tap should be the same as the pitch of the screw. Undertapping has been shown to increase the pullout force of pedicle screws compared with line-to-line tapping. However, given the way current commercial lumbar pedicle screw systems are designed, undertapping may result in a tap being used that has a different pitch from that of the screw (incongruent pitch). A survey asked participants questions to estimate the proportion of cases each participant performed in the prior year using various hole preparation techniques. Participant responses were interpreted in the context of manufacturing specifications of specific instrumentation systems. Screw pullout forces were compared between undertapping with incongruent pitch and undertapping with congruent pitch using 0.16 g/cm polyurethane foam block and 6.5-mm screws. Of the 3679 cases in which participants reported tapping, participants reported line-to-line tapping in 209 cases (5%), undertapping with incongruent pitch in 1156 cases (32%), and undertapping with congruent pitch in 2314 cases (63%). The mean pullout force for undertapping with incongruent pitch was 56 N (8%) less than the mean pullout force for undertapping with congruent pitch. This is equivalent to 13 lb. This study estimates that for about 1 out of every 3 surgical cases with tapping of lumbar pedicle screws in the United States, hole preparation is being performed by undertapping with incongruent pitch. This study also shows that undertapping with incongruent pitch results in a decrease in pullout force by 8% compared with undertapping with congruent pitch. Steps should be taken to correct this suboptimal practice. 3.

  15. Accuracy of electronic implant torque controllers following time in clinical service.

    PubMed

    Mitrani, R; Nicholls, J I; Phillips, K M; Ma, T

    2001-01-01

    Tightening of the screws in implant-supported restorations has been reported to be problematic, in that if the applied torque is too low, screw loosening occurs. If the torque is too high, then screw fracture can take place. Thus, accuracy of the torque driver is of the utmost importance. This study evaluated 4 new electronic torque drivers (controls) and 10 test electronic torque drivers, which had been in clinical service for a minimum of 5 years. Torque values of the test drivers were measured and were compared with the control values using a 1-way analysis of variance. Torque delivery accuracy was measured using a technique that simulated the clinical situation. In vivo, the torque driver turns the screw until the selected tightening torque is reached. In this laboratory experiment, an implant, along with an attached abutment and abutment gold screw, was held firmly in a Tohnichi torque gauge. Calibration accuracy for the Tohnichi is +/- 3% of the scale value. During torque measurement, the gold screw turned a minimum of 180 degrees before contact was made between the screw and abutment. Three torque values (10, 20, and 32 N-cm) were evaluated, at both high- and low-speed settings. The recorded torque measurements indicated that the 10 test electronic torque drivers maintained a torque delivery accuracy equivalent to the 4 new (unused) units. Judging from the torque output values obtained from the 10 test units, the clinical use of the electronic torque driver suggests that accuracy did not change significantly over the 5-year period of clinical service.

  16. A novel dental implant abutment with micro-motion capability--development and biomechanical evaluations.

    PubMed

    Chen, Yen-Yin; Chen, Weng-Pin; Chang, Hao-Hueng; Huang, Shih-Hao; Lin, Chun-Pin

    2014-02-01

    The aim of this study was to develop a novel dental implant abutment with a micro-motion mechanism that imitates the biomechanical behavior of the periodontal ligament, with the goal of increasing the long-term survival rate of dental implants. Computer-aided design software was used to design a novel dental implant abutment with an internal resilient component with a micro-motion capability. The feasibility of the novel system was investigated via finite element analysis. Then, a prototype of the novel dental implant abutment was fabricated, and the mechanical behavior was evaluated. The results of the mechanical tests and finite element analysis confirmed that the novel dental implant abutment possessed the anticipated micro-motion capability. Furthermore, the nonlinear force-displacement behavior apparent in this micro-motion mechanism imitated the movement of a human tooth. The slope of the force-displacement curve of the novel abutment was approximately 38.5 N/mm before the 0.02-mm displacement and approximately 430 N/mm after the 0.03-mm displacement. The novel dental implant abutment with a micro-motion mechanism actually imitated the biomechanical behavior of a natural tooth and provided resilient function, sealing, a non-separation mechanism, and ease-of-use. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  17. Comparisons of maximum deformation and failure forces at the implant–abutment interface of titanium implants between titanium-alloy and zirconia abutments with two levels of marginal bone loss

    PubMed Central

    2013-01-01

    Background Zirconia materials are known for their optimal aesthetics, but they are brittle, and concerns remain about whether their mechanical properties are sufficient for withstanding the forces exerted in the oral cavity. Therefore, this study compared the maximum deformation and failure forces of titanium implants between titanium-alloy and zirconia abutments under oblique compressive forces in the presence of two levels of marginal bone loss. Methods Twenty implants were divided into Groups A and B, with simulated bone losses of 3.0 and 1.5 mm, respectively. Groups A and B were also each divided into two subgroups with five implants each: (1) titanium implants connected to titanium-alloy abutments and (2) titanium implants connected to zirconia abutments. The maximum deformation and failure forces of each sample was determined using a universal testing machine. The data were analyzed using the nonparametric Mann–Whitney test. Results The mean maximum deformation and failure forces obtained the subgroups were as follows: A1 (simulated bone loss of 3.0 mm, titanium-alloy abutment) = 540.6 N and 656.9 N, respectively; A2 (simulated bone loss of 3.0 mm, zirconia abutment) = 531.8 N and 852.7 N; B1 (simulated bone loss of 1.5 mm, titanium-alloy abutment) = 1070.9 N and 1260.2 N; and B2 (simulated bone loss of 1.5 mm, zirconia abutment) = 907.3 N and 1182.8 N. The maximum deformation force differed significantly between Groups B1 and B2 but not between Groups A1 and A2. The failure force did not differ between Groups A1 and A2 or between Groups B1 and B2. The maximum deformation and failure forces differed significantly between Groups A1 and B1 and between Groups A2 and B2. Conclusions Based on this experimental study, the maximum deformation and failure forces are lower for implants with a marginal bone loss of 3.0 mm than of 1.5 mm. Zirconia abutments can withstand physiological occlusal forces applied in the anterior region. PMID

  18. Abutment tooth loss in patients with overdentures.

    PubMed

    Ettinger, Ronald L; Qian, Fang

    2004-06-01

    Since the 1960s, the use of natural teeth as overdenture abutments has become part of accepted clinical practice. Several longitudinal studies have been conducted, but tooth loss has not been reported to be a significant problem. The aim of this study was to identify the incidence and causes of tooth loss in a prospective cohort study of subjects wearing overdentures. The study, conducted between 1973 and 1994, evaluated 273 subjects (62.3 percent male) with a mean age of 59.6 years. Of the 273 subjects with 666 abutments, 74 lost 133 abutments. The most common cause of tooth loss was periodontal disease (29.3 percent) followed by periapical lesions (18.8 percent) and caries (16.5 percent). Through logistic regression, the authors found that subjects who lost teeth were more likely to have medical problems that could cause soft-tissue lesions of the oral mucosa, were less likely to use fluoride daily and were less likely to return for yearly recall visits. The authors found 22 vertical fractures in 17 subjects. Chi2 analysis revealed that overdenture teeth in the maxillary arch that were opposed by natural teeth were more likely to experience vertical fractures. In a study that followed up some patients for as long as 22 years, the rate of tooth loss was 20.0 percent. Many of these failures could have been prevented if patients had practiced better oral hygiene. The findings suggest that if a dentist recommends overdenture therapy, the patient needs to be examined regularly to reduce the risk of experiencing caries and periodontal disease. Also, if the abutments are in the maxilla and are opposed by natural teeth, the dentist should consider using thimble crowns to reduce the risk of vertical fractures.

  19. [Clinical application of percutaneous iliosacral screws combined with pubic ramus screws in Tile B pelvic fracture].

    PubMed

    Xu, Qi-Fei; Lin, Kui-Ran; Zhao, Dai-Jie; Zhang, Song-Qin; Feng, Sheng-Kai; Li, Chen

    2017-03-25

    To investigate the application and effect of minimally invasive percutaneous anterior pelvic pubic ramus screw fixation in Tile B fractures. A retrospective review was conducted on 56 patients with posterior pelvic ring injury combined with fractures of anterior pubic and ischiadic ramus treated between May 2010 and August 2015, including 31 males and 25 females with an average age of 36.8 years old ranging from 35 to 65 years old. Based on the Tile classification, there were 13 cases of Tile B1 type, 28 cases of Tile B2 type and 15 cases of Tile B3 type. Among them, 26 patients were treated with sacroiliac screws combined with external fixation (external fixator group) and the other 30 patients underwent sacroiliac screw fixation combined with anterior screw fixation (pubic ramus screw group). Postoperative complications, postoperative ambulation time, fracture healing, blood loss, Majeed pelvic function score and visual analogue scale(VAS) were compared between two groups. Fifty-four patients were followed up from 3 to 24 months with a mean of 12 months. There were no significant difference in the peri-operative bleeding and operation time between two groups( P >0.05). The postoperative activity time and fracture healing time of pubic ramus screw group were shorter than those of the external fixator group, the differences were statistically significant( P <0.05). The Majeed score, VAS score of pubic ramus screw group were higher than those of the external fixator group, the differences were statistically significant( P <0.05). The incidence of postoperative complications of pubic ramus screw was lower than that of the external fixator group, the difference was statistically significant ( P <0.05). Percutaneous iliosacral screws fixation combined with the pubic ramus screw is an effective and safty treatment method to the Tile B pelvic fracture. It has advantages of early ambulation, relief of the pain and few complications.

  20. Retention of cast crown copings cemented to implant abutments.

    PubMed

    Dudley, J E; Richards, L C; Abbott, J R

    2008-12-01

    The cementation of crowns to dental implant abutments is an accepted form of crown retention that requires consideration of the properties of available cements within the applied clinical context. Dental luting agents are exposed to a number of stressors that may reduce crown retention in vivo, not the least of which is occlusal loading. This study investigated the influence of compressive cyclic loading on the physical retention of cast crown copings cemented to implant abutments. Cast crown copings were cemented to Straumann synOcta titanium implant abutments with three different readily used and available cements. Specimens were placed in a humidifier, thermocycled and subjected to one of four quantities of compressive cyclic loading. The uniaxial tensile force required to remove the cast crown copings was then recorded. The mean retention values for crown copings cemented with Panavia-F cement were statistically significantly greater than both KetacCem and TempBond non-eugenol cements at each compressive cyclic loading quantity. KetacCem and TempBond non-eugenol cements produced relatively low mean retention values that were not statistically significantly different at each quantity of compressive cyclic loading. Compressive cyclic loading had a statistically significant effect on Panavia-F specimens alone, but increased loading quantities produced no further statistically significant difference in mean retention. Within the limitations of the current in vitro conditions employed in this study, the retention of cast crown copings cemented to Straumann synOcta implant abutments with a resin, glass ionomer and temporary cement was significantly affected by cement type but not compressive cyclic loading. Resin cement is the cement of choice for the definitive non-retrievable cementation of cast crown copings to Straumann synOcta implant abutments out of the three cements tested.

  1. Bacterial microleakage at the abutment-implant interface, in vitro study.

    PubMed

    Larrucea, Carlos; Conrado, Aparicio; Olivares, Denise; Padilla, Carlos; Barrera, Andrea; Lobos, Olga

    2018-02-15

    In implant rehabilitation, a microspace is created at the abutment-implant interface (AII). Previous research has shown that oral microbiome can proliferate in this microspace and affect periimplant tissues, causing inflammation in peri-implant tissues. Preventing microbial leakages through the AII is therefore an important goal in implantology. To determine the presence of marginal bacterial microleakage at the AII according to the torque applied to the prosthetic implant in vitro. Twenty-five Ticare Inhex internal conical implants (MG Mozo-Grau, Valladolid, España) were connected to a prosthetic abutment using torques of <10, 10, 20, 30, and 30 N and then sealed. The samples were submitted to cycles of occlusal loads and thermocycling, then one sample of each group was observed by micro TC, while the rest were mounted on devices according to the bacterial leakage model with Porphyromonas gingivalis. Bacterial leakage was observed only in the <10 and 10 N torque samples, and the same groups presented poor abutment/implant adjustment as determined by micro-CT. The different torques applied to the abutment-implant system condition the bacterial leakage at the implant interface. No microleakage was observed at 20 and 30 N. © 2018 Wiley Periodicals, Inc.

  2. Comparison of effectiveness between cork-screw and peg-screw electrodes for transcranial motor evoked potential monitoring using the finite element method.

    PubMed

    Tomio, Ryosuke; Akiyama, Takenori; Ohira, Takayuki; Yoshida, Kazunari

    2016-01-01

    Intraoperative monitoring of motor evoked potentials by transcranial electric stimulation is popular in neurosurgery for monitoring motor function preservation. Some authors have reported that the peg-screw electrodes screwed into the skull can more effectively conduct current to the brain compared to subdermal cork-screw electrodes screwed into the skin. The aim of this study was to investigate the influence of electrode design on transcranial motor evoked potential monitoring. We estimated differences in effectiveness between the cork-screw electrode, peg-screw electrode, and cortical electrode to produce electric fields in the brain. We used the finite element method to visualize electric fields in the brain generated by transcranial electric stimulation using realistic three-dimensional head models developed from T1-weighted images. Surfaces from five layers of the head were separated as accurately as possible. We created the "cork-screws model," "1 peg-screw model," "peg-screws model," and "cortical electrode model". Electric fields in the brain radially diffused from the brain surface at a maximum just below the electrodes in coronal sections. The coronal sections and surface views of the brain showed higher electric field distributions under the peg-screw compared to the cork-screw. An extremely high electric field was observed under cortical electrodes. Our main finding was that the intensity of electric fields in the brain are higher in the peg-screw model than the cork-screw model.

  3. Measurement of Tip Apex Distance and Migration of Lag Screws and Novel Blade Screw Used for the Fixation of Intertrochanteric Fractures.

    PubMed

    Yang, Jesse Chieh-Szu; Chen, Hsin-Chang; Lai, Yu-Shu; Cheng, Cheng-Kung

    2017-01-01

    Fixation with a dynamic hip screw (DHS) is one of the most common methods for stabilizing intertrochanteric fractures, except for unstable and reverse oblique fracture types. However, failure is often observed in osteoporotic patients whereby the lag screw effectively 'cuts out' through the weak bone. Novel anti-migration blades have been developed to be used in combination with a lag screw ('Blade Screw') to improve the fixation strength in osteoporotic intertrochanteric fractures. An in-vitro biomechanical study and a retrospective clinical study were performed to evaluate lag screw migration when using the novel Blade Screw and a traditional threaded DHS. The biomechanical study showed both the Blade Screw and DHS displayed excessive migration (≥10 mm) before reaching 20,000 loading cycles in mild osteoporotic bone, but overall migration of the Blade Screw was significantly less (p ≤ 0.03). Among the patients implanted with a Blade Screw in the clinical study, there was no significant variation in screw migration at 3-months follow-up (P = 0.12). However, the patient's implanted with a DHS did display significantly greater migration (P<0.001) than those implanted with the Blade Screw. In conclusion, the Blade Screw stabilizes the bone fragments during dynamic loading so as to provide significantly greater resistance to screw migration in patients with mild osteoporosis.

  4. Effects of abutment diameter, luting agent type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments

    PubMed Central

    Safari, Sina; Amini, Parviz; Yaghmaei, Kaveh

    2018-01-01

    PURPOSE The aim of this study was to evaluate the effects of abutment diameter, cement type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. MATERIALS AND METHODS Sixty abutments with two different diameters, the height of which was reduced to 3 mm, were vertically mounted in acrylic resin blocks with matching implant analogues. The specimens were divided into 2 diameter groups: 4.5 mm and 5.5 mm (n=30). For each abutment a CAD/CAM metal coping was manufactured, with an occlusal loop. Each group was sub-divided into 3 sub-groups (n=10). In each subgroup, a different cement type was used: resin-modified glass-ionomer, resin cement and zinc-oxide-eugenol. After incubation and thermocycling, the removal force was measured using a universal testing machine at a cross-head speed of 0.5 mm/min. In zinc-oxide-eugenol group, after removal of the coping, the cement remnants were completely cleaned and the copings were re-cemented with resin cement and re-tested. Two-way ANOVA, post hoc Tukey tests, and paired t-test were used to analyze data (α=.05). RESULTS The highest pulling force was registered in the resin cement group (414.8 N), followed by the re-cementation group (380.5 N). Increasing the diameter improved the retention significantly (P=.006). The difference in retention between the cemented and recemented copings was not statistically significant (P=.40). CONCLUSION Resin cement provided retention almost twice as strong as that of the RMGI. Increasing the abutment diameter improved retention significantly. Re-cementation with resin cement did not exhibit any difference from the initial cementation with resin cement. PMID:29503708

  5. Pedicle screw placement using image guided techniques.

    PubMed

    Merloz, P; Tonetti, J; Pittet, L; Coulomb, M; Lavalleé, S; Sautot, P

    1998-09-01

    Clinical evaluation of a computer assisted spine surgical system is presented. Eighty pedicle screws were inserted using computer assisted technology in thoracic and lumbar vertebrae for treatment of different types of disorders including fractures, spondylolisthesis, and scoliosis. Fifty-two patients with severe fractures, spondylolisthesis, or pseudoarthrosis of T10 to L5 were treated using a computer assisted technique on 1/2 the patients and performing the screw insertion manually for the other 1/2. At the same time, 28 pedicle screws were inserted in T12 to L4 vertebrae for scoliosis with the help of the computer assisted technique. Surgery was followed in all cases (66 vertebrae; 132 pedicle screws) by postoperative radiographs and computed tomographic examination, on which measurements of screw position relative to pedicle position could be done. For fractures, spondylolisthesis, or pseudarthrosis, comparison between the two groups showed that four screws in 52 (8%) vertebrae had incorrect placement with computer assisted technique whereas 22 screws in 52 (42%) vertebrae had incorrect placement with manual insertion. In patients with scoliosis, four screws in 28 (14%) vertebrae had incorrect placement. In all of the patients (132 pedicle screws) there were no neurologic complications. These results show that a computer assisted technique is much more accurate and safe than manual insertion.

  6. Assessment of reliability of CAD-CAM tooth-colored implant custom abutments.

    PubMed

    Guilherme, Nuno Marques; Chung, Kwok-Hung; Flinn, Brian D; Zheng, Cheng; Raigrodski, Ariel J

    2016-08-01

    Information is lacking about the fatigue resistance of computer-aided design and computer-aided manufacturing (CAD-CAM) tooth-colored implant custom abutment materials. The purpose of this in vitro study was to investigate the reliability of different types of CAD-CAM tooth-colored implant custom abutments. Zirconia (Lava Plus), lithium disilicate (IPS e.max CAD), and resin-based composite (Lava Ultimate) abutments were fabricated using CAD-CAM technology and bonded to machined titanium-6 aluminum-4 vanadium (Ti-6Al-4V) alloy inserts for conical connection implants (NobelReplace Conical Connection RP 4.3×10 mm; Nobel Biocare). Three groups (n=19) were assessed: group ZR, CAD-CAM zirconia/Ti-6Al-4V bonded abutments; group RC, CAD-CAM resin-based composite/Ti-6Al-4V bonded abutments; and group LD, CAD-CAM lithium disilicate/Ti-6Al-4V bonded abutments. Fifty-seven implant abutments were secured to implants and embedded in autopolymerizing acrylic resin according to ISO standard 14801. Static failure load (n=5) and fatigue failure load (n=14) were tested. Weibull cumulative damage analysis was used to calculate step-stress reliability at 150-N and 200-N loads with 2-sided 90% confidence limits. Representative fractured specimens were examined using stereomicroscopy and scanning electron microscopy to observe fracture patterns. Weibull plots revealed β values of 2.59 for group ZR, 0.30 for group RC, and 0.58 for group LD, indicating a wear-out or cumulative fatigue pattern for group ZR and load as the failure accelerating factor for groups RC and LD. Fractographic observation disclosed that failures initiated in the interproximal area where the lingual tensile stresses meet the compressive facial stresses for the early failure specimens. Plastic deformation of titanium inserts with fracture was observed for zirconia abutments in fatigue resistance testing. Significantly higher reliability was found in group ZR, and no significant differences in reliability were

  7. Comparison of Expansive Pedicle Screw and Polymethylmethacrylate-Augmented Pedicle Screw in Osteoporotic Sheep Lumbar Vertebrae: Biomechanical and Interfacial Evaluations

    PubMed Central

    Zhang, Bo; Xie, Qing-yun; Wang, Cai-ru; Liu, Jin-biao; Liao, Dong-fa; Jiang, Kai; Lei, Wei; Pan, Xian-ming

    2013-01-01

    Background It was reported that expansive pedicle screw (EPS) and polymethylmethacrylate-augmented pedicle screw (PMMA-PS) could be used to increase screw stability in osteoporosis. However, there are no studies comparing the two kinds of screws in vivo. Thus, we aimed to compare biomechanical and interfacial performances of EPS and PMMA-PS in osteoporotic sheep spine. Methodology/Principal Findings After successful induction of osteoporotic sheep, lumbar vertebrae in each sheep were randomly divided into three groups. The conventional pedicle screw (CPS) was inserted directly into vertebrae in CPS group; PMMA was injected prior to insertion of CPS in PMMA-PS group; and the EPS was inserted in EPS group. Sheep were killed and biomechanical tests, micro-CT analysis and histological observation were performed at both 6 and 12 weeks post-operation. At 6-week and 12-week, screw stabilities in EPS and PMMA-PS groups were significantly higher than that in CPS group, but there were no significant differences between EPS and PMMA-PS groups at two study periods. The screw stability in EPS group at 12-week was significantly higher than that at 6-week. The bone trabeculae around the expanding anterior part of EPS were more and denser than that in CPS group at 6-week and 12-week. PMMA was found without any degradation and absorption forming non-biological “screw-PMMA-bone” interface in PMMA-PS group, however, more and more bone trabeculae surrounded anterior part of EPS improving local bone quality and formed biological “screw-bone” interface. Conclusions/Significance EPS can markedly enhance screw stability with a similar effect to the traditional method of screw augmentation with PMMA in initial surgery in osteoporosis. EPS can form better biological interface between screw and bone than PMMA-PS. In addition, EPS have no risk of thermal injury, leakage and compression caused by PMMA. We propose EPS has a great application potential in augmentation of screw stability

  8. Comparison of Observed and Predicted Abutment Scour at Selected Bridges in Maine

    USGS Publications Warehouse

    Lombard, Pamela J.; Hodgkins, Glenn A.

    2008-01-01

    Maximum abutment-scour depths predicted with five different methods were compared to maximum abutment-scour depths observed at 100 abutments at 50 bridge sites in Maine with a median bridge age of 66 years. Prediction methods included the Froehlich/Hire method, the Sturm method, and the Maryland method published in Federal Highway Administration Hydraulic Engineering Circular 18 (HEC-18); the Melville method; and envelope curves. No correlation was found between scour calculated using any of the prediction methods and observed scour. Abutment scour observed in the field ranged from 0 to 6.8 feet, with an average observed scour of less than 1.0 foot. Fifteen of the 50 bridge sites had no observable scour. Equations frequently overpredicted scour by an order of magnitude and in some cases by two orders of magnitude. The equations also underpredicted scour 4 to 14 percent of the time.

  9. Heat Generation on Implant Surface During Abutment Preparation at Different Elapsed Time Intervals.

    PubMed

    Al-Keraidis, Abdullah; Aleisa, Khalil; Al-Dwairi, Ziad Nawaf; Al-Tahawi, Hamdi; Hsu, Ming-Lun; Lynch, Edward; Özcan, Mutlu

    2017-10-01

    The purpose of this study was to evaluate heat generation at the implant surface caused by abutment preparation using a diamond bur in a high-speed dental turbine in vitro at 2 different water-coolant temperatures. Thirty-two titanium-alloy abutments were connected to a titanium-alloy implant embedded in an acrylic resin placed within a water bath at a controlled temperature of 37°C. The specimens were equally distributed into 2 groups (16 each). Group 1: the temperature was maintained at 20 ± 1°C; and group 2: the temperature was maintained at 32 ± 1°C. Each abutment was prepared in the axial plane for 1 minute and in the occlusal plane for 1 minute. The temperature of the heat generated from abutment preparation was recorded and measured at 3 distinct time intervals. Water-coolant temperature (20°C vs 32°C) had a statistically significant effect on the implant's temperature change during preparation of the abutment (P < 0.0001). The use of water-coolant temperature of 20 ± 1°C during preparation of the implant abutment decreased the temperature recorded at the implant surface to 34.46°C, whereas the coolant temperature of 32 ± 1°C increased the implant surface temperature to 40.94°C.

  10. Leakage evaluation of original and compatible implant–abutment connections: In vitro study using Rhodamine B

    PubMed Central

    Tehini, George; Rifai, Khaldoun; Bou Nasser Eddine, Farah; Badran, Bassam; Akl, Haidar

    2014-01-01

    Leakage has been addressed as a major contributing factor to inflammatory reactions at the implant–abutment connection, leading to problems such as oral malodor, inflammation, and marginal bone loss. The aim of this study was to investigate in vitro the leakage at implant–abutment interface of OsseoSpeed™ implants connected to original and compatible abutments. A total of 28 OsseoSpeed implants were divided into four groups (n = 7). Each group was connected to four different abutments according to manufacturers’ recommendations: group A (TiDesign™); group B (Natea™); group C (Dual™); and group D (Implanet™) abutments. The inner volume of each implant–abutment combination was calculated and leakage was detected for each group with spectrophotometric analysis at 1 h (D0) and 48 h (D1) of incubation time using Rhodamine B. At 1 h, leakage volume was significantly lower in TiDesign and Dual than in Natea and Implanet (P < 0.001). At 48 h, however, leakage was significantly lower between TiDesign and all other systems (P < 0.005). Compatible abutments do not fit internal connection of OsseoSpeed implants perfectly, which increases the leakage of the final assembly. PMID:25342984

  11. Marginal Bone Remodeling around healing Abutment vs Final Abutment Placement at Second Stage Implant Surgery: A 12-month Randomized Clinical Trial.

    PubMed

    Nader, Nabih; Aboulhosn, Maissa; Berberi, Antoine; Manal, Cordahi; Younes, Ronald

    2016-01-01

    The periimplant bone level has been used as one of the criteria to assess the success of dental implants. It has been documented that the bone supporting two-piece implants undergoes resorption first following the second-stage surgery and later on further to abutment connection and delivery of the final prosthesis. The aim of this multicentric randomized clinical trial was to evaluate the crestal bone resorption around internal connection dental implants using a new surgical protocol that aims to respect the biological distance, relying on the benefit of a friction fit connection abutment (test group) compared with implants receiving conventional healing abutments at second-stage surgery (control group). A total of partially edentulous patients were consecutively treated at two private clinics, with two adjacent two-stage implants. Three months after the first surgery, one of the implants was randomly allocated to the control group and was uncovered using a healing abutment, while the other implant received a standard final abutment and was seated and tightened to 30 Ncm. At each step of the prosthetic try-in, the abutment in the test group was removed and then retightened to 30 Ncm. Horizontal bone changes were assessed using periapical radiographs immediately after implant placement and at 3 (second-stage surgery), 6, 9 and 12 months follow-up examinations. At 12 months follow-up, no implant failure was reported in both groups. In the control group, the mean periimplant bone resorption was 0.249 ± 0.362 at M3, 0.773 ± 0.413 at M6, 0.904 ± 0.36 at M9 and 1.047 ± 0.395 at M12. The test group revealed a statistically significant lower marginal bone loss of 20.88% at M3 (0.197 ± 0.262), 22.25% at M6 (0.601 ± 0.386), 24.23% at M9 (0.685 ± 0.341) and 19.2% at M9 (0.846 ± 0.454). The results revealed that bone loss increased over time, with the greatest change in bone loss occurring between 3 and 6 months. Alveolar bone loss was significantly greater in the

  12. Machined and plastic copings in three-element prostheses with different types of implantabutment joints: a strain gauge comparative analysis

    PubMed Central

    NISHIOKA, Renato Sussumu; NISHIOKA, Lea Nogueira Braulino de Melo; ABREU, Celina Wanderley; de VASCONCELLOS, Luis Gustavo Oliveira; BALDUCCI, Ivan

    2010-01-01

    Objective Using strain gauge (SG) analysis, the aim of this in vitro study was quantify the strain development during the fixation of three-unit screw implant-supported fixed partial dentures, varying the types of implant-abutment joints and the type of prosthetic coping. The hypotheses were that the type of hexagonal connection would generate different microstrains and the type of copings would produce similar microstrains after prosthetic screws had been tightened onto microunit abutments. Materials and methods Three dental implants with external (EH) and internal (IH) hexagonal configurations were inserted into two polyurethane blocks. Microunit abutments were screwed onto their respective implant groups, applying a torque of 20 Ncm. Machined Co-Cr copings (M) and plastic prosthetic copings (P) were screwed onto the abutments, which received standard wax patterns. The wax patterns were cast in Co-Cr alloy (n=5), forming four groups: G1) EH/M; G2) EH/P; G3) IH/M and G4) IH/P. Four SGs were bonded onto the surface of the block tangentially to the implants, SG 1 mesially to implant 1, SG 2 and SG 3 mesially and distally to implant 2, respectively, and SG 4 distally to implant 3. The superstructure’s occlusal screws were tightened onto microunit abutments with 10 Ncm torque using a manual torque driver. The magnitude of microstrain on each SG was recorded in units of microstrain (µε). The data were analyzed statistically by ANOVA and Tukey’s test (p<0.05). Results Microstrain values of each group were: G1= 338.1±223.0 µε; G2= 363.9±190.9 µε; G3= 415.1±53.5 µε; G4= 363.9±190.9 µε. No statistically significant difference was found between EH and IH, regardless of the type of copings (p>0.05). The hypotheses were partially accepted. Conclusions It was concluded that the type of hexagonal connection and coping presented similar mechanical behavior under tightening conditions. PMID:20856998

  13. The general theory of blade screws including propellers, fans, helicopter screws, helicoidal pumps, turbo-motors, and different kinds of helicoidal blades

    NASA Technical Reports Server (NTRS)

    De Bothezat, George

    1920-01-01

    Report presents a theory which gives a complete picture and an exact quantitative analysis of the whole phenomenon of the working of blade screws, but also unites in a continuous whole the entire scale of states of work conceivable for a blade screw. Chapter 1 is devoted to the establishment of the system of fundamental equations relating to the blade screw. Chapter 2 contains the general discussion of the 16 states of work which may establish themselves for a blade screw. The existence of the vortex ring state and the whirling phenomenon are established. All the fundamental functions which enter the blade-screw theory are submitted to a general analytical discussion. The general outline of the curve of the specific function is examined. Two limited cases of the work of the screw, the screw with a zero constructive pitch and the screw with an infinite constructive pitch, are pointed out. Chapter 3 is devoted to the study of the propulsive screw or propeller. (author)

  14. Fracture Gap Reduction With Variable-Pitch Headless Screws.

    PubMed

    Roebke, Austin J; Roebke, Logan J; Goyal, Kanu S

    2018-04-01

    Fully threaded, variable-pitch, headless screws are used in many settings in surgery and have been extensively studied in this context, especially in regard to scaphoid fractures. However, it is not well understood how screw parameters such as diameter, length, and pitch variation, as well as technique parameters such as depth of drilling, affect gap closure. Acutrak 2 fully threaded variable-pitch headless screws of various diameters (Standard, Mini, and Micro) and lengths (16-28 mm) were inserted into polyurethane blocks of "normal" and "osteoporotic" bone model densities using a custom jig. Three drilling techniques (drill only through first block, 4 mm into second block, or completely through both blocks) were used. During screw insertion, fluoroscopic images were taken and later analyzed to measure gap reduction. The effect of backing the screw out after compression was evaluated. Drilling at least 4 mm past the fracture site reduces distal fragment push-off compared with drilling only through the proximal fragment. There were no significant differences in gap closure in the normal versus the osteoporotic model. The Micro screw had a smaller gap closure than both the Standard and the Mini screws. After block contact and compression with 2 subsequent full forward turns, backing the screw out by only 1 full turn resulted in gapping between the blocks. Intuitively, fully threaded headless variable-pitch screws can obtain compression between bone fragments only if the initial gap is less than the gap closed. Gap closure may be affected by drilling technique, screw size, and screw length. Fragment compression may be immediately lost if the screw is reversed. We describe characteristics of variable-pitch headless screws that may assist the surgeon in screw choice and method of use. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  15. Influence of implant abutment material and ceramic thickness on optical properties.

    PubMed

    Jirajariyavej, Bundhit; Wanapirom, Peeraphorn; Anunmana, Chuchai

    2018-05-01

    Anterior shade matching is an essential factor influencing the esthetics of a ceramic restoration. Dentists face a challenge when the color of an implant abutment creates an unsatisfactory match with the ceramic restoration or neighboring teeth. The purpose of this in vitro study was to evaluate the influence of abutment material and ceramic thickness on the final color of different ceramic systems. Four experimental and control ceramic specimens in shade A3 were cut from IPS e.max CAD, IPS Empress CAD, and VITA Suprinity PC blocks. These specimens had thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm, respectively, for the experimental groups, and 4 mm for the controls. Background abutment specimens were fabricated to yield 3 different shades: white zirconia, yellow zirconia, and titanium at a 3-mm thickness. All 3 ceramic specimens in each thickness were placed in succession on different abutment backgrounds with glycerin optical fluid in between, and the color was measured. A digital spectrophotometer was used to record the specimen color value in the Commission Internationale De L'éclairage (CIELab) color coordinates system and to calculate the color difference (ΔE) between the control and experimental groups. The Kruskal-Wallis test was used to analyze the effect of ceramic thickness on different abutments, and the pair-wise test was used to evaluate within the group (α=.05). The color differences between the test groups and the control decreased with increasing ceramic thickness for every background material. In every case, significant differences were found between 1.0- and 2.5-mm ceramic thicknesses. Only certain 2.5-mm e.max CAD, VITA Suprinity PC, and Empress CAD specimens on yellow-shade zirconia or VITA Suprinity PC on titanium were identified as clinically acceptable (ΔE<3). Increasing ceramic restoration thickness over the abutment background decreased the color mismatch. Increasing the thickness of ceramic on a yellow-shaded zirconia abutment

  16. Standard Waste Box Lid Screw Removal Option Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anast, Kurt Roy

    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  17. Histological evaluations and inflammatory responses of different dental implant abutment materials: A human histology pilot study.

    PubMed

    Sampatanukul, Teeratida; Serichetaphongse, Pravej; Pimkhaokham, Atiphan

    2018-04-01

    Improvements of soft tissue to the abutment surface results in more stable peri-implant conditions, however, few human histological studies have compared soft tissue responses around different abutment materials. To describe the peri-implant tissue around 3 abutment materials; titanium, zirconia, and gold alloy, over an 8-week healing period. Fifteen edentulous sites were treated with implants. Eight weeks later, peri-implant tissue was harvested and processed using a nonseparation resin embedded technique. The tissue attachment characteristics were assessed at clinical stages using the gingival index (GI) score, surgical stage (surgical score), and histological stage (histological attachment percentage). Additionally, the inflammatory responses were evaluated using inflammatory extent and inflammatory cellularity grades. Nonparametrical statistics were used to describe the GI and surgical scores, and analytical statistics were used to analyze the histological attachment percentages as well as the inflammatory extent and cellularity grades amongst the 3 groups. There were no statistically significant differences among the groups for GI score (P = .071) and surgical score (P = .262). Titanium and zirconia exhibited nearly similar mean histological attachment percentages while gold alloy had a significantly lower percentage (P = .004). For the inflammatory extent and cellularity grades, the odds of being one grade higher for gold alloy abutment was 5.18 and 17.8 times that of titanium abutment, respectively. However, for the zirconia abutment, the odds were 0.87 and 7.5 times higher than the titanium group. The tissue around the gold alloy abutments resulted in worse attachment conditions compared with the titanium and zirconia abutments. Inflammation tended to be higher in the tissue around the gold alloy abutments than the titanium and zirconia abutments. © 2017 Wiley Periodicals, Inc.

  18. Hydraulic Performance of Shallow Foundations for the Support of Vertical-Wall Bridge Abutments

    DOT National Transportation Integrated Search

    2017-02-01

    This study combined abutment flume experiments with numerical modeling using computational fluid dynamics (CFD) to investigate flow fields and scour at vertical-wall abutments with shallow foundations. The focus was situations dominated by flow contr...

  19. Thoracic, Lumbar, and Sacral Pedicle Screw Placement Using Stryker-Ziehm Virtual Screw Technology and Navigated Stryker Cordless Driver 3: Technical Note.

    PubMed

    Satarasinghe, Praveen; Hamilton, Kojo D; Tarver, Michael J; Buchanan, Robert J; Koltz, Michael T

    2018-04-17

    Utilization of pedicle screws (PS) for spine stabilization is common in spinal surgery. With reliance on visual inspection of anatomical landmarks prior to screw placement, the free-hand technique requires a high level of surgeon skill and precision. Three-dimensional (3D), computer-assisted virtual neuronavigation improves the precision of PS placement and minimization steps. Twenty-three patients with degenerative, traumatic, or neoplastic pathologies received treatment via a novel three-step PS technique that utilizes a navigated power driver in combination with virtual screw technology. (1) Following visualization of neuroanatomy using intraoperative CT, a navigated 3-mm match stick drill bit was inserted at an anatomical entry point with a screen projection showing a virtual screw. (2) A Navigated Stryker Cordless Driver with an appropriate tap was used to access the vertebral body through a pedicle with a screen projection again showing a virtual screw. (3) A Navigated Stryker Cordless Driver with an actual screw was used with a screen projection showing the same virtual screw. One hundred and forty-four consecutive screws were inserted using this three-step, navigated driver, virtual screw technique. Only 1 screw needed intraoperative revision after insertion using the three-step, navigated driver, virtual PS technique. This amounts to a 0.69% revision rate. One hundred percent of patients had intraoperative CT reconstructed images taken to confirm hardware placement. Pedicle screw placement utilizing the Stryker-Ziehm neuronavigation virtual screw technology with a three step, navigated power drill technique is safe and effective.

  20. Are We Underestimating the Significance of Pedicle Screw Misplacement?

    PubMed

    Sarwahi, Vishal; Wendolowski, Stephen F; Gecelter, Rachel C; Amaral, Terry; Lo, Yungtai; Wollowick, Adam L; Thornhill, Beverly

    2016-05-01

    A retrospective review of charts, x-rays (XRs) and computed tomography (CT) scans was performed. To evaluate the accuracy of pedicle screw placement using a novel classification system to determine potentially significant screw misplacement. The accuracy rate of pedicle screw (PS) placement varies from 85% to 95% in the literature. This demonstrates technical ability but does not represent the impact of screw misplacement on individual patients. This study quantifies the rate of screw misplacement on a per-patient basis to highlight its effect on potential morbidity. A retrospective review of charts, XRs and low-dose CT scans of 127 patients who underwent spinal fusion with pedicle screws for spinal deformity was performed. Screws were divided into four categories: screws at risk (SAR), indeterminate misplacements (IMP), benign misplacements (BMP), accurately placed (AP). A total of 2724 screws were placed in 127 patients. A total of 2396 screws were placed accurately (87.96%). A total of 247 screws (9.07%) were BMP, 52 (1.91%) were IMP, and 29 (1.06%) were considered SAR. Per-patient analysis showed 23 (18.11%) of patients had all screws AP. Thirty-five (27.56%) had IMP and 18 (14.17%) had SAR. Risk factor analysis showed smaller Cobb angles increased likelihood of all screws being AP. Sub-analysis of adolescent idiopathic scoliotic patients showed no curve or patient characteristic that correlated with IMP or SAR. Over 40% of patients had screws with either some/major concern. Overall reported screw misplacement is low, but it does not reflect the potential impact on patient morbidity. Per-patient analysis reveals more concerning numbers toward screw misplacement. With increasing pedicle screw usage, the number of patients with misplaced screws will likely increase proportionally. Better strategies need to be devised for evaluation of screw placement, including establishment of a national database of deformity surgery, use of intra-operative image guidance, and

  1. A comparison of screw insertion torque and pullout strength.

    PubMed

    Ricci, William M; Tornetta, Paul; Petteys, Timothy; Gerlach, Darin; Cartner, Jacob; Walker, Zakiyyah; Russell, Thomas A

    2010-06-01

    Pullout strength of screws is a parameter used to evaluate plate screw fixation strength. However, screw fixation strength may be more closely related to its ability to generate sufficient insertion because stable nonlocked plate-screw fracture fixation requires sufficient compression between plate and bone such that no motion occurs between the plate and bone under physiological loads. Compression is generated by tightening of screws. In osteoporotic cancellous bone, sufficient screw insertion torque may not be generated before screw stripping. The effect of screw thread pitch on generation of maximum insertion torque (MIT) and pullout strength (POS) was investigated in an osteoporotic cancellous bone model and the relationship between MIT and POS was analyzed. Stainless steel screws with constant major (5.0 mm) and minor (2.7 mm) diameters but with varying thread pitches (1, 1.2, 1.5, 1.6, and 1.75 mm) were tested for MIT and POS in a validated osteoporotic surrogate for cancellous bone (density of 160 kg/m(3) [10 lbs/ft(3)]). MIT was measured with a torque-measuring hex driver for screws inserted through a one-third tubular plate. POS was measured after insertion of screws to a depth of 20 mm based on the Standard Specification and Test Methods for Metallic Medical Bone Screws (ASTM F 543-07). Five screws were tested for each failure mode and screw design. The relationship between MIT and compressive force between the plate and bone surrogate was evaluated using pressure-sensitive film. There was a significant difference in mean MIT based on screw pitch (P < 0.0001), whereas POS did not show statistically significant differences among the different screw pitches (P = 0.052). Small screw pitches (1.0 mm and 1.2 mm) had lower MIT and were distinguished from large pitches (1.5 mm, 1.6 mm, and the 1.75 mm) with higher MIT. For POS, only the 1-mm and 1.6-mm pitch screws were found to be different from each other. Linear regression analysis of MIT revealed a moderate

  2. Mini-screws success rates sufficient for orthodontic treatment.

    PubMed

    Stanford, Nicky

    2011-01-01

    Medline. Clinical trials of orthodontic mini-screws with a minimum of 30 cases providing data on the patient, mini-screw, surgery and loading available for correlation with the mini-screws' success rates in English or German were included. Data were extracted that correlated with the miniscrews' success rate: patient sex and age, screw length and diameter, method and location of placement, time and amount of loading. The statistical analyses were performed using SPSS software (version 13 for Mac OS X, SPSS, Chicago, Ill). Fourteen clinical trials (452 patients and 1519 screws) were included, with overall success rates ranging from 59.4% to 100%. The mean success rate was 83.6% ± 10.2%. Screw diameters of 1 to 1.1 mm yielded significantly lower success rates than those of 1.5 to 2.3 mm. One study reported significantly lower success rates for 6 mm vs 8 mm long mini-screws (72% vs 90%). Screw placement with or without a surgical flap showed contradictory results between studies. Three studies showed significantly higher success rates for maxillary than for mandibular screws. Loading and healing periods were not significant in the mini-screws' success rates. There was no influence of patient sex and one study found significantly greater success in patients over 30 years of age. All 14 articles described success rates sufficient for orthodontic treatment. Placement protocols varied markedly. Screws under 8 mm in length and 1.2 mm in diameter should be avoided. Immediate or early loading up to 200 cN was adequate and showed no significant influence on screw stability.

  3. The total occlusal convergence of the abutment of a partial fixed dental prosthesis: A definition and a clinical technique for its assessment

    PubMed Central

    Mamoun, John S.

    2013-01-01

    The abutment(s) of a partial fixed dental prosthesis (PFDP) should have a minimal total occlusal convergence (TOC), also called a taper, in order to ensure adequate retention of a PFDP that will be made for the abutment(s), given the height of the abutment(s). This article reviews the concept of PFDP abutment TOC and presents an alternative definition of what TOC is, defining it as the extent to which the shape of an abutment differs from an ideal cylinder shape of an abutment. This article also reviews experimental results concerning what is the ideal TOC in degrees and explores clinical techniques of estimating the TOC of a crown abutment. The author suggests that Dentists use high magnification loupes (×6-8 magnification or greater) or a surgical operating microscope when preparing crown abutments, to facilitate creating a minimum abutment TOC. PMID:24932130

  4. Reliability of roentgenogram evaluation of pedicle screw position.

    PubMed

    Ferrick, M R; Kowalski, J M; Simmons, E D

    1997-06-01

    This was a human cadaver study of the accuracy of biplanar roentgenography in determining pedicle screw position. To determine the independent accuracy of radiologic evaluation of screw placement and to determine if there are any particular screw malpositions that are more likely to produce a false sense of acceptable screw position. Other investigators have reported the correlation between radiologic evaluation and anatomic dissection. However, in those studies the radiologic evaluation was not independent of the surgeons placing the screws. There has been no comment in the literature regarding particular screw malpositions that would lead the surgeon into a false sense of successful screw placement. Pedicle screws were placed in cadaver spines, and biplanar roentgenograms of the specimens were evaluated by independent observers. The results of the roantgenogram evaluation then were compared to those of the anatomic dissection. The accuracy of roentgenogram evaluation varied from 73% to 83%, depending on the experience of the surgeon grading the roentgenograms. Screws misplaced medially into the spinal canal are more likely to give the surgeon a false sense of successful screw placement. The surgeon must not rely solely on the roentgenograms, but instead continue to use tactile sensory skills, anatomic knowledge, and additional modalities such as electromyography monitoring.

  5. Predicting cancellous bone failure during screw insertion.

    PubMed

    Reynolds, Karen J; Cleek, Tammy M; Mohtar, Aaron A; Hearn, Trevor C

    2013-04-05

    Internal fixation of fractures often requires the tightening of bone screws to stabilise fragments. Inadequate application of torque can leave the fracture unstable, while over-tightening results in the stripping of the thread and loss of fixation. The optimal amount of screw torque is specific to each application and in practice is difficult to attain due to the wide variability in bone properties including bone density. The aim of the research presented in this paper is to investigate the relationships between motor torque and screw compression during powered screw insertion, and to evaluate whether the torque during insertion can be used to predict the ultimate failure torque of the bone. A custom test rig was designed and built for bone screw experiments. By inserting cancellous bone screws into synthetic, ovine and human bone specimens, it was established that variations related to bone density could be automatically detected through the effects of the bone on the rotational characteristics of the screw. The torque measured during screw insertion was found to be directly related to bone density and can be used, on its own, as a good predictor of ultimate failure torque of the bone. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Enhancement of osteogenesis and biodegradation control by brushite coating on Mg-Nd-Zn-Zr alloy for mandibular bone repair.

    PubMed

    Guan, Xingmin; Xiong, Meiping; Zeng, Feiyue; Xu, Bin; Yang, Lingdi; Guo, Han; Niu, Jialin; Zhang, Jian; Chen, Chenxin; Pei, Jia; Huang, Hua; Yuan, Guangyin

    2014-12-10

    To diminish incongruity between bone regeneration and biodegradation of implant magnesium alloy applied for mandibular bone repair, a brushite coating was deposited on a matrix of a Mg-Nd-Zn-Zr (hereafter, denoted as JDBM) alloy to control the degradation rate of the implant and enhance osteogenesis of the mandible bone. Both in vitro and in vivo evaluations were carried out in the present work. Viability and adhesion assays of rabbit bone marrow mesenchyal stem cells (rBM-MSCs) were applied to determine the biocompatibility of a brushite-coated JDBM alloy. Osteogenic gene expression was characterized by quantitative real-time polymerase chain reaction (RT-PCR). Brushite-coated JDBM screws were implanted into mandible bones of rabbits for 1, 4, and 7 months, respectively, using 316L stainless steel screws as a control group. In vivo biodegradation rate was determined by synchrotron radiation X-ray microtomography, and osteogenesis was observed and evaluated using Van Gieson's picric acid-fuchsin. Both the naked JDBM and brushite-coated JDBM samples revealed adequate biosafety and biocompatibility as bone repair substitutes. In vitro results showed that brushite-coated JDBM considerably induced osteogenic differentiation of rBM-MSCs. And in vivo experiments indicated that brushite-coated JDBM screws presented advantages in osteoconductivity and osteogenesis of mandible bone of rabbits. Degradation rate was suppressed at a lower level at the initial stage of implantation when new bone tissue formed. Brushite, which can enhance oeteogenesis and partly control the degradation rate of an implant, is an appropriate coating for JDBM alloys used for mandibular repair. The Mg-Nd-Zn-Zr alloy with brushite coating possesses great potential for clinical applications for mandibular repair.

  7. Failure analysis of broken pedicle screws on spinal instrumentation.

    PubMed

    Chen, Chen-Sheng; Chen, Wen-Jer; Cheng, Cheng-Kung; Jao, Shyh-Hua Eric; Chueh, Shan-Chang; Wang, Chang-Chih

    2005-07-01

    Revised spinal surgery is needed when there is a broken pedicle screw in the patient. This study investigated the pedicle screw breakage by conducting retrieval analyses of broken pedicle screws from 16 patients clinically and by performing stress analyses in the posterolateral fusion computationally using finite element (FE) models. Fracture surface of screws was studied by scanning electron microscope (SEM). The FE model of the posterolateral fusion with the screw showed that screws on the caudal side had larger axial stress than those on the cephalic side, supporting the clinical findings that 75% of the patients had the screw breakage on the caudal side. SEM fractography showed that all broken screws exhibited beach marks or striations on the fractured surface, indicating fatigue failure. Screws of patients with spinal fracture showed fatigue striations and final ductile fracture around the edge. Among the 16 patients who had broken pedicle screws 69% of them achieved bone union in the bone graft, showing that bone union in the bone graft did not warrant the prevention of screw breakage.

  8. Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide

    PubMed Central

    Sugawara, Shiho; Maeno, Masahiko; Lee, Cliff; Nagai, Shigemi; Kim, David M.; Da Silva, John; Kondo, Hisatomo

    2016-01-01

    The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM). BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP). PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β) and growth factors (EGF, VEGF) on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface. PMID:27741287

  9. Long-term behavior of integral abutment bridges : appendix E, INDOT design manual : selected recommendations for integral abutment bridges.

    DOT National Transportation Integrated Search

    2011-01-01

    Integral abutment (IA) construction has become the preferred method over conventional construction for use with typical highway bridges. However, the use of these structures is limited due to state mandated length and skew limitations. To expand thei...

  10. Screw fixation of the syndesmosis: a cadaver model comparing stainless steel and titanium screws and three and four cortical fixation.

    PubMed

    Beumer, Annechien; Campo, Martin M; Niesing, Ruud; Day, Judd; Kleinrensink, Gert-Jan; Swierstra, Bart A

    2005-01-01

    We assessed syndesmotic set screw strength and fixation capacity during cyclical testing in a cadaver model simulating protected weight bearing. Sixteen fresh frozen legs with artificial syndesmotic injuries and a syndesmotic set screw made of stainless steel or titanium, inserted through three or four cortices, were axially loaded with 800 N for 225,000 cycles in a materials testing machine. The 225,000 cycles equals the number of paces taken by a person walking in a below knee plaster during 9 weeks. Syndesmotic fixation failure was defined as: bone fracture, screw fatigue failure, screw pullout, and/or excessive syndesmotic widening. None of the 14 out of 16 successfully tested legs or screws failed. No difference was found in fixation of the syndesmosis when stainless steel screws were compared to titanium screws through three or four cortices. Mean lateral displacement found after testing was 1.05 mm (S.D. = 0.42). This increase in tibiofibular width exceeds values described in literature for the intact syndesmosis loaded with body weight. Based on this laboratory study it is concluded that the syndesmotic set screw cannot prevent excessive syndesmotic widening when loaded with a load comparable with body weight. Therefore, we advise that patients with a syndesmotic set screw in situ should not bear weight.

  11. The effects of two torque values on the screw preload of implant-supported prostheses with passive fit or misfit.

    PubMed

    Al-Otaibi, Hanan Nejer; Akeel, Riyadh Fadul

    2014-01-01

    To determine the effect of increased torque of the abutment screw and retorquing after 10 minutes on implant-supported fixed prostheses. Two strain gauges (SGs) were attached to four implants stabilized on an acrylic resin mandible. Four implant-supported frameworks were constructed to represent passive fit (PF) and different amounts of misfit (MF1, MF2, and MF3). Vertical misfit was measured using a traveling microscope. Each framework was torqued to 35 Ncm (the manufacturer's recommendation) and 40 Ncm, and the preload was recorded immediately and again after retorquing 10 minutes later (torque stage). The smallest gap was observed under the PF framework. Three-way analysis of variance revealed significant effects of the framework, torque value, and torque stage on preload. The PF showed the highest mean preload under both torque values. An independent-sample t test between the torque values revealed a statistically significant difference only for MF1 and MF2. A dependent-sample t test of the torque stage revealed a statistically significant difference at a torque value of 35 Ncm under the PF and MF3 frameworks. Increasing the torque value beyond the manufacturer's recommended amount and retorquing of the screws at 10 minutes after the initial torque did not necessarily lead to a significant increase in preload in full-arch implant-supported fixed prostheses, particularly under non-passively fitting frameworks.

  12. Assessment of the NCHRP abutment scour prediction equations with laboratory and field data

    USGS Publications Warehouse

    Benedict, Stephen T.

    2014-01-01

    The U.S. Geological Survey, in coopeation with nthe National Cooperative Highway Research Program (NCHRP) is assessing the performance of several abutment-scour predcition equations developed in NCHRP Project 24-15(2) and NCHRP Project 24-20. To accomplish this assssment, 516 laboratory and 329 fiels measurements of abutment scor were complied from selected sources and applied tto the new equations. Results will be used to identify stregths, weaknesses, and limitations of the NCHRP abutment scour equations, providing practical insights for applying the equations. This paper presents some prelimiray findings from the investigation.

  13. Feasibility of detecting orthopaedic screw overtightening using acoustic emission.

    PubMed

    Pullin, Rhys; Wright, Bryan J; Kapur, Richard; McCrory, John P; Pearson, Matthew; Evans, Sam L; Crivelli, Davide

    2017-03-01

    A preliminary study of acoustic emission during orthopaedic screw fixation was performed using polyurethane foam as the bone-simulating material. Three sets of screws, a dynamic hip screw, a small fragment screw and a large fragment screw, were investigated, monitoring acoustic-emission activity during the screw tightening. In some specimens, screws were deliberately overtightened in order to investigate the feasibility of detecting the stripping torque in advance. One set of data was supported by load cell measurements to directly measure the axial load through the screw. Data showed that acoustic emission can give good indications of impending screw stripping; such indications are not available to the surgeon at the current state of the art using traditional torque measuring devices, and current practice relies on the surgeon's experience alone. The results suggest that acoustic emission may have the potential to prevent screw overtightening and bone tissue damage, eliminating one of the commonest sources of human error in such scenarios.

  14. Analysis of load distribution in tooth-implant supported fixed partial dentures by the use of resilient abutment.

    PubMed

    Glisić, Mirko; Stamenković, Dragoslav; Grbović, Aleksandar; Todorović, Aleksandar; Marković, Aleksa; Trifković, Branka

    2016-01-01

    Differences between the tooth and implant response to load can lead to many biological and technical implications in the conditions of occlusal forces. The objective of this study was to analyze load distribution in tooth/implant-supported fixed partial dentures with the use of resilient TSA (Titan Shock Absorber, BoneCare GmbH, Augsburg, Germany) abutment and conventional non-resilient abutment using finite element method. This study presents two basic 3D models. For one model a standard non-resilient abutment is used, and on the implant of the second model a resilient TSA abutment is applied. The virtual model contains drawn contours of tooth, mucous membranes, implant, cortical bones and spongiosa, abutment and suprastructure. The experiment used 500 N of vertical force, applied in three different cases of axial load. Calculations of von Mises equivalent stresses of the tooth root and periodontium, implants and peri-implant tissue were made. For the model to which a non-resilient abutment is applied, maximum stress values in all three cases are observed in the cortical part of the bone (maximum stress value of 49.7 MPa). Measurements of stress and deformation in the bone tissue in the model with application of the resilientTSA abutment demonstrated similar distribution; however, these values are many times lower than in the model with non-resilient TSA abutment (maximum stress value of 28.9 MPa). Application of the resilient TSA abutment results in more equal distribution of stress and deformations in the bone tissue under vertical forces. These values are many times lower than in the model with the non-resilient abutment.

  15. Evaluation of concordance between CAD/CAM and clinical positions of abutment shoulder against mucosal margin: an observational study.

    PubMed

    Pietruski, Jan K; Skurska, Anna; Bernaczyk, Anna; Milewski, Robert; Pietruska, Maria Julia; Gehrke, Peter; Pietruska, Małgorzata D

    2018-05-02

    While working on CAD/CAM-customized abutments, the use of standard impression copings with a circular diameter produces inconsistency within the emergence profile. It may begin with a collapse of the supra-implant mucosa during impression taking, then lead to a computer-generated mismatch of the position and outline of the abutment shoulder, and consequently result in a compromised outcome of anticipated treatment. The aim of the study was to compare the virtual and clinical positions of the abutment shoulder in relation to the mucosal margin after the abutment delivery. Conventional open-tray impression takings followed uncovering surgery. Master casts were scanned with a desktop scanner. Clinical examinations took place after abutment's insertion and temporization (T1) and prior to cementation of the definitive crown (T2). The distances between the abutment shoulder and marginal soft tissue were measured intraorally in four aspects and juxtaposed with those on the virtual model. The study evaluated 257 dental implants and CAD/CAM-customized abutments. As T1 and T2 showed, there was a positive correlation between the virtually designed abutment shoulder position and matching clinical location relative to the mucosal margin. In 42.1% of cases, the distance between the mucosal margin and the abutment shoulder did not change. It increased in 36.3% of cases while a decrease occurred in 21.6% of them. Computer-set position of the abutment shoulder in relation to the mucosal margin can be predictably implemented in clinical practice.

  16. Reinforcement of osteosynthesis screws with brushite cement.

    PubMed

    Van Landuyt, P; Peter, B; Beluze, L; Lemaître, J

    1999-08-01

    The fixation of osteosynthesis screws remains a severe problem for fracture repair among osteoporotic patients. Polymethyl-methacrylate (PMMA) is routinely used to improve screw fixation, but this material has well-known drawbacks such as monomer toxicity, exothermic polymerization, and nonresorbability. Calcium phosphate cements have been developed for several years. Among these new bone substitution materials, brushite cements have the advantage of being injectable and resorbable. The aim of this study is to assess the reinforcement of osteosynthesis screws with brushite cement. Polyurethane foams, whose density is close to that of cancellous bone, were used as bone model. A hole was tapped in a foam sample, then brushite cement was injected. Trabecular osteosynthesis screws were inserted. After 24 h of aging in water, the stripping force was measured by a pull-out test. Screws (4.0 and 6.5 mm diameter) and two foam densities (0.14 and 0.28 g/cm3) were compared. Cements with varying solid/liquid ratios and xanthan contents were used in order to obtain the best screw reinforcement. During the pull-out test, the stripping force first increases to a maximum, then drops to a steady-state value until complete screw extraction. Both maximum force and plateau value increase drastically in the presence of cement. The highest stripping force is observed for 6.5-mm screws reinforced with cement in low-density foams. In this case, the stripping force is multiplied by 3.3 in the presence of cement. In a second experiment, cements with solid/liquid ratio ranging from 2.0 to 3.5 g/mL were used with 6.5-mm diameter screws. In some compositions, xanthan was added to improve injectability. The best results were obtained with 2.5 g/mL cement containing xanthan and with 3.0 g/mL cements without xanthan. A 0.9-kN maximal stripping force was observed with nonreinforced screws, while 1.9 kN was reached with reinforced screws. These first results are very promising regarding screw

  17. Helical screw viscometer

    DOEpatents

    Aubert, J.H.; Chapman, R.N.; Kraynik, A.M.

    1983-06-30

    A helical screw viscometer for the measurement of the viscosity of Newtonian and non-Newtonian fluids comprising an elongated cylindrical container closed by end caps defining a circular cylindrical cavity within the container, a cylindrical rotor member having a helical screw or ribbon flight carried by the outer periphery thereof rotatably carried within the cavity whereby the fluid to be measured is confined in the cavity filling the space between the rotor and the container wall. The rotor member is supported by axle members journaled in the end caps, one axle extending through one end cap and connectable to a drive source. A pair of longitudinally spaced ports are provided through the wall of the container in communication with the cavity and a differential pressure meter is connected between the ports for measuring the pressure drop caused by the rotation of the helical screw rotor acting on the confined fluid for computing viscosity.

  18. Impact of screw configuration on the particle size distribution of granules produced by twin screw granulation.

    PubMed

    Vercruysse, J; Burggraeve, A; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2015-02-01

    Twin screw granulation (TSG) has been reported by different research groups as an attractive technology for continuous wet granulation. However, in contrast to fluidized bed granulation, granules produced via this technique typically have a wide and multimodal particle size distribution (PSD), resulting in suboptimal flow properties. The aim of the current study was to evaluate the impact of granulator screw configuration on the PSD of granules produced by TSG. Experiments were performed using a 25 mm co-rotating twin screw granulator, being part of the ConsiGma™-25 system (a fully continuous from-powder-to-tablet manufacturing line from GEA Pharma Systems). Besides the screw elements conventionally used for TSG (conveying and kneading elements), alternative designs of screw elements (tooth-mixing-elements (TME), screw mixing elements (SME) and cutters) were investigated using an α-lactose monohydrate formulation granulated with distilled water. Granulation with only conveying elements resulted in wide and multimodal PSD. Using kneading elements, the width of the PSD could be partially narrowed and the liquid distribution was more homogeneous. However, still a significant fraction of oversized agglomerates was obtained. Implementing additional kneading elements or cutters in the final section of the screw configuration was not beneficial. Furthermore, granulation with only TME or SME had limited impact on the width of the PSD. Promising results were obtained by combining kneading elements with SME, as for these configurations the PSD was narrower and shifted to the size fractions suitable for tableting. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Comparison of fit accuracy and torque maintenance of zirconia and titanium abutments for internal tri-channel and external-hex implant connections.

    PubMed

    Siadat, Hakimeh; Beyabanaki, Elaheh; Mousavi, Niloufar; Alikhasi, Marzieh

    2017-08-01

    This in vitro study aimed to evaluate the effect of implant connection design (external vs. internal) on the fit discrepancy and torque loss of zirconia and titanium abutments. Two regular platform dental implants, one with external connection (Brånemark, Nobel Biocare AB) and the other with internal connection (Noble Replace, Nobel Biocare AB), were selected. Seven titanium and seven customized zirconia abutments were used for each connection design. Measurements of geometry, marginal discrepancy, and rotational freedom were done using video measuring machine. To measure the torque loss, each abutment was torqued to 35 Ncm and then opened by means of a digital torque wrench. Data were analyzed with two-way ANOVA and t-test at α=0.05 of significance. There were significant differences in the geometrical measurements and rotational freedom between abutments of two connection groups ( P <.001). Also, the results showed significant differences between titanium abutments of internal and external connection implants in terms of rotational freedom ( P <.001). Not only customized internal abutments but also customized external abutments did not have the exact geometry of prefabricated abutments ( P <.001). However, neither connection type ( P =.15) nor abutment material ( P =.38) affected torque loss. Abutments with internal connection showed less rotational freedom. However, better marginal fit was observed in externally connected abutments. Also, customized abutments with either connection could not duplicate the exact geometry of their corresponding prefabricated abutment. However, neither abutment connection nor material affected torque loss values.

  20. A Simplified Technique for Implant-Abutment Level Impression after Soft Tissue Adaptation around Provisional Restoration

    PubMed Central

    Kutkut, Ahmad; Abu-Hammad, Osama; Frazer, Robert

    2016-01-01

    Impression techniques for implant restorations can be implant level or abutment level impressions with open tray or closed tray techniques. Conventional implant-abutment level impression techniques are predictable for maximizing esthetic outcomes. Restoration of the implant traditionally requires the use of the metal or plastic impression copings, analogs, and laboratory components. Simplifying the dental implant restoration by reducing armamentarium through incorporating conventional techniques used daily for crowns and bridges will allow more general dentists to restore implants in their practices. The demonstrated technique is useful when modifications to implant abutments are required to correct the angulation of malpositioned implants. This technique utilizes conventional crown and bridge impression techniques. As an added benefit, it reduces costs by utilizing techniques used daily for crowns and bridges. The aim of this report is to describe a simplified conventional impression technique for custom abutments and modified prefabricated solid abutments for definitive restorations. PMID:29563457

  1. Comparison of open reduction versus minimally invasive surgical approaches on screw position in canine sacroiliac lag-screw fixation.

    PubMed

    Déjardin, Loïc M; Marturello, Danielle M; Guiot, Laurent P; Guillou, Reunan P; DeCamp, Charles E

    2016-07-19

    To compare accuracy and consistency of sacral screw placement in canine pelves treated for sacroiliac luxation with open reduction and internal fixation (ORIF) or minimally invasive osteosynthesis (MIO) techniques. Unilateral sacroiliac luxations created experimentally in canine cadavers were stabilized with an iliosacral lag screw applied via ORIF or MIO techniques (n = 10/group). Dorsoventral and craniocaudal screw angles were measured using computed tomography multiplanar reconstructions in transverse and dorsal planes, respectively. Ratios between pilot hole length and sacral width (PL/SW-R) were obtained. Data between groups were compared statistically (p <0.05). Mean screw angles (±SD) were greater in ORIF specimens in both transverse (p <0.001) and dorsal planes (p <0.004). Mean PL/SW-R was smaller (p <0.001) in the ORIF group, yet was greater than 60%. While pilot holes exited the first sacral end-plate in three of 10 ORIF specimens, the spinal canal was not violated in either group. This study demonstrates that MIO fixation of canine sacroiliac luxations provides more accurate and consistent sacral screw placement than ORIF. With proper techniques, iatrogenic neurological damage can be avoided with both techniques. The PL /SW-R, which relates to safe screw fixation, also demonstrates that screw penetration of at least 60% of the sacral width is achievable regardless of surgical approach. These findings, along with the limited dissection needed for accurate sacral screw placement, suggest that MIO of sacroiliac luxations is a valid alternative to ORIF.

  2. Evaluation of the Surface Characteristics of Various Implant Abutment Materials Using Confocal Microscopy and White Light Interferometry.

    PubMed

    Park, Jun-Beom; Yang, Seung-Min; Ko, Youngkyung

    2015-12-01

    The purpose of this study was to evaluate the surface characteristics of various implant abutment materials, such as of titanium alloy (Ti6Al4V; Ma), machined cobalt-chrome-molybdenum alloy (CCM), titanium nitride coating on a titanium alloy disc (TiN), anodic oxidized titanium alloy disc (AO), composite resin coating on a titanium alloy disc (Res), and zirconia disc (Zr), using confocal microscopy and white light interferometry. Measurements from the 2 methods were evaluated to see if these methods would give equivalent results. The precision of measurements were evaluated by the coefficient of variation. Five discs each of Ma, CCM, TiN, AO, Res, and Zr were used. The surface roughness was evaluated by confocal laser microscopy and white light interferometry. Confocal microscopy showed that the Res group showed significantly greater Ra, Rq, Rz, Sa, Sq, and Sz values compared with those of the Ma group (P < 0.05). The white light interferometry results showed that the Res group had significantly higher Ra, Rq, Rz, Rt, Sa, Sq, Sz, and Sdr values compared with the Ma group (P < 0.05). All the roughness parameters obtained from the 2 methods differed, and the Sa values of the Zr group from confocal microscopy were greater by 0.163 μm than those obtained by white light interferometry. Least difference was seen in the TiN group where the difference was 0.058 μm. Roughness parameters of different abutment materials varied significantly. Precision of measurement differed according to the characteristics of the material used. White light interferometry could be recommended for measurement of TiN and AO. Confocal microscopy gave more precise measurements for Ma and CCM groups. The optical characteristics of the surface should be considered before choosing the examination method.

  3. Comparison of The Effect of Implant Abutment Surface Modifications on Retention of Implant-Supported Restoration with A Polymer Based Cement

    PubMed Central

    Sahu, Nabaprakash; Lakshmi, Namratha; Azhagarasan, N.S.; Agnihotri, Yoshaskam; Rajan, Manoj; Hariharan, Ramasubramanian

    2014-01-01

    Background: In cement-retained implant-supported restoration it is important to gain adequate retention of definitive restoration as well as retrievability of prosthesis. The surface of the abutment, alloy of the restoration and the type of cement used influences the retention of the restoration. There is a need to analyze the influence of surface modifications of abutments on the retentive capabilities of provisional implant cements. Purpose of study: To compare the effect of implant abutment surface modifications on retention of implant-supported restoration cemented with polymer based cement. Materials and method: Thirty solid titanium implant abutments (ADIN), 8mm height, were divided into 3 groups. Ten abutments with retentive grooves (Group I) as supplied by the manufacturer, Ten abutments milled to 20 taper circumferentially (Group II), and Ten abutments milled and air-abraded with 110 μm aluminum oxide (Group III) were used in this study. Ni-Cr coping were casted for each abutment and polymer based cement was used to secure them to the respective abutments. Using a universal testing machine at a crosshead speed of 0.5 cm/minute, tensile bond strength was recorded (N). Results: Mean tensile bond strength of Group I, II and III were found to be 408.3, 159.9 and 743.8 Newton respectively. The values were statistically different from each other (p<0.001). Conclusion: Abutments with milled and sandblasted surface provide the highest retention followed by abutments with retentive grooves and then by abutments with milled surface when cast copings were cemented to implant abutments with polymer based cement. Clinical implications: Retention of restoration depends on the surface of the abutment as well as the luting agents used. Incorporation of retentive grooves or particle abrasion can enhance retention especially in situation of short clinical crown. PMID:24596785

  4. The effect of different screw-rod design on the anti-rotational torque: a biomechanical comparison of three conventional screw-rod constructs.

    PubMed

    Huang, Zifang; Wang, Chongwen; Fan, Hengwei; Sui, Wenyuan; Li, Xueshi; Wang, Qifei; Yang, Junlin

    2017-07-28

    Screw-rod constructs have been widely used to correct spinal deformities, but the effects of different screw-rod systems on anti-rotational torque have not been determined. This study aimed to analyze the biomechanical effect of different rod-screw constructs on anti-rotational torque. Three conventional spinal screw-rod systems (Legacy, RF-F-10 and USSII) were used to test the anti-rotational torque in the material test machine. ANOVA was performed to evaluate the anti-rotational capacity of different pedicle screws-rod constructs. The anti-rotational torque of Legacy group, RF-F-10 group and USSII group were 12.3 ± 1.9 Nm, 6.8 ± 0.4 Nm, and 3.9 ± 0.8 Nm, with a P value lower than 0.05. This results indicated that the Legacy screws-rod construct could provide a highest anti-rotation capacity, which is 68% and 210% greater than RF-F-10 screw-rod construct and USSII screw-rod respectively. The anti-rotational torque may be mainly affected by screw cap and groove design. Our result showed the anti-rotational torque are: Legacy system > RF-F-10 system > USSII system, suggesting that appropriate rod-screw constructs selection in surgery may be vital for anti-rotational torque improvement and preventing derotation correction loss.

  5. Long-term behavior of integral abutment bridges.

    DOT National Transportation Integrated Search

    2011-01-01

    Integral abutment (IA) construction has become the preferred method over conventional construction for use with typical : highway bridges. However, the use of these structures is limited due to state mandated length and skew limitations. To : expand ...

  6. Influence of Abutment Angle on Implant Strain When Supporting a Distal Extension Removable Partial Dental Prosthesis: An In Vitro Study.

    PubMed

    Hirata, Kiyotaka; Takahashi, Toshihito; Tomita, Akiko; Gonda, Tomoya; Maeda, Yoshinobu

    This study evaluated the impact of angled abutments on strain in implants supporting a distal extension removable partial denture. An in vitro model of an implant supporting a distal extension removable partial denture was developed. The implant was positioned with a 17- or 30-degree mesial inclination, with either a healing abutment or a corrective multiunit abutment. Levels of strain under load were compared, and the results were compared using t test (P = .05). Correcting angulation with a multiunit angled abutment significantly decreased strain (P < .05) when compared with a healing abutment. An angled abutment decreased the strain on an inclined implant significantly more than a healing abutment when loaded under a distal extension removable partial denture.

  7. Abutment Disconnection/Reconnection Affects Peri-implant Marginal Bone Levels: A Meta-Analysis.

    PubMed

    Koutouzis, Theofilos; Gholami, Fatemeh; Reynolds, John; Lundgren, Tord; Kotsakis, Georgios A

    Preclinical and clinical studies have shown that marginal bone loss can be secondary to repeated disconnection and reconnection of abutments that affect the peri-implant mucosal seal. The aim of this systematic review and meta-analysis was to evaluate the impact of abutment disconnections/reconnections on peri-implant marginal bone level changes. To address this question, two reviewers independently performed an electronic search of three major databases up to October 2015 complemented by manual searches. Eligible articles were selected on the basis of prespecified inclusion and exclusion criteria after a two-phase search strategy and assessed for risk of bias. A random-effects meta-analysis was performed for marginal bone loss. The authors initially identified 392 titles and abstracts. After evaluation, seven controlled clinical studies were included. Qualitative assessment of the articles revealed a trend toward protective marginal bone level preservation for implants with final abutment placement (FAP) at the time of implant placement compared with implants for which there were multiple abutment placements (MAP). The FAP group exhibited a marginal bone level change ranging from 0.08 to 0.34 mm, whereas the MAP group exhibited a marginal bone level change ranging from 0.09 to 0.55 mm. Meta-analysis of the seven studies reporting on 396 implants showed significantly greater bone loss in cases of multiple abutment disconnections/reconnections. The weighted mean difference in marginal bone loss was 0.19 mm (95% confidence interval, 0.06-0.32 mm), favoring bone preservation in the FAP group. Within the limitations of this meta-analysis, abutment disconnection and reconnection significantly affected peri-implant marginal bone levels. These findings pave the way for revisiting current restorative protocols at the restorative treatment planning stage to prevent incipient marginal bone loss.

  8. The effect of screw tunnels on the biomechanical stability of vertebral body after pedicle screws removal: a finite element analysis.

    PubMed

    Liu, Jia-Ming; Zhang, Yu; Zhou, Yang; Chen, Xuan-Yin; Huang, Shan-Hu; Hua, Zi-Kai; Liu, Zhi-Li

    2017-06-01

    Posterior reduction and pedicle screw fixation is a widely used procedure for thoracic and lumbar vertebrae fractures. Usually, the pedicle screws would be removed after the fracture healing and screw tunnels would be left. The aim of this study is to evaluate the effect of screw tunnels on the biomechanical stability of the lumbar vertebral body after pedicle screws removal by finite element analysis (FEA). First, the CT values of the screw tunnels wall in the fractured vertebral bodies were measured in patients whose pedicle screws were removed, and they were then compared with the values of vertebral cortical bone. Second, an adult patient was included and the CT images of the lumbar spine were harvested. Three dimensional finite element models of the L1 vertebra with unilateral or bilateral screw tunnels were created based on the CT images. Different compressive loads were vertically acted on the models. The maximum loads which the models sustained and the distribution of the force in the different parts of the models were recorded and compared with each other. The CT values of the tunnels wall and vertebral cortical bone were 387.126±62.342 and 399.204±53.612, which were not statistically different (P=0.149). The models of three dimensional tetrahedral mesh finite element of normal lumbar 1 vertebra were established with good geometric similarity and realistic appearance. After given the compressive loads, the cortical bone was the first one to reach its ultimate stress. The maximum loads which the bilateral screw tunnels model, unilateral screw tunnel model, and normal vertebral model can sustain were 3.97 Mpa, 3.83 Mpa, and 3.78 Mpa, respectively. For the diameter of the screw tunnels, the model with a diameter of 6.5 mm could sustain the largest load. In addition, the stress distributing on the outside of the cortical bone gradually decreased as the thickness of the tunnel wall increased. Based on the FEA, pedicle screw tunnels would not decrease the

  9. Innovation in abutment-free bone-anchored hearing devices in children: Updated results and experience.

    PubMed

    Baker, Shaun; Centric, Aaron; Chennupati, Sri Kiran

    2015-10-01

    Bone-anchored hearing devices are an accepted treatment option for hearing restoration in various types of hearing loss. Traditional devices have a percutaneous abutment for attachment of the sound processor that contributes to a high complication rate. Previously, our institution reported on the Sophono (Boulder, CO, USA) abutment-free system that produced similar audiologic results to devices with abutments. Recently, Cochlear Americas (Centennial, CO, USA) released an abutment-free bone-anchored hearing device, the BAHA Attract. In contrast to the Sophono implant, the BAHA Attract utilizes an osseointegrated implant. This study aims to demonstrate patient benefit abutment-free devices, compare the results of the two abutment-free devices, and examine complication rates. A retrospective chart review was conducted for the first eleven Sophono implanted patients and for the first six patients implanted with the BAHA Attract at our institution. Subsequently, we analyzed patient demographics, audiometric data, clinical course and outcomes. Average improvement for the BAHA Attract in pure-tone average (PTA) and speech reception threshold (SRT) was 41dB hearing level (dBHL) and 56dBHL, respectively. Considering all frequencies, the BAHA Attract mean improvement was 39dBHL (range 32-45dBHL). The Sophono average improvement in PTA and SRT was 38dBHL and 39dBHL, respectively. The mean improvement with Sophono for all frequencies was 34dBHL (range 24-43dBHL). Significant improvements in both pure-tone averages and speech reception threshold for both devices were achieved. In direct comparison of the two separate devices using the chi-square test, the PTA and SRT data between the two devices do not show a statistically significant difference (p-value 0.68 and 0.56, respectively). The complication rate for these abutment-free devices is lower than that of those featuring the transcutaneous abutment, although more studies are needed to further assess this potential advantage

  10. Comparison of fit accuracy and torque maintenance of zirconia and titanium abutments for internal tri-channel and external-hex implant connections

    PubMed Central

    Siadat, Hakimeh; Beyabanaki, Elaheh; Mousavi, Niloufar

    2017-01-01

    PURPOSE This in vitro study aimed to evaluate the effect of implant connection design (external vs. internal) on the fit discrepancy and torque loss of zirconia and titanium abutments. MATERIALS AND METHODS Two regular platform dental implants, one with external connection (Brånemark, Nobel Biocare AB) and the other with internal connection (Noble Replace, Nobel Biocare AB), were selected. Seven titanium and seven customized zirconia abutments were used for each connection design. Measurements of geometry, marginal discrepancy, and rotational freedom were done using video measuring machine. To measure the torque loss, each abutment was torqued to 35 Ncm and then opened by means of a digital torque wrench. Data were analyzed with two-way ANOVA and t-test at α=0.05 of significance. RESULTS There were significant differences in the geometrical measurements and rotational freedom between abutments of two connection groups (P<.001). Also, the results showed significant differences between titanium abutments of internal and external connection implants in terms of rotational freedom (P<.001). Not only customized internal abutments but also customized external abutments did not have the exact geometry of prefabricated abutments (P<.001). However, neither connection type (P=.15) nor abutment material (P=.38) affected torque loss. CONCLUSION Abutments with internal connection showed less rotational freedom. However, better marginal fit was observed in externally connected abutments. Also, customized abutments with either connection could not duplicate the exact geometry of their corresponding prefabricated abutment. However, neither abutment connection nor material affected torque loss values. PMID:28874994

  11. A biomechanical study comparing a raft of 3.5 mm cortical screws with 6.5 mm cancellous screws in depressed tibial plateau fractures.

    PubMed

    Patil, Sunit; Mahon, Andrew; Green, Sarah; McMurtry, Ian; Port, Andrew

    2006-06-01

    There has been a recent trend towards using a raft of small diameter 3.5mm cortical screws for supporting depressed tibial plateau fractures (Schatzker type III). Our aim was to compare the biomechanical properties of a raft of 3.5 mm cortical screws with that of 6.5 mm cancellous screws in a synthetic bone model. Ten rigid polyurethane foam (sawbone) blocks, with a density simulating osteoporotic bone and ten blocks with a density simulating normal density bone were obtained. A Schatzker type III fracture was created in each block. The fracture fragments were then elevated and supported using two 6.5 mm cancellous screws in ten blocks and four 3.5 mm cortical screws in the remaining. The fractures were loaded using a Lloyd testing machine. The mean force needed to produce a depression of 5 mm was 700.8 N with the four-screw construct and 512.4 N with the two-screw construct in the osteoporotic model. This difference was highly statistically significant (p = 0.009). The mean force required to produce the same depression was 1878.2 N with the two-screw construct and 1938.2 N with the four-screw construct in the non-osteoporotic model. Though the difference was not statistically significant (p = 0.42), an increased fragmentation of the synthetic bone fragments was noticed with the two-screw construct but not with the four-screw construct. A raft of four 3.5 mm cortical screws is biomechanically stronger than two 6.5 mm cancellous screws in resisting axial compression in osteoporotic bone.

  12. Use of C2 spinous process screw for posterior cervical fixation as substitute for laminar screw in a patient with thin laminae

    PubMed Central

    Nagata, Kosei; Baba, Satoshi; Chikuda, Hirotaka; Takeshita, Katsushi

    2013-01-01

    Rigid screw fixation of C2 including transarticular screw and pedicle screw contain the risk of vertebral artery (VA) injury. On the other hand, translaminar screws are considered to be safer for patients with anomalous VA. But C2 translaminar screw placement was limited in patients who have thin laminas and there is marked variation in C2 laminar thickness. Appropriate C2 fixation method for a patient who has thin laminas and high-riding VA together was controversial. Here, we present a case of an elderly Asian woman who had thin laminas and high-riding VA together with progressive myelopathy to report a first case of C2 spinous process screw insertion. Although the stability and safety of C2 spinous process screw was reported in cadaver series, there was no clinical report to our knowledge. Spinous process screw can be an option of C2 fixation for patients with high-riding VA and severe degenerated cervical spines including thin C2 laminas. PMID:23814004

  13. Accuracy of pedicle screw insertion in the thoracic and lumbar spine: a comparative study between percutaneous screw insertion and conventional open technique.

    PubMed

    Ikeuchi, Hiroko; Ikuta, Ko

    2016-09-01

    In the last decade, posterior instrumented fusion using percutaneous pedicle screws (PPSs) had been growing in popularity, and its safety and good clinical results have been reported. However, there have been few previous reports of the accuracy of PPS placement compared with that of conventional open screw insertion in an institution. This study aimed to evaluate the accuracy of PPS placement compared with that of conventional open technique. One hundred patients were treated with posterior instrumented fusion of the thoracic and lumbar spine from April 2008 to July 2013. Four cases of revised instrumentation surgery were excluded. In this study, the pedicle screws inserted below Th7 were investigated, therefore, a total of 455 screws were enrolled. Two hundred and ninety-three pedicle screws were conventional open-inserted screws (O-group) and 162 screws were PPSs (P-group). We conducted a comparative study about the accuracy of placement between the two groups. Postoperative computed tomography scans were carried out to all patients, and the pedicle screw position was assessed according to a scoring system described by Zdichavsky et al. (Eur J Trauma 30:241-247, 2004; Eur J Trauma 30:234-240, 2004) and a classification described by Wiesner et al. (Spine 24:1599-1603, 1999). Based on Zdichavsky's scoring system, the number of grade Ia screws was 283 (96.6 %) in the O-group and 153 (94.4 %) in the P-group, whereas 5 screws (1.7 %) in the O-group and one screw (0.6 %) in the P-group were grade IIIa/IIIb. Meanwhile, the pedicle wall penetrations based on Wiesner classification were demonstrated in 20 screws (6.8 %) in the O-group, and 12 screws (7.4 %) in the P-group. No neurologic complications were observed and no screws had to be replaced in both groups. The PPSs could be ideally inserted without complications. There were no statistically significant differences about the accuracy between the conventional open insertion and PPS placement.

  14. Influences of microgap and micromotion of implant-abutment interface on marginal bone loss around implant neck.

    PubMed

    Liu, Yang; Wang, Jiawei

    2017-11-01

    To review the influences and clinical implications of micro-gap and micro-motion of implant-abutment interface on marginal bone loss around the neck of implant. Literatures were searched based on the following Keywords: implant-abutment interface/implant-abutment connection/implant-abutment conjunction, microgap, micromotion/micromovement, microleakage, and current control methods available. The papers were then screened through titles, abstracts, and full texts. A total of 83 studies were included in the literature review. Two-piece implant systems are widely used in clinics. However, the production error and masticatory load result in the presence of microgap and micromotion between the implant and the abutment, which directly or indirectly causes microleakage and mechanical damage. Consequently, the degrees of microgap and micromotion further increase, and marginal bone absorption finally occurs. We summarize the influences of microgap and micromotion at the implant-abutment interface on marginal bone loss around the neck of the implant. We also recommend some feasible methods to reduce their effect. Clinicians and patients should pay more attention to the mechanisms as well as the control methods of microgap and micromotion. To reduce the corresponding detriment to the implant marginal bone, suitable Morse taper or hybrid connection implants and platform switching abutments should be selected, as well as other potential methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of Steam Autoclaving on the Tensile Strength of Resin Cements Used for Bonding Two-Piece Zirconia Abutments.

    PubMed

    Fadanelli, Marcos Alexandre; Amaral, Flávia Lucisano Botelho do; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso; Sotto-Maior, Bruno Salles; França, Fabiana Mantovani Gomes

    2017-04-01

    The purpose of this study was to evaluate the effects of steam autoclave sterilization on the tensile strength of two types of resin cements used to bond customized CAD/CAM zirconia abutments onto titanium bases. Forty sets of zirconia abutments cemented to screwed titanium bases of implants analogs were divided into 4 groups (n = 10). Two groups were treated with a conventional chemically activated resin cement (ML, Multilink Ivoclar Vivadent) and the other two groups with a self-adhesive dual resin cement (RelyX U200, 3M ESPE). One group from each cement was submitted to steam autoclaving. The autoclave sterilization cycle was performed after 72 hours of cementation for 15 minutes at 121°C and 2.1 Kgf/cm 2 . The samples were subjected to tensile strength testing in a universal testing machine (200 Kgf, 0.5 mm/min), from which the means and standard deviations were obtained in Newtons. Results showed (via ANOVA and Tukey's test; α = 0.05) that in the absence of steam autoclaving, no difference was observed in tensile strength between the cements tested: ML: 344.87 (93.79) and U200: 280 (92.42) (P = .314). Steam autoclaving, however, significantly increased tensile strength for the ML: 465.42 (87.87) compared to U200: 289.10 (49.02) (P < .001). Despite the significant increase in the ML samples (P = .013), autoclaving did not affect the tensile strength of the U200 samples (P > 0.05). The authors concluded that steam autoclaving increases the mean tensile strength of the chemically activated cement compared to the dual-cure self-adhesive cement. The performance of both cements evaluated was similar if the sterilization step was disconsidered.

  16. The clinical outcome and microbiological profile of bone-anchored hearing systems (BAHS) with different abutment topographies: a prospective pilot study.

    PubMed

    Trobos, Margarita; Johansson, Martin Lars; Jonhede, Sofia; Peters, Hanna; Hoffman, Maria; Omar, Omar; Thomsen, Peter; Hultcrantz, Malou

    2018-06-01

    In this prospective clinical pilot study, abutments with different topologies (machined versus polished) were compared with respect to the clinical outcome and the microbiological profile. Furthermore, three different sampling methods (retrieval of abutment, collection of peri-abutment exudate using paper-points, and a small peri-abutment soft-tissue biopsy) were evaluated for the identification and quantification of colonising bacteria. Twelve patients, seven with machined abutment and five with polished abutment, were included in the analysis. Three different sampling procedures were employed for the identification and quantification of colonising bacteria from baseline up to 12 months, using quantitative culturing. Clinical outcome measures (Holgers score, hygiene, pain, numbness and implant stability) were investigated. The clinical parameters, and total viable bacteria per abutment or in tissue biopsies did not differ significantly between the polished and machined abutments. The total CFU/mm 2 abutment and CFU/peri-abutment fluid space of anaerobes, aerobes and staphylococci were significantly higher for the polished abutment. Anaerobic bacteria were detected in the tissue biopsies before BAHS implantation. Anaerobes and Staphylococcus spp. were detected in all three compartments after BAHS installation. For most patients (10/12), the same staphylococcal species were found in at least two of the three compartments at the same time-point. The common skin coloniser Staphylococcus epidermidis was identified in all patients but one (11/12), whereas the pathogen Staphylococcus aureus was isolated in five of the patients. Several associations between clinical and microbiological parameters were found. There was no difference in the clinical outcome with the use of polished versus machined abutment at 3 and 12 months after implantation. The present pilot trial largely confirmed a suitable study design, sampling and analytical methodology to determine the effects

  17. Effects of modified abutment characteristics on peri-implant soft tissue health: A systematic review and meta-analysis.

    PubMed

    Sanz-Martín, Ignacio; Sanz-Sánchez, Ignacio; Carrillo de Albornoz, Ana; Figuero, Elena; Sanz, Mariano

    2018-01-01

    The purpose of this systematic review was to evaluate the impact of the abutment characteristics on peri-implant tissue health and to identify the most suitable material and surface characteristics. A protocol was developed aimed to answer the following focused question: "Which is the effect of the modification of the abutment design in regard to the maintenance of the peri-implant soft tissue health?" Further subanalysis aimed to investigate the impact of the abutment material, macroscopic design, surface topography and surface manipulation. Randomised controlled trials (RCTs) with a follow-up of at least 6 months after implant loading were considered as inclusion criteria. Meta-analyses were performed whenever possible. Nineteen final publications from thirteen investigations were included. The results from the meta-analysis indicated that zirconia abutments (Zi) experienced less increase in BOP values over time [n = 3; WMD = -26.96; 95% CI (-45.00; -8.92); p = .003] and less plaque accumulation [n = 1; MD = -20.00; 95% CI (-41.47; 1.47); p = .068] when compared with titanium abutments (Ti). Bone loss was influenced by the method of abutment decontamination [n = 1; MD = -0.44; 95% CI (-0.65; -0.23); p < .001]. The rest of the studied outcomes did not show statistically significant differences. The macroscopic design, the surface topography and the manipulation of the implant abutment did not have a significant influence on peri-implant inflammation. In contrast, the abutment material demonstrated increased BOP values over time for Ti when compared to Zi abutments. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. [Evaluation of cermet fillings in abutment teeth in removable partial prostheses].

    PubMed

    Saulic, S; Tihacek-Sojic, Lj

    2001-01-01

    The aim of the study was to describe the clinical process of setting the purpose filling on abutment teeth, after finishing the removable partial dentures. The aim was also to investigate the use of cermet glass-ionomer cement for the purpose filling in the abutment teeth for removable partial dentures, as well as to investigate the surface of the purpose filling. For the clinical evaluation of purpose filling slightly modified criteria according to Ryg's were used in 20 patients with different type of edentulousness. Changes occurring on the surface of purpose filling have been experimentally established by the method of scanning electron microscopy on the half-grown third molars in seven patients. It could be concluded that cement glass-ionomer was not the appropriate material for the purpose fillings in abutment teeth for removable partial dentures.

  19. Abutment height influences the effect of platform switching on peri-implant marginal bone loss.

    PubMed

    Galindo-Moreno, Pablo; León-Cano, Ana; Monje, Alberto; Ortega-Oller, Inmaculada; O'Valle, Francisco; Catena, Andrés

    2016-02-01

    The purpose was to radiographically analyze and compare the marginal bone loss (MBL) between implants with different mismatching distance and to study the influence of the prosthetic abutment height on the MBL in association with the related mismatching distances. This retrospective study included 108 patients in whom 228 implants were placed, 180 with diameter of 4.5 mm and 48 with diameter of 5 mm. All patients received OsseoSpeed™ implants with internal tapered conical connection (Denstply Implants). Different mismatching distances were obtained, given that all implants were loaded with the same uni-abutment type (Lilac; Denstply Implants). Data were gathered on age, gender, bone substratum, smoking habits, previous history of periodontitis, and prosthetic features. MBL was analyzed radiographically at 6 and 18 months post-loading. Mixed linear analysis of mesial and distal MBL values yielded significant effects of abutment, implant diameter, follow-up period, bone substratum, smoking, and abutment × time interaction. MBL was greater at 18 vs. 6 months, for short vs. long abutments, for grafted vs. pristine bone, for a heavier smoking habit, and for implants with a diameter of 5.0 vs. 4.5 mm. Greater mismatching does not minimize the MBL; abutment height, smoking habit, and bone substratum may play a role in the MBL over the short- and medium term. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Modeling bicortical screws under a cantilever bending load.

    PubMed

    James, Thomas P; Andrade, Brendan A

    2013-12-01

    Cyclic loading of surgical plating constructs can precipitate bone screw failure. As the frictional contact between the plate and the bone is lost, cantilever bending loads are transferred from the plate to the head of the screw, which over time causes fatigue fracture from cyclic bending. In this research, analytical models using beam mechanics theory were developed to describe the elastic deflection of a bicortical screw under a statically applied load. Four analytical models were developed to simulate the various restraint conditions applicable to bicortical support of the screw. In three of the models, the cortical bone near the tip of the screw was simulated by classical beam constraints (1) simply supported, (2) cantilever, and (3) split distributed load. In the final analytical model, the cortices were treated as an elastic foundation, whereby the response of the constraint was proportional to screw deflection. To test the predictive ability of the new analytical models, 3.5 mm cortical bone screws were tested in a synthetic bone substitute. A novel instrument was developed to measure the bending deflection of screws under radial loads (225 N, 445 N, and 670 N) applied by a surrogate surgical plate at the head of the screw. Of the four cases considered, the analytical model utilizing an elastic foundation most accurately predicted deflection at the screw head, with an average difference of 19% between the measured and predicted results. Determination of the bending moments from the elastic foundation model revealed that a maximum moment of 2.3 N m occurred near the middle of the cortical wall closest to the plate. The location of the maximum bending moment along the screw axis was consistent with the fracture location commonly observed in clinical practice.

  1. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method.

    PubMed

    Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Geramipanah, Farideh; Safari, Hamed; Paknejad, Mojgan

    2015-05-01

    To prevent screw loosening, a clear understanding of the factors influencing secure preload is necessary. The purpose of this study was to investigate the effect of coefficient of friction and tightening speed on screw tightening based on energy distribution method with exact geometric modeling and finite element analysis. To simulate the proper boundary conditions of the screw tightening process, the supporting bone of an implant was considered. The exact geometry of the implant complex, including the Straumann dental implant, direct crown attachment, and abutment screw were modeled with Solidworks software. Abutment screw/implant and implant/bone interfaces were designed as spiral thread helixes. The screw-tightening process was simulated with Abaqus software, and to achieve the target torque, an angular displacement was applied to the abutment screw head at different coefficients of friction and tightening speeds. The values of torque, preload, energy distribution, elastic energy, and efficiency were obtained at the target torque of 35 Ncm. Additionally, the torque distribution ratio and preload simulated values were compared to theoretically predicted values. Upon reducing the coefficient of friction and enhancing the tightening speed, the angle of turn increased at the target torque. As the angle of turn increased, the elastic energy and preload also increased. Additionally, by increasing the coefficient of friction, the frictional dissipation energy increased but the efficiency decreased, whereas the increase in tightening speed insignificantly affected efficiency. The results of this study indicate that the coefficient of friction is the most influential factor on efficiency. Increasing the tightening speed lowered the response rate to the frictional resistance, thus diminishing the coefficient of friction and slightly increasing the preload. Increasing the tightening speed has the same result as reducing the coefficient of friction. Copyright © 2015

  2. Integral bridge abutment-to-approach slab connection.

    DOT National Transportation Integrated Search

    2008-06-01

    The Iowa Department of Transportation has long recognized that approach slab pavements of integral abutment bridges are prone to settlement and cracking, which manifests as the "bump at the end of the bridge". A commonly recommended solution is to in...

  3. One-time versus repeated abutment connection for platform-switched implant: A systematic review and meta-analysis.

    PubMed

    Wang, Qing-Qing; Dai, Ruoxi; Cao, Chris Ying; Fang, Hui; Han, Min; Li, Quan-Li

    2017-01-01

    This review aims to compare peri-implant tissue changes in terms of clinical and radiographic aspects of implant restoration protocol using one-time abutment to repeated abutment connection in platform switched implant. A structured search strategy was applied to three electronic databases, namely, Pubmed, Embase and Web of Science. Eight eligible studies, including seven randomised controlled studies and one controlled clinical study, were identified in accordance with inclusion/exclusion criteria. Outcome measures included peri-implant bone changes (mm), peri-implant soft tissue changes (mm), probing depth (mm) and postsurgical complications. Six studies were pooled for meta-analysis on bone tissue, three for soft tissue, two for probing depth and four for postsurgical complications. A total of 197 implants were placed in one-time abutment group, whereas 214 implants were included in repeated abutment group. The implant systems included Global implants, Ankylos, JDEvolution (JdentalCare), Straumann Bone level and Conelog-Screwline. One-time abutment group showed significantly better outcomes than repeated abutment group, as measured in the standardised differences in mean values (fixed- and random-effect model): vertical bone change (0.41, 3.23) in 6 months, (1.51, 14.81) in 12 months and (2.47, 2.47) in 3 years and soft tissue change (0.21, 0.23). No significant difference was observed in terms of probing depth and complications. Our meta-analysis revealed that implant restoration protocol using one-time abutment is superior to repeated abutment for platform switched implant because of less bone resorption and soft tissue shifts in former. However, future randomised clinical trials should be conducted to further confirm these findings because of the small samples and the limited quality of the original research.

  4. A new system of implant abutment connection: how to improve a two piece implant system sealing.

    PubMed

    Grecchi, F; DI Girolamo, M; Cura, F; Candotto, V; Carinci, F

    2017-01-01

    Implant dentistry has become one of the most successful dentistry techniques for replacing missing teeth. The success rate of implant dentistry is above 80%. However, peri-implantitis is a later complication of implant dentistry that if untreated, can lead to implant loss. One of the hypotized causes of peri-implantis is the bacterial leakage at the level of implant-abutment connection. Bacterial leakage is favored to the presence of a micro gap at the implant-abutment interface, allowing microorganisms to penetrate and colonize the inner part of the implant leading to biofilm accumulation and consequently to peri-implantitis development. To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Implants were immerged in a bacterial culture for twenty-four hours and then bacteria amount was measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 9%. The reported results are better to those of previous studies carried out on different implant systems. Until now, none implant-abutment system has been proven to seal the gap between implant and abutment.

  5. Vertical-Screw-Auger Conveyer Feeder

    NASA Technical Reports Server (NTRS)

    Walton, Otis (Inventor); Vollmer, Hubert J. (Inventor)

    2016-01-01

    A conical feeder is attached to a vertically conveying screw auger. The feeder is equipped with scoops and rotated from the surface to force-feed regolith the auger. Additional scoops are possible by adding a cylindrical section above the conical funnel section. Such then allows the unit to collect material from swaths larger in diameter than the enclosing casing pipe of the screw auger. A third element includes a flexible screw auger. All three can be used in combination in microgravity and zero atmosphere environments to drill and recover a wide area of subsurface regolith and entrained volatiles through a single access point on the surface.

  6. Effect of abutment height on interproximal implant bone level in the early healing: A randomized clinical trial.

    PubMed

    Blanco, Juan; Pico, Alexandre; Caneiro, Leticia; Nóvoa, Lourdes; Batalla, Pilar; Martín-Lancharro, Pablo

    2018-01-01

    The aim of this randomized clinical trial was to compare the effect on the interproximal implant bone loss (IBL) of two different heights (1 and 3 mm) of definitive abutments placed at bone level implants with a platform switched design. Twenty-two patients received forty-four implants (6.5-10 mm length and 3.5-4 mm diameter) to replace at least two adjacent missing teeth, one bridge set to each patient-two implants per bridge. Patients were randomly allocated, and two different abutment heights, 1 and 3 mm using only one abutment height per bridge, were used. Clinical and radiological measurements were performed at 3 and 6 months after surgery. Interproximal bone level changes were compared between treatment groups. The association between IBL and categorical variables (history of periodontitis, smoking, implant location, implant diameter, implant length, insertion torque, width of keratinized mucosa, bone density, gingival biotype and antagonist) was also performed. At 3 months, implants with a 1-mm abutment had significantly greater IBL (0.83 ± 0.19 mm) compared to implants with a 3-mm abutment (0.14 ± 0.08 mm). At 6 months, a greater IBL was observed at implants with 1-mm abutments compared to implants with 3-mm abutments (0.91 ± 0.19 vs. 0.11 ± 0.09 mm). The analysis of the relation between patient characteristics and clinical variables with IBL revealed no significant differences at any moment except for smoking. Abutment height is an important factor to maintain interproximal implant bone level in early healing. Short abutments led to a greater interproximal bone loss in comparison with long abutments after 6 months. Other variables except smoking showed no relation with interproximal bone loss in early healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Surgical screw segmentation for mobile C-arm CT devices

    NASA Astrophysics Data System (ADS)

    Görres, Joseph; Brehler, Michael; Franke, Jochen; Wolf, Ivo; Vetter, Sven Y.; Grützner, Paul A.; Meinzer, Hans-Peter; Nabers, Diana

    2014-03-01

    Calcaneal fractures are commonly treated by open reduction and internal fixation. An anatomical reconstruction of involved joints is mandatory to prevent cartilage damage and premature arthritis. In order to avoid intraarticular screw placements, the use of mobile C-arm CT devices is required. However, for analyzing the screw placement in detail, a time-consuming human-computer interaction is necessary to navigate through 3D images and therefore to view a single screw in detail. Established interaction procedures of repeatedly positioning and rotating sectional planes are inconvenient and impede the intraoperative assessment of the screw positioning. To simplify the interaction with 3D images, we propose an automatic screw segmentation that allows for an immediate selection of relevant sectional planes. Our algorithm consists of three major steps. At first, cylindrical characteristics are determined from local gradient structures with the help of RANSAC. In a second step, a DBScan clustering algorithm is applied to group similar cylinder characteristics. Each detected cluster represents a screw, whose determined location is then refined by a cylinder-to-image registration in a third step. Our evaluation with 309 screws in 50 images shows robust and precise results. The algorithm detected 98% (303) of the screws correctly. Thirteen clusters led to falsely identified screws. The mean distance error for the screw tip was 0.8 +/- 0.8 mm and for the screw head 1.2 +/- 1 mm. The mean orientation error was 1.4 +/- 1.2 degrees.

  8. Alumina-zirconia machinable abutments for implant-supported single-tooth anterior crowns.

    PubMed

    Sadoun, M; Perelmuter, S

    1997-01-01

    Innovative materials and application techniques are constantly being developed in the ongoing search for improved restorations. This article describes a new material and the fabrication process of aesthetic machinable ceramic anterior implant abutments. The ceramic material utilized is a mixture of alumina (aluminum oxide) and ceria (cerium oxide) with partially stabilized zirconia (zirconium oxide). The initial core material is a cylinder with a 9-mm diameter and a 15-mm height, obtained by ceramic injection and presintering processes. The resultant alumina-zirconia core is porous and readily machinable. It is secured to the analog, and its design is customized by machining the abutment to suit the particular clinical circumstances. The machining is followed by glass infiltration, and the crown is finalized. The learning objective of this article is to gain a basic knowledge of the fabrication and clinical application of the custom machinable abutments.

  9. Microscopical and chemical surface characterization of CAD/CAM zircona abutments after different cleaning procedures. A qualitative analysis

    PubMed Central

    2015-01-01

    PURPOSE To describe and characterize the surface topography and cleanliness of CAD/CAM manufactured zirconia abutments after steaming and ultrasonic cleaning. MATERIALS AND METHODS A total of 12 ceramic CAD/CAM implant abutments of various manufacturers were produced and randomly divided into two groups of six samples each (control and test group). Four two-piece hybrid abutments and two one-piece abutments made of zirconium-dioxide were assessed per each group. In the control group, cleaning by steam was performed. The test group underwent an ultrasonic cleaning procedure with acetone, ethyl alcohol and antibacterial solution. Groups were subjected to scanning electron microscope (SEM) analysis and Energy-dispersive X-ray spectroscopy (EDX) to verify and characterize contaminant chemical characterization non-quantitatively. RESULTS All zirconia CAD/CAM abutments in the present study displayed production-induced wear particles, debris as well as organic and inorganic contaminants. The abutments of the test group showed reduction of surface contamination after undergoing an ultrasonic cleaning procedure. However, an absolute removal of pollutants could not be achieved. CONCLUSION The presence of debris on the transmucosal surface of CAD/CAM zirconia abutments of various manufacturers was confirmed. Within the limits of the study design, the results suggest that a defined ultrasonic cleaning process can be advantageously employed to reduce such debris, thus, supposedly enhancing soft tissue healing. Although the adverse long-term influence of abutment contamination on the biological stability of peri-implant tissues has been evidenced, a standardized and validated polishing and cleaning protocol still has to be implemented. PMID:25932314

  10. Are sectioning and soldering of short-span implant-supported prostheses necessary procedures?

    PubMed

    Bianchini, Marco A; Souza, João G O; Souza, Dircilene C; Magini, Ricardo S; Benfatti, Cesar A M; Cardoso, Antonio C

    2011-01-01

    The aim of this study was to evaluate the fit between dental abutments and the metal framework of a 3-unit fixed prosthesis screwed to two implants to determine whether sectioning and soldering of the framework are in fact necessary procedures. The study was based on a model of a metal framework of a 3-unit prosthesis screwed to two implants. A total of 18 metal frameworks were constructed and divided into 3 groups: (1) NS group - each framework was cast in one piece and not sectioned; (2) CS group - the components of each sectioned framework were joined by conventional soldering; and (3) LW group - the components of each sectioned framework were joined by laser welding. The control group consisted of six silver-palladium alloy copings that were not cast together. Two analyses were mperformed: in the first analysis, the framework was screwed only to the first abutment, and in the second analysis, the framework was screwed to both abutments. The prosthetic fit was assessed at a single point using a measuring microscope (Measurescope, Nikon, Japan) and the marginal gap was measured in micrometers. Statistical analysis was performed using analysis of variance (ANOVA), Scheffe's test, Student's t-test, and Mann-Whitney U test. The NS group had larger marginal gaps than the other groups (p<0.01), while the CS and LW groups had a similar degree of misfit with no significant difference between them. The results revealed that, in the case of short-span 3-unit fixed prostheses, the framework should be sectioned and soldered or welded to prevent or reduce marginal gaps between the metal framework and dental abutments.

  11. One-time versus repeated abutment connection for platform-switched implant: A systematic review and meta-analysis

    PubMed Central

    Wang, Qing-qing; Dai, Ruoxi; Cao, Chris Ying; Fang, Hui; Han, Min; Li, Quan-Li

    2017-01-01

    Objective This review aims to compare peri-implant tissue changes in terms of clinical and radiographic aspects of implant restoration protocol using one-time abutment to repeated abutment connection in platform switched implant. Method A structured search strategy was applied to three electronic databases, namely, Pubmed, Embase and Web of Science. Eight eligible studies, including seven randomised controlled studies and one controlled clinical study, were identified in accordance with inclusion/exclusion criteria. Outcome measures included peri-implant bone changes (mm), peri-implant soft tissue changes (mm), probing depth (mm) and postsurgical complications. Result Six studies were pooled for meta-analysis on bone tissue, three for soft tissue, two for probing depth and four for postsurgical complications. A total of 197 implants were placed in one-time abutment group, whereas 214 implants were included in repeated abutment group. The implant systems included Global implants, Ankylos, JDEvolution (JdentalCare), Straumann Bone level and Conelog-Screwline. One-time abutment group showed significantly better outcomes than repeated abutment group, as measured in the standardised differences in mean values (fixed- and random-effect model): vertical bone change (0.41, 3.23) in 6 months, (1.51, 14.81) in 12 months and (2.47, 2.47) in 3 years and soft tissue change (0.21, 0.23). No significant difference was observed in terms of probing depth and complications. Conclusion Our meta-analysis revealed that implant restoration protocol using one-time abutment is superior to repeated abutment for platform switched implant because of less bone resorption and soft tissue shifts in former. However, future randomised clinical trials should be conducted to further confirm these findings because of the small samples and the limited quality of the original research. PMID:29049323

  12. Ball Screw Actuator Including a Stop with an Integral Guide

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Perek, John (Inventor); Geck, Kellan (Inventor)

    2015-01-01

    An actuator includes a housing assembly, a ball nut, a ball screw, and a ball screw stop. The ball nut is rotationally mounted in the housing assembly, is adapted to receive an input torque, and is configured, upon receipt thereof, to rotate and supply a drive force. The ball screw is mounted within the housing assembly and extends through the ball nut. The ball screw has a first end and a second end, and is coupled to receive the drive force from the ball nut. The ball screw is configured, upon receipt of the drive force, to selectively translate between a stow position and a deploy position. The ball screw stop is mounted on the ball screw to translate therewith and is configured to at selectively engage the housing assembly while the ball screw is translating, and engage the ball nut when the ball screw is in the deploy position.

  13. Ball Screw Actuator Including an Axial Soft Stop

    NASA Technical Reports Server (NTRS)

    Forrest, Steven Talbert (Inventor); Woessner, George (Inventor); Abel, Steve (Inventor); Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)

    2016-01-01

    An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.

  14. Misfit of Three Different Implant-Abutment Connections Before and After Cyclic Load Application: An In Vitro Study.

    PubMed

    Gehrke, Sergio Alexandre; Delgado-Ruiz, Rafael Arcesio; Prados Frutos, Juan Carlos; Prados-Privado, María; Dedavid, Berenice Anina; Granero Marín, Jose Manuel; Calvo Guirado, José Luiz

    This study aimed to evaluate the misfit of three different implant-abutment connections before and after cycling load. One hundred twenty dental implants and correspondent prefabricated titanium abutments were used. Three different implant-abutment connections were evaluated: Morse taper (MT group), external hexagon (EH group), and internal hexagon (IH group). Forty implants and 40 abutments were used per group. The parameters for the mechanical evaluation were set as: 360,000 cycles, load of 150 N, and frequency of 4 Hz. Samples were sectioned in their longitudinal and transversal axes, and the misfit of the implant-abutment connection was evaluated by scanning electron microscopy analysis. One-way analyses of variance, Tukey post hoc analyses (α = .05), and t test (P < .05) were used to determine differences between groups. At the longitudinal direction, all the groups showed the presence of microgaps before cycling load; after cycling load, microgaps were reduced in all groups (P > .05). Transversally, only the MT group showed full fitting after cycling load compared with the other groups (EH and IH) (P < .0001). The application of cycling load produces an accommodation of the implant-abutment connection in internal, external, and Morse taper connections. In the longitudinal direction, the accommodation decreases and/or eliminates the gap observed initially (before load). In the horizontal direction, Morse cone implant-abutment connections experience a complete accommodation with the elimination of the gap.

  15. Factors affecting the pullout strength of cancellous bone screws.

    PubMed

    Chapman, J R; Harrington, R M; Lee, K M; Anderson, P A; Tencer, A F; Kowalski, D

    1996-08-01

    Screws placed into cancellous bone in orthopedic surgical applications, such as fixation of fractures of the femoral neck or the lumbar spine, can be subjected to high loads. Screw pullout is a possibility, especially if low density osteoporotic bone is encountered. The overall goal of this study was to determine how screw thread geometry, tapping, and cannulation affect the holding power of screws in cancellous bone and determine whether current designs achieve maximum purchase strength. Twelve types of commercially available cannulated and noncannulated cancellous bone screws were tested for pullout strength in rigid unicellular polyurethane foams of apparent densities and shear strengths within the range reported for human cancellous bone. The experimentally derived pullout strength was compared to a predicted shear failure force of the internal threads formed in the polyurethane foam. Screws embedded in porous materials pullout by shearing the internal threads in the porous material. Experimental pullout force was highly correlated to the predicted shear failure force (slope = 1.05, R2 = 0.947) demonstrating that it is controlled by the major diameter of the screw, the length of engagement of the thread, the shear strength of the material into which the screw is embedded, and a thread shape factor (TSF) which accounts for screw thread depth and pitch. The average TSF for cannulated screws was 17 percent lower than that of noncannulated cancellous screws, and the pullout force was correspondingly less. Increasing the TSF, a result of decreasing thread pitch or increasing thread depth, increases screw purchase strength in porous materials. Tapping was found to reduce pullout force by an average of 8 percent compared with nontapped holes (p = 0.0001). Tapping in porous materials decreases screw pullout strength because the removal of material by the tap enlarges hole volume by an average of 27 percent, in effect decreasing the depth and shear area of the internal

  16. Fatigue strength of common tibial intramedullary nail distal locking screws

    PubMed Central

    Griffin, Lanny V; Harris, Robert M; Zubak, Joseph J

    2009-01-01

    Background Premature failure of either the nail and/or locking screws with unstable fracture patterns may lead to angulation, shortening, malunion, and IM nail migration. Up to thirty percent of all unreamed nail locking screws can break after initial weight bearing is allowed at 8–10 weeks if union has not occurred. The primary problem this presents is hardware removal during revision surgery. The purposes of our study was to evaluate the relative fatigue resistance of distal locking screws and bolts from representative manufacturers of tibial IM nail systems, and develop a relative risk assessment of screws and materials used. Evaluations included quantitative and qualitative measures of the relative performance of these screws. Methods Fatigue tests were conducted to simulate a comminuted fracture that was treated by IM nailing assuming that all load was carried by the screws. Each screw type was tested ten times in a single screw configuration. One screw type was tested an additional ten times in a two-screw parallel configuration. Fatigue tests were performed using a servohydraulic materials testing system and custom fixturing that simulated screws placed in the distal region of an appropriately sized tibial IM nail. Fatigue loads were estimated based on a seventy-five kilogram individual at full weight bearing. The test duration was one million cycles (roughly one year), or screw fracture, whichever occurred first. Failure analysis of a representative sample of titanium alloy and stainless steel screws included scanning electron microscopy (SEM) and quantitative metallography. Results The average fatigue life of a single screw with a diameter of 4.0 mm was 1200 cycles, which would correspond roughly to half a day of full weight bearing. Single screws with a diameter of 4.5 mm or larger have approximately a 50 percent probability of withstanding a week of weight bearing, whereas a single 5.0 mm diameter screw has greater than 90 percent probability of

  17. A Biomechanical Analysis of 2 Constructs for Metacarpal Spiral Fracture Fixation in a Cadaver Model: 2 Large Screws Versus 3 Small Screws.

    PubMed

    Eu-Jin Cheah, Andre; Behn, Anthony W; Comer, Garet; Yao, Jeffrey

    2017-12-01

    Surgeons confronted with a long spiral metacarpal fracture may choose to fix it solely with lagged screws. A biomechanical analysis of a metacarpal spiral fracture model was performed to determine whether 3 1.5-mm screws or 2 2.0-mm screws provided more stability during bending and torsional loading. Second and third metacarpals were harvested from 12 matched pairs of fresh-frozen cadaveric hands and spiral fractures were created. One specimen from each matched pair was fixed with 2 2.0-mm lagged screws whereas the other was fixed with 3 1.5-mm lagged screws. Nine pairs underwent combined cyclic cantilever bending and axial compressive loading followed by loading to failure. Nine additional pairs were subjected to cyclic external rotation while under a constant axial compressive load and were subsequently externally rotated to failure under a constant axial compressive load. Paired t tests were used to compare cyclic creep, stiffness, displacement, rotation, and peak load levels. Average failure torque for all specimens was 7.2 ± 1.7 Nm. In cyclic torsional testing, the group with 2 screws exhibited significantly less rotational creep than the one with 3 screws. A single specimen in the group with 2 screws failed before cyclic bending tests were completed. No other significant differences were found between test groups during torsional or bending tests. Both constructs were biomechanically similar except that the construct with 2 screws displayed significantly less loosening during torsional cyclic loading, although the difference was small and may not be clinically meaningful. Because we found no obvious biomechanical advantage to using 3 1.5-mm lagged screws to fix long spiral metacarpal fractures, the time efficiency and decreased implant costs of using 2-2.0 mm lagged screws may be preferred. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  18. Accuracy of pedicle screw insertion by AIRO® intraoperative CT in complex spinal deformity assessed by a new classification based on technical complexity of screw insertion.

    PubMed

    Rajasekaran, S; Bhushan, Manindra; Aiyer, Siddharth; Kanna, Rishi; Shetty, Ajoy Prasad

    2018-01-09

    To develop a classification based on the technical complexity encountered during pedicle screw insertion and to evaluate the performance of AIRO ® CT navigation system based on this classification, in the clinical scenario of complex spinal deformity. 31 complex spinal deformity correction surgeries were prospectively analyzed for performance of AIRO ® mobile CT-based navigation system. Pedicles were classified according to complexity of insertion into five types. Analysis was performed to estimate the accuracy of screw placement and time for screw insertion. Breach greater than 2 mm was considered for analysis. 452 pedicle screws were inserted (T1-T6: 116; T7-T12: 171; L1-S1: 165). The average Cobb angle was 68.3° (range 60°-104°). We had 242 grade 2 pedicles, 133 grade 3, and 77 grade 4, and 44 pedicles were unfit for pedicle screw insertion. We noted 27 pedicle screw breach (medial: 10; lateral: 16; anterior: 1). Among lateral breach (n = 16), ten screws were planned for in-out-in pedicle screw insertion. Among lateral breach (n = 16), ten screws were planned for in-out-in pedicle screw insertion. Average screw insertion time was 1.76 ± 0.89 min. After accounting for planned breach, the effective breach rate was 3.8% resulting in 96.2% accuracy for pedicle screw placement. This classification helps compare the accuracy of screw insertion in range of conditions by considering the complexity of screw insertion. Considering the clinical scenario of complex pedicle anatomy in spinal deformity AIRO ® navigation showed an excellent accuracy rate of 96.2%.

  19. Assessment of the stress transmitted to dental implants connected to screw-retained bars using different casting techniques.

    PubMed

    Haselhuhn, Klaus; Marotti, Juliana; Tortamano, Pedro; Weiss, Claudia; Suleiman, Lubna; Wolfart, Stefan

    2014-12-01

    Passive fit of the prosthetic superstructure is important to avoid complications; however, evaluation of passive fit is not possible using conventional procedures. Thus, the aim of this study was to check and locate mechanical stress in bar restorations fabricated using two casting techniques. Fifteen patients received four implants in the interforaminal region of the mandible, and a bar was fabricated using either the cast-on abutment or lost-wax casting technique. The fit accuracy was checked according to the Sheffield's test criteria. Measurements were recorded on the master model with a gap-free, passive fit using foil strain gauges both before and after tightening the prosthetic screws. Data acquisition and processing was analyzed with computer software and submitted to statistical analysis (ANOVA). The greatest axial distortion was at position 42 with the cast-on abutment technique, with a mean distortion of 450 μm/m. The lowest axial distortion occurred at position 44 with the lost-wax casting technique, with a mean distortion of 100 μm/m. The minimal differences between the means of axial distortion do not indicate any significant differences between the techniques (P = 0.2076). Analysis of the sensor axial distortion in relation to the implant position produced a significant difference (P < 0.0001). Significantly higher measurements were recorded in the axial distortion analysis of the distal sensors of implants at the 34 and 44 regions than on the mesial positions at the 32 and 42 regions (P = 0.0481). The measuring technique recorded axial distortion in the implant-supported superstructures. Distortions were present at both casting techniques, with no significant difference between the sides.

  20. Magnesium Alloys as a Biomaterial for Degradable Craniofacial Screws

    PubMed Central

    Henderson, Sarah E.; Verdelis, Konstantinos; Maiti, Spandan; Pal, Siladitya; Chung, William L.; Chou, Da-Tren; Kumta, Prashant N.; Almarza, Alejandro J.

    2014-01-01

    Recently, magnesium (Mg) alloys have received significant attention as a potential biomaterial for degradable implants, and this study was directed at evaluating the suitability of Mg for craniofacial bone screws. The objective was to implant screws fabricated from commercially available Mg-alloys (pure Mg and AZ31) in-vivo in a rabbit mandible. First, Mg-alloy screws were compared to stainless steel screws in an in-vitro pull-out test and determined to have a similar holding strength (~40N). A finite element model of the screw was created using the pull-out test data, and the model can be used for future Mg-alloy screw design. Then, Mg-alloy screws were implanted for 4, 8, and 12 weeks, with two controls of an osteotomy site (hole) with no implant and a stainless steel screw implanted for 12 weeks. MicroCT (computed tomography) was used to assess bone remodeling and Mg-alloy degradation, both visually and qualitatively through volume fraction measurements for all time points. Histologic analysis was also completed for the Mg-alloys at 12 weeks. The results showed that craniofacial bone remodeling occurred around both Mg-alloy screw types. Pure Mg had a different degradation profile than AZ31, however bone growth occurred around both screw types. The degradation rate of both Mg-alloy screw types in the bone marrow space and the muscle were faster than in the cortical bone space at 12 weeks. Furthermore, it was shown that by alloying Mg, the degradation profile could be changed. These results indicate the promise of using Mg-alloys for craniofacial applications. PMID:24384125

  1. Structural details below roadway, looking north from south abutment. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Structural details below roadway, looking north from south abutment. - Pleasantville Covered Bridge, Spanning Little Manatawny Creek at Covered Bridge Road (State Route 1030), Manatawny, Berks County, PA

  2. Preliminary Design on Screw Press Model of Palm Oil Extraction Machine

    NASA Astrophysics Data System (ADS)

    Firdaus, Muhammad; Salleh, S. M.; Nawi, I.; Ngali, Z.; Siswanto, W. A.; Yusup, E. M.

    2017-01-01

    The concept of the screw press is to compress the fruit bunch between the main screw and travelling cones to extract the palm oil. Visual inspection, model development and simulation of screw press by using Solidworks 2016 and calculation of design properties were performed to support the investigation. The project aims to analyse different design of screw press which improves in reducing maintenance cost and increasing lifespan. The currently existing of screw press can endure between 500 to 900 hours and requires frequent maintenance. Different configurations have been tried in determination of best design properties in screw press. The results specify that screw press with tapered inner shaft has more total lifespan (hours) compared existing screw press. The selection of the screw press with tapered inner shaft can reduce maintenance cost and increase lifespan of the screw press.

  3. Effect of increased crown height on stress distribution in short dental implant components and their surrounding bone: A finite element analysis.

    PubMed

    Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Safari, Hamed; Samandari, Mohammad Mahdi; Geramipanah, Farideh

    2015-06-01

    Implants in posterior regions of the jaw require short dental implants with long crown heights, leading to increased crown-to-implant ratios and mechanical stress. This can lead to fracture and screw loosening. The purpose of this study was to investigate the dynamic nature and behavior of prosthetic components and preimplant bone and evaluate the effect of increased crown height space (CHS) and crown-to-implant ratio on stress concentrations under external oblique forces. The severely resorbed bone of a posterior mandible site was modeled with Mimics and Catia software. A second mandibular premolar tooth was modeled with CHS values of 8.8, 11.2, 13.6, and 16 mm. A Straumann implant (4.1×8 mm), a directly attached crown, and an abutment screw were modeled with geometric data and designed by using SolidWorks software. Abaqus software was used for the dynamic simulation of screw tightening and the application of an external load to the buccal cusp at a 75.8-degree angle with the occlusal plane. The distribution of screw load and member load at each step was compared, and the stress values were calculated within the dental implant complex and surrounding bone. During tightening, the magnitude and distribution of the preload and clamp load were uniform and equal at the cross section of all CHSs. Under an external load, the screw load decreased and member load increased. An increase in the CHS caused the corresponding distribution to become more nonuniform and increased the maximum compressive and tensile stresses in the preimplant bone. Additionally, the von Mises stress decreased at the abutment screw and increased at the abutment and fixture. Under nonaxial forces, increased CHS does not influence the decrease in screw load or increase in member load. However, it contributes to screw loosening and fatigue fracture by skewing the stress distribution to the transverse section of the implant. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry

  4. Abutment design for implant-supported indirect composite molar crowns: reliability and fractography.

    PubMed

    Bonfante, Estevam Augusto; Suzuki, Marcelo; Lubelski, William; Thompson, Van P; de Carvalho, Ricardo Marins; Witek, Lukasz; Coelho, Paulo G

    2012-12-01

    To investigate the reliability of titanium abutments veneered with indirect composites for implant-supported crowns and the possibility to trace back the fracture origin by qualitative fractographic analysis. Large base (LB) (6.4-mm diameter base, with a 4-mm high cone in the center for composite retention), small base (SB-4) (5.2-mm base, 4-mm high cone), and small base with cone shortened to 2 mm (SB-2) Ti abutments were used. Each abutment received incremental layers of indirect resin composite until completing the anatomy of a maxillary molar crown. Step-stress accelerated-life fatigue testing (n = 18 each) was performed in water. Weibull curves with use stress of 200 N for 50,000 and 100,000 cycles were calculated. Probability Weibull plots examined the differences between groups. Specimens were inspected in light-polarized and scanning electron microscopes for fractographic analysis. Use level probability Weibull plots showed Beta values of 0.27 for LB, 0.32 for SB-4, and 0.26 for SB-2, indicating that failures were not influenced by fatigue and damage accumulation. The data replotted as Weibull distribution showed no significant difference in the characteristic strengths between LB (794 N) and SB-4 abutments (836 N), which were both significantly higher than SB-2 (601 N). Failure mode was cohesive within the composite for all groups. Fractographic markings showed that failures initiated at the indentation area and propagated toward the margins of cohesively failed composite. Reliability was not influenced by abutment design. Qualitative fractographic analysis of the failed indirect composite was feasible. © 2012 by the American College of Prosthodontists.

  5. Stability of rock riprap for protection at the toe of abutments located at the floodplain.

    DOT National Transportation Integrated Search

    1991-09-01

    This report presents the results of a research conducted in a hydraulic flume to : determine the stability of rock riprap protecting abutments located on flood : plains. The observed vulnerable zone for rock riprap failure is presented for : two abut...

  6. Experimental investigation of the fracture torque of orthodontic anchorage screws.

    PubMed

    Reimann, Susanne; Ayubi, Mustafa; McDonald, Fraser; Bourauel, Christoph

    2016-07-01

    In contrast to dental implants that remain in the bone, orthodontic anchorage screws serve as temporary anchorage for orthodontic tooth movement and are removed after completion of treatment. The aim of the present study was to evaluate the stability of various commercially available orthodontic anchorage screws against torsion. The torsional deflection of ten different orthodontic anchorage screws from different manufacturers [Ortho Easy Pin (Forestadent), Benefit, quattro (both PSM Medical Solutions), Vector TAS (Ormco), AbsoAnchor(®) (DENTOS Inc.), OrthoLox, Dual-Top JA (both Promedia Medizintechnik), TAD (3M Unitek), INFINITAS (ODS) and tomas(®) (Dentaurum)] was tested in vitro in relation to the rotation angle using a self-developed set-up. The screws were positioned in a resin model with bone-like material properties. Shear tests were performed using the manufacturers' own screwdrivers. Ten screws each were turned manually until a sudden drop in the measured torque occurred. At this point, the screw head was twisted off. Fracture torque and the torque at which the screws deformed plastically were evaluated. Mean values and standard deviations were calculated. According to the German industrial standard, the torque of orthodontic anchorage screws should reach at least 20 Ncm. The majority of the screws reached this nominal torque; however, a few screws fractured before reaching this value. Five screw types displayed plastic deformation below the threshold, at approximately 16 Ncm. The results suggest that orthodontic anchorage screws generally meet the requirements of the standard and ensure safe clinical use. However, according to the present data, it may be assumed that a portion of the screws will be plastically deformed upon removal.

  7. Monitoring of in-service geosynthetic reinforced soil (GRS) bridge abutments in Louisiana : research project capsule.

    DOT National Transportation Integrated Search

    2014-09-01

    The primary objectives of this research are to monitor the : short-term and long-term behavior and performance of inservice : GRS-IBS abutments in the state of Louisiana, and to : verify important design factors and parameters for GRS-IBS : abutment,...

  8. Do screws and screw holes affect osteolysis in cementless cups using highly crosslinked polyethylene? A 7 to 10-year follow-up case-control study.

    PubMed

    Taniguchi, N; Jinno, T; Takada, R; Koga, D; Ando, T; Okawa, A; Haro, H

    2018-05-01

    The use of screws and the presence of screw holes may cause acetabular osteolysis and implant loosening in cementless total hip arthroplasty (THA) using conventional polyethylene. In contrast, this issue is not fully understood using highly crosslinked polyethylene (HXLPE), particularly in large comparative study. Therefore, we performed a case-control study to assess the influence of screw usage and screw holes on: (1) implant fixation and osteolysis and (2) polyethylene steady-state wear rate, using cases with HXLPE liners followed up for 7-10 years postoperatively. The screw usage and screw holes adversely affect the implant fixation and incidence of wear-related osteolysis in THA with HXLPE. We reviewed 209 primary cementless THAs performed with 26-mm cobalt-chromium heads on HXLPE liners. To compare the effects of the use of screws and the presence of screw holes, the following groups were established: (1) with-screw (n=140); (2) without-screw (n=69); (3) no-hole (n=27) and (4) group in which a cup with screw holes, but no screw was used (n=42). Two adjunct groups (no-hole cups excluded) were established to compare the differences in the two types of HXLPE: (5) remelted group (n=100) and (6) annealed group (n=82). Implant stability and osteolysis were evaluated by plain radiography and computed tomography. The wear rate from 1 year to the final evaluation was measured using plain X-rays and PolyWare Digital software. All cups and stems achieved bony fixation. On CT-scan, no acetabular osteolysis was found, but there were 3 cases with a small area of femoral osteolysis. The mean steady-state wear rate of each group was (1) 0.031±0.022, (2) 0.033±0.035, (3) 0.031±0.024, (4) 0.029±0.018, (5) 0.030±0.018 and (6) 0.034±0.023mm/year, respectively. A comparison of the effects of screw usage or screw holes found no significant between-group differences in the implant stability, prevalence of osteolysis [no acetabular osteolysis and 3/209 at femoral side (1

  9. Geosynthetic reinforced soil for low-volume bridge abutments.

    DOT National Transportation Integrated Search

    2012-01-01

    This report presents a review of literature on geosynthetic reinforced soil (GRS) bridge abutments, and test results and analysis from two : field demonstration projects (Bridge 1 and Bridge 2) conducted in Buchanan County, Iowa, to evaluate the feas...

  10. Influence of abutment design on the success of immediately loaded dental implants: experimental and numerical studies.

    PubMed

    Hasan, I; Röger, B; Heinemann, F; Keilig, L; Bourauel, C

    2012-09-01

    The aim of the present study was to investigate experimentally and numerically the influence of a fine threaded- against a roughened-cervical region of immediately loaded dental implants in combination with straight and 20°-angled abutments on the implant primary stability. A total of 30 implants were inserted in bovine rib-segments, 14 cervically roughened implants and 16 implants with fine cervical threads. Each implant system received two abutments, straight and 20°-angled. Implant displacements and rotations were measured using a biomechanical measurement system. Subsequently, eight samples were selected for geometrical reconstruction and numerical investigation of stress and strain distributions in the bone by means of the finite element method. Experimentally, both implant systems showed similar behaviour with the straight abutments concerning displacements and rotations. However, fine threaded implants showed much less displacement and rotation against roughened implants when angled abutments were considered. Numerically, stresses were within 35-45 MPa in the cortical bone for both implant systems. The strains showed highest values within the spongious bone with the roughened implants connected to angled abutments. The results indicate that implants with fine cervical threads could be recommended in particular with angled abutments. The outcomes of this study are currently confirmed by long-term clinical investigations. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Biomechanical comparison of 3.0 mm headless compression screw and 3.5 mm cortical bone screw in a canine humeral condylar fracture model.

    PubMed

    Gonsalves, Mishka N; Jankovits, Daniel A; Huber, Michael L; Strom, Adam M; Garcia, Tanya C; Stover, Susan M

    2016-09-20

    To compare the biomechanical properties of simulated humeral condylar fractures reduced with one of two screw fixation methods: 3.0 mm headless compression screw (HCS) or 3.5 mm cortical bone screw (CBS) placed in lag fashion. Bilateral humeri were collected from nine canine cadavers. Standardized osteotomies were stabilized with 3.0 mm HCS in one limb and 3.5 mm CBS in the contralateral limb. Condylar fragments were loaded to walk, trot, and failure loads while measuring construct properties and condylar fragment motion. The 3.5 mm CBS-stabilized constructs were 36% stiffer than 3.0 mm HCS-stabilized constructs, but differences were not apparent in quality of fracture reduction nor in yield loads, which exceeded expected physiological loads during rehabilitation. Small residual fragment displacements were not different between CBS and HCS screws. Small fragment rotation was not significantly different between screws, but was weakly correlated with moment arm length (R² = 0.25). A CBS screw placed in lag fashion provides stiffer fixation than an HCS screw, although both screws provide similar anatomical reduction and yield strength to condylar fracture fixation in adult canine humeri.

  12. Assessment and comparison of retention of zirconia copings luted with different cements onto zirconia and titanium abutments: An in vitro study

    PubMed Central

    Menon, Neelima Sreekumar; Kumar, G. P. Surendra; Jnanadev, K. R.; Satish Babu, C. L.; Shetty, Shilpa

    2016-01-01

    Aim: The purpose of this in vitro study was to assess and compare the retention of zirconia copings luted with different luting agents onto zirconia and titanium abutments. Materials and Methods: Titanium and zirconia abutments were torqued at 35 N/cm onto implant analogs. The samples were divided into two groups: Group A consisted of four titanium abutments and 32 zirconia copings and Group B consisted of four zirconia abutments and 32 zirconia copings and four luting agents were used. The cemented copings were subjected to tensile dislodgement forces and subjected to ANOVA test. Results: Zirconia abutments recorded a higher mean force compared to titanium. Among the luting agents, resin cement recorded the highest mean force followed by zinc phosphate, glass ionomer, and noneugenol zinc oxide cement, respectively. Conclusion: Highest mean retention was recorded for zirconia implant abutments compared to titanium abutments when luted with zirconia copings. PMID:27141162

  13. Development of structural schemes of parallel structure manipulators using screw calculus

    NASA Astrophysics Data System (ADS)

    Rashoyan, G. V.; Shalyukhin, K. A.; Gaponenko, EV

    2018-03-01

    The paper considers the approach to the structural analysis and synthesis of parallel structure robots based on the mathematical apparatus of groups of screws and on a concept of reciprocity of screws. The results are depicted of synthesis of parallel structure robots with different numbers of degrees of freedom, corresponding to the different groups of screws. Power screws are applied with this aim, based on the principle of static-kinematic analogy; the power screws are similar to the orts of axes of not driven kinematic pairs of a corresponding connecting chain. Accordingly, kinematic screws of the outlet chain of a robot are simultaneously determined which are reciprocal to power screws of kinematic sub-chains. Solution of certain synthesis problems is illustrated with practical applications. Closed groups of screws can have eight types. The three-membered groups of screws are of greatest significance, as well as four-membered screw groups [1] and six-membered screw groups. Three-membered screw groups correspond to progressively guiding mechanisms, to spherical mechanisms, and to planar mechanisms. The four-membered group corresponds to the motion of the SCARA robot. The six-membered group includes all possible motions. From the works of A.P. Kotelnikov, F.M. Dimentberg, it is known that closed fifth-order screw groups do not exist. The article presents examples of the mechanisms corresponding to the given groups.

  14. Torsional stability of interference screws derived from bovine bone - a biomechanical study

    PubMed Central

    2010-01-01

    Background In the present biomechanical study, the torsional stability of different interference screws, made of bovine bone, was tested. Interference screws derived from bovine bone are a possible biological alternative to conventional metallic or bioabsorbable polymer interference screws. Methods In the first part of the study we compared the torsional stability of self-made 8 mm Interference screws (BC) and a commercial 8 mm interference screw (Tutofix®). Furthermore, we compared the torsional strength of BC screws with different diameters. For screwing in, a hexagon head and an octagon head were tested. Maximum breaking torques in polymethyl methacrylate resin were recorded by means of an electronic torque screw driver. In the second part of the study the tibial part of a bone-patellar tendon-bone graft was fixed in porcine test specimens using an 8 mm BC screw and the maximum insertion torques were recorded. Each interference screw type was tested 5 times. Results There was no statistically significant difference between the different 8 mm interference screws (p = 0.121). Pairwise comparisons did not reveal statistically significant differences, either. It was demonstrated for the BC screws, that a larger screw diameter significantly leads to higher torsional stability (p = 9.779 × 10-5). Pairwise comparisons showed a significantly lower torsional stability for the 7 mm BC screw than for the 8 mm BC screw (p = 0.0079) and the 9 mm BC screw (p = 0.0079). Statistically significant differences between the 8 mm and the 9 mm BC screw could not be found (p = 0.15). During screwing into the tibial graft channel of the porcine specimens, insertion torques between 0.5 Nm and 3.2 Nm were recorded. In one case the hexagon head of a BC screw broke off during the last turn. Conclusions The BC screws show comparable torsional stability to Tutofix® interference screws. As expected the torsional strength of the screws increases significantly with the diameter. The safety

  15. [A study on the mechanical behaviors of abutment teeth with various coping designs under overdenture].

    PubMed

    Vang, M S; Cho, J H

    1990-04-01

    An overdenture is a complete denture supported by both soft tissue and a few remaining natural teeth. The purpose of this study was to analyze the stress distribution of the teeth and supporting structures when various type of coping under overdenture was applied. The analysis was conducted by using the finite element method and changing the condition such as the direction of the load, the shape of coping on the abutment: The model included overdenture copings, abutment tooth and supporting structures. The results of analysis were as follows: 1. The short dome coping showed well distribution of stress. 2. The dome shaped design produced higher stress distribution than square and inclined plane design. 3. As the height of copings on the abutment was increased, the displacements increased. 4. The magnitude and direction of the abutment displacements were influenced by the direction of load application.

  16. Finite element analysis of the axial stiffness of a ball screw

    NASA Astrophysics Data System (ADS)

    Zhou, L.-X.; Li, P.-Y.

    2018-06-01

    The ball screw was developed for high speed and high precision operation; therefore, increasingly greater demands have been placed on the stiffness of the ball screw. Firstly, ANSYS software was used to compare the axial stiffness of a single-nut and single-arc ball screw and a single-nut and double-arc ball screw when the spiral angle is not considered. On this basis, the model of a single-nut ball screw was established taking into consideration the spiral lead angle, and then the variations in displacement and stiffness when the ball screw pair was subjected to an axial force were determined. The axial contact stiffness of the double-nut ball screw pair, subject to a pre-tightening force, was analyzed, according to the above-mentioned steps. The simulation results demonstrated that under the same working conditions, the stiffness of the double-arc ball screw was larger by between 5∼100 N/um than that of the single-arc ball screw. The spiral lead angle increased the axial stiffness of the ball screw pair, and the axial stiffness of the double-nut ball screw pair subject to a pre-tightening force was larger by between 790∼1360 N/um than that of the axial stiffness of the single-nut ball screw pair.

  17. Screw Versus Plate Fixation for Chevron Osteotomy: A Retrospective Study.

    PubMed

    Andrews, Boyd J; Fallat, Lawrence M; Kish, John P

    2016-01-01

    The chevron osteotomy is a popular procedure used for the correction of moderate hallux abducto valgus deformity. Fixation is typically accomplished with Kirschner wires or bone screws; however, in cystic or osteoporotic bone, these could be inadequate, resulting in displacement of the capital fragment. We propose using a locking plate and interfragmental screw for fixation of the chevron osteotomy that could reduce the healing time and decrease the incidence of displacement. We performed a retrospective cohort study for chevron osteotomies on 75 feet (73 patients). The control groups underwent fixation with 1 screw in 30 feet (40%) and 2 screws in 30 feet (40%). A total of 15 feet (20%) were included in the locking plate and interfragmental screw group. The patients were followed up until bone healing was achieved at a median of 7 (range 6 to 14) weeks. Our hypothesis was that those treated with the locking plate and interfragmental screw would have a faster healing time and fewer incidents of capital fragment displacement compared with the 1- or 2-screw groups. The corresponding mean intervals to healing for the 1-screw group was 7.71 ± 1.28 (range 6 to 10) weeks, for the 2-screw group was 7.27 ± 1.57 (range 6 to 14) weeks, and for the locking plate and interfragmental screw group was 7.01 ± 1.00 (range 6 to 9) weeks. One case of capital fragment displacement occurred in the single screw group and one in the 2-screw group. No displacement occurred in the locking plate and interfragmental screw group. Neither finding was statistically significant. However, we believe the locking plate and interfragmental screw could be a viable option in patients with osteoporotic and cystic bone changes for correction of hallux abducto valgus. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Numerical simulation of abutment pressure redistribution during face advance

    NASA Astrophysics Data System (ADS)

    Klishin, S. V.; Lavrikov, S. V.; Revuzhenko, A. F.

    2017-12-01

    The paper presents numerical simulation data on the abutment pressure redistribution in rock mass during face advance, including isolines of maximum shear stress and pressure epures. The stress state of rock in the vicinity of a breakage heading is calculated by the finite element method using a 2D nonlinear model of a structurally heterogeneous medium with regard to plasticity and internal self-balancing stress. The thus calculated stress field is used as input data for 3D discrete element modeling of the process. The study shows that the abutment pressure increases as the roof span extends and that the distance between the face breast and the peak point of this pressure depends on the elastoplastic properties and internal self-balancing stress of a rock medium.

  19. Evaluation of the success rate of cone beam computed tomography in determining the location and direction of screw access holes in cement-retained implant-supported prostheses: An in vitro study.

    PubMed

    Neshandar Asli, Hamid; Dalili Kajan, Zahra; Gholizade, Fatemeh

    2018-02-21

    Cement-retained implant-supported restorations have advantages over screw-retained restorations but are difficult to retrieve. Identifying the approximate location of the screw access hole (SAH) may reduce damage to the prosthesis. The purpose of this in vitro study was to evaluate the ability of cone beam computed tomography (CBCT) imaging to determine the location and direction of SAHs in cement-retained implant prostheses. Five clear acrylic resin casts were made based on a mandibular model. Several implant osteotomies (n=30) were created on the models with surgical burs, and crowns were made using the standard laboratory method with a transfer coping and the closed tray impression technique. CBCT images from the acrylic resin casts were evaluated by a maxillofacial radiologist who was blind to the locations and angles of the osteotomies. The locations of the access holes were determined on multiplanar reconstruction images and transferred to the clinical crown surface as defined points. Based on cross-sectional images, the predicted angle of the access hole was provided to a prosthodontist who was requested to pierce the crown at the proposed location in the specified direction. If the location and/or direction of the access hole were found, the process was considered successful, as the crown could then be removed from the implant abutment through the SAH. The success rate in the detection of the location and direction of the SAH was calculated, and chi-square and Fisher exact tests were applied for data analysis (α=.05). According to the results of this study, the success rate of CBCT to define the location of SAHs was 83.3% and 80% to determine the direction. No significant differences were found among the different dental groups in determination of the location (P=.79) or the direction (P=.53) of the SAHs. Most of the failures in determining the location and direction of the access hole in the buccolingual and mesiodistal directions were in the buccal and

  20. Time-elapsed screw insertion with microCT imaging.

    PubMed

    Ryan, M K; Mohtar, A A; Cleek, T M; Reynolds, K J

    2016-01-25

    Time-elapsed analysis of bone is an innovative technique that uses sequential image data to analyze bone mechanics under a given loading regime. This paper presents the development of a novel device capable of performing step-wise screw insertion into excised bone specimens, within the microCT environment, whilst simultaneously recording insertion torque, compression under the screw head and rotation angle. The system is computer controlled and screw insertion is performed in incremental steps of insertion torque. A series of screw insertion tests to failure were performed (n=21) to establish a relationship between the torque at head contact and stripping torque (R(2)=0.89). The test-device was then used to perform step-wise screw insertion, stopping at intervals of 20%, 40%, 60% and 80% between screw head contact and screw stripping. Image data-sets were acquired at each of these time-points as well as at head contact and post-failure. Examination of the image data revealed the trabecular deformation as a result of increased insertion torque was restricted to within 1mm of the outer diameter of the screw thread. Minimal deformation occurred prior to the step between the 80% time-point and post-failure. The device presented has allowed, for the first time, visualization of the micro-mechanical response in the peri-implant bone with increased tightening torque. Further testing on more samples is expected to increase our understanding of the effects of increased tightening torque at the micro-structural level, and the failure mechanisms of trabeculae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Percutaneous computer-assisted translaminar facet screw: an initial human cadaveric study.

    PubMed

    Sasso, Rick C; Best, Natalie M; Potts, Eric A

    2005-01-01

    Translaminar facet screws are a minimally invasive technique for posterior lumbar fixation with good success rates. Computer-assisted image navigation using virtual fluoroscopy allows multiple simultaneous screens in various planes to plan and drive spinal instrumentation. This study evaluates the percutaneous placement of translaminar facet screws with the use of virtual fluoroscopy as an image guidance technique. A human cadaveric study was performed with a percutaneous reference frame applied to the iliac crest. Ten translaminar facet screws were placed bilaterally at five levels. Anteroposterior and lateral images were used to navigate 4.0-mm screws through a percutaneous portal under virtual fluoroscopy. An axial computed tomographic scan through the instrumented levels was obtained after the screws were placed. Screws were graded on entry, course through the lamina, and terminus. A grading system was devised to grade the course through the lamina. All 10 screw-entry points were judged optimal at the spinous process laminar junction. There were five Grade I breeches with less than 1/2 the screw through the lamina, and five Grade 0 screw placements with the screw contained completely within the lamina. The termination point was acceptable in five screws. The screws that began on the right and terminated on the left were all found to have grade II breakouts. No screws placed the spinal canal or exiting nerve root at risk. Virtual fluoroscopy provides significant assistance in percutaneous placement of translaminar facet screws and results in safe position of entry, lamina course, and terminus.

  2. Fate of the syndesmotic screw--Search for a prudent solution.

    PubMed

    Kaftandziev, Igor; Spasov, Marko; Trpeski, Simon; Zafirova-Ivanovska, Beti; Bakota, Bore

    2015-11-01

    Ankle fractures are common injuries. Since the recognition of the importance of syndesmotic injury in ankle fractures, much of the scientific work has been focused on concomitant syndesmotic injury. Despite the invention of novel devices for restoration and maintenance of the congruent syndesmosis following syndesmotic injury, the metallic syndesmotic screw is still considered to be the "gold standard". The aim of this study was to compare the clinical results in patients who retained the syndesmosis screw with those in whom the screw was removed following open reduction and internal fixation of the malleolar fracture associated with syndesmosis disruption. This was a retrospective study of 82 patients. Minimum follow-up was 12 months. Clinical evaluation included American Orthopaedic Foot and Ankle Society (AOFAS) score and Visual Analogue Scale (VAS) for patient general satisfaction. The condition of the screw (removed, intact or broken), presence of radiolucency around the syndesmotic screw and the tibiofibular clear space were recorded using final follow-up radiographs. Three cortices were engaged in 66 patients (80%) and quadricortical fixation was performed in the remaining 16 patients (20%). The number of engaged cortices did not correlate with the clinical outcome and screw fracture. A single syndesmotic screw was used in 71 patients (86%. The mean AOFAS score in the group with intact screw (I) was 83; the scores in the group with broken screw (B) and removed screw (R) were 92.5 and 85.5, respectively. There was a statistically significant difference between the three groups: this was due to the difference between groups I and B; the difference between groups I and R and groups B and R were not statistically significant. There were no statistically significant differences in VAS results. There were no statistically significant differences in clinical outcome between the group with the screw retained and the group in which the screw was removed; however, the

  3. Fracture Strength of Monolithic All-Ceramic Crowns on Titanium Implant Abutments.

    PubMed

    Weyhrauch, Michael; Igiel, Christopher; Scheller, Herbert; Weibrich, Gernot; Lehmann, Karl Martin

    2016-01-01

    The fracture strengths of all-ceramic crowns cemented on titanium implant abutments may vary depending on crown materials and luting agents. The purpose of this study was to examine differences in fracture strength among crowns cemented on implant abutments using crowns made of seven different monolithic ceramic materials and five different luting agents. In total, 525 crowns (75 each of Vita Mark II, feldspathic ceramic [FSC]; Ivoclar Empress CAD, leucite-reinforced glass ceramic [LrGC]; Ivoclar e.max CAD, lithium disilicate [LiDS]; Vita Suprinity, presintered zirconia-reinforced lithium silicate ceramic [PSZirLS]; Vita Enamic, polymer-reinforced fine-structure feldspathic ceramic [PolyFSP], Lava Ultimate; resin nanoceramic [ResNC], Celtra Duo; fully crystallized zirconia-reinforced lithium silicate [FcZirLS]) were milled using a CAD/CAM system. The inner surfaces of the crowns were etched and silanized. Titanium implant abutments were fixed on implant analogs, and airborne-particle abrasion was used on their exterior specific adhesion surfaces (Al2O3, 50 μm). Then, the abutments were degreased and silanized. The crowns were cemented on the implant abutments using five luting agents (Multilink Implant, Variolink II, RelyX Unicem, GC FujiCEM, Panavia 2.0). After thermocycling for 5,000 cycles (5 to 55°C, 30 seconds dwell time), the crowns were subjected to fracture strength testing under static load using a universal testing machine. Statistical analyses were performed using analysis of variance (α = .0002) and the Bonferroni correction. No significant difference among the luting agents was found using the different all-ceramic materials. Ceramic materials LiDS, PSZirLS, PolyFSP, and ResNC showed significantly higher fracture strength values compared with FSC, FcZirLS, and LrGC. The PSZirLS especially showed significantly better results. Within the limitations of this study, fracture strength was not differentially affected by the various luting agents. However

  4. Perforations and angulations of 324 cervical medial cortical pedicle screws: a possible guide to avoid lateral perforations with use of pedicle screws in lower cervical spine.

    PubMed

    Mahesh, Bijjawara; Upendra, Bidre; Vijay, Sekharappa; Arun, Kumar; Srinivasa, Reddy

    2017-03-01

    More than half of the perforations reported with usage of cervical pedicle screws (CPS) are lateral perforations, endangering the vertebral artery. The medial cortical pedicle screw (MCPS) technique with partial drilling of the medial cortex shifts the trajectory of pedicle screws medially, decreasing the lateral perforations. To evaluate the decrease in lateral perforations of CPS with use of MCPS technique, in relation to medial angulation. Retrospective analysis and technical report of the MCPS technique and its safety. A total of 58 patients operated on between December 2011 and May 2015 with insertion of pedicle screws from C3 to C7 were included in the study. Axial reconstructed computed tomography (CT) scan images of the inserted screws were evaluated for placement, perforations, and transverse plane angulations using the Surgimap software (Surgimap Spine 1.1.2.271 Intl. 2009 Nemaris LLC). The angulations of screws were analyzed by the type and level of placement through unpaired t test and analysis of variance test. A total of 58 patients operated on between December 2011 and May 2015 with insertion of pedicle screws from C3 to C7 were included in the study. There were 49 males and 9 females. Thirty-seven patients had cervical trauma, 17 had cervical spondylotic myelopathy, two had tumors, and two had ankylosing spondylitis. The average age was 49 years (range 18 to 80 years). The screws were inserted using the MCPS technique. All patients underwent postoperative CT scans with GE Optima CT540 16 slice CT scanner (GE Healthcare Chalfont St. Giles, Buckinghamshire, UK). Axial reconstructed images along the axis of the inserted screws were evaluated for placement and perforations. Further, all the screws were evaluated for transverse plane angulations using the Surgimap software. The angulations of screw were analyzed by the type and level of placement through unpaired t test and analysis of variance test. No funds were received by any of the authors for the

  5. An approximate model for cancellous bone screw fixation.

    PubMed

    Brown, C J; Sinclair, R A; Day, A; Hess, B; Procter, P

    2013-04-01

    This paper presents a finite element (FE) model to identify parameters that affect the performance of an improved cancellous bone screw fixation technique, and hence potentially improve fracture treatment. In cancellous bone of low apparent density, it can be difficult to achieve adequate screw fixation and hence provide stable fracture fixation that enables bone healing. Data from predictive FE models indicate that cements can have a significant potential to improve screw holding power in cancellous bone. These FE models are used to demonstrate the key parameters that determine pull-out strength in a variety of screw, bone and cement set-ups, and to compare the effectiveness of different configurations. The paper concludes that significant advantages, up to an order of magnitude, in screw pull-out strength in cancellous bone might be gained by the appropriate use of a currently approved calcium phosphate cement.

  6. Multidirectional volar fixed-angle plating using cancellous locking screws for distal radius fractures--evaluation of three screw configurations in an extra-articular fracture model.

    PubMed

    Weninger, Patrick; Dall'Ara, Enrico; Drobetz, Herwig; Nemec, Wolfgang; Figl, Markus; Redl, Heinz; Hertz, Harald; Zysset, Philippe

    2011-01-01

    Volar fixed-angle plating is a popular treatment for unstable distal radius fractures. Despite the availability of plating systems for treating distal radius fractures, little is known about the mechanical properties of multidirectional fixed-angle plates. The aim of this study was to compare the primary fixation stability of three possible screw configurations in a distal extra-articular fracture model using a multidirectional fixed-angle plate with metaphyseal cancellous screws distally. Eighteen Sawbones radii (Sawbones, Sweden, model# 1027) were used to simulate an extra-articular distal radius fracture according to AO/OTA 23 A3. Plates were fixed to the shaft with one non-locking screw in the oval hole and two locking screws as recommended by the manufacturer. Three groups (n = 6) were defined by screw configuration in the distal metaphyseal fragment: Group 1: distal row of screws only; Group 2: 2 rows of screws, parallel insertion; Group 3: 2 rows of screws, proximal screws inserted with 30° of inclination. Specimens underwent mechanical testing under axial compression within the elastic range and load controlled between 20 N and 200 N at a rate of 40 N/s. Axial stiffness and type of construct failure were recorded. There was no difference regarding axial stiffness between the three groups. In every specimen, failure of the Sawbone-implant-construct occurred as plastic bending of the volar titanium plate when the dorsal wedge was closed. Considering the limitations of the study, the recommendation to use two rows of screws or to place screws in the proximal metaphyseal row with inclination cannot be supported by our mechanical data.

  7. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  8. Influence of platform and abutment angulation on peri-implant bone. A three-dimensional finite element stress analysis.

    PubMed

    Martini, Ana Paula; Barros, Rosália Moreira; Júnior, Amilcar Chagas Freitas; Rocha, Eduardo Passos; de Almeida, Erika Oliveira; Ferraz, Cacilda Cunha; Pellegrin, Maria Cristina Jimenez; Anchieta, Rodolfo Bruniera

    2013-12-01

    The aim of this study was to evaluate stress distribution on the peri-implant bone, simulating the influence of Nobel Select implants with straight or angulated abutments on regular and switching platform in the anterior maxilla, by means of 3-dimensional finite element analysis. Four mathematical models of a central incisor supported by external hexagon implant (13 mm × 5 mm) were created varying the platform (R, regular or S, switching) and the abutments (S, straight or A, angulated 15°). The models were created by using Mimics 13 and Solid Works 2010 software programs. The numerical analysis was performed using ANSYS Workbench 10.0. Oblique forces (100 N) were applied to the palatine surface of the central incisor. The bone/implant interface was considered perfectly integrated. Maximum (σmax) and minimum (σmin) principal stress values were obtained. For the cortical bone the highest stress values (σmax) were observed in the RA (regular platform and angulated abutment, 51 MPa), followed by SA (platform switching and angulated abutment, 44.8 MPa), RS (regular platform and straight abutment, 38.6 MPa) and SS (platform switching and straight abutment, 36.5 MPa). For the trabecular bone, the highest stress values (σmax) were observed in the RA (6.55 MPa), followed by RS (5.88 MPa), SA (5.60 MPa), and SS (4.82 MPa). The regular platform generated higher stress in the cervical periimplant region on the cortical and trabecular bone than the platform switching, irrespective of the abutment used (straight or angulated).

  9. Effects of a cementing technique in addition to luting agent on the uniaxial retention force of a single-tooth implant-supported restoration: an in vitro study.

    PubMed

    Santosa, Robert E; Martin, William; Morton, Dean

    2010-01-01

    Excess residual cement around the implant margin has been shown to be detrimental to the peri-implant tissue. This in vitro study examines the retentive strengths of two different cementing techniques and two different luting agents on a machined titanium abutment and solid screw implants. The amount of reduction of excess cement weight between the two cementation techniques was assessed. Forty gold castings were fabricated for 4.1 mm in diameter and 10 mm in length solid-screw dental implants paired with 5.5-mm machined titanium abutments. Twenty implants received a provisional cement, and 20 implants received a definitive cement. Each group was further divided into two groups. In the control group, cement was applied and the castings seated over the implant-abutment assembly. The excess cement was then removed. In the study group, a "practice abutment" was used to express excess cement prior to cementation. The weight of the implant-casting assembly was measured and the residual weight of cement was calculated. The samples were then stored for 24 hours at 100% humidity prior to tensile strength testing. Statistical analysis revealed significant differences in tensile strength across the groups. Further Tukey tests showed no significant difference in tensile strength between the practice abutment technique and the conventional technique for both definitive and provisional cements. There was a significant reduction in residual cement weight, irrespective of the type of cement, when the practice abutment was used prior to cementation. Cementation of implant restorations on a machined abutment using the practice abutment technique and definitive cement may provide similar uniaxial retention force and significantly reduced residual cement weight compared to the conventional technique of cement removal.

  10. Determination of Abutment Pressure in Coal Mines with Extremely Thick Alluvium Stratum: A Typical Kind of Rockburst Mines in China

    NASA Astrophysics Data System (ADS)

    Zhu, Sitao; Feng, Yu; Jiang, Fuxing

    2016-05-01

    This paper investigates the abutment pressure distribution in coal mines with extremely thick alluvium stratum (ETAS), which is a typical kind of mines encountering frequent intense rockbursts in China. This occurs due to poor understanding to abutment pressure distribution pattern and the consequent inappropriate mine design. In this study, a theoretical computational model of abutment pressure for ETAS longwall panels is proposed based on the analysis of load transfer mechanisms of key stratum (KS) and ETAS. The model was applied to determine the abutment pressure distribution of LW2302S in Xinjulong Coal Mine; the results of stress and microseismic monitoring verified the rationality of this model. The calculated abutment pressure of LW2302S was also used in the terminal mining line design of LW2301N for rockburst prevention, successfully protecting the main roadway from the adverse influence of the abutment pressure.

  11. Soft Tissue Response to Titanium Abutments with Different Surface Treatment: Preliminary Histologic Report of a Randomized Controlled Trial.

    PubMed

    Canullo, Luigi; Dehner, Jan Friedrich; Penarrocha, David; Checchi, Vittorio; Mazzoni, Annalisa; Breschi, Lorenzo

    2016-01-01

    The aim of this preliminary prospective RCT was to histologically evaluate peri-implant soft tissues around titanium abutments treated using different cleaning methods. Sixteen patients were randomized into three groups: laboratory customized abutments underwent Plasma of Argon treatment (Plasma Group), laboratory customized abutments underwent cleaning by steam (Steam Group), and abutments were used as they came from industry (Control Group). Seven days after the second surgery, soft tissues around abutments were harvested. Samples were histologically analyzed. Soft tissues surrounding Plasma Group abutments predominantly showed diffuse chronic infiltrate, almost no acute infiltrate, with presence of few polymorphonuclear neutrophil granulocytes, and a diffuse presence of collagenization bands. Similarly, in Steam Group, the histological analysis showed a high variability of inflammatory expression factors. Tissues harvested from Control Group showed presence of few neutrophil granulocytes, moderate presence of lymphocytes, and diffuse collagenization bands in some sections, while they showed absence of acute infiltrate in 40% of sections. However, no statistical difference was found among the tested groups for each parameter (p > 0.05). Within the limit of the present study, results showed no statistically significant difference concerning inflammation and healing tendency between test and control groups.

  12. Stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture: a comparative finite element study.

    PubMed

    Huang, Xiaowei; Zhi, Zhongzheng; Yu, Baoqing; Chen, Fancheng

    2015-11-25

    The purpose of this study is to compare the stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture. A three-dimensional (3D) finite element model of the medial tibial plateau fracture (Schatzker type IV fracture) was created. An axial force of 2500 N with a distribution of 60% to the medial compartment was applied to simulate the axial compressive load on an adult knee during single-limb stance. The equivalent von Mises stress, displacement of the model relative to the distal tibia, and displacement of the implants were used as the output measures. The mean stress value of the plate-screw fixation system was 18.78 MPa, which was significantly (P < 0.001) smaller than that of the screw fixation system. The maximal value of displacement (sum) in the plate-screw fixation system was 2.46 mm, which was lower than that in the screw fixation system (3.91 mm). The peak stress value of the triangular fragment in the plate-screw fixation system model was 42.04 MPa, which was higher than that in the screw fixation model (24.18 MPa). But the mean stress of the triangular fractured fragment in the screw fixation model was significantly higher in terms of equivalent von Mises stress (EVMS), x-axis, and z-axis (P < 0.001). This study demonstrated that the load transmission mechanism between plate-screw fixation system and screw fixation system was different and the stability provided by the plate-screw fixation system was superior to the screw fixation system.

  13. Locking design affects the jamming of screws in locking plates.

    PubMed

    Sandriesser, Sabrina; Rupp, Markus; Greinwald, Markus; Heiss, Christian; Augat, Peter; Alt, Volker

    2018-06-01

    The seizing of locking screws is a frequently encountered clinical problem during implant removal of locking compression plates (LCP) after completion of fracture healing. The aim of this study was to investigate the effect of two different locking mechanisms on the seizing of locking screws. Specifically, the removal torques before and after cyclic dynamic loading were assessed for screws inserted at the manufacturer-recommended torque or at an increased insertion torque. The seizing of 3.5-mm angular stable screws was assessed as a function of insertion torque for two different locking mechanisms (Thread & Conus and Thread Only). Locking screws (n=10 for each configuration) were inserted either according to the manufacturer-recommended torque or at an increased torque of 150% to simulate an over-insertion of the screw. Half of the screws were removed directly after insertion and the remaining half was removed after a dynamic load protocol of 100,000 cycles. The removal torques of locking screws exceeded the insertion torques for all tested conditions confirming the adequacy of the test setup in mimicking screw seizing in locked plating. Screw seizing was more pronounced for Thread Only design (+37%) compared to Thread & Conus design (+14%; P<0.0001). Cyclic loading of the locking construct consistently resulted in an increased seizing of the locking screws (P<0.0001). Clinical observations from patients treated with the Thread & Conus locking design confirm the biomechanical findings of reduction in seizing effect by using a Thread & Conus design. In conclusion, both over-tightening and cyclic loading are potential causes for screw seizing in locking plate implants. Both effects were found to be less pronounced in the Thread & Conus design as compared to the traditional Thread Only design. © 2018 Elsevier Ltd. All rights reserved.

  14. Dual load path ball screw with rod end swivel

    NASA Technical Reports Server (NTRS)

    Wngett, Paul (Inventor)

    2002-01-01

    A dual drive ball has a ball screw shaft coupled at one end to a gear train and coupled at the other end to a ball screw nut. The ball screw shaft and ball screw nut are connected through complementary helical grooves filled with ball bearing balls. The outer surface of the ball screw nut is plined and can be driven by a second gear train. An output tube is coupled at one end to the ball screw nut and at its opposite end has a connector portion with a groove on its inner surface. A rod end has a coupling member for coupling to a surface to be actuated and a shaft portion with a groobe on its outer surface. This shaft portion is received with in the outputtube portion and the corresponding grooves are coupled through the use of a plurality of ball bearing balls.

  15. An in vitro biomechanical comparison of hydroxyapatite coated and uncoated ao cortical bone screws for a limited contact: dynamic compression plate fixation of osteotomized equine 3rd metacarpal bones.

    PubMed

    Durham, Myra E; Sod, Gary A; Riggs, Laura M; Mitchell, Colin F

    2015-02-01

    To compare the monotonic biomechanical properties of a broad 4.5 mm limited contact-dynamic compression plate (LC-DCP) fixation secured with hydroxyapatite (HA) coated cortical bone screws (HA-LC-DCP) versus uncoated cortical bone screws (AO-LC-DCP) to repair osteotomized equine 3rd metacarpal (MC3) bones. Experimental. Adult equine cadaveric MC3 bones (n = 12 pair). Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for: (1) 4 point bending single cycle to failure testing; (2) 4 point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. For the HA-LC-DCP-MC3 construct, an 8-hole broad LC-DCP (Synthes Ltd, Paoli, PA) was secured on the dorsal surface of each randomly selected MC3 bone with a combination of four 5.5 mm and four 4.5 mm HA-coated cortical screws. For the AO-LC-DCP-MC3 construct, an 8-hole 4.5 mm broad LC-DCP was secured on the dorsal surface of the contralateral MC3 bone with a combination of four 5.5 mm and four 4.5 mm uncoated cortical screws. All MC3 bones had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P < .05. Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4 point bending, single cycle to failure, of the HA-LC-DCP fixation were significantly greater than those of the AO-LC-DCP fixation. Mean ± SD values for the HA-LC-DCP and the AO-LC-DCP fixation techniques, respectively, in single cycle to failure under 4 point bending were: yield load, 26.7 ± 2.15 and 16.3 ± 1.38 kN; yield bending moment, 527.4 ± 42.4 and 322.9 ± 27.2 N-m; composite rigidity, 5306 ± 399 and 3003 ± 300 N-m/rad; failure load, 40.6 ± 3.94 and 26.5 ± 2.52 kN; and failure bending moment, 801.9 ± 77.9 and 522.9 ± 52.2 N-m. Mean cycles to failure in 4 point bending of the HA

  16. Mechanical Properties of Abutments: Resin-Bonded Glass Fiber-Reinforced Versus Titanium.

    PubMed

    Bassi, Mirko Andreasi; Bedini, Rosells; Pecci, Raffaela; Ioppolo, Pietro; Laritano, Dorina; Carinci, Francesco

    2016-01-01

    The clinical success and longevity of endosseous implants, after their prosthetic finalization, mainly depends on mechanical factors. Excessive mechanical stress has been shown to cause initial bone loss around implants in the presence of a rigid implant-prosthetic connection. The implant abutments are manufactured with high elastic modulus materials such as titanium, steel, precious alloys, or esthetic ceramics. These materials do not absorb any type of shock from the chewing loads or ensure protection of the bone-implant interface, especially when the esthetic restorative material is ceramic rather than composite resin. The mechanical resistance to cyclical load was evaluated in a tooth-colored fiber-reinforced abutment prototype (TCFRA) and compared to that of a similarly shaped titanium abutment (TA). Eight TCFRAs and eight TAs were adhesively cemented on as many titanium implants. The swinging the two types of abutments showed during the application of sinusoidal load was also analyzed. In the TA group, fracture and deformation occurred in 12.5% of samples, while debonding occurred in 62.5%. In the TCFRA group, only debonding was present, in 37.5% of samples. In comparison to the TAs, the TCFRAs exhibited greater swinging during the application of sinusoidal load. In the TA group extrusion prevailed, whereas in the TCFRA group intrusion was more frequent. TCFRA demonstrated a greater elasticity than did TAs to the flexural load, absorbing part of the transversal load applied on the fixture during the chewing function and thus reducing the stress on the bone-implant interface.

  17. Axial displacement of external and internal implant-abutment connection evaluated by linear mixed model analysis.

    PubMed

    Seol, Hyon-Woo; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun; Kim, Shin-Koo

    2015-01-01

    To analyze the axial displacement of external and internal implant-abutment connection after cyclic loading. Three groups of external abutments (Ext group), an internal tapered one-piece-type abutment (Int-1 group), and an internal tapered two-piece-type abutment (Int-2 group) were prepared. Cyclic loading was applied to implant-abutment assemblies at 150 N with a frequency of 3 Hz. The amount of axial displacement, the Periotest values (PTVs), and the removal torque values(RTVs) were measured. Both a repeated measures analysis of variance and pattern analysis based on the linear mixed model were used for statistical analysis. Scanning electron microscopy (SEM) was used to evaluate the surface of the implant-abutment connection. The mean axial displacements after 1,000,000 cycles were 0.6 μm in the Ext group, 3.7 μm in the Int-1 group, and 9.0 μm in the Int-2 group. Pattern analysis revealed a breakpoint at 171 cycles. The Ext group showed no declining pattern, and the Int-1 group showed no declining pattern after the breakpoint (171 cycles). However, the Int-2 group experienced continuous axial displacement. After cyclic loading, the PTV decreased in the Int-2 group, and the RTV decreased in all groups. SEM imaging revealed surface wear in all groups. Axial displacement and surface wear occurred in all groups. The PTVs remained stable, but the RTVs decreased after cyclic loading. Based on linear mixed model analysis, the Ext and Int-1 groups' axial displacements plateaued after little cyclic loading. The Int-2 group's rate of axial displacement slowed after 100,000 cycles.

  18. Minimum Abutment Height to Eliminate Bone Loss: Influence of Implant Neck Design and Platform Switching.

    PubMed

    Spinato, Sergio; Galindo-Moreno, Pablo; Bernardello, Fabio; Zaffe, Davide

    This retrospective study quantitatively analyzed the minimum prosthetic abutment height to eliminate bone loss after 4.7-mm-diameter implant placement in maxillary bone and how grafting techniques can affect the marginal bone loss in implants placed in maxillary areas. Two different implant types with a similar neck design were singularly placed in two groups of patients: the test group, with platform-switched implants, and the control group, with conventional (non-platform-switched) implants. Patients requiring bone augmentation underwent unilateral sinus augmentation using a transcrestal technique with mineralized xenograft. Radiographs were taken immediately after implant placement, after delivery of the prosthetic restoration, and after 12 months of loading. The average mesial and distal marginal bone loss of the control group (25 patients) was significantly more than twice that of the test group (26 patients), while their average abutment height was similar. Linear regression analysis highlighted a statistically significant inverse relationship between marginal bone loss and abutment height in both groups; however, the intercept of the regression line, both mesially and distally, was 50% lower for the test group than for the control group. The marginal bone loss was annulled with an abutment height of 2.5 mm for the test group and 3.0 mm for the control group. No statistically significant differences were found regarding marginal bone loss of implants placed in native maxillary bone compared with those placed in the grafted areas. The results suggest that the shorter the abutment height, the greater the marginal bone loss in cement-retained prostheses. Abutment height showed a greater influence in platform-switched than in non-platform-switched implants on the limitation of marginal bone loss.

  19. Evaluation of DOTD semi-integral bridge and abutment system.

    DOT National Transportation Integrated Search

    2005-03-01

    The Louisiana Department of Transportation and Development (LADOTD) designed and constructed its first prototype semi-integral abutment bridge in 1989. In this design, large longitudinal movements due to expansion and contraction, creep, shrinkage, a...

  20. Twin-Screw Extruders in Ceramic Extrusion

    NASA Astrophysics Data System (ADS)

    Wiedmann, Werner; Hölzel, Maria

    The machines mainly used for compounding plastics, chemicals and food are co-rotating, closely intermeshing twin-screw extruders. Some 30 000 such extruders are in use worldwide, about 1/3 are ZSKs from Coperion Werner & Pfleiderer, Stuttgart. In the chemical industry more and more batch mixers are being replaced by continuous twin-screw kneaders.

  1. The accuracy and safety of fluoroscopically guided percutaneous pedicle screws in the lumbosacral junction and the lumbar spine: a review of 880 screws.

    PubMed

    Chiu, C K; Kwan, M K; Chan, C Y W; Schaefer, C; Hansen-Algenstaedt, N

    2015-08-01

    We undertook a retrospective study investigating the accuracy and safety of percutaneous pedicle screws placed under fluoroscopic guidance in the lumbosacral junction and lumbar spine. The CT scans of patients were chosen from two centres: European patients from University Medical Center Hamburg-Eppendorf, Germany, and Asian patients from the University of Malaya, Malaysia. Screw perforations were classified into grades 0, 1, 2 and 3. A total of 880 percutaneous pedicle screws from 203 patients were analysed: 614 screws from 144 European patients and 266 screws from 59 Asian patients. The mean age of the patients was 58.8 years (16 to 91) and there were 103 men and 100 women. The total rate of perforation was 9.9% (87 screws) with 7.4% grade 1, 2.0% grade 2 and 0.5% grade 3 perforations. The rate of perforation in Europeans was 10.4% and in Asians was 8.6%, with no significant difference between the two (p = 0.42). The rate of perforation was the highest in S1 (19.4%) followed by L5 (14.9%). The accuracy and safety of percutaneous pedicle screw placement are comparable to those cited in the literature for the open method of pedicle screw placement. Greater caution must be taken during the insertion of L5 and S1 percutaneous pedicle screws owing to their more angulated pedicles, the anatomical variations in their vertebral bodies and the morphology of the spinal canal at this location. ©2015 The British Editorial Society of Bone & Joint Surgery.

  2. Passage of an Anterior Odontoid Screw through Gastrointestinal Tract.

    PubMed

    Leitner, L; Brückmann, C I; Gilg, M M; Bratschitsch, G; Sadoghi, P; Leithner, A; Radl, R

    2017-01-01

    Purpose . Anterior screw fixation has become a popular surgical treatment method for instable odontoid fractures. Screw loosening and migration are a rare, severe complication following anterior odontoid fixation, which can lead to esophagus perforation and requires revision operation. Methods . We report a case of screw loosening and migration after anterior odontoid fixation, which perforated the esophagus and was excreted without complications in a 78-year-old male patient. Results . A ventral dislocated anterior screw perforated through the esophagus after eight years after implantation and was excreted through the gastrointestinal (GI) tract. At a 6-month follow-up after the event the patient was asymptomatic. Conclusion . Extrusion via the GI tract is not safe enough to be considered as a treatment option for loosened screws. Some improvements could be implemented to prevent such an incident. Furthermore, this case is a fine example that recent preoperative imaging is mandatory before revision surgery for screw loosening.

  3. Screws, Propellers and Fans Based on a Mobius Strip

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Backley, Floyd D.; Gilinsky, Mikhail

    1998-01-01

    A Mobius strip concept is intended for improving the working efficiency of propellers and screws. Applications involve cooling, boat propellers, mixing in appliance, blenders, and helicopters. Several Mobius shaped screws for the average size kitchen mixers have been made and tested. The tests have shown that the mixer with the Mobius shaped screw pair is most efficient, and saves more than 30% of the electric power by comparison with the standard. The created video film about these tests illustrates efficiency of Mobius shaped screws.

  4. Insufficient stability of pedicle screws in osteoporotic vertebrae: biomechanical correlation of bone mineral density and pedicle screw fixation strength.

    PubMed

    Weiser, Lukas; Huber, Gerd; Sellenschloh, Kay; Viezens, Lennart; Püschel, Klaus; Morlock, Michael M; Lehmann, Wolfgang

    2017-11-01

    Loosening of pedicle screws is one major complication of posterior spinal stabilisation, especially in the patients with osteoporosis. Augmentation of pedicle screws with cement or lengthening of the instrumentation is widely used to improve implant stability in these patients. However, it is still unclear from which value of bone mineral density (BMD) the stability of pedicle screws is insufficient and an additional stabilisation should be performed. The aim of this study was to investigate the correlation of bone mineral density and pedicle screw fatigue strength as well as to define a threshold value for BMD below which an additional stabilisation is recommended. Twenty-one human T12 vertebral bodies were collected from donors between 19 and 96 years of age and the BMD was measured using quantitative computed tomography. Each vertebral body was instrumented with one pedicle screw and mounted in a servo-hydraulic testing machine. Fatigue testing was performed by implementing a cranio-caudal sinusoidal, cyclic (0.5 Hz) load with stepwise increasing peak force. A significant correlation between BMD and cycles to failure (r = 0.862, r 2  = 0.743, p < 0.001) as well as for the linearly related fatigue load was found. Specimens with BMD below 80 mg/cm 3 only reached 45% of the cycles to failure and only 60% of the fatigue load compared to the specimens with adequate bone quality (BMD > 120 mg/cm 3 ). There is a close correlation between BMD and pedicle screw stability. If the BMD of the thoracolumbar spine is less than 80 mg/cm 3 , stability of pedicle screws might be insufficient and an additional stabilisation should be considered.

  5. Effect of insertion torque on bone screw pullout strength.

    PubMed

    Lawson, K J; Brems, J

    2001-05-01

    The effect of insertion torque on the holding strength of 4.5-mm ASIF/AO cortical bone screws was studied in vitro. Screw holding strength was determined using an Instron materials testing machine (Bristol, United Kingdom) on 55 lamb femora and 30 human tibiocortical bone sections. Holding strength was defined as tensile stress at pullout with rapid loading to construct failure. Different insertion torques were tested, normalizing to the thickness of cortical bone specimen engaged. These represented low, intermediate, high, and thread-damaging insertion torque. All screws inserted with thread-damaging torque and single cortex engaging screws inserted to high torque tightening moments showed diminished holding strength. This loss of strength amounted to 40%-50% less than screws inserted with less torque.

  6. Stock Versus CAD/CAM Customized Zirconia Implant Abutments - Clinical and Patient-Based Outcomes in a Randomized Controlled Clinical Trial.

    PubMed

    Schepke, Ulf; Meijer, Henny J A; Kerdijk, Wouter; Raghoebar, Gerry M; Cune, Marco

    2017-02-01

    Single-tooth replacement often requires a prefabricated dental implant and a customized crown. The benefits of individualization of the abutment remain unclear. This randomized controlled clinical trial aims to study potential benefits of individualization of zirconia implant abutments with respect to preservation of marginal bone level and several clinical and patient-based outcome measures. Fifty participants with a missing premolar were included and randomly assigned to standard (ZirDesign, DentsplySirona Implants, Mölndal, Sweden) or computer aided design/computer aided manufacturing (CAD/CAM) customized (Atlantis, DentsplySirona Implants, Mölndal, Sweden) zirconia abutment therapy. Peri-implant bone level (primary outcome), Plaque-index, calculus formation, bleeding on probing, gingiva index, probing pocket depth, recession, appearance of soft tissues and patients' contentment were assessed shortly after placement and one year later. No implants were lost and no complications related to the abutments were observed. Statistically significant differences between stock and CAD/CAM customized zirconia abutments could not be demonstrated for any of the operationalized variables. The use of a CAD/CAM customized zirconia abutment in single tooth replacement of a premolar is not associated with an improvement in clinical performance or patients' contentment when compared to the use of a stock zirconia abutment. © 2016 The Authors. Clinical Implant Dentistry and Related Research Published by Wiley Periodicals, Inc.

  7. Proximal half angle of the screw thread is a critical design variable affecting the pull-out strength of cancellous bone screws.

    PubMed

    Wang, Yingxu; Mori, Ryuji; Ozoe, Nobuaki; Nakai, Takahisa; Uchio, Yuji

    2009-11-01

    Screws with strong pull-out strength have been sought for the treatment of cancellous bone. We hypothesized that an obliquely angled screw thread has advantages over conventional vertical thread with a minimal proximal half angle. Metal and bone screws were made of stainless steel and porcine cortical bone. Their proximal half angle was set at 0 degrees , 30 degrees , or 60 degrees . The screws were inserted into porcine cancellous bone. At 0 degrees , the thread faced the recipient bone vertically. Pullout tests at a rate of 30 mm/min (n=40, each screw type) and microcomputed tomography (n=6) were conducted. The pull-out strength of the screws was maximal at 30 degrees ; 348.8 (SD, 44.1)N with metal and 326.6 (39.4)N with bone. It was intermediate at 0 degrees ; 301.9 (35.9)N with metal and 278.2 (30.6)N with bone. It was minimal at 60 degrees; 126.5 (39.0)N with metal and 174.8 (29.7)N with bone. Cancellous bone was damaged between the threads at 30 degrees , while intact cancellous bone was preserved between the threads at 0 degrees. A proximal half angle of around 30 degrees is appropriate because the pullout force is applied to the recipient bone evenly. Commercial cancellous screws can be improved by changing the thread shape to minimize the damage to recipient bone.

  8. CORROSION RESISTANT JACKETED METAL BODY

    DOEpatents

    Brugmann, E.W.

    1958-08-26

    S>Metal jacketed metallic bodies of the type used as feel elements fer nuclear reactors are presented. The fuel element is comprised of a plurality of jacketed cylindrical bodies joined in end to end abutting relationship. The abutting ends of the internal fissionable bodies are provided with a mating screw and thread means for joining the two together. The jacket material is of a corrosion resistant metal and overlaps the abutting ends of the internal bodies, thereby effectively sealing these bodies from contact with exteral reactive gases and liquids.

  9. Effect of Induced Periimplantitis on Dental Implants With and Without Ultrathin Hydroxyapatite Coating.

    PubMed

    Madi, Marwa; Zakaria, Osama; Ichinose, Shizuko; Kasugai, Shohei

    2016-02-01

    The aim of this study was to compare the effect of ligature-induced periimplantitis on dental implants with and without hydroxyapatite (HA) coat. Thirty-two dental implants (3.3 mm wide, 13 mm long) with 4 surface treatments (8 implant/group) (M: machined, SA: sandblasted acid etched, S: sputter HA coat and P: plasma-sprayed HA coat) were inserted into canine mandibles. After 12 weeks, oral hygiene procedures were stopped and silk ligatures were placed around the implant abutments to allow plaque accumulation for the following 16 weeks. Implants with the surrounding tissues were retrieved and prepared for histological examination. Bone-to-implant contact (BIC) and implant surfaces were examined using scanning electron microscopy and energy dispersive x-ray spectroscopy. Histological observation revealed marginal bone loss and large inflammatory cell infiltrates in the periimplant soft tissue. Sputter HA implants showed the largest BIC (98.1%) and machined implant showed the smallest values (70.4%). After 28 weeks, thin sputter HA coat was almost completely dissolved, whereas plasma-sprayed HA coat showed complete thickness preservation. Thin sputter HA-coated implants showed more bone implant contact and less marginal bone loss than thick HA-coated implants under periimplantitis condition.

  10. 21 CFR 872.4880 - Intraosseous fixation screw or wire.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraosseous fixation screw or wire. 872.4880... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4880 Intraosseous fixation screw or wire. (a) Identification. An intraosseous fixation screw or wire is a metal device intended to be inserted...

  11. 21 CFR 872.4880 - Intraosseous fixation screw or wire.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraosseous fixation screw or wire. 872.4880... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4880 Intraosseous fixation screw or wire. (a) Identification. An intraosseous fixation screw or wire is a metal device intended to be inserted...

  12. Microbiological and biochemical effectiveness of an antiseptic gel on the bacterial contamination of the inner space of dental implants: a 3-month human longitudinal study.

    PubMed

    D'Ercole, S; Tetè, S; Catamo, G; Sammartino, G; Femminella, B; Tripodi, D; Spoto, G; Paolantonio, M

    2009-01-01

    Microbial penetration inside the implants internal cavity produces a bacterial reservoir that is associated with an area of inflamed connective tissue facing the fixture-abutment junction. The aim of this clinical trial is to evaluate the effectiveness of a 1 percent chlorhexidine gel on the internal bacterial contamination of implants with screw-retained abutments and on the level of AST secreted in peri-implant crevicular fluid. Twenty-five patients (aged 29 to 58 years) each received one implant. Three months after the end of the restorative treatment, and immediately after a clinical and radiographic examination and the abutment removal, microbiological samples were obtained from the internal part of each fixture and biochemical samples were collected by peri-implant sulci. The patients were then divided into two groups: the control (CG; n=10) and test (TG; n=15) groups. The CG had the abutment screwed into place and the crown cemented without any further intervention. In contrast, before the abutment placement and screw tightening, the TG had the internal part of the fixture filled with a 1 percent chlorhexidine gel. Three months later, the same clinical, microbiological and biochemical procedures were repeated in both groups. Total bacterial count, specific pathogens and AST activity were detected. The clinical parameters remained stable throughout the study. From baseline to the 3-month examination, the total bacterial counts underwent a significant reduction only in the TG. In contrast, the AST activity showed a significant increase in the CG. The administration of a 1% chlorhexidine gel appears to be an effective method for the reduction of bacterial colonization of the implant cavity and for safeguarding the health status of peri-implant tissue over a 3-month administration period.

  13. Influence of abutment material on peri-implant soft tissues in anterior areas with thin gingival biotype: a multicentric prospective study.

    PubMed

    Lops, Diego; Stellini, Edoardo; Sbricoli, Luca; Cea, Niccolò; Romeo, Eugenio; Bressan, Eriberto

    2017-10-01

    The aim of the present clinical trial was to analyze, through spectrophotometric digital technology, the influence of the abutment material on the color of the peri-implant soft tissue in patients with thin gingival biotype. Thirty-seven patients received an endosseous dental implant in the anterior maxilla. At time of each definitive prosthesis delivery, an all-ceramic crown has been tried on gold, titanium and zirconia abutment. Peri-implant soft-tissue color has been measured through a spectrophotometer after the insertion of each single abutment. Also facial peri-implant soft-tissue thickness was measured at the level of the implant neck through a caliper. A specific software has been utilized to identify a standardized tissue area and to collect the data before the statistical analysis in Lab* color space. ΔE parameters of the selected abutments were tested for correlation with mucosal thickness. Pearson correlation test was used. Only 15 patients met the study inclusion criteria on peri-implant soft-tissue thickness. Peri-implant soft-tissue color was different from that around natural teeth, no matter which type of restorative material was selected. Measurements regarding all the abutments were above the critical threshold of ΔE 8.74 for intraoral color distinction by the naked eye. The ΔE mean values of gold and zirconium abutments were similar (11.43 and 11.37, respectively) and significantly lower (P = 0.03 and P = 0.04, respectively) than the titanium abutment (13.55). In patients with a facial soft-tissue thickness ≤2 mm, the ΔE mean value of gold and zirconia abutments was significantly lower than that of titanium abutments (P = 0.03 and P = 0.04, respectively) and much more close to the reference threshold of 8.74. For peri-implant soft tissue of ≤2 mm, gold or zirconia abutments could be selected in anterior areas treatment. Moreover, the thickness of the peri-implant soft tissue seemed to be a crucial factor in the abutment impact

  14. BIOMECHANICAL EVALUATION OF THE INFLUENCE OF CERVICAL SCREWS TAPPING AND DESIGN.

    PubMed

    Silva, Patricia; Rosa, Rodrigo César; Shimano, Antonio Carlos; Albuquerque de Paula, Francisco José; Volpon, José Batista; Aparecido Defino, Helton Luiz

    2009-01-01

    To assess if the screw design (self-drilling/self-tapping) and the pilot hole tapping could affect the insertion torque and screw pullout strength of the screw used in anterior fixation of the cervical spine. Forty self-tapping screws and 20 self-drilling screws were inserted into 10 models of artificial bone and 10 cervical vertebrae of sheep. The studied parameters were the insertion torque and pullout strength. The following groups were created: Group I-self-tapping screw insertion after pilot hole drilling and tapping; Group II-self-tapping screw insertion after pilot hole drilling without tapping; Group III-self-drilling screw insertion without drilling and tapping. In Groups I and II, the pilot hole had 14.0 mm in depth and was made with a 3mmn drill, while tapping was made with a 4mm tap. The insertion torque was measured and the pullout test was performed. The comparison between groups was made considering the mean insertion torque and the maximum mean pullout strength with the variance analysis (ANOVA; p≤ 0.05). Previous drilling and tapping of pilot hole significantly decreased the insertion torque and the pullout strength. The insertion torque and pullout strength of self-drilling screws were significantly higher when compared to self-tapping screws inserted after pilot hole tapping.

  15. 6. SOUTHEAST ABUTMENT AT CALVERT STREET, SHOWING LEON HERMANT ALLEGORICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SOUTHEAST ABUTMENT AT CALVERT STREET, SHOWING LEON HERMANT ALLEGORICAL RELIEF OF TRANSPORTATION BY AUTOMOBILE - Calvert Street Bridge, Spanning Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  16. OBLIQUE VIEW FROM SOUTHEAST LOOKING NORTHEAST. NOTE CORNERSTONE IN ABUTMENT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW FROM SOUTHEAST LOOKING NORTHEAST. NOTE CORNERSTONE IN ABUTMENT. - Jackson Covered Bridge, Spanning Sugar Creek, CR 775N (Changed from Spanning Sugar Creek), Bloomingdale, Parke County, IN

  17. Perspective view of span over French Creek and east abutment, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of span over French Creek and east abutment, looking NW. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  18. Power-Tool Adapter For T-Handle Screws

    NASA Technical Reports Server (NTRS)

    Deloach, Stephen R.

    1992-01-01

    Proposed adapter enables use of pneumatic drill, electric drill, electric screwdriver, or similar power tool to tighten or loosen T-handled screws. Notched tube with perpendicular rod welded to it inserted in chuck of tool. Notched end of tube slipped over screw handle.

  19. Integral abutment bridge for Louisiana's soft and stiff soils.

    DOT National Transportation Integrated Search

    2008-02-01

    The proposed research will be to field instrument, monitor, and analyze the design and construction of full integral abutment bridges for Louisianas soft and stiff soil conditions. Comparison of results will be submitted to the Louisiana Departmen...

  20. Stock Versus CAD/CAM Customized Zirconia Implant Abutments – Clinical and Patient‐Based Outcomes in a Randomized Controlled Clinical Trial

    PubMed Central

    Meijer, Henny J.A.; Kerdijk, Wouter; Raghoebar, Gerry M.; Cune, Marco

    2016-01-01

    Abstract Background Single‐tooth replacement often requires a prefabricated dental implant and a customized crown. The benefits of individualization of the abutment remain unclear. Purpose This randomized controlled clinical trial aims to study potential benefits of individualization of zirconia implant abutments with respect to preservation of marginal bone level and several clinical and patient‐based outcome measures. Material and Methods Fifty participants with a missing premolar were included and randomly assigned to standard (ZirDesign, DentsplySirona Implants, Mölndal, Sweden) or computer aided design/computer aided manufacturing (CAD/CAM) customized (Atlantis, DentsplySirona Implants, Mölndal, Sweden) zirconia abutment therapy. Peri‐implant bone level (primary outcome), Plaque‐index, calculus formation, bleeding on probing, gingiva index, probing pocket depth, recession, appearance of soft tissues and patients' contentment were assessed shortly after placement and one year later. Results No implants were lost and no complications related to the abutments were observed. Statistically significant differences between stock and CAD/CAM customized zirconia abutments could not be demonstrated for any of the operationalized variables. Conclusion The use of a CAD/CAM customized zirconia abutment in single tooth replacement of a premolar is not associated with an improvement in clinical performance or patients' contentment when compared to the use of a stock zirconia abutment. PMID:27476829

  1. Influence of abutment material and luting cements color on the final color of all ceramics.

    PubMed

    Dede, Dogu Ömür; Armaganci, Arzu; Ceylan, Gözlem; Cankaya, Soner; Celik, Ersan

    2013-11-01

    The purpose of this study is to evaluate the effects of different abutment materials and luting cements color on the final color of implant-supported all-ceramic restorations. Ten A2 shade IPS e.max Press disc shape all-ceramic specimens were prepared (11 × 1.5 mm). Three different shades (translucent, universal and white opaque) of disc shape luting cement specimens were prepared (11 × 0.2 mm). Three different (zirconium, gold-palladium and titanium) implant abutments and one composite resin disc shape background specimen were prepared at 11 mm diameter and appropriate thicknesses. All ceramic specimens colors were measured with each background and luting cement samples on a teflon mold. A digital spectrophotometer used for measurements and data recorded as CIE L*a*b* color co-ordinates. An optical fluid applied on to the samples to provide a good optical connection and measurements on the composite resin background was saved as the control group. ΔE values were calculated from the ΔL, Δa and Δb values between control and test groups and data were analyzed with one-way variance analysis (ANOVA) and mean values were compared by the Tukey HSD test (α = 0.05). One-way ANOVA of ΔL, Δa, Δb and ΔE values of control and test groups revealed significant differences for backgrounds and seldom for cement color groups (p the 0.05). Only zirconium implant abutment groups and gold palladium abutment with universal shade cement group were found to be clinically acceptable (ΔE ≤ 3.0). Using titanium or gold-palladium abutments for implant supported all ceramics will be esthetically questionable and white opaque cement will be helpful to mask the dark color of titanium abutment.

  2. Radiographic predictors of symptomatic screw removal after retrograde femoral nail insertion.

    PubMed

    Hamaker, Max; O'Hara, Nathan N; Eglseder, W Andrew; Sciadini, Marcus F; Nascone, Jason W; O'Toole, Robert V

    2017-03-01

    Removal of symptomatic implants is a common procedure performed by orthopaedic trauma surgeons. No guidance is available regarding which factors contribute to the likelihood of an implant becoming symptomatic. Our objective was to determine whether radiographic parameters associated with distal interlocks in retrograde femoral nails are associated with the rate of symptomatic screw removal. We conducted a retrospective review at a Level I trauma center. Study patients (n=442) had femoral fractures treated with retrograde intramedullary nails from 2007 to 2014 and at least 1year of follow-up. The main outcome measurement was symptomatic distal screw removal as predicted by radiographic parameters. Symptomatic screw removal occurred in 12% of the patients. Increased distance between the most distal screw and the articular surface of the femur significantly reduced likelihood of symptomatic screw removal. A cutoff of 40mm from the articular block was predictive of removal (≥40mm, 0% removal; <40mm, 18% removal, p<0.0001). In patients with distal screws placed within 40mm of the articular surface of the femur, a ratio of screw length to distance between medial and lateral femoral cortices that was ≥1 was a strong predictor of symptomatic screw removal (area under Receiver Operating Characteristic curve, 0.75; p<0.0001). More distal screws and screws that radiographically extend to or beyond the medial cortex are more likely to cause pain and require removal in femoral fractures treated with retrograde intramedullary nails. We identified a specific distance from the joint (<40mm) and a ratio of screw length to bone width (≥1) that significantly increased the likelihood of symptomatic screw removal. Clinicians can use these data to inform patients of the likely risk of implant removal and perhaps to better guide placement and length of screws when the clinical scenario allows some flexibility in location and length of screws. Copyright © 2017 Elsevier Ltd. All

  3. Management of Broken Dental Implant Abutment in a Patient with Bruxism: A Rare Case Report and Review of Literature.

    PubMed

    Al-Almaie, Saad

    2017-01-01

    This rare case report describes prosthodontic complications resulting from a dental implant was placed surgically more distally in the area of the missing mandibular first molar with a cantilever effect and a crest width of >12 mm in a 59-year-old patient who had a history of bruxism. Fracture of abutment is a common complication in implant was placed in area with high occlusal forces. Inability to remove the broken abutment may most often end up in discarding the implant. Adding one more dental implant mesially to the previously placed implant, improvisation of technique to remove the broken abutment without sacrificing the osseointegrated dental implant, fabrication with cemented custom-made abutment to replace the broken abutment for the first implant, and the use of the two implants to replace a single molar restoration proved reliable and logical treatment solutions to avoid these prosthodontic complications.

  4. 20. Detail view of west swing span abutment through swing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail view of west swing span abutment through swing span truss, looking north - India Point Railroad Bridge, Spanning Seekonk River between Providence & East Providence, Providence, Providence County, RI

  5. Examination of the Position Accuracy of Implant Abutments Reproduced by Intra-Oral Optical Impression

    PubMed Central

    Odaira, Chikayuki; Kobayashi, Takuya; Kondo, Hisatomo

    2016-01-01

    An impression technique called optical impression using intraoral scanner has attracted attention in digital dentistry. This study aimed to evaluate the accuracy of the optical impression, comparing a virtual model reproduced by an intraoral scanner to a working cast made by conventional silicone impression technique. Two implants were placed on a master model. Working casts made of plaster were fabricated from the master model by silicone impression. The distance between the ball abutments and the angulation between the healing abutments of 5 mm and 7 mm height at master model were measured using Computer Numerical Control Coordinate Measuring Machine (CNCCMM) as control. Working casts were then measured using CNCCMM, and virtual models via stereo lithography data of master model were measured by a three-dimensional analyzing software. The distance between ball abutments of the master model was 9634.9 ± 1.2 μm. The mean values of trueness of the Lava COS and working casts were 64.5 μm and 22.5 μm, respectively, greater than that of control. The mean of precision values of the Lava COS and working casts were 15.6 μm and 13.5 μm, respectively. In the case of a 5-mm-height healing abutment, mean angulation error of the Lava COS was greater than that of the working cast, resulting in significant differences in trueness and precision. However, in the case of a 7-mm-height abutment, mean angulation errors of the Lava COS and the working cast were not significantly different in trueness and precision. Therefore, distance errors of the optical impression were slightly greater than those of conventional impression. Moreover, the trueness and precision of angulation error could be improved in the optical impression using longer healing abutments. In the near future, the development of information technology could enable improvement in the accuracy of the optical impression with intraoral scanners. PMID:27706225

  6. Deterioration of J-bar reinforcement in abutments and piers.

    DOT National Transportation Integrated Search

    2011-12-31

    Deterioration and necking of J-bars has been reportedly observed at the interface of the footing and stem wall during the demolition : of older retaining walls and bridge abutments. Similar deterioration has been reportedly observed between the pier ...

  7. Long-term behavior of integral abutment bridges : [technical summary].

    DOT National Transportation Integrated Search

    2011-01-01

    Integral abutment bridges, a type of jointless bridge, are the construction option of choice when designing highway bridges in many parts of the country. Rather than providing an expansion joint to separate the substructure from the superstructure to...

  8. Evaluation of abutment scour prediction equations with field data

    USGS Publications Warehouse

    Benedict, S.T.; Deshpande, N.; Aziz, N.M.

    2007-01-01

    The U.S. Geological Survey, in cooperation with FHWA, compared predicted abutment scour depths, computed with selected predictive equations, with field observations collected at 144 bridges in South Carolina and at eight bridges from the National Bridge Scour Database. Predictive equations published in the 4th edition of Evaluating Scour at Bridges (Hydraulic Engineering Circular 18) were used in this comparison, including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. The comparisons showed that most equations tended to provide conservative estimates of scour that at times were excessive (as large as 158 ft). Equations also produced underpredictions of scour, but with less frequency. Although the equations provide an important resource for evaluating abutment scour at bridges, the results of this investigation show the importance of using engineering judgment in conjunction with these equations.

  9. Three Dimensional Finite Element Analysis of Distal Abutment Stresses of Removable Partial Dentures with Different Retainer Designs.

    PubMed

    Zarrati, Simindokht; Bahrami, Mehran; Heidari, Fatemeh; Kashani, Jamal

    2015-06-01

    This finite element method study aimed to compare the amount of stress on an isolated mandibular second premolar in two conventional reciprocal parallel interface designs of removable partial dentures (RPDs) and the same RPD abutment tooth (not isolated). A Kennedy Class 1, modification 1 RPD framework was simulated on a 3D model of mandible with three different designs: an isolated tooth with a mesial rest, an isolated tooth with mesial and distal rests and an abutment with a mesial rest (which was not isolated); 26 N occlusal forces were exerted bilaterally on the first molar sites. Stress on the abutment teeth was analyzed using Cosmos Works 2009 Software. In all designs, the abutment tooth stress concentration was located in the buccal alveolar crest. In the first model, the von Mises stress distribution in the contact area of I-bar clasp and cervical portion of the tooth was 19 MPa and the maximum stress was 30 MPa. In the second model, the maximum von Mises stress distribution was 15 MPa in the cervical of the tooth. In the third model, the maximum von Mises stress was located in the cervical of the tooth and the distal proximal plate. We recommend using both mesial and distal rests on the distal abutment teeth of distal extension RPDs. The abutment of an extension base RPD, which is not isolated in presence of its neighboring more anterior tooth, may have a better biomechanical prognosis.

  10. Prediction of Deformity Correction by Pedicle Screw Instrumentation in Thoracolumbar Scoliosis Surgery

    NASA Astrophysics Data System (ADS)

    Kiriyama, Yoshimori; Yamazaki, Nobutoshi; Nagura, Takeo; Matsumoto, Morio; Chiba, Kazuhiro; Toyama, Yoshiaki

    In segmental pedicle screw instrumentation, the relationship between the combinations of pedicle screw placements and the degree of deformity correction was investigated with a three-dimensional rigid body and spring model. The virtual thoracolumbar scoliosis (Cobb’s angle of 47 deg.) was corrected using six different combinations of pedicle-screw placements. As a result, better correction in the axial rotation was obtained with the pedicle screws placed at or close to the apical vertebra than with the screws placed close to the end vertebrae, while the correction in the frontal plane was better with the screws close to the end vertebrae than with those close to the apical vertebra. Additionally, two screws placed in the convex side above and below the apical vertebra provided better correction than two screws placed in the concave side. Effective deformity corrections of scoliosis were obtained with the proper combinations of pedicle screw placements.

  11. A new method to precisely control the depth of percutaneous screws into the pedicle by counting the rotation number of the screw with low radiation exposure: technical note.

    PubMed

    Li, Xu; Zhang, Feng; Zhang, Wenzhi; Shang, Xifu; Han, Jintao; Liu, Pengfei

    2017-03-01

    Technique note. To report a new method for precisely controlling the depth of percutaneous pedicle screws (PPS)-without radiation exposure to surgeons and less fluoroscopy exposure to patients than with conventional methods. PPS is widely used in minimal invasive spine surgery; the advantages include reduced muscle damage, pain, and hospital stays. However, placement of PPS demands repeated checking with fluoroscopy. Thus, radiation exposure is considerable for both surgeons and patients. The PPS depth was determined by counting rotations of the screws. The distance between screw threads can be measured for particular screws; thus, full rotations of the PPS results in the screw advancing in the pedicle the distance between screw threads. To fully insert screws into the pedicle, the number of full rotations is equal to the number of threads in the PPS. We applied this technique in 58 patients with thoracolumbar fracture. The position and depth of the screws was checked during the operation with the C-arm and after operation by anteroposterior X-ray film or computed tomography. No additional procedures were required to correct the screws; we observed no neurological deficits or malpositioning of the screws. In the screw placement procedure, the radiation exposure for surgeons is zero, and the patient is well protected from extensive radiation exposure. This method of counting rotation of screws is a safe way to precisely determine the depth of PPS in the placement procedure. IV.

  12. 10. VIEW TO NORTHEAST ALONG NORTHWEST SPILLWAY ABUTMENT; SERVICE VEHICLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW TO NORTHEAST ALONG NORTHWEST SPILLWAY ABUTMENT; SERVICE VEHICLE GARAGE IN BACKGROUND. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  13. Does maximum torque mean optimal pullout strength of screws?

    PubMed

    Tankard, Sara E; Mears, Simon C; Marsland, Daniel; Langdale, Evan R; Belkoff, Stephen M

    2013-04-01

    To determine the relationship between insertion torque and pullout strength of 3.5-mm-diameter cortical screws in cadaveric humeri with different bone mineral densities (BMDs). Five pairs of human humeri from each of 3 BMD groups (normal, osteopenic, and osteoporotic) were used. Holes were drilled in each humerus, and maximum insertion torque (T(max)) was measured by tightening a screw until stripping occurred. In the remaining holes, screws were tightened to 50%, 70%, or 90% of the T(max). A servohydraulic testing machine pulled each screw out at 1 mm/s while resulting force and axial displacement were recorded at 10 Hz. The authors checked for an effect of insertion torque (percent T(max)) on pullout strength using a general linearized and latent mixed model (Stata10), controlling for cortical thickness and BMD (T-score). Pullout strength for normal and osteoporotic bone was greatest for screws inserted to 50% T(max) and was significantly greater than that at T(max) but not significantly different from that at 70% or 90% T(max). For osteopenic bone, pullout strength was greatest at 70% peak torque, but it was not significantly different from the pullout strength at the 50% or 90% T(max) levels. Tightening screws beyond 50% T(max) does not increase pullout strength of the screw and may place bone at risk for damage that might result in loss of fixation. Even after adjusting for bone thickness and density, there is no clear relationship between pullout strength and screw torque.

  14. Effects of Cement, Abutment Surface Pretreatment, and Artificial Aging on the Force Required to Detach Cantilever Fixed Dental Prostheses from Dental Implants.

    PubMed

    Kappel, Stefanie; Chepura, Taras; Schmitter, Marc; Rammelsberg, Peter; Rues, Stefan

    To examine the in vitro effects of different cements, abutment surface preconditioning, and artificial aging on the maximum tensile force needed to detach cantilever fixed dental prostheses (FDPs) from dental implants with titanium abutments. A total of 32 tissue-level implants were combined with standardized titanium abutments. For each test group, eight cantilever FDPs were fabricated using selective laser melting (cobalt-chromium [CoCr] alloy). The inner surfaces of the cantilever FDPs and half of the abutments were sandblasted and then joined by use of four different cements (two permanent and two semi-permanent) in two different amounts per cement. Subgroups were tested after either artificial aging (thermocycling and chewing simulation) or 3 days of water storage. Finally, axial pull off-tests were performed for each abutment separately. Cement type and surface pretreatment significantly affected decementation behavior. The highest retention forces (approximately 1,200 N) were associated with sandblasted abutments and permanent cements. With unconditioned abutments, temporary cements (Fu < 100 N), as well as glass-ionomer cement (Fu ≈ 100 N), resulted in rather low retention forces. Zinc phosphate cement guaranteed high retention forces. After aging, retention was sufficient only for cementation with zinc phosphate cement and for the combination of sandblasted abutments and glass-ionomer cement. When glass-ionomer cement is used to fix cantilever FDPs on implants, sandblasting of standard titanium abutments may help prevent loss of retention. Retention forces were still high for FDPs fixed with zinc phosphate cement, even when the abutments were not pretreated. Use of permanent cements only, however, is recommended to prevent unwanted loosening of cantilever FDPs.

  15. Self-Reinforced Biodegradable Screw Fixation Compared With Titanium Screw Fixation in Mandibular Advancement

    PubMed Central

    Turvey, Timothy A.; Bell, R. Bryan; Phillips, Ceib; Proffit, William R.

    2013-01-01

    Purpose This report compares the skeletal stability and treatment outcomes of 2 similar cohorts undergoing bilateral sagittal osteotomies of the mandible for advancement. The study groups included patients stabilized with 2-mm self-reinforced polylactate (PLLDL 70/30), biodegradable screws (group B), and 2-mm titanium screws placed in a positional fashion (group T). Materials and Methods Sixty-nine patients underwent bilateral sagittal osteotomies of the mandibular ramus for advancement utilizing an identical technique. There were 34 patients in group B and 35 patients in group T. Each patient had preoperative, immediate postoperative, splint out, and 1-year postoperative cephalometric radiographs available for analysis. The method of analysis and treatment outcomes parameters are identical to those previously used. Repeated measures analysis of variance was performed with means of fixation as the between-subject factor and time as the within subject factor. The level of significance was set at .01. Results There were no clinical failures in group T and a single failure in group B. The average difference in stability between the groups is small and subtly different at the mandibular angle. The data documented similarity of the postsurgical changes in the 2 groups with the only statistically significant difference being the vertical position of the gonion (P < .001) and the mandibular plane angle (P < .01) with greater upward remodeling at gonion in group T. Conclusions Two-mm self-reinforced PLLDL (70/30) screws can be used as effectively as 2-mm titanium screws to stabilize the mandible after bilateral sagittal osteotomies for mandibular advancement. The difference in 1-year stability and outcome is minimal. PMID:16360855

  16. 7. VIEW OF NORTHWEST PYLONS ON NORTH ABUTMENT, SUSPENSION CABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF NORTHWEST PYLONS ON NORTH ABUTMENT, SUSPENSION CABLE AND 'U'-BOLT CONNECTIONS, LOOKING SOUTH - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT

  17. 3. Concrete and stone abutment at southeast end of Cedar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Concrete and stone abutment at southeast end of Cedar Avenue Bridge. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Cedar Avenue Bridge, Spanning Cedar Avenue at Railroad Alley, Scranton, Lackawanna County, PA

  18. Integral abutment bridge for Louisiana's soft and stiff soils.

    DOT National Transportation Integrated Search

    2016-03-01

    Integral abutment bridges (IABs) have been designed and constructed in a few US states in the past few : decades. The initial purpose of building such bridges was to eliminate the expansion joints and resolve the : joint-induced problems. Although IA...

  19. Fracture and Fatigue Resistance of Cemented versus Fused CAD-on Veneers over Customized Zirconia Implant Abutments.

    PubMed

    Nossair, Shereen Ahmed; Aboushelib, Moustafa N; Morsi, Tarek Salah

    2015-01-05

    To evaluate the fracture mechanics of cemented versus fused CAD-on veneers on customized zirconia implant abutments. Forty-five identical customized CAD/CAM zirconia implant abutments (0.5 mm thick) were prepared and seated on short titanium implant abutments (Ti base). A second scan was made to fabricate 45 CAD-on veneers (IPS Empress CAD, A2). Fifteen CAD-on veneers were cemented on the zirconia abutments (Panavia F2.0). Another 15 were fused to the zirconia abutments using low-fusing glass, while manually layered veneers served as control (n = 15). The restorations were subjected to artificial aging (3.2 million cycles between 5 and 10 kg in a water bath at 37°C) before being axially loaded to failure. Fractured specimens were examined using scanning electron microscopy to detect fracture origin, location, and size of critical crack. Stress at failure was calculated using fractography principles (alpha = 0.05). Cemented CAD-on restorations demonstrated significantly higher (F = 72, p < 0.001) fracture load compared to fused CAD-on and manually layered restorations. Fractographic analysis of fractured specimens indicated that cemented CAD-on veneers failed due to radial cracks originating from the veneer/resin interface. Branching of the critical crack was observed in the bulk of the veneer. Fused CAD-on veneers demonstrated cohesive fracture originating at the thickest part of the veneer ceramic, while manually layered veneers failed due to interfacial fracture at the zirconia/veneer interface. Within the limitations of this study, cemented CAD-on veneers on customized zirconia implant abutments demonstrated higher fracture than fused and manually layered veneers. © 2014 by the American College of Prosthodontists.

  20. Color variation induced by abutments in the superior anterior maxilla: an in vitro study in the pig gingiva.

    PubMed

    Atash, Ramin; Boularbah, Mohamed-Reda; Sibel, Cetik

    2016-12-01

    The aim of this work is to evaluate different types of materials used for making implant abutments, by means of an in vitro study and a review of the literature, in order to identify the indications for a better choice of an implant-supported restoration in the anterior section. 5 implant abutments were tested in a random order in the superior anterior maxilla of pig gingiva (n = 8): titanium dioxide (Nobel Biocare); zirconium dioxide, Standard BO shade (Nobel Biocare, Kloten, Switzerland); zirconium dioxide, Light BI shade (Nobel Biocare); zirconium dioxide, Intense A 3.5 shade (Nobel Biocare); and aluminium oxide. Each abutment was tested for 2 mm and 3 mm thickness. To determine color variation, VITA Easyshade Advance spectrophotometer (Vita Zahnfabrik, Bad Sackingen, Germany) was used. Results showed that the color variation induced by the abutment would be affected by the abutment material and gingival thickness, when the gingival thickness is 2 mm. All materials except zirconium dioxide (Standard shade) caused a visible change of color. Then, as the thickness of the gingiva increased to 3 mm, the color variation was attenuated in a significant manner and became invisible for all types of abutments, except those made of aluminium oxide. Zirconium dioxide is the material causing the lowest color variation at 2 mm and at 3 mm, whereas aluminium oxide causes the highest color variation no matter the thickness.