Sample records for ac field frequency

  1. Critical frequency for coalescence of emulsions in an AC electric field

    NASA Astrophysics Data System (ADS)

    Liu, Zhou; Ali, Faizi Hammad; Shum, Ho Cheung

    2017-11-01

    Applying an electric field to trigger the coalescence of emulsions has been applied in various applications which include crude oil recovery, emulsion stability characterization as well as pico-injection and droplet-based chemical reaction in microfluidics. In this work, we systematically investigated the responses of surfactant-stabilized emulsions to a controlled AC electric field using a customer-built chip. At a given amplitude of the AC voltage, we found a critical frequency beyond which the emulsions remain stable. When the frequency is decreased to below the critical value, emulsions coalesce immediately. Such critical frequency is found to be dependent of amplitude of the AC voltage, viscosity of the fluids, concentration and type of the surfactant as well as the electric conductivity of the droplet phase. Using a model based on the drainage of thin film, we have explored the mechanism behind and interpret this phenomenon systematically. Our work extends the understanding of the electro-coalescence of emulsions and can be beneficial for any applications involve the coalescence of droplets in an AC electric field.

  2. Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field.

    PubMed

    Xiang, Ying; Zhou, Meng-jie; Xu, Ming-Ya; Salamon, Péter; Éber, Nándor; Buka, Ágnes

    2015-04-01

    Electric-field-induced patterns of diverse morphology have been observed over a wide frequency range in a recently synthesized bent-core nematic (BCN) liquid crystal. At low frequencies (up to ∼25 Hz), the BCN exhibited unusual polarity-dependent patterns. When the amplitude of the ac field was enhanced, these two time-asymmetrical patterns turned into time-symmetrical prewavylike stripes. At ac frequencies in the middle-frequency range (∼50-3000 Hz), zigzag patterns were detected whose obliqueness varied with the frequency. Finally, if the frequency was increased above 3 kHz, the zigzag pattern was replaced by another, prewavylike pattern, whose threshold voltage depended on the frequency; however, the wave vector did not. For a more complete characterization, material parameters such as elastic constants, dielectric permittivities, and the anisotropy of the diamagnetic susceptibility were also determined.

  3. AC-electric field dependent electroformation of giant lipid vesicles.

    PubMed

    Politano, Timothy J; Froude, Victoria E; Jing, Benxin; Zhu, Yingxi

    2010-08-01

    Giant vesicles of larger than 5 microm, which have been of intense interest for their potential as drug delivery vehicles and as a model system for cell membranes, can be rapidly formed from a spin-coated lipid thin film under an electric field. In this work, we explore the AC-field dependent electroformation of giant lipid vesicles in aqueous media over a wide range of AC-frequency from 1 Hz to 1 MHz and peak-to-peak field strength from 0.212 V/mm to 40 V/mm between two parallel conducting electrode surfaces. By using fluorescence microscopy, we perform in-situ microscopic observations of the structural evolution of giant vesicles formed from spin-coated lipid films under varied uniform AC-electric fields. The real-time observation of bilayer bulging from the lipid film, vesicle growth and fusing further examine the critical role of AC-induced electroosmotic flow of surrounding fluids for giant vesicle formation. A rich AC-frequency and field strength phase diagram is obtained experimentally to predict the AC-electroformation of giant unilamellar vesicles (GUVs) of l-alpha-phosphatidylcholine, where a weak dependence of vesicle size on AC-frequency is observed at low AC-field voltages, showing decreased vesicle size with a narrowed size distribution with increased AC-frequency. Formation of vesicles was shown to be constrained by an upper field strength of 10 V/mm and an upper AC-frequency of 10 kHz. Within these parameters, giant lipid vesicles were formed predominantly unilamellar and prevalent across the entire electrode surfaces. Copyright 2010 Elsevier B.V. All rights reserved.

  4. AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Liu, Weiyu; Wang, Chunhui; Ding, Haitao; Shao, Jinyou; Ding, Yucheng

    2016-05-01

    In this work, we focus on frequency-dependence of pearl chain formations (PCF) of gold nanoparticles driven by AC dielectrophoresis (DEP), especially in a low field-frequency range, where induced double-layer charging effect at ideally polarizable surfaces on particle DEP behavior and surrounding liquid motion need not be negligible. As field frequency varies, grown features of DEP assembly structures ranging from low-frequency non-bridged gap to high-frequency single gold nanoparticle-made nanowires bridging the electrodes are demonstrated experimentally. Specifically, at 10 kHz, a kind of novel channel-like structure with parallel opposing banks is formed at the center of interelectrode gap. In stark contrast, at 1 MHz, thin PCF with diameter of 100 nm is created along the shortest distance of the isolation spacing. Moreover, a particular conductive path of nanoparticle chains is produced at 1 MHz in a DEP device embedded with multiple floating electrodes. A theoretical framework taking into account field-induced double-layer polarization at both the particle/electrolyte and electrode/electrolyte interface is developed to correlate these experimental observations with induced-charge electrokinetic (ICEK) phenomenon. And a RC circuit model is helpful in accounting for the formation of this particular non-bridged channel-like structure induced by a low-frequency AC voltage. As compared to thin PCF formed at high field frequency that effectively short circuits the electrode pair, though it is difficult for complete PCF bridging to occur at low frequency, the non-bridged conducting microstructure has potential to further miniaturize the size of electrode gap fabricated by standard micromachining process and may find useful application in biochemical sensing.

  5. AC Electric Field Communication for Human-Area Networking

    NASA Astrophysics Data System (ADS)

    Kado, Yuichi; Shinagawa, Mitsuru

    We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.

  6. Effects of AC/DC magnetic fields, frequency, and nanoparticle aspect ratio on cellular transfection of gene vectors

    NASA Astrophysics Data System (ADS)

    Ford, Kris; Mair, Lamar; Fisher, Mike; Rowshon Alam, Md.; Juliano, Rudolph; Superfine, Richard

    2008-10-01

    In order to make non-viral gene delivery a useful tool in the study and treatment of genetic disorders, it is imperative that these methodologies be further refined to yield optimal results. Transfection of magnetic nanoparticles and nanorods are used as non-viral gene vectors to transfect HeLa EGFP-654 cells that stably express a mutated enhanced green fluorescent protein (EGFP) gene. We deliver antisense oligonucleotides to these cells designed to correct the aberrant splicing caused by the mutation in the EGFP gene. We also transfect human bronchial endothelial cells and immortalized WI-38 lung cells with pEGFP-N1 vectors. To achieve this we bind the genes to magnetic nanoparticles and nanorods and introduce magnetic fields to effect transfection. We wish to examine the effects of magnetic fields on the transfection of these particles and the benefits of using alternating (AC) magnetic fields in improving transfection rates over direct (DC) magnetic fields. We specifically look at the frequency dependence of the AC field and particle aspect ratio as it pertains to influencing transfection rate. We posit that the increase in angular momentum brought about by the AC field and the high aspect ratio of the nanorod particles, is vital to generating the force needed to move the particle through the cell membrane.

  7. Electroosmotic Flow Driven by DC and AC Electric Fields in Curved Microchannels

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Kun; Luo, Win-Jet; Yang, Ruey-Jen

    2006-10-01

    The purpose of this study is to investigate electroosmotic flows driven by externally applied DC and AC electric fields in curved microchannels. For the DC electric driving field, the velocity distribution and secondary flow patterns are investigated in microchannels with various curvature ratios. We use the Dean number to describe the curvature effect of the flow field in DC electric field. The result implies that the effect of curvatures and the strength of the secondary flows become get stronger when the curvature ratio of C/A (where C is the radius of curvature of the microchannel and A is the half-height of rectangular curved tube.) is smaller. For the AC electric field, the velocity distribution and secondary flow patterns are investigated for driving frequencies in the range of 2.0 kHz (\\mathit{Wo}=0.71) to 11 kHz (\\mathit{Wo}=1.66). The numerical results reveal that the velocity at the center of the microchannel becomes lower at higher frequencies of the AC electric field and the strength of the secondary flow decreases. When the applied frequency exceeds 3.0 kHz (\\mathit{Wo}=0.87), vortices are no longer observed at the corners of the microchannel. Therefore, it can be concluded that the secondary flow induced at higher AC electric field frequencies has virtually no effect on the axial flow field in the microchannel.

  8. Alternating current (AC) iontophoretic transport across human epidermal membrane: effects of AC frequency and amplitude.

    PubMed

    Yan, Guang; Xu, Qingfang; Anissimov, Yuri G; Hao, Jinsong; Higuchi, William I; Li, S Kevin

    2008-03-01

    As a continuing effort to understand the mechanisms of alternating current (AC) transdermal iontophoresis and the iontophoretic transport pathways in the stratum corneum (SC), the objectives of the present study were to determine the interplay of AC frequency, AC voltage, and iontophoretic transport of ionic and neutral permeants across human epidermal membrane (HEM) and use AC as a means to characterize the transport pathways. Constant AC voltage iontophoresis experiments were conducted with HEM in 0.10 M tetraethyl ammonium pivalate (TEAP). AC frequencies ranging from 0.0001 to 25 Hz and AC applied voltages of 0.5 and 2.5 V were investigated. Tetraethyl ammonium (TEA) and arabinose (ARA) were the ionic and neutral model permeants, respectively. In data analysis, the logarithm of the permeability coefficients of HEM for the model permeants was plotted against the logarithm of the HEM electrical resistance for each AC condition. As expected, linear correlations between the logarithms of permeability coefficients and the logarithms of resistances of HEM were observed, and the permeability data were first normalized and then compared at the same HEM electrical resistance using these correlations. Transport enhancement of the ionic permeant was significantly larger than that of the neutral permeant during AC iontophoresis. The fluxes of the ionic permeant during AC iontophoresis of 2.5 V in the frequency range from 5 to 1,000 Hz were relatively constant and were approximately 4 times over those of passive transport. When the AC frequency decreased from 5 to 0.001 Hz at 2.5 V, flux enhancement increased to around 50 times over passive transport. While the AC frequency for achieving the full effect of iontophoretic enhancement at low AC frequency was lower than anticipated, the frequency for approaching passive diffusion transport at high frequency was higher than expected from the HEM morphology. These observations are consistent with a transport model of multiple

  9. High susceptibility and low resistance allele frequency of Chrysodeixis includens (Lepidoptera: Noctuidae) field populations to Cry1Ac in Brazil.

    PubMed

    Yano, Silvia Ac; Specht, Alexandre; Moscardi, Flávio; Carvalho, Renato A; Dourado, Patrick M; Martinelli, Samuel; Head, Graham P; Sosa-Gómez, Daniel R

    2016-08-01

    The soybean looper (SBL), Chrysodeixis includens (Walker), is one of the most important soybean pests in Brazil. MON 87701 × MON 89788 soybean expressing Cry1Ac has been recently deployed in Brazil, providing high levels of control against the primary lepidopteran pests. To support insect resistance management (IRM) programmes, the baseline susceptibility of SBL to Cry1Ac was assessed, and the resistance allele frequency was estimated on the basis of an F2 screen. The toxicity (LC50 ) of Cry1Ac ranged from 0.39 to 2.01 µg mL(-1) diet among all SBL field populations collected from crop seasons 2008/09 to 2012/13, which indicated approximately fivefold variation. Cry1Ac diagnostic concentrations of 5.6 and 18 µg mL(-1) diet were established for monitoring purposes, and no shift in mortality was observed. A total of 626 F2 family lines derived from SBL collected from locations across Brazil during crop season 2014/15 were screened for the presence of Cry1Ac resistance alleles. None of the 626 families survived on MON 87701 × MON 89788 soybean leaf tissue (joint frequency 0.0004). SBL showed high susceptibility and low resistance allele frequency to Cry1Ac across the main soybean-producing regions in Brazil. These findings meet important criteria for effective IRM strategy. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Fibrillar disruption by AC electric field induced oscillation: A case study with human serum albumin.

    PubMed

    Sen, Shubhatam; Chakraborty, Monojit; Goley, Snigdha; Dasgupta, Swagata; DasGupta, Sunando

    2017-07-01

    The effect of oscillation induced by a frequency-dependent alternating current (AC) electric field to dissociate preformed amyloid fibrils has been investigated. An electrowetting-on-dielectric type setup has been used to apply the AC field of varying frequencies on preformed fibrils of human serum albumin (HSA). The disintegration potency has been monitored by a combination of spectroscopic and microscopic techniques. The experimental results suggest that the frequency of the applied AC field plays a crucial role in the disruption of preformed HSA fibrils. The extent of stress generated inside the droplet due to the application of the AC field at different frequencies has been monitored as a function of the input frequency of the applied AC voltage. This has been accomplished by assessing the morphology deformation of the oscillating HSA fibril droplets. The shape deformation of the oscillating droplets is characterized using image analysis by measuring the dynamic changes in the shape dependent parameters such as contact angle and droplet footprint radius and the amplitude. It is suggested that the cumulative effects of the stress generated inside the HSA fibril droplets due to the shape deformation induced hydrodynamic flows and the torque induced by the intrinsic electric dipoles of protein due to their continuous periodic realignment in presence of the AC electric field results in the destruction of the fibrillar species. Copyright © 2017. Published by Elsevier B.V.

  11. Effects of head field and AC field on magnetization reversal for microwave assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Kase, Aina; Akagi, Fumiko; Yoshida, Kazuetsu

    2018-05-01

    Microwave assisted magnetic recording (MAMR) is a promising recording method for achieving high recording densities in hard disk drives. In MAMR, the AC field from a spin-torque oscillator (STO) assists the head field with magnetization reversal in a medium. Therefore, the relationship between the head field and the AC field is very important. In this study, the effects of the head field and the AC field on magnetization reversal were analyzed using a micromagnetic simulator that takes the magnetic interactions between a single-pole type (SPT) write-head, an exchange coupled composite (ECC) medium, and the STO into account. As a result, the magnetization reversal was assisted not just by the y-component of the AC field (Hstoy) but also by the y-component of the head field (Hhy) in the medium. The Hhy over 100 kA/m with a frequency of about 15.5 GHz induced the magnetic resonance. The large Hhy was produced by the field from the STO to the SPT head.

  12. Droplet condensation on superhydrophobic surfaces with enhanced dewetting under a tangential AC electric field

    NASA Astrophysics Data System (ADS)

    Yan, Xinzhu; Li, Jian; Li, Licheng; Huang, Zhengyong; Wang, Feipeng; Wei, Yuan

    2016-10-01

    In this Letter, the dewetting behavior of superhydrophobic condensing surfaces under a tangential AC electric field is reported. The surface coverage of condensed droplets only exhibits a negligible increase with time. The jumping frequency of droplets is enhanced. The AC electric field motivates the dynamic transition of droplets from stretch to recoil, resulting in the counterforce propelling droplet jumping. The considerable horizontal component of jumping velocity facilitates droplet departure from superhydrophobic surfaces. Both the amplitude and frequency of AC voltage are important factors for droplet departure and dewetting effect. Thereby, the tangential electric field provides a unique and easily implementable approach to enhance droplet removal from superhydrophobic condensing surfaces.

  13. Field-dependence of AC susceptibility in titanomagnetites

    USGS Publications Warehouse

    Jackson, M.; Moskowitz, B.; Rosenbaum, J.; Kissel, Catherie

    1998-01-01

    AC susceptibility measurements as a function of field amplitude Hac and of frequency show a strong field dependence for a set of synthetic titanomagnetites (Fe3-xTixO4) and for certain basalts from the SOH-1 Hawaiian drill hole and from Iceland. In-phase susceptibility is constant below fields of about 10-100 A/m, and then increases by as much as a factor of two as Hsc is increased to 2000 A/m. Both the initial field-independent susceptibilities and field-dependence of susceptibility are systematically related to composition: initial susceptibility is 3 SI for a single-crystal sphere of TMO (x = 0) and decreases with increasing titanium content; field-dependence is nearly zero for TM0 and increases systematically to a maximum near TM60 (x = 0.6). This field dependence can in some cases be mistaken for frequency dependence, and leaf to incorrect interpretations of magnetic grain size and composition when titanomagnetite is present.

  14. Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency

    PubMed Central

    An, Ran; Massa, Katherine

    2014-01-01

    AC Faradaic reactions have been reported as a mechanism inducing non-ideal phenomena such as flow reversal and cell deformation in electrokinetic microfluidic systems. Prior published work described experiments in parallel electrode arrays below the electrode charging frequency (fc), the frequency for electrical double layer charging at the electrode. However, 2D spatially non-uniform AC electric fields are required for applications such as in plane AC electroosmosis, AC electrothermal pumps, and dielectrophoresis. Many microscale experimental applications utilize AC frequencies around or above fc. In this work, a pH sensitive fluorescein sodium salt dye was used to detect [H+] as an indicator of Faradaic reactions in aqueous solutions within non-uniform AC electric fields. Comparison experiments with (a) parallel (2D uniform fields) electrodes and (b) organic media were employed to deduce the electrode charging mechanism at 5 kHz (1.5fc). Time dependency analysis illustrated that Faradaic reactions exist above the theoretically predicted electrode charging frequency. Spatial analysis showed [H+] varied spatially due to electric field non-uniformities and local pH changed at length scales greater than 50 μm away from the electrode surface. Thus, non-uniform AC fields yielded spatially varied pH gradients as a direct consequence of ion path length differences while uniform fields did not yield pH gradients; the latter is consistent with prior published data. Frequency dependence was examined from 5 kHz to 12 kHz at 5.5 Vpp potential, and voltage dependency was explored from 3.5 to 7.5 Vpp at 5 kHz. Results suggest that Faradaic reactions can still proceed within electrochemical systems in the absence of well-established electrical double layers. This work also illustrates that in microfluidic systems, spatial medium variations must be considered as a function of experiment time, initial medium conditions, electric signal potential, frequency, and spatial

  15. AC Electric-Field-Induced Fluid Flow in Microelectrodes.

    PubMed

    Ramos; Morgan; Green; Castellanos

    1999-09-15

    During the AC electrokinetic manipulation of particles in suspension on microelectrode structures, strong frequency-dependent fluid flow is observed. The fluid movement is predominant at frequencies below the reciprocal charge relaxation time, with a reproducible pattern occurring close to and across the electrode surface. This paper reports measurements of the fluid velocity as a function of frequency and position across the electrode. Evidence is presented indicating that the flow occurs due to electroosmotic stress arising from the interaction of the electric field and the electrical double layer on the electrodes. The electrode polarization plays a significant role in controlling the frequency dependence of the flow. Copyright 1999 Academic Press.

  16. The role of electro-osmosis and dielectrophoresis in collection of micro/nano size particles in low frequency AC electric field

    NASA Astrophysics Data System (ADS)

    Wei, Chehung; Hsu, Che-Wei; Wang, Ching-Chieh

    2007-09-01

    The collecting and sorting micro size particles by electric force is easy to integrate with other bioassays. There are many forms of electric forces such as electrophoresis, dielectrophoresis and electroosmosis which can be used to manipulate particles. In an attempt to understand the role of electroosmosis and dielectrophoresis in the collection of micro size particles, a small device made of two parallel plates is used to study the particle movement under AC electric field. The device is fabricated by a top electrode and a bottom electrode separated by a spacer. The top electrode is made from an ITO glass where the bottom electrode is made of Corning 1737 glass sputtered with chromium. A dielectric layer is fabricated by spin coating a thin photo-resist (0.5~1μm) on the bottom electrode and a spacer made of curing PDMS is utilized to separate these electrodes. A 900μm × 900μm collecting chamber is fabricated on the bottom electrode via photolithography. The amine-modified polystyrene fluorescent particles whose average size is 1 μm were used for collection experiments. Different frequency and power were applied to generate the non-uniform electric field. It was found that frequency is the critical factor for electroosmotic velocity. There seems to be an optimum frequency that leads to largest particle velocity. The underlying mechanism is believed to the competing forces among dielectrophoresis and electroosmosis. This device demonstrates that the electroosmosis force is suitable for collecting bio-particles in AC electric field.

  17. Electrodeformation of multi-bilayer spherical concentric membranes by AC electric fields

    NASA Astrophysics Data System (ADS)

    Lira-Escobedo, J.; Arauz-Lara, J.; Aranda-Espinoza, H.; Adlerz, K.; Viveros-Mendez, P. X.; Aranda-Espinoza, S.

    2017-09-01

    It is now well established that external stresses alter the behaviour of cells, where such alterations can be as profound as changes in gene expression. A type of stresses of particular interest are those due to alternating-current (AC) electric fields. The effect of AC fields on cells is still not well understood, in particular it is not clear how these fields affect the cell nucleus and other organelles. Here, we propose that one possible mechanism is through the deformation of the membranes. In order to investigate the effect of AC fields on the morphological changes of the cell organelles, we modelled the cell as two concentric bilayer membranes. This model allows us to obtain the deformations induced by the AC field by balancing the elastic energy and the work done by the Maxwell stresses. Morphological phase diagrams are obtained as a function of the frequency and the electrical properties of the media and membranes. We demonstrate that the organelle shapes can be changed without modifying the shape of the external cell membrane and that the organelle deformation transitions can be used to measure, for example, the conductivity of the nucleus.

  18. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.

    PubMed

    Chai, Yuhui; Sheng, Jingwei; Bandettini, Peter A; Gao, Jia-Hong

    2018-05-01

    Transcranial alternating current stimulation (tACS) has emerged as a promising tool for modulating cortical oscillations. In previous electroencephalogram (EEG) studies, tACS has been found to modulate brain oscillatory activity in a frequency-specific manner. However, the spatial distribution and hemodynamic response for this modulation remains poorly understood. Functional magnetic resonance imaging (fMRI) has the advantage of measuring neuronal activity in regions not only below the tACS electrodes but also across the whole brain with high spatial resolution. Here, we measured fMRI signal while applying tACS to modulate rhythmic visual activity. During fMRI acquisition, tACS at different frequencies (4, 8, 16, and 32 Hz) was applied along with visual flicker stimulation at 8 and 16 Hz. We analyzed the blood-oxygen-level-dependent (BOLD) signal difference between tACS-ON vs tACS-OFF, and different frequency combinations (e.g., 4 Hz tACS, 8 Hz flicker vs 8 Hz tACS, 8 Hz flicker). We observed significant tACS modulation effects on BOLD responses when the tACS frequency matched the visual flicker frequency or the second harmonic frequency. The main effects were predominantly seen in regions that were activated by the visual task and targeted by the tACS current distribution. These findings bridge different scientific domains of tACS research and demonstrate that fMRI could localize the tACS effect on stimulus-induced brain rhythms, which could lead to a new approach for understanding the high-level cognitive process shaped by the ongoing oscillatory signal. © 2018 Wiley Periodicals, Inc.

  19. Magnetic field tunable ac electrical transport of LaFeO3-wax nanocomposites

    NASA Astrophysics Data System (ADS)

    Roy, Supratim; Mandal, S. K.; Debnath, Rajesh; Nath, Debajyoti; Dey, P.

    2018-04-01

    Single phase perovskite LaFeO3 nanoparticles have been prepared through chemical pyrophoric reaction process. It is further grinded with paraffin wax of quantity 0.5 wt% of total composition to obtain an organic composite 99.5%LaFeO3-0.5%Wax. Studies of ac electrical properties viz. complex impedance, dielectric response, loss coefficient have been done in presence of external dc magnetic field, which reveals a good magnetoimpedance (˜221%) and a negative magnetodielectric (˜ 64%). The value of impedance, its real and imaginary part is observed to increase with dc field. The composite exhibits high dielectric constant (˜4760). The ac conductivity is found to decrease with applied field and increase with ac frequency.

  20. Calorimetric method of ac loss measurement in a rotating magnetic field.

    PubMed

    Ghoshal, P K; Coombs, T A; Campbell, A M

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-T(c) superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  1. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-01-01

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  2. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-09-05

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  3. DC response of dust to low frequency AC signals

    NASA Astrophysics Data System (ADS)

    McKinlay, Michael; Konopka, Uwe; Thomas, Edward

    2017-10-01

    Macroscopic changes in the shape and equilibrium position of clouds of charged microparticles suspended in a plasma have been observed in response to low frequency AC signals. In these experiments, dusty plasmas consisting of 2-micron diameter silica microspheres suspended between an anode and cathode in an argon, DC glow discharge plasma are produced in a grounded, 6-way cross vacuum chamber. An AC signal, produced by a function generator and amplified by a bipolar op-amp, is superimposed onto the potential from the cathode. The frequencies of the applied AC signals, ranging from tens to hundreds of kHz, are comparable to the ion-neutral collision frequency; well below the ion/electron plasma frequencies, but also considerably higher than the dust plasma frequency. This presentation will detail the experimental setup, present documentation and categorization of observations of the dust response, and present an initial model of the response. This work is supported by funding from the US Dept. of Energy, Grant Number DE-SC0016330, and by the National Science Foundation, Grant Number PHY-1613087.

  4. Electrorotation of novel electroactive polymer composites in uniform DC and AC electric fields

    NASA Astrophysics Data System (ADS)

    Zrinyi, Miklós; Nakano, Masami; Tsujita, Teppei

    2012-06-01

    Novel electroactive polymer composites have been developed that could spin in uniform DC and AC electric fields. The angular displacement as well as rotation of polymer disks around an axis that is perpendicular to the direction of the applied electric field was studied. It was found that the dynamics of the polymer rotor is very complex. Depending on the strength of the static DC field, three regimes have been observed: no rotation occurs below a critical threshold field intensity, oscillatory motion takes place just above this value and continuous rotation can be observed above the critical threshold field intensity. It was also found that low frequency AC fields could also induce angular deformation.

  5. An MRI-Compatible High Frequency AC Resistive Heating System for Homeothermic Maintenance in Small Animals

    PubMed Central

    Gomes, Ana L.; Kinchesh, Paul; Kersemans, Veerle; Allen, Philip D.; Smart, Sean C.

    2016-01-01

    Purpose To develop an MRI-compatible resistive heater, using high frequency alternating current (AC), for temperature maintenance of anaesthetised animals. Materials and Methods An MRI-compatible resistive electrical heater was formed from narrow gauge wire connected to a high frequency (10–100 kHz) AC power source. Multiple gradient echo images covering a range of echo times, and pulse-acquire spectra were acquired with the wire heater powered using high frequency AC or DC power sources and without any current flowing in order to assess the sensitivity of the MRI acquisitions to the presence of current flow through the heater wire. The efficacy of temperature maintenance using the AC heater was assessed by measuring rectal temperature immediately following induction of general anaesthesia for a period of 30 minutes in three different mice. Results Images and spectra acquired in the presence and absence of 50–100 kHz AC through the wire heater were indistinguishable, whereas DC power created field shifts and lineshape distortions. Temperature lost during induction of anaesthesia was recovered within approximately 20 minutes and a stable temperature was reached as the mouse’s temperature approached the set target. Conclusion The AC-powered wire heater maintains adequate heat input to the animal to maintain body temperature, and does not compromise image quality. PMID:27806062

  6. Domain Wall Depinning in Random Media by ac Fields

    NASA Astrophysics Data System (ADS)

    Glatz, A.; Nattermann, T.; Pokrovsky, V.

    2003-01-01

    The viscous motion of an interface driven by an ac external field of frequency ω0 in a random medium is considered here in the nonadiabatic regime. The velocity exhibits a smeared depinning transition showing a double hysteresis which is absent in the adiabatic case ω0→0. Using scaling arguments and an approximate renormalization group calculation we explain the main characteristics of the hysteresis loop. In the low frequency limit these can be expressed in terms of the depinning threshold and the critical exponents of the adiabatic case.

  7. Deformation of giant vesicles in AC electric fields —Dependence of the prolate-to-oblate transition frequency on vesicle radius

    NASA Astrophysics Data System (ADS)

    Antonova, K.; Vitkova, V.; Mitov, M. D.

    2010-02-01

    The electrodeformation of giant vesicles is studied as a function of their radii and the frequency of the applied AC field. At low frequency the shape is prolate, at sufficiently high frequency it is oblate and at some frequency, fc, the shape changes from prolate to oblate. A linear dependence of the prolate-to-oblate transition inverse frequency, 1/fc, on the vesicle radius is found. The nature of this phenomenon does not change with the variation of both the solution conductivity, σ, and the type of the fluid enclosed by the lipid membrane (water, sucrose or glucose aqueous solution). When σ increases, the value of fc increases while the slope of the line 1/fc(r) decreases. For vesicles in symmetrical conditions (the same conductivity of the inner and the outer solution) a linear dependence between σ and the critical frequency, fc, is obtained for conductivities up to σ=114 μS/cm. For vesicles with sizes below a certain minimum radius, depending on the solution conductivity, no shape transition could be observed.

  8. A system for tranmitting low frequency analog signals over ac power lines

    DOEpatents

    Baker, S.P.; Durall, R.L.; Haynes, H.D.

    1987-07-30

    A system for transmitting low frequency analog signals over ac power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an ac power line. The modulation signal frequency range is selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the ac power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal. 4 figs.

  9. A magnetic-piezoelectric smart material-structure sensing three axis DC and AC magnetic-fields

    NASA Astrophysics Data System (ADS)

    Hung, Chiao-Fang; Chen, Chin-Chung; Yeh, Po-Chen; Chen, Po-Wen; Chung, Tien-Kan

    2017-12-01

    In this paper, we demonstrate a smart material-structure can sense not only three-axis AC magnetic-fields but also three-axis DC magnetic-fields. Under x-axis and z-axis AC magnetic field ranging from 0.2 to 3.2 gauss, sensing sensitivity of the smart material-structure stimulated at resonant frequency is approximate 8.79 and 2.80 mV/gauss, respectively. In addition, under x-axis and z-axis DC magnetic fields ranging from 2 to 12 gauss, the sensitivity of the smart material-structure is 1.24-1.54 and 1.25-1.41 mV/gauss, respectively. In addition, under x-axis and z-axis DC magnetic fields ranging from 12 to 20 gauss, the sensitivity of the smart material-structure is 5.17-6.2 and 3.97-4.57 mV/gauss, respectively. These experimental results show that the smart material-structure successfully achieves three-axis DC and AC magnetic sensing as we designed. Furthermore, we also compare the results of the AC and DC magnetic-field sensing to investigate discrepancies. Finally, when applying composite magnetic-fields to the smart material-structure, the smart material-structure shows decent outputs as expected (consistent to the sensing principle). In the future, we believe the smart material-structure capable of sensing AC and DC magnetic fields will have more applications than conventional structures capable of sensing only DC or AC magnetic field. Thus, the smart material-structure will be an important design reference for future magnetic-field sensing technologies.

  10. Frequency and temperature dependence of dielectric and ac electrical properties of NiFe2O4-ZnO multiferroic nanocomposite

    NASA Astrophysics Data System (ADS)

    Dutta, Papia; Mandal, S. K.; Dey, P.; Nath, A.

    2018-04-01

    We have presented the ac electrical properties and dielectric studies of 0.5 NiFe2O4 - 0.5 ZnO multiferroic nanocomposites prepared through low temperature "pyrophoric reaction process". Structural characterization has been carried out through X-ray diffraction technique, which shows the co-existence of both the phases of the nanocomposites. The ac electrical properties of nanocomposites have been studied employing impedance spectroscopy technique. The impedance value is found to increase with increase in magnetic field attributing the magnetostriction property of the composites. Dielectric constant is found to decrease with both the increase in magnetic fields and temperatures. Studies of dielectric constant reveal the Maxwell Wagner interfacial polarization at low frequency regime. Relaxation frequency as a function of magnetic fields and temperatures is found to shift towards the high frequency region.

  11. Dynamic Kerr effect in a strong uniform AC electric field for interacting polar and polarizable molecules in the mean field approximation

    NASA Astrophysics Data System (ADS)

    Deshmukh, Snehal D.; Déjardin, Pierre-Michel; Kalmykov, Yuri P.

    2017-09-01

    Analytical formulas for the electric birefringence response of interacting polar and anisotropically polarizable molecules due to a uniform alternating electric field are derived using Berne's forced rotational diffusion model [B. J. Berne, J. Chem. Phys. 62, 1154 (1975)] in the nonlinear version described by Warchol and Vaughan [J. Chem. Phys. 71, 502 (1979)]. It is found for noninteracting molecules that the signal consists of a frequency-dependent DC component superimposed on an oscillatory part with a frequency twice that of the AC driving field. However, unlike noninteracting molecules, the AC part strongly deviates from its dilute counterpart. This suggests a possible way of motivating new experimental studies of intermolecular interactions involving electro-optical methods and complementary nonlinear dielectric relaxation experiments.

  12. Frequency dependent ac transport of films of close-packed carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Endo, A.; Katsumoto, S.; Matsuda, K.; Norimatsu, W.; Kusunoki, M.

    2018-03-01

    We have measured low-temperature ac impedance of films of closely-packed, highly-aligned carbon nanotubes prepared by thermal decomposition of silicon carbide wafers. The measurement was performed on films with the thickness (the length of the nanotubes) ranging from 6.5 to 65 nm. We found that the impedance rapidly decreases with the frequency. This can be interpreted as resulting from the electric transport via capacitive coupling between adjacent nanotubes. We also found numbers of sharp spikes superposed on frequency vs. impedance curves, which presumably represent resonant frequencies seen in the calculated conductivity of random capacitance networks. Capacitive coupling between the nanotubes was reduced by the magnetic field perpendicular to the films at 8.2 mK, resulting in the transition from negative to positive magnetoresistance with an increase of the frequency.

  13. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    NASA Astrophysics Data System (ADS)

    del Moral, A.; Azanza, María J.

    2015-03-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate ("frequency"), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca2+ Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD-CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD-CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B0 ≅0.2-15 mT) AC-MF of frequency fM=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation.

  14. Aggregation of model amyloid insulin protein in crowding environments and under ac-electric fields

    NASA Astrophysics Data System (ADS)

    Zheng, Zhongli; Jing, Benxin; Murray, Brian; Sorci, Mirco; Belfort, Georges; Zhu, Y.

    2013-03-01

    In vitro experiments have been widely used to characterize the misfolding/unfolding pathway characteristic of amylodogenic proteins. Conversion from natively folded amyloidogenic proteins to oligomers via nucleation is the accepted path to fibril formation upon heating over a certain lag time period. In this work, we investigate the effect of crowing environment and external electric fields on the pathway and kinetics of insulin, a well-established amyloid model protein by single fluorescence spectroscopy and imaging. With added co-solutes, such as glycerol and polyvinylpyrrolidone (PVP), to mimic the cellular crowding environments, we have observed that the lag time can be significantly prolonged. The lag time increases with increasing co-solute concentration, yet showing little dependence on solution viscosity. Conversely, applied ac-electric fields can considerably shorten the lag timewhen a critical ac-voltage is exceeded. The strong dependence of lag time on ac-frequency over a narrow range of 500 Hz-5 kHz indicates the effect of ac-electroosmosis on the diffusion controlled process of insulin nucleation. Yet, no conformational structure is detected with insulin under applied ac-fields, suggesting the equivalence of ac-polarization to the conventional thermal activation process for insulin aggregation. These finding suggest that at least the aggregation kinetics of insulin can be altered by local solution condition or external stimuli, which gives new insight to the treatment of amyloid related diseases.

  15. Variable-frequency inverter controls torque, speed, and braking in ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1974-01-01

    Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.

  16. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

    PubMed Central

    2010-01-01

    A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed. PMID:21886342

  17. Analysis of a piezoelectric power harvester with adjustable frequency by precise electric field method.

    PubMed

    Wang, Yujue; Lian, Ziyang; Yao, Mingge; Wang, Ji; Hu, Hongping

    2013-10-01

    A power harvester with adjustable frequency, which consists of a hinged-hinged piezoelectric bimorph and a concentrated mass, is studied by the precise electric field method (PEFM), taking into account a distribution of the electric field over the thickness. Usually, using the equivalent electric field method (EEFM), the electric field is approximated as a constant value in the piezoelectric layer. Charge on the upper electrode (UEC) of the bimorph is often assumed as output charge. However, different output charge can be obtained by integrating on electric displacement over the electrode with different thickness coordinates. Therefore, an average charge (AC) on thickness is often assumed as the output value. This method is denoted EEFM AC. The flexural vibration of the bimorph is calculated by the three methods and their results are compared. Numerical results illustrate that EEFM UEC overestimates resonant frequency, output power, and efficiency. EEFM AC can accurately calculate the output power and efficiency, but underestimates resonant frequency. The performance of the harvester, which depends on concentrated mass weight, position, and circuit load, is analyzed using PEFM. The resonant frequency can be modulated 924 Hz by moving the concentrated mass along the bimorph. This feature suggests that the natural frequency of the harvester can be adjusted conveniently to adapt to frequency fluctuation of the ambient vibration.

  18. Frequency-Unspecific Effects of θ-tACS Related to a Visuospatial Working Memory Task

    PubMed Central

    Kleinert, Maria-Lisa; Szymanski, Caroline; Müller, Viktor

    2017-01-01

    Working memory (WM) is crucial for intelligent cognitive functioning, and synchronization phenomena in the fronto-parietal network have been suggested as an underlying neural mechanism. In an attempt to provide causal evidence for this assumption, we applied transcranial alternating current stimulation (tACS) at theta frequency over fronto-parietal sites during a visuospatial match-to-sample (MtS) task. Depending on the stimulation protocol, i.e., in-phase, anti-phase or sham, we anticipated a differential impact of tACS on behavioral WM performance as well as on the EEG (electroencephalography) during resting state before and after stimulation. We hypothesized that in-phase tACS of the fronto-parietal theta network (stimulation frequency: 5 Hz; intensity: 1 mA peak-to-peak) would result in performance enhancement, whereas anti-phase tACS would cause performance impairment. Eighteen participants (nine female) received in-phase, anti-phase, and sham stimulation in balanced order. While being stimulated, subjects performed the MtS task, which varied in executive demand (two levels: low and high). EEG analysis of power peaks within the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) frequency bands was carried out. No significant differences were observed between in-phase and anti-phase stimulation regarding both behavioral and EEG measurements. Yet, with regard to the alpha frequency band, we observed a statistically significant drop of peak power from pre to post in the sham condition, whereas alpha power remained on a similar level in the actively stimulated conditions. Our results indicate a frequency-unspecific modulation of neuronal oscillations by tACS. However, the closer participants’ individual theta peak frequencies were to the stimulation frequency of 5 Hz after anti-phase tACS, the faster they responded in the MtS task. This effect did not reach statistical significance during in-phase tACS and was not present during sham

  19. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    PubMed

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  20. Oblique propagating electromagnetic ion - Cyclotron instability with A.C. field in outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Pandey, R. S.; Singh, Vikrant; Rani, Anju; Varughese, George; Singh, K. M.

    2018-05-01

    In the present paper Oblique propagating electromagnetic ion-cyclotron wave has been analyzed for anisotropic multi ion plasma (H+, He+, O+ ions) in earth magnetosphere for the Dione shell of L=7 i.e., the outer radiation belt of the magnetosphere for Loss-cone distribution function with a spectral index j in the presence of A.C. electric field. Detail for particle trajectories and dispersion relation has been derived by using the method of characteristic solution on the basis of wave particle interaction and transformation of energy. Results for the growth rate have been calculated numerically for various parameters and have been compared for different ions present in magnetosphere. It has been found that for studying the wave over wider spectrum, anisotropy for different values of j should be taken. The effect of frequency of A.C. electric field and angle which propagation vector make with magnetic field, on growth rate has been explained.

  1. AC transport in p-Ge/GeSi quantum well in high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drichko, I. L.; Malysh, V. A.; Smirnov, I. Yu.

    2014-08-20

    The contactless surface acoustic wave technique is implemented to probe the high-frequency conductivity of a high-mobility p-Ge/GeSi quantum well structure in the regime of integer quantum Hall effect (IQHE) at temperatures 0.3–5.8 K and magnetic fields up to 18 T. It is shown that, in the IQHE regime at the minima of conductivity, holes are localized and ac conductivity is of hopping nature and can be described within the “two-site” model. The analysis of the temperature and magnetic-field-orientation dependence of the ac conductivity at odd filing factors enables us to determine the effective hole g-factor, |g{sub zz}|≈4.5. It is shownmore » that the in-plane component of the magnetic field leads to a decrease in the g-factor as well as increase in the cyclotron mass, which is explained by orbital effects in the complex valence band of germanium.« less

  2. Direct measurement of AC electrokinetics properties and capture frequencies of silicon and silicon-germanium nanowires

    NASA Astrophysics Data System (ADS)

    Merhej, M.; Honegger, T.; Bassani, F.; Baron, T.; Peyrade, D.; Drouin, D.; Salem, B.

    2018-01-01

    The assembly of semiconductor nanowires with nanoscale precision is crucial for their integration into functional systems. In this work, we propose a novel method to experimentally determine the real part of the Clausius-Mossotti factor (CMF) of silicon and silicon-germanium nanowires. The quantification of this CMF is measured with the nanowires velocities in a pure dielectrophoretic regime. This approach combined with a study on the connected nanowires alignment yield has led to a frequency of capture evaluation. In addition, we have also presented the morphology of nanowires assembly using dielectrophoresis for a wide frequency variation of AC electric fields.

  3. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat; Plasma Technology and Nuclear Fusion Research Unit, Chulalongkorn University, Bangkok

    2015-04-24

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) canmore » be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.« less

  4. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    NASA Astrophysics Data System (ADS)

    Demirezen, S.; Kaya, A.; Yerişkin, S. A.; Balbaşı, M.; Uslu, İ.

    In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε‧, ε‧, tanδ, electric modulus (M‧ and M″) and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε‧, ε‧, tanδ, M‧, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε‧, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε‧ and ε″ values at low frequencies may be attributed to the Maxwell-Wagner and space charge polarization. The high values of ε‧ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M‧ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M‧ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε‧, ε″, tanδ, M‧, M″ and ac electric conductivity (σac) is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization.

  5. Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities.

    PubMed

    Santarnecchi, E; Muller, T; Rossi, S; Sarkar, A; Polizzotto, N R; Rossi, A; Cohen Kadosh, R

    2016-02-01

    Emerging evidence suggests that transcranial alternating current stimulation (tACS) is an effective, frequency-specific modulator of endogenous brain oscillations, with the potential to alter cognitive performance. Here, we show that reduction in response latencies to solve complex logic problem indexing fluid intelligence is obtained through 40 Hz-tACS (gamma band) applied to the prefrontal cortex. This improvement in human performance depends on individual ability, with slower performers at baseline receiving greater benefits. The effect could have not being explained by regression to the mean, and showed task and frequency specificity: it was not observed for trials not involving logical reasoning, as well as with the application of low frequency 5 Hz-tACS (theta band) or non-periodic high frequency random noise stimulation (101-640 Hz). Moreover, performance in a spatial working memory task was not affected by brain stimulation, excluding possible effects on fluid intelligence enhancement through an increase in memory performance. We suggest that such high-level cognitive functions are dissociable by frequency-specific neuromodulatory effects, possibly related to entrainment of specific brain rhythms. We conclude that individual differences in cognitive abilities, due to acquired or developmental origins, could be reduced during frequency-specific tACS, a finding that should be taken into account for future individual cognitive rehabilitation studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Hot electrons injection in carbon nanotubes under the influence of quasi-static ac-field

    NASA Astrophysics Data System (ADS)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-07-01

    The theory of hot electrons injection in carbon nanotubes (CNTs) where both dc electric field (Ez), and a quasi-static ac field exist simultaneously (i.e. when the frequency ω of ac field is much less than the scattering frequency v (ω ⪡ v or ωτ ⪡ 1, v =τ-1) where τ is relaxation time) is studied. The investigation is done theoretically by solving semi-classical Boltzmann transport equation with and without the presence of the hot electrons source to derive the current densities. Plots of the normalized current density versus dc field (Ez) applied along the axis of the CNTs in the presence and absence of hot electrons reveal ohmic conductivity initially and finally negative differential conductivity (NDC) provided ωτ ⪡ 1 (i.e. quasi- static case). With strong enough axial injection of the hot electrons, there is a switch from NDC to positive differential conductivity (PDC) about Ez ≥ 75 kV / cm and Ez ≥ 140 kV / cm for a zigzag CNT and an armchair CNT respectively. Thus, the most important tough problem for NDC region which is the space charge instabilities can be suppressed due to the switch from the NDC behaviour to the PDC behaviour predicting a potential generation of terahertz radiations whose applications are relevance in current-day technology, industry, and research.

  7. Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field

    NASA Astrophysics Data System (ADS)

    Nganguia, H.; Young, Y.-N.

    2013-11-01

    In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes. Comparisons show that the spheroidal model gives better agreement with experimental observations.

  8. AC electric field induced dipole-based on-chip 3D cell rotation.

    PubMed

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-07

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  9. Generating an AC amplitude magnetic flux density value up to 150 μT at a frequency up to 100 kHz

    NASA Astrophysics Data System (ADS)

    Ulvr, Michal; Polonský, Jakub

    2017-05-01

    AC magnetic field analyzers with a triaxial coil probe are widely used by health and safety professionals, in manufacturing, and in service industries. For traceable calibration of these analyzers, it is important to be able to generate a stable, homogeneous reference AC magnetic flux density (MFD). In this paper, the generating of AC amplitude MFD value of 150 μT by single-layer Helmholtz type solenoid, described in previous work, was expanded up to a frequency of 100 kHz using the effect of serial resonance. A programmable capacitor array has been developed with a range of adjustable values from 50 pF to 51225 pF. In addition, the multi-layer search coil with a nominal area turns value of 1.3m2, used for adjusting AC MFD in the solenoid, has been modified by a transimpedance amplifier for use in a wider frequency range than up to 3 kHz. The possibility of using the programmable capacitor array up to 150 kHz has also been tested. An AC amplitude MFD value of 150 μT can be generated with expanded uncertainty better than 0.6% up to 100 kHz.

  10. AC Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  11. Superconductor disks and cylinders in an axial magnetic field: II. Nonlinear and linear ac susceptibilities

    NASA Astrophysics Data System (ADS)

    Brandt, Ernst Helmut

    1998-09-01

    The ac susceptibility χ=χ'-iχ'' of superconductor cylinders of finite length in a magnetic field applied along the cylinder axis is calculated using the method developed in the preceding paper, part I. This method does not require any approximation of the infinitely extended magnetic field outside the cylinder or disk but directly computes the current density J inside the superconductor. The material is characterized by a general current-voltage law E(J), e.g., E(J)=Ec[J/Jc(B)]n(B), where E is the electric field, B=μ0H the magnetic induction, Ec a prefactor, Jc the critical current density, and n>=1 the creep exponent. For n>1, the nonlinear ac susceptibility is calculated from the hysteresis loops of the magnetic moment of the cylinder, which is obtained by time integration of the equation for J(r,t). For n>>1 these results go over into the Bean critical state model. For n=1, and for any linear complex resistivity ρac(ω)=E/J, the linear ac susceptibility is calculated from an eigenvalue problem which depends on the aspect ratio b/a of the cylinder or disk. In the limits b/a<<1 and b/a>>1, the known results for thin disks in a perpendicular field and long cylinders in a parallel field are reproduced. For thin disks in a perpendicular field, at large frequencies χ(ω) crosses over to the behavior of slabs in parallel geometry since the magnetic field lines are expelled and have to flow around the disk. The results presented may be used to obtain the nonlinear or linear resistivity from contact-free magnetic measurements on superconductors of realistic shape.

  12. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment

    PubMed Central

    Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    Background Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (α) frequency (8–12 Hz) enhances electroencephalographic (EEG) α-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillatory circuits by spike-timing dependent plasticity. Objective We tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment “echoes.” To this end, we used a novel, intermittent tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and endogenous α-frequency. Methods 12 healthy participants were stimulated at around individual α-frequency for 11–15 min in four sessions using intermittent tACS or sham. Successive tACS events were either phase-continuous or phase-discontinuous, and either 3 or 8 s long. EEG α-phase and power changes were compared after and between episodes of α-tACS across conditions and against sham. Results α-aftereffects were successfully replicated after intermittent stimulation using 8-s but not 3-s trains. These aftereffects did not reveal any of the characteristics of entrainment echoes in that they were independent of tACS phase-continuity and showed neither prolonged phase alignment nor frequency synchronization to the exact stimulation frequency. Conclusion Our results indicate that plasticity mechanisms are sufficient to explain α-aftereffects in response to α-tACS, and inform models of tACS-induced plasticity in oscillatory circuits. Modifying brain oscillations with tACS holds promise for clinical applications in disorders involving abnormal neural synchrony. PMID:25648377

  13. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment.

    PubMed

    Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (α) frequency (8-12 Hz) enhances electroencephalographic (EEG) α-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillatory circuits by spike-timing dependent plasticity. We tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment "echoes." To this end, we used a novel, intermittent tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and endogenous α-frequency. 12 healthy participants were stimulated at around individual α-frequency for 11-15 min in four sessions using intermittent tACS or sham. Successive tACS events were either phase-continuous or phase-discontinuous, and either 3 or 8 s long. EEG α-phase and power changes were compared after and between episodes of α-tACS across conditions and against sham. α-aftereffects were successfully replicated after intermittent stimulation using 8-s but not 3-s trains. These aftereffects did not reveal any of the characteristics of entrainment echoes in that they were independent of tACS phase-continuity and showed neither prolonged phase alignment nor frequency synchronization to the exact stimulation frequency. Our results indicate that plasticity mechanisms are sufficient to explain α-aftereffects in response to α-tACS, and inform models of tACS-induced plasticity in oscillatory circuits. Modifying brain oscillations with tACS holds promise for clinical applications in disorders involving abnormal neural synchrony. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Aligning fast alternating current electroosmotic flow fields and characteristic frequencies with dielectrophoretic traps to achieve rapid bacteria detection.

    PubMed

    Gagnon, Zachary; Chang, Hsueh-Chia

    2005-10-01

    Tailor-designed alternating current electroosmotic (AC-EO) stagnation flows are used to convect bioparticles globally from a bulk solution to localized dielectrophoretic (DEP) traps that are aligned at the flow stagnation points. The multiscale trap, with a typical trapping time of seconds for a dilute 70 microL volume of 10(3) particles per cc sample, is several orders of magnitude faster than conventional DEP traps and earlier AC-EO traps with parallel, castellated, or finger electrodes. A novel serpentine wire capable of sustaining a high voltage, up to 2500 V(RMS), without causing excessive heat dissipation or Faradaic reaction in strong electrolytes is fabricated to produce the strong AC-EO flow with two separated stagnation lines, one aligned with the field minimum and one with the field maximum. The continuous wire design allows a large applied voltage without inducing Faradaic electrode reactions. Particles are trapped within seconds at one of the traps depending on whether they suffer negative or positive DEP. The particles can also be rapidly released from their respective traps by varying the frequency of the applied AC field below particle-distinct cross-over frequencies. Zwitterion addition to the buffer allows further geometric and frequency alignments of the AC-EO and DEP motions. The same device hence allows fast trapping, detection, sorting, and characterization on a sample with realistic conductivity, volume, and bacteria count.

  15. AC Initiation System.

    DTIC Science & Technology

    An ac initiation system is described which uses three ac transmission signals interlocked for safety by frequency, phase, and power discrimination...The ac initiation system is pre-armed by the application of two ac signals have the proper phases, and activates a load when an ac power signal of the proper frequency and power level is applied. (Author)

  16. Unique capabilities of AC frequency scanning and its implementation on a Mars Organic Molecule Analyzer linear ion trap.

    PubMed

    Snyder, Dalton T; Kaplan, Desmond A; Danell, Ryan M; van Amerom, Friso H W; Pinnick, Veronica T; Brinckerhoff, William B; Mahaffy, Paul R; Cooks, R Graham

    2017-06-21

    A limitation of conventional quadrupole ion trap scan modes which use rf amplitude control for mass scanning is that, in order to detect a subset of an ion population, the rest of the ion population must also be interrogated. That is, ions cannot be detected out of order; they must be detected in order of either increasing or decreasing mass-to-charge (m/z). However, an ion trap operated in the ac frequency scan mode, where the rf amplitude is kept constant and instead the ac frequency is used for mass-selective operations, has no such limitation because any variation in the ac frequency affects only the subset of ions whose secular frequencies match the perturbation frequency. Hence, an ion trap operated in the ac frequency scan mode can perform any arbitrary mass scan, as well as a sequence of scans, using a single ion injection; we demonstrate both capabilities here. Combining these two capabilities, we demonstrate the acquisition of a full mass spectrum, a product ion spectrum, and a second generation product ion spectrum using a single ion injection event. We further demonstrate a "segmented scan" in which different mass ranges are interrogated at different rf amplitudes in order to improve resolution over a portion of the mass range, and a "periodic scan" in which ions are continuously introduced into the ion trap to achieve a nearly 100% duty cycle. These unique scan modes, along with other characteristics of ac frequency scanning, are particularly appropriate for miniature ion trap mass spectrometers. Hence, implementation of ac frequency scanning on a prototype of the Mars Organic Molecule Analyzer mass spectrometer is also described.

  17. Frequency dependence of magnetic ac loss in a Roebel cable made of YBCO on a Ni-W substrate

    NASA Astrophysics Data System (ADS)

    Lakshmi, L. S.; Staines, M. P.; Badcock, R. A.; Long, N. J.; Majoros, M.; Collings, E. W.; Sumption, M. D.

    2010-08-01

    We have investigated the frequency dependent contributions to the magnetic ac loss in a 10 strand Roebel cable with 2 mm wide non-insulated strands and a transposition length of 90 mm. This cable is made from 40 mm wide YBCO coated conductor tape manufactured by AMSC and stabilized by electroplating 25 µm thick copper on either side prior to the mechanical punching of the cable strands. The measurements were carried out in both perpendicular and parallel field orientation, at frequencies in the range of 30-200 Hz. While the loss in the perpendicular orientation is predominantly hysteretic in nature, we observe some frequency dependence of the loss when the cable approaches full flux penetration at high field amplitudes. The magnitude is consistent with eddy current losses in the copper stabilization layer. This supports the fact that the inter-strand coupling loss is not significant in this frequency range. In the parallel field orientation, the hysteresis loss in the Ni-W alloy substrate dominates, but we see an unusually strong frequency dependent contribution to the loss which we attribute to intra-strand current loops.

  18. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles

    PubMed Central

    Walid Rezanoor, Md.; Dutta, Prashanta

    2016-01-01

    Electrorotation is widely used for characterization of biological cells and materials using a rotating electric field. Generally, multiphase AC electric fields and quadrupolar electrode configuration are needed to create a rotating electric field for electrorotation. In this study, we demonstrate a simple method to rotate dielectrophoretically trapped microparticles using a stationary AC electric field. Coplanar interdigitated electrodes are used to create a linearly polarized nonuniform AC electric field. This nonuniform electric field is employed for dielectrophoretic trapping of microparticles as well as for generating electroosmotic flow in the vicinity of the electrodes resulting in rotation of microparticles in a microfluidic device. The rotation of barium titanate microparticles is observed in 2-propanol and methanol solvent at a frequency below 1 kHz. A particle rotation rate as high as 240 revolutions per minute is observed. It is demonstrated that precise manipulation (both rotation rate and equilibrium position) of the particles is possible by controlling the frequency of the applied electric field. At low frequency range, the equilibrium positions of the microparticles are observed between the electrode edge and electrode center. This method of particle manipulation is different from electrorotation as it uses induced AC electroosmosis instead of electric torque as in the case of electrorotation. Moreover, it has been shown that a microparticle can be rotated along its own axis without any translational motion. PMID:27014394

  19. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.

    PubMed

    Walid Rezanoor, Md; Dutta, Prashanta

    2016-03-01

    Electrorotation is widely used for characterization of biological cells and materials using a rotating electric field. Generally, multiphase AC electric fields and quadrupolar electrode configuration are needed to create a rotating electric field for electrorotation. In this study, we demonstrate a simple method to rotate dielectrophoretically trapped microparticles using a stationary AC electric field. Coplanar interdigitated electrodes are used to create a linearly polarized nonuniform AC electric field. This nonuniform electric field is employed for dielectrophoretic trapping of microparticles as well as for generating electroosmotic flow in the vicinity of the electrodes resulting in rotation of microparticles in a microfluidic device. The rotation of barium titanate microparticles is observed in 2-propanol and methanol solvent at a frequency below 1 kHz. A particle rotation rate as high as 240 revolutions per minute is observed. It is demonstrated that precise manipulation (both rotation rate and equilibrium position) of the particles is possible by controlling the frequency of the applied electric field. At low frequency range, the equilibrium positions of the microparticles are observed between the electrode edge and electrode center. This method of particle manipulation is different from electrorotation as it uses induced AC electroosmosis instead of electric torque as in the case of electrorotation. Moreover, it has been shown that a microparticle can be rotated along its own axis without any translational motion.

  20. Aligned Immobilization of Proteins Using AC Electric Fields.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2016-03-01

    Protein molecules are aligned and immobilized from solution by AC electric fields. In a single-step experiment, the enhanced green fluorescent proteins are immobilized on the surface as well as at the edges of planar nanoelectrodes. Alignment is found to follow the molecules' geometrical shape with their longitudinal axes parallel to the electric field. Simultaneous dielectrophoretic attraction and AC electroosmotic flow are identified as the dominant forces causing protein movement and alignment. Molecular orientation is determined by fluorescence microscopy based on polarized excitation of the proteins' chromophores. The chromophores' orientation with respect to the whole molecule supports X-ray crystal data. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Emergence of periodic order in electric-field-driven planar nematic liquid crystals: An exclusive ac effect absent in static fields

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, K. S.; Kumar, Pramoda

    2007-11-01

    We report, for a nematic liquid crystal with a low conductivity anisotropy, an ac field generated transition from a uniformly planar to a periodically modulated director configuration with the wave vector parallel to the initial director. Significantly, with unblocked electrodes, this instability is not excited by dc fields. Additionally, in very low frequency square wave fields, it occurs transiently after each polarity reversal, vanishing completely during field constancy. The time of occurrence of maximum distortion after polarity reversal decreases exponentially with voltage. The time dependence of optical phase change during transient distortion is nearly Gaussian. The pattern threshold Vc is linear in f , f denoting the frequency; the critical wave number qc of the modulation scales nearly linearly as f to a peak at ˜50Hz before falling slightly thereafter. The observed Vc(f) and qc(f) characteristics differ from the predictions of the standard model (SM). The instability may be interpreted as a special case of the Carr-Helfrich distortion suppressed in static fields due to weak charge focusing and strong charge injection. Its transient nature in the low frequency regime is suggestive of the possible role of gradient flexoelectric effect in its occurrence. The study includes measurement of certain elastic and viscosity parameters relevant to the application of the SM.

  2. Analysis of Electrokinetic Mixing Using AC Electric Field and Patchwise Surface Heterogeneities

    NASA Astrophysics Data System (ADS)

    Luo, Win-Jet; Yarn, Kao-Feng; Hsu, Shou-Ping

    2007-04-01

    In this paper, the authors investigate the use of an applied AC electric field and microchannel surface heterogeneities to carry out the microfluidic mixing of two-dimensional, time-dependent electroosmotic flows. The time-dependent flow fields within the microchannel are simulated using the backwards-Euler time-stepping numerical method. The mixing efficiencies obtained in microchannels with two different patchwise surface heterogeneity patterns are investigated. In general, the results show that the application of an AC electric field significantly reduces the required mixing length compared with the use of a DC electric field. Furthermore, the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulation regions within the bulk flow. These circulation regions grow and decay periodically in accordance with the periodic variation of the AC electric field intensity and provide an effective means of enhancing species mixing in the microchannel. Consequently, the use of an AC electric field together with patchwise surface heterogeneities permits a significant reduction in both the mixing channel length and the retention time required to attain a homogeneous solution.

  3. Electroporation of cells using EM induction of ac fields by a magnetic stimulator

    NASA Astrophysics Data System (ADS)

    Chen, C.; Evans, J. A.; Robinson, M. P.; Smye, S. W.; O'Toole, P.

    2010-02-01

    This paper describes a method of effectively electroporating mammalian cell membranes with pulsed alternating-current (ac) electric fields at field strengths of 30-160 kV m-1. Although many in vivo electroporation protocols entail applying square wave or monotonically decreasing pulses via needles or electrode plates, relatively few have explored the use of pulsed ac fields. Following our previous study, which established the effectiveness of ac fields for electroporating cell membranes, a primary/secondary coil system was constructed to produce sufficiently strong electric fields by electromagnetic induction. The primary coil was formed from the applicator of an established transcranial magnetic stimulation (TMS) system, while the secondary coil was a purpose-built device of a design which could eventually be implanted into tissue. The effects of field strength, pulse interval and cumulative exposure time were investigated using microscopy and flow cytometry. Results from experiments on concentrated cell suspensions showed an optimized electroporation efficiency of around 50%, demonstrating that electroporation can be practicably achieved by inducing such pulsed ac fields. This finding confirms the possibility of a wide range of in vivo applications based on magnetically coupled ac electroporation.

  4. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  5. Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis.

    PubMed

    Zhou, Hao; White, Lee R; Tilton, Robert D

    2005-05-01

    Colloidal particles and biological cells are patterned and separated laterally adjacent to a micropatterned electrode array by applying AC electric fields that are principally oriented normally to the electrode array. This is demonstrated for yeast cells, red blood cells, and colloidal polystyrene particles of different sizes and zeta-potentials. The separation mechanism is observed experimentally to depend on the applied field frequency and voltage. At high frequencies, particles position themselves in a manner that is consistent with dielectrophoresis, while at low frequencies, the positioning is explained in terms of a strong coupling between gravity, the vertical component of the dielectrophoretic force, and the Stokes drag on particles induced by AC electroosmotic flow. Compared to high frequency dielectrophoretic separations, the low frequency separations are faster and require lower applied voltages. Furthermore, the AC electroosmosis coupling with dielectrophoresis may enable cell separations that are not feasible based on dielectrophoresis alone.

  6. High-Frequency ac Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Mildice, James

    1987-01-01

    Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.

  7. SQUIDs De-fluxing Using a Decaying AC Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlashov, Andrei Nikolaevich; Semenov, Vasili Kirilovich; Anderson, Bill

    Flux trapping is the Achilles’ heel of all superconductor electronics. The most direct way to avoid flux trapping is a prevention of superconductor circuits from exposure to magnetic fields. Unfortunately this is not feasible if the circuits must be exposed to a strong DC magnetic field even for a short period of time. For example, such unavoidable exposures take place in superparamagnetic relaxation measurements (SPMR) and ultra-low field magnetic resonance imaging (ULF MRI) using unshielded thin-film SQUID-based gradiometers. Unshielded SQUIDs stop working after being exposed to DC magnetic fields of only a few Gauss in strength. In this paper wemore » present experimental results with de-fluxing of planar thin-film LTS SQUID-based gradiometers using a strong decaying AC magnetic field. We used four commercial G136 gradiometers for SPMR measurements with up to a 10 mT magnetizing field. Strong 12.9 kHz decaying magnetic field pulses reliably return SQUIDs to normal operation 50 ms after zeroing the DC magnetizing field. This new AC de-fluxing method was also successfully tested with seven other different types of LTS SQUID sensors and has been shown to dissipate extremely low energy.« less

  8. Spectral response of atmospheric electric field measurements near AC high voltage power lines

    NASA Astrophysics Data System (ADS)

    Silva, H. G.; Matthews, J. C.; Wright, M. D.; Shallcross, D. E.

    2015-10-01

    To understand the influence of corona ion emission on the atmospheric electrical field, measurements were made near to two AC high voltage power lines. A JCI 131 field-mill recorded the atmospheric electric field over one year. Meteorological measurements were also taken. The data series is divided in four zones (dependent on wind direction): whole zones, Z0; zone 1, Z1; zone 2, Z2; zone 3, Z3. Z3 is the least affected by corona ion emission and for that reason it is used as a reference against Z1 and Z2, which are strongly influenced by this phenomena. Analysis was undertaken for all weather days and dry days only. The Lomb-Scargle strategy developed for unevenly spaced time-series is used to calculate the spectral response of the aforementioned zones. Only frequencies above 1 minute are considered.

  9. Low frequency electric field variations during HF transmissions on a mother-daughter rocket

    NASA Technical Reports Server (NTRS)

    Rosenberg, T. J.; Maynard, M. C.; Holtet, J. A.; Karlsen, N. O.; Egeland, A.; Moe, T. E.; Troim, J.

    1977-01-01

    HF wave propagation experiments were conducted on Mother-Daughter rockets in the polar ionosphere. Swept frequency transmissions from the Mother, nominally covering the range from 0.5 to 5 MHz in both CW and pulse modes, are received by the Daughter. In the most recent rocket of the series, the Mother also contained an AC electric field spectrometer covering the frequency range from 10 Hz to 100 kHz in four decade bands. The low frequency response of the ionosphere with respect to waves emitted from the onboard HF transmitter is examined.

  10. Review of russian literature on biological action of DC and low-frequency AC magnetic fields.

    PubMed

    Zhadin, M N

    2001-01-01

    This review considers the Russian scientific literature on the influence of weak static and of low-frequency alternating magnetic fields on biological systems. The review covers the most interesting works and the main lines of investigation during the period 1900 to the present. Shown here are the historical roots, beginning with the ideas of V. Vernadsky and A. Chizhevsky, which led in the field of Russian biology to an increasing interest in magnetic fields, based on an intimate connection between solar activity and life on the Earth, and which determined the peculiar development of Russian magnetobiology. The variety of studies on the effects of magnetic storms and extremely low-frequency, periodic variations of the geomagnetic field on human beings and animals as well as on social phenomena are described. The diverse experiments involving artificial laboratory magnetic fields acting on different biological entities under different conditions are also considered. A series of theoretical advances are reviewed that have paved the way for a step-by-step understanding of the mechanisms of magnetic field effects on biological systems. The predominantly unfavorable influence of magnetic fields on living beings is shown, but the cases of favorable influence of magnetic fields on human beings and lower animals are demonstrated as well. The majority of Russian investigations in this area of science has been unknown among the non-Russian speaking audience for many reasons, primarily because of a language barrier. Therefore, it is hoped that this review may be of interest to the international scientific community. Copyright 2001 Wiley-Liss, Inc.

  11. Low Offset AC Correlator.

    DTIC Science & Technology

    This patent describes a low offset AC correlator avoids DC offset and low frequency noise by frequency operating the correlation signal so that low...noise, low level AC amplification can be substituted for DC amplification. Subsequently, the high level AC signal is demodulated to a DC level. (Author)

  12. Variable frequency inverter for ac induction motors with torque, speed and braking control

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1975-01-01

    A variable frequency inverter was designed for driving an ac induction motor which varies the frequency and voltage to the motor windings in response to varying torque requirements for the motor so that the applied voltage amplitude and frequency are of optimal value for any motor load and speed requirement. The slip frequency of the motor is caused to vary proportionally to the torque and feedback is provided so that the most efficient operating voltage is applied to the motor. Winding current surge is limited and a controlled negative slip causes motor braking and return of load energy to a dc power source.

  13. ProteinAC: a frequency domain technique for analyzing protein dynamics

    NASA Astrophysics Data System (ADS)

    Bozkurt Varolgunes, Yasemin; Demir, Alper

    2018-03-01

    It is widely believed that the interactions of proteins with ligands and other proteins are determined by their dynamic characteristics as opposed to only static, time-invariant processes. We propose a novel computational technique, called ProteinAC (PAC), that can be used to analyze small scale functional protein motions as well as interactions with ligands directly in the frequency domain. PAC was inspired by a frequency domain analysis technique that is widely used in electronic circuit design, and can be applied to both coarse-grained and all-atom models. It can be considered as a generalization of previously proposed static perturbation-response methods, where the frequency of the perturbation becomes the key. We discuss the precise relationship of PAC to static perturbation-response schemes. We show that the frequency of the perturbation may be an important factor in protein dynamics. Perturbations at different frequencies may result in completely different response behavior while magnitude and direction are kept constant. Furthermore, we introduce several novel frequency dependent metrics that can be computed via PAC in order to characterize response behavior. We present results for the ferric binding protein that demonstrate the potential utility of the proposed techniques.

  14. High Susceptibility to Cry1Ac and Low Resistance Allele Frequency Reduce the Risk of Resistance of Helicoverpa armigers to Bt Soybean in Brazil.

    PubMed

    Dourado, Patrick M; Bacalhau, Fabiana B; Amado, Douglas; Carvalho, Renato A; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2016-01-01

    The Old World bollworm, Helicoverpa armigera (Hübner), was recently introduced into Brazil, where it has caused extensive damage to cotton and soybean crops. MON 87701 × MON 89788 soybean, which expresses the Bt protein Cry1Ac, was recently deployed in Brazil, providing high levels of control against H. armigera. To assess the risk of resistance to the Cry1Ac protein expressed by MON 87701 × MON 89788 soybean in Brazil, we conducted studies to evaluate the baseline susceptibility of H. armigera to Cry1Ac, in planta efficacy including the assessment of the high-dose criterion, and the initial resistance allele frequency based on an F2 screen. The mean Cry1Ac lethal concentration (LC50) ranged from 0.11 to 1.82 μg·mL-1 of diet among all H. armigera field populations collected from crop seasons 2013/14 to 2014/15, which indicated about 16.5-fold variation. MON 87701 × MON 89788 soybean exhibited a high level of efficacy against H. armigera and most likely met the high dose criterion against this target species in leaf tissue dilution bioassays up to 50 times. A total of 212 F2 family lines of H. armigera were established from field collections sampled from seven locations across Brazil and were screened for the presence of MON 87701 × MON 89788 soybean resistance alleles. None of the 212 families survived on MON 87701 × MON 89788 soybean leaf tissue (estimated allele frequency = 0.0011). The responses of H. armigera to Cry1Ac protein, high susceptibility to MON 87701 × MON 89788 soybean, and low frequency of resistance alleles across the main soybean-producing regions support the assumptions of a high-dose/refuge strategy. However, maintenance of reasonable compliance with the refuge recommendation will be essential to delay the evolution of resistance in H. armigera to MON 87701 × MON 89788 soybean in Brazil.

  15. Power dissipation in HTS coated conductor coils under the simultaneous action of AC and DC currents and fields

    NASA Astrophysics Data System (ADS)

    Shen, Boyang; Li, Chao; Geng, Jianzhao; Zhang, Xiuchang; Gawith, James; Ma, Jun; Liu, Yingzhen; Grilli, Francesco; Coombs, T. A.

    2018-07-01

    This paper presents a comprehensive alternating current (AC) loss study of a circular high temperature superconductor (HTS) coated conductor coil. The AC losses from a circular double pancake coil were measured using the electrical method. A 2D axisymmetric H -formulation model using the FEM package in COMSOL Multiphysics has been established to match the circular geometry of the coil used in the experiment. Three scenarios have been analysed: Scenario 1 with AC transport current and DC magnetic field (experiment and simulation); Scenario 2 with DC transport current and AC magnetic field (simulation); and Scenario 3 with AC transport current and AC magnetic field (simulation and experimental data support). The angular dependence analysis on the coil under a magnetic field with different orientation angle θ has been carried out for all three scenarios. For Scenario 3, the effect of the relative phase difference Δφ between the AC current and the AC field on the total AC loss of the coil has been investigated. In summary, a current/field/angle/phase dependent AC loss ( I , B , θ, Δφ) study of a circular HTS coil has been carried out. The obtained results provide useful indications for the future design and research of HTS AC systems.

  16. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body.

    PubMed

    Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo

    2016-12-02

    Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body-because human tissues exhibit some conductivity at these frequencies-resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.

  17. ac electroosmotic pumping induced by noncontact external electrodes

    PubMed Central

    Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia

    2007-01-01

    Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1×1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mm∕sec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 μl∕sec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps. PMID:19693362

  18. ac electroosmotic pumping induced by noncontact external electrodes.

    PubMed

    Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia

    2007-09-21

    Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1x1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mmsec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 mulsec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps.

  19. Nonlinear AC susceptibility, surface and bulk shielding

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; D'Anna, G.; Benoit, W.

    1996-02-01

    We calculate the nonlinear AC response of a thin superconducting strip in perpendicular field, shielded by an edge current due to the geometrical barrier. A comparison with the results for infinite samples in parallel field, screened by a surface barrier, and with those for screening by a bulk current in the critical state, shows that the AC response due to a barrier has general features that are independent of geometry, and that are significantly different from those for screening by a bulk current in the critical state. By consequence, the nonlinear (global) AC susceptibility can be used to determine the origin of magnetic irreversibility. A comparison with experiments on a Bi 2Sr 2CaCu 2O 8+δ crystal shows that in this material, the low-frequency AC screening at high temperature is mainly due to the screening by an edge current, and that this is the unique source of the nonlinear magnetic response at temperatures above 40 K.

  20. Effect of dc field on ac-loss peak in a commercial Bi:2223/Ag tape

    NASA Astrophysics Data System (ADS)

    Öztürk, Ali; Düzgün, İbrahim; Çelebi, Selahattin

    2017-12-01

    Measurements of the ac susceptibility in a commercial Bi:2223/Ag tape for some different ac magnetic field amplitudes, Hac, in the presence of bias magnetic field Hdc directed along Hac are reported. It is found that the peak values of the imaginary component of ac susceptibility χ″max versus Hac trace a valley for the orientation where applied field Ha perpendicular to wide face of the tape total. We note that the observation of the valley depends on various parameters such as field dependence parameter n in the critical current density, in the simple power law expression jc = α(T)/Bn, choice of the bias field Hdc together with selected ac field amplitudes Hac, and dimension and geometry of sample studied. Our calculations based on critical state model with jc = α(1 - T/Tcm)p/Bn using the fitting parameters of n = 0.25, p = 2.2, Tcm = 108 K gives quite good results to compare the experimental and calculated curves.

  1. Magnetic characteristics and AC losses of DC type-II superconductors under oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Robert, B. C.; Ruiz, H. S.

    2018-07-01

    Remarkable features on the magnetic moment of type-II superconducting (SC) wires of cylindrical shape, subjected to direct current conditions (DC) and transverse oscillating (AC) magnetic fields, are reported. We show how for relatively low amplitudes of the applied magnetic field, B a , the superconducting wire rapidly develops a saturation state, | {M}p| , characterizing the limits of magnetization loops that exhibit a Boolean-like behaviour. Regardless of the premagnetization state of the SC wire, we show how after two cycles of magnetic relaxation, boolean-like ±M p states can be measured during the entire period of time from which the external magnetic field B 0 ranges from 0 to ±B a , with the signs rule defined by the sign of the slope ΔB 0y (t). In addition, for the practical implementation of SC DC wires sharing the right of way with AC lines, we report that for relatively low values of magnetic field, {B}a≤slant {B}P/2, being B P the analytical value for the full penetration field in absence of transport current, I tr, the use of semi-analytical approaches for the calculation of AC losses leads to a significant underestimation of the actual contribution of the induction losses. This phenomena is particularly relevant at dimensionless fields {b}a< 1-{i}a2/3, being b a = B a /B P and, i a = I a /I c the amplitude of an AC or DC transport current, due to the local motion of flux front profiles being dominated by the occurrence of transport current. On the other hand, we have found that regardless of the nature of the transport current, either be DC or AC, when a transverse oscillating magnetic field greater than the classical limit b a = (1 - i a ) is applied to the SC wire, the difference between the obtained AC losses in both situations results to be negligible indistinctly of the approach used, semi-analytical or numerical. Thus, the actual limits from which the estimation of the AC losses can be used as an asset for the deployment of DC SC wires

  2. Nonstationary behavior of a high-spin molecule in a bifrequency alternating current magnetic field

    NASA Astrophysics Data System (ADS)

    Tokman, I. D.; Vugalter, G. A.

    2002-07-01

    An interaction of a high-spin molecule with a bifrequency ac magnetic field, occurring at times much shorter than the molecule relaxation times, has been considered. The molecule is subjected to a dc magnetic field perpendicular to the easy anisotropy axis of the molecule. The bifrequency ac field is a superposition of two ac fields, one of which is perpendicular to the easy anisotropy axis and causes resonant transitions between the lower states of the fundamental and first excited doublets. The other ac field is parallel to the easy anisotropy axis and has a frequency much smaller than the frequency of the first ac field. It has been shown that, first, the molecule can absorb or emit energy, depending on the frequency of the low-frequency ac field, second, the bifrequency ac magnetic field induces tunneling of the molecule magnetization with the Rabi frequency. The conditions of observation of the effects predicted are discussed.

  3. Radio frequency self-resonant coil for contactless AC-conductivity in 100 T class ultra-strong pulse magnetic fields

    NASA Astrophysics Data System (ADS)

    Nakamura, D.; Altarawneh, M. M.; Takeyama, S.

    2018-03-01

    A contactless measurement system of electrical conductivity was developed for application under pulsed high magnetic fields over 100 T by using a self-resonant-type, high-frequency circuit. Electromagnetic fields in the circuit were numerically analysed by the finite element method, to show how the resonant power spectra of the circuit depends on the electrical conductivity of a sample set on the probe-coil. The performance was examined using a high-temperature cuprate superconductor, La2-x Sr x CuO4, in magnetic fields up to 102 T with a high frequency of close to 800 MHz. As a result, the upper critical field could be determined with a good signal-to-noise ratio.

  4. Faradaic AC Electrokinetic Flow and Particle Traps

    NASA Astrophysics Data System (ADS)

    Ben, Yuxing; Chang, Hsueh-Chia

    2004-11-01

    Faradaic reaction at higher voltages can produce co-ion polarization at AC electrodes instead of counter-ion polarization due to capacitive charging from the bulk. The Faradaic co-ion polarization also does not screen the external field and hence can produce large net electro-kinetic flows at frequencies lower than the inverse RC time of the double layer. Due to the opposite polarization of capacitve and Faradaic charging, we can reverse the direction of AC flows on electrodes by changing the voltage and frequency. Particles and bacteria are trapped and then dispersed at stagnation lines, at locations predicted by our theory, by using these two flows sequentially. This technique offers a good way to concentrate and detect bacteria.

  5. Rapid magnetic microfluidic mixer utilizing AC electromagnetic field.

    PubMed

    Wen, Chih-Yung; Yeh, Cheng-Peng; Tsai, Chien-Hsiung; Fu, Lung-Ming

    2009-12-01

    This paper presents a novel simple micromixer based on stable water suspensions of magnetic nanoparticles (i.e. ferrofluids). The micromixer chip is built using standard microfabrication and simple soft lithography, and the design can be incorporated as a subsystem into any chemical microreactor or a miniaturized biological sensor. An electromagnet driven by an AC power source is used to induce transient interactive flows between a ferrofluid and Rhodamine B. The alternative magnetic field causes the ferrofluid to expand significantly and uniformly toward Rhodamine B, associated with a great number of extremely fine fingering structures on the interface in the upstream and downstream regions of the microchannel. These pronounced fingering patterns, which have not been observed by other active mixing methods utilizing only magnetic force, increase the mixing interfacial length dramatically. Along with the dominant diffusion effects occurring around the circumferential regions of the fine finger structures, the mixing efficiency increases significantly. The miscible fingering instabilities are observed and applied in the microfluidics for the first time. This work is carried with a view to developing functionalized ferrofluids that can be used as sensitive pathogen detectors and the present experimental results demonstrate that the proposed micromixer has excellent mixing capabilities. The mixing efficiency can be as high as 95% within 2.0 s and a distance of 3.0 mm from the inlet of the mixing channel, when the applied peak magnetic field is higher than 29.2 Oe and frequency ranges from 45 to 300 Hz.

  6. High-frequency ac power distribution in Space Station

    NASA Technical Reports Server (NTRS)

    Tsai, Fu-Sheng; Lee, Fred C. Y.

    1990-01-01

    A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.

  7. Electromechanical systems with transient high power response operating from a resonant ac link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant ac link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control all four operating quadrants. Incorporating the ac link allows the converter in these systems to switch at the zero crossing of every half cycle of the ac waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed under contract to NASA.

  8. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Alan, Irfan

    1991-01-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  9. Atomistic interpretation of the ac-dc crossover frequency in crystalline and glassy ionic conductors

    NASA Astrophysics Data System (ADS)

    Marple, M. A. T.; Avila-Paredes, H.; Kim, S.; Sen, S.

    2018-05-01

    A comprehensive analysis of the ionic dynamics in a wide variety of crystalline and glassy ionic conductors, obtained in recent studies using a combination of electrochemical impedance and nuclear magnetic resonance spectroscopic techniques, is presented. These results demonstrate that the crossover frequency, between the frequency-independent dc conductivity and the frequency-dependent ac conductivity, corresponds to the time scale of "successful" diffusive hops of the mobile ions between the trapping sites in the structure. These inter-site hops are typically compound in nature and consist of several elementary hops in the intervening region between the neighboring trapping sites.

  10. Atomistic interpretation of the ac-dc crossover frequency in crystalline and glassy ionic conductors.

    PubMed

    Marple, M A T; Avila-Paredes, H; Kim, S; Sen, S

    2018-05-28

    A comprehensive analysis of the ionic dynamics in a wide variety of crystalline and glassy ionic conductors, obtained in recent studies using a combination of electrochemical impedance and nuclear magnetic resonance spectroscopic techniques, is presented. These results demonstrate that the crossover frequency, between the frequency-independent dc conductivity and the frequency-dependent ac conductivity, corresponds to the time scale of "successful" diffusive hops of the mobile ions between the trapping sites in the structure. These inter-site hops are typically compound in nature and consist of several elementary hops in the intervening region between the neighboring trapping sites.

  11. AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.

    2012-06-01

    AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.

  12. A Lorentz model for weak magnetic field bioeffects: part I--thermal noise is an essential component of AC/DC effects on bound ion trajectory.

    PubMed

    Muehsam, David J; Pilla, Arthur A

    2009-09-01

    We have previously employed the Lorentz-Langevin model to describe the effects of weak exogenous magnetic fields via the classical Lorentz force on a charged ion bound in a harmonic oscillator potential, in the presence of thermal noise forces. Previous analyses predicted that microT-range fields give rise to a rotation of the oscillator orientation at the Larmor frequency and bioeffects were based upon the assumption that the classical trajectory of the bound charge itself could modulate a biochemical process. Here, it is shown that the thermal component of the motion follows the Larmor trajectory. The results show that the Larmor frequency is independent of the thermal noise strength, and the motion retains the form of a coherent oscillator throughout the binding lifetime, rather than devolving into a random walk. Thermal equilibration results in a continual increase in the vibrational amplitude of the rotating oscillator towards the steady-state amplitude, but does not affect the Larmor orbit. Thus, thermal noise contributes to, rather than inhibits, the effect of the magnetic field upon reactivity. Expressions are derived for the ensemble average of position and the velocity of the thermal component of the oscillator motion. The projection of position and velocity onto a Cartesian axis measures the nonuniformity of the Larmor trajectory and is illustrated for AC and combined AC/DC magnetic fields, suggesting a means of interpreting resonance phenomena. It is noted that the specific location and height of resonances are dependent upon binding lifetime and initial AC phase.

  13. AC magnetic-field response of the ferromagnetic superconductor UGe2 with different magnetized states

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Yamaguchi, Akira; Kawasaki, Ikuto; Sumiyama, Akihiko; Motoyama, Gaku; Yamamura, Tomoo

    2018-01-01

    We have performed parallel measurements of dc-magnetization and ac-magnetic susceptibility for a ferromagnetic superconductor, UGe2, in the ferromagnetic-superconducting phase. dc-magnetization measurements revealed that adequate demagnetizing of the sample allows for the preparation of various magnetized states with different zero-field residual magnetization. We observed that these states exhibit varying ac superconducting response at large ac-field amplitudes. The amount of ac flux penetration is less in the demagnetized state involving many domain walls. This result seems to contradict the theory that considers the domain walls as weak links. Moreover, the ferromagnetic domain walls enforce the shielding capability of superconductivity. This observation sheds light on the role of the domain walls on superconductivity, which has been a controversial issue for several decades. Two possible scenarios are presented to explain the enhancement of the shielding capability by the domain walls.

  14. Non-linear transfer characteristics of stimulation and recording hardware account for spurious low-frequency artifacts during amplitude modulated transcranial alternating current stimulation (AM-tACS).

    PubMed

    Kasten, Florian H; Negahbani, Ehsan; Fröhlich, Flavio; Herrmann, Christoph S

    2018-05-31

    Amplitude modulated transcranial alternating current stimulation (AM-tACS) has been recently proposed as a possible solution to overcome the pronounced stimulation artifact encountered when recording brain activity during tACS. In theory, AM-tACS does not entail power at its modulating frequency, thus avoiding the problem of spectral overlap between brain signal of interest and stimulation artifact. However, the current study demonstrates how weak non-linear transfer characteristics inherent to stimulation and recording hardware can reintroduce spurious artifacts at the modulation frequency. The input-output transfer functions (TFs) of different stimulation setups were measured. Setups included recordings of signal-generator and stimulator outputs and M/EEG phantom measurements. 6 th -degree polynomial regression models were fitted to model the input-output TFs of each setup. The resulting TF models were applied to digitally generated AM-tACS signals to predict the frequency of spurious artifacts in the spectrum. All four setups measured for the study exhibited low-frequency artifacts at the modulation frequency and its harmonics when recording AM-tACS. Fitted TF models showed non-linear contributions significantly different from zero (all p < .05) and successfully predicted the frequency of artifacts observed in AM-signal recordings. Results suggest that even weak non-linearities of stimulation and recording hardware can lead to spurious artifacts at the modulation frequency and its harmonics. These artifacts were substantially larger than alpha-oscillations of a human subject in the MEG. Findings emphasize the need for more linear stimulation devices for AM-tACS and careful analysis procedures, taking into account low-frequency artifacts to avoid confusion with effects of AM-tACS on the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. AC electroosmosis in microchannels packed with a porous medium

    NASA Astrophysics Data System (ADS)

    Kang, Yuejun; Yang, Chun; Huang, Xiaoyang

    2004-08-01

    This paper presents a theoretical study on ac-driven electroosmotic flow in both open-end and closed-end microchannels packed with uniform charged spherical microparticles. The time-periodic oscillating electroosmotic flow in an open-end capillary in response to the application of an alternating (ac) electric field is obtained using the Green function approach. The analysis is based on the Carman-Kozeny theory. The backpressure associated with the counter-flow in a closed-end capillary is obtained by analytically solving the modified Brinkman momentum equation. It is demonstrated that in a microchannel with its two ends connected to reservoirs and subject to ambient pressure, the oscillating Darcy velocity profile depends on both the pore size and the excitation frequency; such effects are coupled through an important aspect ratio of the tubule radius to the Stokes penetration depth. For a fixed pore size, the magnitude of the ac electroosmotic flow decreases with increasing frequency. With increasing pore size, however, the magnitude of the maximum velocity shows two different trends with respect to the excitation frequency: it gets higher in the low frequency domain, and gets lower in the high frequency domain. In a microchannel with closed ends, for a fixed excitation frequency, use of smaller packing particles can generate higher backpressure. For a fixed pore size, the backpressure magnitude shows two different trends changing with the excitation frequency. When the excitation frequency is lower than the system characteristic frequency, the backpressure decreases with increasing excitation frequency. When the excitation frequency is higher than the system characteristic frequency, the backpressure increases with increasing excitation frequency.

  16. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    NASA Astrophysics Data System (ADS)

    Frank, A.; Heller, R.; Goldacker, W.; Kling, A.; Schmidt, C.

    2008-02-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability.

  17. Spin ensemble-based AC magnetometry using concatenated dynamical decoupling at low temperatures

    NASA Astrophysics Data System (ADS)

    Farfurnik, D.; Jarmola, A.; Budker, D.; Bar-Gill, N.

    2018-01-01

    Ensembles of nitrogen-vacancy centers in diamond are widely used as AC magnetometers. While such measurements are usually performed using standard (XY) dynamical decoupling (DD) protocols at room temperature, we study the sensitivities achieved by utilizing various DD protocols, for measuring magnetic AC fields at frequencies in the 10-250 kHz range, at room temperature and 77 K. By performing measurements on an isotopically pure 12C sample, we find that the Carr-Purcell-Meiboom-Gill protocol, which is not robust against pulse imperfections, is less efficient for magnetometry than robust XY-based sequences. The concatenation of a standard XY-based protocol may enhance the sensitivities only for measuring high-frequency fields, for which many (> 500) DD pulses are necessary and the robustness against pulse imperfections is critical. Moreover, we show that cooling is effective only for measuring low-frequency fields (˜10 kHz), for which the experiment time approaches T 1 at a small number of applied DD pulses.

  18. AC electrothermal technique in microchannels

    NASA Astrophysics Data System (ADS)

    Salari, Alinaghi; Navi, Maryam; Dalton, Colin

    2017-02-01

    Electrokinetic techniques have a wide range of applications in droplet, particle, and fluid manipulation systems. In general, they can be categorized into different subgroups including electroosmosis, electrothermal, electrophoresis, dielectrophoresis, etc. The AC electrothermal (ACET) technique has been shown to be very effective in applications which involve high conductivity fluids, such as blood, which are typically used in biomedical applications. In the past few years, the ACET effect has received considerable attention. Unlike AC electroosmosis (ACEO), the ACET effect shows plateaus in force in a wide frequency range. In other words, with electrothermal force, velocity is more steady and predictable at different frequencies, compared to ACEO and dielectrophoresis (DEP). Although electrothermal microflows form as a result of Joule heating in the fluid, due to high conduction of heat to the ambience, the temperature rise in the fluid is not so high as to threaten the nature of the biofluids. The average temperature rise resulting from the ACET effect is below 5 °K. In order to generate high strength AC electric fields, microfabricated electrode arrays are commonly used in microchannels. For pumping applications, it is essential to create asymmetry in the electric field, typically by having asymmetrical electrode pairs. There is no defined border between many electrokinetic techniques, and as such the point where electrothermal processes interferes with other electrokinetic techniques is not clear in the literature. In addition, there have been comprehensive reviews on micropumps, electrokinetics, and their subcategories, but the literature lacks a detailed up-to-date review on electrothermal microdevices. In this paper, a brief review is made specifically on electric fields in ACET devices, in order to provide an insight for the reader about the importance of this aspect of ACET devices and the improvements made to date.

  19. Cry1Ac production is costly for native plants attacked by non-Cry1Ac-targeted herbivores in the field.

    PubMed

    McGale, Erica; Diezel, Celia; Schuman, Meredith C; Baldwin, Ian T

    2018-05-13

    Plants are the primary producers in most terrestrial ecosystems and have complex defense systems to protect their produce. Defense-deficient, high-yielding agricultural monocultures attract abundant nonhuman consumers, but are alternatively defended through pesticide application and genetic engineering to produce insecticidal proteins such as Cry1Ac (Bacillus thuringiensis). These approaches alter the balance between yield protection and maximization but have been poorly contextualized to known yield-defense trade-offs in wild plants. The native plant Nicotiana attenuata was used to compare yield benefits of plants transformed to be defenseless to those with a full suite of naturally evolved defenses, or additionally transformed to ectopically produce Cry1Ac. An insecticide treatment allowed us to examine yield under different herbivore loads in N. attenuata's native habitat. Cry1Ac, herbivore damage, and growth parameters were monitored throughout the season. Biomass and reproductive correlates were measured at season end. Non-Cry1Ac-targeted herbivores dominated on noninsecticide-treated plants, and increased the yield drag of Cry1Ac-producing plants in comparison with endogenously defended or undefended plants. Insecticide-sprayed Cry1Ac-producing plants lagged less in stalk height, shoot biomass, and flower production. In direct comparison with the endogenous defenses of a native plant, Cry1Ac production did not provide yield benefits for plants under observed herbivore loads in a field study. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  20. Correlation between audible noise and corona current generated by AC corona discharge in time and frequency domains

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Wang, Jing; Li, Yinfei; Zhang, Qian; Lu, Tiebing; Cui, Xiang

    2018-06-01

    Corona-generated audible noise is induced by the collisions between space charges and air molecules. It has been proven that there is a close correlation between audible noise and corona current from DC corona discharge. Analysis on the correlation between audible noise and corona current can promote the cognition of the generation mechanism of corona discharge. In this paper, time-domain waveforms of AC corona-generated audible noise and corona current are measured simultaneously. The one-to-one relationship between sound pressure pulses and corona current pulses can be found and is used to remove the interferences from background noise. After the interferences are removed, the linear correlated relationships between sound pressure pulse amplitude and corona current pulse amplitude are obtained through statistical analysis. Besides, frequency components at the harmonics of power frequency (50 Hz) can be found both in the frequency spectrums of audible noise and corona current through frequency analysis. Furthermore, the self-correlation relationships between harmonic components below 400 Hz with the 50 Hz component are analyzed for audible noise and corona current and corresponding empirical formulas are proposed to calculate the harmonic components based on the 50 Hz component. Finally, based on the AC corona discharge process and generation mechanism of audible noise and corona current, the correlation between audible noise and corona current in time domain and frequency domain are interpreted qualitatively. Besides, with the aid of analytical expressions of periodic square waves, sound pressure pulses, and corona current pulses, the modulation effects from the AC voltage on the pulse trains are used to interpret the generation of the harmonic components of audible noise and corona current.

  1. Determination of rock properties by low-frequency AC electrokinetics

    NASA Astrophysics Data System (ADS)

    Pengra, David B.; Xi Li, Sidney; Wong, Po-Zen

    1999-12-01

    In brine-saturated rock the existence of a mobile space charge at the fluid/solid interface leads to the electrokinetic phenomena of electroosmotic pressure and streaming potential. The coupling coefficients of these electrokinetic effects, when combined with the conductivity of the brine-saturated rock, determine the brine permeability of rock exactly. A sensitive low-frequency AC technique has been used to measure electrokinetic response of a collection of eight rock and four glass bead samples saturated with NaCl brine as a function of salt concentration (fluid conductivity of 0.5 to 6.38 S/m); the response of four of the original 12 samples has also been measured as a function of temperature from 0° to 50°C. All data verify the predicted permeability relationship. Additionally, the frequency response of the electroosmotic pressure signal alone can also be used to determine the permeability, given knowledge of experimental parameters. The concentration and temperature dependence of electroosmosis and streaming potential is found to mostly conform to the predictions of a simple model based on the Helmholtz-Smoluchowski equation, the Stern model of the electrochemical double layer, and an elementary theory of ionic conduction.

  2. Acquisition of Cry1Ac Protein by Non-Target Arthropods in Bt Soybean Fields

    PubMed Central

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean. PMID:25110881

  3. Ion trajectory simulations of axial ac dipolar excitation in the Orbitrap

    NASA Astrophysics Data System (ADS)

    Wu, Guangxiang; Noll, Robert J.; Plass, Wolfgang R.; Hu, Qizhi; Perry, Richard H.; Cooks, R. Graham

    2006-07-01

    The newly developed version of the multi-particle ion trajectory simulation program, ITSIM 6.0, was applied to simulate ac dipolar excitation of ion axial motion in the Orbitrap. The Orbitrap inner and outer electrodes were generated in AutoCAD, a 3D drawing program. The electrode geometry was imported into the 3D field solver COMSOL; the field array was then imported into ITSIM 6.0. Ion trajectories were calculated by solving Newton's equations using Runge-Kutta integration methods. Compared to the analytical solution, calculated radial components of the field at the device's "equator" (z = 0) were within 0.5% and calculated axial components midway between the inner and outer electrodes were within 0.2%. The experiments simulated here involved the control of axial motion of ions in the Orbitrap by the application of dipolar ac signals to the split outer electrodes, as described in a recently published paper from this laboratory [Hu et al., J. Phys. Chem. A 110 (2006) 2682]. In these experiments, ac signal was applied at the axial resonant frequency of a selected ion. Axial excitation and eventual ion ejection resulted when the ac was in phase with, i.e., had 0° phase relative to ion axial motion. De-excitation of ion axial motion until the ions were at z = 0 and at rest with respect to the z-axis resulted if the applied ac was out of phase with ion motion, with re-excitation of ion axial motion occurring if the dipolar ac was continued beyond this point. Both de-excitation and re-excitation could be achieved mass-selectively and depended on the amplitude and duration (number of cycles) of the applied ac. The effects of ac amplitude, frequency, phase relative to ion motion, and bandwidth of applied waveform were simulated. All simulation results were compared directly with the experimental data and good agreement was observed. Such ion motion control experiments and their simulation provide the possibility to improve Orbitrap performance and to develop tandem mass

  4. New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields

    NASA Astrophysics Data System (ADS)

    Abdo, Youssef; Rohani, Vandad; Cauneau, François; Fulcheri, Laurent

    2017-02-01

    Interactions between an arc and external fields are crucially important for the design and the optimization of modern plasma torches. Multiple studies have been conducted to help better understand the behavior of DC and AC current arcs exposed to external and ‘self-induced’ magnetic fields, but the theoretical foundations remain very poorly explored. An analytical investigation has therefore been carried out in order to study the general behavior of DC and AC arcs under the effect of random cross-fields. A simple differential equation describing the general behavior of a planar DC or AC arc has been obtained. Several dimensionless numbers that depend primarily on arc and field parameters and the main arc characteristics (temperature, electric field strength) have also been determined. Their magnitude indicates the general tendency pattern of the arc evolution. The analytical results for many case studies have been validated using an MHD numerical model. The main purpose of this investigation was deriving a practical analytical model for the electric arc, rendering possible its stabilization and control, and the enhancement of the plasma torch power.

  5. Transient electroosmotic flow induced by AC electric field in micro-channel with patchwise surface heterogeneities.

    PubMed

    Luo, Win-Jet

    2006-03-15

    This paper investigates two-dimensional, time-dependent electroosmotic flow driven by an AC electric field via patchwise surface heterogeneities distributed along the micro-channel walls. The time-dependent flow fields through the micro-channel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. The transient behavior characteristics of the generated electroosmotic flow are then discussed in terms of the influence of the patchwise surface heterogeneities, the direction of the applied AC electric field, and the velocity of the bulk flow. It is shown that the presence of oppositely charged surface heterogeneities on the micro-channel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in phase with the applied periodic AC electric field intensity. The location and rotational direction of the induced circulations are determined by the directions of the bulk flow velocity and the applied electric field.

  6. The frequency-difference and frequency-sum acoustic-field autoproducts.

    PubMed

    Worthmann, Brian M; Dowling, David R

    2017-06-01

    The frequency-difference and frequency-sum autoproducts are quadratic products of solutions of the Helmholtz equation at two different frequencies (ω + and ω - ), and may be constructed from the Fourier transform of any time-domain acoustic field. Interestingly, the autoproducts may carry wave-field information at the difference (ω + - ω - ) and sum (ω + + ω - ) frequencies even though these frequencies may not be present in the original acoustic field. This paper provides analytical and simulation results that justify and illustrate this possibility, and indicate its limitations. The analysis is based on the inhomogeneous Helmholtz equation and its solutions while the simulations are for a point source in a homogeneous half-space bounded by a perfectly reflecting surface. The analysis suggests that the autoproducts have a spatial phase structure similar to that of a true acoustic field at the difference and sum frequencies if the in-band acoustic field is a plane or spherical wave. For multi-ray-path environments, this phase structure similarity persists in portions of the autoproduct fields that are not suppressed by bandwidth averaging. Discrepancies between the bandwidth-averaged autoproducts and true out-of-band acoustic fields (with potentially modified boundary conditions) scale inversely with the product of the bandwidth and ray-path arrival time differences.

  7. An electrohydrodynamic flow in ac electrowetting.

    PubMed

    Lee, Horim; Yun, Sungchan; Ko, Sung Hee; Kang, Kwan Hyoung

    2009-12-17

    In ac electrowetting, hydrodynamic flows occur within a droplet. Two distinct flow patterns were observed, depending on the frequency of the applied electrical signal. The flow at low-frequency range was explained in terms of shape oscillation and a steady streaming process in conjunction with contact line oscillation. The origin of the flow at high-frequency range has not yet been explained. We suggest that the high-frequency flow originated mainly from the electrothermal effect, in which electrical charge is generated due to the gradient of electrical conductivity and permittivity, which is induced by the Joule heating of fluid medium. To support our argument, we analyzed the flow field numerically while considering the electrical body force generated by the electrothermal effect. We visualized the flow pattern and measured the flow velocity inside the droplet. The numerical results show qualitative agreement with experimental results with respect to electric field and frequency dependence of flow velocity. The effects of induced-charge electro-osmosis, natural convection, and the Marangoni flow are discussed.

  8. AC Resonant charger with charge rate unrelated to primary power frequency

    DOEpatents

    Watson, Harold

    1982-01-01

    An AC resonant charger for a capacitive load, such as a PFN, is provided with a variable repetition rate unrelated to the frequency of a multi-phase AC power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.

  9. Electromechanical systems with transient high power response operating from a resonant AC link

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Hansen, Irving G.

    1992-01-01

    The combination of an inherently robust asynchronous (induction) electrical machine with the rapid control of energy provided by a high frequency resonant AC link enables the efficient management of higher power levels with greater versatility. This could have a variety of applications from launch vehicles to all-electric automobiles. These types of systems utilize a machine which is operated by independent control of both the voltage and frequency. This is made possible by using an indirect field-oriented control method which allows instantaneous torque control in all four operating quadrants. Incorporating the AC link allows the converter in these systems to switch at the zero crossing of every half cycle of the AC waveform. This zero loss switching of the link allows rapid energy variations to be achieved without the usual frequency proportional switching loss. Several field-oriented control systems were developed by LeRC and General Dynamics Space Systems Division under contract to NASA. A description of a single motor, electromechanical actuation system is presented. Then, focus is on a conceptual design for an AC electric vehicle. This design incorporates an induction motor/generator together with a flywheel for peak energy storage. System operation and implications along with the associated circuitry are addressed. Such a system would greatly improve all-electric vehicle ranges over the Federal Urban Driving Cycle (FUD).

  10. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body

    PubMed Central

    Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo

    2016-01-01

    Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body—because human tissues exhibit some conductivity at these frequencies—resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard. PMID:27918416

  11. Direct simulation of phase delay effects on induced-charge electro-osmosis under large ac electric fields

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2016-08-01

    The standard theory of induced-charge electro-osmosis (ICEO) often overpredicts experimental values of ICEO velocities. Using a nonsteady direct multiphysics simulation technique based on the coupled Poisson-Nernst-Planck and Stokes equations for an electrolyte around a conductive cylinder subject to an ac electric field, we find that a phase delay effect concerning an ion response provides a fundamental mechanism for electrokinetic suppression. A surprising aspect of our findings is that the phase delay effect occurs even at much lower frequencies (e.g., 50 Hz) than the generally believed charging frequency of an electric double layer (typically, 1 kHz) and it can decrease the electrokinetic velocities in one to several orders. In addition, we find that the phase delay effect may also cause a change in the electrokinetic flow directions (i.e., flow reversal) depending on the geometrical conditions. We believe that our findings move toward a more complete understanding of complex experimental nonlinear electrokinetic phenomena.

  12. AC Josephson effect without superconductivity, and other effects of radio frequency quantum nanoelectronics

    NASA Astrophysics Data System (ADS)

    Waintal, Xavier; Gaury, Benoit; Weston, Joseph

    With single coherent electron sources and electronic interferometers now available in the lab, the time resolved dynamics of electrons can now be probed directly. I will discuss how a fast raise of voltage propagates inside an electronic interferometer and leads to an oscillating current of well controled frequency. This phenomena is the normal counterpart to the AC josephson effect. I will also briefly advertize our software for computing quantum transport properties, Kwant (http://kwant-project.org) and its time-dependent extension T-Kwant.

  13. Obtaining continuous BrAC/BAC estimates in the field: A hybrid system integrating transdermal alcohol biosensor, Intellidrink smartphone app, and BrAC Estimator software tools.

    PubMed

    Luczak, Susan E; Hawkins, Ashley L; Dai, Zheng; Wichmann, Raphael; Wang, Chunming; Rosen, I Gary

    2018-08-01

    Biosensors have been developed to measure transdermal alcohol concentration (TAC), but converting TAC into interpretable indices of blood/breath alcohol concentration (BAC/BrAC) is difficult because of variations that occur in TAC across individuals, drinking episodes, and devices. We have developed mathematical models and the BrAC Estimator software for calibrating and inverting TAC into quantifiable BrAC estimates (eBrAC). The calibration protocol to determine the individualized parameters for a specific individual wearing a specific device requires a drinking session in which BrAC and TAC measurements are obtained simultaneously. This calibration protocol was originally conducted in the laboratory with breath analyzers used to produce the BrAC data. Here we develop and test an alternative calibration protocol using drinking diary data collected in the field with the smartphone app Intellidrink to produce the BrAC calibration data. We compared BrAC Estimator software results for 11 drinking episodes collected by an expert user when using Intellidrink versus breath analyzer measurements as BrAC calibration data. Inversion phase results indicated the Intellidrink calibration protocol produced similar eBrAC curves and captured peak eBrAC to within 0.0003%, time of peak eBrAC to within 18min, and area under the eBrAC curve to within 0.025% alcohol-hours as the breath analyzer calibration protocol. This study provides evidence that drinking diary data can be used in place of breath analyzer data in the BrAC Estimator software calibration procedure, which can reduce participant and researcher burden and expand the potential software user pool beyond researchers studying participants who can drink in the laboratory. Copyright © 2017. Published by Elsevier Ltd.

  14. I-BIEM calculations of the frequency dispersion and ac current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  15. I-BIEM calculations of the frequency dispersion and AC current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  16. AC application of second generation HTS wire

    NASA Astrophysics Data System (ADS)

    Thieme, C. L. H.; Gagnon, K.; Voccio, J.; Aized, D.; Claassen, J.

    2008-02-01

    For the production of Second Generation (2G) YBCO High Temperature Superconductor wire American Superconductor uses a wide-strip MOD-YBCO/RABiTSTM process, a low-cost approach for commercial manufacturing. It can be engineered with a high degree of flexibility to manufacture practical 2G conductors with architectures and properties tailored for specific applications and operating conditions. For ac applications conductor and coil design can be geared towards low hysteretic losses. For applications which experience high frequency ac fields, the stabilizer needs to be adjusted for low eddy current losses. For these applications a stainless-steel laminate is used. An example is a Low Pass Filter Inductor which was developed and built in this work.

  17. A new on-chip all-digital three-phase full-bridge dc/ac power inverter with feedforward and frequency control techniques.

    PubMed

    Chen, Jiann-Jong; Kung, Che-Min

    2010-09-01

    The communication speed between components is far from satisfactory. To achieve high speed, simple control system configuration, and low cost, a new on-chip all-digital three-phase dc/ac power inverter using feedforward and frequency control techniques is proposed. The controller of the proposed power inverter, called the shift register, consists of six-stage D-latch flip-flops with a goal of achieving low-power consumption and area efficiency. Variable frequency is achieved by controlling the clocks of the shift register. One advantage regarding the data signal (D) and the common clock (CK) is that, regardless of the phase difference between the two, all of the D-latch flip-flops are capable of delaying data by one CK period. To ensure stability, the frequency of CK must be six times higher than that of D. The operation frequency of the proposed power inverter ranges from 10 Hz to 2 MHz, and the maximum output loading current is 0.8 A. The prototype of the proposed circuit has been fabricated with TSMC 0.35 μm 2P4M CMOS processes. The total chip area is 2.333 x 1.698 mm2. The three-phase dc/ac power inverter is applicable in uninterrupted power supplies, cold cathode fluorescent lamps, and motors, because of its ability to convert the dc supply voltage into the three-phase ac power sources.

  18. Weak extremely-low-frequency magnetic fields and regeneration in the planarian Dugesia tigrina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenrow, K.A.; Smith, C.H.; Liboff, A.R.

    1995-06-01

    Extremely-low-frequency (ELF), low-intensity magnetic fields have been shown to influence cell signaling processes in a variety of systems, both in vivo and in vitro. Similar effects have been demonstrated for nervous system development and neurite outgrowth. The authors report that regeneration in planaria, which incorporates many of these processes, is also affected by ELF magnetic fields. The rate of cephalic regeneration, reflected by the mean regeneration time (MRT), for planaria populations regenerating under continuous exposure to combined DC (78.4 {mu}T) and AC (60.0 Hz at 10.0 {mu}T{sub peak}) magnetic fields applied in parallel was found to be significantly delayed (Pmore » {much_lt} 0.001) by 48 {+-} 1 h relative to two different types of control populations (MRT {minus}140 {+-} 12 h). One control population was exposed to only the AC component of this field combination, while the other experienced only the ambient geomagnetic field. All measurements were conducted in a low-gradient, low-noise magnetics laboratory under well-maintained temperature conditions. This delay in regeneration was shown to be dependent on the planaria having a fixed orientation with respect to the magnetic field vectors. Results also indicate that this orientation-dependent transduction process does not result from Faraday induction but is consistent with a Ca{sup 2+} cyclotron resonance mechanism. Data interpretation also permits the tentative conclusion that the effect results from an inhibition of events at an early stage in the regeneration process before the onset of proliferation and differentiation.« less

  19. Electrokinetically driven microfluidic mixing with patchwise surface heterogeneity and AC applied electric field

    NASA Astrophysics Data System (ADS)

    Luo, Win-Jet; Yue, Cheng-Feng

    2004-12-01

    This paper investigates two-dimensional, time-dependent electroosmotic flows driven by an AC electric field via patchwise surface heterogeneities distributed along the microchannel walls. The time-dependent flow fields through the microchannel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. It is shown that the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in accordance with the applied periodic AC electric field intensity. The circulations provide an effective means of enhancing species mixing in the microchannel. A suitable design of the patchwise heterogeneous surface pattern permits the mixing channel length and the retention time required to attain a homogeneous solution to be reduced significantly.

  20. Re-visiting the Amplifier Gains of the HST/ACS Wide Field Channel CCDs

    NASA Astrophysics Data System (ADS)

    Desjardins, Tyler D.; Grogin, Norman A.; ACS Team

    2018-06-01

    For the first time since HST Servicing Mission 4 (SM4) in May 2009, we present an analysis of the amplifier gains of the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) CCDs. Using a series of in-flight flat-field exposures taken in November 2017 with a tungsten calibration lamp, we utilize the photon transfer method to estimate the gains of the WFC1 and WFC2 CCD amplifiers. We find evidence that the gains of the four readout amplifiers have changed by a small, but statistically significant, 1–2% since SM4. We further present a study of historical ACS/WFC observations of the globular cluster NGC 104 (47 Tuc) in an attempt to estimate the time dependence of the gains.

  1. Encouragement of Enzyme Reaction Utilizing Heat Generation from Ferromagnetic Particles Subjected to an AC Magnetic Field.

    PubMed

    Suzuki, Masashi; Aki, Atsushi; Mizuki, Toru; Maekawa, Toru; Usami, Ron; Morimoto, Hisao

    2015-01-01

    We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles.

  2. Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian, Dugesia tigrina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenrow, K.A.; Smith, C.H.; Liboff, A.R.

    1996-12-31

    The authors recently reported that cephalic regeneration in the planarian Dugesia tigrina was significantly delayed in populations exposed continuously to combined parallel DC and AC magnetic fields. This effect was consistent with hypotheses suggesting an underlying resonance phenomenon. The authors report here, in a parallel series of investigations on the same model system, that the incidence of regeneration anomalies presenting as tumor-like protuberances also increases significantly (P < .001) in association with exposure to weak 60 Hz magnetic fields, with peak intensities ranging between 1.0 and 80.0 {micro}T. These anomalies often culminate in the complete disaggregation of the organism. Similarmore » to regeneration rate effects, the incidence of regeneration anomalies is specifically dependent upon the planaria possessing a fixed orientation with respect to the applied magnetic field vectors. However, unlike the regeneration rate effects, the AC magnetic field alone, in the absence of any measurable DC field, is capable of producing these anomalies. Moreover, the incidence of regeneration anomalies follows a clear dose-response relationship as a function of AC magnetic field intensity, with the threshold for induced electric field intensity estimated at 5 {micro} V/m. The addition of either 51.1 or 78.4 {micro}T DC magnetic fields, applied in parallel combination with the AC field, enhances the appearance of anomalies relative to the 60 Hz AC field alone, but only at certain AC field intensities. Thus, whereas the previous study of regeneration rate effects appeared to involve exclusively resonance interactions, the regeneration anomalies reported here appear to result primarily from Faraday induction coupling.« less

  3. Electric-field control of a hydrogenic donor's spin in a semiconductor

    NASA Astrophysics Data System (ADS)

    de, Amrit; Pryor, Craig E.; Flatté, Michael E.

    2009-03-01

    The orbital wave function of an electron bound to a single donor in a semiconductor can be modulated by an applied AC electric field, which affects the electron spin dynamics via the spin-orbit interaction. Numerical calculations of the spin dynamics of a single hydrogenic donor (Si) using a real-space multi-band k.p formalism show that in addition to breaking the high symmetry of the hydrogenic donor state, the g-tensor has a strong nonlinear dependence on the applied fields. By explicitly integrating the time dependent Schr"odinger equation it is seen that Rabi oscillations can be obtained for electric fields modulated at sub-harmonics of the Larmor frequency. The Rabi frequencies obtained from sub-harmonic modulation depend on the magnitudes of the AC and DC components of the electric field. For a purely AC field, the highest Rabi frequency is obtained when E is driven at the 2nd sub-harmonic of the Larmor frequency. Apart from suggesting ways to measure g-tensor anisotropies and nonlinearities, these results also suggest the possibility of direct frequency domain measurements of Rabi frequencies.

  4. Encouragement of Enzyme Reaction Utilizing Heat Generation from Ferromagnetic Particles Subjected to an AC Magnetic Field

    PubMed Central

    Suzuki, Masashi; Aki, Atsushi; Mizuki, Toru; Maekawa, Toru; Usami, Ron; Morimoto, Hisao

    2015-01-01

    We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles. PMID:25993268

  5. AC magnetic field measurement using a small flip coil system for rapid cycling AC magnets at the China Spallation Neutron Source (CSNS)

    NASA Astrophysics Data System (ADS)

    Zhou, Jianxin; Kang, Wen; Li, Shuai; Liu, Yudong; Liu, Yiqin; Xu, Shouyan; Guo, Xiaoling; Wu, Xi; Deng, Changdong; Li, Li; Wu, Yuwen; Wang, Sheng

    2018-02-01

    The China Spallation Neutron Source (CSNS) has two major accelerator systems, a linear accelerator and a rapid cycling synchrotron (RCS). The RCS accelerator is used to accumulate and accelerate protons from the energy of 80 MeV to the design energy of 1.6 GeV at the repetition rate of 25 Hz, and extract the high energy beam to the target. The main magnets of the RCS accelerator are excited by AC current with DC bias. The magnetic field quality is very important for the RCS accelerator operation, since it should guarantee and focus a circulating beam. In order to characterize the AC magnets, a small flip coil measurement system has been developed and one of each type of AC magnets has been studied. The measurement system and selected measurement results are presented in this paper.

  6. In vitro cytotoxicity of Selol-loaded magnetic nanocapsules against neoplastic cell lines under AC magnetic field activation

    NASA Astrophysics Data System (ADS)

    Falqueiro, A. M.; Siqueira-Moura, M. P.; Jardim, D. R.; Primo, F. L.; Morais, P. C.; Mosiniewicz-Szablewska, E.; Suchocki, P.; Tedesco, A. C.

    2012-04-01

    The goals of this study are to evaluate invitro compatibility of magnetic nanomaterials and their therapeutic potential against cancer cells. Highly stable ionic magnetic fluid sample (maghemite, γ-Fe2O3) and Selol were incorporated into polymeric nanocapsules by nanoprecipitation method. The cytotoxic effect of Selol-loaded magnetic nanocapsules was assessed on murine melanoma (B16-F10) and oral squamous cell carcinoma (OSCC) cell lines following AC magnetic field application. The influence of different nanocapsules on cell viability was investigated by colorimetric MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the absence of AC magnetic field Selol-loaded magnetic nanocapsules, containing 100 µg/mL Selol plus 5 × 1012 particle/mL, showed antitumoral activity of about 50% on B16-F10 melanoma cells while OSCC carcinoma cells demonstrated drug resistance at all concentrations of Selol and magnetic fluid (range of 100-500 µg/mL Selol and 5 × 1012-2.5 × 1013 particle/mL). On the other hand, under AC applied fields (1 MHz and 40 Oe amplitude) B16-F10 cell viability was reduced down to 40.5% (±3.33) at the highest concentration of nanoencapsulated Selol. The major effect, however, was observed on OSCC cells since the cell viability drops down to about 33.3% (±0.38) under application of AC magnetic field. These findings clearly indicate that the Selol-loaded magnetic nanocapsules present different toxic effects on neoplastic cell lines. Further, the cytotoxic effect was maximized under AC magnetic field application on OSCC, which emphasizes the effectiveness of the magnetohyperthermia approach.

  7. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    NASA Astrophysics Data System (ADS)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean's critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  8. Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossan, Mohammad Robiul; Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK 73034-5209; Dillon, Robert

    2014-08-01

    Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of themore » hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices.« less

  9. Deformation analysis of vesicles in an alternating-current electric field.

    PubMed

    Tang, Yu-Gang; Liu, Ying; Feng, Xi-Qiao

    2014-08-01

    In this paper the shape equation for axisymmetric vesicles subjected to an ac electric field is derived on the basis of the liquid-crystal model. The equilibrium morphology of a lipid vesicle is determined by the minimization of its free energy in coupled mechanical and ac electric fields. Besides elastic bending, the effects of the osmotic pressure difference, surface tension, Maxwell pressure, and flexoelectric and dielectric properties of phospholipid membrane as well are taken into account. The influences of elastic bending, osmotic pressure difference, and surface tension on the frequency-dependent behavior of a vesicle membrane in an ac electric field are examined. The singularity of the ac electric field is also investigated. Our theoretical results of vesicle deformation agree well with previous experimental and numerical results. The present study provides insights into the physical mechanisms underpinning the frequency-dependent morphological evolution of vesicles in the electric and mechanical fields.

  10. Ac-loss measurement of a DyBCO-Roebel assembled coated conductor cable (RACC)

    NASA Astrophysics Data System (ADS)

    Schuller, S.; Goldacker, W.; Kling, A.; Krempasky, L.; Schmidt, C.

    2007-10-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature around 50-77 K, which is a crucial precondition for economical cooling costs. We prepared a short length of a Roebel bar cable made of industrial DyBCO coated conductor (Theva Company, Germany). Meander shaped tapes of 4 mm width with a twist pitch of 122 mm were cut from 10 mm wide CC tapes using a specially designed tool. Eleven of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac field were measured as a function of frequency and field amplitude in transverse and parallel field orientations. In addition, the coupling current time constant of the sample was directly measured.

  11. AC current rectification in Nb films with or without symmetrical Nb/Ni periodic pinning arrays in perpendicular magnetic field

    NASA Astrophysics Data System (ADS)

    Pryadun, Vladimir

    2005-03-01

    Rectification of AC current has been observed in plain superconducting Nb films and in Nb/Ni films with symmetric periodic pinning centers. The rectified DC voltage appears for various sample geometries (cross or strip) both along and transverse to the alternating current direction, is nearly anti-symmetric with perpendicular magnetic field and strongly dependent on temperature below Tc. Analyses of the data at different temperatures, drive frequencies from 100kHz to 150MHz and at the different sample sides [1] shows that not far below Tc the rectification phenomena can be understood in terms of generation of electric fields due to local excess of critical current. Further below Tc anisotropic pinning effects could also contribute to the rectification. [1] F.G.Aliev, et al., Cond. Mat.405656. Supported by Comunidad Autonoma de Madrid -CAM/07N/0050/2002

  12. AC Loss Analysis of MgB2-Based Fully Superconducting Machines

    NASA Astrophysics Data System (ADS)

    Feddersen, M.; Haran, K. S.; Berg, F.

    2017-12-01

    Superconducting electric machines have shown potential for significant increase in power density, making them attractive for size and weight sensitive applications such as offshore wind generation, marine propulsion, and hybrid-electric aircraft propulsion. Superconductors exhibit no loss under dc conditions, though ac current and field produce considerable losses due to hysteresis, eddy currents, and coupling mechanisms. For this reason, many present machines are designed to be partially superconducting, meaning that the dc field components are superconducting while the ac armature coils are conventional conductors. Fully superconducting designs can provide increases in power density with significantly higher armature current; however, a good estimate of ac losses is required to determine the feasibility under the machines intended operating conditions. This paper aims to characterize the expected losses in a fully superconducting machine targeted towards aircraft, based on an actively-shielded, partially superconducting machine from prior work. Various factors are examined such as magnet strength, operating frequency, and machine load to produce a model for the loss in the superconducting components of the machine. This model is then used to optimize the design of the machine for minimal ac loss while maximizing power density. Important observations from the study are discussed.

  13. Instantaneous velocity measurement of AC electroosmotic flows by laser induced fluorescence photobleaching anemometer with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Yang, Fang; Qiao, Rui; Wang, Guiren; Rui Qiao Collaboration

    2015-11-01

    Understanding the instantaneous response of flows to applied AC electric fields may help understand some unsolved issues in induced-charge electrokinetics and enhance performance of microfluidic devices. Since currently available velocimeters have difficulty in measuring velocity fluctuations with frequency higher than 1 kHz, most experimental studies so far focus only on the average velocity measurement in AC electrokinetic flows. Here, we present measurements of AC electroosmotic flow (AC-EOF) response time in microchannels by a novel velocimeter with submicrometer spatial resolution and microsecond temporal resolution, i.e. laser-induced fluorescence photobleaching anemometer (LIFPA). Several parameters affecting the AC-EOF response time to the applied electric signal were investigated, i.e. channel length, transverse position and solution conductivity. The experimental results show that the EOF response time under a pulsed electric field decreases with the reduction of the microchannel length, distance between the detection position to the wall and the conductivity of the solution. This work could provide a new powerful tool to measure AC electrokinetics and enhance our understanding of AC electrokinetic flows.

  14. Evaluation and characterization of fetal exposures to low frequency magnetic fields generated by laptop computers.

    PubMed

    Zoppetti, Nicola; Andreuccetti, Daniele; Bellieni, Carlo; Bogi, Andrea; Pinto, Iole

    2011-12-01

    Portable - or "laptop" - computers (LCs) are widely and increasingly used all over the world. Since LCs are often used in tight contact with the body even by pregnant women, fetal exposures to low frequency magnetic fields generated by these units can occur. LC emissions are usually characterized by complex waveforms and are often generated by the main AC power supply (when connected) and by the display power supply sub-system. In the present study, low frequency magnetic field emissions were measured for a set of five models of portable computers. For each of them, the magnetic flux density was characterized in terms not just of field amplitude, but also of the so called "weighted peak" (WP) index, introduced in the 2003 ICNIRP Statement on complex waveforms and confirmed in the 2010 ICNIRP Guidelines for low frequency fields. For the model of LC presenting the higher emission, a deeper analysis was also carried out, using numerical dosimetry techniques to calculate internal quantities (current density and in-situ electric field) with reference to a digital body model of a pregnant woman. Since internal quantities have complex waveforms too, the concept of WP index was extended to them, considering the ICNIRP basic restrictions defined in the 1998 Guidelines for the current density and in the 2010 Guidelines for the in-situ electric field. Induced quantities and WP indexes were computed using an appropriate original formulation of the well known Scalar Potential Finite Difference (SPFD) numerical method for electromagnetic dosimetry in quasi-static conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum).

    PubMed

    Bi, Ran; Schlaak, Michael; Siefert, Eike; Lord, Richard; Connolly, Helen

    2011-04-01

    The combined use of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. The plants species selected were rapeseed and tobacco. Three kinds of soil were used: un-contaminated soil from forest area (S1), artificially contaminated soil with 15mgkg(-1) Cd (S2) and multi-contaminated soil with Cd, Zn and Pb from an industrial area (S3). Three treatment conditions were applied to the plants growing in the experimental vessels: control (no electrical field), alternating current electrical field (AC, 1Vcm(-1)) and direct current electrical field (DC, 1Vcm(-1)) with switching polarity every 3h. The electrical fields were applied for 30d for rapeseed and 90d for tobacco, each experiment had three replicates. After a total of 90d growth for rapeseed and of 180d for tobacco, the plants were harvested. The pH variation from anode to cathode was eliminated by switching the polarity of the DC field. The plants reacted differently under the applied electrical field. Rapeseed biomass was enhanced under the AC field and no negative effect was found under DC field. However, no enhancement of the tobacco biomass under the AC treatment was found. The DC field had a negative influence on biomass production on tobacco plants. In general, Cd content was higher in both species growing in S2 treated with AC field compared to the control. Metal uptake (Cd, Cu, Zn and Pb) per rapeseed plant shoot was enhanced by the application of AC field in all soils. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Bead-on-string structure printed by electrohydrodynamic jet under alternating current electric field

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Lin, Yihuang; Jiang, Jiaxin; Liu, Haiyan; Zhao, Yang; Zheng, Gaofeng

    2016-09-01

    Electrohydrodynamic printing (EHDP) under alternating current (AC) electric field provides a novel way for the precise micro-/nano-droplet printing. The AC electric field induces the free charge to reciprocate along the EHDP jet and changes the electric field force on the jet periodically. The stability of jet can be enhanced by increasing the voltage frequency, and the regular bead-on-string structure is direct-written along the trajectory of collector. The deposition frequency of bead structure increases with the increasing of voltage frequency, due to the short period of AC electric field. As the voltage frequency is increased from 10 to 60 Hz, the diameter of bead structure decreases from 200 to 110 µm. As the duty ration increased from 10 to 60 %, the diameter of bead structure increased from 100 to 140 µm. This work would accelerate the development and the application of micro-/nano-printing technology in the fields of flexible electronic and micro-/nano-system.

  17. New Subarray Readout Patterns for the ACS Wide Field Channel

    NASA Astrophysics Data System (ADS)

    Golimowski, D.; Anderson, J.; Arslanian, S.; Chiaberge, M.; Grogin, N.; Lim, Pey Lian; Lupie, O.; McMaster, M.; Reinhart, M.; Schiffer, F.; Serrano, B.; Van Marshall, M.; Welty, A.

    2017-04-01

    At the start of Cycle 24, the original CCD-readout timing patterns used to generate ACS Wide Field Channel (WFC) subarray images were replaced with new patterns adapted from the four-quadrant readout pattern used to generate full-frame WFC images. The primary motivation for this replacement was a substantial reduction of observatory and staff resources needed to support WFC subarray bias calibration, which became a new and challenging obligation after the installation of the ACS CCD Electronics Box Replacement during Servicing Mission 4. The new readout patterns also improve the overall efficiency of observing with WFC subarrays and enable the processing of subarray images through stages of the ACS data calibration pipeline (calacs) that were previously restricted to full-frame WFC images. The new readout patterns replace the original 512×512, 1024×1024, and 2048×2046-pixel subarrays with subarrays having 2048 columns and 512, 1024, and 2048 rows, respectively. Whereas the original square subarrays were limited to certain WFC quadrants, the new rectangular subarrays are available in all four quadrants. The underlying bias structure of the new subarrays now conforms with those of the corresponding regions of the full-frame image, which allows raw frames in all image formats to be calibrated using one contemporaneous full-frame "superbias" reference image. The original subarrays remain available for scientific use, but calibration of these image formats is no longer supported by STScI.

  18. A dry-cooled AC quantum voltmeter

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Starkloff, M.; Peiselt, K.; Anders, S.; Knipper, R.; Lee, J.; Behr, R.; Palafox, L.; Böck, A. C.; Schaidhammer, L.; Fleischmann, P. M.; Meyer, H.-G.

    2016-10-01

    The paper describes a dry-cooled AC quantum voltmeter system operated up to kilohertz frequencies and 7 V rms. A 10 V programmable Josephson voltage standard (PJVS) array was installed on a pulse tube cooler (PTC) driven with a 4 kW air-cooled compressor. The operating margins at 70 GHz frequencies were investigated in detail and found to exceed 1 mA Shapiro step width. A key factor for the successful chip operation was the low on-chip power consumption of 65 mW in total. A thermal interface between PJVS chip and PTC cold stage was used to avoid a significant chip overheating. By installing the cryocooled PJVS array into an AC quantum voltmeter setup, several calibration measurements of dc standards and calibrator ac voltages up to 2 kHz frequencies were carried out to demonstrate the full functionality. The results are discussed and compared to systems with standard liquid helium cooling. For dc voltages, a direct comparison measurement between the dry-cooled AC quantum voltmeter and a liquid-helium based 10 V PJVS shows an agreement better than 1 part in 1010.

  19. Low frequency electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1989-01-01

    Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

  20. Field of Bachelor's Degree in the United States: 2009. American Community Survey Reports. ACS-18

    ERIC Educational Resources Information Center

    Siebens, Julie; Ryan, Camille L.

    2012-01-01

    This report provides information on fields of bachelor's degrees in the United States using data from the 2009 American Community Survey (ACS). It includes estimates of fields of bachelor's degree by demographic characteristics including age, sex, race, Hispanic origin, nativity, and educational attainment. This report also looks at geographic and…

  1. Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields

    PubMed Central

    Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio

    2014-01-01

    Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402

  2. Computer soundcard as an AC signal generator and oscilloscope for the physics laboratory

    NASA Astrophysics Data System (ADS)

    Sinlapanuntakul, Jinda; Kijamnajsuk, Puchong; Jetjamnong, Chanthawut; Chotikaprakhan, Sutharat

    2018-01-01

    The purpose of this paper is to develop both an AC signal generator and a dual-channel oscilloscope based on standard personal computer equipped with sound card as parts of the laboratory of the fundamental physics and the introduction to electronics classes. The setup turns the computer into the two channel measured device which can provides sample rate, simultaneous sampling, frequency range, filters and others essential capabilities required to perform amplitude, phase and frequency measurements of AC signal. The AC signal also generate from the same computer sound card output simultaneously in any waveform such as sine, square, triangle, saw-toothed pulsed, swept sine and white noise etc. These can convert an inexpensive PC sound card into powerful device, which allows the students to measure physical phenomena with their own PCs either at home or at university attendance. A graphic user interface software was developed for control and analysis, including facilities for data recording, signal processing and real time measurement display. The result is expanded utility of self-learning for the students in the field of electronics both AC and DC circuits, including the sound and vibration experiments.

  3. Flexible, polymer gated, AC-driven organic electroluminescence devices

    NASA Astrophysics Data System (ADS)

    Xu, Junwei; Carroll, David L.

    2017-08-01

    Comparing rigid inorganic layer, polymeric semiconducting gate layer exhibits superior flexibility as well as efficient carrier manipulation in high frequency AC cycles. Mechanism of the carrier manipulation at the gate in forward and reversed bias of AC cycle is studied. The flexible PET-based AC-OEL device with poly[(9,9-bis(3'-((N,N-dimethyl)-Nethylammonium)- propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN-Br) gate shows a stable electroluminescent performance in frequency sweep with a color rendering index (CRI) over 81 at 2800K color temperature.

  4. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.

    PubMed

    Lewpiriyawong, Nuttawut; Xu, Guolin; Yang, Chun

    2018-03-01

    This paper presents the use of DC-biased AC electric field for enhancing cell trapping throughput in an insulator-based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure-driven flow. Under an applied DC-biased AC electric field, DEP trapping force is produced as a result of non-uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure-driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC-biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enhanced sub-micron colloidal particle separation with interdigitated microelectrode arrays using mixed AC/DC dielectrophoretic scheme.

    PubMed

    Swaminathan, Vikhram V; Shannon, Mark A; Bashir, Rashid

    2015-04-01

    Dielectrophoretic separation of particles finds a variety of applications in the capture of species such as cells, viruses, proteins, DNA from biological systems, as well as other organic and inorganic contaminants from water. The ability to capture particles is constrained by poor volumetric scaling of separation force with respect to particle diameter, as well as the weak penetration of electric fields in the media. In order to improve the separation of sub-micron colloids, we present a scheme based on multiple interdigitated electrode arrays under mixed AC/DC bias. The use of high frequency longitudinal AC bias breaks the shielding effects through electroosmotic micromixing to enhance electric fields through the electrolyte, while a transverse DC bias between the electrode arrays enables penetration of the separation force to capture particles from the bulk of the microchannel. We determine the favorable biasing conditions for field enhancement with the help of analytical models, and experimentally demonstrate the improved capture from sub-micron colloidal suspensions with the mixed AC/DC electrostatic excitation scheme over conventional AC-DEP methods.

  6. High-throughput separation of cells by dielectrophoresis enhanced with 3D gradient AC electric field.

    PubMed

    Tada, Shigeru; Hayashi, Masako; Eguchi, Masanori; Tsukamoto, Akira

    2017-11-01

    We propose a novel, high-performance dielectrophoretic (DEP) cell-separation flow chamber with a parallel-plate channel geometry. The flow chamber, consisting of a planar electrode on the top and an interdigitated-pair electrode array at the bottom, was developed to facilitate the separation of cells by creating a nonuniform AC electric field throughout the volume of the flow chamber. The operation and performance of the device were evaluated using live and dead human epithermal breast (MCF10A) cells. The separation dynamics of the cell suspension in the flow chamber was also investigated by numerically simulating the trajectories of individual cells. A theoretical model to describe the dynamic cell behavior under the action of DEP, including dipole-dipole interparticle, viscous, and gravitational forces, was developed. The results demonstrated that the live cells traveling through the flow chamber congregated into sites where the electric field gradient was minimal, in the middle of the flow stream slightly above the centerlines of the grounded electrodes at the bottom. Meanwhile, the dead cells were trapped on the edges of the high-voltage electrodes at the bottom. Cells were thus successfully separated with a remarkably high separation ratio (∼98%) at the appropriately tuned field frequency and applied voltage. The numerically predicted behavior and spatial distribution of the cells during separation also showed good agreement with those observed experimentally.

  7. Dephasing effects on ac-driven triple quantum dot systems

    NASA Astrophysics Data System (ADS)

    Maldonado, I.; Villavicencio, J.; Contreras-Pulido, L. D.; Cota, E.; Maytorena, J. A.

    2018-05-01

    We analyze the effect of environmental dephasing on the electrical current in an ac-driven triple quantum dot system in a symmetric Λ configuration. The current is explored by solving the time evolution equation of the density matrix as a function of the frequency and amplitude of the driving field. Two characteristic spectra are observed depending on the field amplitude. At the resonance condition, when the frequency matches the interdot energy difference, one spectrum shows a distinctive Fano-type peak, while the other, occurring at larger values of the field amplitude, exhibits a strong current suppression due to dynamic localization. In the former case we observe that the current maximum is reduced due to dephasing, while in the latter it is shown that dephasing partially alleviates the localization. In both cases, away from resonance, we observe current oscillations which are dephasing-enhanced for a wide range of frequencies. These effects are also discussed using Floquet theory, and analytical expressions for the electrical current are obtained within the rotating wave approximation.

  8. Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors

    PubMed Central

    Arias, Sergio Iván Ravello; Muñoz, Diego Ramírez; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; de Freitas, Paulo Jorge Peixeiro

    2013-01-01

    Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Zt(if) is obtained considering it as the relationship between sensor output voltage and input sensing current, Zt(jf)=Vo,sensor(jf)/Isensor(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications. PMID:24351648

  9. Linear ac Response of Thin Superconductors during Flux Creep

    NASA Astrophysics Data System (ADS)

    Brandt, Ernst Helmut; Gurevich, Alexander

    1996-03-01

    The linear magnetic susceptibility χ\\(ω\\) of superconducting strips and disks in a transverse magnetic field is calculated in the flux-creep regime. It is shown that χ\\(ω\\) = χ'-iχ'' for ω>>1/t is universal, independent of temperature, dc field, and material parameters, depending only on the sample shape, ac frequency ω/2π, and time t elapsed after creep has started. Qualitatively, χ\\(ω\\) can be obtained from the χ\\(ω\\) of metallic conductors by replacing the Ohmic relaxation time by t. At ωt>>1, which may apply down to rather low frequencies, the dissipative flux-creep state exhibits a nearly Meissner-like response with χ' = -1+0.40/ωt and χ'' = 0.25ln\\(29ωt\\)/ωt for disks.

  10. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.

    PubMed

    Marcos; Yang, C; Ooi, K T; Wong, T N; Masliyah, J H

    2004-07-15

    This article presents an analysis of the frequency- and time-dependent electroosmotic flow in a closed-end rectangular microchannel. An exact solution to the modified Navier-Stokes equation governing the ac electroosmotic flow field is obtained by using the Green's function formulation in combination with a complex variable approach. An analytical expression for the induced backpressure gradient is derived. With the Debye-Hückel approximation, the electrical double-layer potential distribution in the channel is obtained by analytically solving the linearized two-dimensional Poisson-Boltzmann equation. Since the counterparts of the flow rate and the electrical current are shown to be linearly proportional to the applied electric field and the pressure gradient, Onsager's principle of reciprocity is demonstrated for transient and ac electroosmotic flows. The time evolution of the electroosmotic flow and the effect of a frequency-dependent ac electric field on the oscillating electroosmotic flow in a closed-end rectangular microchannel are examined. Specifically, the induced pressure gradient is analyzed under effects of the channel dimension and the frequency of electric field. In addition, based on the Stokes second problem, the solution of the slip velocity approximation is presented for comparison with the results obtained from the analytical scheme developed in this study. Copyright 2004 Elsevier Inc.

  11. AC BREAKDOWN IN GASES

    DTIC Science & Technology

    electron- emission (multipactor) region, and (3) the low-frequency region. The breakdown mechanism in each of these regions is explained. An extensive bibliography on AC breakdown in gases is included.

  12. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Pulliam, Christopher J.; Wiley, Joshua S.; Duncan, Jason; Cooks, R. Graham

    2016-07-01

    Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection.

  13. Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers.

    PubMed

    Snyder, Dalton T; Pulliam, Christopher J; Wiley, Joshua S; Duncan, Jason; Cooks, R Graham

    2016-07-01

    Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection. Graphical Abstract ᅟ.

  14. Study of dielectric relaxation and AC conductivity of InP:S single crystal

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.

    2012-07-01

    The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.

  15. AC-driven bilayer graphene: quasienergy spectrum of electrons and generation of soliton-like electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Kukhar, Egor I.

    2018-01-01

    Quasienergy spectrum of electrons in biased bigraphene subjected to the linear polarized high-frequency electromagnetic radiation has been derived. Quasienergy bands of ac-driven bigraphene have been investigated. Dynamical appearing of the saddle points in band structure of biased bigraphene and energy gap modification have been predicted. Electromagnetic field equation has been written using obtained quasienergy spectrum. The solution corresponding to the soliton-like electromagnetic wave has been obtained. The conditions of soliton-like wave generation in ac-driven bigraphene have been discussed.

  16. Introduction to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper introduces the reader to electric and magnetic fields, particularly those fields produced by electric power systems and other sources using frequencies in the power-frequency range. Electric fields are produced by electric charges; a magnetic field also is produced if these charges are in motion. Electric fields exert forces on other charges; if in motion, these charges will experience magnetic forces. Power-frequency electric and magnetic fields induce electric currents in conducting bodies such as living organisms. The current density vector is used to describe the distribution of current within a body. The surface of the human body is an excellent shield for power-frequency electric fields, but power-frequency magnetic fields penetrate without significant attenuation; the electric fields induced inside the body by either exposure are comparable in magnitude. Electric fields induced inside a human by most environmental electric and magnetic fields appear to be small in magnitude compared to levels naturally occurring in living tissues. Detection of such fields thus would seem to require the existence of unknown biological mechanisms. Complete characterization of a power-frequency field requires measurement of the magnitudes and electrical phases of the fundamental and harmonic amplitudes of its three vector components. Most available instrumentation measures only a small subset, or some weighted average, of these quantities. Hand-held survey meters have been used widely to measure power-frequency electric and magnetic fields. Automated data-acquisition systems have come into use more recently to make electric- and magnetic-field recordings, covering periods of hours to days, in residences and other environments.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8206045

  17. ACS/WFC Sky Flats from Frontier Fields Imaging

    NASA Astrophysics Data System (ADS)

    Mack, J.; Lucas, R. A.; Grogin, N. A.; Bohlin, R. C.; Koekemoer, A. M.

    2018-04-01

    Parallel imaging data from the HST Frontier Fields campaign (Lotz et al. 2017) have been used to compute sky flats for the ACS/WFC detector in order to verify the accuracy of the current set of flat field reference files. By masking sources and then co-adding many deep frames, the F606W and F814W filters have enough combined background signal that from Poisson statistics are <1% per pixel. In these two filters, the sky flats show spatial residuals 1% or less. These residuals are similar in shape to the WFC flat field 'donut' pattern, in which the detector quantum efficiency tracks the thickness of the two WFC chips. Observations of blue and red calibration standards measured at various positions on the detector (Bohlin et al. 2017) confirm the fidelity of the F814W flat, with aperture photometry consistent to 1% across the FOV, regardless of spectral type. At bluer wavelengths, the total sky background is substantially lower, and the F435W sky flat shows a combination of both flat errors and detector artifacts. Aperture photometry of the red standard star shows a maximum deviation of 1.4% across the array in this filter. Larger residuals up to 2.5% are found for the blue standard, suggesting that the spatial sensitivity in F435W depends on spectral type.

  18. ac response of thin superconductors in the flux-creep regime

    NASA Astrophysics Data System (ADS)

    Gurevich, A.; Brandt, E. H.

    1997-05-01

    We calculate both analytically and numerically the ac susceptibility χ(ω) and the nonlinear electromagnetic response of thin superconductor strips and disks of constant thickness in a perpendicular time-dependent magnetic field Ba(t)=B0cos ωt, taking account of the strong nonlinearity of the voltage-current characteristics below the irreversibility line. We consider integral equations of nonlinear nonlocal flux diffusion for a wide class of thermally activated creep models. It is shown that thin superconductors, despite being fully in the critical state, exhibit a universal Meissner-like electromagnetic response in the dissipative flux-creep regime. The expression for the linear ac susceptibility during flux creep appears to be similar to the susceptibility of Ohmic conductors, but with the relaxation time constant replaced by the time t elapsed after flux creep has started. This result is independent of any material parameter or temperature or dc field. For ωt>>:1, we obtain χ(ω)~-1+pln (qiωt)/(iωt), where p and q are constants. Above a critical ac amplitude B0=Bl, the local response of the electric field becomes nonlinear, and there are two distinctive nonlinear regimes at B0>Bl, where Bl~s(d/a)1/2Bp, Bp is a characteristic field of full flux penetration, s(T,B)=\\|dln j/dln t\\| is the dimensionless flux-creep rate and d and a are the sample thickness and width, respectively. For Blfield is strongly nonlinear but nonhysteretic, since the ac field Ba(t) does not cause a periodic inversion of the critical state. As a result, the magnetic moment exhibits a Meissner-like nondissipative response, in stark contrast to the Bean model. For B0>Bh(ω) the ac field causes hysteresis dissipation due to a periodic remagnetization of the critical state that gives rise to the hysteretic magnetic response of the Bean model at B0>>:Bh. Here Bh(ω) weakly depends on ω and is of order (d/a)1/2Bp for a very wide frequency range, well

  19. Study of the Dependence on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Bandler, Simon

    2011-01-01

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in the AC bias configuration. For x-ray photons at 6keV the AC biased pixel shows a best energy resolution of 3.7eV, which is about a factor of 2 worse than the energy resolution observed in identical DC-biased pixels. To better understand the reasons of this discrepancy, we investigated the detector performance as a function of temperature, bias working point and applied magnetic field. A strong periodic dependence of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recent weak-link behaviour observed inTES microcalorimeters.

  20. Effect of ac electric field on the dynamics of a vesicle under shear flow in the small deformation regime

    NASA Astrophysics Data System (ADS)

    Sinha, Kumari Priti; Thaokar, Rochish M.

    2018-03-01

    Vesicles or biological cells under simultaneous shear and electric field can be encountered in dielectrophoretic devices or designs used for continuous flow electrofusion or electroporation. In this work, the dynamics of a vesicle subjected to simultaneous shear and uniform alternating current (ac) electric field is investigated in the small deformation limit. The coupled equations for vesicle orientation and shape evolution are derived theoretically, and the resulting nonlinear equations are handled numerically to generate relevant phase diagrams that demonstrate the effect of electrical parameters on the different dynamical regimes such as tank treading (TT), vacillating breathing (VB) [called trembling (TR) in this work], and tumbling (TU). It is found that while the electric Mason number (Mn), which represents the relative strength of the electrical forces to the shear forces, promotes the TT regime, the response itself is found to be sensitive to the applied frequency as well as the conductivity ratio. While higher outer conductivity promotes orientation along the flow axis, orientation along the electric field is favored when the inner conductivity is higher. Similarly a switch of orientation from the direction of the electric field to the direction of flow is possible by a mere change of frequency when the outer conductivity is higher. Interestingly, in some cases, a coupling between electric field-induced deformation and shear can result in the system admitting an intermediate TU regime while attaining the TT regime at high Mn. The results could enable designing better dielectrophoretic devices wherein the residence time as well as the dynamical states of the vesicular suspension can be controlled as per the application.

  1. ACS Data Handbook v.6.0

    NASA Astrophysics Data System (ADS)

    Gonzaga, S.; et al.

    2011-03-01

    ACS was designed to provide a deep, wide-field survey capability from the visible to near-IR using the Wide Field Camera (WFC), high resolution imaging from the near-UV to near-IR with the now-defunct High Resolution Camera (HRC), and solar-blind far-UV imaging using the Solar Blind Camera (SBC). The discovery efficiency of ACS's Wide Field Channel (i.e., the product of WFC's field of view and throughput) is 10 times greater than that of WFPC2. The failure of ACS's CCD electronics in January 2007 brought a temporary halt to CCD imaging until Servicing Mission 4 in May 2009, when WFC functionality was restored. Unfortunately, the high-resolution optical imaging capability of HRC was not recovered.

  2. Adiabatic perturbation theory for atoms and molecules in the low-frequency regime

    NASA Astrophysics Data System (ADS)

    Martiskainen, Hanna; Moiseyev, Nimrod

    2017-12-01

    There is an increasing interest in the photoinduced dynamics in the low frequency, ω, regime. The multiphoton absorptions by molecules in strong laser fields depend on the polarization of the laser and on the molecular structure. The unique properties of the interaction of atoms and molecules with lasers in the low-frequency regime imply new concepts and directions in strong-field light-matter interactions. Here we represent a perturbational approach for the calculations of the quasi-energy spectrum in the low-frequency regime, which avoids the construction of the Floquet operator with extremely large number of Floquet channels. The zero-order Hamiltonian in our perturbational approach is the adiabatic Hamiltonian where the atoms/molecules are exposed to a dc electric field rather than to ac-field. This is in the spirit of the first step in the Corkum three-step model. The second-order perturbation correction terms are obtained when i ℏ ω ∂/∂ τ serves as a perturbation and τ is a dimensionless variable. The second-order adiabatic perturbation scheme is found to be an excellent approach for calculating the ac-field Floquet solutions in our test case studies of a simple one-dimensional time-periodic model Hamiltonian. It is straightforward to implement the perturbation approach presented here for calculating atomic and molecular energy shifts (positions) due to the interaction with low-frequency ac-fields using high-level electronic structure methods. This is enabled since standard quantum chemistry packages allow the calculations of atomic and molecular energy shifts due to the interaction with dc-fields. In addition to the shift of the energy positions, the energy widths (inverse lifetimes) can be obtained at the same level of theory. These energy shifts are functions of the laser parameters (low frequency, intensity, and polarization).

  3. Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion.

    PubMed

    Ayari, Anthony; Vincent, Pascal; Perisanu, Sorin; Choueib, May; Gouttenoire, Vincent; Bechelany, Mikhael; Cornu, David; Purcell, Stephen T

    2007-08-01

    We report the observation of self-oscillations in a bottom-up nanoelectromechanical system (NEMS) during field emission driven by a constant applied voltage. An electromechanical model is explored that explains the phenomenon and that can be directly used to develop integrated devices. In this first study, we have already achieved approximately 50% dc/ac (direct to alternating current) conversion. Electrical self-oscillations in NEMS open up a new path for the development of high-speed, autonomous nanoresonators and signal generators and show that field emission (FE) is a powerful tool for building new nanocomponents.

  4. Influence of transgenic rice expressing a fused Cry1Ab/1Ac protein on frogs in paddy fields.

    PubMed

    Wang, Jia-Mei; Chen, Xiu-Ping; Liang, Yu-Yong; Zhu, Hao-Jun; Ding, Jia-Tong; Peng, Yu-Fa

    2014-11-01

    As genetic engineering in plants is increasingly used to control agricultural pests, it is important to determine whether such transgenic plants adversely affect non-target organisms within and around cultivated fields. The cry1Ab/1Ac fusion gene from Bacillus thuringiensis (Bt) has insecticidal activity and has been introduced into rice line Minghui 63 (MH63). We evaluated the effect of transgenic cry1Ab/1Ac rice (Huahui 1, HH1) on paddy frogs by comparing HH1 and MH63 rice paddies with and without pesticide treatment. The density of tadpoles in rice fields was surveyed at regular intervals, and Cry1Ab/1Ac protein levels were determined in tissues of tadpoles and froglets collected from the paddy fields. In addition, Rana nigromaculata froglets were raised in purse nets placed within these experimental plots. The survival, body weight, feeding habits, and histological characteristics of the digestive tract of these froglets were analyzed. We found that the tadpole density was significantly decreased immediately after pesticide application, and the weight of R. nigromaculata froglets of pesticide groups was significantly reduced compared with no pesticide treatment, but we found no differences between Bt and non-Bt rice groups. Moreover, no Cry1Ab/1Ac protein was detected in tissue samples collected from 192 tadpoles and froglets representing all four experimental groups. In addition, R. nigromaculata froglets raised in purse seines fed primarily on stem borer and non-target insects, and showed no obvious abnormality in the microstructure of their digestive tracts. Based on these results, we conclude that cultivation of transgenic cry1Ab/1Ac rice does not adversely affect paddy frogs.

  5. Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an AC line with rectangular conductors

    NASA Astrophysics Data System (ADS)

    Sancarlos-González, Abel; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Sapena-Bano, Angel; Riera-Guasp, Martin; Martinez-Roman, Javier; Perez-Cruz, Juan; Roger-Folch, Jose

    2017-12-01

    AC lines of industrial busbar systems are usually built using conductors with rectangular cross sections, where each phase can have several parallel conductors to carry high currents. The current density in a rectangular conductor, under sinusoidal conditions, is not uniform. It depends on the frequency, on the conductor shape, and on the distance between conductors, due to the skin effect and to proximity effects. Contrary to circular conductors, there are not closed analytical formulas for obtaining the frequency-dependent impedance of conductors with rectangular cross-section. It is necessary to resort to numerical simulations to obtain the resistance and the inductance of the phases, one for each desired frequency and also for each distance between the phases' conductors. On the contrary, the use of the parametric proper generalized decomposition (PGD) allows to obtain the frequency-dependent impedance of an AC line for a wide range of frequencies and distances between the phases' conductors by solving a single simulation in a 4D domain (spatial coordinates x and y, the frequency and the separation between conductors). In this way, a general "virtual chart" solution is obtained, which contains the solution for any frequency and for any separation of the conductors, and stores it in a compact separated representations form, which can be easily embedded on a more general software for the design of electrical installations. The approach presented in this work for rectangular conductors can be easily extended to conductors with an arbitrary shape.

  6. The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation

    NASA Astrophysics Data System (ADS)

    Zheng, Dianfeng

    2016-11-01

    Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)

  7. Modeling AC ripple currents in HTS coated conductors by integral equations

    NASA Astrophysics Data System (ADS)

    Grilli, Francesco; Xu, Zhihan

    2016-12-01

    In several HTS applications, the superconducting tapes experience the simultaneous presence of DC and AC excitations. For example in high-current DC cables, where the transport current is not perfectly constant, but it exhibits some ripples at different frequencies introduced by the rectification process (AC-DC conversion). These ripples give rise to dissipation, whose magnitude and possible influence on the device's cooling requirements need to be evaluated. Here we report a study of the AC losses in a HTS coated conductor subjected to DC currents and AC ripples simultaneously. The modeling approach is based on an integral equation method for thin superconductors: the superconducting tape is modeled as a 1-D object with a non-linear resistivity, which includes the dependence of the critical current density Jc on the magnetic field. The model, implemented in a commercial finite-element program, runs very fast (the simulation of one AC cycle typically takes a few seconds on standard desktop workstation): this allows simulating a large number of cycles and estimating when the AC ripple losses stabilize to a constant value. The model is used to study the influence of the flux creep power index n on the stabilization speed and on the AC loss values, as well as the effect of using a field-dependent Jc instead of a constant one. The simulations confirm that the dissipation level should not be a practical concern in HTS DC cables. At the same time, however, they reveal a strong dependence of the results upon the power index n and the form of Jc , which spurs the question whether the power-law is the most suitable description of the superconductor's electrical behavior for this kind of analysis.

  8. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells.

    PubMed

    Lim, Ji-Hey; McCullen, Seth D; Piedrahita, Jorge A; Loboa, Elizabeth G; Olby, Natasha J

    2013-10-01

    Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes.

  9. The effect of surface grain reversal on the AC losses of sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Moore, Martina; Roth, Stefan; Gebert, Annett; Schultz, Ludwig; Gutfleisch, Oliver

    2015-02-01

    Sintered Nd-Fe-B magnets are exposed to AC magnetic fields in many applications, e.g. in permanent magnet electric motors. We have measured the AC losses of sintered Nd-Fe-B magnets in a closed circuit arrangement using AC fields with root mean square-values up to 80 mT (peak amplitude 113 mT) over the frequency range 50 to 1000 Hz. Two magnet grades with different dysprosium content were investigated. Around the remanence point the low grade material (1.7 wt% Dy) showed significant hysteresis losses; whereas the losses in the high grade material (8.9 wt% Dy) were dominated by classical eddy currents. Kerr microscopy images revealed that the hysteresis losses measured for the low grade magnet can be mainly ascribed to grains at the sample surface with multiple domains. This was further confirmed when the high grade material was subsequently exposed to DC and AC magnetic fields. Here a larger number of surface grains with multiple domains are also present once the step in the demagnetization curve attributed to the surface grain reversal is reached and a rise in the measured hysteresis losses is evident. If in the low grade material the operating point is slightly offset from the remanence point, such that zero field is not bypassed, its AC losses can also be fairly well described with classical eddy current theory.

  10. Development of a hardware-based AC microgrid for AC stability assessment

    NASA Astrophysics Data System (ADS)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  11. Electrical Behavior of Copper Mine Tailings During EKR with Modified Electric Fields.

    PubMed

    Rojo, Adrian; Hansen, Henrik K; Monárdez, Omara; Jorquera, Carlos; Santis, Paulina; Inostroza, Paula

    2017-03-01

    Electro-kinetic remediation (EKR) with sinusoidal electric field obtained simultaneously with DC/AC voltage reduce the polarization of the EKR with DC voltage. The DC voltage value defines the presence of a periodic polarity reversal of the cell and the electrical charge for electro-kinetic transport. In this case, the AC frequency favors the breaking of polarization conditions resulting from the EKR with DC voltage. However, with high frequencies a negative effect occurs where the tailings behave as a filter circuit, discriminating frequencies of an electric signal. The goal of this work is to analyse the electrical behaviour of tailings in EKR experiments. The conditions selected were: DC/AC voltages: 10/15 and 20/25 V (peak values), and AC voltage frequencies 50-2000 Hz. When the AC frequency reaches 2000 Hz, the copper removal tends to zero, indicating that the tailing behaves as a high-pass filter in which the DC voltage was filtered out.

  12. Electrostatic coalescence system with independent AC and DC hydrophilic electrodes

    DOEpatents

    Hovarongkura, A. David; Henry, Jr., Joseph D.

    1981-01-01

    An improved electrostatic coalescence system is provided in which independent AC and DC hydrophilic electrodes are employed to provide more complete dehydration of an oil emulsion. The AC field is produced between an AC electrode array and the water-oil interface wherein the AC electrode array is positioned parallel to the interface which acts as a grounded electrode. The emulsion is introduced into the AC field in an evenly distributed manner at the interface. The AC field promotes drop-drop and drop-interface coalescence of the water phase in the entering emulsion. The continuous oil phase passes upward through the perforated AC electrode array and enters a strong DC field produced between closely spaced DC electrodes in which small dispersed droplets of water entrained in the continuous phase are removed primarily by collection at hydrophilic DC electrodes. Large droplets of water collected by the electrodes migrate downward through the AC electrode array to the interface. All phase separation mechanisms are utilized to accomplish more complete phase separation.

  13. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and remove...

  14. Superconductor coil geometry and ac losses

    NASA Technical Reports Server (NTRS)

    Pierce, T. V., Jr.; Zapata, R. N.

    1976-01-01

    An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.

  15. The Effects of Theta and Gamma tACS on Working Memory and Electrophysiology

    PubMed Central

    Pahor, Anja; Jaušovec, Norbert

    2018-01-01

    A single blind sham-controlled study was conducted to explore the effects of theta and gamma transcranial alternating current stimulation (tACS) on offline performance on working memory tasks. In order to systematically investigate how specific parameters of tACS affect working memory, we manipulated the frequency of stimulation (theta frequency vs. gamma frequency), the type of task (n-back vs. change detection task) and the content of the tasks (verbal vs. figural stimuli). A repeated measures design was used that consisted of three sessions: theta tACS, gamma tACS and sham tACS. In total, four experiments were conducted which differed only with respect to placement of tACS electrodes (bilateral frontal, bilateral parietal, left fronto-parietal and right-fronto parietal). Healthy female students (N = 72) were randomly assigned to one of these groups, hence we were able to assess the efficacy of theta and gamma tACS applied over different brain areas, contrasted against sham stimulation. The pre-post/sham resting electroencephalogram (EEG) analysis showed that theta tACS significantly affected theta amplitude, whereas gamma tACS had no significant effect on EEG amplitude in any of the frequency bands of interest. Gamma tACS did not significantly affect working memory performance compared to sham, and theta tACS led to inconsistent changes in performance on the n-back tasks. Active theta tACS significantly affected P3 amplitude and latency during performance on the n-back tasks in the bilateral parietal and right-fronto parietal protocols. PMID:29375347

  16. Magnetoquantum Oscillations at THz Frequencies in InSb.

    PubMed

    Gogoi, P; Kamenskyi, D; Arslanov, D D; Jongma, R T; van der Zande, W J; Redlich, B; van der Meer, A F G; Engelkamp, H; Christianen, P C M; Maan, J C

    2017-10-06

    The ac magnetoconductance of bulk InSb at THz frequencies in high magnetic fields, as measured by the transmission of THz radiation, shows a field-induced transmission, which at high temperatures (≈100  K) is well explained with classical magnetoplasma effects (helicon waves). However, at low temperatures (4 K), the transmitted radiation intensity shows magnetoquantum oscillations that represent the Shubnikov-de Haas effect at THz frequencies. At frequencies above 0.9 THz, when the radiation period is shorter than the Drude scattering time, an anomalously high transmission is observed in the magnetic quantum limit that can be interpreted as carrier localization at high frequencies.

  17. Magnetoquantum Oscillations at THz Frequencies in InSb

    NASA Astrophysics Data System (ADS)

    Gogoi, P.; Kamenskyi, D.; Arslanov, D. D.; Jongma, R. T.; van der Zande, W. J.; Redlich, B.; van der Meer, A. F. G.; Engelkamp, H.; Christianen, P. C. M.; Maan, J. C.

    2017-10-01

    The ac magnetoconductance of bulk InSb at THz frequencies in high magnetic fields, as measured by the transmission of THz radiation, shows a field-induced transmission, which at high temperatures (≈100 K ) is well explained with classical magnetoplasma effects (helicon waves). However, at low temperatures (4 K), the transmitted radiation intensity shows magnetoquantum oscillations that represent the Shubnikov-de Haas effect at THz frequencies. At frequencies above 0.9 THz, when the radiation period is shorter than the Drude scattering time, an anomalously high transmission is observed in the magnetic quantum limit that can be interpreted as carrier localization at high frequencies.

  18. Measurement of AC Losses in a Racetrack Superconducting Coil Made from YBCO Coated Conductor

    NASA Astrophysics Data System (ADS)

    Seiler, Eugen; Abrahamsen, Asger B.; Kováč, Ján; Wichmann, Mike; Træholt, Chresten

    We present the results of transport measurements of AC losses in a racetrack shaped superconducting coil made from coated conductor tape. The outer dimensions of the coil are approximately 24 cm × 12 cm and it has 57 turns. The coil is impregnated with epoxy resin and fiberglass tape is used to insulate the individual turns and to improve the mechanical properties of the epoxy when exposed to thermal cycling. The coil is manufactured as a part of the field winding of a small synchronous generator; therefore stainless steel frames are installed on the inner and outer side of the winding to reinforce it. The AC loss is measured versus the transport current Ia with the coil immersed in liquid nitrogen. Measurements at frequencies 21 Hz, 36 Hz and 72 Hz are compared. The AC losses follow Ia2 dependence at low current amplitudes and Ia3 at high amplitudes. After cutting the inner steel frame the low amplitude losses are decreased, their frequency dependence is reduced but their dependence on the current remains unchanged.

  19. AC conductivity and Dielectric Study of Chalcogenide Glasses of Se-Te-Ge System

    NASA Astrophysics Data System (ADS)

    Salman, Fathy

    2004-01-01

    The ac conductivity and dielectric properties of glassy system SexTe79 - xGe21, with x = 11, 14, 17 at.%, has been studied at temperatures 300 to 450 K and over a wide range of frequencies (50 Hz to 500 kHz). Experimental results indicate that the ac conductivity and the dielectric constants depend on temperature, frequency and Se content. The conductivity as a function of frequency exhibited two components: dc conductivity s dc, and ac conductivity s ac, where s ac ˜ w s. The mechanism of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model (CBH). The activation energies are estimated and discussed. The dependence of ac conductivity and dielectric constants on the Se content x can be interpreted as the effect of Se fraction on the positional disorder. The impedance plot at each temperature appeared as a semicircle passes through the origin. Each semicircle is represented by an equivalent circuit of parallel resistance Rb and capacitance Cb.

  20. Frequency, field, and temperature dependence of the AC penetration depth of a GdBa 2Cu 3O 7-δ film in the mixed state

    NASA Astrophysics Data System (ADS)

    Zeisberger, M.; Klupsch, Th.; Michalke, W.

    1995-02-01

    We report on a systematic mutual induction measurement of the complex AC penetration depth λ of a sputtered high-quality GdBa 2Cu 3O 7-δ film in the mixed state by a very small coil system arranged near the sample surface. The complex penetration depth λ( B, T, ω) for DC inductions B ⩽ 0.65 T (perpendicular to the film), for temperatures 36 K ⩽ T ⩽ 81 K, and for frequencies 1 kHz ⩽ ω/2 π ⩽ 500 kHz was determined from the measured signal by a novel inversion scheme. The results are consistent with theoretical predictions based upon single vortex pinning. The Labusch parameter α, the flux creep relaxation time τ, as well as the effective activation energy U are simulateneously determined.

  1. Recovery of consciousness in broilers following combined dc and ac stunning

    USDA-ARS?s Scientific Manuscript database

    Broilers in the United States are typically electrically stunned using low voltage-high frequency pulsed DC water bath stunners and in the European Union broilers are electrocuted using high voltage-low frequency AC. DC stunned broilers regain consciousness in the absence of exsanguination and AC st...

  2. Resonance of scroll rings with periodic external fields in excitable media

    NASA Astrophysics Data System (ADS)

    Pan, De-Bei; Li, Qi-Hao; Zhang, Hong

    2018-06-01

    By direct numerical simulations of a chemical reaction-diffusion system coupled to a periodic external AC electric field with frequency equal to double frequency of the scroll wave rotation, we find that scroll rings resonate with the electric field and exhibit various dynamical behaviors, for example, their reversals, collapses, or growths, depending both on the initial phase of AC electric fields and on the initial phase of scroll rings. A kinematical model characterizing the drift velocity of the scroll rings along their radial directions as well as that of the scroll rings along their symmetry axes is proposed, which can effectively account for the numerical observations and predict the behaviors of the scroll rings. Besides, the existence of the equilibrium state of a scroll ring under the AC electric fields is predicted by the kinematical model and the predictions agree well with the simulations.

  3. Initial NIST AC QHR Measurements

    PubMed Central

    Cage, M. E.; Shields, S. H.; Jeffery, A.

    2004-01-01

    We demonstrate that dc quantized Hall resistance (dc QHR) guideline properties and dc and ac QHR values can be measured without changing sample probe lead connections at the QHR device, and report ac QHR values that converge to the dc QHR value when using four-terminal-pair ac QHR measurements. This was accomplished during one cooldown using single-series and quadruple-series connections outside the sample probe. The QHR was measured from 0 Hz to 5500 Hz in 1:1 ratio at 20 µA to ±1 part in 107 uncertainties with a poor-quality QHR device. A good device would allow an order of magnitude smaller uncertainties over this frequency range. We exchanged positions of the QHR device and reference resistor in the bridge and remeasured the resistance ratios to remove dominant ac bridge effects. PMID:27366620

  4. The metallic sphere in a uniform ac magnetic field: A simple and precise experiment for exploring eddy currents and non-destructive testing

    NASA Astrophysics Data System (ADS)

    Honke, Michael L.; Bidinosti, Christopher P.

    2018-06-01

    We describe a very simple experiment that utilizes standard laboratory equipment to measure the electromagnetic response of a metallic sphere exposed to a uniform ac magnetic field. Measurements were made for a variety of non-magnetic and magnetic metals, and in all cases the results fit very well with theory over the four orders of frequency (25 Hz to 102 kHz) explored here. Precise values of magnetic permeability and electrical conductivity can be extracted from fits to the data given the sphere radius only. The same apparatus is also used to explore the effects of geometry on eddy current generation as well as to demonstrate non-destructive testing through measurements on coins of different composition.

  5. Ac electroosmotic flows above coplanar electrodes

    NASA Astrophysics Data System (ADS)

    Kweon Suh, Yong

    2009-03-01

    Interactive numerical method has been proposed to calculate the ac electroosmotic flows above a pair of coplanar electrodes. The thin electrical triple layer (ETL) has been modeled by an asymptotic theory developed by the authors. The model corresponds to a simple dynamic equation for the surface charge density representing the integrated charge over the inner layer. Interactive calculation of the dynamic equation and the Laplace equation for several periods of ac frequency then yielded steady-state distribution of potential and the potential drop across the Stern and inner layers. The Smoluchowski's slip velocity was then determined from those two set of data and used as the boundary condition for the calculation of the Stokes' flow above the electrodes. We have shown that our solutions compared well with the experimental data reported in the literature. We investigated the effect of various parameters on the slip velocity distribution, such as the ac frequency, the electrode length, the effective Stern-layer thickness and the adsorption coefficients.

  6. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  7. Novel method for immunofluorescence staining of mammalian eggs using non-contact alternating-current electric-field mixing of microdroplets

    PubMed Central

    Hiromitsu, Shirasawa; Jin, Kumagai; Emiko, Sato; Katsuya, Kabashima; Yukiyo, Kumazawa; Wataru, Sato; Hiroshi, Miura; Ryuta, Nakamura; Hiroshi, Nanjo; Yoshihiro, Minamiya; Yoichi, Akagami; Yukihiro, Terada

    2015-01-01

    Recently, a new technique was developed for non-catalytically mixing microdroplets. In this method, an alternating-current (AC) electric field is used to promote the antigen–antibody reaction within the microdroplet. Previously, this technique has only been applied to histological examinations of flat structures, such as surgical specimens. In this study, we applied this technique for the first time to immunofluorescence staining of three-dimensional structures, specifically, mammalian eggs. We diluted an antibody against microtubules from 1:1,000 to 1:16,000, and compared the chromatic degree and extent of fading across dilutions. In addition, we varied the frequency of AC electric-field mixing from 5 Hz to 46 Hz and evaluated the effect on microtubule staining. Microtubules were more strongly stained after AC electric-field mixing for only 5 minutes, even when the concentration of primary antibody was 10 times lower than in conventional methods. AC electric-field mixing also alleviated microtubule fading. At all frequencies tested, AC electric-field mixing resulted in stronger microtubule staining than in controls. There was no clear difference in a microtubule staining between frequencies. These results suggest that the novel method could reduce antibody consumption and shorten immunofluorescence staining time. PMID:26477850

  8. Effect of an alternating current electric field on Co(OH)2 periodic precipitation

    NASA Astrophysics Data System (ADS)

    Karam, Tony; Sultan, Rabih

    2013-02-01

    The present paper studies the effect of an alternating current (AC) electric field on Co(OH)2 Liesegang patterns. In the presence of an AC electric field, the band spacing increases with spacing number, but reaches a plateau at large spacing (or band) numbers. The band spacing increases with applied AC voltage, but to a much lesser extent than the effect of a DC electric field under the same applied voltage [see R. Sultan, R. Halabieh, Chem. Phys. Lett. 332 (2000) 331][1]. At low enough applied voltage, the band spacing increases with frequency. At higher voltages, the band spacing becomes independent of the field frequency. The effect of concentration of the inner electrolyte (Co2+), exactly opposes that observed under DC electric field; i.e., the band spacing decreases with increasing concentration. The dynamics were shown to be governed by a competitive scenario between the diffusion gradient and the alternating current electric field factor.

  9. Structural, ac conductivity and dielectric properties of 3-formyl chromone

    NASA Astrophysics Data System (ADS)

    Ali, H. A. M.

    2017-07-01

    The structure for the powder of 3-formyl chromone was examined by X-ray diffraction technique in the 2θ° range ( 4° - 60° . The configuration of Al/3-formyl chromone/Al samples was designed. The electrical and dielectric properties were studied as a function of frequency (42- 5 × 106 Hz) and temperature (298-408K). The ac conductivity data of bulk of 3-formyl chromone varies as a power law with the frequency at different temperatures. The predominant mechanism for ac conduction was deduced. The ac conductivity shows a thermally activated process at different frequencies. The dielectric constant and dielectric loss were determined using the capacitance and dissipation factor measurements at different temperatures. The dielectric loss shows a peak of relaxation time that shifted to higher frequency with an increase in the temperature. The activation energy of the relaxation process was estimated.

  10. Ac electronic tunneling at optical frequencies

    NASA Technical Reports Server (NTRS)

    Faris, S. M.; Fan, B.; Gustafson, T. K.

    1974-01-01

    Rectification characteristics of non-superconducting metal-barrier-metal junctions deduced from electronic tunneling have been observed experimentally for optical frequency irradiation of the junction. The results provide verification of optical frequency Fermi level modulation and electronic tunneling current modulation.

  11. Vortex flux dynamics and harmonic ac magnetic response of Ba(Fe 0.94Ni 0.06) 2As 2 bulk superconductor

    DOE PAGES

    Nikolo, Martin; Zapf, Vivien S.; Singleton, John; ...

    2016-07-22

    Vortex dynamics and nonlinear ac response are studied in a Ba(Fe 0.94Ni 0.06) 2As 2( T c= 18.5 K) bulk superconductor in magnetic fields up to 12 T via ac susceptibility measurements of the first ten harmonics. A comprehensive study of the ac magnetic susceptibility and its first ten harmonics finds shifts to higher temperatures with increasing ac measurement frequencies (10 to 10,000 Hz) for a wide range of ac (1, 5, and 10 Oe) and dc fields (0 to 12 T). The characteristic measurement time constant t1 is extracted from the exponential fit of the data and linked tomore » vortex relaxation. The Anderson-Kim Arrhenius law is applied to determine flux activation energy E a/k as a function dc magnetic field. The de-pinning, or irreversibility lines, were determined by a variety of methods and extensively mapped. The ac response shows surprisingly weak higher harmonic components, suggesting weak nonlinear behavior. Lastly, our data does not support the Fisher model; we do not see an abrupt vortex glass to vortex liquid transition and the resistivity does not drop to zero, although it appears to approach zero exponentially.« less

  12. Nonlinear effective permittivity of field grading composite dielectrics

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Zhao, Xiaolei; Li, Qi; Hu, Jun; He, Jinliang

    2018-02-01

    Field grading composite dielectrics with good nonlinear electrical properties can function as smart materials for electrical field control in a high-voltage apparatus. Besides the well-documented nonlinear conducting behavior, the field-dependent effective permittivity of field grading composites were also reported; however, in-depth research on the mechanism and influencing factors of this nonlinear permittivity are absent. This paper theoretically discusses the origin of the nonlinear effective permittivity, and the mechanism is illustrated through the waveform analysis of the nonlinear response of ZnO microvaristor/silicone rubber composites under a pure AC field. The field-dependent effective permittivity and loss property of the ZnO composites are measured by a dielectric spectrometer in both DC and AC fields under different frequencies. Through comparison of measurement results and theoretical models, the influence of the filler concentration, frequency, and time domain characteristics of the applied field on the nonlinear permittivity of the field grading composites are well explained. This paper provides insight into the nonlinear permittivity of field grading composites, and will be helpful for further tuning the performance of field grading composites.

  13. A method for determining electrophoretic and electroosmotic mobilities using AC and DC electric field particle displacements.

    PubMed

    Oddy, M H; Santiago, J G

    2004-01-01

    We have developed a method for measuring the electrophoretic mobility of submicrometer, fluorescently labeled particles and the electroosmotic mobility of a microchannel. We derive explicit expressions for the unknown electrophoretic and the electroosmotic mobilities as a function of particle displacements resulting from alternating current (AC) and direct current (DC) applied electric fields. Images of particle displacements are captured using an epifluorescent microscope and a CCD camera. A custom image-processing code was developed to determine image streak lengths associated with AC measurements, and a custom particle tracking velocimetry (PTV) code was devised to determine DC particle displacements. Statistical analysis was applied to relate mobility estimates to measured particle displacement distributions.

  14. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electricmore » field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.« less

  15. Transport conductivity of graphene at RF and microwave frequencies

    NASA Astrophysics Data System (ADS)

    Awan, S. A.; Lombardo, A.; Colli, A.; Privitera, G.; Kulmala, T. S.; Kivioja, J. M.; Koshino, M.; Ferrari, A. C.

    2016-03-01

    We measure graphene coplanar waveguides from direct current (DC) to a frequency f = 13.5 GHz and show that the apparent resistance (in the presence of parasitic impedances) has an {ω }2 dependence (where ω =2π f), but the intrinsic conductivity (without the influence of parasitic impedances) is frequency-independent. Consequently, in our devices the real part of the complex alternating current (AC) conductivity is the same as the DC value and the imaginary part is ˜0. The graphene channel is modeled as a parallel resistive-capacitive network with a frequency dependence identical to that of the Drude conductivity with momentum relaxation time ˜2.1 ps, highlighting the influence of AC electron transport on the electromagnetic properties of graphene. This can lead to optimized design of high-speed analog field-effect transistors, mixers, frequency doublers, low-noise amplifiers and radiation detectors.

  16. Pulsed-High Field/High-Frequency EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  17. Frequency-Modulated Wave Dielectrophoresis of Vesicles And Cells: Periodic U-Turns at the Crossover Frequency

    NASA Astrophysics Data System (ADS)

    Frusawa, Hiroshi

    2018-06-01

    We have formulated the dielectrophoretic force exerted on micro/nanoparticles upon the application of frequency-modulated (FM) electric fields. By adjusting the frequency range of an FM wave to cover the crossover frequency f X in the real part of the Clausius-Mossotti factor, our theory predicts the reversal of the dielectrophoretic force each time the instantaneous frequency periodically traverses f X . In fact, we observed periodic U-turns of vesicles, leukemia cells, and red blood cells that undergo FM wave dielectrophoresis (FM-DEP). It is also suggested by our theory that the video tracking of the U-turns due to FM-DEP is available for the agile and accurate measurement of f X . The FM-DEP method requires a short duration, less than 30 s, while applying the FM wave to observe several U-turns, and the agility in measuring f X is of much use for not only salty cell suspensions but also nanoparticles because the electric-field-induced solvent flow is suppressed as much as possible. The accuracy of f X has been verified using two types of experiment. First, we measured the attractive force exerted on a single vesicle experiencing alternating-current dielectrophoresis (AC-DEP) at various frequencies of sinusoidal electric fields. The frequency dependence of the dielectrophoretic force yields f X as a characteristic frequency at which the force vanishes. Comparing the AC-DEP result of f X with that obtained from the FM-DEP method, both results of f X were found to coincide with each other. Second, we investigated the conductivity dependencies of f X for three kinds of cell by changing the surrounding electrolytes. From the experimental results, we evaluated simultaneously both of the cytoplasmic conductivities and the membrane capacitances using an elaborate theory on the single-shell model of biological cells. While the cytoplasmic conductivities, similar for these cells, were slightly lower than the range of previous reports, the membrane capacitances obtained

  18. Investigation of ac-magnetic field stimulated nanoelectroporation of magneto-electric nano-drug-carrier inside CNS cells.

    PubMed

    Kaushik, Ajeet; Nikkhah-Moshaie, Roozbeh; Sinha, Raju; Bhardwaj, Vinay; Atluri, Venkata; Jayant, Rahul Dev; Yndart, Adriana; Kateb, Babak; Pala, Nezih; Nair, Madhavan

    2017-04-04

    In this research, we demonstrate cell uptake of magneto-electric nanoparticles (MENPs) through nanoelectroporation (NEP) using alternating current (ac)-magnetic field stimulation. Uptake of MENPs was confirmed using focused-ion-beam assisted transmission electron microscopy (FIB-TEM) and validated by a numerical simulation model. The NEP was performed in microglial (MG) brain cells, which are highly sensitive for neuro-viral infection and were selected as target for nano-neuro-therapeutics. When the ac-magnetic field optimized (60 Oe at 1 kHz), MENPs were taken up by MG cells without affecting cell health (viability > 92%). FIB-TEM analysis of porated MG cells confirmed the non-agglomerated distribution of MENPs inside the cell and no loss of their elemental and crystalline characteristics. The presented NEP method can be adopted as a part of future nanotherapeutics and nanoneurosurgery strategies where a high uptake of a nanomedicine is required for effective and timely treatment of brain diseases.

  19. Investigation of ac-magnetic field stimulated nanoelectroporation of magneto-electric nano-drug-carrier inside CNS cells

    PubMed Central

    Kaushik, Ajeet; Nikkhah-Moshaie, Roozbeh; Sinha, Raju; Bhardwaj, Vinay; Atluri, Venkata; Jayant, Rahul Dev; Yndart, Adriana; Kateb, Babak; Pala, Nezih; Nair, Madhavan

    2017-01-01

    In this research, we demonstrate cell uptake of magneto-electric nanoparticles (MENPs) through nanoelectroporation (NEP) using alternating current (ac)-magnetic field stimulation. Uptake of MENPs was confirmed using focused-ion-beam assisted transmission electron microscopy (FIB-TEM) and validated by a numerical simulation model. The NEP was performed in microglial (MG) brain cells, which are highly sensitive for neuro-viral infection and were selected as target for nano-neuro-therapeutics. When the ac-magnetic field optimized (60 Oe at 1 kHz), MENPs were taken up by MG cells without affecting cell health (viability > 92%). FIB-TEM analysis of porated MG cells confirmed the non-agglomerated distribution of MENPs inside the cell and no loss of their elemental and crystalline characteristics. The presented NEP method can be adopted as a part of future nanotherapeutics and nanoneurosurgery strategies where a high uptake of a nanomedicine is required for effective and timely treatment of brain diseases. PMID:28374799

  20. Superconductor-Mediated Modification of Gravity? AC Motor Experiments with Bulk YBCO Disks in Rotating Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.; Roberson, Rick

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.

  1. ac Modeling and impedance spectrum tests of the superconducting magnetic field coils for the Wendelstein 7-X fusion experiment.

    PubMed

    Ehmler, Hartmut; Köppen, Matthias

    2007-10-01

    The impedance spectrum test was employed for detection of short circuits within Wendelstein 7-X (W7-X) superconducting magnetic field coils. This test is based on measuring the complex impedance over several decades of frequency. The results are compared to predictions of appropriate electrical equivalent circuits of coils in different production states or during cold test. When the equivalent circuit is not too complicated the impedance can be represented by an analytic function. A more detailed analysis is performed with a network simulation code. The overall agreement of measured and calculated or simulated spectra is good. Two types of short circuits which appeared are presented and analyzed. The detection limit of the method is discussed. It is concluded that combined high-voltage ac and low-voltage impedance spectrum tests are ideal means to rule out short circuits in the W7-X coils.

  2. Synthesis of Micelles Guided Magnetite (Fe3O4) Hollow Spheres and their application for AC Magnetic Field Responsive Drug Release

    PubMed Central

    Mandal Goswami, Madhuri

    2016-01-01

    This paper reports on synthesis of hollow spheres of magnetite, guided by micelles and their application in drug release by the stimulus responsive technique. Here oleyelamine micelles are used as the core substance for the formation of magnetite nano hollow spheres (NHS). Diameter and shell thickness of NHS have been changed by changing concentration of the micelles. Mechanism of NHS formation has been established by investigating the aliquot collected at different time during the synthesis of NHS. It has been observed that oleyelamine as micelles play an important role to generate hollow-sphere particles of different diameter and thickness just by varying its amount. Structural analysis was done by XRD measurement and morphological measurements, SEM and TEM were performed to confirm the shape and size of the NHS. FTIR measurement support the formation of magnetite phase too. Frequency dependent AC magnetic measurements and AC magnetic field stimulated drug release event by these particles provide a direction of the promising application of these NHS for better cancer treatment in near future. Being hollow & porous in structure and magnetic in nature, such materials will also be useful in other applications such as in removal of toxic materials, magnetic separation etc. PMID:27796329

  3. Calibration of low-temperature ac susceptometers with a copper cylinder standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.-X.; Skumryev, V.

    2010-02-15

    A high-quality low-temperature ac susceptometer is calibrated by comparing the measured ac susceptibility of a copper cylinder with its eddy-current ac susceptibility accurately calculated. Different from conventional calibration techniques that compare the measured results with the known property of a standard sample at certain fixed temperature T, field amplitude H{sub m}, and frequency f, to get a magnitude correction factor, here, the electromagnetic properties of the copper cylinder are unknown and are determined during the calibration of the ac susceptometer in the entire T, H{sub m}, and f range. It is shown that the maximum magnitude error and the maximummore » phase error of the susceptometer are less than 0.7% and 0.3 deg., respectively, in the region T=5-300 K and f=111-1111 Hz at H{sub m}=800 A/m, after a magnitude correction by a constant factor as done in a conventional calibration. However, the magnitude and phase errors can reach 2% and 4.3 deg. at 10 000 and 11 Hz, respectively. Since the errors are reproducible, a large portion of them may be further corrected after a calibration, the procedure for which is given. Conceptual discussions concerning the error sources, comparison with other calibration methods, and applications of ac susceptibility techniques are presented.« less

  4. Input current shaped ac-to-dc converters

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emulation approach in which the inductor size is determined by the converter switching frequency and not by the line input frequency. Other methods require complicated switch drive algorithms to construct the input current waveshape. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator.

  5. AC conductivity and dielectric properties of bulk tungsten trioxide (WO3)

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.; Saadeldin, M.; Zaghllol, M.

    2012-11-01

    AC conductivity and dielectric properties of tungsten trioxide (WO3) in a pellet form were studied in the frequency range from 42 Hz to 5 MHz with a variation of temperature in the range from 303 K to 463 K. AC conductivity, σac(ω) was found to be a function of ωs where ω is the angular frequency and s is the frequency exponent. The values of s were found to be less than unity and decrease with increasing temperature, which supports the correlated barrier hopping mechanism (CBH) as the dominant mechanism for the conduction in WO3. The dielectric constant (ε‧) and dielectric loss (ε″) were measured. The Cole-Cole diagram determined complex impedance for different temperatures.

  6. Macroscopic kinematics of the Hall electric field under influence of carrier magnetic moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Masamichi, E-mail: sakai@fms.saitama-u.ac.jp

    2016-06-15

    The relativistic effect on electromagnetic forces yields two types of forces which depend on the velocity of the relevant particles: (i) the usual Lorentz force exerted on a moving charged particle and (ii) the apparent Lorentz force exerted on a moving magnetic moment. In sharp contrast with type (i), the type (ii) force originates due to the transverse field induced by the Hall effect (HE). This study incorporates both forces into a Drude-type equation with a fully spin-polarized condition to investigate the effects of self-consistency of the source and the resultant fields on the HE. We also examine the self-consistencymore » of the carrier kinematics and electromagnetic dynamics by simultaneously considering the Drude type equation and Maxwell equations at low frequencies. Thus, our approach can predict both the dc and ac characteristics of the HE, demonstrating that the dc current condition solely yields the ordinary HE, while the ac current condition yields generation of both fundamental and second harmonic modes of the HE field. When the magnetostatic field is absent, the simultaneous presence of dc and ac longitudinal currents generates the ac HE that has both fundamental frequency and second harmonic.« less

  7. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    PubMed

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Jordan, Andreas; Scholz, Regina; Wust, Peter; Fähling, Horst; Felix, Roland

    1999-07-01

    The story of hyperthermia with small particles in AC magnetic fields started in the late 1950s, but most of the studies were unfortunately conducted with inadequate animal systems, inexact thermometry and poor AC magnetic field parameters, so that any clinical implication was far behind the horizon. More than three decades later, it was found, that colloidal dispersions of superparamagnetic (subdomain) iron oxide nanoparticles exhibit an extraordinary specific absorption rate (SAR [ W/ g]), which is much higher at clinically tolerable H 0 f combinations in comparison to hysteresis heating of larger multidomain particles. This was the renaissance of a cancer treatment method, which has gained more and more attention in the last few years. Due to the increasing number of randomized clinical trials preferentially in Europe with conventional E-field hyperthermia systems, the general medical and physical experience in hyperthermia application is also rapidly growing. Taking this increasing clinical experience carefully into account together with the huge amount of new biological data on heat response of cells and tissues, the approach of magnetic fluid hyperthermia (MFH) is nowadays more promising than ever before. The present contribution reviews the current state of the art and some of the future perspectives supported by advanced methods of the so-called nanotechnology.

  9. Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Gottardi, L.; Bruijn, M.; denHartog, R.; Hoevers, H.; deKorte, P.; vanderKuur, J.; Linderman, M.; Adams, J.; Bailey, C.; Bandler, S.; hide

    2012-01-01

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Delta E(sub FWHM) = 3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterized the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter.

  10. The ac and dc electric field meters developed for the US Department of Energy

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Jackson, S.; Sheu, K.

    1987-01-01

    Two space-potential electric field meters developed at the Jet Propulsion Laboratory under the auspices of the U.S. Department of Energy are described. One of the meters was designed to measure dc fields, the other ac fields. Both meters use fiber optics to couple a small measuring probe to a remote readout device, so as to minimize field perturbation due to the presence of the probe. By using coherent detection, it has been possible to produce instruments whose operating range extends from about 10 V/m up to about 2.5 kV/cm, without the need for range switching on the probe. The electrical and mechanical design of both meters are described in detail. Data from laboratory tests are presented, as well as the results of the tests at the National Bureau of Standards and the Electric Power Research Institute's High Voltage Transmission Research Facility.

  11. Field_ac: a research project on ocean modelling in coastal areas. The experience in the Catalan Sea.

    NASA Astrophysics Data System (ADS)

    Grifoll, Manel; Pallarès, Elena; Tolosana-Delgado, Raimon; Fernandez, Juan; Lopez, Jaime; Mosso, Cesar; Hermosilla, Fernando; Espino, Manuel; Sanchez-Arcilla, Agustín

    2013-04-01

    The EU founded Field_ac project has investigated during the last three years methods and strategies for improving operational services in coastal areas. The objective has been to generate added value for shelf and regional scale predictions from GMES Marine Core Services. In this sense the experience in the Catalan Sea site has allowed to combine high-resolution numerical modeling tools nested into regional GMES services, data from intensive field campaigns or local observational networks and remote sensing products. Multi-scale coupled models have been implemented to evaluate different temporal and spatial scales of the dominant physical processes related with waves, currents, continental/river discharges or sediment transport. In this sense the experience of the Field_ac project in the Catalan Sea has permit to "connect" GMES marine core service results to the coastal (local) anthropogenic forcing (e.g. causes of morphodynamic evolution and ecosystem degradation) and will support a knowledge-based assessment of decisions in the coastal zone. This will contribute to the implementation of EU directives (e.g., the Water Framework Directive for water quality at beaches near harbour entrances or the Risk or Flood Directives for waves and sea-level at beach/river-mouth scales).

  12. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  13. Optimization of spin-torque switching using AC and DC pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Tom; Kamenev, Alex; Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455

    2014-06-21

    We explore spin-torque induced magnetic reversal in magnetic tunnel junctions using combined AC and DC spin-current pulses. We calculate the optimal pulse times and current strengths for both AC and DC pulses as well as the optimal AC signal frequency, needed to minimize the Joule heat lost during the switching process. The results of this optimization are compared against numeric simulations. Finally, we show how this optimization leads to different dynamic regimes, where switching is optimized by either a purely AC or DC spin-current, or a combination AC/DC spin-current, depending on the anisotropy energies and the spin-current polarization.

  14. AC Electroosmotic Pumping in Nanofluidic Funnels.

    PubMed

    Kneller, Andrew R; Haywood, Daniel G; Jacobson, Stephen C

    2016-06-21

    We report efficient pumping of fluids through nanofluidic funnels when a symmetric AC waveform is applied. The asymmetric geometry of the nanofluidic funnel induces not only ion current rectification but also electroosmotic flow rectification. In the base-to-tip direction, the funnel exhibits a lower ion conductance and a higher electroosmotic flow velocity, whereas, in the tip-to-base direction, the funnel has a higher ion conductance and a lower electroosmotic flow velocity. Consequently, symmetric AC waveforms easily pump fluid through the nanofunnels over a range of frequencies, e.g., 5 Hz to 5 kHz. In our experiments, the nanofunnels were milled into glass substrates with a focused ion beam (FIB) instrument, and the funnel design had a constant 5° taper with aspect ratios (funnel tip width to funnel depth) of 0.1 to 1.0. We tracked ion current rectification by current-voltage (I-V) response and electroosmotic flow rectification by transport of a zwitterionic fluorescent probe. Rectification of ion current and electroosmotic flow increased with increasing electric field applied to the nanofunnel. Our results support three-dimensional simulations of ion transport and electroosmotic transport through nanofunnels, which suggest the asymmetric electroosmotic transport stems from an induced pressure at the junction of the nanochannel and nanofunnel tip.

  15. Electroosmosis through a Cation-Exchange Membrane: Effect of an ac Perturbation on the Electroosmotic Flow.

    PubMed

    Barragán; Ruíz Bauzá C

    2000-10-15

    Electroosmosis experiments through a cation-exchange membrane have been performed using NaCl solutions in different experimental situations. The influence of an alternating (ac) sinusoidal perturbation, of known angular frequency and small amplitude, superimposed to the usual applied continuous (dc) signal on the electroosmotic flow has been studied. The experimental results show that the presence of the ac perturbation affects the electroosmotic flow value, depending on the frequency of the ac signal and on the solution stirring conditions. In the frequency range studied, two regions have been observed where the electroosmotic flow reaches a maximum value: one at low frequencies ( approximately Hz); and another at frequencies of the order of kHz. These regions could be related to membrane relaxation phenomena. Copyright 2000 Academic Press.

  16. Control of effect on the nucleation rate for hen egg white lysozyme crystals under application of an external ac electric field.

    PubMed

    Koizumi, H; Uda, S; Fujiwara, K; Nozawa, J

    2011-07-05

    The effect of an external ac electric field on the nucleation rate of hen egg white lysozyme crystals increased with an increase in the concentration of the precipitant used, which enabled the design of an electric double layer (EDL) formed at the inner surface of the drop in the oil. This is attributed to the thickness of the EDL controlled by the ionic strength of the precipitant used. Control of the EDL formed at the interface between the two phases is important to establishing this novel technique for the crystallization of proteins under the application of an external ac electric field. © 2011 American Chemical Society

  17. Low frequency AC waveform generator

    DOEpatents

    Bilharz, Oscar W.

    1986-01-01

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stabilization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform itself. The cosine is synthesized by squaring the triangular waveform, raising the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  18. Low frequency ac waveform generator

    DOEpatents

    Bilharz, O.W.

    1983-11-22

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stablization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  19. Development of a Portable AC/DC Welding Power Supply Module

    DTIC Science & Technology

    1975-03-01

    REPORT DATE MAR 1975 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Development of a Portable AC /DC Welding Power Supply...achieved. Additional bypass capacitors were added to reduce further switch heating and voltage transients. November AC welding was achieved with...Investigate the conversion of inversion frequency back to 60 Hz for AC welding. 4) Investigate a 120V single phase mini supply. VI I Objectives A) Goals

  20. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella.

    PubMed

    Sayyed, Ali H; Raymond, Ben; Ibiza-Palacios, M Sales; Escriche, Baltasar; Wright, Denis J

    2004-12-01

    The long-term usefulness of Bacillus thuringiensis Cry toxins, either in sprays or in transgenic crops, may be compromised by the evolution of resistance in target insects. Managing the evolution of resistance to B. thuringiensis toxins requires extensive knowledge about the mechanisms, genetics, and ecology of resistance genes. To date, laboratory-selected populations have provided information on the diverse genetics and mechanisms of resistance to B. thuringiensis, highly resistant field populations being rare. However, the selection pressures on field and laboratory populations are very different and may produce resistance genes with distinct characteristics. In order to better understand the genetics, biochemical mechanisms, and ecology of field-evolved resistance, a diamondback moth (Plutella xylostella) field population (Karak) which had been exposed to intensive spraying with B. thuringiensis subsp. kurstaki was collected from Malaysia. We detected a very high level of resistance to Cry1Ac; high levels of resistance to B. thuringiensis subsp. kurstaki Cry1Aa, Cry1Ab, and Cry1Fa; and a moderate level of resistance to Cry1Ca. The toxicity of Cry1Ja to the Karak population was not significantly different from that to a standard laboratory population (LAB-UK). Notable features of the Karak population were that field-selected resistance to B. thuringiensis subsp. kurstaki did not decline at all in unselected populations over 11 generations in laboratory microcosm experiments and that resistance to Cry1Ac declined only threefold over the same period. This finding may be due to a lack of fitness costs expressed by resistance strains, since such costs can be environmentally dependent and may not occur under ordinary laboratory culture conditions. Alternatively, resistance in the Karak population may have been near fixation, leading to a very slow increase in heterozygosity. Reciprocal genetic crosses between Karak and LAB-UK populations indicated that resistance was

  1. The low magnetic field properties of superconducting bulk yttrium barium copper oxide - Sintered versus partially melted material

    NASA Technical Reports Server (NTRS)

    Hein, R. A.; Hojaji, H.; Barkatt, A.; Shafii, H.; Michael, K. A.; Thorpe, A. N.; Ware, M. F.; Alterescu, S.

    1989-01-01

    A comparison of the low magnetic field properties of sintered (990 C) and partially melted samples (1050 C) has been performed. Changes in the microstructure produced by recrystallization from the melt result in a significant increase in flux pinning at 77 K. Low-frequency (10-100 Hz), low-ac magnetic-field (0.01-9.0 Oe) ac susceptibility data show that gross changes in the loss component accompany the observed changes in microstructure. The effects of applied dc magnetic fields (10-220 Oe) on the ac responses of these microstructures have also been probed.

  2. Active magnetic force microscopy of Sr-ferrite magnet by stimulating magnetization under an AC magnetic field: Direct observation of reversible and irreversible magnetization processes

    NASA Astrophysics Data System (ADS)

    Cao, Yongze; Kumar, Pawan; Zhao, Yue; Yoshimura, Satoru; Saito, Hitoshi

    2018-05-01

    Understanding the dynamic magnetization process of magnetic materials is crucial to improving their fundamental properties and technological applications. Here, we propose active magnetic force microscopy for observing reversible and irreversible magnetization processes by stimulating magnetization with an AC magnetic field based on alternating magnetic force microscopy with a sensitive superparamagnetic tip. This approach simultaneously measures sample's DC and AC magnetic fields. We used this microscopy approach to an anisotropic Sr-ferrite (SrF) sintered magnet. This is a single domain type magnet where magnetization mainly changes via magnetic rotation. The proposed method can directly observe the reversible and irreversible magnetization processes of SrF and clearly reveal magnetic domain evolution of SrF (without stimulating magnetization—stimulating reversible magnetization—stimulating irreversible magnetization switching) by slowly increasing the amplitude of the external AC magnetic field. This microscopy approach can evaluate magnetic inhomogeneity and explain the local magnetic process within the permanent magnet.

  3. Characterization on performance of micromixer using DC-biased AC electroosmosis

    NASA Astrophysics Data System (ADS)

    Park, Bi-O.; Song, Simon

    2010-11-01

    An active micromixer using DC-biased AC-Electroosmosis (ACEO) is investigated to figure out the effects of design parameters on the mixing performance. The mixer consists of a straight microchannel, with a cross section of 60 x 100 μm, and gold electrode pairs fabricated in the microchannel. The design parameters include the number of electrode pairs, flow rate, DC-biased voltage, AC voltage and AC frequency. First, we found that a mixing index became 80% 100 μm downstream of a single electrode pair with a length of 2 mm when applying a 25Vpp, 2.0 VDC, 100 kHz sine signal to the electrodes. With decreasing AC frequency, the mixing index is affected little. But the mixing index significantly increases with increasing either DC-biased voltage or AC voltage. Also, we were able to increase the mixing index up to 90% by introducing alternating vortices with multiple electrode pairs. Finally, we discovered that the mixing index decreases as the flow rate increases in the microchannel, and there is an optimal number of electrode pairs with respect to a flow rate. Detailed quantitative measurement results will be presented at the meeting.

  4. Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter.

    PubMed

    Gottardi, L; Adams, J; Bailey, C; Bandler, S; Bruijn, M; Chervenak, J; Eckart, M; Finkbeiner, F; den Hartog, R; Hoevers, H; Kelley, R; Kilbourne, C; de Korte, P; van der Kuur, J; Lindeman, M; Porter, F; Sadlier, J; Smith, S

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Δ E FWHM =3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterised the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter.

  5. Single Pixel Characterization of X-Ray TES Microcalorimeter Under AC Bias at MHz Frequencies

    NASA Technical Reports Server (NTRS)

    Gottardi, L.; Blandler, S. R.; Porter, F. S.; Sadleir, J. E.; Kilbourne, C. A.; Bailey, C. N.; Finkbeiner, F. M.; Chervenak, J. A.; Adams, J. S.; Eckart, M. E.; hide

    2012-01-01

    In this paper we present the progress made at SRON in the read-out of GSFC x-ray transition-edge sensor (TES) micro-calorimeters in the frequency domain. The experiments reported so far, whose aim was to demonstrate an energy resolution of 2eV at 6 keV with a TES acting as a modulator, were carried out at frequencies below 700 kHz using a standard flux locked loop (FLL) SQUID read-out scheme. The TES read-out suffered from the use of sub-optimal circuit components, large parasitic inductances, low quality factor resonators and poor magnetic field shielding. We have developed a novel experimental set-up, which allows us to test several read-out schemes in a single cryogenic run. In this set-up, the TES pixels are coupled via superconducting transformers to 18 high-Q lithographic LC filters with resonant frequencies ranging between 2 and 5 MHz. The signal is amplified by a two-stage SQUID current sensor and baseband feedback is used to overcome the limited SQUID dynamic range. We study the single pixel performance as a function of TES bias frequency, voltage and perpendicular magnetic field.

  6. Effect of low frequency, low amplitude magnetic fields on the permeability of cationic liposomes entrapping carbonic anhydrase: I. Evidence for charged lipid involvement.

    PubMed

    Ramundo-Orlando, A; Morbiducci, U; Mossa, G; D'Inzeo, G

    2000-10-01

    The influence of low frequency (4-16 Hz), low amplitude (25-75 mu T) magnetic fields on the diffusion processes in enzyme-loaded unilamellar liposomes as bioreactors was studied. Cationic liposomes containing dipalmitoylphosphatidylcholine, cholesterol, and charged lipid stearylamine (SA) at different molar ratios (6:3:1 or 5:3:2) were used. Previous kinetic experiments showed a very low self-diffusion rate of the substrate p-nitrophenyl acetate (p-NPA) across intact liposome bilayer. After 60 min of exposure to 7 Hz sinusoidal (50 mu T peak) and parallel static (50 mu T) magnetic fields the enzyme activity, as a function of increased diffusion rate of p-NPA, rose from 17 +/- 3% to 80 +/- 9% (P < .0005, n = 15) in the 5:3:2 liposomes. This effect was dependent on the SA concentration in the liposomes. Only the presence of combined sinusoidal (AC) and static (DC) magnetic fields affected the p-NPA diffusion rates. No enzyme leakage was observed. Such studies suggest a plausible link between the action of extremely low frequency magnetic field on charged lipids and a change of membrane permeability. Copyright 2000 Wiley-Liss, Inc.

  7. Controller for controlling operation of at least one electrical load operating on an AC supply, and a method thereof

    DOEpatents

    Cantin, Luc; Deschenes, Mario; D'Amours, Mario

    1995-08-15

    A controller is provided for controlling operation of at least one electrical load operating on an AC supply having a typical frequency, the AC supply being provided via power transformers by an electrical power distribution grid. The controller is associated with the load and comprises an input interface for coupling the controller to the grid, a frequency detector for detecting the frequency of the AC supply and producing a signal indicative of the frequency, memory modules for storing preprogrammed commands, a frequency monitor for reading the signal indicative of the frequency and producing frequency data derived thereof, a selector for selecting at least one of the preprogrammed commands with respect to the frequency data, a control unit for producing at least one command signal representative of the selected preprogrammed commands, and an output interface including a device responsive to the command signal for controlling the load. Therefore, the load can be controlled by means of the controller depending on the frequency of the AC supply.

  8. Rabi-Bloch oscillations in spatially distributed systems: Temporal dynamics and frequency spectra

    NASA Astrophysics Data System (ADS)

    Levie, Ilay; Kastner, Raphael; Slepyan, Gregory

    2017-10-01

    We consider one-dimensional chains of two-level quantum systems coupled via tunneling. The chain is driven by the superposition of dc and ac fields in the strong coupling regime. Based on the fundamental principles of electrodynamics and quantum theory, we have developed a generalized model of quantum dynamics for such interactions, free of rotating-wave approximation. The system of equations of motion was studied numerically. We analyzed the dynamics and spectra of the inversion density, dipole current density, and tunneling current density. In the case of resonant interaction with the ac component, the particle dynamics exhibits itself in the oscillatory regime, which may be interpreted as a combination of Rabi and Bloch oscillations with their strong mutual influence. Such scenario for an obliquely incident ac field dramatically differs from the individual picture of both types of oscillations due to the interactions. This effect is counterintuitive because of the existence of markedly different frequency ranges for such two types of oscillations. These dynamics manifest themselves in multiline spectra in different combinations of Rabi and Bloch frequencies. The effect is promising as a framework of a new type of spectroscopy in nanoelectronics and electrical control of nanodevices.

  9. Design and implementation of co-operative control strategy for hybrid AC/DC microgrids

    NASA Astrophysics Data System (ADS)

    Mahmud, Rasel

    This thesis is mainly divided in two major sections: 1) Modeling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper

  10. Using nonlinear ac electrokinetics vortex flow to enhance catalytic activities of sol-gel encapsulated trypsin in microfluidic devices

    PubMed Central

    Wang, Shau-Chun; Chen, Hsiao-Ping; Lai, Yi-Wen; Chau, Lai-Kwan; Chuang, Yu-Chun; Chen, Yi-Jie

    2007-01-01

    A novel microstirring strategy is applied to accelerate the digestion rate of the substrate Nα-benzoyl-L-arginine-4-nitroanilide (L-BAPA) catalyzed by sol-gel encapsulated trypsin. We use an ac nonlinear electrokinetic vortex flow to stir the solution in a microfluidic reaction chamber to reduce the diffusion length between the immobilized enzyme and substrate in the solution. High-intensity nonlinear electroosmotic microvortices, with angular speeds in excess of 1 cm∕s, are generated around a small (∼1.2 mm) conductive ion exchange granule when ac electric fields (133 V∕cm) are applied across a miniature chamber smaller than 10 μl. Coupling between these microvortices and the on-and-off electrophoretic motion of the granule in low frequency (0.1 Hz) ac fields produces chaotic stream lines to stir substrate molecules sufficiently. We demonstrate that, within a 5-min digestion period, the catalytic reaction rate of immobilized trypsin increases almost 30-fold with adequate reproducibility (15%) due to sufficient stirring action through the introduction of the nonlinear electrokinetic vortices. In contrast, low-frequency ac electroosmotic flow without the granule, provides limited stirring action and increases the reaction rate approximately ninefold with barely acceptable reproducibility (30%). Dye molecules are used to characterize the increases in solute diffusivity in the reaction reservoir in which sol-gel particles are placed, with and without the presence of granule, and compared with the static case. The solute diffusivity enhancement data show respective increases of ∼30 and ∼8 times, with and without the presence of granule. These numbers are consistent with the ratios of the enhanced reaction rate. PMID:19693360

  11. Using nonlinear ac electrokinetics vortex flow to enhance catalytic activities of sol-gel encapsulated trypsin in microfluidic devices.

    PubMed

    Wang, Shau-Chun; Chen, Hsiao-Ping; Lai, Yi-Wen; Chau, Lai-Kwan; Chuang, Yu-Chun; Chen, Yi-Jie

    2007-09-04

    A novel microstirring strategy is applied to accelerate the digestion rate of the substrate N(alpha)-benzoyl-L-arginine-4-nitroanilide (L-BAPA) catalyzed by sol-gel encapsulated trypsin. We use an ac nonlinear electrokinetic vortex flow to stir the solution in a microfluidic reaction chamber to reduce the diffusion length between the immobilized enzyme and substrate in the solution. High-intensity nonlinear electroosmotic microvortices, with angular speeds in excess of 1 cms, are generated around a small ( approximately 1.2 mm) conductive ion exchange granule when ac electric fields (133 Vcm) are applied across a miniature chamber smaller than 10 mul. Coupling between these microvortices and the on-and-off electrophoretic motion of the granule in low frequency (0.1 Hz) ac fields produces chaotic stream lines to stir substrate molecules sufficiently. We demonstrate that, within a 5-min digestion period, the catalytic reaction rate of immobilized trypsin increases almost 30-fold with adequate reproducibility (15%) due to sufficient stirring action through the introduction of the nonlinear electrokinetic vortices. In contrast, low-frequency ac electroosmotic flow without the granule, provides limited stirring action and increases the reaction rate approximately ninefold with barely acceptable reproducibility (30%). Dye molecules are used to characterize the increases in solute diffusivity in the reaction reservoir in which sol-gel particles are placed, with and without the presence of granule, and compared with the static case. The solute diffusivity enhancement data show respective increases of approximately 30 and approximately 8 times, with and without the presence of granule. These numbers are consistent with the ratios of the enhanced reaction rate.

  12. Definitive determination of the transverse Hamiltonian parameters in the single molecule magnet Mn_12-Ac

    NASA Astrophysics Data System (ADS)

    Edwards, Rachel S.; Hill, Stephen; North, J. Micah; Dalal, Naresh; Jones, Shaela; Maccagnano, Sara

    2003-03-01

    We present high frequency high field electron paramagnetic resonance (EPR) measurements on the single molecule magnet Mn_12-Ac. Using a split coil magnet and highly sensitive resonant cavity techniques we are able to perform an angle dependent study of the single crystal EPR with the field applied in the hard plane, and hence unambiguously determine the transverse Hamiltonian parameters to fourth order. A variation in the line-shape of the resonances with angle supports the recent proposal of a ligand disorder in this material causing local quadratic anisotropy, and is used to determine the magnitude of the second order transverse term. This could have important implications for describing magnetic quantum tunneling in Mn_12-Ac. S. Hill, J.A.A.J. Perenboom, N.S. Dalal, T. Hathaway, T. Stalcup and J.S. Brooks, Phys. Rev. Lett. 80, 2453 (1998). A. Cornia, R. Sessoli, L. Sorace, D. Gatteschi, A.L. Barra and C. Daiguebonne, cond-mat/0112112.

  13. Dielectric Breakdown Characteristics of Oil-pressboard Insulation System against AC/DC Superposed Voltage

    NASA Astrophysics Data System (ADS)

    Ebisawa, Yoshihito; Yamada, Shin; Mori, Shigekazu; Ikeda, Masami

    This paper describes breakdown characteristics of an oil-pressboard insulation system to a superposition voltage of AC and DC voltages. Although AC electric field is decided by the ratio of the relative permittivity of a pressboard and insulating oil, DC electric field is decided by ratio α of volume resistivities. From the measurement in this study, 13—78 and 1.8—5.7 are obtained as the volume resistivity ratios α at temperature of 30°C and 80°C, respectively. The breakdown voltages against AC, DC, and those superposition voltages are surveyed to insulation models. In normal temperature, the breakdown voltage to the superposition voltage of AC and DC is determined by AC electric field applied to the oil duct. Since the α becomes as low as 2-3 at temperature of 80°C, AC and DC voltages almost equally contribute to the electric field of the oil duct as a result. That is, it became clear that superposed DC voltage boosts the electric field across oil ducts at operating high temperature.

  14. ac-driven vortices and the Hall effect in a superconductor with a tilted washboard pinning potential

    NASA Astrophysics Data System (ADS)

    Shklovskij, Valerij A.; Dobrovolskiy, Oleksandr V.

    2008-09-01

    The Langevin equation for a two-dimensional (2D) nonlinear guided vortex motion in a tilted cosine pinning potential in the presence of an ac is exactly solved in terms of a matrix continued fraction at arbitrary value of the Hall effect. The influence of an ac of arbitrary amplitude and frequency on the dc and ac magnetoresistivity tensors is analyzed. The ac density and frequency dependence of the overall shape and the number and position of the Shapiro steps on the anisotropic current-voltage characteristics are considered. The influence of a subcritical or overcritical dc on the time-dependent stationary ac longitudinal and transverse resistive vortex responses (on the frequency of an ac drive Ω ) in terms of the nonlinear impedance tensor Ẑ and the nonlinear ac response at Ω harmonics are studied. Analytical formulas for 2D temperature-dependent linear impedance tensor ẐL in the presence of a dc which depend on the angle α between the current-density vector and the guiding direction of the washboard planar pinning potential are derived and analyzed. Influence of α anisotropy and the Hall effect on the nonlinear power absorption by vortices is discussed.

  15. Modeling and Correcting the Time-Dependent ACS PSF

    NASA Technical Reports Server (NTRS)

    Rhodes, Jason; Massey, Richard; Albert, Justin; Taylor, James E.; Koekemoer, Anton M.; Leauthaud, Alexie

    2006-01-01

    The ability to accurately measure the shapes of faint objects in images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) depends upon detailed knowledge of the Point Spread Function (PSF). We show that thermal fluctuations cause the PSF of the ACS Wide Field Camera (WFC) to vary over time. We describe a modified version of the TinyTim PSF modeling software to create artificial grids of stars across the ACS field of view at a range of telescope focus values. These models closely resemble the stars in real ACS images. Using 10 bright stars in a real image, we have been able to measure HST s apparent focus at the time of the exposure. TinyTim can then be used to model the PSF at any position on the ACS field of view. This obviates the need for images of dense stellar fields at different focus values, or interpolation between the few observed stars. We show that residual differences between our TinyTim models and real data are likely due to the effects of Charge Transfer Efficiency (CTE) degradation. Furthermore, we discuss stochastic noise that is added to the shape of point sources when distortion is removed, and we present MultiDrizzle parameters that are optimal for weak lensing science. Specifically, we find that reducing the MultiDrizzle output pixel scale and choosing a Gaussian kernel significantly stabilizes the resulting PSF after image combination, while still eliminating cosmic rays/bad pixels, and correcting the large geometric distortion in the ACS. We discuss future plans, which include more detailed study of the effects of CTE degradation on object shapes and releasing our TinyTim models to the astronomical community.

  16. Estimating BrAC from transdermal alcohol concentration data using the BrAC estimator software program.

    PubMed

    Luczak, Susan E; Rosen, I Gary

    2014-08-01

    Transdermal alcohol sensor (TAS) devices have the potential to allow researchers and clinicians to unobtrusively collect naturalistic drinking data for weeks at a time, but the transdermal alcohol concentration (TAC) data these devices produce do not consistently correspond with breath alcohol concentration (BrAC) data. We present and test the BrAC Estimator software, a program designed to produce individualized estimates of BrAC from TAC data by fitting mathematical models to a specific person wearing a specific TAS device. Two TAS devices were worn simultaneously by 1 participant for 18 days. The trial began with a laboratory alcohol session to calibrate the model and was followed by a field trial with 10 drinking episodes. Model parameter estimates and fit indices were compared across drinking episodes to examine the calibration phase of the software. Software-generated estimates of peak BrAC, time of peak BrAC, and area under the BrAC curve were compared with breath analyzer data to examine the estimation phase of the software. In this single-subject design with breath analyzer peak BrAC scores ranging from 0.013 to 0.057, the software created consistent models for the 2 TAS devices, despite differences in raw TAC data, and was able to compensate for the attenuation of peak BrAC and latency of the time of peak BrAC that are typically observed in TAC data. This software program represents an important initial step for making it possible for non mathematician researchers and clinicians to obtain estimates of BrAC from TAC data in naturalistic drinking environments. Future research with more participants and greater variation in alcohol consumption levels and patterns, as well as examination of gain scheduling calibration procedures and nonlinear models of diffusion, will help to determine how precise these software models can become. Copyright © 2014 by the Research Society on Alcoholism.

  17. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  18. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    DOE PAGES

    Tselev, Alexander; Yu, Pu; Cao, Ye; ...

    2016-05-31

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphologicalmore » roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. Finally, this demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale.« less

  19. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    PubMed Central

    Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro

    2016-01-01

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. PMID:27240997

  20. DC and AC Electric Field Measurements by Spin-Plane Double Probes Onboard MMS

    NASA Astrophysics Data System (ADS)

    Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Ergun, R. E.; Goodrich, K.; Torbert, R. B.; Argall, M. R.; Nakamura, R.

    2015-12-01

    The four spacecraft of the NASA Magnetospheric Multiscale mission (MMS) were launched on 12 March 2015 into a 1.2 x 12 Re equatorial orbit to study energy conversion processes in Earth's magnetosphere. After a 5-month commissioning period the first scientific phase starts on 1 September as the orbit enters the dusk magnetopause region. The Spin-plane Double Probe electric field instrument (SDP), part of the electric and magnetic fields instrument suite FIELDS, measures the electric field in the range 0.3 - 500 mV/m with a continuous time resolution up to 8192 samples/s. The instrument features adjustable bias currents and guard voltages to optimize the measurement performance. SDP also measures the spacecraft potential, which can be controlled by the Active Spacecraft Potential Control (ASPOC) ion emitter, and under certain conditions can be used to determine plasma density. We present observations of DC and AC electric fields in different plasma regions covered by MMS since launch including the night side flow braking region, reconnection regions at the dusk and dayside magnetopause, and in the magnetosheath. We compare the electric field measurements by SDP to other, independent determinations of the electric field, in particular by the Electron Drift Instrument (EDI), in order to assess the accuracy of the electric field measurement under different plasma conditions. We also study the influence of the currents emitted by ASPOC and EDI on the SDP measurements.

  1. AC loss in YBCO coated conductors at high dB/dt measured using a spinning magnet calorimeter (stator testbed environment)

    NASA Astrophysics Data System (ADS)

    Murphy, J. P.; Gheorghiu, N. N.; Bullard, T.; Haugan, T.; Sumption, M. D.; Majoros, M.; Collings, E. W.

    2017-09-01

    A new facility for the measurement of AC loss in superconductors at high dB/dt has been developed. The test device has a spinning rotor consisting of permanent magnets arranged in a Halbach array; the sample, positioned outside of this, is exposed to a time varying AC field with a peak radial field of 0.566 T. At a rotor speed of 3600 RPM the frequency of the AC field is 240 Hz, the radial dB/dt is 543 T/s and the tangential dB/dt is 249 T/s. Loss is measured using nitrogen boiloff from a double wall calorimeter feeding a gas flow meter. The system is calibrated using power from a known resistor. YBCO tape losses were measured in the new device and compared to the results from a solenoidal magnet AC loss system measurement of the same samples (in this latter case measurements were limited to a field of amplitude 0.1 T and a dB/dt of 100 T/s). Solenoidal magnet system AC loss measurements taken on a YBCO sample agreed with the Brandt loss expression associated with a 0-0.1 T Ic of 128 A. Subsequently, losses for two more YBCO tapes nominally identical to the first were individually measured in this spinning magnet calorimeter (SMC) machine with a Bmax of 0.566 T and dB/dt of up to 272 T/s. The losses, compared to a simplified version of the Brandt expression, were consistent with the average Ic expected for the tape in the 0-0.5 T range at 77 K. The eddy current contribution was consistent with a 77 K residual resistance ratio, RR, of 4.0. The SMC results for these samples agreed to within 5%. Good agreement was also obtained between the results of the SMC AC loss measurement and the solenoidal magnet AC loss measurement on the same samples.

  2. Impedance Spectroscopy and AC Conductivity Studies of Bulk 3-Amino-7-(dimethylamino)-2-methyl-hydrochloride

    NASA Astrophysics Data System (ADS)

    El-Shabaan, M. M.

    2018-02-01

    Impedance spectroscopy and alternating-current (AC) conductivity (σ AC) studies of bulk 3-amino-7-(dimethylamino)-2-methyl-hydrochloride (neutral red, NR) have been carried out over the temperature (T) range from 303 K to 383 K and frequency (f) range from 0.5 kHz to 5 MHz. Dielectric data were analyzed using the complex impedance (Z *) and complex electric modulus (M *) for bulk NR at various temperatures. The impedance loss peaks were found to shift towards high frequencies, indicating an increase in the relaxation time (τ 0) and loss in the material, with increasing temperature. For each temperature, a single depressed semicircle was observed at high frequencies, originating from the bulk transport, and a spike in the low-frequency region, resulting from the electrode effect. Fitting of these curves yielded an equivalent circuit containing a parallel combination of a resistance R and constant-phase element (CPE) Q. The carrier transport in bulk NR is governed by the correlated barrier hopping (CBH) mechanism, some parameters of which, such as the maximum barrier height (W M), charge density (N), and hopping distance (r), were determined as functions of both temperature and frequency. The frequency dependence of σ AC at different temperatures indicated that the conduction in bulk NR is a thermally activated process. The σ AC value at different frequencies increased linearly with temperature.

  3. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  4. Ac conductivity and dielectric properties of bulk tin phthalocyanine dichloride (SnPcCl 2)

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Farid, A. M.; Abd El-Rahman, K. F.; Ali, H. A. M.

    2008-07-01

    The ac conductivity, σac( ω), has been measured for bulk tin phthalocyanine dichloride (SnPcCl 2) in the form of compressed pellet with evaporated ohmic Au electrodes in a temperature range 303-403 K. Ac conductivity, σac( ω), is found to vary as ωs in the frequency range 42 Hz-5×10 6 Hz. At low range of frequency, s<1 and it decreases with the increase in temperature indicating a dominant hopping process. At high range of frequency, s is found to be equal to ≈1.09 and is temperature independent. The dielectric constant, ε1, and dialectic loss, ε2, have been determined for bulk SnPcCl 2. Both ε1 and ε2 decrease with the increase in frequency and increase with the increase in temperature. The Cole-Cole types have been used to determine some parameters such as; the macroscopic relaxation time ( τo), the molecular relaxation time ( τ), the activation energy for relaxation ( Eo) and the distribution parameter ( α). The temperature dependence of τ is expressed by a thermally activated process with the activation energy of 0.299 eV.

  5. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.

    PubMed

    Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L

    2015-02-01

    Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

  6. Dielectric and AC conductivity studies on SrBi4Ti4O15

    NASA Astrophysics Data System (ADS)

    Jose, Roshan; Saravanan, K. Venkata

    2018-05-01

    The four layered SrBi4Ti4O15 ceramics which belong to the aurivillius family of oxide was prepared by conventional solid state reaction technique. Analysis of the dielectric data as a function of temperature and frequency revealed normal phase transition. The frequency dependent ac conductivity follows Jonscher's universal power law. Frequency exponent (n), pre-exponential factor (A), bulk dc conductivity (σdc), and hopping frequency (ωp) were determined from the fitting curves. The variation of frequency exponent with temperature indicates that large polaron hopping mechanism up to curie-temperature, then its changes to small polaron hopping. The activation energies were calculated from ac conductivity, bulk dc conductivity and hopping frequency. The activation energies revealed that conductivity had contributions from migrations of oxygen vacancies, bismuth ion vacancies and strontium ion vacancies.

  7. An AC electroosmotic micropump for circular chromatographic applications.

    PubMed

    Debesset, S; Hayden, C J; Dalton, C; Eijkel, J C T; Manz, A

    2004-08-01

    Flow rates of up to 50 microm s(-1) have been successfully achieved in a closed-loop channel using an AC electroosmotic pump. The AC electroosmotic pump is made of an interdigitated array of unequal width electrodes located at the bottom of a channel, with an AC voltage applied between the small and the large electrodes. The flow rate was found to increase linearly with the applied voltage and to decrease linearly with the applied frequency. The pump is expected to be suitable for circular chromatography for the following reasons: the driving forces are distributed over the channel length and the pumping direction is set by the direction of the interdigitated electrodes. Pumping in a closed-loop channel can be achieved by arranging the electrode pattern in a circle. In addition the inherent working principle of AC electroosmotic pumping enables the independent optimisation of the channel height or the flow velocity.

  8. Self Consistent Ambipolar Transport and High Frequency Oscillatory Transient in Graphene Electronics

    DTIC Science & Technology

    2015-08-17

    study showed that in the presence of an ac field, THz oscillations exhibit soft resonances at a frequency roughly equal to half of the inverse of the ...exhibit soft resonances at a frequency roughly equal to half of the inverse of the carrier transit time to the LO phonon energy. It also showed that in...carriers in graphene undergo an anomalous parametric resonance. Such resonance occurs at about half the frequency ωF = 2πeF/~ωOP , where 2π/ωF is the time

  9. Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating.

    PubMed

    Ge, Zhengwei; Wang, Wei; Yang, Chun

    2011-04-07

    It is challenging to continuously concentrate sample solutes in microfluidic channels. We present an improved electrokinetic technique for enhancing microfluidic temperature gradient focusing (TGF) of sample solutes using combined AC and DC field induced Joule heating effects. The introduction of an AC electric field component services dual functions: one is to produce Joule heat for generating temperature gradient; the other is to suppress electroosmotic flow. Consequently the required DC voltages for achieving sample concentration by Joule heating induced TGF are reduced, thereby leading to smaller electroosmotic flow (EOF) and thus backpressure effects. As a demonstration, the proposed technique can lead to concentration enhancement of sample solutes of more than 2500-fold, which is much higher than the existing literature reported microfluidic concentration enhancement by utilizing the Joule heating induced TGF technique.

  10. AC electrokinetic manipulation of selenium nanoparticles for potential nanosensor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoodi, Seyed Reza; Bayati, Marzieh, E-mail: m-bayati@tums.ac.ir; Hosseinirad, Somayeh

    2013-03-15

    Highlights: ► Se nanoparticles were synthesized using a reverse-microemulsion process. ► AC osmotic fluid flow repulses the particles from electrode edges. ► Dielectrophoretic force attracts the particles to electrode edges. ► Dielectrophoresis electrode showed non-ohmic behavior. ► The device can potentially be used as a nanosensor. - Abstract: We report the AC electrokinetic behavior of selenium (Se) nanoparticles for electrical characterization and possible application as micro/nano devices. selenium Se nanoparticles were successfully synthesized using a reverse-microemulsion process and investigated structurally using X-ray diffraction and transmission electron microscope. Interdigitated castellated ITO and non-castellated platinum electrodes were employed for manipulation of suspendedmore » materials in the fluid. Using ITO electrodes at low frequency limits resulted in deposition of Se particles on electrode surface. When Se particles exposed to platinum electrodes in the 10 Hz–1 kHz range and V {sub p−p}> 8, AC osmotic fluid flow repulses the particles from electrode edges. However, in 10 kHz–10 MHz range and V {sub p−p}> 5, dielectrophoretic force attracts the particles to electrode edges. As the Se particle concentration increased, the trapped Se particles were aligned along the electric field line and bridged the electrode gap. The device was characterized and can potentially be useful in making micro/nano electronic devices.« less

  11. Quantifying vorticity in magnetic particle suspensions driven by symmetric and asymmetric multiaxial fields.

    DOE PAGES

    Martin, James E.; Solis, Kyle Jameson

    2015-08-07

    We recently reported two methods of inducing vigorous fluid vorticity in magnetic particle suspensions. The first method employs symmetry-breaking rational fields. These fields are comprised of two orthogonal ac components whose frequencies form a rational number and an orthogonal dc field that breaks the symmetry of the biaxial ac field to create the parity required to induce deterministic vorticity. The second method is based on rational triads, which are fields comprised of three orthogonal ac components whose frequency ratios are rational (e.g., 1 : 2 : 3). For each method a symmetry theory has been developed that enables the predictionmore » of the direction and sign of vorticity as functions of the field frequencies and phases. However, this theory has its limitations. It only applies to those particular phase angles that give rise to fields whose Lissajous plots, or principal 2-d projections thereof, have a high degree of symmetry. Nor can symmetry theory provide a measure of the magnitude of the torque density induced by the field. In this paper a functional of the multiaxial magnetic field is proposed that not only is consistent with all of the predictions of the symmetry theories, but also quantifies the torque density. This functional can be applied to fields whose Lissajous plots lack symmetry and can thus be used to predict a variety of effects and trends that cannot be predicted from the symmetry theories. These trends include the dependence of the magnitude of the torque density on the various frequency ratios, the unexpected reversal of flow with increasing dc field amplitude for certain symmetry-breaking fields, and the existence of off-axis vorticity for rational triads, such as 1 : 3 : 5, that do not have the symmetry required to analyze by symmetry theory. As a result, experimental data are given that show the degree to which this functional is successful in predicting observed trends.« less

  12. Dielectric aggregation kinetics of cells in a uniform AC electric field.

    PubMed

    Tada, Shigeru; Natsuya, Tomoyuki; Tsukamoto, Akira

    2014-01-01

    Cell manipulation and separation technologies have potential biological and medical applications, including advanced clinical protocols such as tissue engineering. An aggregation model was developed for a human carcinoma (HeLa) cell suspension exposed to a uniform AC electric field, in order to explore the field-induced structure formation and kinetics of cell aggregates. The momentum equations of cells under the action of the dipole-dipole interaction were solved theoretically and the total time required to form linear string-like cluster was derived. The results were compared with those of a numerical simulation. Experiments using HeLa cells were also performed for comparison. The total time required to form linear string-like clusters was derived from a simple theoretical model of the cell cluster kinetics. The growth rates of the average string length of cell aggregates showed good agreement with those of the numerical simulation. In the experiment, cells were found to form massive clusters on the bottom of a chamber. The results imply that the string-like cluster grows rapidly by longitudinal attraction when the electric field is first applied and that this process slows at later times and is replaced by lateral coagulation of short strings. The findings presented here are expected to enable design of methods for the organization of three-dimensional (3D) cellular structures without the use of micro-fabricated substrates, such as 3D biopolymer scaffolds, to manipulate cells into spatial arrangement.

  13. Building the analytical response in frequency domain of AC biased bolometers. Application to Planck/HFI

    NASA Astrophysics Data System (ADS)

    Sauvé, Alexandre; Montier, Ludovic

    2016-12-01

    Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for ν < 1 Hz, and secondly the Analog To digital Converter (ADC) component had been insufficiently characterized on-ground. These two problems require an exquisite knowledge of detector response. However bolometers have highly nonlinear characteristics, coming from their electrical and thermal coupling making them very difficult to model. Goal: We present a method to build the analytical transfer function in frequency domain which describe the voltage response of an Alternative Current (AC) biased bolometer to optical excitation, based on the standard bolometer model. This model is built using the setup of the Planck/HFI instrument and offers the major improvement of being based on a physical model rather than the currently in use had-hoc model based on Direct Current (DC) bolometer theory. Method: The analytical transfer function expression will be presented in matrix form. For this purpose, we build linearized versions of the bolometer electro thermal equilibrium. A custom description of signals in frequency is used to solve the problem with linear algebra. The model performances is validated using time domain simulations. Results: The provided expression is suitable for calibration and data processing. It can also be used to provide constraints for fitting optical transfer function using real data from steady state electronic response and optical response. The accurate description of electronic response can also be used to improve the ADC nonlinearity correction for quickly varying optical signals.

  14. Influence of thermal aging on AC leakage current in XLPE insulation

    NASA Astrophysics Data System (ADS)

    Geng, Pulong; Song, Jiancheng; Tian, Muqin; Lei, Zhipeng; Du, Yakun

    2018-02-01

    Cross-linked polyethylene (XLPE) has been widely used as cable insulation material because of its excellent dielectric properties, thermal stability and solvent resistance. To understand the influence of thermal aging on AC leakage current in XLPE insulation, all XLPE specimens were aged in oven in temperature range from 120 °C to 150 °C, and a series of tests were conducted on these XLPE specimens in different aging stages to measure the characteristic parameters, such as complex permittivity, leakage current and complex dielectric modulus. In the experiments, the effects of thermal aging, temperature and frequency on the AC leakage current in XLPE insulation were studied by analyzing complex dielectric constant and dielectric relaxation modulus spectrum, the change of relaxation peak and activation energy. It has been found that the active part of leakage current increases sharply with the increase of aging degree, and the test temperature and frequency have an influence on AC leakage current but the influence of test temperature is mainly reflected in the low frequency region. In addition, it has been shown by the experiments that the reactive part of leakage current exhibits a strong frequency dependent characteristic in the testing frequency range from 10-2 Hz to 105 Hz, but the influence of test temperature and thermal aging on it is relatively small.

  15. Droplet manipulation by an external electric field for crystalline film growth.

    PubMed

    Komino, Takeshi; Kuwabara, Hirokazu; Ikeda, Masaaki; Yahiro, Masayuki; Takimiya, Kazuo; Adachi, Chihaya

    2013-07-30

    Combining droplet manipulation by the application of an electric field with inkjet printing is proposed as a unique technique to control the surface wettability of substrates for solution-processed organic field-effect transistors (FETs). With the use of this technique, uniform thin films of 2,7-dioctyl[1]benzothieno[2,3,-b][1]benzothiopene (C8-BTBT) could be fabricated on the channels of FET substrates without self-assembled monolayer treatment. High-speed camera observation revealed that the crystals formed at the solid/liquid interface. The coverage of the crystals on the channels depended on the ac frequency of the external electric field applied during film formation, leading to a wide variation in the carrier transport of the films. The highest hole mobility of 0.03 cm(2) V(-1) s(-1) was obtained when the coverage was maximized with an ac frequency of 1 kHz.

  16. Transcranial Alternating Current Stimulation (tACS) Enhances Mental Rotation Performance during and after Stimulation

    PubMed Central

    Kasten, Florian H.; Herrmann, Christoph S.

    2017-01-01

    Transcranial alternating current stimulation (tACS) has been repeatedly demonstrated to modulate endogenous brain oscillations in a frequency specific manner. Thus, it is a promising tool to uncover causal relationships between brain oscillations and behavior or perception. While tACS has been shown to elicit a physiological aftereffect for up to 70 min, it remains unclear whether the effect can still be elicited if subjects perform a complex task interacting with the stimulated frequency band. In addition, it has not yet been investigated whether the aftereffect is behaviorally relevant. In the current experiment, participants performed a Shepard-like mental rotation task for 80 min. After 10 min of baseline measurement, participants received either 20 min of tACS at their individual alpha frequency (IAF) or sham stimulation (30 s tACS in the beginning of the stimulation period). Afterwards another 50 min of post-stimulation EEG were recorded. Task performance and EEG were acquired during the whole experiment. While there were no effects of tACS on reaction times or event-related-potentials (ERPs), results revealed an increase in mental rotation performance in the stimulation group as compared to sham both during and after stimulation. This was accompanied by increased ongoing alpha power and coherence as well as event-related-desynchronization (ERD) in the alpha band in the stimulation group. The current study demonstrates a behavioral and physiological aftereffect of tACS in parallel. This indicates that it is possible to elicit aftereffects of tACS during tasks interacting with the alpha band. Therefore, the tACS aftereffect is suitable to achieve an experimental manipulation. PMID:28197084

  17. Frequency tuning allows flow direction control in microfluidic networks with passive features.

    PubMed

    Jain, Rahil; Lutz, Barry

    2017-05-02

    Frequency tuning has emerged as an attractive alternative to conventional pumping techniques in microfluidics. Oscillating (AC) flow driven through a passive valve can be rectified to create steady (DC) flow, and tuning the excitation frequency to the characteristic (resonance) frequency of the underlying microfluidic network allows control of flow magnitude using simple hardware, such as an on-chip piezo buzzer. In this paper, we report that frequency tuning can also be used to control the direction (forward or backward) of the rectified DC flow in a single device. Initially, we observed that certain devices provided DC flow in the "forward" direction expected from previous work with a similar valve geometry, and the maximum DC flow occurred at the same frequency as a prominent peak in the AC flow magnitude, as expected. However, devices of a slightly different geometry provided the DC flow in the opposite direction and at a frequency well below the peak AC flow. Using an equivalent electrical circuit model, we found that the "forward" DC flow occurred at the series resonance frequency (with large AC flow peak), while the "backward" DC flow occurred at a less obvious parallel resonance (a valley in AC flow magnitude). We also observed that the DC flow occurred only when there was a measurable differential in the AC flow magnitude across the valve, and the DC flow direction was from the channel with large AC flow magnitude to that with small AC flow magnitude. Using these observations and the AC flow predictions from the equivalent circuit model, we designed a device with an AC flowrate frequency profile that was expected to allow the DC flow in opposite directions at two distinct frequencies. The fabricated device showed the expected flow reversal at the expected frequencies. This approach expands the flow control toolkit to include both magnitude and direction control in frequency-tuned microfluidic pumps. The work also raises interesting questions about the

  18. Electron beam irradiated polymer electrolyte film: Morphology, dielectric and AC conductivity studies

    NASA Astrophysics Data System (ADS)

    Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Ganesh, S.; Devendrappa, H.

    2018-05-01

    The polymer (PVdF-co-HFP: LiClO4=90:10, PHL10) electrolyte films prepared by solution casting method and studied morphology, dielectric properties and ac conductivity before and after electron beam (EB) irradiation. The polarized optical micrographs reveals size of spherulite reduced with increasing EB dose represents increase in amorphousity. The dielectric measurements were studied at different temperatures and observed increase with frequency at different temperatures upon EB irradiation. The ac conductivity increases with frequency due to effect of EB dose.

  19. A low-cost, tunable laser lock without laser frequency modulation

    NASA Astrophysics Data System (ADS)

    Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.

    2015-05-01

    Many experiments in optical physics require laser frequency stabilization. This can be achieved by locking to an atomic reference using saturated absorption spectroscopy. Often, the laser frequency is modulated and phase sensitive detection used. This method, while well-proven and robust, relies on expensive components, can introduce an undesirable frequency modulation into the laser, and is not easily frequency tuned. Here, we report a simple locking scheme similar to those implemented previously. We modulate the atomic resonances in a saturated absorption setup with an AC magnetic field created by a single solenoid. The same coil applies a DC field that allows tuning of the lock point. We use an auto-balanced detector to make our scheme more robust against laser power fluctuations and stray magnetic fields. The coil, its driver, and the detector are home-built with simple, cheap components. Our technique is low-cost, simple to setup, tunable, introduces no laser frequency modulation, and only requires one laser. We gratefully acknowledge the financial support of the NSF through Grant # PHY-1206040.

  20. Microwave ac Zeeman force for ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, C. T.; Pyle, A. J.; Rotunno, A. P.; Aubin, S.

    2018-04-01

    We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved.

  1. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  2. Dielectric behavior and AC conductivity of Cr doped α-Mn2O3

    NASA Astrophysics Data System (ADS)

    Chandra, Mohit; Yadav, Satish; Singh, K.

    2018-05-01

    The complex dielectric behavior of polycrystalline α-Mn2-xCrxO3 (x = 0.10) has been investigated isothermally at wide frequency range (4Hz-1 MHz) at different temperatures (300-390K). The dielectric spectroscopy results have been discussed in different formulism like dielectric constant, impedance and ac conductivity. The frequency dependent dielectric loss (tanδ) exhibit a clear relaxation behavior in the studied temperature range. The relaxation frequency increases with increasing temperature. These results are fitted using Arrhenius equation which suggest thermally activated process and the activation energy is 0.173±0.0024 eV. The normalized tanδ curves at different temperatures merge as a single master curve which indicate that the relaxation process follow the similar relaxation dynamics in the studied temperature range. Further, the dielectric relaxation follows non-Debye behavior. The impedance results inference that the grain boundary contribution dominate at lower frequency whereas grain contribution appeared at higher frequencies and exhibit strong temperature dependence. The ac conductivity data shows that the ac conductivity increases with increasing temperature which corroborate the semiconducting nature of the studied sample.

  3. AC and DC conductivity study on Ca substituted bismuth ferrite

    NASA Astrophysics Data System (ADS)

    Pandey, Rabichandra; Pradhan, Lagen Kumar; Kumar, Sunil; Kar, Manoranjan

    2018-05-01

    Bi0.95Ca0.05FeO3 multiferroic compound was synthesized by the citric acid modified sol-gel method. Crystal structure of Bi0.95Ca0.05FeO3 is studied by the X-ray diffraction (XRD) technique. The ac impedance analysis of the compound has been carried out in a wide range of frequency (100 Hz - 1MHz) as well as temperature (40-2500C). Frequency variation of dielectric constant at different temperatures can be understood by the modified Debye formula. The activation energy was found to be 0.48eV, which was obtained by employing Arrhenius equation. The AC conductivity of the sample follows the Johnscher's power law which indicates the presence of hopping type conduction in localized charged states. To understand the conduction mechanism with localized charge states, the DC resistivity data were analyzed by Mott's variable range hopping (VRH) model. The activation energy calculated from Debye relaxation time, AC conductivity and DC resistivity are comparable to each other.

  4. Effects of low-frequency magnetic fields on embryonic development and pregnancy.

    PubMed

    Juutilainen, J

    1991-06-01

    Experimental and epidemiologic studies on the effects of low-frequency magnetic fields on pregnancy are reviewed. The literature suggests that these fields have adverse effects on chick embryo development. The interaction mechanism is not known. The results of experiments with mammals are inconsistent. There is more evidence of effects on mice than on rats, and the data suggest that fetal loss might be increased rather than malformations. Most of the epidemiologic studies related to pregnancy and low-frequency magnetic fields have concerned operators of a video display terminal (VDT). The results do not provide evidence for an association between adverse pregnancy outcome and use of a VDT. Other (stronger) sources of low-frequency magnetic fields have been addressed in only a few studies. It is not yet possible to conclude whether occupational or residential exposure to low-frequency magnetic fields affects human prenatal development. There is an apparent need for further investigation.

  5. Spatially variant red blood cell crenation in alternating current non-uniform fields.

    PubMed

    An, Ran; Wipf, David O; Minerick, Adrienne R

    2014-03-01

    Alternating-current (AC) electrokinetics involve the movement and behaviors of particles or cells. Many applications, including dielectrophoretic manipulations, are dependent upon charge interactions between the cell or particle and the surrounding medium. Medium concentrations are traditionally treated as spatially uniform in both theoretical models and experiments. Human red blood cells (RBCs) are observed to crenate, or shrink due to changing osmotic pressure, over 10 min experiments in non-uniform AC electric fields. Cell crenation magnitude is examined as functions of frequency from 250 kHz to 1 MHz and potential from 10 Vpp to 17.5 Vpp over a 100 μm perpendicular electrode gap. Experimental results show higher peak to peak potential and lower frequency lead to greater cell volume crenation up to a maximum volume loss of 20%. A series of experiments are conducted to elucidate the physical mechanisms behind the red blood cell crenation. Non-uniform and uniform electrode systems as well as high and low ion concentration experiments are compared and illustrate that AC electroporation, system temperature, rapid temperature changes, medium pH, electrode reactions, and convection do not account for the crenation behaviors observed. AC electroosmotic was found to be negligible at these conditions and AC electrothermal fluid flows were found to reduce RBC crenation behaviors. These cell deformations were attributed to medium hypertonicity induced by ion concentration gradients in the spatially nonuniform AC electric fields.

  6. Analytical theory and possible detection of the ac quantum spin Hall effect

    DOE PAGES

    Deng, W. Y.; Ren, Y. J.; Lin, Z. X.; ...

    2017-07-11

    Here, we develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.

  7. Study of switching transients in high frequency converters

    NASA Technical Reports Server (NTRS)

    Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony

    1993-01-01

    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is

  8. AC/DC Power Systems with Applications for future Lunar/Mars base and Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    Chowdhury, Badrul H.

    2005-01-01

    ABSTRACT The Power Systems branch at JSC faces a number of complex issues as it readies itself for the President's initiative on future space exploration beyond low earth orbit. Some of these preliminary issues - those dealing with electric power generation and distribution on board Mars-bound vehicle and that on Lunar and Martian surface may be summarized as follows: Type of prime mover - Because solar power may not be readily available on parts of the Lunar/Mars surface and also during the long duration flight to Mars, the primary source of power will most likely be nuclear power (Uranium fuel rods) with a secondary source of fuel cell (Hydrogen supply). The electric power generation source - With nuclear power being the main prime mover, the electric power generation source will most likely be an ac generator at a yet to be determined frequency. Thus, a critical issue is whether the generator should generate at constant or variable frequency. This will decide what type of generator to use - whether it is a synchronous machine, an asynchronous induction machine or a switched reluctance machine. The type of power distribution system - the distribution frequency, number of wires (3- wire, 4-wire or higher), and ac/dc hybridization. Building redundancy and fault tolerance in the generation and distribution sub-systems so that the system is safe; provides 100% availability to critical loads; continues to operate even with faulted sub-systems; and requires minimal maintenance. This report descril_es results of a summer faculty fellowship spent in the Power Systems Branch with the specific aim of investigating some of the lessons learned in electric power generation and usage from the terrestrial power systems industry, the aerospace industry as well as NASA's on-going missions so as to recommend novel surface and vehicle-based power systems architectures in support of future space exploration initiatives. A hybrid ac/dc architecture with source side and load side

  9. Measurements and modeling of radio frequency field structures in a helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. A.; Chen, Guangye; Arefiev, A. V.

    2011-01-01

    Measurements of the radio frequency (rf) field structure, plasma density, and electron temperature are presented for a 1 kW argon helicon plasma source. The measured profiles change considerably when the equilibrium magnetic field is reversed. The measured rf fields are identified as fields of radially localized helicon waves, which propagate in the axial direction. The rf field structure is compared to the results of two-dimensional cold plasma full-wave simulations for the measured density profiles. Electron collision frequency is adjusted in the simulations to match the simulated and measured field profiles. The resulting frequency is anomalously high, which is attributed tomore » the excitation of an ion-acoustic instability. The calculated power deposition is insensitive to the collision frequency and accounts for most of the power supplied by the rf-generator.« less

  10. Fully alternating, triaxial electric or magnetic fields offer new routes to fluid vorticity

    DOE PAGES

    Martin, James E.; Solis, Kyle J.

    2014-10-31

    Noncontact methods of generating strong fluid vorticity are important to problems involving heat and mass transfer, fluid mixing, active wetting, and droplet transport. Furthermore, because zero or even negative shear viscosities can be induced, vorticity can greatly extend the control range of the smart fluids used in magnetorheological devices. In recent work we have shown that a particular class of ac/ac/dc triaxial fields (so-called symmetry-breaking rational fields) can create strong vorticity in magnetic particle suspensions and have presented a theory of the vorticity that is based on the symmetry of the 2-d Lissajous trajectories of the field and its converse.more » In this paper we demonstrate that there are three countably infinite sets of fully alternating ac/ac/ac triaxial fields whose frequencies form rational triads that have the symmetry required to drive fluid vorticity. The symmetry of the 3-d Lissajous trajectories of the field and its converse can be derived and from this the direction of the vorticity axis can be predicted, as can the dependence of the sign of the vorticity on the phase relations between the three field components. Experimental results are presented that validate the symmetry theory. These discoveries significantly broaden the class of triaxial fields that can be exploited to produce strong noncontact flow.« less

  11. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOEpatents

    Pitel, Ira J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.

  12. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOEpatents

    Pitel, I.J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.

  13. Dielectric behavior of AC aged polyethylene in humid environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarpa, P.C.N.; Das-Gupta, D.K.; Bulinski, A.T.

    1996-12-31

    The present paper reports the results of a study of electrical aging of low density polyethylene (LDPE) aged in humid environment (0.1M NaCl) at an AC stress of 6kV/mm, 1kHz, at room temperature (RT) and at 65 C, and cross-linked polyethylene (XLPE) AC aged in humid environment (water) at an AC stress of 6kV/mm, 50Hz, at RT, for an extended period of time. For this study the dielectric spectroscopy data in the frequency range of 10{sup {minus}5}Hz to 10{sup 6}Hz and their comparative analysis, have been used to provide electrical analog models of the aging.

  14. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10-4-10-3 Ω-1·m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  15. Accelerated detection of viral particles by combining AC electric field effects and micro-Raman spectroscopy.

    PubMed

    Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides

    2015-01-08

    A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the "fingerprinting" capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses.

  16. Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy

    PubMed Central

    Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides

    2015-01-01

    A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses. PMID:25580902

  17. Frequency modulation drive for a piezoelectric motor

    DOEpatents

    Mittas, Anthony

    2001-01-01

    A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

  18. Investigation on the mode of AC discharge in H2O affected by temperature

    NASA Astrophysics Data System (ADS)

    Siyuan, DONG; Shaomeng, GUO; Dan, WEN; Xiaoliang, TANG; Gao, QIU

    2018-04-01

    In this paper, some experimental equipment has been set up for kHz frequency AC liquid phase discharge, and the temperature of the deionized water was regulated during discharge. The electrical characteristics and spectra of liquid phase H2O discharge have been investigated. Two discharge modes, high temperature and low temperature, were both found. The results show that there are two mechanisms in liquid phase discharge: the field ionization mechanism and the breakdown mechanism of bubbles, and these two mechanisms are always developed simultaneously; the temperature is the key factor determining the discharge type. At high temperature, the breakdown of bubbles is the main discharge mechanism, and the field ionization mechanism occurs mainly at low temperature.

  19. Here Be Dragons: Characterization of ACS/WFC Scattered Light Anomalies

    NASA Astrophysics Data System (ADS)

    Porterfield, B.; Coe, D.; Gonzaga, S.; Anderson, J.; Grogin, N.

    2016-11-01

    We present a study characterizing scattered light anomalies that occur near the edges of Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) images. We inspected all 8,573 full-frame ACS/WFC raw images with exposure times longer than 350 seconds obtained in the F606W and F814W filters from 2002 to October 2013. We visually identified two particular scattered light artifacts known as "dragon's breath" and edge glow. Using the 2MASS point source catalog and Hubble Guide Star Catalog (GSC II), we identified the stars that caused these artifacts. The stars are all located in narrow bands ( 3" across) just outside the ACS/WFC field of view (2" - 16" away). We provide a map of these risky areas around the ACS/WFC detectors - users should avoid positioning bright stars in these regions when designing ACS/WFC imaging observations. We also provide interactive webpages which display all the image artifacts we identified, allowing users to see examples of the severity of artifacts they might expect for a given stellar magnitude at a given position relative to the ACS/WFC field of view. On average, 10th (18th) magnitude stars produce artifacts about 1,000 (100) pixels long. But the severity of these artifacts can vary strongly with small positional shifts (∼ 1"). The results are similar for both filters (F606W and F814W) when expressed in total fluence, or flux multiplied by exposure time.

  20. High Frequency Analyzer (HFA) of Plasma Wave Experiment (PWE) onboard the Arase spacecraft

    NASA Astrophysics Data System (ADS)

    Kumamoto, Atsushi; Tsuchiya, Fuminori; Kasahara, Yoshiya; Kasaba, Yasumasa; Kojima, Hirotsugu; Yagitani, Satoshi; Ishisaka, Keigo; Imachi, Tomohiko; Ozaki, Mitsunori; Matsuda, Shoya; Shoji, Masafumi; Matsuoka, Aayako; Katoh, Yuto; Miyoshi, Yoshizumi; Obara, Takahiro

    2018-05-01

    The High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment onboard the Arase (ERG) spacecraft. The main purposes of the HFA include (1) determining the electron number density around the spacecraft from observations of upper hybrid resonance (UHR) waves, (2) measuring the electromagnetic field component of whistler-mode chorus in a frequency range above 20 kHz, and (3) observing radio and plasma waves excited in the storm-time magnetosphere. Two components of AC electric fields detected by Wire Probe Antenna and one component of AC magnetic fields detected by Magnetic Search Coils are fed to the HFA. By applying analog and digital signal processing in the HFA, the spectrograms of two electric fields (EE mode) or one electric field and one magnetic field (EB mode) in a frequency range from 10 kHz to 10 MHz are obtained at an interval of 8 s. For the observation of plasmapause, the HFA can also be operated in PP (plasmapause) mode, in which spectrograms of one electric field component below 1 MHz are obtained at an interval of 1 s. In the initial HFA operations from January to July, 2017, the following results are obtained: (1) UHR waves, auroral kilometric radiation (AKR), whistler-mode chorus, electrostatic electron cyclotron harmonic waves, and nonthermal terrestrial continuum radiation were observed by the HFA in geomagnetically quiet and disturbed conditions. (2) In the test operations of the polarization observations on June 10, 2017, the fundamental R-X and L-O mode AKR and the second-harmonic R-X mode AKR from different sources in the northern polar region were observed. (3) The semiautomatic UHR frequency identification by the computer and a human operator was applied to the HFA spectrograms. In the identification by the computer, we used an algorithm for narrowing down the candidates of UHR frequency by checking intensity and bandwidth. Then, the identified UHR frequency by the computer was checked and corrected if needed by the human

  1. Effect of an ac Perturbation on the Electroosmotic Behavior of a Cation-Exchange Membrane. Influence of the Cation Nature.

    PubMed

    Barragán, V. M.; Bauzá, C. Ruíz

    2001-08-01

    The effect of an ac sinusoidal perturbation of known amplitude and frequency superimposed on the usual dc applied electric voltage difference on the electroosmotic flow through a typical cation-exchange membrane has been studied using different monovalent electrolytes. As a general trend, the presence of the ac perturbation increases the value of the electroosmotic flow with respect to the value in the absence of ac perturbation. A dispersion of the electroosmotic permeability on the frequency of the applied ac signal has been found for the three studied electrolytes, observing that the electroosmotic permeability reaches maximum values for some characteristic values of the frequency. This behavior may be related to the different relaxation processes in heterogeneous mediums. Copyright 2001 Academic Press.

  2. Electromigration analysis of solder joints under ac load: A mean time to failure model

    NASA Astrophysics Data System (ADS)

    Yao, Wei; Basaran, Cemal

    2012-03-01

    In this study, alternating current (ac) electromigration (EM) degradation simulations were carried out for Sn95.5%Ag4.0%Cu0.5 (SAC405- by weight) solder joints. Mass transport analysis was conducted with viscoplastic material properties for quantifying damage mechanism in solder joints. Square, sine, and triangle current wave forms ac were used as input signals. dc and pulsed dc (PDC) electromigration analysis were conducted for comparison purposes. The maximum current density ranged from 2.2×106A/cm2 to 5.0×106A/cm2, frequency ranged from 0.05 Hz to 5 Hz with ambient temperature varying from 350 K to 450 K. Because the room temperature is nearly two-thirds of SAC solder joint's melting point on absolute temperature scale (494.15 K), viscoplastic material model is essential. Entropy based damage evolution model was used to investigate mean time to failure (MTF) behavior of solder joints subjected to ac stressing. It was observed that MTF was inversely proportional to ambient temperature T1.1 in Celsius and also inversely proportional to current density j0.27 in A/cm2. Higher frequency will lead to a shorter lifetime with in the frequency range we studied, and a relationship is proposed as MTF∝f-0.41. Lifetime of a solder joint subjected to ac is longer compared with dc and PDC loading conditions. By introducing frequency, ambient temperature and current density dependency terms, a modified MTTF equation was proposed for solder joints subjected to ac current stressing.

  3. Synthesis, characterization and AC conductivity studies of silver doped conducting polyaniline/graphene/SrTiO3 composites

    NASA Astrophysics Data System (ADS)

    Vinay, K.; Shivakumar, K.; Ravikiran, Y. T.; Revanasiddappa, M.

    2018-05-01

    The present work is an investigation of ac conduction behaviour and dielectric response of Polyaniline/Ag/Graphene/SrTiO3 (PAGS) composite prepared by in-situ chemical oxidative interfacial polymerization using (NH4)2S2O8 as an oxidising agent at 0-5°C. The structural characterization of the samples was examined using FT-IR and XRD techniques. The ac conductivity and dielectric response of synthesized polymer composites were investigated at room temperature in the frequency range varying from 5 × 101 - 5 × 106 Hz using HIOKI make 3532-50 LCR Hi-tester. The ac conductivity increases with increase in frequency and follows the regular trend, the real dielectric constant (ɛ') and imaginary dielectric constant (ɛ'') decreases with increase in frequency and exhibits almost zero dielectric loss at higher frequencies, which suggests that the composite is a lossless material at frequencies beyond 3Hz.

  4. Studies on a.c. conductivity behaviour of milled carbon fibre reinforced epoxy gradient composites

    NASA Astrophysics Data System (ADS)

    Nigrawal, Archana; Sharma, Arun Kumar; Ojha, Pragya

    2018-05-01

    Temperature and frequency dependence of a.c. conductivity (σa.c) of milled carbon fibre (MCF) reinforced epoxy gradient composites has been studied in a wide temperature (30 to 150°C) and frequency range (1 to 10kHz). It is observed that the ac conductivity of composites increases with increase in temperature. Activation energy decreases from 0.55 eV to 0.43 eV on increase of MCF content from 0.45to 1.66 Vol%.

  5. Electric-Field Instrument With Ac-Biased Corona Point

    NASA Technical Reports Server (NTRS)

    Markson, R.; Anderson, B.; Govaert, J.

    1993-01-01

    Measurements indicative of incipient lightning yield additional information. New instrument gives reliable readings. High-voltage ac bias applied to needle point through high-resistance capacitance network provides corona discharge at all times, enabling more-slowly-varying component of electrostatic potential of needle to come to equilibrium with surrounding air. High resistance of high-voltage coupling makes instrument insensitive to wind. Improved corona-point instrument expected to yield additional information assisting in safety-oriented forecasting of lighting.

  6. AC instrumentation amplifier for bioimpedance measurements.

    PubMed

    Pallás-Areny, R; Webster, J G

    1993-08-01

    We analyze the input impedance and CMRR requirements for an amplifier for bioimpedance measurements when considering the capacitive components of the electrode-skin contact impedance. We describe an ac-coupled instrumentation amplifier (IA) that, in addition to fulfilling those requirements, both provides interference and noise reduction, and yields a zero phase shift over a wide frequency band without using broadband op amps.

  7. Wave-field decay rate estimate from the wavenumber-frequency spectra

    NASA Astrophysics Data System (ADS)

    Comisel, H.; Narita, Y.; Voros, Z.

    2017-12-01

    Observational data for wave or turbulent fields are conveniently analyzed and interpreted in the Fourier domain spanning the frequencies and the wavenumbers. If a wave field has not only oscillatory components (characterized by real parts of frequency) but also temporally decaying components (characterized by imaginary parts of frequency), the energy spectrum shows a frequency broadening around the peak due to the imaginary parts of frequency (or the decay rate). The mechanism of the frequency broadening is the same as that of the Breit-Wigner spectrum in nuclear resonance phenomena. We show that the decay rate can observationally and directly be estimated once multi-point data are available, and apply the method to Cluster four-point magnetometer data in the solar wind on a spatial scale of about 1000 km. The estimated decay rate is larger than the eddy turnover time, indicating that the decay profile of solar wind turbulence is more plasma physical such as excitation of whistler waves and other modes rather than hydrodynamic turbulence behavior.

  8. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.

    PubMed

    Islam, Nazmul; Reyna, Jairo

    2012-04-01

    This paper discusses the principle of biased alternating current electroosmosis (ACEO) and its application to move the bulk fluid in a microchannel, as an alternative to mechanical pumping methods. Previous EO-driven flow research has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC (direct current) bias when generating the electric field needed to impart electroosmosis (EO) within a microchannel. The results presented here are numerical and experimental. The numerical results were generated through simulations performed using COMSOL 3.5a. Currently available theoretical models for EO flows were embedded in the software and solved numerically to evaluate the effects of channel geometry, frequency of excitation, electrode array geometry, and AC signal with a DC bias on the flow imparted on an electrically conducting fluid. Simulations of the ACEO flow driven by a constant magnitude of AC voltage over symmetric electrodes did not indicate relevant net flows. However, superimposing a DC signal over the AC signal on the same symmetric electrode array leads to a noticeable net forward flow. Moreover, changing the polarity of electrical signal creates a bi-directional flow on symmetrical electrode array. Experimental flow measurements were performed on several electrode array configurations. The mismatch between the numerical and experimental results revealed the limitations of the currently available models for the biased EO. However, they confirm that using a symmetric electrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Assessment of three AC electroosmotic flow protocols for mixing in microfluidic channel.

    PubMed

    Chen, Jia-Kun; Weng, Chi-Neng; Yang, Ruey-Jen

    2009-05-07

    This study performs an experimental investigation into the micromixer capabilities of three different protocols of AC electroosmotic flow (AC EOF), namely capacitive charging (CC), Faradaic charging (FC) and asymmetric polarization (AP). The results reveal that the vortices generated by the FC protocol (the frequency is around 50-350 Hz) are stronger than those induced by the CC protocol (the frequency is higher than 350 Hz), and therefore provide an improved mixing effect. However, in the FC protocol, the frequency of the external AC voltage must be carefully controlled to avoid damaging electrodes as a result of Faradaic reactions. The experimental results indicate that the AP polarization effect (the applied voltage and frequency are V(1) = 1 V(pp) and V(2) = 20 V(pp)/5 kHz) induces more powerful vortices than either the CC protocol or the FC protocol, and therefore yields a better mixing performance. Two AP-based micromixers are fabricated with symmetric and asymmetric electrode configurations, respectively. The mixing indices achieved by the two devices after an elapsed time of 60 seconds are found to be 56.49 % and 71.77 %, respectively. This result shows that of the two devices, an asymmetric electrode configuration represents a more suitable choice for micromixer in microfluidic devices.

  10. ACS Internal Flat Fields

    NASA Astrophysics Data System (ADS)

    Borncamp, David

    2017-08-01

    The stability of the CCD flat fields will be monitored using the calibration lamps. One set of observations for all the filters and another at a different epoch for a subset of filters will be taken during this cycle. High signal observations will be used to assess the stability of the pixel-to-pixel flat field structure and to monitor the position of the dust motes.

  11. ACS Internal Flat Fields

    NASA Astrophysics Data System (ADS)

    Borncamp, David

    2016-10-01

    The stability of the CCD flat fields will be monitored using the calibration lamps. One set of observations for all the filters and another at a different epoch for a subset of filters will be taken during this cycle. High signal observations will be used to assess the stability of the pixel-to-pixel flat field structure and to monitor the position of the dust motes.

  12. Automatic NMR field-frequency lock-pulsed phase locked loop approach.

    PubMed

    Kan, S; Gonord, P; Fan, M; Sauzade, M; Courtieu, J

    1978-06-01

    A self-contained deuterium frequency-field lock scheme for a high-resolution NMR spectrometer is described. It is based on phase locked loop techniques in which the free induction decay signal behaves as a voltage-controlled oscillator. By pulsing the spins at an offset frequency of a few hundred hertz and using a digital phase-frequency discriminator this method not only eliminates the usual phase, rf power, offset adjustments needed in conventional lock systems but also possesses the automatic pull-in characteristics that dispense with the use of field sweeps to locate the NMR line prior to closure of the lock loop.

  13. Cosmic shear analysis of archival HST/ACS data. I. Comparison of early ACS pure parallel data to the HST/GEMS survey

    NASA Astrophysics Data System (ADS)

    Schrabback, T.; Erben, T.; Simon, P.; Miralles, J.-M.; Schneider, P.; Heymans, C.; Eifler, T.; Fosbury, R. A. E.; Freudling, W.; Hetterscheidt, M.; Hildebrandt, H.; Pirzkal, N.

    2007-06-01

    Context: This is the first paper of a series describing our measurement of weak lensing by large-scale structure, also termed “cosmic shear”, using archival observations from the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). Aims: In this work we present results from a pilot study testing the capabilities of the ACS for cosmic shear measurements with early parallel observations and presenting a re-analysis of HST/ACS data from the GEMS survey and the GOODS observations of the Chandra Deep Field South (CDFS). Methods: We describe the data reduction and, in particular, a new correction scheme for the time-dependent ACS point-spread-function (PSF) based on observations of stellar fields. This is currently the only technique which takes the full time variation of the PSF between individual ACS exposures into account. We estimate that our PSF correction scheme reduces the systematic contribution to the shear correlation functions due to PSF distortions to <2 × 10-6 for galaxy fields containing at least 10 stars, which corresponds to ⪉5% of the cosmological signal expected on scales of a single ACS field. Results: We perform a number of diagnostic tests indicating that the remaining level of systematics is consistent with zero for the GEMS and GOODS data confirming the success of our PSF correction scheme. For the parallel data we detect a low level of remaining systematics which we interpret to be caused by a lack of sufficient dithering of the data. Combining the shear estimate of the GEMS and GOODS observations using 96 galaxies arcmin-2 with the photometric redshift catalogue of the GOODS-MUSIC sample, we determine a local single field estimate for the mass power spectrum normalisation σ8, CDFS=0.52+0.11-0.15 (stat) ± 0.07(sys) (68% confidence assuming Gaussian cosmic variance) at a fixed matter density Ω_m=0.3 for a ΛCDM cosmology marginalising over the uncertainty of the Hubble parameter and the redshift distribution. We

  14. Active stabilization of error field penetration via control field and bifurcation of its stable frequency range

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Shiraishi, J.; Takechi, M.; Matsunaga, G.; Isayama, A.; Hayashi, N.; Ide, S.

    2017-11-01

    An active stabilization effect of a rotating control field against an error field penetration is numerically studied. We have developed a resistive magnetohydrodynamic code ‘AEOLUS-IT’, which can simulate plasma responses to rotating/static external magnetic field. Adopting non-uniform flux coordinates system, the AEOLUS-IT simulation can employ high magnetic Reynolds number condition relevant to present tokamaks. By AEOLUS-IT, we successfully clarified the stabilization mechanism of the control field against the error field penetration. Physical processes of a plasma rotation drive via the control field are demonstrated by the nonlinear simulation, which reveals that the rotation amplitude at a resonant surface is not a monotonic function of the control field frequency, but has an extremum. Consequently, two ‘bifurcated’ frequency ranges of the control field are found for the stabilization of the error field penetration.

  15. Artificial neural networks for AC losses prediction in superconducting round filaments

    NASA Astrophysics Data System (ADS)

    Leclerc, J.; Makong Hell, L.; Lorin, C.; Masson, P. J.

    2016-06-01

    An extensive and fast method to estimate superconducting AC losses within a superconducting round filament carrying an AC current and subjected to an elliptical magnetic field (both rotating and oscillating) is presented. Elliptical fields are present in rotating machine stators and being able to accurately predict AC losses in fully superconducting machines is paramount to generating realistic machine designs. The proposed method relies on an analytical scaling law (ASL) combined with two artificial neural network (ANN) estimators taking 9 input parameters representing the superconductor, external field and transport current characteristics. The ANNs are trained with data generated by finite element (FE) computations with a commercial software (FlexPDE) based on the widely accepted H-formulation. After completion, the model is validated through comparison with additional randomly chosen data points and compared for simple field configurations to other predictive models. The loss estimation discrepancy is about 3% on average compared to the FEA analysis. The main advantages of the model compared to FE simulations is the fast computation time (few milliseconds) which allows it to be used in iterated design processes of fully superconducting machines. In addition, the proposed model provides a higher level of fidelity than the scaling laws existing in literature usually only considering pure AC field.

  16. AC Application of HTS Conductors in Highly Dynamic Electric Motors

    NASA Astrophysics Data System (ADS)

    Oswald, B.; Best, K.-J.; Setzer, M.; Duffner, E.; Soell, M.; Gawalek, W.; Kovalev, L. K.

    2006-06-01

    Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit.

  17. Radio frequency sheaths in an oblique magnetic field

    DOE PAGES

    Myra, James R.; D'Ippolito, Daniel A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numericallymore » to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.« less

  18. Particle Line Assembly/Patterning by Microfluidic AC Electroosmosis

    NASA Astrophysics Data System (ADS)

    Lian, Meng; Islam, Nazmul; Wu, Jie

    2006-04-01

    Recently AC electroosmosis has attracted research interests worldwide. This paper is the first to investigate particle line assembly/patterning by AC electroosmosis. Since AC electroosmotic force has no dependence on particle sizes, this technique is particularly useful for manipulating nanoscale substance, and hopefully constructs functional nanoscale devices. Two types of ACEO devices, in the configurations of planar interdigitated electrodes and parallel plate electrodes, and a biased ACEO technique are studied, which provides added flexibility in particle manipulation and line assembly. The paper also investigates the effects of electrical field distributions on generating microflows for particle assembly. The results are corroborated experimentally.

  19. AC conductivity of a quantum Hall line junction

    NASA Astrophysics Data System (ADS)

    Agarwal, Amit; Sen, Diptiman

    2009-09-01

    We present a microscopic model for calculating the AC conductivity of a finite length line junction made up of two counter- or co-propagating single mode quantum Hall edges with possibly different filling fractions. The effect of density-density interactions and a local tunneling conductance (σ) between the two edges is considered. Assuming that σ is independent of the frequency ω, we derive expressions for the AC conductivity as a function of ω, the length of the line junction and other parameters of the system. We reproduce the results of Sen and Agarwal (2008 Phys. Rev. B 78 085430) in the DC limit (\\omega \\to 0 ), and generalize those results for an interacting system. As a function of ω, the AC conductivity shows significant oscillations if σ is small; the oscillations become less prominent as σ increases. A renormalization group analysis shows that the system may be in a metallic or an insulating phase depending on the strength of the interactions. We discuss the experimental implications of this for the behavior of the AC conductivity at low temperatures.

  20. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-12-01

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  1. Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube.

    PubMed

    Luo, W-J

    2004-10-15

    This study investigates transient electroosmotic flow in a rectangular curved microtube in which the fluid is driven by the application of an external DC or AC electric field. The resultant flow-field evolutions within the microtube are simulated using the backwards-Euler time-stepping numerical method to clarify the relationship between the changes in the axial-flow velocity and the intensity of the applied electric field. When the electric field is initially applied or varies, the fluid within the double layer responds virtually immediately, and the axial velocity within the double layer tends to follow the varying intensity of the applied electric field. The greatest net charge density exists at the corners of the microtube as a result of the overlapping electrical double layers of the two walls. It results in local maximum or minimum axial velocities in the corners during increasing or decreasing applied electric field intensity in either the positive or negative direction. As the fluid within the double layer starts to move, the bulk fluid is gradually dragged into motion through the diffusion of momentum from the double layer. A finite time is required for the full momentum of the double layer to diffuse to the bulk fluid; hence, a certain phase shift between the applied electric field and the flow response is inevitable. The patterns of the axial velocity contours during the transient evolution are investigated in this study. It is found that these patterns are determined by the efficiency of momentum diffusion from the double layer to the central region of the microtube.

  2. A study of some features of ac and dc electric power systems for a space station

    NASA Technical Reports Server (NTRS)

    Hanania, J. I.

    1983-01-01

    This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.

  3. ACS sampling system: design, implementation, and performance evaluation

    NASA Astrophysics Data System (ADS)

    Di Marcantonio, Paolo; Cirami, Roberto; Chiozzi, Gianluca

    2004-09-01

    By means of ACS (ALMA Common Software) framework we designed and implemented a sampling system which allows sampling of every Characteristic Component Property with a specific, user-defined, sustained frequency limited only by the hardware. Collected data are sent to various clients (one or more Java plotting widgets, a dedicated GUI or a COTS application) using the ACS/CORBA Notification Channel. The data transport is optimized: samples are cached locally and sent in packets with a lower and user-defined frequency to keep network load under control. Simultaneous sampling of the Properties of different Components is also possible. Together with the design and implementation issues we present the performance of the sampling system evaluated on two different platforms: on a VME based system using VxWorks RTOS (currently adopted by ALMA) and on a PC/104+ embedded platform using Red Hat 9 Linux operating system. The PC/104+ solution offers, as an alternative, a low cost PC compatible hardware environment with free and open operating system.

  4. Pixel-based CTE Correction of ACS/WFC: Modifications To The ACS Calibration Pipeline (CALACS)

    NASA Astrophysics Data System (ADS)

    Smith, Linda J.; Anderson, J.; Armstrong, A.; Avila, R.; Bedin, L.; Chiaberge, M.; Davis, M.; Ferguson, B.; Fruchter, A.; Golimowski, D.; Grogin, N.; Hack, W.; Lim, P. L.; Lucas, R.; Maybhate, A.; McMaster, M.; Ogaz, S.; Suchkov, A.; Ubeda, L.

    2012-01-01

    The Advanced Camera for Surveys (ACS) was installed on the Hubble Space Telescope (HST) nearly ten years ago. Over the last decade, continuous exposure to the harsh radiation environment has degraded the charge transfer efficiency (CTE) of the CCDs. The worsening CTE impacts the science that can be obtained by altering the photometric, astrometric and morphological characteristics of sources, particularly those farthest from the readout amplifiers. To ameliorate these effects, Anderson & Bedin (2010, PASP, 122, 1035) developed a pixel-based empirical approach to correcting ACS data by characterizing the CTE profiles of trails behind warm pixels in dark exposures. The success of this technique means that it is now possible to correct full-frame ACS/WFC images for CTE degradation in the standard data calibration and reduction pipeline CALACS. Over the past year, the ACS team at STScI has developed, refined and tested the new software. The details of this work are described in separate posters. The new code is more effective at low flux levels (< 50 electrons) than the original Anderson & Bedin code, and employs a more accurate time and temperature dependence for CTE. The new CALACS includes the automatic removal of low-level bias stripes (produced by the post-repair ACS electronics) and pixel-based CTE correction. In addition to the standard cosmic ray corrected, flat-fielded and drizzled data products (crj, flt and drz files) there are three new equivalent files (crc, flc and drc) which contain the CTE-corrected data products. The user community will be able to choose whether to use the standard or CTE-corrected products.

  5. Experimental investigation of the critical magnetic fields of transition metal superconductors

    NASA Technical Reports Server (NTRS)

    Mcevoy, J. P.

    1973-01-01

    The isothermal magnetic transitions of a type 2 superconductor have been studied by AC susceptibility techniques as a function of the amplitude and frequency of the exciting field. The field variation of the complex susceptibility was used to determine the critical fields. The research was planned to clarify the determination (both experimentally and theoretically) of the maximum field at which the superconductive phase spontaneously nucleates in the bulk and on the surface of the metal.

  6. Geophysical exploration with audio frequency magnetic fields

    NASA Astrophysics Data System (ADS)

    Labson, V. F.

    1985-12-01

    Experience with the Audio Frequency Magnetic (AFMAG) method has demonstrated that an electromagnetic exploration system using the Earth's natural audiofrequency magnetic fields as an energy source, is capable of mapping subsurface electrical structure in the upper kilometer of the Earth's crust. The limitations are resolved by adapting the tensor analysis and remote reference noise bias removal techniques from the geomagnetic induction and magnetotelluric methods to the computation of the tippers. After a through spectral study of the natural magnetic fields, lightweight magnetic field sensors, capable of measuring the magnetic field throughout the year were designed. A digital acquisition and processing sytem, with the ability to provide audiofrequency tipper results in the field, was then built to complete the apparatus. The new instrumetnation was used in a study of the Mariposa, California site previously mapped with AFMAG. The usefulness of natural magnetic field data in mapping an electrical conductive body was again demonstrated. Several field examples are used to demonstrate that the proposed procedure yields reasonable results.

  7. Field Performance of Bt Eggplants (Solanum melongena L.) in the Philippines: Cry1Ac Expression and Control of the Eggplant Fruit and Shoot Borer (Leucinodes orbonalis Guenée)

    PubMed Central

    Hautea, Desiree M.; Taylo, Lourdes D.; Masanga, Anna Pauleen L.; Sison, Maria Luz J.; Narciso, Josefina O.; Quilloy, Reynaldo B.; Hautea, Randy A.; Shotkoski, Frank A.; Shelton, Anthony M.

    2016-01-01

    Plants expressing Cry proteins from the bacterium, Bacillus thuringiensis (Bt), have become a major tactic for controlling insect pests in maize and cotton globally. However, there are few Bt vegetable crops. Eggplant (Solanum melongena) is a popular vegetable grown throughout Asia that is heavily treated with insecticides to control the eggplant fruit and shoot borer, Leucinodes orbonalis (EFSB). Herein we provide the first publicly available data on field performance in Asia of eggplant engineered to produce the Cry1Ac protein. Replicated field trials with five Bt eggplant open-pollinated (OP) lines from transformation event EE-1 and their non-Bt comparators were conducted over three cropping seasons in the Philippines from 2010–2012. Field trials documented levels of Cry1Ac protein expressed in plants and evaluated their efficacy against the primary target pest, EFSB. Cry1Ac concentrations ranged from 0.75–24.7 ppm dry weight with the highest in the terminal leaves (or shoots) and the lowest in the roots. Cry1Ac levels significantly increased from the vegetative to the reproductive stage. Bt eggplant lines demonstrated excellent control of EFSB. Pairwise analysis of means detected highly significant differences between Bt eggplant lines and their non-Bt comparators for all field efficacy parameters tested. Bt eggplant lines demonstrated high levels of control of EFSB shoot damage (98.6–100%) and fruit damage (98.1–99.7%) and reduced EFSB larval infestation (95.8–99.3%) under the most severe pest pressure during trial 2. Moths that emerged from larvae collected from Bt plants in the field and reared in their Bt eggplant hosts did not produce viable eggs or offspring. These results demonstrate that Bt eggplant lines containing Cry1Ac event EE-1 provide outstanding control of EFSB and can dramatically reduce the need for conventional insecticides. PMID:27322533

  8. Nonlinear magnetoelectric effects at high magnetic field amplitudes in composite multiferroics

    NASA Astrophysics Data System (ADS)

    Fetisov, L. Y.; Burdin, D. A.; Ekonomov, N. A.; Chashin, D. V.; Zhang, J.; Srinivasan, G.; Fetisov, Y. K.

    2018-04-01

    Magnetoelectric effects (ME) in ferromagnetic-ferroelectric layered composites arise due to magnetostriction and piezoelectric effect in the ferroic phases and are mediated by mechanical strain. The ME coupling strength in such composites could be measured by electrical response to an applied ac magnetic field h and a bias magnetic field H. The coupling, in general, is linear for small ac field amplitudes, but one expects nonlinear ME interactions for high field strengths since the dependence of magnetostriction λ on magnetic fields is nonlinear. Here we report on nonlinear voltage response of a composite of ferromagnetic Metglas and piezoelectric lanthanum gallium tantalate (langatate) subjected to an ac and a bias magnetic fields, resulting in the generation of voltages at harmonics of the frequency of h. The dependences of the ME voltage of the first four harmonics on the magnetic fields for H  =  0–20 Oe and h  =  0–50 Oe were measured. Up to a hundred harmonics were observed in the voltage versus frequency spectra and was indicative of high nonlinearity of the ME coupling in the multiferroic structure. It is shown that for h smaller than the saturation magnetic field H S for magnetostriction in the ferromagnetic layer, the amplitudes of the ME voltages are proportional to the derivatives of λ with respect to H and show a power-law dependence on the pumping field amplitude A n (H) ~ λ (n)(H)h n . We discuss a procedure for estimating the amplitudes of the harmonics for large pumping fields h, on the order of H S. The nonlinear ME effects in the composites are of interest for application in signal processing devices and highly sensitive magnetic field sensors.

  9. AC and DC electrical behavior of MWCNT/epoxy nanocomposite near percolation threshold: Equivalent circuits and percolation limits

    NASA Astrophysics Data System (ADS)

    Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser

    2018-03-01

    This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.

  10. Association between MTHFR 1298A>C polymorphism and spontaneous abortion with fetal chromosomal aneuploidy.

    PubMed

    Kim, Shin Young; Park, So Yeon; Choi, Ji Won; Kim, Do Jin; Lee, Shin Yeong; Lim, Ji Hyae; Han, Jung Yeol; Ryu, Hyun Mee; Kim, Min Hyoung

    2011-10-01

    PROBLEM  Polymorphisms in genes involved in folate metabolism are commonly associated with defects in folate-dependent homocysteine metabolism, which can result in DNA hypomethylation and chromosome nondisjunction. This prospective study aimed to investigate the associations between MTHFR 677C>T, MTHFR 1298A>C, MTR 2756A>G, MTRR 66A>G, and CBS 844ins68 polymorphisms and spontaneous abortion (SA) with fetal chromosomal aneuploidy. METHOD OF STUDY  Subjects included 33 SA with normal fetal karyotype, 24 SA with fetal chromosomal aneuploidy and 155 normal controls. Polymorphisms were genotyped by PCR-RFLP and QF-PCR analysis. RESULTS  The frequencies of MTHFR 1298AC and combined 1298AC/CC genotypes were higher in SA with fetal chromosomal aneuploidy than in controls. The 1298C allele frequency was also significantly higher in SA with fetal chromosomal aneuploidy than in controls. Moreover, the 1298C allele frequency was higher in SA with fetal chromosomal aneuploidy than in SA with normal fetal karyotype. The combined 1298AC/CC genotype was significantly associated with the risk of SA with fetal chromosomal aneuploidy compared with that of the 1298AA genotype (adjusted OR = 2.93, 95% CI: 1.11-7.69). There was no association between SA with fetal chromosomal aneuploidy and other polymorphisms. CONCLUSIONS  Our findings indicate that MTHFR 1298A>C polymorphism may be an independent risk factor for SA with fetal chromosomal aneuploidy. © 2011 John Wiley & Sons A/S.

  11. On two-liquid AC electroosmotic system for thin films.

    PubMed

    Navarkar, Abhishek; Amiroudine, Sakir; Demekhin, Evgeny A

    2016-03-01

    Lab-on-chip devices employ EOF for transportation and mixing of liquids. However, when a steady (DC) electric field is applied to the liquids, there are undesirable effects such as degradation of sample, electrolysis, bubble formation, etc. due to large magnitude of electric potential required to generate the flow. These effects can be averted by using a time-periodic or AC electric field. Transport and mixing of nonconductive liquids remain a problem even with this technique. In the present study, a two-liquid system bounded by two rigid plates, which act as substrates, is considered. The potential distribution is derived by assuming a Boltzmann charge distribution and using the Debye-Hückel linearization. Analytical solution of this time-periodic system shows some effects of viscosity ratio and permittivity ratio on the velocity profile. Interfacial electrostatics is also found to play a significant role in deciding velocity gradients at the interface. High frequency of the applied electric field is observed to generate an approximately static velocity profile away from the Electric Double Layer (EDL). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High-frequency graphene voltage amplifier.

    PubMed

    Han, Shu-Jen; Jenkins, Keith A; Valdes Garcia, Alberto; Franklin, Aaron D; Bol, Ageeth A; Haensch, Wilfried

    2011-09-14

    While graphene transistors have proven capable of delivering gigahertz-range cutoff frequencies, applying the devices to RF circuits has been largely hindered by the lack of current saturation in the zero band gap graphene. Herein, the first high-frequency voltage amplifier is demonstrated using large-area chemical vapor deposition grown graphene. The graphene field-effect transistor (GFET) has a 6-finger gate design with gate length of 500 nm. The graphene common-source amplifier exhibits ∼5 dB low frequency gain with the 3 dB bandwidth greater than 6 GHz. This first AC voltage gain demonstration of a GFET is attributed to the clear current saturation in the device, which is enabled by an ultrathin gate dielectric (4 nm HfO(2)) of the embedded gate structures. The device also shows extrinsic transconductance of 1.2 mS/μm at 1 V drain bias, the highest for graphene FETs using large-scale graphene reported to date.

  13. Frequency Response of Graphene Electrolyte-Gated Field-Effect Transistors

    PubMed Central

    McVay, Elaine; Palacios, Tomás

    2018-01-01

    This work develops the first frequency-dependent small-signal model for graphene electrolyte-gated field-effect transistors (EGFETs). Graphene EGFETs are microfabricated to measure intrinsic voltage gain, frequency response, and to develop a frequency-dependent small-signal model. The transfer function of the graphene EGFET small-signal model is found to contain a unique pole due to a resistive element, which stems from electrolyte gating. Intrinsic voltage gain, cutoff frequency, and transition frequency for the microfabricated graphene EGFETs are approximately 3.1 V/V, 1.9 kHz, and 6.9 kHz, respectively. This work marks a critical step in the development of high-speed chemical and biological sensors using graphene EGFETs. PMID:29414868

  14. Influence of temperature on AC conductivity of nanocrystalline CuAlO2

    NASA Astrophysics Data System (ADS)

    Prakash, T.

    2012-07-01

    Nanocrystalline CuAlO2 was synthesized by mechanical alloying of Cu2O and α-Al2O3 powders in the molar ratio of 1:1 for 20 h in toluene medium with tungsten carbide balls and vials using planetary ball mill. The ball milling was carried out at 300 rpm with a ball to powder weight ratio of 10:1 and then annealed at 1373 K in a platinum crucible for 20 h to get CuAlO2 phase with average crystallite size 45 nm. Complex impedance spectroscopic measurement in the frequency region 1 Hz to 10 MHz between the temperatures 333 to 473 K was carried out for nanocrystalline CuAlO2 sample. The obtained complex impedance data was analyzed for AC conductivities, DC and AC conductivities correlations and crossover frequencies ( f co ). The BNN (Barton, Nakajima and Namikawa) relation was applied to understand the correlation between DC and AC conductivities. The observed experimental results were discussed in the paper.

  15. Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, Michael P.; Reddell, Jerry P.

    1997-01-01

    This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.

  16. Demonstration of the frequency offset errors introduced by an incorrect setting of the Zeeman/magnetic field adjustment on the cesium beam frequency standard

    NASA Technical Reports Server (NTRS)

    Kaufmann, D. C.

    1976-01-01

    The fine frequency setting of a cesium beam frequency standard is accomplished by adjusting the C field control with the appropriate Zeeman frequency applied to the harmonic generator. A novice operator in the field, even when using the correct Zeeman frequency input, may mistakenly set the C field to any one of seven major Beam I peaks (fingers) represented by the Ramsey curve. This can result in frequency offset errors of as much as 2.5 parts in ten to the tenth. The effects of maladjustment are demonstrated and suggestions are discussed on how to avoid the subtle traps associated with C field adjustments.

  17. Experimental and theoretical characterization of an AC electroosmotic micromixer.

    PubMed

    Sasaki, Naoki; Kitamori, Takehiko; Kim, Haeng-Boo

    2010-01-01

    We have reported on a novel microfluidic mixer based on AC electroosmosis. To elucidate the mixer characteristics, we performed detailed measurements of mixing under various experimental conditions including applied voltage, frequency and solution viscosity. The results are discussed through comparison with results obtained from a theoretical model of AC electroosmosis. As predicted from the theoretical model, we found that a larger voltage (approximately 20 V(p-p)) led to more rapid mixing, while the dependence of the mixing on frequency (1-5 kHz) was insignificant under the present experimental conditions. Furthermore, the dependence of the mixing on viscosity was successfully explained by the theoretical model, and the applicability of the mixer in viscous solution (2.83 mPa s) was confirmed experimentally. By using these results, it is possible to estimate the mixing performance under given conditions. These estimations can provide guidelines for using the mixer in microfluidic chemical analysis.

  18. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  19. HST/ACS Observations of RR Lyrae Stars in Six Ultra-Deep Fields of M31

    NASA Technical Reports Server (NTRS)

    Jeffery, E. J.; Smith, E.; Brown, T. M.; Sweigart, A. V.; Kalirai, J. S.; Ferguson, H. C.; Guhathakurta, P.; Renzini, A.; Rich, R. M.

    2010-01-01

    We present HST/ACS observations of RR Lyrae variable stars in six ultra deep fields of the Andromeda galaxy (M31), including parts of the halo, disk, and giant stellar stream. Past work on the RR Lyrae stars in M31 has focused on various aspects of the stellar populations that make up the galaxy s halo, including their distances and metallicities. This study builds upon this previous work by increasing the spatial coverage (something that has been lacking in previous studies) and by searching for these variable stars in constituents of the galaxy not yet explored. Besides the 55 RR Lyrae stars we found in our initial field located 11kpc from the galactic nucleus, we find additional RR Lyrae stars in four of the remaining five ultra deep fields as follows: 21 in the disk, 24 in the giant stellar stream, 3 in the halo field 21kpc from the galactic nucleus, and 5 in one of the halo fields at 35kpc. No RR Lyrae were found in the second halo field at 35kpc. The RR Lyrae populations of these fields appear to mostly be of Oosterhoff I type, although the 11kpc field appears to be intermediate or mixed. We will discuss the properties of these stars including period and reddening distributions. We calculate metallicities and distances for the stars in each of these fields using different methods and compare the results, to an extent that has not yet been done. We compare these methods not just on RR Lyrae in our M31 fields, but also on a data set of Milky Way field RR Lyrae stars.

  20. Measurements of intermediate-frequency electric and magnetic fields in households

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aerts, Sam, E-mail: sam.aerts@intec.ugent.be

    Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low-frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300 Hz to 1 MHz) as well as potential effects of IF fields on the human body remains limited, although the range of household appliances with electrical components working in the IF range has grown significantly (e.g., induction cookers and compact fluorescent lighting). In this study, an extensive measurement survey was performed on the levels of electric and magnetic fields in the IF range typically present in residencesmore » as well as emitted by a wide range of household appliances under real-life circumstances. Using spot measurements, residential IF field levels were found to be generally low, while the use of certain appliances at close distance (20 cm) may result in a relatively high exposure. Overall, appliance emissions contained either harmonic signals, with fundamental frequencies between 6 kHz and 300 kHz, which were sometimes accompanied by regions in the IF spectrum of rather noisy, elevated field strengths, or much more capricious spectra, dominated by 50 Hz harmonics emanating far in the IF domain. The maximum peak field strengths recorded at 20 cm were 41.5 V/m and 2.7 A/m, both from induction cookers. Finally, none of the appliance emissions in the IF range exceeded the exposure summation rules recommended by the International Commission on Non-Ionizing Radiation Protection guidelines and the International Electrotechnical Commission (IEC 62233) standard at 20 cm and beyond (maximum exposure quotients EQ{sub E} 1.0 and {sub E}Q{sub H} 0.13). - Highlights: • Survey of residential electric and magnetic fields at intermediate frequencies (IF). • IF-EF and -MF emitted by 280 household appliances were characterised. • Strongest emitters were induction cookers, CFLs, LCD-TVs, and microwave ovens.

  1. Polaron conductivity mechanism in oxalic acid dihydrate: ac conductivity experiment

    NASA Astrophysics Data System (ADS)

    Levstik, Adrijan; Filipič, Cene; Bobnar, Vid; Levstik, Iva; Hadži, Dušan

    2006-10-01

    The ac electrical conductivity of the oxalic acid dihydrate ( α -POX) was investigated as a function of the frequency and temperature. The real part of the complex ac electrical conductivity was found to follow the universal dielectric response σ'∝νs , indicating that hopping or tunneling of localized charge carriers governs the electrical transport. A detailed analysis of the temperature dependence of the exponent s revealed that in a broad temperature range 50-200K the tunneling of polarons is the dominating charge transport mechanism.

  2. Magnetic-field-induced phase transition and sliding motion of charge-density waves in {eta}-Mo{sub 4}O{sub 11} crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, M.; Hara, Y.; Inoue, M.

    1997-02-01

    Transverse magnetoresistance and Hall effect of the charge-density-wave (CDW) material {eta}-Mo{sub 4}O{sub 11} have been measured at 4.2 K (second CDW state) by dc and ac methods over the frequency range 50{endash}500 kHz in pulsed magnetic fields up to 40 T. These quantities are both reversible and frequency independent for a low-field sweep up to near 10 T (=H{sub c}), beyond which an appreciable frequency-dependent hysteresis effect appears. The Cole-Cole plots of the real versus imaginary parts of the magnetoresistance at high magnetic fields show a monodispersion. The magnetic-field dependence of the real part of the ac Hall resistivity showsmore » interesting behaviors, peaking near H{sub c}, followed by a decrease with H and a leveling off at high fields, while the imaginary components are very small and less frequency dependent. Using a multicarrier model consisting of the remaining and nested electron and hole bands, we have performed computer simulations for these dc and ac magnetotransport quantities, in satisfactory agreement with the observations. We have taken into account (1) the Zeeman effect for two types of the remaining hole and electron bands, (2) the CDW-gap narrowing of the nested electron and hole bands, (3) magnetic-field-induced CDW-to-normal phase transition in part of these nested bands, and (4) the magnetic-field-induced {open_quotes}CDW oscillation{close_quotes} around some mean position of the CDW condensates (or thermal excitation of the CDW phasons over a pinning potential), according to the existing CDW model. {copyright} {ital 1997} {ital The American Physical Society}« less

  3. Magnetostrictive materials and method for improving AC characteristics in same

    DOEpatents

    Pulvirenti, Patricia P.; Jiles, David C.

    2001-08-14

    The present invention provides Terfenol-D alloys ("doped" Terfenol) having optimized performances under the condition of time-dependent magnetic fields. In one embodiment, performance is optimized by lowering the conductivity of Terfenol, thereby improving the frequency response. This can be achieved through addition of Group III or IV elements, such as Si and Al. Addition of these types of elements provides scattering sites for conduction electrons, thereby increasing resistivity by 125% which leads to an average increase in penetration depth of 80% at 1 kHz and an increase in energy conversion efficiency of 55%. The permeability of doped Terfenol remains constant over a wider frequency range as compared with undoped Terfenol. These results demonstrate that adding impurities, such as Si and Al, are effective in improving the ac characteristics of Terfenol. A magnetoelastic Gruneisen parameter, .gamma..sub.me, has also been derived from the thermodynamic equations of state, and provides another means by which to characterize the coupling efficiency in magnetostrictive materials on a more fundamental basis.

  4. DC and AC conductivity properties of bovine dentine hydroxyapatite (BDHA)

    NASA Astrophysics Data System (ADS)

    Dumludag, F.; Gunduz, O.; Kılıc, O.; Ekren, N.; Kalkandelen, C.; Ozbek, B.; Oktar, F. N.

    2017-12-01

    Bovine dentine bio-waste may be used as a potential natural source of hydroxyapatite (BDHA), thus extraction of bovine dentin hydroxyapatite (BDHA) from bio-waste is significantly important to fabricate in a simple, economically and environmentally preferable. DC and AC conductivity properties of BDHA were investigated depending on sintering temperature (1000ºC - 1300°C) in air and vacuum (<10-2 mbar) ambient at room temperature. DC conductivity measurements performed between -1 and 1 V. AC conductivity measurements performed in the frequency range of 40 Hz - 100 kHz. DC conductivity results showed that dc conductivity values of the BDHA decrease with increasing sintering temperature in air ambient. It is not observed remarkable/systematic behavior for ac conductivity depending on sintering temperature.

  5. AC and DC conductivity due to hopping mechanism in double ion doped ceramics

    NASA Astrophysics Data System (ADS)

    Rizwana, Mahboob, Syed; Sarah, P.

    2018-04-01

    Sr1-2xNaxNdxBi4Ti4O15 (x = 0.1, 0.2 and 0.4) system is prepared by sol gel method involving Pechini process of modified polymeric precursor method. Phase identification is done using X-ray diffraction. Conduction in prepared materials involves different mechanisms and is explained through detailed AC and DC conductivity studies. AC conductivity studies carried out on the samples at different frequencies and different temperatures gives more information about electrical transport. Exponents used in two term power relation helps us to understand the different hopping mechanism involved at low as well as high frequencies. Activation energies calculated from the Arrhenius plots are used to calculate activation energies at different temperatures and frequencies. Hopping frequency calculated from the measured data explains hopping of charge carriers at different temperatures. DC conductivity studies help us to know the role of oxygen vacancies in conduction.

  6. Modelling ac ripple currents in HTS coated conductors

    NASA Astrophysics Data System (ADS)

    Xu, Zhihan; Grilli, Francesco

    2015-10-01

    Dc transmission using high temperature superconducting (HTS) coated conductors (CCs) offers a promising solution to the globally growing demand for effective, reliable and economic transmission of green energy up to the gigawatt level over very long distances. The credible estimation of the losses and thereby the heat dissipation involved, where ac ripples (introduced in rectification/ac-dc conversion) are viewed as a potential source of notable contribution, is highly essential for the rational design of practical HTS dc transmission cables and corresponding cryogenic systems to fulfil this demand. Here we report a targeted modelling study into the ac losses in a HTS CC subject to dc and ac ripple currents simultaneously, by solving Maxwell’s equations using the finite element method (FEM) in the commercial software package COMSOL. It is observed that the instantaneous loss exhibits only one peak per cycle in the HTS CC subject to sinusoidal ripples, given that the amplitude of the ac ripples is smaller than approximately 20% of that of the dc current. This is a distinct contrast to the usual observation of two peaks per cycle in a HTS CC subject to ac currents only. The unique mechanism is also revealed, which is directly associated with the finding that, around any local minima of the applied ac ripples, the critical state of -J c is never reached at the edges of the HTS CC, as it should be according to the Bean model. When running further into the longer term, it is discovered that the ac ripple loss of the HTS CC in full-wave rectification decays monotonically, at a speed which is found to be insensitive to the frequency of the applied ripples within our targeted situations, to a relatively low level of approximately 1.38 × 10-4 W m-1 in around 1.7 s. Comparison between this level and other typical loss contributions in a HTS dc cable implies that ac ripple currents in HTS CCs should only be considered as a minor source of dissipation in superconducting dc

  7. Theoretical and experimental study of AC electrical conduction mechanism in the low temperature range of p-CuIn3Se5

    NASA Astrophysics Data System (ADS)

    Essaleh, L.; Amhil, S.; Wasim, S. M.; Marín, G.; Choukri, E.; Hajji, L.

    2018-05-01

    In the present work, an attempt has been made to study theoretically and experimentally the AC electrical conduction mechanism in disordered semiconducting materials. The key parameter considered in this analysis is the frequency exponent s(ω , T) =( ∂ln(σAC(ω , T))/∂ ln(ω)T , where σAC is the AC electrical conductivity that depends on angular frequency ω and temperature T. In the theoretical part of this work, the effect of the barrier hopping energy, the polaron radius and the characteristic relaxation time is considered. The theoretical models of Quantum Mechanical Tunneling (QMT), Non overlapping Small Polaron Tunneling (NSPT), Overlapping Large Polaron Tunneling (OLPT) and Correlated Barrier Hopping (CBH) are considered to fit experimental data of σAC in p-CuIn3Se5 (p-CIS135) in the low temperature range up to 96 K. Some important parameters, as the polaron radius, the localization length and the barrier hopping energies, are estimated and their temperature and frequency dependence discussed.

  8. 47 CFR 5.87 - Frequencies for field strength surveys or equipment demonstrations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Frequencies for field strength surveys or... EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.87 Frequencies for field strength surveys or equipment demonstrations. (a) Authorizations issued under §§ 5.3 (e) and (f) of this...

  9. 47 CFR 5.87 - Frequencies for field strength surveys or equipment demonstrations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Frequencies for field strength surveys or... EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.87 Frequencies for field strength surveys or equipment demonstrations. (a) Authorizations issued under §§ 5.3 (e) and (f) of this...

  10. 47 CFR 5.87 - Frequencies for field strength surveys or equipment demonstrations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Frequencies for field strength surveys or... EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.87 Frequencies for field strength surveys or equipment demonstrations. (a) Authorizations issued under §§ 5.3 (e) and (f) of this...

  11. Performance of an X-ray single pixel TES microcalorimeter under DC and AC biasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottardi, L.; Kuur, J. van der; Korte, P. A. J. de

    2009-12-16

    We are developing Frequency Domain Multiplexing (FDM) for the read-out of TES imaging microcalorimeter arrays for future X-ray missions like IXO. In the FDM configuration the TES is AC voltage biased at a well defined frequencies (between 0.3 to 10 MHz) and acts as an AM modulating element. In this paper we will present a full comparison of the performance of a TES microcalorimeter under DC bias and AC bias at a frequency of 370 kHz. In both cases we measured the current-to-voltage characteristics, the complex impedance, the noise, the X-ray responsivity, and energy resolution. The behaviour is very similarmore » in both cases, but deviations in performances are observed for detector working points low in the superconducting transition (R/R{sub N}<0.5). The measured energy resolution at 5.89 keV is 2.7 eV for DC bias and 3.7 eV for AC bias, while the baseline resolution is 2.8 eV and 3.3 eV, respectively.« less

  12. On the origin of vorticity in magnetic particle suspensions subjected to triaxial fields

    DOE PAGES

    Martin, James E.

    2016-06-06

    We have recently reported that two classes of time-dependent triaxial magnetic fields can induce vorticity in magnetic particle suspensions. The first class – symmetry-breaking fields – is comprised of two ac components and one dc component. The second class – rational triad fields – is comprised of three ac components. In both cases deterministic vorticity occurs when the ratios of the field frequencies form rational numbers. A strange aspect of these fields is that they produce fluid vorticity without generally having a circulating field vector, such as would occur in a rotating field. It has been shown, however, that themore » symmetry of the field trajectory, considered jointly with that of the converse field, allows vorticity to occur around one particular field axis. This axis might be any of the field components, and is determined by the relative frequencies of the field components. However, the symmetry theories give absolutely no insight into why vorticity should occur. In this paper we propose a particle-based model of vorticity in these driven fluids. This model proposes that particles form volatile chains that follow, but lag behind, the dynamic field vector. Furthermore, this model is consistent with the predictions of symmetry theory and gives reasonable agreement with previously reported torque density measurements for a variety of triaxial fields.« less

  13. Coherence Volume of an Optical Wave Field with Broad Frequency and Angular Spectra

    NASA Astrophysics Data System (ADS)

    Lyakin, D. V.; Mysina, N. Yu.; Ryabukho, V. P.

    2018-03-01

    We consider the sizes of a region in a three-dimensional space in which an optical wave field excites mutually coherent perturbations. We discuss the conditions under which the length of this region along the direction of propagation of the wave field and, correspondingly, its volume are determined either by the width of the frequency spectrum of the field or by the width of its angular spectrum, or by the parameters of these spectra simultaneously. We obtain expressions for estimating extremely small values of the coherence volume of the fields with a broad frequency spectrum and an extremely broad angular spectrum. Using the notion of instantaneous speckle-modulation of the wave field, we give a physical interpretation to the occurrence of a limited coherence volume of the field. The length of the spatiotemporal coherence region in which mutually coherent perturbations occur at different times is determined. The coherence volume of a wave field that illuminates an object in high-resolution microscopy with frequency broadband light is considered. The conditions for the dominant influence of the angular or frequency spectra on the longitudinal length of the coherence region are given, and the conditions for the influence of the frequency spectrum width on the transverse coherence of the wave field are examined. We show that, when using fields with broad and ultrabroad spectra in high-resolution microscopy, this influence should be taken into account.

  14. Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO{sub 2} thin films grown by the atomic layer deposition technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassmi, M.; LMOP, El Manar University, Tunis 2092; Pointet, J.

    2016-06-28

    Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO{sub 2} rutile films which are deposited on RuO{sub 2} by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz–100 kHz range, for ac electric fields up to 1 MV{sub rms}/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreasesmore » the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MV{sub rms}/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves the high-field dielectric behavior.« less

  15. Analysis on optical heterodyne frequency error of full-field heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, Wenxi; Wu, Zhou; Lv, Xiaoyu; Kong, Xinxin; Guo, Xiaoli

    2017-06-01

    The full-field heterodyne interferometric measurement technology is beginning better applied by employing low frequency heterodyne acousto-optical modulators instead of complex electro-mechanical scanning devices. The optical element surface could be directly acquired by synchronously detecting the received signal phases of each pixel, because standard matrix detector as CCD and CMOS cameras could be used in heterodyne interferometer. Instead of the traditional four-step phase shifting phase calculating, Fourier spectral analysis method is used for phase extracting which brings lower sensitivity to sources of uncertainty and higher measurement accuracy. In this paper, two types of full-field heterodyne interferometer are described whose advantages and disadvantages are also specified. Heterodyne interferometer has to combine two different frequency beams to produce interference, which brings a variety of optical heterodyne frequency errors. Frequency mixing error and beat frequency error are two different kinds of inescapable heterodyne frequency errors. In this paper, the effects of frequency mixing error to surface measurement are derived. The relationship between the phase extraction accuracy and the errors are calculated. :: The tolerance of the extinction ratio of polarization splitting prism and the signal-to-noise ratio of stray light is given. The error of phase extraction by Fourier analysis that caused by beat frequency shifting is derived and calculated. We also propose an improved phase extraction method based on spectrum correction. An amplitude ratio spectrum correction algorithm with using Hanning window is used to correct the heterodyne signal phase extraction. The simulation results show that this method can effectively suppress the degradation of phase extracting caused by beat frequency error and reduce the measurement uncertainty of full-field heterodyne interferometer.

  16. Characterizing superconducting thin films using AC Magnetic Susceptibility

    NASA Astrophysics Data System (ADS)

    Mahoney, C. H.; Porzio, J.; Sullivan, M. C.

    2014-03-01

    We present our work on using ac magnetic susceptibility to determine the critical temperature of superconducting thin films. In ac magnetic susceptibility, the thin film is placed between two coils. One coil carries an ac signal, creating a varying external magnetic field. We measure the voltage induced in the pick-up coil on the opposite side of the sample and measure how the sample magnetization changes as the temperature changes. We will present our work to use ac susceptibility to determine critical temperature and superconducting volume fraction. Using our own analysis program, we are able to accurately locate the critical temperatures of the samples and determine the transition width. For the superconducting volume fraction, we etch samples in order to control the thicknesses of the sample and measure how much of the material grown on the surface is superconducting. Supported by NFS grant DMR-1305637.

  17. Motion of polymer cholesteric liquid crystal flakes in an electric field

    NASA Astrophysics Data System (ADS)

    Kosc, Tanya Zoriana

    Polymer cholesteric liquid crystal (PCLC) flakes suspended in a host fluid can be manipulated with an electric field. Controlling a flake's orientation provides the opportunity to change and control the amount of selective reflection from the flake surface. Flake motion results from charge accumulation and an induced dipole moment established due to Maxwell-Wagner polarization. The type of flake behavior, whether random motion or uniform reorientation, depends upon the dielectric properties of the host fluid, which in turn dictate whether a DC or an AC electric field must be applied. PCLC flakes suspended in highly dielectric silicone oil host fluids tend to move randomly in the presence of a DC electric field, and no motion is seen in AC fields. Flakes suspended in a moderately conductive host fluid reorient 90° in the presence of an AC field within a specific frequency range. The flake shape and size are also important parameters that need to be controlled in order to produce uniform motion. Several methods for patterning flakes were investigated and identical square flakes were produced. Square PCLC flakes (80 mum sides) suspended in propylene carbonate reorient in 400 ms when a 40mVrms/mum field at 70 Hz is applied to the test device. Theoretical modeling supported experimental observations well, particularly in identifying the inverse quadratic dependence on the applied electric field and the electric field frequency dependence that is governed by the host fluid conductivity. Future goals and suggested experiments are provided, as well as an explanation and comparison of possible commercial applications for PCLC flakes. This research has resulted in one patent application and a series of invention disclosures that could place this research group and any industrial collaborators in a strong position to pursue commercial applications, particularly in the area of displays, and more specifically, electronic paper.

  18. TES-Based X-Ray Microcalorimeter Performances Under AC Bias and FDM for Athena

    NASA Technical Reports Server (NTRS)

    Akamatsu, H.; Gottardi, L.; de Vries, C. P.; Adams, J. S.; Bandler, S. R.; Bruijn, M. P.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Gao, J. R.; hide

    2016-01-01

    Athena is a European X-ray observatory, scheduled for launch in 2028. Athena will employ a high-resolution imaging spectrometer called X-ray integral field unit (X-IFU), consisting of an array of 4000 transition edge sensor (TES) microcalorimeter pixels. For the readout of X-IFU, we are developing frequency domain multiplexing, which is the baseline readout system. In this paper, we report on the performance of a TES X-ray calorimeter array fabricated at Goddard Space Flight Center (GSFC) at MHz frequencies for the baseline of X-IFU detector. During single-pixel AC bias characterization, we measured X-ray energy resolutions (at 6 keV) of about 2.9 eV at both 2.3 and 3.7 MHz. Furthermore, in the multiplexing mode, we measured X-ray energy resolutions of about 2.9 eV at 1.3 and 1.7 MHz.

  19. Optical Measurements of Strong Radio-Frequency Fields Using Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie Anne

    There has recently been an initiative toward establishing atomic measurement standards for field quantities, including radio-frequency, millimeter-wave, and micro-wave electric fields. Current measurement standards are obtained using dipole antennas, which are fundamentally limited in frequency bandwidth (set by the physical size of the antenna) and accuracy (due to the metal perturbing the field during the measurement). Establishing an atomic standard rectifies these problems. My thesis work contributes to an ongoing effort towards establishing the viability of using Rydberg electromagnetically induced transparency (EIT) to perform atom-based measurements of radio-frequency (RF) fields over a wide range of frequencies and field strengths, focusing on strong-field measurements. Rydberg atoms are atoms with an electron excited to a high principal quantum number, resulting in a high sensitivity to an applied field. A model based on Floquet theory is implemented to accurately describe the observed atomic energy level shifts from which information about the field is extracted. Additionally, the effects due to the different electric field domains within the measurement volume are accurately modeled. Absolute atomic measurements of fields up to 296 V/m within a +/-0.35% relative uncertainty are demonstrated. This is the strongest field measured at the time of data publication. Moreover, the uncertainty is over an order of magnitude better than that of current standards. A vacuum chamber setup that I implemented during my graduate studies is presented and its unique components are detailed. In this chamber, cold-atom samples are generated and Rydberg atoms are optically excited within the ground-state sample. The Rydberg ion detection and imaging procedure are discussed, particularly the high magnification that the system provides. By analyzing the position of the ions, the spatial correlation g(2) (r) of Rydberg-atom distributions can be extracted. Aside from ion

  20. Self-assembly of metal nanowires induced by alternating current electric fields

    NASA Astrophysics Data System (ADS)

    García-Sánchez, Pablo; Arcenegui, Juan J.; Morgan, Hywel; Ramos, Antonio

    2015-01-01

    We describe the reversible assembly of an aqueous suspension of metal nanowires into two different 2-dimensional stable configurations. The assembly is induced by an AC electric field of magnitude around 10 kV/m. It is known that single metal nanowires orientate parallel to the electric field for all values of applied frequency, according to two different mechanisms depending on the frequency. These different mechanisms also govern the mutual interaction between nanowires, which leads to directed-assembly into distinctive structures, the shape of which depends on the frequency of the applied field. We show that for frequencies higher than the typical frequency for charging the electrical double layer at the metal-electrolyte interface, dipole-dipole interaction leads to the formation of chains of nanowires. For lower frequencies, the nanowires form wavy bands perpendicular to the electric field direction. This behavior appears to be driven by the electroosmotic flow induced on the metal surface of the nanowires. Remarkably, no similar structures have been reported in previous studies of nanowires.

  1. Irreversibility Line Measurement and Vortex Dynamics in High Magnetic Fields in Ni- and Co-Doped Iron Pnictide Bulk Superconductors

    DOE PAGES

    Nikolo, Martin; Singleton, John; Zapf, Vivien S.; ...

    2016-07-20

    The de-pinning or irreversibility lines were determined by ac susceptibility, magnetization, radio-frequency proximity detector oscillator (PDO), and resistivity methods in Ba(Fe 0.92Co 0.08) 2As 2 ( T c = 23.2 K), Ba(Fe 0.95Ni 0.05) 2As 2 ( T c = 20.4 K), and Ba(Fe 0.94Ni 0.06) 2As 2 ( T c = 18.5 K) bulk superconductors in ac, dc, and pulsed magnetic fields up to 65 T. A new method of extracting the irreversibility fields from the radio-frequency proximity detector oscillator induction technique is described. Wide temperature broadening of the irreversibility lines, for any given combination of ac and dcmore » fields, is dependent on the time frame of measurement. Increasing the magnetic field sweep rate (dH/dt) shifts the irreversibility lines to higher temperatures up to about dH/d t = 40,000 Oe/s; for higher dH/dt, there is little impact on the irreversibility line. There is an excellent data match between the irreversibility fields obtained from magnetization hysteresis loops, PDO, and ac susceptibility measurements, but not from resistivity measurements in these materials. Lower critical field vs. temperature phase diagrams are measured. Their very low values near 0 T indicate that these materials are in mixed state in nonzero magnetic fields, and yet the strength of the vortex pinning enables very high irreversibility fields, as high as 51 T at 1.5 K for the Ba(Fe 0.92Co 0.08) 2As 2 polycrystalline sample, showing a promise for liquid helium temperature applications.« less

  2. Measuring Gravitational Flexion in ACS Clusters

    NASA Astrophysics Data System (ADS)

    Goldberg, David

    2005-07-01

    We propose measurement of the gravitational "Flexion" signal in ACS cluster images. The flexion, or "arciness" of a lensed background galaxy arises from variations in the lensing field. As a result, it is extremely sensitive to small scale perturbations in the field, and thus, to substructure in clusters. Moreover, because flexion represents gravitationally induced asymmetries in the lensed image, it is completely separable from traditional measurements of shear, which focus on the induced ellipticity of the image, and thus, the two signals may be extracted simultaneously. Since typical galaxies are roughly symmetric upon 180 degree rotation, even a small induced flexion can potentially produce a noticeable effect {Goldberg & Bacon, 2005}. We propose the measurement of substructure within approximately 4 clusters with high-quality ACS data, and will further apply a test of a new tomographic technique whereby comparisons of lensed arcs at different redshifts may be used to estimate the background cosmology, and thus place constraints on the equation of state of dark energy.

  3. The Hubble Legacy Archive ACS grism data

    NASA Astrophysics Data System (ADS)

    Kümmel, M.; Rosati, P.; Fosbury, R.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Nilsson, K. K.; Stoehr, F.; Walsh, J. R.

    2011-06-01

    A public release of slitless spectra, obtained with ACS/WFC and the G800L grism, is presented. Spectra were automatically extracted in a uniform way from 153 archival fields (or "associations") distributed across the two Galactic caps, covering all observations to 2008. The ACS G800L grism provides a wavelength range of 0.55-1.00 μm, with a dispersion of 40 Å/pixel and a resolution of ~80 Å for point-like sources. The ACS G800L images and matched direct images were reduced with an automatic pipeline that handles all steps from archive retrieval, alignment and astrometric calibration, direct image combination, catalogue generation, spectral extraction and collection of metadata. The large number of extracted spectra (73,581) demanded automatic methods for quality control and an automated classification algorithm was trained on the visual inspection of several thousand spectra. The final sample of quality controlled spectra includes 47 919 datasets (65% of the total number of extracted spectra) for 32 149 unique objects, with a median iAB-band magnitude of 23.7, reaching 26.5 AB for the faintest objects. Each released dataset contains science-ready 1D and 2D spectra, as well as multi-band image cutouts of corresponding sources and a useful preview page summarising the direct and slitless data, astrometric and photometric parameters. This release is part of the continuing effort to enhance the content of the Hubble Legacy Archive (HLA) with highly processed data products which significantly facilitate the scientific exploitation of the Hubble data. In order to characterize the slitless spectra, emission-line flux and equivalent width sensitivity of the ACS data were compared with public ground-based spectra in the GOODS-South field. An example list of emission line galaxies with two or more identified lines is also included, covering the redshift range 0.2 - 4.6. Almost all redshift determinations outside of the GOODS fields are new. The scope of science projects

  4. Quantum recurrence and fractional dynamic localization in ac-driven perfect state transfer Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it

    Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H{sup -hat} (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H{sup -hat} (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for themore » Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.« less

  5. High-Frequency Nanocapacitor Arrays: Concept, Recent Developments, and Outlook.

    PubMed

    Lemay, Serge G; Laborde, Cecilia; Renault, Christophe; Cossettini, Andrea; Selmi, Luca; Widdershoven, Frans P

    2016-10-18

    We have developed a measurement platform for performing high-frequency AC detection at nanoelectrodes. The system consists of 65 536 electrodes (diameter 180 nm) arranged in a sub-micrometer rectangular array. The electrodes are actuated at frequencies up to 50 MHz, and the resulting AC current response at each separately addressable electrode is measured in real time. These capabilities are made possible by fabricating the electrodes on a complementary metal-oxide-semiconductor (CMOS) chip together with the associated control and readout electronics, thus minimizing parasitic capacitance and maximizing the signal-to-noise ratio. This combination of features offers several advantages for a broad range of experiments. First, in contrast to alternative CMOS-based electrical systems based on field-effect detection, high-frequency operation is sensitive beyond the electrical double layer and can probe entities at a range of micrometers in electrolytes with high ionic strength such as water at physiological salt concentrations. Far from being limited to single- or few-channel recordings like conventional electrochemical impedance spectroscopy, the massively parallel design of the array permits electrically imaging micrometer-scale entities with each electrode serving as a separate pixel. This allows observation of complex kinetics in heterogeneous environments, for example, the motion of living cells on the surface of the array. This imaging aspect is further strengthened by the ability to distinguish between analyte species based on the sign and magnitude of their AC response. Finally, we show here that sensitivity down to the attofarad level combined with the small electrode size permits detection of individual 28 nm diameter particles as they land on the sensor surface. Interestingly, using finite-element methods, it is also possible to calculate accurately the full three-dimensional electric field and current distributions during operation at the level of the

  6. Comparative analysis of approaches to frequency measurement and power estimation for polyharmonic microwave signals on the basis of the ac Josephson effect

    NASA Astrophysics Data System (ADS)

    Larkin, Serguey Y.; Anischenko, Serguei E.; Kamyshin, Vladimir A.

    1996-12-01

    The frequency and power measurements technique using ac Josephson effect is founded on deviation of the voltagecurrent curve of irradiated Josephson junction from its autonomous voltage-current (V-I) curve [1]. Generally this technique, in case of harmonic incident radiation, may be characterized in the following manner: -to measure frequency of the hannonic microwave signal inadiating the Josephson junction and to estimate its intensity using functional processing of the voltage-current curves, one should identify the "Special feature existence" zone on the voltage-current curves. The "Special feature existence" zone results the junction's response to the incident radiation. As this takes place, it is necessary to define the coordinate of a central point of the "Special feature existence" zone on the curve and to estimate the deviation of the V-I curve of irradiated Josephson junction from its autonomous V-I curve. The practical implementation of this technique place at one's disposal a number of algorithms, which enable to realize frequency measurements and intensity estimation with a particular accuracy for incident radiation. This paper presents two rational algorithms to determine the aggregate of their merits and disadvantages and to choose more optimal one.

  7. Effects of Extremely Low Frequency Magnetic Field on Neurite Outgrowth of PC12 and PC12D Cells and Evaluation by Image Analysis

    NASA Astrophysics Data System (ADS)

    Sakanishi, Akio; Takatsuki, Hideyo; Yoshikoshi, Akio; Fujiwara, Yasuyoshi

    2004-05-01

    A pheochromocytoma cell (PC12), and its derivative (PC12D), differentiate to nervelike cells in culture with the nerve growth factor (NGF) and forskolin respectively. We introduced a morphological factor σ=L/2(π A)1/2 for quantitating neurite outgrowth under a microscope in the presence of extremely low-frequency (ELF) magnetic fields for 22 hours, where L and A are the contour length and the area of the cells in clump determined using an image-analysis system. ELF magnetic fields B1 were generated with a single coil or double coils in Helmholtz configuration together with static fields B0 of -53, -20 and 67 μT. σ increased with increasing NGF or forskolin level at B0=-53 μT (geomagnetism), in agreement with the cytometric observation of micrographs. With the addition of an AC field B1 at 60 Hz (100 μT > B1 > 3 μT rms) to B0, neurite outgrowth represented by σ was depressed for PC12 and stimulated for PC12D. We discuss the cyclotron resonance and the ion parametric resonance models.

  8. Flicker-Driven Responses in Visual Cortex Change during Matched-Frequency Transcranial Alternating Current Stimulation

    PubMed Central

    Ruhnau, Philipp; Keitel, Christian; Lithari, Chrysa; Weisz, Nathan; Neuling, Toralf

    2016-01-01

    We tested a novel combination of two neuro-stimulation techniques, transcranial alternating current stimulation (tACS) and frequency tagging, that promises powerful paradigms to study the causal role of rhythmic brain activity in perception and cognition. Participants viewed a stimulus flickering at 7 or 11 Hz that elicited periodic brain activity, termed steady-state responses (SSRs), at the same temporal frequency and its higher order harmonics. Further, they received simultaneous tACS at 7 or 11 Hz that either matched or differed from the flicker frequency. Sham tACS served as a control condition. Recent advances in reconstructing cortical sources of oscillatory activity allowed us to measure SSRs during concurrent tACS, which is known to impose strong artifacts in magnetoencephalographic (MEG) recordings. For the first time, we were thus able to demonstrate immediate effects of tACS on SSR-indexed early visual processing. Our data suggest that tACS effects are largely frequency-specific and reveal a characteristic pattern of differential influences on the harmonic constituents of SSRs. PMID:27199707

  9. Comparative Study of Magnetic Properties of Nanoparticles by High-Frequency Heat Dissipation and Conventional Magnetometry

    DOE PAGES

    Malik, V.; Goodwill, J.; Mallapragada, S.; ...

    2014-11-13

    The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to themore » theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.« less

  10. Analysis and Control of Pulse-Width Modulated AC to DC Voltage Source Converters.

    NASA Astrophysics Data System (ADS)

    Wu, Rusong

    The pulse width modulated AC to DC voltage source converter is comprehensively analyzed in the thesis. A general mathematical model of the converter is first established, which is discontinuous, time-variant and non-linear. The following three techniques are used to obtain closed form solutions: Fourier analysis, transformation of reference frame and small signal linearization. Three models, namely, a steady-state DC model, a low frequency small signal AC model and a high frequency model, are consequently developed. Finally, three solution sets, namely, the steady-state solution, various dynamic transfer functions and the high frequency harmonic components, are obtained from the three models. Two control strategies, the Phase and Amplitude Control (PAC) and a new proposed strategy, Predicted Current Control with a Fixed Switching Frequency (PCFF), are investigated. Based on the transfer functions derived from the above mentioned analysis, regulators for a closed-loop control are designed. A prototype circuit is built to experimentally verify the theoretical predictions. The analysis and experimental results show that both strategies produce nearly sinusoidal line current with unity power factor on the utility side in both rectifying and regenerating operations and concurrently provide a regulated DC output voltage on the load side. However the proposed PCFF control has a faster and improved dynamic response over the PAC control. Moreover it is also easier to be implemented. Therefore, the PCFF control is preferable to the PAC control. As an example of application, a configuration of variable DC supply under PCFF control is proposed. The quasi-optimal dynamic response obtained shows that the PWM AC to DC converter lays the foundation for building a four-quadrant, fast-dynamic system, and the PCFF control is an effective strategy for improving dynamic performances not only as applied to the AC to DC converter, but also as applied to the DC to DC chopper or other

  11. Occupational exposure to intermediate frequency and extremely low frequency magnetic fields among personnel working near electronic article surveillance systems.

    PubMed

    Roivainen, Päivi; Eskelinen, Tuomo; Jokela, Kari; Juutilainen, Jukka

    2014-05-01

    Cashiers are potentially exposed to intermediate frequency (IF) magnetic fields at their workplaces because of the electronic article surveillance (EAS) systems used in stores to protect merchandise against theft. This study aimed at investigating occupational exposure of cashiers to IF magnetic fields in Finnish stores. Exposure to extremely low frequency (ELF) magnetic fields was also evaluated because cashiers work near various devices operating with 50 Hz electric power. The peak magnetic flux density was measured for IF magnetic fields, and was found to vary from 0.2 to 4 µT at the cashier's seat. ELF magnetic fields from 0.03 to 4.5 µT were found at the cashier's seat. These values are much lower than exposure limits. However, according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) occupational reference levels for IF magnetic fields (141 µT for the peak field) were exceeded in some cases (maximum 189 µT) for short periods of time when cashiers walked through the EAS gates. As the ICNIRP reference levels do not define any minimum time for exposure, additional investigations are recommended to determine compliance with basic restrictions. Even if the basic restrictions are not exceeded, persons working near EAS devices represent an exceptional group of workers with respect to exposure to electromagnetic fields. This group could serve as a basis for epidemiological studies addressing possible health effects of IF magnetic fields. Compliance with the reference levels for IF fields was evaluated using both broadband measurement of peak fields and the ICNIRP summation rule for multiple frequencies. The latter was generally more conservative, and the difference between the two methods was large (>10-fold) for EAS systems using a 58 kHz signal with complex waveform. This indicates that the ICNIRP multiple frequency rule can be unnecessarily conservative when measuring complex waveforms. © 2014 Wiley Periodicals, Inc.

  12. Field stabilization studies for a radio frequency quadrupole accelerator

    NASA Astrophysics Data System (ADS)

    Gaur, R.; Kumar, V.

    2014-07-01

    The Radio Frequency Quadrupole (RFQ) linear accelerator is an accelerator that efficiently focuses, bunches and accelerates a high intensity DC beam from an ion source, for various applications. Unlike other conventional RF linear accelerators, the electromagnetic mode used for its operation is not the lowest frequency mode supported by the structure. In a four vane type RFQ, there are several undesired electromagnetic modes having frequency close to that of the operating mode. While designing an RFQ accelerator, care must be taken to ensure that the frequencies of these nearby modes are sufficiently separated from the operating mode. If the undesired nearby modes have frequencies close to the operating mode, the electromagnetic field pattern in the presence of geometrical errors will not be stabilized to the desired field profile, and will be perturbed by the nearby modes. This will affect the beam dynamics and reduce the beam transmission. In this paper, we present a detailed study of the electromagnetic modes supported, which is followed by calculations for implementation of suitable techniques to make the desired operating mode stable against mixing with unwanted modes for an RFQ being designed for the proposed Indian Spallation Neutron Source (ISNS) project at Raja Ramanna Centre for Advanced Technology, Indore. Resonant coupling scheme, along with dipole stabilization rods has been proposed to increase the mode separation. The paper discusses the details of a generalized optimization procedure that has been used for the design of mode stabilization scheme.

  13. Theoretical evidence of maximum intracellular currents versus frequency in an Escherichia coli cell submitted to AC voltage.

    PubMed

    Xavier, Pascal; Rauly, Dominique; Chamberod, Eric; Martins, Jean M F

    2017-04-01

    In this work, the problem of intracellular currents in longilinear bacteria, such as Escherichia coli, suspended in a physiological medium and submitted to a harmonic voltage (AC), is analyzed using the Finite-Element-based software COMSOL Multiphysics. Bacterium was modeled as a cylindrical capsule, ended by semi-spheres and surrounded by a dielectric cell wall. An equivalent single-layer cell wall was defined, starting from the well-recognized three-shell modeling approach. The bacterium was considered immersed in a physiological medium, which was also taken into account in the modeling. A new complex transconductance was thus introduced, relating the complex ratio between current inside the bacterium and voltage applied between two parallel equipotential planes, separated by a realistic distance. When voltage was applied longitudinally relative to the bacterium main axis, numerical results in terms of frequency response in the 1-20 MHz range for E. coli cells revealed that transconductance magnitude exhibited a maximum at a frequency depending on the cell wall capacitance. This occurred in spite of the purely passive character of the model and could be explained by an equivalent electrical network giving very similar results and showing special conditions for lateral paths of the currents through the cell wall. It is shown that the main contribution to this behavior is due to the conductive part of the current. Bioelectromagnetics. 38:213-219, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. AC electrified jets in a flow-focusing device: Jet length scaling

    PubMed Central

    García-Sánchez, Pablo; Alzaga-Gimeno, Javier; Baret, Jean-Christophe

    2016-01-01

    We use a microfluidic flow-focusing device with integrated electrodes for controlling the production of water-in-oil drops. In a previous work, we reported that very long jets can be formed upon application of AC fields. We now study in detail the appearance of the long jets as a function of the electrical parameters, i.e., water conductivity, signal frequency, and voltage amplitude. For intermediate frequencies, we find a threshold voltage above which the jet length rapidly increases. Interestingly, this abrupt transition vanishes for high frequencies of the signal and the jet length grows smoothly with voltage. For frequencies below a threshold value, we previously reported a transition from a well-behaved uniform jet to highly unstable liquid structures in which axisymmetry is lost rather abruptly. These liquid filaments eventually break into droplets of different sizes. In this work, we characterize this transition with a diagram as a function of voltage and liquid conductivity. The electrical response of the long jets was studied via a distributed element circuit model. The model allows us to estimate the electric potential at the tip of the jet revealing that, for any combination of the electrical parameters, the breakup of the jet occurs at a critical value of this potential. We show that this voltage is around 550 V for our device geometry and choice of flow rates. PMID:27375826

  15. AC electrified jets in a flow-focusing device: Jet length scaling.

    PubMed

    Castro-Hernández, Elena; García-Sánchez, Pablo; Alzaga-Gimeno, Javier; Tan, Say Hwa; Baret, Jean-Christophe; Ramos, Antonio

    2016-07-01

    We use a microfluidic flow-focusing device with integrated electrodes for controlling the production of water-in-oil drops. In a previous work, we reported that very long jets can be formed upon application of AC fields. We now study in detail the appearance of the long jets as a function of the electrical parameters, i.e., water conductivity, signal frequency, and voltage amplitude. For intermediate frequencies, we find a threshold voltage above which the jet length rapidly increases. Interestingly, this abrupt transition vanishes for high frequencies of the signal and the jet length grows smoothly with voltage. For frequencies below a threshold value, we previously reported a transition from a well-behaved uniform jet to highly unstable liquid structures in which axisymmetry is lost rather abruptly. These liquid filaments eventually break into droplets of different sizes. In this work, we characterize this transition with a diagram as a function of voltage and liquid conductivity. The electrical response of the long jets was studied via a distributed element circuit model. The model allows us to estimate the electric potential at the tip of the jet revealing that, for any combination of the electrical parameters, the breakup of the jet occurs at a critical value of this potential. We show that this voltage is around 550 V for our device geometry and choice of flow rates.

  16. Magnetization Switching of a Co /Pt Multilayered Perpendicular Nanomagnet Assisted by a Microwave Field with Time-Varying Frequency

    NASA Astrophysics Data System (ADS)

    Suto, Hirofumi; Kanao, Taro; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2018-05-01

    Microwave-assisted magnetization switching (MAS) is attracting attention as a method for reversing nanomagnets with a high magnetic anisotropy by using a small-amplitude magnetic field. We experimentally study MAS of a perpendicularly magnetized nanomagnet by applying a microwave magnetic field with a time-varying frequency. Because the microwave field frequency can follow the nonlinear decrease of the resonance frequency, larger magnetization excitation than that in a constant-frequency microwave field is induced, which enhances the MAS effect. The switching field decreases almost linearly as the start value of the time-varying microwave field frequency increases, and it becomes smaller than the minimum switching field in a constant-frequency microwave field. To obtain this enhancement of the MAS effect, the end value of the time-varying microwave field frequency needs to be almost the same as or lower than the critical frequency for MAS in a constant-frequency microwave field. In addition, the frequency change typically needs to take 1 ns or longer to make the rate of change slow enough for the magnetization to follow the frequency change. This switching behavior is qualitatively explained by the theory based on the macrospin model.

  17. Differential polarization of cortical pyramidal neuron dendrites through weak extracellular fields

    PubMed Central

    Obermayer, Klaus

    2018-01-01

    The rise of transcranial current stimulation (tCS) techniques have sparked an increasing interest in the effects of weak extracellular electric fields on neural activity. These fields modulate ongoing neural activity through polarization of the neuronal membrane. While the somatic polarization has been investigated experimentally, the frequency-dependent polarization of the dendritic trees in the presence of alternating (AC) fields has received little attention yet. Using a biophysically detailed model with experimentally constrained active conductances, we analyze the subthreshold response of cortical pyramidal cells to weak AC fields, as induced during tCS. We observe a strong frequency resonance around 10-20 Hz in the apical dendrites sensitivity to polarize in response to electric fields but not in the basal dendrites nor the soma. To disentangle the relative roles of the cell morphology and active and passive membrane properties in this resonance, we perform a thorough analysis using simplified models, e.g. a passive pyramidal neuron model, simple passive cables and reconstructed cell model with simplified ion channels. We attribute the origin of the resonance in the apical dendrites to (i) a locally increased sensitivity due to the morphology and to (ii) the high density of h-type channels. Our systematic study provides an improved understanding of the subthreshold response of cortical cells to weak electric fields and, importantly, allows for an improved design of tCS stimuli. PMID:29727454

  18. Laboratory and Field Testing of NYCTA Power Frequency Track Circuits

    DOT National Transportation Integrated Search

    1986-02-01

    This report addresses the possible electromagnetic interference between the electronic AC propulsion control systems and the signaling and train control systems. The potential exists for AC-drive propulsion systems to cause EMI that can adversely aff...

  19. Lamin A/C Depletion Enhances DNA Damage-Induced Stalled Replication Fork Arrest

    PubMed Central

    Singh, Mayank; Hunt, Clayton R.; Pandita, Raj K.; Kumar, Rakesh; Yang, Chin-Rang; Horikoshi, Nobuo; Bachoo, Robert; Serag, Sara; Story, Michael D.; Shay, Jerry W.; Powell, Simon N.; Gupta, Arun; Jeffery, Jessie; Pandita, Shruti; Chen, Benjamin P. C.; Deckbar, Dorothee; Löbrich, Markus; Yang, Qin; Khanna, Kum Kum; Worman, Howard J.

    2013-01-01

    The human LMNA gene encodes the essential nuclear envelope proteins lamin A and C (lamin A/C). Mutations in LMNA result in altered nuclear morphology, but how this impacts the mechanisms that maintain genomic stability is unclear. Here, we report that lamin A/C-deficient cells have a normal response to ionizing radiation but are sensitive to agents that cause interstrand cross-links (ICLs) or replication stress. In response to treatment with ICL agents (cisplatin, camptothecin, and mitomycin), lamin A/C-deficient cells displayed normal γ-H2AX focus formation but a higher frequency of cells with delayed γ-H2AX removal, decreased recruitment of the FANCD2 repair factor, and a higher frequency of chromosome aberrations. Similarly, following hydroxyurea-induced replication stress, lamin A/C-deficient cells had an increased frequency of cells with delayed disappearance of γ-H2AX foci and defective repair factor recruitment (Mre11, CtIP, Rad51, RPA, and FANCD2). Replicative stress also resulted in a higher frequency of chromosomal aberrations as well as defective replication restart. Taken together, the data can be interpreted to suggest that lamin A/C has a role in the restart of stalled replication forks, a prerequisite for initiation of DNA damage repair by the homologous recombination pathway, which is intact in lamin A/C-deficient cells. We propose that lamin A/C is required for maintaining genomic stability following replication fork stalling, induced by either ICL damage or replicative stress, in order to facilitate fork regression prior to DNA damage repair. PMID:23319047

  20. AC Conductivity and Dielectric Properties of Borotellurite Glass

    NASA Astrophysics Data System (ADS)

    Taha, T. A.; Azab, A. A.

    2016-10-01

    Borotellurite glasses with formula 60B2O3-10ZnO-(30 - x)NaF- xTeO2 ( x = 0 mol.%, 5 mol.%, 10 mol.%, and 15 mol.%) have been synthesized by thermal melting. X-ray diffraction (XRD) analysis confirmed that the glasses were amorphous. The glass density ( ρ) was determined by the Archimedes method at room temperature. The density ( ρ) and molar volume ( V m) were found to increase with increasing TeO2 content. The direct-current (DC) conductivity was measured in the temperature range from 473 K to 623 K, in which the electrical activation energy of ionic conduction increased from 0.27 eV to 0.48 eV with increasing TeO2 content from 0 mol.% to 15 mol.%. The dielectric parameters and alternating-current (AC) conductivity ( σ ac) were investigated in the frequency range from 1 kHz to 1 MHz and temperature range from 300 K to 633 K. The AC conductivity and dielectric constant decreased with increasing TeO2 content from 0 mol.% to 15 mol.%.

  1. AC-130 Employment

    DTIC Science & Technology

    2006-01-01

    1 AC -130 Employment Subject Area Aviation EWS 2006 Author Captain Robert Hornick, USMC Report Documentation Page Form ApprovedOMB No. 0704...00-2006 4. TITLE AND SUBTITLE AC -130 Employment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER... AC -130 gunship is an aircraft that can provide all of these needs. Regrettably, there are too few AC -130’s in the inventory to cover all the needs

  2. The a.c. Josephson effect without superconductivity

    PubMed Central

    Gaury, Benoit; Weston, Joseph; Waintal, Xavier

    2015-01-01

    Superconductivity derives its most salient features from the coherence of the associated macroscopic wave function. The related physical phenomena have now moved from exotic subjects to fundamental building blocks for quantum circuits such as qubits or single photonic modes. Here we predict that the a.c. Josephson effect—which transforms a d.c. voltage Vb into an oscillating signal cos (2eVbt/ħ)—has a mesoscopic counterpart in normal conductors. We show that when a d.c. voltage Vb is applied to an electronic interferometer, there exists a universal transient regime where the current oscillates at frequency eVb/h. This effect is not limited by a superconducting gap and could, in principle, be used to produce tunable a.c. signals in the elusive 0.1–10-THz ‘terahertz gap’. PMID:25765929

  3. Wide-field high spatial frequency domain imaging of tissue microstructure

    NASA Astrophysics Data System (ADS)

    Lin, Weihao; Zeng, Bixin; Cao, Zili; Zhu, Danfeng; Xu, M.

    2018-02-01

    Wide-field tissue imaging is usually not capable of resolving tissue microstructure. We present High Spatial Frequency Domain Imaging (HSFDI) - a noncontact imaging modality that spatially maps the tissue microscopic scattering structures over a large field of view. Based on an analytical reflectance model of sub-diffusive light from forward-peaked highly scattering media, HSFDI quantifies the spatially-resolved parameters of the light scattering phase function from the reflectance of structured light modulated at high spatial frequencies. We have demonstrated with ex vivo cancerous tissue to validate the robustness of HSFDI in significant contrast and differentiation of the microstructutral parameters between different types and disease states of tissue.

  4. [Effect of extremely low frequency magnetic field on glutathione in rat muscles].

    PubMed

    Ciejka, Elzbieta; Jakubowska, Ewa; Zelechowska, Paulina; Huk-Kolega, Halina; Kowalczyk, Agata; Goraca, Anna

    2014-01-01

    Free radicals (FR) are atoms, molecules or their fragments. Their excess leads to the development of oxidizing stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, and aging of the organism. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic field are the major FR exogenous sources. The low frequency magnetic field is still more commonly applied in the physical therapy. The aim of the presented study was to evaluate the effect of extremely low frequency magnetic field used in the magnetotherapy on the level of total glutathione, oxidized and reduced, and the redox state of the skeletal muscle cells, depending on the duration of exposure to magnetic field. The male rats, weight of 280-300 g, were randomly devided into 3 experimental groups: controls (group I) and treatment groups exposed to extremely low frequency magnetic field (ELF-MF) (group II exposed to 40 Hz, 7 mT for 0.5 h/day for 14 days and group III exposed to 40 Hz, 7 mT for 1 h/day for 14 days). Control rats were kept in a separate room not exposed to extremely low frequency magnetic field. Immediately after the last exposure, part of muscles was taken under pentobarbital anesthesia. Total glutathione, oxidized and reduced, and the redox state in the muscle tissue of animals were determined after exposure to magnetic fields. Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks significantly increased the total glutathione levels in the skeletal muscle compared to the control group (p < 0.001). Exposure to magnetic fields used in the magnetic therapy plays an important role in the development of adaptive mechanisms responsible for maintaining the oxidation-reduction balance in the body and depends on exposure duration.

  5. Non-oxidized porous silicon-based power AC switch peripheries.

    PubMed

    Menard, Samuel; Fèvre, Angélique; Valente, Damien; Billoué, Jérôme; Gautier, Gaël

    2012-10-11

    We present in this paper a novel application of porous silicon (PS) for low-power alternating current (AC) switches such as triode alternating current devices (TRIACs) frequently used to control small appliances (fridge, vacuum cleaner, washing machine, coffee makers, etc.). More precisely, it seems possible to benefit from the PS electrical insulation properties to ensure the OFF state of the device. Based on the technological aspects of the most commonly used AC switch peripheries physically responsible of the TRIAC blocking performances (leakage current and breakdown voltage), we suggest to isolate upper and lower junctions through the addition of a PS layer anodically etched from existing AC switch diffusion profiles. Then, we comment the voltage capability of practical samples emanating from the proposed architecture. Thanks to the characterization results of simple Al-PS-Si(P) structures, the experimental observations are interpreted, thus opening new outlooks in the field of AC switch peripheries.

  6. AC impedance analysis of polypyrrole thin films

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Martin, Charles R.

    1987-01-01

    The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.

  7. Study on elimination of screening-current-induced field in pancake-type non-insulated HTS coil

    NASA Astrophysics Data System (ADS)

    Kim, K. L.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Kim, T. H.; Kim, S. K.; Park, M. W.; Lee, H. G.

    2016-03-01

    This paper presents the details of a recent study on the removal of the screening-current-induced field (SCIF) in a pancake-type non-insulated high-temperature superconductor coil (NI coil). To determine the SCIF in the NI coil, the magnetic flux density (B z ) was calculated using the equivalent circuit model of the coil and compared to the B z obtained empirically. The experimental results indicate that the SCIF elimination in the NI coil was enhanced upon increasing the amplitude and frequency of the AC current being supplied to the background coil. Moreover, the SCIF in the NI coil was successfully removed by applying the appropriate external AC magnetic field intensity. This is because the magnetization direction of the SCIF changed completely from radial to spiral, a phenomenon termed the ‘vortex shaking effect.’ Overall, this study confirmed that the SCIF in a pancake-type NI coil can be effectively removed by exposing the coil to an external AC magnetic field.

  8. Effect of double-layer polarization on the forces that act on a nanosized cylindrical particle in an ac electrical field.

    PubMed

    Zhao, Hui; Bau, Haim H

    2008-06-17

    The polarization of, the forces acting on, and the electroosmotic flow field around a cylindrical particle of radius a* and uniform zeta potential zeta* submerged in an electrolyte solution and subjected to alternating electric fields are computed by solving the Poisson-Nernst-Planck (PNP) equations (the standard model). The dipole coefficient and the electrostatic and hydrodynamic forces are calculated as functions of the electric field's frequency, the solute concentration, and the particle's surface charge. The calculations are not restricted to small Debye screening lengths (lambdaD*). At relatively low frequencies, the polarization coefficient is nearly frequency-independent. As the frequency increases above D*/a*(2), where D* is the effective diffusion coefficient, the polarization coefficient initially increases, attains a maximum, and then decreases to an asymptotic value (when the frequency exceeds (1+Du)D*/lambdaD(*2), where Du is the Dukhin number). At low frequencies, when (lambdaD*/a*)(2)e(|zeta*F*/(2R*T*)|) < 1, the PNP calculations are in excellent agreement with the predictions of the Dukhin-Shilov (DS) low-frequency theory. At high frequencies, when lambda D*/a* < 1, the PNP calculations are in excellent agreement with the Maxwell-Wagner-O'Konski (MWO) theory.

  9. Hamiltonian methods of modeling and control of AC microgrids with spinning machines and inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Ronald C.; Weaver, Wayne W.; Robinett, Rush D.

    This study presents a novel approach to the modeling and control of AC microgrids that contain spinning machines, power electronic inverters and energy storage devices. The inverters in the system can adjust their frequencies and power angles very quickly, so the modeling focuses on establishing a common reference frequency and angle in the microgrid based on the spinning machines. From this dynamic model, nonlinear Hamiltonian surface shaping and power flow control method is applied and shown to stabilize. From this approach the energy flow in the system is used to show the energy storage device requirements and limitations for themore » system. This paper first describes the model for a single bus AC microgrid with a Hamiltonian control, then extends this model and control to a more general class of multiple bus AC microgrids. Finally, simulation results demonstrate the efficacy of the approach in stabilizing and optimization of the microgrid.« less

  10. Hamiltonian methods of modeling and control of AC microgrids with spinning machines and inverters

    DOE PAGES

    Matthews, Ronald C.; Weaver, Wayne W.; Robinett, Rush D.; ...

    2017-12-22

    This study presents a novel approach to the modeling and control of AC microgrids that contain spinning machines, power electronic inverters and energy storage devices. The inverters in the system can adjust their frequencies and power angles very quickly, so the modeling focuses on establishing a common reference frequency and angle in the microgrid based on the spinning machines. From this dynamic model, nonlinear Hamiltonian surface shaping and power flow control method is applied and shown to stabilize. From this approach the energy flow in the system is used to show the energy storage device requirements and limitations for themore » system. This paper first describes the model for a single bus AC microgrid with a Hamiltonian control, then extends this model and control to a more general class of multiple bus AC microgrids. Finally, simulation results demonstrate the efficacy of the approach in stabilizing and optimization of the microgrid.« less

  11. Probing the low-frequency vortex dynamics in a nanostructured superconducting strip

    NASA Astrophysics Data System (ADS)

    Silva, C. C. de Souza; Raes, B.; Brisbois, J.; Cabral, L. R. E.; Silhanek, A. V.; Van de Vondel, J.; Moshchalkov, V. V.

    2016-07-01

    We investigate by scanning susceptibility microscopy the response of a thin Pb strip, with a square array of submicron antidots, to a low-frequency ac magnetic field applied perpendicularly to the film plane. By mapping the local permeability of the sample within the field range where vortices trapped by the antidots and interstitial vortices coexist, we observed two distinct dynamical regimes occurring at different temperatures. At a temperature just below the superconducting transition, T /Tc=0.96 , the sample response is essentially dominated by the motion of highly mobile interstitial vortices. However, at a slightly lower temperature, T /Tc=0.93 , the interstitial vortices freeze up leading to a strong reduction of the ac screening length. We propose a simple model for the vortex response in this system which fits well to the experimental data. Our analysis suggests that the observed switching to the high mobility regime stems from a resonant effect, where the period of the ac excitation is just large enough to allow interstitial vortices to thermally hop through the weak pinning landscape produced by random material defects. This argument is further supported by the observation of a pronounced enhancement of the out-of-phase response at the crossover between both dynamical regimes.

  12. Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields.

    PubMed

    van der Wouden, E J; Hermes, D C; Gardeniers, J G E; van den Berg, A

    2006-10-01

    Electroosmotic flow (EOF) in a microchannel can be controlled by electronic control of the surface charge using an electrode embedded in the wall of the channel. By setting a voltage to the electrode, the zeta-potential at the wall can be changed locally. Thus, the electrode acts as a "gate" for liquid flow, in analogy with a gate in a field-effect transistor. In this paper we will show three aspects of a Field Effect Flow Control (FEFC) structure. We demonstrate the induction of directional flow by the synchronized switching of the gate potential with the channel axial potential. The advantage of this procedure is that potential gas formation by electrolysis at the electrodes that provide the axial electric field is suppressed at sufficiently large switching frequencies, while the direction and magnitude of the EOF can be maintained. Furthermore we will give an analysis of the time constants involved in the charging of the insulator, and thus the switching of the zeta potential, in order to predict the maximum operating frequency. For this purpose an equivalent electrical circuit is presented and analyzed. It is shown that in order to accurately describe the charging dynamics and pH dependency the traditionally used three capacitor model should be expanded with an element describing the buffer capacitance of the silica wall surface.

  13. Stability of horizontal viscous fluid layers in a vertical arbitrary time periodic electric field

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, Aditya; Hardt, Steffen

    2017-12-01

    The stability of a horizontal interface between two viscous fluids, one of which is conducting and the other is dielectric, acted upon by a vertical time-periodic electric field is considered theoretically. The two fluids are bounded by electrodes separated by a finite distance. For an applied ac electric field, the unstable interface deforms in a time periodic manner, owing to the time dependent Maxwell stress, and is characterized by the oscillation frequency which may or may not be the same as the frequency of the ac electric field. The stability curve, which relates the critical voltage, manifested through the Mason number—the ratio of normal electric stress and viscous stress, and the instability wavenumber at the onset of the instability, is obtained by means of the Floquet theory for a general arbitrary time periodic electric field. The limit of vanishing viscosities is shown to be in excellent agreement with the marginal stability curves predicted by means of a Mathieu equation. The influence of finite viscosity and electrode separation is discussed in relation to the ideal case of inviscid fluids. The methodology to obtain the marginal stability curves developed here is applicable to any arbitrary but time periodic signal, as demonstrated for the case of a signal with two different frequencies, and four different frequencies with a dc offset. The mode coupling in the interfacial normal stress leads to appearance of harmonic and subharmonic modes, characterized by the frequency of the oscillating interface at an integral or half-integral multiple of the applied frequency, respectively. This is in contrast to the application of a voltage with a single frequency which always leads to a harmonic mode oscillation of the interface. Whether a harmonic or subharmonic mode is the most unstable one depends on details of the excitation signal.

  14. The influence of low-frequency magnetic field on plasma antioxidant capacity and heart rate.

    PubMed

    Ciejka, Elzbieta B; Goraca, Anna

    2009-01-01

    Low-frequency magnetic field is widely applied as magnetotherapy in physiotherapeutic treatment. Recognition of positive and negative effects of the magnetic field has been the subject of numerous studies. Experimental studies concern, among others, the effect of this field on the heart rate and plasma antioxidant capacity. The aim of the study was to check whether a time-variable magnetic field of constant frequency and induction affects the heart rate and plasma antioxidant capacity. The tests were performed on Spraque-Dawley rats exposed to the magnetic field of the following parameters: frequency - 40 Hz, induction - 7 mT, time of exposure - 30 and 60 minutes. The measurements of ECG and plasma antioxidant capacity expressed in the number of reduced iron ions were performed on experimental animals: before, after a single exposure and after 14 days of exposure. A significant decrease of the heart rate was observed after 14 days of exposure. A variable magnetic field of the parameters: frequency - 40 Hz, induction - 7 mT and exposure time of 14 days caused an increase of the organism antioxidant defence, whereas a variable magnetic field of the frequency of 40 Hz, induction - 7 mT and exposure time 60 minutes for 14 days caused a significant decrease of the organism antioxidant defence. The exposure time affects heart rate, plasma antioxidant capacity and the organism defense ability against free radicals.

  15. The Sterilization Effect of Cooperative Treatment of High Voltage Electrostatic Field and Variable Frequency Pulsed Electromagnetic Field on Heterotrophic Bacteria in Circulating Cooling Water

    NASA Astrophysics Data System (ADS)

    Gao, Xuetong; Liu, Zhian; Zhao, Judong

    2018-01-01

    Compared to other treatment of industrial circulating cooling water in the field of industrial water treatment, high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization technology, an advanced technology, is widely used because of its special characteristics--low energy consumption, nonpoisonous and environmentally friendly. In order to get a better cooling water sterilization effect under the premise of not polluting the environment, some experiments about sterilization of heterotrophic bacteria in industrial circulating cooling water by cooperative treatment of high voltage electrostatic field and variable frequency pulsed electromagnetic field were carried out. The comparison experiment on the sterilization effect of high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization on heterotrophic bacteria in industrial circulating cooling water was carried out by change electric field strength and pulse frequency. The results show that the bactericidal rate is selective to the frequency and output voltage, and the heterotrophic bacterium can only kill under the condition of sweep frequency range and output voltage. When the voltage of the high voltage power supply is 4000V, the pulse frequency is 1000Hz and the water temperature is 30°C, the sterilization rate is 48.7%, the sterilization rate is over 90%. Results of this study have important guiding significance for future application of magnetic field sterilization.

  16. Effect of radio frequency waves of electromagnetic field on the tubulin.

    PubMed

    Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi

    2013-09-01

    Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.

  17. Spectral analysis to assess exposure to extremely low frequency magnetic fields in cars.

    PubMed

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Barberá, Jorge

    2017-04-15

    A type of contamination that has been little studied in cars comes from the extremely low frequency (ELF) magnetic fields generated by the vehicle's electrical devices and the magnetized metal in the tyres. The magnetic fields in cars are frequently analysed with broadband meters sensitive to a frequency range above 30Hz. This has the disadvantage that they neither detect the magnetic field of the spinning tyres nor give any information on the spectral components, which makes it impossible to adequately assess exposure. The objective of the present study was to perform spectral analyses of ELF magnetic fields in cars, to identify their frequencies, and to assess exposure based on the ICNIRP regulatory guidelines. To do this, a meter and a spectrum analyser sensitive to magnetic fields in the 5Hz-2kHz frequency range were used. Spectra were acquired for different seats, heights, and speeds, and spatially averaged exposure coefficients were calculated. The results indicated that the main emissions were detected in the 5-100Hz range, where the wheel rotation frequencies and their harmonics are found. The intensity of the rest of the emissions were negligible in comparison. The exposure quotient increases with speed, and is approximately twice as great at foot level as at head level. The magnetic field levels are lower than the reference levels (the maximum represents 3% of the ICNIRP standard), but higher than those found in residential environments and than the cut-off threshold used by the IARC to classify ELF magnetic fields in Group 2B. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Early Observations with the ACS Ramp Filters

    NASA Astrophysics Data System (ADS)

    Tsvetanov, Z.; Hartig, G.; Bohlin, R.; Tran, H. D.; Martel, A.; Sirianni, M.; Clampin, M.

    2002-05-01

    The Advanced Camera for Surveys (ACS) on-board the Hubble Space Telescope (HST) is equipped with a set of ramp filters which provide imaging capability at 2% and 9% bandwidth in the range 3700-10700 Å. Each ramp filter consist of three segments where the middle segment can be used with both the Wide Field Channel (WFC) and High Resolution Channel (HRC), while the inner and outer segments can be used only with WFC. The monochromatic field of view is approximately 40'' by 80''. We will present observations of the planetary nebula (PN) NGC6543 (the Cat's Eye) taken with the ACS ramp filetrs in several key emission lines - [O II] 3727, [O III] 5007, H-alpha+[N II], and [S II] 6725. These four emission lines fall onto three separate middle ramp segments - FR388N, FR505N, and FR656N - and will allow inter-comparison between the ACS ramp filters and fixed bandpass narrow-band filters F502N and F658N for both the WFC and HRC detectors. These observations were taken as part of the HST Servicing Mission Orbital Verification program and were designed to test ramp filters performance. We will demostrate our ability to obtain monochromatic (i.e., emission line) images at arbitrary wavelength and recover the surface brightness distribution. This work was supported by a NASA contract and a NASA grant.

  19. Shapiro steps for skyrmion motion on a washboard potential with longitudinal and transverse ac drives

    DOE PAGES

    Reichhardt, Charles; Reichhardt, Cynthia Jane

    2015-12-28

    In this work, we numerically study the behavior of two-dimensional skyrmions in the presence of a quasi-one-dimensional sinusoidal substrate under the influence of externally applied dc and ac drives. In the overdamped limit, when both dc and ac drives are aligned in the longitudinal direction parallel to the direction of the substrate modulation, the velocity-force curves exhibit classic Shapiro step features when the frequency of the ac drive matches the washboard frequency that is dynamically generated by the motion of the skyrmions over the substrate, similar to previous observations in superconducting vortex systems. In the case of skyrmions, the additionalmore » contribution to the skyrmion motion from a nondissipative Magnus force shifts the location of the locking steps to higher dc drives, and we find that the skyrmions move at an angle with respect to the direction of the dc drive. For a longitudinal dc drive and a perpendicular or transverse ac drive, the overdamped system exhibits no Shapiro steps; however, when a finite Magnus force is present, we find pronounced transverse Shapiro steps along with complex two-dimensional periodic orbits of the skyrmions in the phase-locked regimes. Both the longitudinal and transverse ac drives produce locking steps whose widths oscillate with increasing ac drive amplitude. We examine the role of collective skyrmion interactions and find that additional fractional locking steps occur for both longitudinal and transverse ac drives. Finally, at higher skyrmion densities, the system undergoes a series of dynamical order-disorder transitions, with the skyrmions forming a moving solid on the phase locking steps and a fluctuating dynamical liquid in regimes between the steps.« less

  20. Measurements of crossed-field demagnetisation rate of trapped field magnets at high frequencies and below 77 K

    NASA Astrophysics Data System (ADS)

    Baskys, A.; Patel, A.; Glowacki, B. A.

    2018-06-01

    Design requirements of the next generation of electric aircraft place stringent requirements on the power density required from electric motors. A future prototype planned in the scope of the European project ‘Advanced Superconducting Motor Experimental Demonstrator’ (ASuMED) considers a permanent magnet synchronous motor, where the conventional ferromagnets are replaced with superconducting trapped field magnets, which promise higher flux densities and thus higher output power without adding weight. Previous work has indicated that stacks of tape show lower cross-field demagnetisation rates to bulk (RE)BCO whilst retaining similar performance for their size, however the crossed-field demagnetisation rate has not been studied in the temperature, the magnetic field and frequency range that are relevant for the operational prototype motor. This work investigates crossed-field demagnetisation in 2G high temperature superconducting stacks at temperatures below 77 K and a frequency range above 10 Hz. This information is crucial in developing designs and determining operational time before re-magnetisation could be required.

  1. Moderately nonlinear diffuse-charge dynamics under an ac voltage.

    PubMed

    Stout, Robert F; Khair, Aditya S

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  2. Combination field chopper and battery charger

    DOEpatents

    Steigerwald, R.L.; Crouch, K.E.; Wilson, J.W.A.

    1979-08-13

    A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.

  3. Combination field chopper and battery charger

    DOEpatents

    Steigerwald, Robert L.; Crouch, Keith E.; Wilson, James W. A.

    1981-01-01

    A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.

  4. AC conduction of Ba1-xCaxTiO3 and BZT-BCTx

    NASA Astrophysics Data System (ADS)

    Khien, Nguyen Van; Huy, Than Trong; Hong, Le Van

    2018-03-01

    Ba1-xCaxTiO3 (BCTx), (x =0.0-0.3) and Ba0.8Zr0.2TiO3-Ba1-xCaxTiO3 (BZT-BCTx), (x=0.15-0.35) were fabricated by the solid state reaction method. Phase structure of the material samples was identified by X-ray diffraction. The impedance versus frequency in a range of 100 Hz to 2.5 MHz was measured for all the samples at room temperature. AC conductivity versus frequency of the BCTx and BZT-BCTx was evaluated and fitted by using the extended Universal Dielectric Response (UDR) equations. The fitting results were discussed in detail and shown that the localized reorientation polarization-based mechanism is most contributed in BCTx matrial samples. Basically both two the hopping polaron and polarization mechanisms play roles in BZT-BCTx material samples. In contrary the short-range polaron hopping is dominated in ac conductivity of BZT-BCTx material samples in low frequency range.

  5. Influence of the interaction between the inter- and intragranular magnetic responses in the analysis of the ac susceptibility of a granular FeSe0.5Te0.5 superconductor

    NASA Astrophysics Data System (ADS)

    Mancusi, D.; Polichetti, M.; Cimberle, M. R.; Pace, S.

    2015-09-01

    The temperature-dependent fundamental ac susceptibility of a granular superconductor in the absence of dc fields has been analyzed by developing a phenomenological model for effective magnetic fields, taking into account the influence of the magnetic interaction between the intergranular and the intragranular magnetizations due to demagnetizing effects. For this purpose a policrystal Fe-based superconductor FeSe0.5Te0.5 sample has been studied. By the frequency dependence of the peaks of the temperature-dependent imaginary part of the fundamental complex susceptibility, the dependence on temperature of the characteristic times both for intergranular and intragranular relaxations of magnetic flux are derived, and the corresponding relaxation processes due to combinations of the flux creep, the flux flow and the thermally activated flux flow regimes are identified on the basis of the effective magnetic fields both at the sample surface and at the grains’ surfaces. Such characteristic times, through the Havriliak-Negami function, determine the temperature and the frequency dependences of the complex susceptibility. The comparison of the numerically obtained curves with the experimental ones confirms the relevance, for identifying the intergranular and intragranular contributions to the ac magnetic response and the corresponding flux dynamical regimes, of the interaction between the intergranular and intragranular magnetizations due to demagnetizing effects.

  6. Atmospheric Electric Field Measurements at 100 Hz and High Frequency Electric Phenomena

    NASA Astrophysics Data System (ADS)

    Conceição, Ricardo; Gonçalves da Silva, Hugo; Matthews, James; Bennett, Alec; Chubb, John

    2016-04-01

    Spectral response of Atmospheric Electric Potential Gradient (PG), symmetric to the Atmospheric Electric Field, gives important information about phenomena affecting these measurements with characteristic time-scales that appear in the spectra as specific periodicities. This is the case of urban pollution that has a clear weekly dependence and reveals itself on PG measurements by a ~7 day periodicity (Silva et al., 2014). While long-term time-scales (low frequencies) have been exhaustively explored in literature, short-term time-scales (high frequencies), above 1 Hz, have comparatively received much less attention (Anisimov et al., 1999). This is mainly because of the technical difficulties related with the storage of such a huge amount of data (for 100 Hz sampling two days of data uses a ~1 Gb file) and the response degradation of the field-meters at such frequencies. Nevertheless, important Electric Phenomena occurs for frequencies above 1 Hz that are worth pursuing, e.g. the Schumann Resonances have a signature of worldwide thunderstorm activity at frequencies that go from ~8 up to ~40 Hz. To that end the present work shows preliminary results on PG measurements at 100 Hz that took place on two clear-sky days (17th and 18th June 2015) on the South of Portugal, Évora (38.50° N, 7.91° W). The field-mill used is a JCI 131F installed in the University of Évora campus (at 2 m height) with a few trees and two buildings in its surroundings (~50 m away). This device was developed by John Chubb (Chubb, 2014) and manufactured by Chilworth (UK). It was calibrated in December 2013 and recent work by the author (who is honored in this study for his overwhelming contribution to atmospheric electricity) reveals basically a flat spectral response of the device up to frequencies of 100 Hz (Chubb, 2015). This makes this device suitable for the study of High Frequency Electric Phenomena. Anisimov, S.V., et al. (1999). On the generation and evolution of aeroelectric structures

  7. Temperature dependence of frequency response characteristics in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lu, Xubing; Minari, Takeo; Liu, Chuan; Kumatani, Akichika; Liu, J.-M.; Tsukagoshi, Kazuhito

    2012-04-01

    The frequency response characteristics of semiconductor devices play an essential role in the high-speed operation of electronic devices. We investigated the temperature dependence of dynamic characteristics in pentacene-based organic field-effect transistors and metal-insulator-semiconductor capacitors. As the temperature decreased, the capacitance-voltage characteristics showed large frequency dispersion and a negative shift in the flat-band voltage at high frequencies. The cutoff frequency shows Arrhenius-type temperature dependence with different activation energy values for various gate voltages. These phenomena demonstrate the effects of charge trapping on the frequency response characteristics, since decreased mobility prevents a fast charge response for alternating current signals at low temperatures.

  8. A new approach for AC loss reduction in HTS transformer using auxiliary windings, case study: 25 kA HTS current injection transformer

    NASA Astrophysics Data System (ADS)

    Heydari, Hossein; Faghihi, Faramarz; Aligholizadeh, Reza

    2008-01-01

    AC loss is one of the important parameters in HTS (high temperature superconducting) AC devices. Among the HTS AC power devices, the transformer is an essential part in the electrical power system. The AC losses in an HTS tape depend on the magnetic field. One of the techniques usually adopted to mitigate the unwanted magnetic field is using a system of coils that produce a magnetic field opposite to the incident one, reducing the total magnetic field. In this paper adding two auxiliary windings to the HTS transformer to produce this opposite magnetic field is proposed. The proper use of these auxiliary windings could reduce the leakage flux and, therefore, the AC loss. A mathematical model is used to describe the behaviour of a transformer operating with auxiliary windings, based on the theory of electromagnetic coupled circuits. The influence of the auxiliary windings on the leakage field is studied by the finite element method (FEM) and the AC loss of an HTS transformer was calculated. Also, the simulation results show that employing auxiliary windings will improve the HTS transformer efficiency.

  9. Thermal and ac electrical properties of N-methylanthranilic acid below room temperature

    NASA Astrophysics Data System (ADS)

    Abdel-Kader, M. M.; Basha, M. A. F.; Ramzy, G. H.; Aboud, A. I.

    2018-06-01

    In this study, we investigated the thermal and alternating current (ac) electrical properties of N-methylanthranilic acid. Based on data obtained by differential scanning calorimetry, we detected two endothermic transitions at ≈ 213 K and ≈265.41 K. The weakening of hydrogen bonds as the temperature increased appeared to be the main cause of these phase transitions. We also recorded the melting point at about 475.5 K. Both the ac conductivity (σac) and complex dielectric constant (ε∗ = ε ' - jε ' ') were studied as functions of temperature over the frequency range from 1 kHz to 100 kHz. We observed significant variations in the thermal and electrical properties before and after the transition temperature at 265.41 K. The conduction mechanism responsible for the ac electrical properties before this transition was due to overlapping large polarons. These novel results are expected to have impacts on the application of organic semiconductors and dielectrics.

  10. Effective switching frequency multiplier inverter

    DOEpatents

    Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  11. Coexistence of the 677C>T and 1298A>C MTHFR polymorphisms and its significance in the population of Polish women.

    PubMed

    Wolski, Hubert; Kocięcka, Maria; Mrozikiewicz, Aleksandra E; Barlik, Magdalena; Kurzawińska, Grażyna

    2015-10-01

    The aim of the study was to evaluate the frequency of the 677C>T and 1298A>C polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene, as well as the coexistence of both these genetic variants in women from the Polish population. A total of 662 women from the Polish population were enrolled in the study group. The frequency of the investigated genotypes of the 677C>T and 1298A>C polymorphisms of the MTHFR gene was analyzed with the use of PCR/RFLP methods. The frequency of the 677CC, 677CT and 677TT genotypes in the studied population of women was 50.60%, 39.88% and 9.52%, respectively As to the 1298AA, 1298AC and 1298CC genotypes, the obtained results were as follows: 42.75%, 47.88% and 9.37%, respectively (Tables II and III). Simultaneous analysis revealed the most frequent coexistence of 677CC/1298AC (28.85%), 677CT/1298AA (20.85%) and 677CT/1298AC (19.03%) genotypes. The coexistence of 677CC/1298AA (12.39%), 677CC/1298CC (9.37%) and 677TT/1298AA (9.51%) genotypes was observed less frequently In the studied population of Polish women, the coexistence of 677CT/1298CC, 677TT/1298AC and 677TT/1298CC genotypes has been not observed. The frequency and coexistence of genotypes of the 677C>T and 1298A>C MTHFR gene polymorphisms in the studied population of Polish women is similar to other North-European populations. Women carriers of the mutated variants of both, 677C>T and 1298A>C polymorphisms of the MTHFR gene should receive special perinatal care in order to prevent fetal defects and thrombosis-related complications during pregnancy It is vital to emphasize the significance of proper education of folate supplementation, especially in pregnant patients and women of reproductive age.

  12. Improved analog and AC performance with increased noise immunity using nanotube junctionless field effect transistor (NJLFET)

    NASA Astrophysics Data System (ADS)

    Rewari, Sonam; Nath, Vandana; Haldar, Subhasis; Deswal, S. S.; Gupta, R. S.

    2016-12-01

    In this paper for the first time, the noise immunity and analog performance of nanotube junctionless field effect transistor (NJLFET) has been investigated. Small signal AC performance metrics namely Scattering parameters (S-parameters) have been analyzed along with analog parameters to validate the suitability of NJLFET for RFIC design. NJLFET performance is examined by comparing its performance with junctionless gate-all-around (JLGAA) MOSFET. It has been inferred that NJLFET has improved I on/ I off ratio directing improved digital performance at higher channel lengths, reduced channel resistance ( R ch) which enables the MOSFET to provide a low resistance path to current and improved early voltage ( V EA) which shows the capability for high-gain amplification and higher g m/ g d directing high intrinsic dc gain. Higher f Tmax for NJLFET has been observed posing its potential for terahertz applications. Higher gain transconductance frequency product makes NJLFET an ultimate device for high-speed switching applications. Higher maximum transducer power gain in NJLFET implies higher power gain than JLGAA MOSFET. Also, NJLFET exhibits lower harmonic distortion and it has been explained by significant reduction in third-order derivative of transconductance, g m3. Reduction in g m3 shows that NJLFET provides better linearity over JLGAA and is more suitable for RFIC design. Also the S-parameters namely S11, S12, S21 and S22 have been analyzed to verify the small signal performance. A lower magnitude for reflection coefficients S11 and S22 depicts minimum reflection and higher matching between ports in NJLFET than JLGAA MOSFET. Higher voltage gains S12 and S21 are present in NJLFET than its counterpart which shows the higher gains that can be achieved using nanotube architecture. The noise metrics which are noise figure and noise conductance show significant reduction for NJLFET justifying its noise immunity.

  13. High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Wen, Jian; Chen, Xiaofei

    2018-03-01

    We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.

  14. Negative effect of the 5'-untranslated leader sequence on Ac transposon promoter expression.

    PubMed

    Scortecci, K C; Raina, R; Fedoroff, N V; Van Sluys, M A

    1999-08-01

    Transposable elements are used in heterologous plant hosts to clone genes by insertional mutagenesis. The Activator (Ac) transposable element has been cloned from maize, and introduced into a variety of plants. However, differences in regulation and transposition frequency have been observed between different host plants. The cause of this variability is still unknown. To better understand the activity of the Ac element, we analyzed the Ac promoter region and its 5'-untranslated leader sequence (5' UTL). Transient assays in tobacco NT1 suspension cells showed that the Ac promoter is a weak promoter and its activity was localized by deletion analyses. The data presented here indicate that the core of the Ac promoter is contained within 153 bp fragment upstream to transcription start sites. An important inhibitory effect (80%) due to the presence of the 5' UTL was found on the expression of LUC reporter gene. Here we demonstrate that the presence of the 5' UTL in the constructs reduces the expression driven by either strong or weak promoters.

  15. Experimental investigations of an AC pulse heating method for vehicular high power lithium-ion batteries at subzero temperatures

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangong; Sun, Zechang; Wei, Xuezhe; Dai, Haifeng; Gu, Weijun

    2017-11-01

    Effect of the AC (alternating current) pulse heating method on battery SoH (state of health) for large laminated power lithium-ion batteries at low temperature is investigated experimentally. Firstly, excitation current frequencies, amplitudes, and voltage limitations on cell temperature evolution are studied. High current amplitudes facilitate the heat accumulation and temperature rise. Low frequency region serves as a good innovation to heat the battery because of the large impedance. Wide voltage limitations also enjoy better temperature evolution owing to the less current modulation, but the temperature difference originated from various voltage limitations attenuates due to the decrement of impedance resulting from the temperature rise. Experiments with the thermocouple-embedded cell manifest good temperature homogeneity between the battery surface and interior during the AC heating process. Secondly, the cell capacity, Direct Current resistance and Electrochemical Impedance Spectroscopy are all calibrated to assess the battery SoH after the hundreds of AC pulse heating cycles. Also, all cells are disassembled to investigate the battery internal morphology with the employment of Scanning Electron Microscope and Energy-Dispersive x-ray Spectroscopy techniques. The results indicate that the AC heating method does not aggravate the cell degradation even in the low frequency range (0.5 Hz) under the normal voltage protection limitation.

  16. Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system

    NASA Astrophysics Data System (ADS)

    Punia, R.; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Kishore, N.

    2012-10-01

    The ac conductivity of bismuth zinc vanadate glasses with compositions 50V2O5. xBi2O3. (50-x) ZnO has been studied in the frequency range 10-1 Hz to 2 MHz and in temperature range 333.16 K to 533.16 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of bismuth zinc vanadate glass system. The dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. It has been observed that mobility of charge carriers and ac conductivity in case of zinc vanadate glass system increases with increase in Bi2O3 content. In order to determine the conduction mechanism, the ac conductivity and its frequency exponent have been analyzed in the frame work of various theoretical models based on classical hopping over barriers and quantum mechanical tunneling. The ac conduction takes place via tunneling of overlapping large polarons in all the compositions of presently studied vanadate glasses. The fitting of experimental data of ac conductivity with overlapping large polarons tunneling model has also been done. The parameters; density of states at Fermi level (N(EF)), activation energy associated with charge transfer between the overlapping sites (WHO), inverse localization length (α) and polaron radius (rp) obtained from fitting of this model with experimental data are reasonable.

  17. The interference of electronic implants in low frequency electromagnetic fields.

    PubMed

    Silny, J

    2003-04-01

    Electronic implants such as cardiac pacemakers or nerve stimulators can be impaired in different ways by amplitude-modulated and even continuous electric or magnetic fields of strong field intensities. For the implant bearer, possible consequences of a temporary electromagnetic interference may range from a harmless impairment of his well-being to a perilous predicament. Electromagnetic interferences in all types of implants cannot be covered here due to their various locations in the body and their different sensing systems. Therefore, this presentation focuses exemplarily on the most frequently used implant, the cardiac pacemaker. In case of an electromagnetic interference the cardiac pacemaker reacts by switching to inhibition mode or to fast asynchronous pacing. At a higher disturbance voltage on the input of the pacemaker, a regular asynchronous pacing is likely to arise. In particular, the first-named interference could be highly dangerous for the pacemaker patient. The interference threshold of cardiac pacemakers depends in a complex way on a number of different factors such as: electromagnetic immunity and adjustment of the pacemaker, the composition of the applied low-frequency fields (only electric or magnetic fields or combinations of both), their frequencies and modulations, the type of pacemaker system (bipolar, unipolar) and its location in the body, as well as the body size and orientation in the field, and last but not least, certain physiological conditions of the patient (e.g. inhalation, exhalation). In extensive laboratory studies we have investigated the interference mechanisms in more than 100 cardiac pacemakers (older types as well as current models) and the resulting worst-case conditions for pacemaker patients in low-frequency electric and magnetic fields. The verification of these results in different practical everyday-life situations, e.g. in the fields of high-voltage overhead lines or those of electronic article surveillance systems is

  18. Harmonic generation by yeast cells in response to low-frequency electric fields

    NASA Astrophysics Data System (ADS)

    Nawarathna, D.; Claycomb, J. R.; Cardenas, G.; Gardner, J.; Warmflash, D.; Miller, J. H., Jr.; Widger, W. R.

    2006-05-01

    We report on harmonic generation by budding yeast cells (Saccharomyces cerevisiae, 108cells/ml ) in response to sinusoidal electric fields with amplitudes ranging from zero to 5V/cm in the frequency range 10-300Hz . The cell-generated harmonics are found to exhibit strong amplitude and frequency dependence. Sodium metavanadate, an inhibitor of the proton pump known as H+ -ATPase, and glucose, a substrate of H+ -ATPase, are found to increase harmonic production at low amplitudes while reducing it at large amplitudes. This P-type proton pump can be driven by an oscillatory transmembrane potential, and its nonlinear response is believed to be largely responsible for harmonic production at low frequencies in yeast cells. We find that the observed harmonics show dramatic changes with time and in their field and frequency dependence after perturbing the system by adding an inhibitor, substrate, or membrane depolarizer to the cell suspension.

  19. Acute nonlymphocytic leukemia and residential exposure to power frequency magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, R.K.

    1986-01-01

    A population-based case-control study of adult acute nonlymphocytic leukemia (ANLL) and residential exposure to power frequency magnetic fields was conducted in King, Pierce and Snohomish Counties in Washington state. Of 164 cases who were diagnosed from January 1, 1981 through December 31, 1984, 114 were interviewed. Controls were selected from the study area on the basis of random digit dialing and frequency matched to the cases by age and sex. Analyses were undertaken to evaluate whether exposure to high levels of power frequency magnetic fields in the residence were associated with an increased risk of ANLL. Neither the directly measuredmore » magnetic fields nor the surrogate values based on the wiring configurations were associated with ANLL. Additional analyses suggested that persons with prior allergies were at decreased risk of acute myelocytic leukemia (AML). Also, persons with prior autoimmune diseases were at increased risk of AML. The increase in AML risk in rheumatoid arthritics was of borderline statistical significance. Finally, cigarette smoking was associated with an increased risk of AML. The risk of AML increased significantly with the number of years of cigarette smoking.« less

  20. Influence of the ac-Stark shift on GPS atomic clock timekeeping

    NASA Astrophysics Data System (ADS)

    Formichella, V.; Camparo, J.; Tavella, P.

    2017-01-01

    The ac-Stark shift (or light shift) is a fundamental aspect of the field/atom interaction arising from virtual transitions between atomic states, and as Alfred Kastler noted, it is the real-photon counterpart of the Lamb shift. In the rubidium atomic frequency standards (RAFS) flying on Global Positioning System (GPS) satellites, it plays an important role as one of the major perturbations defining the RAFS' frequency: the rf-discharge lamp in the RAFS creates an atomic signal via optical pumping and simultaneously perturbs the atoms' ground-state hyperfine splitting via the light shift. Though the significance of the light shift has been known for decades, to date there has been no concrete evidence that it limits the performance of the high-quality RAFS flying on GPS satellites. Here, we show that the long-term frequency stability of GPS RAFS is primarily determined by the light shift as a consequence of stochastic jumps in lamplight intensity. Our results suggest three paths forward for improved GPS system timekeeping: (1) reduce the light-shift coefficient of the RAFS by careful control of the lamp's spectrum; (2) operate the lamp under conditions where lamplight jumps are not so pronounced; and (3) employ a light source for optical pumping that does not suffer pronounced light jumps (e.g., a diode laser).

  1. Quantitative analysis of neuronal response properties in primary and higher-order auditory cortical fields of awake house mice (Mus musculus)

    PubMed Central

    Joachimsthaler, Bettina; Uhlmann, Michaela; Miller, Frank; Ehret, Günter; Kurt, Simone

    2014-01-01

    Because of its great genetic potential, the mouse (Mus musculus) has become a popular model species for studies on hearing and sound processing along the auditory pathways. Here, we present the first comparative study on the representation of neuronal response parameters to tones in primary and higher-order auditory cortical fields of awake mice. We quantified 12 neuronal properties of tone processing in order to estimate similarities and differences of function between the fields, and to discuss how far auditory cortex (AC) function in the mouse is comparable to that in awake monkeys and cats. Extracellular recordings were made from 1400 small clusters of neurons from cortical layers III/IV in the primary fields AI (primary auditory field) and AAF (anterior auditory field), and the higher-order fields AII (second auditory field) and DP (dorsoposterior field). Field specificity was shown with regard to spontaneous activity, correlation between spontaneous and evoked activity, tone response latency, sharpness of frequency tuning, temporal response patterns (occurrence of phasic responses, phasic-tonic responses, tonic responses, and off-responses), and degree of variation between the characteristic frequency (CF) and the best frequency (BF) (CF–BF relationship). Field similarities were noted as significant correlations between CFs and BFs, V-shaped frequency tuning curves, similar minimum response thresholds and non-monotonic rate-level functions in approximately two-thirds of the neurons. Comparative and quantitative analyses showed that the measured response characteristics were, to various degrees, susceptible to influences of anesthetics. Therefore, studies of neuronal responses in the awake AC are important in order to establish adequate relationships between neuronal data and auditory perception and acoustic response behavior. PMID:24506843

  2. Alternating Field Electronanofluidization

    NASA Astrophysics Data System (ADS)

    Espin, M. J.; Valverde, J. M.; Quintanilla, M. A. S.; Castellanos, A.

    2009-06-01

    The use of fluidized beds to remove submicron particles from gases has been investigated since 1949. High efficiency removal was achieved in the 1970's by imposing an electric field on a fluidized bed of semi-insulating granules that were able to collect the charged pollutant entrained in the fluidizing gas. In spite of their extended use nowadays, the collection efficiency of electrofluidized beds (EFB) is still hindered by gas bypassing associated to gas bubbling and the consequent requirement of too high gas flow and pressure drop. In this paper we report on the electromechanical behavior of an EFB of insulating nanoparticles. When fluidized by gas, these nanoparticles form extremely porous light agglomerates of size of the order of hundreds of microns that allow for a highly expanded nonbubbling fluidized state at reduced gas flow. It is found that fluidization uniformity and bed expansion are additionally enhanced by an imposed AC electric field for field oscillation frequencies of several tens of hertzs and field strengths of the order of 1 kV/cm. For oscillation frequencies of the order of hertzs, or smaller, bed expansion is hindered due to electrophoretic deposition of the agglomerates onto the vessel walls, whereas for oscillation frequencies of the order of kilohertzs, or larger, electrophoresis is nullified and bed expansion is not affected. According to a proposed model, the size of nanoparticle agglomerates stems from the balance between shear, which depends on field strength, and van der Waals forces. The optimum field strength for enhancing bed expansion produces an electric force on the agglomerates similar to their weight force, while the oscillation velocity of the agglomerates is similar to the gas velocity.

  3. Linearity of the Faraday-rotation-type ac magnetic-field sensor with a ferrimagnetic or ferromagnetic rotator film

    NASA Astrophysics Data System (ADS)

    Mori, Hiroshi; Asahara, Yousuke

    1996-03-01

    We analyze the linearity and modulation depth of ac magnetic-field sensors or current sensors, using a ferrimagnetic or ferromagnetic film as the Faraday rotator and employing the detection of only the zeroth-order optical diffraction component from the rotator. It is theoretically shown that for this class of sensor the condition of a constant modulation depth and that of a constant ratio error give an identical series of curves for the relationship between Faraday rotation angle greater than or equals V and polarizer/analyzer relative angle Phi . We give some numerical examples to demonstrate the usefulness of the result with reference to a rare-earth iron garnet film as the rotator.

  4. Intralaminar stimulation of the inferior colliculus facilitates frequency-specific activation in the auditory cortex

    NASA Astrophysics Data System (ADS)

    Allitt, B. J.; Benjaminsen, C.; Morgan, S. J.; Paolini, A. G.

    2013-08-01

    Objective. Auditory midbrain implants (AMI) provide inadequate frequency discrimination for open set speech perception. AMIs that can take advantage of the tonotopic laminar of the midbrain may be able to better deliver frequency specific perception and lead to enhanced performance. Stimulation strategies that best elicit frequency specific activity need to be identified. This research examined the characteristic frequency (CF) relationship between regions of the auditory cortex (AC), in response to stimulated regions of the inferior colliculus (IC), comparing monopolar, and intralaminar bipolar electrical stimulation. Approach. Electrical stimulation using multi-channel micro-electrode arrays in the IC was used to elicit AC responses in anaesthetized male hooded Wistar rats. The rate of activity in AC regions with CFs within 3 kHz (CF-aligned) and unaligned CFs was used to assess the frequency specificity of responses. Main results. Both monopolar and bipolar IC stimulation led to CF-aligned neural activity in the AC. Altering the distance between the stimulation and reference electrodes in the IC led to changes in both threshold and dynamic range, with bipolar stimulation with 400 µm spacing evoking the lowest AC threshold and widest dynamic range. At saturation, bipolar stimulation elicited a significantly higher mean spike count in the AC at CF-aligned areas than at CF-unaligned areas when electrode spacing was 400 µm or less. Bipolar stimulation using electrode spacing of 400 µm or less also elicited a higher rate of elicited activity in the AC in both CF-aligned and CF-unaligned regions than monopolar stimulation. When electrodes were spaced 600 µm apart no benefit over monopolar stimulation was observed. Furthermore, monopolar stimulation of the external cortex of the IC resulted in more localized frequency responses than bipolar stimulation when stimulation and reference sites were 200 µm apart. Significance. These findings have implications for the

  5. Histograms and Frequency Density.

    ERIC Educational Resources Information Center

    Micromath, 2003

    2003-01-01

    Introduces exercises on histograms and frequency density. Guides pupils to Discovering Important Statistical Concepts Using Spreadsheets (DISCUSS), created at the University of Coventry. Includes curriculum points, teaching tips, activities, and internet address (http://www.coventry.ac.uk/discuss/). (KHR)

  6. Effects of radio frequency magnetic fields on iron release from cage proteins.

    PubMed

    Céspedes, Oscar; Ueno, Shoogo

    2009-07-01

    Ferritin, the iron cage protein, contains a superparamagnetic ferrihydrite nanoparticle formed from the oxidation and absorption of Fe(2+) ions. This nanoparticle increases its internal energy when exposed to alternating magnetic fields due to magnetization lag. The energy is then dissipated to the surrounding proteic cage, affecting its functioning. In this article we show that the rates of iron chelation with ferrozine, an optical marker, are reduced by up to a factor of 3 in proteins previously exposed to radio frequency magnetic fields of 1 MHz and 30 microT for several hours. The effect is non-thermal and depends on the frequency-amplitude product of the magnetic field. (c) 2009 Wiley-Liss, Inc.

  7. The Dynamics of Oblate Drop Between Heterogeneous Plates Under Alternating Electric Field. Non-uniform Field

    NASA Astrophysics Data System (ADS)

    Kashina, M. A.; Alabuzhev, A. A.

    2018-02-01

    The dynamics of the incompressible fluid drop under the non-uniform electric field are considered. The drop is bounded axially by two parallel solid planes and the case of heterogeneous plates is investigated. The external electric field acts as an external force that causes motion of the contact line. We assume that the electric current is alternative current and the AC filed amplitude is a spatially non-uniform function. In equilibrium, the drop has the form of a circular cylinder. The equilibrium contact angle is 0.5 π. In order to describe this contact line motion the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, which frequency is proportional to twice the frequency of the electric field. The Hocking parameter depends on the polar angle, i.e. the coefficient of the interaction between the plate and the fluid (the contact line) is a function of the plane coordinates. This function is expanded in a series of the Laplace operator eigenfunctions.

  8. Optical field enhancement of nanometer-sized gaps at near-infrared frequencies.

    PubMed

    Ahn, Jae Sung; Kang, Taehee; Singh, Dilip K; Bahk, Young-Mi; Lee, Hyunhwa; Choi, Soo Bong; Kim, Dai-Sik

    2015-02-23

    We report near-field and far-field measurements of transmission through nanometer-sized gaps at near-infrared frequencies with varying the gap size from 1 nm to 10 nm. In the far-field measurements, we excluded direct transmission on the metal film surface via interferometric method. Kirchhoff integral formalism was used to relate the far-field intensity to the electric field at the nanogaps. In near-field measurements, field enhancement factors of the nanogaps were quantified by measuring transmission of the nanogaps using near-field scanning optical microscopy. All the measurements produce similar field enhancements of about ten, which we put in the context of comparing with the giant field enhancements in the terahertz regime.

  9. Research on Wide-field Imaging Technologies for Low-frequency Radio Array

    NASA Astrophysics Data System (ADS)

    Lao, B. Q.; An, T.; Chen, X.; Wu, X. C.; Lu, Y.

    2017-09-01

    Wide-field imaging of low-frequency radio telescopes are subject to a number of difficult problems. One particularly pernicious problem is the non-coplanar baseline effect. It will lead to distortion of the final image when the phase of w direction called w-term is ignored. The image degradation effects are amplified for telescopes with the wide field of view. This paper summarizes and analyzes several w-term correction methods and their technical principles. Their advantages and disadvantages have been analyzed after comparing their computational cost and computational complexity. We conduct simulations with two of these methods, faceting and w-projection, based on the configuration of the first-phase Square Kilometre Array (SKA) low frequency array. The resulted images are also compared with the two-dimensional Fourier transform method. The results show that image quality and correctness derived from both faceting and w-projection are better than the two-dimensional Fourier transform method in wide-field imaging. The image quality and run time affected by the number of facets and w steps have been evaluated. The results indicate that the number of facets and w steps must be reasonable. Finally, we analyze the effect of data size on the run time of faceting and w-projection. The results show that faceting and w-projection need to be optimized before the massive amounts of data processing. The research of the present paper initiates the analysis of wide-field imaging techniques and their application in the existing and future low-frequency array, and fosters the application and promotion to much broader fields.

  10. Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells

    PubMed Central

    2014-01-01

    Background Extremely low frequency electromagnetic fields aren’t considered as a real carcinogenic agent despite the fact that some studies have showed impairment of the DNA integrity in different cells lines. The aim of this study was evaluation of the late effects of a 100 Hz and 5.6 mT electromagnetic field, applied continuously or discontinuously, on the DNA integrity of Vero cells assessed by alkaline Comet assay and by cell cycle analysis. Normal Vero cells were exposed to extremely low frequency electromagnetic fields (100 Hz, 5.6 mT) for 45 minutes. The Comet assay and cell cycle analysis were performed 48 hours after the treatment. Results Exposed samples presented an increase of the number of cells with high damaged DNA as compared with non-exposed cells. Quantitative evaluation of the comet assay showed a significantly (<0.001) increase of the tail lengths, of the quantity of DNA in tail and of Olive tail moments, respectively. Cell cycle analysis showed an increase of the frequency of the cells in S phase, proving the occurrence of single strand breaks. The most probable mechanism of induction of the registered effects is the production of different types of reactive oxygen species. Conclusions The analysis of the registered comet indices and of cell cycle showed that extremely low frequency electromagnetic field of 100 Hz and 5.6 mT had a genotoxic impact on Vero cells. PMID:24401758

  11. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation.

    PubMed

    Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S

    2015-01-01

    Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual's memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity.

  12. Transmission Technologies and Operational Characteristic Analysis of Hybrid UHV AC/DC Power Grids in China

    NASA Astrophysics Data System (ADS)

    Tian, Zhang; Yanfeng, Gong

    2017-05-01

    In order to solve the contradiction between demand and distribution range of primary energy resource, Ultra High Voltage (UHV) power grids should be developed rapidly to meet development of energy bases and accessing of large-scale renewable energy. This paper reviewed the latest research processes of AC/DC transmission technologies, summarized the characteristics of AC/DC power grids, concluded that China’s power grids certainly enter a new period of large -scale hybrid UHV AC/DC power grids and characteristics of “strong DC and weak AC” becomes increasingly pro minent; possible problems in operation of AC/DC power grids was discussed, and interaction or effect between AC/DC power grids was made an intensive study of; according to above problems in operation of power grids, preliminary scheme is summarized as fo llows: strengthening backbone structures, enhancing AC/DC transmission technologies, promoting protection measures of clean energ y accessing grids, and taking actions to solve stability problems of voltage and frequency etc. It’s valuable for making hybrid UHV AC/DC power grids adapt to operating mode of large power grids, thus guaranteeing security and stability of power system.

  13. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  14. Production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226.

    PubMed

    Melville, G; Meriarty, H; Metcalfe, P; Knittel, T; Allen, B J

    2007-09-01

    The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. The production of Ac-225 has been achieved using bremsstrahlung photons from an 18 MV medical linear accelerator (linac) to bombard a Ra-226 target. A linac dose of 2800 Gy produced about 64 microCi of Ra-225, which decays to Ac-225. This result, while consistent with the theoretical calculations, is far too low to be of practical use. A more powerful linac is required that runs at a higher current, longer pulse length and higher frequency for practical production. This process could also lead to the reduction of the nuclear waste product Ra-226.

  15. Two-Wavelength Multi-Gigahertz Frequency Comb-Based Interferometry for Full-Field Profilometry

    NASA Astrophysics Data System (ADS)

    Choi, Samuel; Kashiwagi, Ken; Kojima, Shuto; Kasuya, Yosuke; Kurokawa, Takashi

    2013-10-01

    The multi-gigahertz frequency comb-based interferometer exhibits only the interference amplitude peak without the phase fringes, which can produce a rapid axial scan for full-field profilometry and tomography. Despite huge technical advantages, there remain problems that the interference intensity undulations occurred depending on the interference phase. To avoid such problems, we propose a compensation technique of the interference signals using two frequency combs with slightly varied center wavelengths. The compensated full-field surface profile measurements of cover glass and onion skin were demonstrated experimentally to verify the advantages of the proposed method.

  16. Microwave spectroscopy evidence of superconducting pairing in the magnetic-field-induced metallic state of InO(x) films at zero temperature.

    PubMed

    Liu, Wei; Pan, LiDong; Wen, Jiajia; Kim, Minsoo; Sambandamurthy, G; Armitage, N P

    2013-08-09

    We investigate the field-tuned quantum phase transition in a 2D low-disorder amorphous InO(x) film in the frequency range of 0.05 to 16 GHz employing microwave spectroscopy. In the zero-temperature limit, the ac data are consistent with a scenario where this transition is from a superconductor to a metal instead of a direct transition to an insulator. The intervening metallic phase is unusual with a small but finite resistance that is much smaller than the normal state sheet resistance at the lowest measured temperatures. Moreover, it exhibits a superconducting response on short length and time scales while global superconductivity is destroyed. We present evidence that the true quantum critical point of this 2D superconductor metal transition is located at a field B(sm) far below the conventionally defined critical field B(cross) where different isotherms of magnetoresistance cross each other. The superfluid stiffness in the low-frequency limit and the superconducting fluctuation frequency from opposite sides of the transition both vanish at B≈B(sm). The lack of evidence for finite-frequency superfluid stiffness surviving B(cross) signifies that B(cross) is a crossover above which superconducting fluctuations make a vanishing contribution to dc and ac measurements.

  17. Quantum sensing of weak radio-frequency signals by pulsed Mollow absorption spectroscopy.

    PubMed

    Joas, T; Waeber, A M; Braunbeck, G; Reinhard, F

    2017-10-17

    Quantum sensors-qubits sensitive to external fields-have become powerful detectors for various small acoustic and electromagnetic fields. A major key to their success have been dynamical decoupling protocols which enhance sensitivity to weak oscillating (AC) signals. Currently, those methods are limited to signal frequencies below a few MHz. Here we harness a quantum-optical effect, the Mollow triplet splitting of a strongly driven two-level system, to overcome this limitation. We microscopically understand this effect as a pulsed dynamical decoupling protocol and find that it enables sensitive detection of fields close to the driven transition. Employing a nitrogen-vacancy center, we detect GHz microwave fields with a signal strength (Rabi frequency) below the current detection limit, which is set by the center's spectral linewidth [Formula: see text]. Pushing detection sensitivity to the much lower 1/T 2 limit, this scheme could enable various applications, most prominently coherent coupling to single phonons and microwave photons.Dynamical decoupling protocols can enhance the sensitivity of quantum sensors but this is limited to signal frequencies below a few MHz. Here, Joas et al. use the Mollow triplet splitting in a nitrogen-vacancy centre to overcome this limitation, enabling sensitive detection of signals in the GHz range.

  18. Fetal exposure to low frequency electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Cech, R.; Leitgeb, N.; Pediaditis, M.

    2007-02-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  19. ac aging and space-charge characteristics in low-density polyethylene polymeric insulation

    NASA Astrophysics Data System (ADS)

    Chen, G.; Fu, M.; Liu, X. Z.; Zhong, L. S.

    2005-04-01

    In the present work efforts have been made to investigate the influence of ac aging on space-charge dynamics in low-density polyethylene (LDPE). LDPE films with 200 μm were aged under various electric stress levels at 50 Hz for various times at ambient temperature. Space-charge dynamics in the samples after aging were monitored using the pulsed electroacoustic technique. It has been revealed that the space charge under ac aging conditions is related to the level of the applied field, duration of the voltage application, as well as the electrode materials. By comparing with the results of unaged sample the results from aged sample provide a direct evidence of changing trapping characteristics after ac aging. Negative space charge is present in the bulk of the material and the total amount of charge increases with the aging time. The amount of charge increases with the applied field. Charge decay test indicates that the charges are captured in deep traps. These deep traps are believed to form during the aging and related to change caused by injected charge. By using different electrode materials such as gold, brass alloy, and polyethylene loaded with carbon black, it was found that the electrode has an important role in the formation of charge, hence subsequent changes caused by charge. The charge dynamics of the aged samples under dc bias differ from the sample without ac aging, indicating changes brought in by ac aging. Chemical analysis by Fourier transform infrared spectroscope and Raman microscope reveals no detectable chemical changes taken place in the bulk of the material after ac aging. Finally, the consequence of the accumulation of space charge under ac conditions on the lifetime of the material has been discussed. The presence of deeply trapped space charge leads to an electric stress enhancement which may shorten the lifetime of the insulation system.

  20. Frequency Dependence of Low-Voltage Electrowetting Investigated by Impedance Spectroscopy.

    PubMed

    Li, Ying-Jia; Cahill, Brian P

    2017-11-14

    An electrowetting-on-dielectric (EWOD) electrode was developed that facilitates the use of low alternating voltages (≤5 V AC ). This allows online investigation of the frequency dependence of electrowetting by means of impedance spectroscopy. The EWOD electrode is based on a dielectric bilayer consisting of an anodic tantalum pentoxide (Ta 2 O 5 ) thin film (d = 59.35 nm) with a high relative permittivity (ε d = 26.3) and a self-assembled hydrophobic silane monolayer. The frequency dependence of electrowetting was studied using an aqueous μL-sized sessile droplet on the planar EWOD electrode in oil. Experiments using electrochemical impedance spectroscopy and optical imaging indicate the frequency dependence of all three variables in the Young-Lippmann equation: the voltage drop across the dielectric layers, capacitance per unit area, and contact angle under voltage. The electrowetting behavior induced by AC voltages is shown to be well described by the Young-Lippmann equation for AC applications below a frequency threshold. Moreover, the dielectric layers act as a capacitor and the stored electrostatic potential energy is revealed to only partially contribute to the electrowetting.

  1. Fractional kinetics of glioma treatment by a radio-frequency electric field

    NASA Astrophysics Data System (ADS)

    Iomin, A.

    2013-09-01

    A realistic model for estimation of the medical effect of brain cancer (glioma) treatment by a radio-frequency (RF) electric field is suggested. This low intensity, intermediate-frequency alternating electric field is known as the tumor-treating field (TTF). The model is based on a construction of 3D comb model for a description of the cancer cells dynamics, where the migration-proliferation dichotomy becomes naturally apparent, and the outer-invasive region of glioma cancer is considered as a fractal composite embedded in the 3D space. In the framework of this model, the interplay between the TTF and the migration-proliferation dichotomy of cancer cells is considered, and the efficiency of this TTF is estimated. It is shown that the efficiency of the medical treatment by the TTF depends essentially on the mass fractal dimension of the cancer in the outer-invasive region.

  2. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  3. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  4. Temperature characterization of dielectric permittivity and AC conductivity of nano copper oxide-doped polyaniline composite

    NASA Astrophysics Data System (ADS)

    Shubha, L. N.; Madhusudana Rao, P.

    2016-06-01

    The polyaniline/copper oxide (PANI/CuO) nanocomposite was prepared by mixing solutions of polyaniline and copper oxide nanoparticles in dimethyl sulfoxide (DMSO). The synthesized polymer nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and UV-visible spectroscopy. The characteristic peaks in XRD and UV-visible spectra confirmed the presence of CuO in the polymer structure. SEM images indicated morphological changes in the composite matrix as compared to the pristine PANI. The DC conductivity measurements were performed using two-probe method for various temperatures. AC conductivity and dielectric response of the composites were investigated in the frequency range of 102-106Hz using LCR meter. Dielectric permittivity ɛ‧(w) and dielectric loss factor ɛ‧‧(w) were investigated. It was observed that ɛ‧(w) and ɛ‧‧(w) decrease with increase in frequency at all temperatures. At a particular frequency it is observed that both ɛ‧(w) and ɛ‧‧(w) increase with increase in temperature. It was also observed that AC conductivity increased with increase in frequency and temperature.

  5. Structural and AC loss study for pure and doped MgB{sub 2} superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansdah, J. S.; Sarun, P. M., E-mail: sarun.res@gmail.com

    2015-06-24

    Superconducting polycrystalline bulk MgB{sub 2} samples doped with n-C, n-Y{sub 2}O{sub 3} and n-Ho{sub 2}O{sub 3} were prepared by powder-in-sealed (PIST) method. XRD measurement shows the influence of dopants on phase and lattice parameters of samples. The ac susceptibility measurement reveals ac loss and activation energy of the samples. Nano-C doped sample shows less ac loss in all frequency (208 Hz – 999 Hz) among the doped samples; whereas n-Ho{sub 2}O{sub 3} doped sample shows highest ac loss. The activation energy is high for rare earth (n-Y{sub 2}O{sub 3} and n-Ho{sub 2}O{sub 3}) doped samples as compare to n-C doped samples whichmore » reveals the enhancement in flux-pinning properties of these materials.« less

  6. Mapping alternating current electroosmotic flow at the dielectrophoresis crossover frequency of a colloidal probe.

    PubMed

    Wang, Jingyu; Wei, Ming-Tzo; Cohen, Joel A; Ou-Yang, H Daniel

    2013-07-01

    AC electroosmotic (ACEO) flow above the gap between coplanar electrodes is mapped by the measurement of Stokes forces on an optically trapped polystyrene colloidal particle. E²-dependent forces on the probe particle are selected by amplitude modulation (AM) of the ACEO electric field (E) and lock-in detection at twice the AM frequency. E²-dependent DEP of the probe is eliminated by driving the ACEO at the probe's DEP crossover frequency. The location-independent DEP crossover frequency is determined, in a separate experiment, as the limiting frequency of zero horizontal force as the probe is moved toward the midpoint between the electrodes. The ACEO velocity field, uncoupled from probe DEP effects, was mapped in the region 1-9 μm above a 28 μm gap between the electrodes. By use of variously sized probes, each at its DEP crossover frequency, the frequency dependence of the ACEO flow was determined at a point 3 μm above the electrode gap and 4 μm from an electrode tip. At this location the ACEO flow was maximal at ∼117 kHz for a low salt solution. This optical trapping method, by eliminating DEP forces on the probe, provides unambiguous mapping of the ACEO velocity field. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Weak-Link Phenomena in AC-Biased Transition Edge Sensors

    NASA Astrophysics Data System (ADS)

    Gottardi, L.; Akamatsu, H.; Bruijn, M.; Gao, J.-R.; den Hartog, R.; Hijmering, R.; Hoevers, H.; Khosropanah, P.; Kozorezov, A.; van der Kuur, J.; van der Linden, A.; Ridder, M.

    2014-08-01

    It has been recently demonstrated that superconducting transition edge-sensors behave as weak-links due to longitudinally induced superconductivity from the leads with higher . In this work we study the implication of this behaviour for transition-edge sensors (TES)-based bolometers and microcalorimeter under ac bias. The TESs are read-out at frequencies between 1 and by a frequency domain multiplexer based on a linearised two-stage SQUID amplifier and high- lithographically made superconducting resonators. In particular, we focus on SRON TiAu TES bolometers with a measured dark noise equivalent power of developed for the short wavelength band for the instrument SAFARI on the SPICA telescope.

  8. Application of low-frequency alternating current electric fields via interdigitated electrodes: effects on cellular viability, cytoplasmic calcium, and osteogenic differentiation of human adipose-derived stem cells.

    PubMed

    McCullen, Seth D; McQuilling, John P; Grossfeld, Robert M; Lubischer, Jane L; Clarke, Laura I; Loboa, Elizabeth G

    2010-12-01

    Electric stimulation is known to initiate signaling pathways and provides a technique to enhance osteogenic differentiation of stem and/or progenitor cells. There are a variety of in vitro stimulation devices to apply electric fields to such cells. Herein, we describe and highlight the use of interdigitated electrodes to characterize signaling pathways and the effect of electric fields on the proliferation and osteogenic differentiation of human adipose-derived stem cells (hASCs). The advantage of the interdigitated electrode configuration is that cells can be easily imaged during short-term (acute) stimulation, and this identical configuration can be utilized for long-term (chronic) studies. Acute exposure of hASCs to alternating current (AC) sinusoidal electric fields of 1 Hz induced a dose-dependent increase in cytoplasmic calcium in response to electric field magnitude, as observed by fluorescence microscopy. hASCs that were chronically exposed to AC electric field treatment of 1 V/cm (4 h/day for 14 days, cultured in the osteogenic differentiation medium containing dexamethasone, ascorbic acid, and β-glycerol phosphate) displayed a significant increase in mineral deposition relative to unstimulated controls. This is the first study to evaluate the effects of sinusoidal AC electric fields on hASCs and to demonstrate that acute and chronic electric field exposure can significantly increase intracellular calcium signaling and the deposition of accreted calcium under osteogenic stimulation, respectively.

  9. Imaging ac losses in superconducting films via scanning Hall probe microscopy

    NASA Astrophysics Data System (ADS)

    Dinner, Rafael B.; Moler, Kathryn A.; Feldmann, D. Matthew; Beasley, M. R.

    2007-04-01

    Various local probes have been applied to understanding current flow through superconducting films, which are often surprisingly inhomogeneous. Here, we show that magnetic imaging allows quantitative reconstruction of both current density J and electric field E resolved in time and space in a film carrying subcritical ac current. Current reconstruction entails inversion of the Biot-Savart law, while electric fields are reconstructed using Faraday’s law. We describe the corresponding numerical procedures, largely adapting existing work to the case of a strip carrying ac current, but including other methods of obtaining the complete electric field from the inductive portion determined by Faraday’s law. We also delineate the physical requirements behind the mathematical transformations. We then apply the procedures to images of a strip of YBa2Cu3O7-δ carrying an ac current at 400Hz . Our scanning Hall probe microscope produces a time series of magnetic images of the strip with 1μm spatial resolution and 25μs time resolution. Combining the reconstructed J and E , we obtain a complete characterization including local critical current density, E-J curves, and power losses. This analysis has a range of applications from fundamental studies of vortex dynamics to practical coated conductor development.

  10. Study of hopping type conduction from AC conductivity in multiferroic composite

    NASA Astrophysics Data System (ADS)

    Pandey, Rabichandra; Guha, Shampa; Pradhan, Lagen Kumar; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan

    2018-05-01

    0.5BiFe0.80Ti0.20O3-0.5Co0.5Ni0.5Fe2O4(BFTO-CNFO) multiferroic composite was prepared by planetary ball mill method. X-ray diffraction analysis confirms the formation of the compound with the simultaneous presence of spinel Co0.5Ni0.5Fe2O4 (CNFO) and perovskite BiFe0.80Ti0.20O3 (BFTO) phase. Temperature dependent dielectric permittivity and loss tangent were studied with a frequency range of 100Hz to 1MHz. AC conductivity study was performed to analyze the electrical conduction behaviour in the composite. Johnscher's power law was employed to the AC conductivity data to understand the hopping of localized charge carrier in the compound. The binding energy, minimum hopping distance and density of states of the charge carriers in the composite were evaluated from the AC conductivity data. Minimum hopping distance is found to be in order of Angstrom (Å).

  11. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing.

    PubMed

    Worthmann, Brian M; Song, H C; Dowling, David R

    2015-12-01

    Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.

  12. Field optimization method of a dual-axis atomic magnetometer based on frequency-response and dynamics

    NASA Astrophysics Data System (ADS)

    Xing, Li; Quan, Wei; Fan, Wenfeng; Li, Rujie; Jiang, Liwei; Fang, Jiancheng

    2018-05-01

    The frequency-response and dynamics of a dual-axis spin-exchange-relaxation-free (SERF) atomic magnetometer are investigated by means of transfer function analysis. The frequency-response at different bias magnetic fields is tested to demonstrate the effect of the residual magnetic field. The resonance frequency of alkali atoms and magnetic linewidth can be obtained simultaneously through our theoretical model. The coefficient of determination of the fitting results is superior to 0.995 with 95% confidence bounds. Additionally, step responses are applied to analyze the dynamics of the control system and the effect of imperfections. Finally, a noise-limited magnetic field resolution of 15 fT {{\\sqrt{Hz}}-1} has been achieved for our dual-axis SERF atomic magnetometer through magnetic field optimization.

  13. The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps.

    PubMed

    Urbanski, John Paul; Levitan, Jeremy A; Burch, Damian N; Thorsen, Todd; Bazant, Martin Z

    2007-05-15

    Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the "fluid conveyor belt" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.

  14. High-frequency field-deployable isotope analyzer for hydrological applications

    Treesearch

    Elena S.F. Berman; Manish Gupta; Chris Gabrielli; Tina Garland; Jeffrey J. McDonnell

    2009-01-01

    A high-frequency, field-deployable liquid water isotope analyzer was developed. The instrument was deployed for 4 contiguous weeks in the H. J. Andrews Experimental Forest Long-term Ecological Research site in western Oregon, where it was used for real-time measurement of the isotope ratios of precipitation and stream water during three large storm events. We were able...

  15. Germinal and Somatic Activity of the Maize Element Activator (Ac) in Arabidopsis

    PubMed Central

    Keller, J.; Lim, E.; James-Jr., D. W.; Dooner, H. K.

    1992-01-01

    We have investigated the germinal and somatic activity of the maize Activator (Ac) element in Arabidopsis with the objective of developing an efficient transposon-based system for gene isolation in that plant. Transposition activity was assayed with a chimeric marker that consists of the cauliflower mosaic virus 35S promoter and a bacterial streptomycin phosphotransferase gene (SPT). Somatic activity was detected in seedlings germinated on plates containing streptomycin as green-resistant sectors against a background of white-sensitive cells. Germinal excisions resulted in fully green seedlings. The transposition frequency was extremely low when a single copy of the transposon was present, but appeared to increase with an increase in Ac copy number. Plants that were selected as variegated produced an increased number of green progeny. The methylation state of the Ac elements in lines with either low or high levels of excision was assessed by restriction analysis. No difference was found between these lines, indicating that the degree of methylation did not contribute to the level of Ac activity. Germinal excision events were analyzed molecularly and shown to carry reinserted transposons in about 50% of the cases. In several instances, streptomycin-resistant siblings carried the same transposed Ac element, indicating that excision had occurred prior to meiosis in the parent. We discuss parameters that need to be considered to optimize the use of Ac as a transposon tag in Arabidopsis. PMID:1322854

  16. Multiple piezo-patch energy harvesters on a thin plate with respective AC-DC conversion

    NASA Astrophysics Data System (ADS)

    Aghakhani, Amirreza; Basdogan, Ipek

    2018-03-01

    Piezoelectric patch energy harvesters can be directly integrated to plate-like structures which are widely used in automotive, marine and aerospace applications, to convert vibrational energy to electrical energy. This paper presents two different AC-DC conversion techniques for multiple patch harvesters, namely single rectifier and respective rectifiers. The first case considers all the piezo-patches are connected in parallel to a single rectifier, whereas in the second case, each harvester is respectively rectified and then connected in parallel to a smoothing capacitor and a resistive load. The latter configuration of AC-DC conversion helps to avoid the electrical charge cancellation which is a problem with the multiple harvesters attached to different locations of the host plate surface. Equivalent circuit model of the multiple piezo-patch harvesters is developed in the SPICE software to simulate the electrical response. The system parameters are obtained from the modal analysis solution of the plate. Simulations of the voltage frequency response functions (FRFs) for the standard AC input - AC output case are conducted and validated by experimental data. Finally, for the AC input - DC output case, numerical simulation and experimental results of the power outputs of multiple piezo-patch harvesters with multiple AC-DC converters are obtained for a wide range of resistive loads and compared with the same array of harvesters connected to a single AC-DC converter.

  17. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells

    NASA Astrophysics Data System (ADS)

    Spyridopoulou, K.; Makridis, A.; Maniotis, N.; Karypidou, N.; Myrovali, E.; Samaras, T.; Angelakeris, M.; Chlichlia, K.; Kalogirou, O.

    2018-04-01

    Recent investigations have attempted to understand and exploit the impact of magnetic field-actuated internalized magnetic nanoparticles (MNPs) on the proliferation rate of cancer cells. Due to the complexity of the parameters governing magnetic field-exposure though, individual studies to date have raised contradictory results. In our approach we performed a comparative analysis of key parameters related to the cell exposure of cancer cells to magnetic field-actuated MNPs, and to the magnetic field, in order to better understand the factors affecting cellular responses to magnetic field-stimulated MNPs. We used magnetite MNPs with a hydrodynamic diameter of 100 nm and studied the proliferation rate of MNPs-treated versus untreated HT29 human colon cancer cells, exposed to either static or alternating low frequency magnetic fields with varying intensity (40-200 mT), frequency (0-8 Hz) and field gradient. All three parameters, field intensity, frequency, and field gradient affected the growth rate of cells, with or without internalized MNPs, as compared to control MNPs-untreated and magnetic field-untreated cells. We observed that the growth inhibitory effects induced by static and rotating magnetic fields were enhanced by pre-treating the cells with MNPs, while the growth promoting effects observed in alternating field-treated cells were weakened by MNPs. Compared to static, rotating magnetic fields of the same intensity induced a similar extend of cell growth inhibition, while alternating fields of varying intensity (70 or 100 mT) and frequency (0, 4 or 8 Hz) induced cell proliferation in a frequency-dependent manner. These results, highlighting the diverse effects of mode, intensity, and frequency of the magnetic field on cell growth, indicate that consistent and reproducible results can be achieved by controlling the complexity of the exposure of biological samples to MNPs and external magnetic fields, through monitoring crucial experimental parameters. We

  18. Third harmonic ac susceptibility of superconductors with finite thickness

    NASA Astrophysics Data System (ADS)

    Qin, M. J.; Ong, C. K.

    Third harmonic ac susceptibility of superconducting strips with finite thickness in perpendicularly applied magnetic field Ha = H0 sin(ω t) have been calculated. The flux creep effect is taken into account by using a power-law electric field E( j) = Ec( j/ jc) n. Results for different thicknesses and creep exponents n have been derived and compared to the results derived from the Bean critical state model.

  19. AC induction field heating of graphite foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, James W.; Rios, Orlando; Kisner, Roger

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  20. The DC and AC insulating properties of magnetic fluids based on transformer oil

    NASA Astrophysics Data System (ADS)

    Tomo, L.; Marton, K.; Herchl, F.; Kopanský, P.; Potoová, I.; Koneracká, M.; Timko, M.

    2006-01-01

    The AC-dielectric breakdown was investigated in magnetic fluids based on transformer oil TECHNOL US 4000 for two orientations of external magnetic field (B E and B E) and in B = 0. The found results were compared with those obtained formerly for the DC-dielectric breakdown. The observations of the time development of the AC-dielectric breakdown showed the presence of partial discharges long before the complete breakdown occurrence, while for DC-dielectric breakdown a complete breakdown of the gap next to the onset of a measurable ionization was characteristic. The comparison of the AC-dielectric breakdown strengths of pure transformer oil and transformer-oil-based magnetic fluid showed better dielectric properties of magnetic fluid in external magnetic field and comparable, but not worse, in B = 0. Regarding to the better heat transfer, provided by magnetic fluids, they could be used in power transformers as insulating fluids.

  1. HST/ACS DIRECT AGES OF THE DWARF ELLIPTICAL GALAXIES NGC 147 AND NGC 185

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geha, M.; Weisz, D.; Grocholski, A.

    2015-10-01

    We present the deepest optical photometry for any dwarf elliptical (dE) galaxy based on Hubble Space Telescope Advanced Camera for Surveys (ACS) observations of the Local Group dE galaxies NGC 147 and NGC 185. Our F606W and F814W color–magnitude diagrams are the first to reach below the oldest main sequence turnoff in a dE galaxy, allowing us to determine full star formation histories in these systems. The ACS fields are located roughly ∼1.5 effective radii from the galaxy center to avoid photometric crowding. While both ACS fields show unambiguous evidence for old and intermediate age stars, the mean age ofmore » NGC 147 is ∼4–5 Gyr younger as compared to NGC 185. In NGC 147, only 40% of stars were in place 12.5 Gyr ago (z ∼ 5), with the bulk of the remaining stellar population forming between 5 to 7 Gyr. In contrast, 70% of stars were formed in NGC 185 prior to 12.5 Gyr ago with the majority of the remaining population forming between 8 to 10 Gyr ago. Star formation has ceased in both ACS fields for at least 3 Gyr. Previous observations in the central regions of NGC 185 show evidence for star formation as recent as 100 Myr ago, and a strong metallicity gradient with radius. This implies a lack of radial mixing between the center of NGC 185 and our ACS field. The lack of radial gradients in NGC 147 suggests that our inferred SFHs are more representative of its global history. We interpret the inferred differences in star formation histories to imply an earlier infall time into the M31 environment for NGC 185 as compared to NGC 147.« less

  2. FLUIDIC AC AMPLIFIERS.

    DTIC Science & Technology

    Several fluidic tuned AC Amplifiers were designed and tested. Interstage tuning and feedback designs are considered. Good results were obtained...corresponding Q’s as high as 12. Element designs and test results of one, two, and three stage amplifiers are presented. AC Modulated Carrier Systems

  3. Field camera measurements of gradient and shim impulse responses using frequency sweeps.

    PubMed

    Vannesjo, S Johanna; Dietrich, Benjamin E; Pavan, Matteo; Brunner, David O; Wilm, Bertram J; Barmet, Christoph; Pruessmann, Klaas P

    2014-08-01

    Applications of dynamic shimming require high field fidelity, and characterizing the shim field dynamics is therefore necessary. Modeling the system as linear and time-invariant, the purpose of this work was to measure the impulse response function with optimal sensitivity. Frequency-swept pulses as inputs are analyzed theoretically, showing that the sweep speed is a key factor for the measurement sensitivity. By adjusting the sweep speed it is possible to achieve any prescribed noise profile in the measured system response. Impulse response functions were obtained for the third-order shim system of a 7 Tesla whole-body MR scanner. Measurements of the shim fields were done with a dynamic field camera, yielding also cross-term responses. The measured shim impulse response functions revealed system characteristics such as response bandwidth, eddy currents and specific resonances, possibly of mechanical origin. Field predictions based on the shim characterization were shown to agree well with directly measured fields, also in the cross-terms. Frequency sweeps provide a flexible tool for shim or gradient system characterization. This may prove useful for applications involving dynamic shimming by yielding accurate estimates of the shim fields and a basis for setting shim pre-emphasis. Copyright © 2013 Wiley Periodicals, Inc.

  4. Comparative performance of modified full-length and truncated Bacillus thuringiensis-cry1Ac genes in transgenic tomato.

    PubMed

    Koul, Bhupendra; Yadav, Reena; Sanyal, Indraneel; Amla, Devindra Vijay

    2015-01-01

    Bt-cry1Ac gene has been reputedly effective against Helicoverpa armigera a notorious lepidopteran pest. Reports on the expression of full-length and truncated cry1Ac genes in plants for effective resistance against Helicoverpa sp. have been documented however, their performance is still ambiguous. Moreover, the question remains to be addressed that truncation of 3' end of the native gene was documented and suggested for active insecticidal toxin production while the most successful transgenic event(s) of commercialized-cotton are based on full-length of the cry gene. Therefore, we performed a comparative study on the efficacy of the two versions of cry1Ac genes (full-length: 3,510 bp and truncated: 1,845 bp) in T0 and T1 transgenic tomato plants and analyzed the extent of protection against H. armigera and also compared the results with our previous findings related to a successful transgenic tomato line Ab25E, expressing cry1Ab gene. The integration of cry1Ac gene(s) in T0 transgenic plants and its inheritance in T1 progeny was observed by PCR, RT-PCR and Southern blot hybridization analysis while, the toxin integrity, expression and toxicity was monitored by Western immunoassay, DAS-ELISA and insect bioassay respectively. An average transformation frequency and Bt-Cry protein content of 16.93 ± 2.10 and 0.0020-0.0128% of total soluble protein (TSP) was obtained with pRD400 vector (Trcry1Ac) while, a much lower value of 9.30 ± 2.041 and 0.0001 - 0.0026% of TSP was observed with pNBRI-1 vector (Flcry1Ac), respectively. The promising Trcry1Ac T0 transgenic plants and their T1 progeny gave full protection from H. armigera. Although Flcry1Ac gene showed lower transformation frequency and lower expression, it showed higher toxicity to H. armigera when compared with truncated Trcry1Ac gene. The full-length cry1Ac gene can be redesigned for higher expression and performance in dicots or a hybrid gene could be designed having a blend of strong receptor binding

  5. Radio-frequency and microwave energies, magnetic and electric fields

    NASA Technical Reports Server (NTRS)

    Michaelson, S. M.

    1975-01-01

    The biological effects of radio frequency, including microwave, radiation are considered. Effects on body temperature, the eye, reproductive systems, internal organs, blood cells, the cardiovascular system, and the central nervous system are included. Generalized effects of electric and magnetic fields are also discussed. Experimentation with animals and clinical studies on humans are cited, and possible mechanisms of the effects observed are suggested.

  6. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m(-1) was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain

  7. A novel field generator for magnetic stimulation in cell culture experiments.

    PubMed

    Vogt, G; Schrefl, A; Mitteregger, R; Falkenhagen, D

    1997-06-01

    A novel field generator specially designed to examine the influence of low frequency magnetic fields on specific cell material was constructed and characterized. The exposure unit described in this paper consists of a controller unit and three sets of coils. The field generator permits a precious definition of the revelant signal parameters and allows the superposition of alternating current (AC) and direct current (DC) magnetic fields. Critical system parameters were monitored continuously. The three sets of coils, each arranged in the Helmholtz Configuration were characterized. After data processing and visualization the results showed a constant and homogeneous field within the experimental area. The special coil design also allows their use in an incubator.

  8. High sensitivity zero-biased magnetic field sensor based on multiphase laminate heterostructures with FeCuNbSiB nanocrystalline soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Qiu, Jing; Wen, Yumei; Li, Ping; Chen, Hengjia

    2016-05-01

    In this paper, a high sensitivity zero-biased magnetic field sensor based on multiphase laminate heterostructures consisting of FeCuNbSiB/Terfenol-D (Tb1-xDyxFe2)/PZT (Pb(Zr1-x,Tix)O3)/Terfenol-D/PZT/Ternol-D/FeCuNbSiB (FMPMPMF) is presented, whose ME coupling characteristics and sensing performances have been investigated. Compared to traditional Terfenol-D/PZT/Terfenol-D (MPM) and Terfenol-D/PZT/Terfenol-D/PZT/Terfenol-D (MPMPM) sensors, the zero-biased ME coupling characteristics of FMPMPMF sensor were significantly improved, owing to a build-in magnetic field in FeCuNbSiB/Terfenol-D layers. The optimum zero-biased resonant ME voltage coefficient of 3.02 V/Oe is achieved, which is 1.65 times as great as that of MPMPM and 2.51 times of MPM sensors. The mean value of low-frequency ME field coefficient of FMPMPMF reaches 122.53 mV/cm Oe, which is 2.39 times as great as that of MPMPM and 1.79 times of MPM sensors. Meanwhile, the induced zero-biased ME voltage of FMPMPMF sensor shows an excellent linear relationship to ac magnetic field both at the low frequency (1 kHz) and the resonant frequency (106.6 kHz). Remarkably, it indicates that the proposed zero-biased magnetic field sensor give the prospect of being able to applied to the field of highly sensitive ac magnetic field sensing.

  9. AC signal characterization for optimization of a CMOS single-electron pump

    NASA Astrophysics Data System (ADS)

    Murray, Roy; Perron, Justin K.; Stewart, M. D., Jr.; Zimmerman, Neil M.

    2018-02-01

    Pumping single electrons at a set rate is being widely pursued as an electrical current standard. Semiconductor charge pumps have been pursued in a variety of modes, including single gate ratchet, a variety of 2-gate ratchet pumps, and 2-gate turnstiles. Whether pumping with one or two AC signals, lower error rates can result from better knowledge of the properties of the AC signal at the device. In this work, we operated a CMOS single-electron pump with a 2-gate ratchet style measurement and used the results to characterize and optimize our two AC signals. Fitting this data at various frequencies revealed both a difference in signal path length and attenuation between our two AC lines. Using this data, we corrected for the difference in signal path length and attenuation by applying an offset in both the phase and the amplitude at the signal generator. Operating the device as a turnstile while using the optimized parameters determined from the 2-gate ratchet measurement led to much flatter, more robust charge pumping plateaus. This method was useful in tuning our device up for optimal charge pumping, and may prove useful to the semiconductor quantum dot community to determine signal attenuation and path differences at the device.

  10. Propulsion of Active Colloids by Self-Induced Field Gradients.

    PubMed

    Boymelgreen, Alicia; Yossifon, Gilad; Miloh, Touvia

    2016-09-20

    Previously, metallodielectric Janus particles have been shown to travel with their dielectric hemisphere forward under low frequency applied electric fields as a result of asymmetric induced-charge electroosmotic flow. Here, it is demonstrated that at high frequencies, well beyond the charge relaxation time of the electric double layer induced around the particle, rather than the velocity decaying to zero, the Janus particles reverse direction, traveling with their metallic hemisphere forward. It is proposed that such motion is the result of a surface force, arising from localized nonuniform electric field gradients, induced by the dual symmetry-breaking of an asymmetric particle adjacent to a wall, which act on the induced dipole of the particle to drive net motion even in a uniform AC field. Although the field is external, since the driving gradient is induced on the particle level, it may be considered an active colloid. We have thus termed this propulsion mechanism "self-dielectrophoresis", to distinguish from traditional dielectrophoresis where the driving nonuniform field is externally fixed and the particle direction is restricted. It is demonstrated theoretically and experimentally that the critical frequency at which the particle reverses direction can be characterized by a nondimensional parameter which is a function of electrolyte concentration and particle size.

  11. Lipid rafts sense and direct electric field-induced migration.

    PubMed

    Lin, Bo-Jian; Tsao, Shun-Hao; Chen, Alex; Hu, Shu-Kai; Chao, Ling; Chao, Pen-Hsiu Grace

    2017-08-08

    Endogenous electric fields (EFs) are involved in developmental regulation and wound healing. Although the phenomenon is known for more than a century, it is not clear how cells perceive the external EF. Membrane proteins, responding to electrophoretic and electroosmotic forces, have long been proposed as the sensing molecules. However, specific charge modification of surface proteins did not change cell migration motility nor directionality in EFs. Moreover, symmetric alternating current (AC) EF directs cell migration in a frequency-dependent manner. Due to their charge and ability to coalesce, glycolipids are therefore the likely primary EF sensor driving polarization of membrane proteins and intracellular signaling. We demonstrate that detergent-resistant membrane nanodomains, also known as lipid rafts, are the primary response element in EF sensing. The clustering and activation of caveolin and signaling proteins further stabilize raft structure and feed-forward downstream signaling events, such as rho and PI3K activation. Theoretical modeling supports the experimental results and predicts AC frequency-dependent cell and raft migration. Our results establish a fundamental mechanism for cell electrosensing and provide a role in lipid raft mechanotransduction.

  12. DC biased low-frequency insulating constriction dielectrophoresis for protein biomolecules concentration.

    PubMed

    Zhang, Peng; Liu, Yuxin

    2017-09-01

    Sample enrichment or molecules concentration is considered an essential step in sample processing of miniaturized devices aimed at biosensing and bioanalysis. Among all the means involved to achieve this aim, dielectrophoresis (DEP) is increasingly employed in molecules manipulation and concentration because it is non-destructive and high efficiency. This paper presents a methodology to achieve protein concentration utilizing the combination effects of electrokinetics and low frequency insulating dielectrophoresis (iDEP) generated within a microfluidic device, in which a submicron constricted channel was fabricated using DNA molecular combing and replica molding. This fabrication technique avoids using e-beam lithography or other complicated nanochannel fabrication methods, and provides an easy and low cost approach with the flexibility of controlling channel dimensions to create highly constricted channels embedded in a microfluidic device. With theoretical analysis and experiments, we demonstrated that fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) protein molecules can be significantly concentrated to form an arc-shaped band near the constricted channel under the effects of a negative dielectrophoretic force and DC electrokinetic forces within a short period of time. It was also observed that the amplitudes of the applied DC and AC electric fields, the AC frequencies as well as the suspending medium conductivities had strong effects on the concentration responses of the FITC-BSA molecules, including the concentrated area and position, intensities of the focused molecules, and concentration speed. Our method provides a simple and flexible approach for quickly concentrating protein molecules by controlling the applied electric field parameters. The iDEP device reported in this paper can be used as a stand-alone sensor or worked as a pre-concentration module integrated with biosensors for protein biomarker detection. Furthermore, low

  13. Dynamic blocked transfer stiffness method of characterizing the magnetic field and frequency dependent dynamic viscoelastic properties of MRE

    NASA Astrophysics Data System (ADS)

    Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.

    2016-11-01

    Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.

  14. Updated MDRIZTAB Parameters for ACS/WFC

    NASA Astrophysics Data System (ADS)

    Hoffman, S. L.; Avila, R. J.

    2017-03-01

    The Mikulski Archive for Space Telescopes (MAST) pipeline performs geometric distortion corrections, associated image combinations, and cosmic ray rejections with AstroDrizzle. The MDRIZTAB reference table contains a list of relevant parameters that controls this program. This document details our photometric analysis of Advanced Camera for Surveys Wide Field Channel (ACS/WFC) data processed by AstroDrizzle. Based on this analysis, we update the MDRIZTAB table to improve the quality of the drizzled products delivered by MAST.

  15. Preliminary investigation of the effects of γ-tACS on working memory in schizophrenia.

    PubMed

    Hoy, Kate E; Whitty, Dean; Bailey, Neil; Fitzgerald, Paul B

    2016-10-01

    Working memory impairment in schizophrenia has been strongly associated with abnormalities in gamma oscillations within the dorsolateral prefrontal cortex (DLFPC). We recently published the first ever study showing that anodal transcranial direct current stimulation (tDCS) to the left DLPFC was able to significantly improve working memory in schizophrenia and did so seemingly via restoring normal gamma oscillatory function. Transcranial alternating current stimulation (tACS) is a form of electrical brain stimulation that delivers stimulation at a specific frequency and has been shown to entrain endogenous cortical oscillations. Therefore, gamma (γ) tACS may be even more effective than tDCS in improving working memory in schizophrenia. In a randomized repeated-measures study we compared the effects of γ-tACS, tDCS and sham stimulation on the performance of the two back working memory tasks in ten patients with schizophrenia. There was a significant time by stimulation interaction, with tDCS and sham showing trend-level improvements in working memory, while γ-tACS, contrary to our hypothesis, showed no change. The results are discussed in light of posited divergent effects of tACS and tDCS on the pathophysiology of working memory impairment in schizophrenia.

  16. The effects of inverter magnetic fields on early seed germination of mung beans.

    PubMed

    Huang, Hsin-Hsiung; Wang, Show-Ran

    2008-12-01

    The biological effects of extremely low frequency magnetic fields (ELF MFs) on living organisms have been explored in many studies. Most of them demonstrate the biological effects caused by 50/60 Hz magnetic fields or pulsed magnetic fields. However, as the development of power electronics flourishes, the magnetic fields induced are usually in other different waveforms. This study aims to assess the effects of magnetic fields generated by inverter systems on the early growth of plants using mung beans as an example. In the experiment, an inverter which can produce sinusoidal pulsed width modulation (SPWM) voltages was used to drive 3 specially made circular coils and an AC motor. Six SPWM voltages with different fundamental frequencies (10, 20, 30, 40, 50, and 60 Hz) set on the inverter drive the circuit to produce the specific kinds of MFs. The results indicate that the magnetic field induced by a 20 or 60 Hz SPWM voltage has an enhancing effect on the early growth of mung beans, but the magnetic fields induced by SPWM voltages of other frequencies (30, 40, and 50 Hz) have an inhibitory effect, especially at 50 Hz.

  17. AC conductivity, magnetic and shielding effectiveness studies on polyaniline embedded Co0.5Mn0.5Fe2O4 nanoparticles for electromagnetic interference suppression

    NASA Astrophysics Data System (ADS)

    Gurusiddesh, M.; Madhu, B. J.; Shankaramurthy, G. J.

    2018-05-01

    Electrically conducting Polyaniline (PANI)/Co0.5Mn0.5Fe2O4 nanocomposites are synthesized by in situ polymerization of aniline monomer in the presence of Co0.5Mn0.5Fe2O4 nanoparticles. Structural studies on the synthesized samples have been carried out using X-ray diffraction technique, Field emission scanning electron microscopy and Energy dispersive X-ray spectroscopy. Frequency dependent ac conductivity studies on the prepared samples revealed that conductivity of the composite is high compared to Co0.5Mn0.5Fe2O4 nanoparticles. Further, both the samples exhibited hysteresis behavior under the applied magnetic field. Electromagnetic interference (EMI) shielding effectiveness of both the samples decreases with increase in the applied frequency in the studied frequency range. Maximum shielding effectiveness (SE) of 31.49 dB and 62.84 dB were obtained for Co0.5Mn0.5Fe2O4 nanoparticles and PANI/Co0.5Mn0.5Fe2O4 nanocomposites respectively in the studied frequency range. Observed higher EMI shielding in the composites was attributed to its high electrical conductivity.

  18. Improved frequency/voltage converters for fast quartz crystal microbalance applications.

    PubMed

    Torres, R; García, J V; Arnau, A; Perrot, H; Kim, L To Thi; Gabrielli, C

    2008-04-01

    The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1 kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10 mVHz, for a frequency shift resolution of 0.1 Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5 to 10 MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.

  19. Improved frequency/voltage converters for fast quartz crystal microbalance applications

    NASA Astrophysics Data System (ADS)

    Torres, R.; García, J. V.; Arnau, A.; Perrot, H.; Kim, L. To Thi; Gabrielli, C.

    2008-04-01

    The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10mV/Hz, for a frequency shift resolution of 0.1Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5to10MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.

  20. Frequency dispersion in dipolophoresis of metallodielectric Janus spheres

    NASA Astrophysics Data System (ADS)

    Boymelgreen, Alicia; Yossifon, Gilad; Miloh, Touvia

    2013-11-01

    Dipolophoresis (DIP) is an umbrella term for the two non-linear electrokinetic phenomenon of induced-charge electrophoresis (ICEP) and dielectrophoresis (DEP). It has previously been shown that this effect is responsible for the obtainment of a finite velocity by a metallodielectric (comprised of one conducting and one dielectric hemisphere) Janus spheres, even under the application of a uniform AC field. At low frequencies, this mobility is dominated by induced-charge effects, wherein the stronger induced-charge electroosmotic flow around the polarizable hemisphere propels the particle perpendicular to the electric field in the direction of its dielectric end. Surprisingly, it was observed that this motion is at a maximum for applied frequencies in the range of 1kHz beyond which the effect decays. Here we examine the effect of varying experimental conditions including electrolyte concentration and particle size on this limit. Additionally, we present for the first time an analytical solution which is capable of predicting this optimum based on our previous formulation which is uniquely valid for arbitrary electric double layer length. This work is of both fundamental and practical importance and may be used to optimize the behavior of Janus micromotors in lab-on-a-chip systems.

  1. AC Loss Minimization in High Temperature Superconductors - U.K.

    DTIC Science & Technology

    2003-11-07

    high currents in high magnetic fields. The DC properties are very attractive, but to reduce the AC losses it is necessary to use a narrow conductor... NiFe in the whole magnetic field region (goHext=0.01 T - 6 T) roughly by a factor of 2, reflecting the sample Jc(B) dependencies. Also the magnetic ...ratio of the tape, there is no visible effect in a parallel magnetic field. Hysteresis losses in metallic substrates - CeO2:Pd/ NiFe and CeO2:Pd/NiCrW

  2. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABAA Inhibition: A tACS-TMS Study

    PubMed Central

    van Ede, Freek

    2017-01-01

    Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABAA inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABAA decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABAA inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABAA inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABAA inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABAA inhibition induced

  3. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABAA Inhibition: A tACS-TMS Study.

    PubMed

    Nowak, Magdalena; Hinson, Emily; van Ede, Freek; Pogosyan, Alek; Guerra, Andrea; Quinn, Andrew; Brown, Peter; Stagg, Charlotte J

    2017-04-26

    Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABA A inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABA A decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABA A inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABA A inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABA A inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABA A inhibition

  4. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. [Design of MC-III low frequency pulsed strong magnetic fields generator].

    PubMed

    Wen, Jun; Zhong, Lisheng; Xie, Hengkun; Qu, Xuemin; Ju, Hongbo; Yang, Jiqing; Wang, Sigang

    2002-12-01

    In this paper, We designed and accomplished a low frequency pulsed strong magnetic fields generator, which provides a pulsed magnetic field with the intensity range from 0.1-2.5 T and the adjusted time interval of pulse. This device is easy to operate and performs reliably. It can work steady for a long time and has been successful used in the experiments of biological effects of electromagnetics.

  6. Performance trends of rehabilitated AC pavements

    DOT National Transportation Integrated Search

    2000-10-01

    The General Pavement Study (GPS) 6 experiment, "AC Overlay of AC Pavements," involves pavement test sections where an asphalt concrete (AC) overlay was placed on an existing AC pavement. This TechBrief summarizes the results of a study of the GPS-6 e...

  7. Exposure assessment of extremely low frequency electric fields in Tehran, Iran, 2010.

    PubMed

    Nassiri, Parvin; Esmaeilpour, Mohammad Reza Monazzam; Gharachahi, Ehsan; Haghighat, Gholamali; Yunesian, Masoud; Zaredar, Narges

    2013-01-01

    Extremely Low-Frequency (ELF) electric and magnetic fields belonging to the nonionizing electromagnetic radiation spectrum have a frequency of 50 - 60 Hz. All people are exposed to a complex set of electric and magnetic fields that spread throughout the environment. The current study was carried out to assess people's exposure to an ELF electric field in the Tehran metropolitan area in 2010. The measurement of the electronic fields was performed using an HI-3604 power frequency field strength measurement device. A total number of 2,753 measurements were performed. Afterward, the data obtained were transferred to the base map using Arc View Version 3.2 and Arc Map Version 9.3. Finally, an interpolation method was applied to expand the intensity of the electric field to the entire city. Based on the results obtained, the electric field was divided into three parts with various intensities including 0-5 V m, 5-15 V m, and >15 V m. It should be noted that the status of high voltage transmission lines, electric substations, and specific points including schools and hospitals were also marked on the map. Minimum and maximum electric field intensities were measured tantamount to 0.31 V m and 19.80 V m, respectively. In all measurements, the electric field was much less than the amount provided in the ICNIRP Guide. The results revealed that 141 hospitals and 6,905 schools are situated in an area with electric field intensity equal to 0-5 V m, while 15 hospitals and 95 schools are located in zones of 5-15 V m and more than 15 V m. Examining high voltage transmission lines and electric substations in Tehran and its suburbs suggested that the impact of the lines on the background electric field of the city was low. Accordingly, 0.97 km of Tehran located on the city border adjacent to the high voltage transmission lines have an electric field in the range of 5 to 15 V m. The noted range is much lower than the available standards. In summary, it can be concluded that the public

  8. Anatomy of the auditory thalamocortical system in the Mongolian gerbil: nuclear origins and cortical field-, layer-, and frequency-specificities.

    PubMed

    Saldeitis, Katja; Happel, Max F K; Ohl, Frank W; Scheich, Henning; Budinger, Eike

    2014-07-01

    Knowledge of the anatomical organization of the auditory thalamocortical (TC) system is fundamental for the understanding of auditory information processing in the brain. In the Mongolian gerbil (Meriones unguiculatus), a valuable model species in auditory research, the detailed anatomy of this system has not yet been worked out in detail. Here, we investigated the projections from the three subnuclei of the medial geniculate body (MGB), namely, its ventral (MGv), dorsal (MGd), and medial (MGm) divisions, as well as from several of their subdivisions (MGv: pars lateralis [LV], pars ovoidea [OV], rostral pole [RP]; MGd: deep dorsal nucleus [DD]), to the auditory cortex (AC) by stereotaxic pressure injections and electrophysiologically guided iontophoretic injections of the anterograde tract tracer biocytin. Our data reveal highly specific features of the TC connections regarding their nuclear origin in the subdivisions of the MGB and their termination patterns in the auditory cortical fields and layers. In addition to tonotopically organized projections, primarily of the LV, OV, and DD to the AC, a large number of axons diverge across the tonotopic gradient. These originate mainly from the RP, MGd (proper), and MGm. In particular, neurons of the MGm project in a columnar fashion to several auditory fields, forming small- and medium-sized boutons, and also hitherto unknown giant terminals. The distinctive layer-specific distribution of axonal endings within the AC indicates that each of the TC connectivity systems has a specific function in auditory cortical processing. Copyright © 2014 Wiley Periodicals, Inc.

  9. Study of magnetic fields from power-frequency current on water lines.

    PubMed

    Lanera, D; Zapotosky, J E; Colby, J A

    1997-01-01

    The magnetic fields from power-frequency current flowing on water lines were investigated in a new approach that involved an area-wide survey in a small town. Magnetic fields were measured outside the residence under power cables and over water lines, and each residence was characterized as to whether it received water from a private well or the municipal water system. The magnetic field data revealed two statistical modes when they were related to water supply type. The data also showed that in the case of the high mode, the magnetic field remained constant along the line formed by power drop wires, at the back of the house, and the water hookup service, in front of the house, all the way to the street. The patterns are explained by the coincidence of measurement points and the presence of net current flowing on power mains, power drop conductors, residential plumbing, water service hookups, and water mains. These patterns, together with other characteristics of this magnetic field source, such as the gradual spatial fall-off of this field and the presence of a constant component in the time sequence, portray a magnetic field more uniform and constant in the residential environment than has been thought to exist. Such characteristics make up for the weakness of the source and make net current a significant source of exposure in the lives of individuals around the house, when human exposure to magnetic fields is assumed to be a cumulative effect over time. This, together with the bimodal statistical distribution of the residential magnetic field (related to water supply type), presents opportunities for retrospective epidemiological analysis. Water line type and its ability to conduct power-frequency current can be used as the historical marker for a bimodal exposure inference, as Wertheimer et al. have shown.

  10. Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST

    NASA Astrophysics Data System (ADS)

    Du, Hong-Lei; Xue, Qian; Gao, Xiao-Yang; Yao, Feng-Rui; Lu, Shi-Yang; Wang, Ye-Long; Liu, Chun-Heng; Zhang, Yong-Cheng; Lü, Yue-Guang; Li, Shan-Dong

    2015-12-01

    A composite ceramic with nominal composition of 45.0 wt%(Ba0.5Sr0.5)TiO3-55.0 wt%MgO (acronym is BST-MgO) is sintered for fabricating a frequency reconfigurable aperture-coupled microstrip antenna. The calcined BST-MgO composite ceramic exhibits good microwave dielectric properties at X-band with appropriate dielectric constant ɛr around 85, lower dielectric loss tan δ about 0.01, and higher permittivity tunability 14.8% at 8.33 kV/cm. An ultrahigh E-field tunability of working frequency up to 11.0% (i.e., from 9.1 GHz to 10.1 GHz with a large frequency shift of 1000 MHz) at a DC bias field from 0 to 8.33 kV/cm and a considerably large center gain over 7.5 dB are obtained in the designed frequency reconfigurable microstrip antenna. These results demonstrate that BST materials are promising for the frequency reconfigurable antenna. Project supported by the National Natural Science Foundation of China (Grant No. 11074040) and the Key Project of Shandong Provincial Department of Science and Technology, China (Grant No. ZR2012FZ006).

  11. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Faqi; Zeng, Deping; He, Min

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the sphericalmore » cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.« less

  12. An AC modulated near infrared gain calibration system for a “Violin-Mode” transimpedance amplifier, intended for advanced LIGO suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockerbie, N. A.; Tokmakov, K. V.

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a “tall-thin” rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse “Violin-Mode” vibrations of such a fibre, via the oscillatory movement of the shadowmore » cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor’s DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor’s more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz–300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m{sup −1} was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured

  13. Advancement in the Understanding of the Field and Frequency Dependent Microwave Surface Resistance of Niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinello, M.; Aderhold, S.; Chandrasekaran, S. K.

    The radio-frequency surface resistance of niobium resonators is incredibly reduced when nitrogen impurities are dissolved as interstitial in the material, conferring ultra-high Q-factors at medium values of accelerating field. This effect has been observed in both high and low temperature nitrogen treatments. As a matter of fact, the peculiar anti Q-slope observed in nitrogen doped cavities, i.e. the decreasing of the Q-factor with the increasing of the radio-frequency field, come from the decreasing of the BCS surface resistance component as a function of the field. Such peculiar behavior has been considered consequence of the interstitial nitrogen present in the niobiummore » lattice after the doping treatment. The study here presented show the field dependence of the BCS surface resistance of cavities with different resonant frequencies, such as: 650 MHz, 1.3 GHz, 2.6 GHz and 3.9 GHz, and processed with different state-of-the-art surface treatments. These findings show for the first time that the anti Q-slope might be seen at high frequency even for clean Niobium cavities, revealing useful suggestion on the physics underneath the anti Q-slope effect.« less

  14. Low-frequency approximation for high-order harmonic generation by a bicircular laser field

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.

    2018-01-01

    We present low-frequency approximation (LFA) for high-order harmonic generation (HHG) process. LFA represents the lowest-order term of an expansion of the final-state interaction matrix element in powers of the laser-field frequency ω . In this approximation the plane-wave recombination matrix element which appears in the strong-field approximation is replaced by the exact laser-free recombination matrix element calculated for the laser-field dressed electron momenta. First, we have shown that the HHG spectra obtained using the LFA agree with those obtained solving the time-dependent Schrödinger equation. Next, we have applied this LFA to calculate the HHG rate for inert gases exposed to a bicircular field. The bicircular field, which consists of two coplanar counter-rotating fields having different frequencies (usually ω and 2 ω ), is presently an important subject of scientific research since it enables efficient generation of circularly polarized high-order harmonics (coherent soft x rays). Analyzing the photorecombination matrix element we have found that the HHG rate can efficiently be calculated using the angular momentum basis with the states oriented in the direction of the bicircular field components. Our numerical results show that the HHG rate for atoms having p ground state, for higher high-order harmonic energies, is larger for circularly polarized harmonics having the helicity -1 . For lower energies the harmonics having helicity +1 prevails. The transition between these two harmonic energy regions can appear near the Cooper minimum, which, in the case of Ar atoms, makes the selection of high-order harmonics having the same helicity much easier. This is important for applications (for example, for generation of attosecond pulse trains of circularly polarized harmonics).

  15. Investigation of the transition of multicycle AC operation in ISTTOK under edge electrode biasing

    NASA Astrophysics Data System (ADS)

    Malaquias, A.; Henriques, R. B.; Silva, C.; Figueiredo, H.; Nedzelskiy, I. S.; Fernandes, H.; Sharma, R.; Plyusnin, V. V.

    2017-11-01

    In this paper we present recent results obtained on plasma edge electrode biasing during AC discharges. The goal is to obtain experimental evidence on a number of plasma parameters that can play a role during the AC transition on the repeatability and reproducibility of AC operation. The control of the plasma density in the quiescent phase is made just before the AC transition by means of positive edge biasing leading to a transitory improved of density (30%-40%). Gas puff experiments show that the increase of background gas pressure during discharge led to a better success of the AC transition. The experimental results indicate that the increase of density during the AC transition induced by edge biasing is followed by an electron temperature drop. The drop in electron temperature leads in most cases the formation of runaway electrons. It has been observed that the runaway population during discharge flattop depends on the interplay between gas content and plasma density and temperature. The results also confirm that the correct balance of external magnetic fields is crucial during the AC transition phase where drift electron currents are formed. The results from the heavy ion beam diagnostic show that the formation of plasma current during consecutive AC transitions is asymmetric. Numerical simulations indicate that for some particular conditions this result could be reproduced from assuming the presence of two counter-currents during AC transition.

  16. AC/RC Force Integration

    DTIC Science & Technology

    1991-05-01

    ib qeocie. Thki document may not be rdeaed for open publicado. untit hu been deared by die appropriate military seavice or a veunent agency. AC /RC...A N/A N/A 11. TITLE (Include Security Classification) AC /RC Force Structure Integraticn 12. PERSONAL AUTHOR(S) Russell A. Eggers 13a. TYPE OF REPORT... AC ) and Reserve Components (RC) Force Integration is critical in today’s Total Army. The Army of soldiers, Active and Reserve, exists to play a key

  17. Evaluation of Tumor Treatment of Magnetic Nanoparticles Driven by Extremely Low Frequency Magnetic Field

    PubMed Central

    Li, Weitao; Liu, Yangyang; Qian, Zhiyu; Yang, Yamin

    2017-01-01

    Recently, magnetic nanoparticles (MNPs), which can be manipulated in the magnetic field, have received much attention in tumor therapy. Extremely low frequency magnetic field (ELMF) system can initiate MNPs vibrating and the movement of MNPs inside of cells can be controlled by adjusting the frequency and intensity of ELMF towards irreversible cell damages. In this study, we investigated the detrimental effects on tumor cells with MNPs under various ELMF exposure conditions. An in-house built ELMF system was developed and utilized for evaluating the treatment efficiency of MNPs on tumor cells with specific intensities (2–20 Hz) and frequencies (0.1–20 mT). Significant morphological changes were found in tumor cells treated with MNPs in combing with ELMF, which were consistent with noticeable decrease in cell viability. With the increase of the intensity and frequency of the magnetic field, the structural integrity of tumor tissue can be further destroyed. Destructive effects of MNPs and ELMF on tumor tissues were further determined by the pathophysiological changes observed in vivo in animal study. Taken together, the combination of MNPs and ELMF had a great potential as an innovative treatment approach for tumor intervention. PMID:28397790

  18. Bioelectric fields of marine organisms: voltage and frequency contributions to detectability by electroreceptive predators.

    PubMed

    Bedore, Christine N; Kajiura, Stephen M

    2013-01-01

    Behavioral responses of elasmobranch fishes to weak electric fields have been well studied. These studies typically employ a stimulator that produces a dipole electric field intended to simulate the natural electric field of prey items. However, the characteristics of bioelectric fields have not been well described. The magnitude and frequency of the electric field produced by 11 families of marine organisms were quantified in this study. Invertebrate electric potentials ranged from 14 to 28 μV and did not differ from those of elasmobranchs, which ranged from 18 to 30 μV. Invertebrates and elasmobranchs produced electric potentials smaller than those of teleost fishes, which ranged from 39 to 319 μV. All species produced electric fields within the frequency range that is detectable by elasmobranch predators (<16 Hz), with the highest frequencies produced by the penaeids (10.3 Hz) and the gerreids (4.6 Hz). Although voltage differed by family, there was no relationship between voltage and mass or length of prey. Differences in prey voltage may be related to osmoregulatory strategies; invertebrates and elasmobranchs are osmoconformers and have less ion exchange with the surrounding seawater than teleosts species, which are hyposmotic. As predicted, voltage production was greatest at the mucous membrane-lined mouth and gills, which are sites of direct ion exchange with the environment.

  19. Characterizing fiber-reinforced composite structures using AC-impedance spectroscopy (AC-IS)

    NASA Astrophysics Data System (ADS)

    Woo, Leta Y.

    Property enhancement in composites depends largely on the reinforcement. For fiber-reinforced composites, the distribution of fibers is crucial in determining the electrical and mechanical performance. Image analysis methods for characterization can be time-consuming and/or destructive. This work explores the capability of AC-impedance spectroscopy (AC-IS), an electrical measurement technique, to serve as a rapid, non-destructive tool for characterizing composite microstructure. The composite requirements include a filler that is electrically conducting or semi-conducting with higher conductivity than the matrix, and a high-impedance interface or coating between the filler and the matrix. To establish an AC-IS characterization method, cement-matrix composites with steel reinforcement were employed as both a technologically important and a model system to investigate how fibers affect the electrical response. Beginning with spherical particulates and then fibers, composites were examined using composite theory and an "intrinsic conductivity" approach. The intrinsic conductivity approach applies to composites with low volume fractions of fibers (i.e., in the dilute regime) and relates how the composite conductivity varies relative to the matrix as a function of volume fraction. A universal equivalent circuit model was created to understand the AC-IS response of composites based on the geometry and volume fraction of the filler. Deviation from predicted behavior was assessed using a developed f-function, which quantifies how fibers contribute to the overall electrical response of the composite. Using the f-function, an AC-IS method for investigating fiber dispersion was established to characterize alignment, settling/segregation, and aggregation. Alignment was investigated using measurements made in three directions. A point-probe technique characterized settling and/or large-scale inhomogeneous mixing in samples. Aggregation was quantified using a "dispersion factor

  20. The Cryogenic Anti-Coincidence detector for ATHENA X-IFU: pulse analysis of the AC-S7 single pixel prototype

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Argan, A.; Lotti, S.; Macculi, C.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.

    2016-07-01

    The ATHENA observatory is the second large-class mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme "The Hot and Energetic Universe", by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these is the X-ray Integral Field Unit (X-IFU): it is a TES based kilo-pixel order array able to provide spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background expected at L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the background level and enable the mission science goals, a Cryogenic Anticoincidence (CryoAC) detector is placed < 1 mm below the TES array. It is a 4- pixel TES based detector, with wide Silicon absorbers sensed by Ir:Au TESes. The CryoAC development schedule foresees by Q1 2017 the delivery of a Demonstration Model (DM) to the X-IFU FPA development team. The DM is a single-pixel detector that will address the final design of the CryoAC. It will verify some representative requirements at single-pixel level, especially the detector operation at 50 mK thermal bath and the threshold energy at 20 keV. To reach the final DM design we have developed and tested the AC-S7 prototype, with 1 cm2 absorber area sensed by 65 Ir TESes. Here we will discuss the pulse analysis of this detector, which has been illuminated by the 60 keV line from a 241Am source. First, we will present the analysis performed to investigate pulses timings and spectrum, and to disentangle the athermal component of the pulses from the thermal one. Furthermore, we will show the application to our dataset of an alternative method of pulse processing, based upon Principal Component Analysis (PCA). This kind of analysis allow us to recover better energy spectra than achievable with traditional methods

  1. Dielectric relaxation dynamics and AC conductivity scaling of metal-organic framework (MOF-5) based polymer electrolyte nanocomposites incorporated with ionic liquid

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, A.

    2017-10-01

    Dielectric relaxation dynamics and AC conductivity scaling of a metal-organic framework (MOF-5) based poly (vinylidene fluoride-co-hexafluoropropylene) (PVdf-HFP) incorporated with 1-Butyl-3-methylimidazolium hexafluorophosphate have been studied over a frequency range of 40 Hz-5 MHz and in the temperature range of 300 K-380 K. High values of dielectric permittivity (~{{\\varepsilon }\\prime} ) having strong dispersion are obtained at low frequency because of interfacial polarization. The real part of the dielectric modulus spectra (M‧) shows no prominent peak, whereas the imaginary part (M″) shows certain peaks, with a reduction in relaxation time (τ) that can be attributed to a non-Debye relaxation mechanism. The spectra also depict both concentration- and temperature-independent scaling behavior. The power law dependent variation of AC conductivity follows the jump relaxation model and reveals activated ion hopping over diffusion barriers. The value of the frequency exponent is observed to decrease with increasing concentration of ionic liquid, indicating the forward hopping of ions in the relaxation process. The AC conductivity scaling curves at different temperatures also depict the temperature-independent relaxation dynamics.

  2. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Williamson, James M.; Trump, Darryl D.; Bletzinger, Peter; Ganguly, Biswa N.

    2006-10-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s-1. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ~3 × 1015 cm-3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ~8.5 × 1015 cm-3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  3. A multi-frequency radiometric measurement of soil moisture content over bare and vegetated fields

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Schmugge, T. J.; Mcmurtrey, J. E., III; Gould, W. I.; Glazar, W. S.; Fuchs, J. E. (Principal Investigator)

    1981-01-01

    A USDA Beltsville Agricultural Research Center site was used for an experiment in which soil moisture remote sensing over bare, grass, and alfalfa fields was conducted over a three-month period using 0.6 GHz, 1.4 GHz, and 10.6 GHz Dicke-type microwave radiometers mounted on mobile towers. Ground truth soil moisture content and ambient air and sil temperatures were obtained concurrently with the radiometric measurements. Biomass of the vegetation cover was sampled about once a week. Soil density for each of the three fields was measured several times during the course of the experiment. Results of the radiometric masurements confirm the frequency dependence of moisture sensing sensitivity reduction reported earlier. Observations over the bare, wet field show that the measured brightness temperature is lowest at 5.0 GHz and highest of 0.6 GHz frequency, a result contrary to expectation based on the estimated dielectric permittivity of soil water mixtures and current radiative transfer model in that frequency range.

  4. On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics

    PubMed Central

    Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng

    2016-01-01

    By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure. PMID:27190570

  5. On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics.

    PubMed

    Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng

    2016-05-01

    By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure.

  6. Nonlinear response of the immune system to power-frequency magnetic fields.

    PubMed

    Marino, A A; Wolcott, R M; Chervenak, R; Jourd'Heuil, F; Nilsen, E; Frilot, C

    2000-09-01

    Studies of the effects of power-frequency electromagnetic fields (EMFs) on the immune and other body systems produced positive and negative results, and this pattern was usually interpreted to indicate the absence of real effects. However, if the biological effects of EMFs were governed by nonlinear laws, deterministic responses to fields could occur that were both real and inconsistent, thereby leading to both types of results. The hypothesis of real inconsistent effects due to EMFs was tested by exposing mice to 1 G, 60 Hz for 1-105 days and observing the effect on 20 immune parameters, using flow cytometry and functional assays. The data were evaluated by means of a novel statistical procedure that avoided averaging away oppositely directed changes in different animals, which we perceived to be the problem in some of the earlier EMF studies. The reliability of the procedure was shown using appropriate controls. In three independent experiments involving exposure for 21 or more days, the field altered lymphoid phenotype even though the changes in individual immune parameters were inconsistent. When the data were evaluated using traditional linear statistical methods, no significant difference in any immune parameter was found. We were able to mimic the results by sampling from known chaotic systems, suggesting that deterministic chaos could explain the effect of fields on the immune system. We conclude that exposure to power-frequency fields produced changes in the immune system that were both real and inconsistent.

  7. Static and Alternating Field Magnetic Capture and Heating of Iron Oxide Nanoparticles in Simulated Blood Vessels

    NASA Astrophysics Data System (ADS)

    Lee, Joanne Haeun; Shah, Rhythm R.; Brazel, Christopher S.

    2014-11-01

    Targeted drug delivery and localized hyperthermia are being studied as alternatives to conventional cancer treatments, which can affect the whole body and indiscriminately kill healthy cells. Magnetic nanoparticles (MNPs) have potential as drug carriers that can be captured and trigger hyperthermia at the site of the tumor by applying an external magnetic field. This study focuses on comparing the capture efficiency of the magnetic field applied by a static magnet to an alternating current coil. The effect of particle size, degree of dispersion, and the frequency of the AC field on capture and heating were studied using 3 different dispersions: 16 nm maghemite in water, 50 nm maghemite in dopamine, and 20--30 nm magnetite in dimercaptosuccinic acid. A 480G static field captured more MNPs than a similar 480G AC field at either 194 or 428 kHz; however, the AC field also allowed heating. The MNPs in water had a lower capture and heating efficiency than the larger, dopamine-coated MNPs. This finding was supported by dynamic light scattering data showing the particle size distribution and vibrating sample magnetometry data showing that the larger MNPs in the dopamine solution have a higher field of coercivity, exhibit ferrimagnetism and allow for better capture while smaller (16 nm) MNPs exhibit superparamagnetism. The dispersions that captured the best also heated the best. NSF ECE Grant #1358991 supported the first author as an REU student.

  8. Interior sound field control using generalized singular value decomposition in the frequency domain.

    PubMed

    Pasco, Yann; Gauthier, Philippe-Aubert; Berry, Alain; Moreau, Stéphane

    2017-01-01

    The problem of controlling a sound field inside a region surrounded by acoustic control sources is considered. Inspired by the Kirchhoff-Helmholtz integral, the use of double-layer source arrays allows such a control and avoids the modification of the external sound field by the control sources by the approximation of the sources as monopole and radial dipole transducers. However, the practical implementation of the Kirchhoff-Helmholtz integral in physical space leads to large numbers of control sources and error sensors along with excessive controller complexity in three dimensions. The present study investigates the potential of the Generalized Singular Value Decomposition (GSVD) to reduce the controller complexity and separate the effect of control sources on the interior and exterior sound fields, respectively. A proper truncation of the singular basis provided by the GSVD factorization is shown to lead to effective cancellation of the interior sound field at frequencies below the spatial Nyquist frequency of the control sources array while leaving the exterior sound field almost unchanged. Proofs of concept are provided through simulations achieved for interior problems by simulations in a free field scenario with circular arrays and in a reflective environment with square arrays.

  9. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    NASA Astrophysics Data System (ADS)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  10. Frequency and concentration windows for the electric activation of a membrane active transport system.

    PubMed Central

    Markin, V. S.; Tsong, T. Y.

    1991-01-01

    Previous work has shown that a simple four-state membrane transport system can interact with an oscillating electric field to become an active transport system if there is charge translocation associated with conformational changes of the transporter and if affinities of the transporter for the ligand on the two sides of membrane are different. The relationship between the transport flux and both the frequency of the applied field and the concentration of ligand have been examined based on the following assumptions: the rate of the electroconformational change of the transporter is much greater than that of the ligand association/dissociation reaction, and the oscillating electric field has a large amplitude. It was found that the transport flux depends strongly on the frequency of the field and on the concentration of the ligand and it displays a window of broad bandwidth both on the frequency and the concentration axes. The maximum concentration gradient, or the static head, which can be supported by this mechanism is shown to be constant for field frequencies smaller than the rate of the electroconformational change. The static head value diminishes completely when the field frequency exceeds the rate of the conformational change. The presence of an optimal field frequency has been shown experimentally in several membrane enzyme systems. The theory was applied to the description of Rb and Na pumping in human erythrocytes stimulated by an AC field. The prediction of a window for a ligand concentration and the static head value may be tested experimentally. In addition, the rate constants and the equilibrium constants of the four state model can be determined by measuring positions of windows, fluxes, and static head values under different experimental conditions. These results are equally applicable to the oscillation of pressure, membrane tension, substrate concentration, or temperature if these external parameters can induce functionally relevant conformational

  11. A Power-Frequency Electric Field Sensor for Portable Measurement

    PubMed Central

    Xiao, Dongping; Ma, Qichao; Xie, Yutong; Zheng, Qi

    2018-01-01

    In this paper, a new type of electric field sensor is proposed for the health and safety protection of inspection staff in high-voltage environments. Compared with the traditional power frequency electric field measurement instruments, the portable instrument has some special performance requirements and, thus, a new kind of double spherical shell sensor is presented. First, the mathematical relationships between the induced voltage of the sensor, the output voltage of the measurement circuit, and the original electric field in free space are deduced theoretically. These equations show the principle of the proposed sensor to measure the electric field and the effect factors of the measurement. Next, the characteristics of the sensor are analyzed through simulation. The simulation results are in good agreement with the theoretical analysis. The influencing rules of the size and material of the sensor on the measurement results are summarized. Then, the proposed sensor and the matching measurement system are used in a physical experiment. After calibration, the error of the measurement system is discussed. Lastly, the directional characteristic of the proposed sensor is experimentally tested. PMID:29614753

  12. A Power-Frequency Electric Field Sensor for Portable Measurement.

    PubMed

    Xiao, Dongping; Ma, Qichao; Xie, Yutong; Zheng, Qi; Zhang, Zhanlong

    2018-03-31

    In this paper, a new type of electric field sensor is proposed for the health and safety protection of inspection staff in high-voltage environments. Compared with the traditional power frequency electric field measurement instruments, the portable instrument has some special performance requirements and, thus, a new kind of double spherical shell sensor is presented. First, the mathematical relationships between the induced voltage of the sensor, the output voltage of the measurement circuit, and the original electric field in free space are deduced theoretically. These equations show the principle of the proposed sensor to measure the electric field and the effect factors of the measurement. Next, the characteristics of the sensor are analyzed through simulation. The simulation results are in good agreement with the theoretical analysis. The influencing rules of the size and material of the sensor on the measurement results are summarized. Then, the proposed sensor and the matching measurement system are used in a physical experiment. After calibration, the error of the measurement system is discussed. Lastly, the directional characteristic of the proposed sensor is experimentally tested.

  13. Micro-hole array fluorescent sensor based on AC-Dielectrophoresis (DEP) for simultaneous analysis of nano-molecules

    NASA Astrophysics Data System (ADS)

    Kim, Hye Jin; Kang, Dong-Hoon; Lee, Eunji; Hwang, Kyo Seon; Shin, Hyun-Joon; Kim, Jinsik

    2018-02-01

    We propose a simple fluorescent bio-chip based on two types of alternative current-dielectrophoretic (AC-DEP) force, attractive (positive DEP) and repulsive (negative DEP) force, for simultaneous nano-molecules analysis. Various radius of micro-holes on the bio-chip are designed to apply the different AC-DEP forces, and the nano-molecules are concentrated inside the micro-hole arrays according to the intensity of the DEP force. The bio-chip was fabricated by Micro Electro Mechanical system (MEMS) technique, and was composed of two layers; a SiO2 layer and Ta/Pt layer were accomplished for an insulation layer and a top electrode with micro-hole arrays to apply electric fields for DEP force, respectively. Each SiO2 and Ta/Pt layers were deposited by thermal oxidation and sputtering, and micro-hole arrays were fabricated with Inductively Coupled Plasma (ICP) etching process. For generation of each positive and negative DEP at micro-holes, we applied two types of sine-wave AC voltage with different frequency range alternately. The intensity of the DEP force was controlled by the radius of the micro-hole and size of nano-molecule, and calculated with COMSOL multi-physics. Three types of nano-molecules labelled with different fluorescent dye were used and the intensity of nano-molecules was examined by the fluorescent optical analysis after applying the DEP force. By analyzing the fluorescent intensities of the nano-molecules, we verify the various nano-molecules in analyte are located successfully inside corresponding micro-holes with different radius according to their size.

  14. Comparing the ACS/WFC and WFC3/UVIS Calibration and Photometry

    NASA Astrophysics Data System (ADS)

    Deustua, S. E.; Mack, J.

    2018-03-01

    A study was undertaken using synthetic photometry of CALSPEC stars to compare the ACS Wide Field Channel (WFC) photometry to the WFC3 UVIS imaging channel in eight similarly named passbands corresponding to the broadband filters F435W (ACS/WFC) F438W (WFC3/UVIS) and F475W, F555W, F606W, F625W, F775W, F814W and F850LP (both ACS/WFC and WFC3/UVIS). The uncertainty of the photometric calibration of ACS/WFC and WFC3/UVIS with respect to the white dwarf standard stars is within ± 0.5% for F814W, F775W, F606W and F475W, and within ±1% for F625W and F850LP. For F555W the apparent difference in the calibration is 2% for F555W and 6% for UVIS/F438W and ACS/F435W due to inherent differences in the filter passbands. Comparing the ACS/WFC to WFC3/UVIS mean flux for stars having a range of spectral types shows a color dependence. The WFC to UVIS F814W color dependence is ± 0.02 mags for F814W, F775W, F475W and F606W. For the other filters the range is -0.06 to +0.02 mags. Aperture photometry of the 47 Tucanae cluster confirm the results from using synthetic photometry of CALSPEC stars.

  15. Nonlinear optical conductivity and subharmonic instabilities of graphene in a strong electromagnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Basov, Dimitri; Fogler, Michael

    We study theoretically the second-order nonlinear optical conductivity σ (2) of graphene as a function of frequency and momentum. We distinguish two regimes. At frequencies ω higher than the temperature-dependent electron-electron collision rate γee- 1 , the conductivity σ (2) can be derived from the semiclassical kinetic equation. The calculation requires taking into account the photon drag (Lorentz force) due to the ac magnetic field. In the low-frequency hydrodynamic regime ω <<γee- 1 , the nonlinear conductivity has a different form and the photon drag effect is suppressed. As a consequence of the nonlinearity, a strong enough photoexcitation can cause spontaneous generation of collective modes in a graphene strip: plasmons in the high-frequency regime and energy waves (demons) in the hydrodynamic one. The dominant instability occurs at frequency ω / 2 .

  16. A multi-frequency radiometric measurement of soil moisture content over bare and vegetated fields

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Schmugge, T. J.; Gould, W. I.; Glazar, W. S.; Fuchs, J. E.; Mcmurtrey, J. E., III

    1982-01-01

    An experiment on soil moisture remote sensing was conducted during July to September 1981 on bare, grass, and alfalfa fields at frequencies of 0.6, 1.4, 5.0, and 10.6 GHz with radiometers mounted on mobile towers. The results confirm the frequency dependence of sensitivity reduction due to the presence of vegetation cover. For the type of vegetated fields reported here, the vegetation effect is appreciable even at 0.6 GHz. Measurements over bare soil show that when the soil is wet, the measured brightness temperature is lowest at 5.0 GHz and highest at 0.6 GHz, a result contrary to the expectation based on the estimated dielectric permittivity of soil-water mixtures and the current radiative transfer model in that frequency range.

  17. Wireless actuation of piezoelectric coupled micromembrane using radio frequency magnetic field for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sinha, Dhiraj

    2017-04-01

    We report on a novel technique of wireless actuation of a micromembrane mounted on a piezoelectric stack using radio frequency magnetic fields. The magnetic field component of the radio frequency field induces time varying voltage across the leads of the piezoelectric stack which results in vibrations of the piezoelectric stack which are eventually transferred to a micromembrane of silicon nitride mounted on top of it. Thus, wireless actuation of micromembranes is achieved which is measured using a laser-photodetector system. Wireless actuation of micromembranes has applications in controlled drug delivery with rates of the order of tens of nanolitres per second. It can also be used in controlling capsule endoscopes, in vivo sensors, and micromachines for biomedical applications.

  18. The ACS statistical analyzer

    DOT National Transportation Integrated Search

    2010-03-01

    This document provides guidance for using the ACS Statistical Analyzer. It is an Excel-based template for users of estimates from the American Community Survey (ACS) to assess the precision of individual estimates and to compare pairs of estimates fo...

  19. Mitigating voltage lead errors of an AC Josephson voltage standard by impedance matching

    NASA Astrophysics Data System (ADS)

    Zhao, Dongsheng; van den Brom, Helko E.; Houtzager, Ernest

    2017-09-01

    A pulse-driven AC Josephson voltage standard (ACJVS) generates calculable AC voltage signals at low temperatures, whereas measurements are performed with a device under test (DUT) at room temperature. The voltage leads cause the output voltage to show deviations that scale with the frequency squared. Error correction mechanisms investigated so far allow the ACJVS to be operational for frequencies up to 100 kHz. In this paper, calculations are presented to deal with these errors in terms of reflected waves. Impedance matching at the source side of the system, which is loaded with a high-impedance DUT, is proposed as an accurate method to mitigate these errors for frequencies up to 1 MHz. Simulations show that the influence of non-ideal component characteristics, such as the tolerance of the matching resistor, the capacitance of the load input impedance, losses in the voltage leads, non-homogeneity in the voltage leads, a non-ideal on-chip connection and inductors between the Josephson junction array and the voltage leads, can be corrected for using the proposed procedures. The results show that an expanded uncertainty of 12 parts in 106 (k  =  2) at 1 MHz and 0.5 part in 106 (k  =  2) at 100 kHz is within reach.

  20. Hyperfine field, electric field gradient, quadrupole coupling constant and magnetic properties of challenging actinide digallide

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar

    2017-12-01

    In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.