Sample records for acatenango guatemalavolcano hazards

  1. Volcano hazards at Fuego and Acatenango, Guatemala

    USGS Publications Warehouse

    Vallance, J.W.; Schilling, S.P.; Matías, O.; Rose, William I.; Howell, M.M.

    2001-01-01

    The Fuego-Acatenango massif comprises a string of five or more volcanic vents along a north-south trend that is perpendicular to that of the Central American arc in Guatemala. From north to south known centers of volcanism are Ancient Acatenango, Yepocapa, Pico Mayor de Acatenango, Meseta, and Fuego. Volcanism along the trend stretches back more than 200,000 years. Although many of the centers have been active contemporaneously, there is a general sequence of younger volcanism, from north to south along the trend. This massive volcano complex towers more than 3500 meters (m) above the Pacific coastal plain to the south and 2000 m above the Guatemalan Highlands to the north. The volcano complex comprises remnants of multiple eruptive centers, which periodically have collapsed to form huge debris avalanches. The largest of these avalanches extended more than 50 kilometers (km) from its source and covered more than 300 square km. The volcano has potential to produce huge debris avalanches that could inundate large areas of the Pacific coastal plain. In areas around the volcanoes and downslope toward the coastal plain, more than 100,000 people are potentially at risk from these and other flowage phenomena.

  2. Hazardous Waste: Learn the Basics of Hazardous Waste

    MedlinePlus

    ... to set up a framework for the proper management of hazardous waste. Need More Information on Hazardous Waste? The RCRA Orientation Manual provides ... facility management standards, specific provisions governing hazardous waste management units ... information on the final steps in EPA’s hazardous waste ...

  3. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  4. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, L.; Vogel, R. M.

    2015-12-01

    Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.

  5. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, Laura K.; Vogel, Richard M.

    2016-04-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.

  6. The Relative Severity of Single Hazards within a Multi-Hazard Framework

    NASA Astrophysics Data System (ADS)

    Gill, Joel C.; Malamud, Bruce D.

    2013-04-01

    Here we present a description of the relative severity of single hazards within a multi-hazard framework, compiled through examining, quantifying and ranking the extent to which individual hazards trigger or increase the probability of other hazards. Hazards are broken up into six major groupings (geophysical, hydrological, shallow earth processes, atmospheric, biophysical and space), with the interactions for 21 different hazard types examined. These interactions include both one primary hazard triggering a secondary hazard, and one primary hazard increasing the probability of a secondary hazard occurring. We identify, through a wide-ranging review of grey- and peer-review literature, >90 interactions. The number of hazard-type linkages are then summed for each hazard in terms of their influence (the number of times one hazard type triggers another type of hazard, or itself) and their sensitivity (the number of times one hazard type is triggered by other hazard types, or itself). The 21 different hazards are then ranked based on (i) influence and (ii) sensitivity. We found, by quantification and ranking of these hazards, that: (i) The strongest influencers (those triggering the most secondary hazards) are volcanic eruptions, earthquakes and storms, which when taken together trigger almost a third of the possible hazard interactions identified; (ii) The most sensitive hazards (those being triggered by the most primary hazards) are identified to be landslides, volcanic eruptions and floods; (iii) When sensitivity rankings are adjusted to take into account the differential likelihoods of different secondary hazards being triggered, the most sensitive hazards are found to be landslides, floods, earthquakes and ground heave. We believe that by determining the strongest influencing and the most sensitive hazards for specific spatial areas, the allocation of resources for mitigation measures might be done more effectively.

  7. Hazard function theory for nonstationary natural hazards

    DOE PAGES

    Read, Laura K.; Vogel, Richard M.

    2016-04-11

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field ofmore » hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series ( X) with its failure time series ( T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. As a result, our theoretical analysis linking hazard random variable  X with corresponding failure time series  T should have application to a wide class of natural hazards with opportunities for future extensions.« less

  8. Hazard function theory for nonstationary natural hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, Laura K.; Vogel, Richard M.

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field ofmore » hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series ( X) with its failure time series ( T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. As a result, our theoretical analysis linking hazard random variable  X with corresponding failure time series  T should have application to a wide class of natural hazards with opportunities for future extensions.« less

  9. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, L. K.; Vogel, R. M.

    2015-11-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied Generalized Pareto (GP) model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series X, with corresponding failure time series T, should have application to a wide class of natural hazards with rich opportunities for future extensions.

  10. Hazard Interactions and Interaction Networks (Cascades) within Multi-Hazard Methodologies

    NASA Astrophysics Data System (ADS)

    Gill, Joel; Malamud, Bruce D.

    2016-04-01

    Here we combine research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between 'multi-layer single hazard' approaches and 'multi-hazard' approaches that integrate such interactions. This synthesis suggests that ignoring interactions could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. We proceed to present an enhanced multi-hazard framework, through the following steps: (i) describe and define three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment; (ii) outline three types of interaction relationship (triggering, increased probability, and catalysis/impedance); and (iii) assess the importance of networks of interactions (cascades) through case-study examples (based on literature, field observations and semi-structured interviews). We further propose visualisation frameworks to represent these networks of interactions. Our approach reinforces the importance of integrating interactions between natural hazards, anthropogenic processes and technological hazards/disasters into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential, and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.

  11. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies

    NASA Astrophysics Data System (ADS)

    Gill, Joel C.; Malamud, Bruce D.

    2016-08-01

    This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability

  12. Lifecycle Management of Hazardous Materials/ Hazardous Waste. Revision 1.

    DTIC Science & Technology

    1997-02-01

    1 WHAT YOU NEED TO KNOW ABOUT HAZARDOUS MATERIALS (HM) ....................... 1 PURCHASING HAZARDOUS MATERIALS...20 Figures 1 . Acquisition Flowchart .................................. 12 2. NRaD Hazardous Material Pre-Purchase Checklist ........ 13 3. NRaD...Hazardous Waste Profile Sheet (Part 111) .................. 18 Tables 1 . Class 1 Ozone Depleting Substances .................... 11 i INTRODUCTION This

  13. Hazards and hazard combinations relevant for the safety of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Decker, Kurt; Brinkman, Hans; Raimond, Emmanuel

    2017-04-01

    The potential of the contemporaneous impact of different, yet causally related, hazardous events and event cascades on nuclear power plants is a major contributor to the overall risk of nuclear installations. In the aftermath of the Fukushima accident, which was caused by a combination of severe ground shaking by an earthquake, an earthquake-triggered tsunami and the disruption of the plants from the electrical grid by a seismically induced landslide, hazard combinations and hazard cascades moved into the focus of nuclear safety research. We therefore developed an exhaustive list of external hazards and hazard combinations which pose potential threats to nuclear installations in the framework of the European project ASAMPSAE (Advanced Safety Assessment: Extended PSA). The project gathers 31 partners from Europe, North Amerika and Japan. The list comprises of exhaustive lists of natural hazards, external man-made hazards, and a cross-correlation matrix of these hazards. The hazard list is regarded comprehensive by including all types of hazards that were previously cited in documents by IAEA, the Western European Nuclear Regulators Association (WENRA), and others. 73 natural hazards and 24 man-made external hazards are included. Natural hazards are grouped into seismotectonic hazards, flooding and hydrological hazards, extreme values of meteorological phenomena, rare meteorological phenomena, biological hazards / infestation, geological hazards, and forest fire / wild fire. The list of external man-made hazards includes industry accidents, military accidents, transportation accidents, pipeline accidents and other man-made external events. The large number of different hazards results in the extremely large number of 5.151 theoretically possible hazard combinations (not considering hazard cascades). In principle all of these combinations are possible to occur by random coincidence except for 82 hazard combinations that - depending on the time scale - are mutually

  14. Identification of Potential Hazard using Hazard Identification and Risk Assessment

    NASA Astrophysics Data System (ADS)

    Sari, R. M.; Syahputri, K.; Rizkya, I.; Siregar, I.

    2017-03-01

    This research was conducted in the paper production’s company. These Paper products will be used as a cigarette paper. Along in the production’s process, Company provides the machines and equipment that operated by workers. During the operations, all workers may potentially injured. It known as a potential hazard. Hazard identification and risk assessment is one part of a safety and health program in the stage of risk management. This is very important as part of efforts to prevent occupational injuries and diseases resulting from work. This research is experiencing a problem that is not the identification of potential hazards and risks that would be faced by workers during the running production process. The purpose of this study was to identify the potential hazards by using hazard identification and risk assessment methods. Risk assessment is done using severity criteria and the probability of an accident. According to the research there are 23 potential hazard that occurs with varying severity and probability. Then made the determination Risk Assessment Code (RAC) for each potential hazard, and gained 3 extreme risks, 10 high risks, 6 medium risks and 3 low risks. We have successfully identified potential hazard using RAC.

  15. Landslide Hazards

    USGS Publications Warehouse

    ,

    2000-01-01

    Landslide hazards occur in many places around What Can You Do If You Live Near Steep Hills? the world and include fast-moving debris flows, slow-moving landslides, and a variety of flows and slides initiating from volcanoes. Each year, these hazards cost billions of dollars and cause numerous fatalities and injuries. Awareness and education about these hazards is a first step toward reducing damaging effects. The U.S. Geological Survey conducts research and distributes information about geologic hazards. This Fact Sheet is published in English and Spanish and can be reproduced in any form for further distribution. 

  16. NASA Hazard Analysis Process

    NASA Technical Reports Server (NTRS)

    Deckert, George

    2010-01-01

    This viewgraph presentation reviews The NASA Hazard Analysis process. The contents include: 1) Significant Incidents and Close Calls in Human Spaceflight; 2) Subsystem Safety Engineering Through the Project Life Cycle; 3) The Risk Informed Design Process; 4) Types of NASA Hazard Analysis; 5) Preliminary Hazard Analysis (PHA); 6) Hazard Analysis Process; 7) Identify Hazardous Conditions; 8) Consider All Interfaces; 9) Work a Preliminary Hazard List; 10) NASA Generic Hazards List; and 11) Final Thoughts

  17. Working towards a clearer and more helpful hazard map: investigating the influence of hazard map design on hazard communication

    NASA Astrophysics Data System (ADS)

    Thompson, M. A.; Lindsay, J. M.; Gaillard, J.

    2015-12-01

    Globally, geological hazards are communicated using maps. In traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map for stakeholder and public use. However, this one-way, top-down approach to hazard communication is not necessarily effective or reliable. The messages which people take away will be dependent on the way in which they read, interpret, and understand the map, a facet of hazard communication which has been relatively unexplored. Decades of cartographic studies suggest that variables in the visual representation of data on maps, such as colour and symbology, can have a powerful effect on how people understand map content. In practice, however, there is little guidance or consistency in how hazard information is expressed and represented on maps. Accordingly, decisions are often made based on subjective preference, rather than research-backed principles. Here we present the results of a study in which we explore how hazard map design features can influence hazard map interpretation, and we propose a number of considerations for hazard map design. A series of hazard maps were generated, with each one showing the same probabilistic volcanic ashfall dataset, but using different verbal and visual variables (e.g., different colour schemes, data classifications, probabilistic formats). Following a short pilot study, these maps were used in an online survey of 110 stakeholders and scientists in New Zealand. Participants answered 30 open-ended and multiple choice questions about ashfall hazard based on the different maps. Results suggest that hazard map design can have a significant influence on the messages readers take away. For example, diverging colour schemes were associated with concepts of "risk" and decision-making more than sequential schemes, and participants made more precise estimates of hazard with isarithmic data classifications compared to binned or gradational shading. Based on such

  18. Automated Hazard Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, F. J.

    2003-06-26

    The Automated Hazard Analysis (AHA) application is a software tool used to conduct job hazard screening and analysis of tasks to be performed in Savannah River Site facilities. The AHA application provides a systematic approach to the assessment of safety and environmental hazards associated with specific tasks, and the identification of controls regulations, and other requirements needed to perform those tasks safely. AHA is to be integrated into existing Savannah River site work control and job hazard analysis processes. Utilization of AHA will improve the consistency and completeness of hazard screening and analysis, and increase the effectiveness of the workmore » planning process.« less

  19. Hazardous Waste

    MedlinePlus

    ... use them properly, many chemicals can still harm human health and the environment. When you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our ...

  20. The West Virginia university forest hazard rating study: the hazards of hazard rating

    Treesearch

    Ray R., Jr. Hicks; David E. Fosbroke; Shrivenkar Kosuri; Charles B. Yuill

    1991-01-01

    The West Virginia University (WVU) Forest is a 7,600-acre tract located along the leading edge of gypsy moth infestation. The hazard rating study at the WVU Forest serves three objectives. First, hazard rating is being used to determine the extent and distribution of damage that can be expected when gypsy moth defoliation occurs. Second, susceptibility and...

  1. The hazards of hazard identification in environmental epidemiology.

    PubMed

    Saracci, Rodolfo

    2017-08-09

    Hazard identification is a major scientific challenge, notably for environmental epidemiology, and is often surrounded, as the recent case of glyphosate shows, by debate arising in the first place by the inherently problematic nature of many components of the identification process. Particularly relevant in this respect are components less amenable to logical or mathematical formalization and essentially dependent on scientists' judgment. Four such potentially hazardous components that are capable of distorting the correct process of hazard identification are reviewed and discussed from an epidemiologist perspective: (1) lexical mix-up of hazard and risk (2) scientific questions as distinct from testable hypotheses, and implications for the hierarchy of strength of evidence obtainable from different types of study designs (3) assumptions in prior beliefs and model choices and (4) conflicts of interest. Four suggestions are put forward to strengthen a process that remains in several aspects judgmental, but not arbitrary, in nature.

  2. Hazardous Waste Roundup

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Ness, Daniel

    2004-01-01

    According to the Environmental Protection Agency (EPA), Americans generate approximately 1.6 million tons of hazardous household waste every year. When most people think of hazardous waste, they generally think of materials used in construction, the defense industry, mining, manufacturing, and agriculture. Few people think of hazardous substances…

  3. Simulation-Based Probabilistic Tsunami Hazard Analysis: Empirical and Robust Hazard Predictions

    NASA Astrophysics Data System (ADS)

    De Risi, Raffaele; Goda, Katsuichiro

    2017-08-01

    Probabilistic tsunami hazard analysis (PTHA) is the prerequisite for rigorous risk assessment and thus for decision-making regarding risk mitigation strategies. This paper proposes a new simulation-based methodology for tsunami hazard assessment for a specific site of an engineering project along the coast, or, more broadly, for a wider tsunami-prone region. The methodology incorporates numerous uncertain parameters that are related to geophysical processes by adopting new scaling relationships for tsunamigenic seismic regions. Through the proposed methodology it is possible to obtain either a tsunami hazard curve for a single location, that is the representation of a tsunami intensity measure (such as inundation depth) versus its mean annual rate of occurrence, or tsunami hazard maps, representing the expected tsunami intensity measures within a geographical area, for a specific probability of occurrence in a given time window. In addition to the conventional tsunami hazard curve that is based on an empirical statistical representation of the simulation-based PTHA results, this study presents a robust tsunami hazard curve, which is based on a Bayesian fitting methodology. The robust approach allows a significant reduction of the number of simulations and, therefore, a reduction of the computational effort. Both methods produce a central estimate of the hazard as well as a confidence interval, facilitating the rigorous quantification of the hazard uncertainties.

  4. ThinkHazard!: an open-source, global tool for understanding hazard information

    NASA Astrophysics Data System (ADS)

    Fraser, Stuart; Jongman, Brenden; Simpson, Alanna; Nunez, Ariel; Deparday, Vivien; Saito, Keiko; Murnane, Richard; Balog, Simone

    2016-04-01

    Rapid and simple access to added-value natural hazard and disaster risk information is a key issue for various stakeholders of the development and disaster risk management (DRM) domains. Accessing available data often requires specialist knowledge of heterogeneous data, which are often highly technical and can be difficult for non-specialists in DRM to find and exploit. Thus, availability, accessibility and processing of these information sources are crucial issues, and an important reason why many development projects suffer significant impacts from natural hazards. The World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR) is currently developing a new open-source tool to address this knowledge gap: ThinkHazard! The main aim of the ThinkHazard! project is to develop an analytical tool dedicated to facilitating improvements in knowledge and understanding of natural hazards among non-specialists in DRM. It also aims at providing users with relevant guidance and information on handling the threats posed by the natural hazards present in a chosen location. Furthermore, all aspects of this tool will be open and transparent, in order to give users enough information to understand its operational principles. In this presentation, we will explain the technical approach behind the tool, which translates state-of-the-art probabilistic natural hazard data into understandable hazard classifications and practical recommendations. We will also demonstrate the functionality of the tool, and discuss limitations from a scientific as well as an operational perspective.

  5. Multi-Hazard Interactions in Guatemala

    NASA Astrophysics Data System (ADS)

    Gill, Joel; Malamud, Bruce D.

    2017-04-01

    In this paper, we combine physical and social science approaches to develop a multi-scale regional framework for natural hazard interactions in Guatemala. The identification and characterisation of natural hazard interactions is an important input for comprehensive multi-hazard approaches to disaster risk reduction at a regional level. We use five transdisciplinary evidence sources to organise and populate our framework: (i) internationally-accessible literature; (ii) civil protection bulletins; (iii) field observations; (iv) stakeholder interviews (hazard and civil protection professionals); and (v) stakeholder workshop results. These five evidence sources are synthesised to determine an appropriate natural hazard classification scheme for Guatemala (6 hazard groups, 19 hazard types, and 37 hazard sub-types). For a national spatial extent (Guatemala), we construct and populate a "21×21" hazard interaction matrix, identifying 49 possible interactions between 21 hazard types. For a sub-national spatial extent (Southern Highlands, Guatemala), we construct and populate a "33×33" hazard interaction matrix, identifying 112 possible interactions between 33 hazard sub-types. Evidence sources are also used to constrain anthropogenic processes that could trigger natural hazards in Guatemala, and characterise possible networks of natural hazard interactions (cascades). The outcomes of this approach are among the most comprehensive interaction frameworks for national and sub-national spatial scales in the published literature. These can be used to support disaster risk reduction and civil protection professionals in better understanding natural hazards and potential disasters at a regional scale.

  6. 78 FR 69310 - Hazardous Materials Table, Special Provisions, Hazardous Materials Communications, Emergency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 172 Hazardous Materials Table, Special Provisions, Hazardous Materials Communications, Emergency Response Information, Training Requirements, and Security Plans CFR Correction In Title 49 of the Code of...

  7. Migration and Environmental Hazards

    PubMed Central

    Hunter, Lori M.

    2011-01-01

    Losses due to natural hazards (e.g., earthquakes, hurricanes) and technological hazards (e.g., nuclear waste facilities, chemical spills) are both on the rise. One response to hazard-related losses is migration, with this paper offering a review of research examining the association between migration and environmental hazards. Using examples from both developed and developing regional contexts, the overview demonstrates that the association between migration and environmental hazards varies by setting, hazard types, and household characteristics. In many cases, however, results demonstrate that environmental factors play a role in shaping migration decisions, particularly among those most vulnerable. Research also suggests that risk perception acts as a mediating factor. Classic migration theory is reviewed to offer a foundation for examination of these associations. PMID:21886366

  8. Natural hazards science strategy

    USGS Publications Warehouse

    Holmes, Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2012-01-01

    The mission of the U.S. Geological Survey (USGS) in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. USGS scientific research—founded on detailed observations and improved understanding of the responsible physical processes—can help to understand and reduce natural hazard risks and to make and effectively communicate reliable statements about hazard characteristics, such as frequency, magnitude, extent, onset, consequences, and where possible, the time of future events.To accomplish its broad hazard mission, the USGS maintains an expert workforce of scientists and technicians in the earth sciences, hydrology, biology, geography, social and behavioral sciences, and other fields, and engages cooperatively with numerous agencies, research institutions, and organizations in the public and private sectors, across the Nation and around the world. The scientific expertise required to accomplish the USGS mission in natural hazards includes a wide range of disciplines that this report refers to, in aggregate, as hazard science.In October 2010, the Natural Hazards Science Strategy Planning Team (H–SSPT) was charged with developing a long-term (10-year) Science Strategy for the USGS mission in natural hazards. This report fulfills that charge, with a document hereinafter referred to as the Strategy, to provide scientific observations, analyses, and research that are critical for the Nation to become more resilient to natural hazards. Science provides the information that decisionmakers need to determine whether risk management activities are worthwhile. Moreover, as the agency with the perspective of geologic time, the USGS is uniquely positioned to extend the collective experience of society to prepare for events outside current memory. The USGS has critical statutory

  9. 76 FR 4276 - Hazardous Materials: Improving the Safety of Railroad Transportation of Hazardous Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ...-0004] Hazardous Materials: Improving the Safety of Railroad Transportation of Hazardous Materials... hazardous materials program. DATES: The public meeting will be held on Tuesday, February 22, 2011, starting...--Hazardous Materials, FRA Office of Safety Assurance and Compliance, at least 4 business days before the date...

  10. Action on Hazardous Wastes.

    ERIC Educational Resources Information Center

    EPA Journal, 1979

    1979-01-01

    U.S. EPA is gearing up to investigate about 300 hazardous waste dump sites per year that could pose an imminent health hazard. Prosecutions are expected to result from the priority effort at investigating illegal hazardous waste disposal. (RE)

  11. Volcano Hazards Program

    USGS Publications Warehouse

    Venezky, Dina Y.; Myers, Bobbie; Driedger, Carolyn

    2008-01-01

    Diagram of common volcano hazards. The U.S. Geological Survey Volcano Hazards Program (VHP) monitors unrest and eruptions at U.S. volcanoes, assesses potential hazards, responds to volcanic crises, and conducts research on how volcanoes work. When conditions change at a monitored volcano, the VHP issues public advisories and warnings to alert emergency-management authorities and the public. See http://volcanoes.usgs.gov/ to learn more about volcanoes and find out what's happening now.

  12. Introduction: Hazard mapping

    USGS Publications Warehouse

    Baum, Rex L.; Miyagi, Toyohiko; Lee, Saro; Trofymchuk, Oleksandr M

    2014-01-01

    Twenty papers were accepted into the session on landslide hazard mapping for oral presentation. The papers presented susceptibility and hazard analysis based on approaches ranging from field-based assessments to statistically based models to assessments that combined hydromechanical and probabilistic components. Many of the studies have taken advantage of increasing availability of remotely sensed data and nearly all relied on Geographic Information Systems to organize and analyze spatial data. The studies used a range of methods for assessing performance and validating hazard and susceptibility models. A few of the studies presented in this session also included some element of landslide risk assessment. This collection of papers clearly demonstrates that a wide range of approaches can lead to useful assessments of landslide susceptibility and hazard.

  13. Hazardous Waste Generators

    EPA Pesticide Factsheets

    Many industries generate hazardous waste. EPA regulates hazardous waste under the Resource Conservation and Recovery Act to ensure these wastes are managed in ways that are protective of human health and the environment.

  14. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  15. Hazardous Waste Permitting

    EPA Pesticide Factsheets

    To provide RCRA hazardous waste permitting regulatory information and resources permitted facilities, hazardous waste generators, and permit writers. To provide the public with information on how they can be involved in the permitting process.

  16. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon... hazardous waste management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude... and recordkeeping requirements. 40 CFR Part 261 Environmental protection, Hazardous waste, Solid waste...

  17. Informing Workers of Chemical Hazards: The OSHA Hazard Communication Standard.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    Practical information on how to implement a chemical-related safety program is outlined in this publication. Highlights of the federal Occupational Safety and Health Administrations (OSHA) Hazard Communication Standard are presented and explained. These include: (1) hazard communication requirements (consisting of warning labels, material safety…

  18. Seismic hazard maps for Haiti

    USGS Publications Warehouse

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2011-01-01

    We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard from the subduction zones along the northern and southeastern coasts of Hispaniola was calculated from slip rates derived from GPS data and the overall plate motion. Hazard maps were made for a firm-rock site condition and for a grid of shallow shear-wave velocities estimated from topographic slope. The maps show substantial hazard throughout Haiti, with the highest hazard in Haiti along the Enriquillo-Plantain Garden and Septentrional fault zones. The Matheux-Neiba Fault exhibits high hazard in the maps for 2% probability of exceedance in 50 years, although its slip rate is poorly constrained.

  19. INTERNAL HAZARDS ANALYSIS FOR LICENSE APPLICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.J. Garrett

    2005-02-17

    The purpose of this internal hazards analysis is to identify and document the internal hazards and potential initiating events associated with preclosure operations of the repository at Yucca Mountain. Internal hazards are those hazards presented by the operation of the facility and by its associated processes that can potentially lead to a radioactive release or cause a radiological hazard. In contrast to external hazards, internal hazards do not involve natural phenomena and external man-made hazards. This internal hazards analysis was performed in support of the preclosure safety analysis and the License Application for the Yucca Mountain Project. The methodology formore » this analysis provides a systematic means to identify internal hazards and potential initiating events that may result in a radiological hazard or radiological release during the repository preclosure period. These hazards are documented in tables of potential internal hazards and potential initiating events (Section 6.6) for input to the repository event sequence categorization process. The results of this analysis will undergo further screening and analysis based on the criteria that apply to the performance of event sequence analyses for the repository preclosure period. The evolving design of the repository will be re-evaluated periodically to ensure that internal hazards that have not been previously evaluated are identified.« less

  20. Alaska Seismic Hazards Safety Commission

    Science.gov Websites

    State Employees ASHSC State of Alaska search Alaska Seismic Hazards Safety Commission View of Anchorage and Commissions Alaska Seismic Hazards Safety Commission (ASHSC) main contant Alaska Seismic Hazards Safety Commission logo Alaska Seismic Hazards Safety Commission (ASHSC) - Mission The Alaska Seismic

  1. Probabilistic Volcanic Hazard and Risk Assessment

    NASA Astrophysics Data System (ADS)

    Marzocchi, W.; Neri, A.; Newhall, C. G.; Papale, P.

    2007-08-01

    Quantifying Long- and Short-Term Volcanic Hazard: Building Up a Common Strategy for Italian Volcanoes, Erice Italy, 8 November 2006 The term ``hazard'' can lead to some misunderstanding. In English, hazard has the generic meaning ``potential source of danger,'' but for more than 30 years [e.g., Fournier d'Albe, 1979], hazard has been also used in a more quantitative way, that reads, ``the probability of a certain hazardous event in a specific time-space window.'' However, many volcanologists still use ``hazard'' and ``volcanic hazard'' in purely descriptive and subjective ways. A recent meeting held in November 2006 at Erice, Italy, entitled ``Quantifying Long- and Short-Term Volcanic Hazard: Building up a Common Strategy for Italian Volcanoes'' (http://www.bo.ingv.it/erice2006) concluded that a more suitable term for the estimation of quantitative hazard is ``probabilistic volcanic hazard assessment'' (PVHA).

  2. Hazard pay: An effective antagonist

    NASA Technical Reports Server (NTRS)

    Alexander, R. E.

    1971-01-01

    Procedures for allocating hazardous pay to employees are outlined. According to the guidelines, only top level management can authorize hazardous tasks and decide if said task is indeed hazardous. The guidelines also state that hazardous jobs may be performed only if it is essential to finish a project and cannot be adequately safequarded.

  3. Hazards in volcanic arcs

    NASA Astrophysics Data System (ADS)

    Sparks, S. R.

    2008-12-01

    Volcanic eruptions in arcs are complex natural phenomena, involving the movement of magma to the Earth's surface and interactions with the surrounding crust during ascent and with the surface environment during eruption, resulting in secondary hazards. Magma changes its properties profoundly during ascent and eruption and many of the underlying processes of heat and mass transfer and physical property changes that govern volcanic flows and magmatic interactions with the environment are highly non-linear. Major direct hazards include tephra fall, pyroclastic flows from explosions and dome collapse, volcanic blasts, lahars, debris avalanches and tsunamis. There are also health hazards related to emissions of gases and very fine volcanic ash. These hazards and progress in their assessment are illustrated mainly from the ongoing eruption of the Soufriere Hills volcano. Montserrat. There are both epistemic and aleatory uncertainties in the assessment of volcanic hazards, which can be large, making precise prediction a formidable objective. Indeed in certain respects volcanic systems and hazardous phenomena may be intrinsically unpredictable. As with other natural phenomena, predictions and hazards inevitably have to be expressed in probabilistic terms that take account of these uncertainties. Despite these limitations significant progress is being made in the ability to anticipate volcanic activity in volcanic arcs and, in favourable circumstances, make robust hazards assessments and predictions. Improvements in monitoring ground deformation, gas emissions and seismicity are being combined with more advanced models of volcanic flows and their interactions with the environment. In addition more structured and systematic methods for assessing hazards and risk are emerging that allow impartial advice to be given to authorities during volcanic crises. There remain significant issues of how scientific advice and associated uncertainties are communicated to provide effective

  4. Technical Guidance for Hazardous Analysis, Emergency Planning for Extremely Hazardous Substances

    EPA Pesticide Factsheets

    This current guide supplements NRT-1 by providing technical assistance to LEPCs to assess the lethal hazards related to potential airborne releases of extremely hazardous substances (EHSs) as designated under Section 302 of Title Ill of SARA.

  5. Chemical hazards in health care: high hazard, high risk, but low protection.

    PubMed

    McDiarmid, Melissa A

    2006-09-01

    It is counter-intuitive that the healthcare industry, whose mission is the care of the sick, is itself a "high-hazard" industry for the workers it employs. Possessing every hazard class, with chemical agents in the form of pharmaceuticals, sterilants, and germicidals in frequent use, this industry sector consistently demonstrates poor injury and illness statistics, among the highest in the United States, and in the European Union (EU), 34% higher than the average work-related accident rate. In both the United States and the EU, about 10% of all workers are employed in the healthcare sector, and in developing countries as well, forecasts for the increasing need of healthcare workers (HCW) suggests a large population at potential risk of health harm. The explosion of technology growth in the healthcare sector, most obvious in pharmaceutical applications, has not been accompanied by a stepped up safety program in hospitals. Where there is hazard recognition, the remedies are often voluntary, and often poorly enforced. The wrong assumption that this industry would police itself, given its presumed knowledge base, has also been found wanting. The healthcare industry is also a significant waste generator threatening the natural environment with chemical and infectious waste and products of incineration. The ILO has recommended that occupational health goals for industrial nations focus on the hazards of new technology of which pharma and biopharma products are the leaders. This unchecked growth cannot continue without a parallel commitment to the health and safety of workers encountering these "high tech" hazards. Simple strategies to improve the present state include: (a) recognizing healthcare as a "high-hazard" employment sector; (b) fortifying voluntary safety guidelines to the level of enforceable regulation; (c) "potent" inspections; (d) treating hazardous pharmaceuticals like the chemical toxicants they are; and (e) protecting HCWs at least as well as workers in

  6. A Windshear Hazard Index

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hinton, David A.; Bowles, Roland L.

    2000-01-01

    An aircraft exposed to hazardous low-level windshear may suffer a critical loss of airspeed and altitude, thus endangering its ability to remain airborne. In order to characterize this hazard, a nondimensional index was developed based oil aerodynamic principals and understanding of windshear phenomena, 'This paper reviews the development and application of the Bowles F-tactor. which is now used by onboard sensors for the detection of hazardous windshear. It was developed and tested during NASA/I:AA's airborne windshear program and is now required for FAA certification of onboard radar windshear detection systems. Reviewed in this paper are: 1) definition of windshear and description of atmospheric phenomena that may cause hazardous windshear. 2) derivation and discussion of the F-factor. 3) development of the F-factor hazard threshold, 4) its testing during field deployments, and 5) its use in accident reconstructions,

  7. Exploring the effects of driving experience on hazard awareness and risk perception via real-time hazard identification, hazard classification, and rating tasks.

    PubMed

    Borowsky, Avinoam; Oron-Gilad, Tal

    2013-10-01

    This study investigated the effects of driving experience on hazard awareness and risk perception skills. These topics have previously been investigated separately, yet a novel approach is suggested where hazard awareness and risk perception are examined concurrently. Young, newly qualified drivers, experienced drivers, and a group of commercial drivers, namely, taxi drivers performed three consecutive tasks: (1) observed 10 short movies of real-world driving situations and were asked to press a button each time they identified a hazardous situation; (2) observed one of three possible sub-sets of 8 movies (out of the 10 they have seen earlier) for the second time, and were asked to categorize them into an arbitrary number of clusters according to the similarity in their hazardous situation; and (3) observed the same sub-set for a third time and following each movie were asked to rate its level of hazardousness. The first task is considered a real-time identification task while the other two are performed using hindsight. During it participants' eye movements were recorded. Results showed that taxi drivers were more sensitive to hidden hazards than the other driver groups and that young-novices were the least sensitive. Young-novice drivers also relied heavily on materialized hazards in their categorization structure. In addition, it emerged that risk perception was derived from two major components: the likelihood of a crash and the severity of its outcome. Yet, the outcome was rarely considered under time pressure (i.e., in real-time hazard identification tasks). Using hindsight, when drivers were provided with the opportunity to rate the movies' hazardousness more freely (rating task) they considered both components. Otherwise, in the categorization task, they usually chose the severity of the crash outcome as their dominant criterion. Theoretical and practical implications are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Probabilistic Tsunami Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.

    2006-12-01

    The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes

  9. 21 CFR 120.7 - Hazard analysis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Hazard analysis. 120.7 Section 120.7 Food and... hazards. The written hazard analysis shall consist of at least the following: (1) Identification of food..., including food hazards that can occur before, during, and after harvest. The hazard analysis shall be...

  10. 21 CFR 120.7 - Hazard analysis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Hazard analysis. 120.7 Section 120.7 Food and... hazards. The written hazard analysis shall consist of at least the following: (1) Identification of food..., including food hazards that can occur before, during, and after harvest. The hazard analysis shall be...

  11. 21 CFR 120.7 - Hazard analysis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hazard analysis. 120.7 Section 120.7 Food and... hazards. The written hazard analysis shall consist of at least the following: (1) Identification of food..., including food hazards that can occur before, during, and after harvest. The hazard analysis shall be...

  12. 21 CFR 120.7 - Hazard analysis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Hazard analysis. 120.7 Section 120.7 Food and... hazards. The written hazard analysis shall consist of at least the following: (1) Identification of food..., including food hazards that can occur before, during, and after harvest. The hazard analysis shall be...

  13. 78 FR 38730 - Announcement of Funding Awards for Lead-Based Paint Hazard Control, and Lead Hazard Reduction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... Awards for Lead-Based Paint Hazard Control, and Lead Hazard Reduction Demonstration Grant Programs for... (OHHLHC) Lead-Based Paint Hazard Control, and Lead Hazard Reduction Demonstration Grant Program Notices of... Grants.gov on December 3, 2012, and amended on January 18, 2013, for the Lead Based Paint Hazard Control...

  14. Hazardous materials regulation in Virginia.

    DOT National Transportation Integrated Search

    1987-01-01

    The report covered four subjects: (1) significance of hazardous materials in Virginia, (2) federal regulation, (3) laws on the transport of hazardous materials in Virginia, and (4) Virginia regulations on hazardous materials emergency response.

  15. Understanding earthquake hazards in urban areas - Evansville Area Earthquake Hazards Mapping Project

    USGS Publications Warehouse

    Boyd, Oliver S.

    2012-01-01

    The region surrounding Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the proximity of Evansville to the Wabash Valley and New Madrid seismic zones, there is concern among nearby communities about hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake and are able to design structures to withstand this estimated ground shaking. Earthquake-hazard maps provide one way of conveying such information and can help the region of Evansville prepare for future earthquakes and reduce earthquake-caused loss of life and financial and structural loss. The Evansville Area Earthquake Hazards Mapping Project (EAEHMP) has produced three types of hazard maps for the Evansville area: (1) probabilistic seismic-hazard maps show the ground motion that is expected to be exceeded with a given probability within a given period of time; (2) scenario ground-shaking maps show the expected shaking from two specific scenario earthquakes; (3) liquefaction-potential maps show how likely the strong ground shaking from the scenario earthquakes is to produce liquefaction. These maps complement the U.S. Geological Survey's National Seismic Hazard Maps but are more detailed regionally and take into account surficial geology, soil thickness, and soil stiffness; these elements greatly affect ground shaking.

  16. NASA LaRC Hazardous Material Pharmacy

    NASA Technical Reports Server (NTRS)

    Esquenet, Remy

    1995-01-01

    In 1993-1994 the Office of Environmental Engineering contracted SAIC to develop NASA Langley's Pollution Prevention (P2) Program. One of the priority projects identified in this contract was the development of a hazardous waste minimization (HAZMIN)/hazardous materials reutilization (HAZMART) program in the form of a Hazardous Materials Pharmacy. A hazardous materials pharmacy is designed to reduce hazardous material procurement costs and hazardous waste disposal costs. This is accomplished through the collection and reissue of excess hazardous material. Currently, a rarely used hazardous material may be stored in a shop area, unused, until it passes its expiration date. The material is then usually disposed of as a hazardous waste, often at a greater expense than the original cost of the material. While this material was on the shelf expiring, other shop areas may have ordered new supplies of the same material. The hazardous material pharmacy would act as a clearinghouse for such materials. Material that is not going to be used would be turned in to the pharmacy. Other users could then be issued this material free of charge, thereby reducing procurement costs. The use of this material by another shop prevents it from expiring, thereby reducing hazardous waste disposal costs.

  17. Seismic hazard assessment: Issues and alternatives

    USGS Publications Warehouse

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  18. 29 CFR 1917.25 - Fumigants, pesticides, insecticides and hazardous preservatives (see also § 1917.2 Hazardous...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... preservatives (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.25 Section 1917.25..., insecticides and hazardous preservatives (see also § 1917.2 Hazardous cargo, material, substance or atmosphere... treat cargo shall be: (1) Appropriate for the hazard involved; (2) Conducted by designated persons; and...

  19. 29 CFR 1917.25 - Fumigants, pesticides, insecticides and hazardous preservatives (see also § 1917.2 Hazardous...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... preservatives (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.25 Section 1917.25..., insecticides and hazardous preservatives (see also § 1917.2 Hazardous cargo, material, substance or atmosphere... treat cargo shall be: (1) Appropriate for the hazard involved; (2) Conducted by designated persons; and...

  20. 29 CFR 1917.25 - Fumigants, pesticides, insecticides and hazardous preservatives (see also § 1917.2 Hazardous...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... preservatives (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.25 Section 1917.25..., insecticides and hazardous preservatives (see also § 1917.2 Hazardous cargo, material, substance or atmosphere... treat cargo shall be: (1) Appropriate for the hazard involved; (2) Conducted by designated persons; and...

  1. 29 CFR 1917.25 - Fumigants, pesticides, insecticides and hazardous preservatives (see also § 1917.2 Hazardous...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... preservatives (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.25 Section 1917.25..., insecticides and hazardous preservatives (see also § 1917.2 Hazardous cargo, material, substance or atmosphere... treat cargo shall be: (1) Appropriate for the hazard involved; (2) Conducted by designated persons; and...

  2. 29 CFR 1917.25 - Fumigants, pesticides, insecticides and hazardous preservatives (see also § 1917.2 Hazardous...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... preservatives (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.25 Section 1917.25..., insecticides and hazardous preservatives (see also § 1917.2 Hazardous cargo, material, substance or atmosphere... treat cargo shall be: (1) Appropriate for the hazard involved; (2) Conducted by designated persons; and...

  3. Hazard Analysis Guidelines for Transit Projects

    DOT National Transportation Integrated Search

    2000-01-01

    These hazard analysis guidelines discuss safety critical systems and subsystems, types of hazard analyses, when hazard analyses should be performed, and the hazard analysis philosophy. These guidelines are published by FTA to assist the transit indus...

  4. Explosion Hazards Associated with Spills of Large Quantities of Hazardous Materials. Phase I

    DTIC Science & Technology

    1974-10-01

    quantities of hazardous material such as liquified natural gas ( LNG ), liquified petroleum gils (LPG), or ethylene. The principal results are (1) a...associated with spills of large quantities of hazardous material such as liquified natural gas ( LNG ), liquified petroleum gas (LPG), or ethylene. The...liquified natural gas ( LNG ). Unfortunately, as the quantity of material shipped at one time increases, so does the potential hazard associated with

  5. 78 FR 42998 - Hazardous Materials: Improving the Safety of Railroad Transportation of Hazardous Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... Materials: Improving the Safety of Railroad Transportation of Hazardous Materials AGENCY: Pipeline and... that affect the safety of the transportation of hazardous materials by rail and are seeking input from... authority to FRA. 49 CFR 1.89(a) through (q). The Federal hazardous materials transportation laws, 49 U.S.C...

  6. Resilience to Interacting multi-natural hazards

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei

    2016-04-01

    Conventional analyses of hazard assessment tend to focus on individual hazards in isolation. However, many parts of the world are usually affected by multiple natural hazards with the potential for interacting relationships. The understanding of such interactions, their impacts and the related uncertainties, are an important and topical area of research. Interacting multi-hazards may appear in different forms, including 1) CASCADING HAZARDS (a primary hazard triggering one or more secondary hazards such as an earthquake triggering landslides which may block river channels with dammed lakes and ensued floods), 2) CONCURRING HAZARDS (two or more primary hazards coinciding to trigger or exacerbate secondary hazards such as an earthquake and a rainfall event simultaneously creating landslides), and 3) ALTERING HAZARDS (a primary hazard increasing the probability of a secondary hazard occurring such as major earthquakes disturbing soil/rock materials by violent ground shaking which alter the regional patterns of landslides and debris flows in the subsequent years to come). All three types of interacting multi-hazards may occur in natural hazard prone regions, so it is important that research on hazard resilience should cover all of them. In the past decades, great progresses have been made in tackling disaster risk around the world. However, there are still many challenging issues to be solved, and the disasters over recent years have clearly demonstrated the inadequate resilience in our highly interconnected and interdependent systems. We have identified the following weaknesses and knowledge gaps in the current disaster risk management: 1) although our understanding in individual hazards has been greatly improved, there is a lack of sound knowledge about mechanisms and processes of interacting multi-hazards. Therefore, the resultant multi-hazard risk is often significantly underestimated with severe consequences. It is also poorly understood about the spatial and

  7. Moral hazard.

    PubMed

    Chambers, David W

    2009-01-01

    Civil societies set aside a common pool of resources to help those with whom chance has dealt harshly. Frequently we allow access to these common resources when bad luck is assisted by foolishness and lack of foresight. Sometimes we may even help ourselves to a few of those common assets since others are doing so and they are public goods, the cost of which is shared and has already been paid. Moral hazard is the questionable ethical practice of increasing opportunity for individual gain while shifting risk for loss to the group. Bailout is an example. What makes moral hazard so widespread and difficult to manage is that it is easier for individuals to see their advantage than it is for groups to see theirs. Runaway American healthcare costs can be explained in these terms. Cheating, overtreatment, commercialism, and other moral problems in dentistry can be traced to the interaction between opportunistic individual behavior and permissive group responses common in moral hazard.

  8. Hazards in the theater.

    PubMed

    Rossol, M; Hinkamp, D

    2001-01-01

    The authors offer a survey of the myriad and unique safety and health hazards faced past and present by performers and theatrical workers, from preproduction work, through the show, and during the strike (dismantling). Special emphasis is given to health hazards posed by the many new plastic resin systems and adhesives used in set, prop, and costume construction; the hazards of special-effect fogs, smokes, haze, dusts, and pyrotechnic emissions; and theatrical makeup.

  9. St. Louis area earthquake hazards mapping project; seismic and liquefaction hazard maps

    USGS Publications Warehouse

    Cramer, Chris H.; Bauer, Robert A.; Chung, Jae-won; Rogers, David; Pierce, Larry; Voigt, Vicki; Mitchell, Brad; Gaunt, David; Williams, Robert; Hoffman, David; Hempen, Gregory L.; Steckel, Phyllis; Boyd, Oliver; Watkins, Connor M.; Tucker, Kathleen; McCallister, Natasha

    2016-01-01

    We present probabilistic and deterministic seismic and liquefaction hazard maps for the densely populated St. Louis metropolitan area that account for the expected effects of surficial geology on earthquake ground shaking. Hazard calculations were based on a map grid of 0.005°, or about every 500 m, and are thus higher in resolution than any earlier studies. To estimate ground motions at the surface of the model (e.g., site amplification), we used a new detailed near‐surface shear‐wave velocity model in a 1D equivalent‐linear response analysis. When compared with the 2014 U.S. Geological Survey (USGS) National Seismic Hazard Model, which uses a uniform firm‐rock‐site condition, the new probabilistic seismic‐hazard estimates document much more variability. Hazard levels for upland sites (consisting of bedrock and weathered bedrock overlain by loess‐covered till and drift deposits), show up to twice the ground‐motion values for peak ground acceleration (PGA), and similar ground‐motion values for 1.0 s spectral acceleration (SA). Probabilistic ground‐motion levels for lowland alluvial floodplain sites (generally the 20–40‐m‐thick modern Mississippi and Missouri River floodplain deposits overlying bedrock) exhibit up to twice the ground‐motion levels for PGA, and up to three times the ground‐motion levels for 1.0 s SA. Liquefaction probability curves were developed from available standard penetration test data assuming typical lowland and upland water table levels. A simplified liquefaction hazard map was created from the 5%‐in‐50‐year probabilistic ground‐shaking model. The liquefaction hazard ranges from low (60% of area expected to liquefy) in the lowlands. Because many transportation routes, power and gas transmission lines, and population centers exist in or on the highly susceptible lowland alluvium, these areas in the St. Louis region are at significant potential risk from seismically induced liquefaction and associated

  10. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... processor shall have and implement a written HACCP plan whenever a hazard analysis reveals one or more food...

  11. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... processor shall have and implement a written HACCP plan whenever a hazard analysis reveals one or more food...

  12. 76 FR 37283 - Hazardous Materials: Revision to the List of Hazardous Substances and Reportable Quantities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part... under the Federal hazardous materials transportation law (49 U.S.C. 5101-5128). PHMSA carries out the rulemaking responsibilities of the Secretary of Transportation under the Federal hazardous materials...

  13. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)

  14. The Impact Hazard

    NASA Technical Reports Server (NTRS)

    Morrison, David

    1994-01-01

    The Earth has been subject to hypervelocity impacts from comets and asteroids since its formation, and such impacts have played an important role in the evolution of life on our planet. We now recognize not only the historical role of impacts, but the contemporary hazard posed by such events. In the absence of a complete census of potentially threatening Earth-crossing asteroids or comets (called collectively Near Earth Objects, or NEOs), or even of a comprehensive cur-rent search program to identify NEOs, we can consider the hazard only from a probabilistic perspective. We know the steep power-law relationship between NEO numbers and size, with many more small bodies than large ones. We also know that few objects less than about 50 m in diameter (with kinetic energy near 10 megatons) penetrate the atmosphere and are capable of doing surface damage. But there is a spectrum of possible impact hazards associated with objects from this 10-megaton threshold all the way up to NEOs 5 km or larger in diameter, which are capable of inflicting severe damage on the environment, leading to mass extinction's of species. Detailed analysis has shown that, in general, the larger the object the greater the hazard, even when allowance is made for the infrequency of large impacts. Most of the danger to human life is associated with impacts by objects roughly 2 km or larger (energy greater than 1 million megatons), which can inject sufficient submicrometer dust into the atmosphere to produce a severe short-term global cooling with subsequent loss of crops, leading to starvation. Hazard estimates suggest that the chance of such an event occurring during a human lifetime is about 1:5000, and the global probability of death from such impacts is of the order of 1:20000, values that can be compared with risks associated with other natural hazards such as earthquakes, volcanic eruptions, and severe storms. However, the impact hazard differs from the others in that it can be largely

  15. 14 CFR 417.413 - Hazard areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... controls during public access. A launch operator must establish procedural controls that prevent hazardous... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard controls... devices or other restraints on system actuation switches or other controls to eliminate the possibility of...

  16. 14 CFR 417.413 - Hazard areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... controls during public access. A launch operator must establish procedural controls that prevent hazardous... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard controls... devices or other restraints on system actuation switches or other controls to eliminate the possibility of...

  17. 14 CFR 417.413 - Hazard areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... controls during public access. A launch operator must establish procedural controls that prevent hazardous... that system hazard controls are in place that prevent initiation of a hazardous event. Hazard controls... devices or other restraints on system actuation switches or other controls to eliminate the possibility of...

  18. Natural Hazards, Second Edition

    NASA Astrophysics Data System (ADS)

    Rouhban, Badaoui

    Natural disaster loss is on the rise, and the vulnerability of the human and physical environment to the violent forces of nature is increasing. In many parts of the world, disasters caused by natural hazards such as earthquakes, floods, landslides, drought, wildfires, intense windstorms, tsunami, and volcanic eruptions have caused the loss of human lives, injury, homelessness, and the destruction of economic and social infrastructure. Over the last few years, there has been an increase in the occurrence, severity, and intensity of disasters, culminating with the devastating tsunami of 26 December 2004 in South East Asia.Natural hazards are often unexpected or uncontrollable natural events of varying magnitude. Understanding their mechanisms and assessing their distribution in time and space are necessary for refining risk mitigation measures. This second edition of Natural Hazards, (following a first edition published in 1991 by Cambridge University Press), written by Edward Bryant, associate dean of science at Wollongong University, Australia, grapples with this crucial issue, aspects of hazard prediction, and other issues. The book presents a comprehensive analysis of different categories of hazards of climatic and geological origin.

  19. Direction based Hazard Routing Protocol (DHRP) for disseminating road hazard information using road side infrastructures in VANETs.

    PubMed

    Berlin, M A; Anand, Sheila

    2014-01-01

    This paper presents Direction based Hazard Routing Protocol (DHRP) for disseminating information about fixed road hazards such as road blocks, tree fall, boulders on road, snow pile up, landslide, road maintenance work and other obstacles to the vehicles approaching the hazardous location. The proposed work focuses on dissemination of hazard messages on highways with sparse traffic. The vehicle coming across the hazard would report the presence of the hazard. It is proposed to use Road Side fixed infrastructure Units for reliable and timely delivery of hazard messages to vehicles. The vehicles can then take appropriate safety action to avoid the hazardous location. The proposed protocol has been implemented and tested using SUMO simulator to generate road traffic and NS 2.33 network simulator to analyze the performance of DHRP. The performance of the proposed protocol was also compared with simple flooding protocol and the results are presented.

  20. Carbon Structure Hazard Control

    NASA Technical Reports Server (NTRS)

    Yoder, Tommy; Greene, Ben; Porter, Alan

    2015-01-01

    Carbon composite structures are widely used in virtually all advanced technology industries for a multitude of applications. The high strength-to-weight ratio and resistance to aggressive service environments make them highly desirable. Automotive, aerospace, and petroleum industries extensively use, and will continue to use, this enabling technology. As a result of this broad range of use, field and test personnel are increasingly exposed to hazards associated with these structures. No single published document exists to address the hazards and make recommendations for the hazard controls required for the different exposure possibilities from damaged structures including airborne fibers, fly, and dust. The potential for personnel exposure varies depending on the application or manipulation of the structure. The effect of exposure to carbon hazards is not limited to personnel, protection of electronics and mechanical equipment must be considered as well. The various exposure opportunities defined in this document include pre-manufacturing fly and dust, the cured structure, manufacturing/machining, post-event cleanup, and post-event test and/or evaluation. Hazard control is defined as it is applicable or applied for the specific exposure opportunity. The carbon exposure hazard includes fly, dust, fiber (cured/uncured), and matrix vapor/thermal decomposition products. By using the recommendations in this document, a high level of confidence can be assured for the protection of personnel and equipment.

  1. An international perspective on hazardous waste practices.

    PubMed

    Orloff, Kenneth; Falk, Henry

    2003-08-01

    In developing countries, public health attention is focused on urgent health problems such as infectious diseases, malnutrition, and infant mortality. As a country develops and gains economic resources, more attention is directed to health concerns related to hazardous chemical wastes. Even if a country has little industry of its own that generates hazardous wastes, the importation of hazardous wastes for recycling or disposal can present health hazards. It is difficult to compare the quantities of hazardous wastes produced in different countries because of differences in how hazardous wastes are defined. In most countries, landfilling is the most common means of hazardous waste disposal, although substantial quantities of hazardous wastes are incinerated in some countries. Hazardous wastes that escape into the environment most often impact the public through air and water contamination. An effective strategy for managing hazardous wastes should encourage waste minimization, recycling, and reuse over disposal. Developing countries are especially in need of low-cost technologies for managing hazardous wastes.

  2. Hazard Maps in the Classroom.

    ERIC Educational Resources Information Center

    Cross, John A.

    1988-01-01

    Emphasizes the use of geophysical hazard maps and illustrates how they can be used in the classroom from kindergarten to college level. Depicts ways that hazard maps of floods, landslides, earthquakes, volcanoes, and multi-hazards can be integrated into classroom instruction. Tells how maps may be obtained. (SLM)

  3. Hazardous waste: cleanup and prevention

    USGS Publications Warehouse

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  4. Hydrothermal Liquefaction Treatment Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Peter P.; Wagner, Katie A.

    Hazard analyses were performed to evaluate the modular hydrothermal liquefaction treatment system. The hazard assessment process was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. The analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public. The following selected hazardous scenarios receivedmore » increased attention: •Scenarios involving a release of hazardous material or energy, controls were identified in the What-If analysis table that prevent the occurrence or mitigate the effects of the release. •Scenarios with significant consequences that could impact personnel outside the immediate operations area, quantitative analyses were performed to determine the potential magnitude of the scenario. The set of “critical controls” were identified for these scenarios (see Section 4) which prevent the occurrence or mitigate the effects of the release of events with significant consequences.« less

  5. Transportation of hazardous materials

    DOT National Transportation Integrated Search

    1986-07-01

    This report discusses transportation of all hazardous materials (commodities, : radioactive materials including spent nuclear fuel, and hazardous wastes) that : travel by truck, rail, water, or air. The Office of Technology Assessment (OTA) : has ide...

  6. 75 FR 67919 - Hazardous Waste Management System; Proposed Exclusion for Identifying and Listing Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ...-R05-RCRA-2010-0843; SW-FRL-9221-2] Hazardous Waste Management System; Proposed Exclusion for Identifying and Listing Hazardous Waste AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... hazardous wastes. The Agency has tentatively decided to grant the petition based on an evaluation of waste...

  7. 49 CFR 172.205 - Hazardous waste manifest.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste manifest. 172.205 Section 172.205 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS HAZARDOUS MATERIALS TABLE, SPECIAL PROVISIONS, HAZARDOUS MATERIALS...

  8. Transportation of Hazardous Evidentiary Material.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for themore » safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance

  9. Hazardous Chemical Fluorometer Development.

    DTIC Science & Technology

    1981-02-01

    RD-0129 997 HAZARDOUS CHEMICAL FLUOROMETER DEYELOPNENT(U) JOHNS HOPKINS UNIV LAUREL RD APPLIED PHYSICS LAB 6 S KEYS FEB Bi JHU/RPL/EED-Bi-6B USCO-D...TEST CHART REr-CRT NO: Cr-n-79-81 Hazardous Chemical Fluorometer Development -- Gary S. Keys q Ft THE JOHNS HOPKINS UNIVERSITYqFt. ill) APPLIED PHYSICS...Connecticut 06340 - 0 I CG-D-79-81/ Ah 7_> Hazardous Chemical Fluorometer Development February 1981 88898 7. ,~rrro z 9. NO-0.C as, 0-a ., AII=q1. Wo

  10. 14 CFR 437.29 - Hazard analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Hazard analysis. 437.29 Section 437.29... Documentation § 437.29 Hazard analysis. (a) An applicant must perform a hazard analysis that complies with § 437.55(a). (b) An applicant must provide to the FAA all the results of each step of the hazard analysis...

  11. 14 CFR 437.29 - Hazard analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Hazard analysis. 437.29 Section 437.29... Documentation § 437.29 Hazard analysis. (a) An applicant must perform a hazard analysis that complies with § 437.55(a). (b) An applicant must provide to the FAA all the results of each step of the hazard analysis...

  12. The California Hazards Institute

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Kellogg, L. H.; Turcotte, D. L.

    2006-12-01

    California's abundant resources are linked with its natural hazards. Earthquakes, landslides, wildfires, floods, tsunamis, volcanic eruptions, severe storms, fires, and droughts afflict the state regularly. These events have the potential to become great disasters, like the San Francisco earthquake and fire of 1906, that overwhelm the capacity of society to respond. At such times, the fabric of civic life is frayed, political leadership is tested, economic losses can dwarf available resources, and full recovery can take decades. A patchwork of Federal, state and local programs are in place to address individual hazards, but California lacks effective coordination to forecast, prevent, prepare for, mitigate, respond to, and recover from, the harmful effects of natural disasters. Moreover, we do not know enough about the frequency, size, time, or locations where they may strike, nor about how the natural environment and man-made structures would respond. As California's population grows and becomes more interdependent, even moderate events have the potential to trigger catastrophes. Natural hazards need not become natural disasters if they are addressed proactively and effectively, rather than reactively. The University of California, with 10 campuses distributed across the state, has world-class faculty and students engaged in research and education in all fields of direct relevance to hazards. For that reason, the UC can become a world leader in anticipating and managing natural hazards in order to prevent loss of life and property and degradation of environmental quality. The University of California, Office of the President, has therefore established a new system-wide Multicampus Research Project, the California Hazards Institute (CHI), as a mechanism to research innovative, effective solutions for California. The CHI will build on the rich intellectual capital and expertise of the Golden State to provide the best available science, knowledge and tools for

  13. Uncertainty on shallow landslide hazard assessment: from field data to hazard mapping

    NASA Astrophysics Data System (ADS)

    Trefolini, Emanuele; Tolo, Silvia; Patelli, Eduardo; Broggi, Matteo; Disperati, Leonardo; Le Tuan, Hai

    2015-04-01

    Shallow landsliding that involve Hillslope Deposits (HD), the surficial soil that cover the bedrock, is an important process of erosion, transport and deposition of sediment along hillslopes. Despite Shallow landslides generally mobilize relatively small volume of material, they represent the most hazardous factor in mountain regions due to their high velocity and the common absence of warning signs. Moreover, increasing urbanization and likely climate change make shallow landslides a source of widespread risk, therefore the interest of scientific community about this process grown in the last three decades. One of the main aims of research projects involved on this topic, is to perform robust shallow landslides hazard assessment for wide areas (regional assessment), in order to support sustainable spatial planning. Currently, three main methodologies may be implemented to assess regional shallow landslides hazard: expert evaluation, probabilistic (or data mining) methods and physical models based methods. The aim of this work is evaluate the uncertainty of shallow landslides hazard assessment based on physical models taking into account spatial variables such as: geotechnical and hydrogeologic parameters as well as hillslope morphometry. To achieve this goal a wide dataset of geotechnical properties (shear strength, permeability, depth and unit weight) of HD was gathered by integrating field survey, in situ and laboratory tests. This spatial database was collected from a study area of about 350 km2 including different bedrock lithotypes and geomorphological features. The uncertainty associated to each step of the hazard assessment process (e.g. field data collection, regionalization of site specific information and numerical modelling of hillslope stability) was carefully characterized. The most appropriate probability density function (PDF) was chosen for each numerical variable and we assessed the uncertainty propagation on HD strength parameters obtained by

  14. Occupational, social, and relationship hazards and psychological distress among low-income workers: implications of the 'inverse hazard law'.

    PubMed

    Krieger, Nancy; Kaddour, Afamia; Koenen, Karestan; Kosheleva, Anna; Chen, Jarvis T; Waterman, Pamela D; Barbeau, Elizabeth M

    2011-03-01

    Few studies have simultaneously included exposure information on occupational hazards, relationship hazards (eg, intimate partner violence) and social hazards (eg, poverty and racial discrimination), especially among low-income multiracial/ethnic populations. A cross-sectional study (2003-2004) of 1202 workers employed at 14 worksites in the greater Boston area of Massachusetts investigated the independent and joint association of occupational, social and relationship hazards with psychological distress (K6 scale). Among this low-income cohort (45% were below the US poverty line), exposure to occupational, social and relationship hazards, per the 'inverse hazard law,' was high: 82% exposed to at least one occupational hazard, 79% to at least one social hazard, and 32% of men and 34% of women, respectively, stated they had been the perpetrator or target of intimate partner violence (IPV). Fully 15.4% had clinically significant psychological distress scores (K6 score ≥ 13). All three types of hazards, and also poverty, were independently associated with increased risk of psychological distress. In models including all three hazards, however, significant associations with psychological distress occurred among men and women for workplace abuse and high exposure to racial discrimination only; among men, for IPV; and among women, for high exposure to occupational hazards, poverty and smoking. Reckoning with the joint and embodied reality of diverse types of hazards involving how people live and work is necessary for understanding determinants of health status.

  15. Occupational health hazards in veterinary medicine: Zoonoses and other biological hazards

    PubMed Central

    Epp, Tasha; Waldner, Cheryl

    2012-01-01

    This study describes biological hazards reported by veterinarians working in western Canada obtained through a self-administered mailed questionnaire. The potential occupational hazards included as biological hazards were zoonotic disease events, exposure to rabies, injuries due to bites and scratches, and allergies. Only 16.7% (136/812) of responding veterinarians reported the occurrence of a zoonosis or exposure to rabies in the past 5 years; the most commonly reported event was ringworm. Most bites and scratches (86%) described by 586 veterinarians involved encounters with cats; 81% of the resulting 163 infections were due to cat bites or scratches. Approximately 38% of participants reported developing an allergy during their career, with 41% of the affected individuals altering the way they practiced in response to their allergy. PMID:22851775

  16. Volcanic Hazard Maps; the results and progress made by the IAVCEI Hazard Map working group

    NASA Astrophysics Data System (ADS)

    Calder, Eliza; Lindsay, Jan; Wright, Heather

    2017-04-01

    The IAVCEI Commission on Volcanic Hazards and Risk set up a working group on Hazard Maps in 2014. Since then, the group has led or co-organised three major workshops, and organized two thematic conference sessions. In particular we have initiated a series of workshops, named the "State of the Hazard Map" which we plan to continue (the first was held at COV8 (State of the Hazard Map 1) and second at COV9 (State of the Hazard Map 2) and the third will be held at IAVCEI General Assembly in Portland. The broad aim of these activities is to work towards an IAVCEI-endorsed considerations or guidelines document for volcanic hazard map generation. The workshops have brought together people from around the world working on volcanic hazard maps, and have had four primary objectives: 1) to review (and collect further data on) the diverse variety of methods and rationales currently used to develop maps; 2) to openly discuss approaches and experiences regarding how hazard maps are interpreted and used by different groups; 3) to discuss and prepare the IAVCEI Guidelines document; and lastly, 4) Discuss options for finalizing, publishing and disseminating the Guidelines document (e.g. wiki, report, open-source publication). This presentation will provide an update of the results and outcomes of those initiatives. This includes brief outcomes of the reviews undertaken, a survey that has been constructed in order to gather additional data, the planned structure for the guidelines documents and a summary of the key findings to date. The majority of the participants of these activities so far have come from volcano observatories or geological surveys, as these institutions commonly have primary responsibility for making operational hazard map. It is important however that others in the scientific community that work on quantification of volcanic hazard contribute to these guidelines. We therefore invite interested parties to become involved.

  17. There's Life in Hazard Trees

    Treesearch

    Mary Torsello; Toni McLellan

    The goals of hazard tree management programs are to maximize public safety and maintain a healthy sustainable tree resource. Although hazard tree management frequently targets removal of trees or parts of trees that attract wildlife, it can take into account a diversity of tree values. With just a little extra planning, hazard tree management can be highly beneficial...

  18. Space Debris Hazard Evaluation

    NASA Technical Reports Server (NTRS)

    Davison, Elmer H.; Winslow, Paul C., Jr.

    1961-01-01

    The hazard to space vehicles from natural space debris has been explored. A survey of the available information pertinent to this problem is presented. The hope is that this presentation gives a coherent picture of the knowledge to date in terms of the topic covered. The conclusion reached is that a definite hazard exists but that it can only be poorly assessed on the basis of present information. The need for direct measurement of this hazard is obvious, and some of the problems involved in making these direct measurements have been explored.

  19. Integrating volcanic hazard data in a systematic approach to develop volcanic hazard maps in the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Lindsay, Jan M.; Robertson, Richard E. A.

    2018-04-01

    We report on the process of generating the first suite of integrated volcanic hazard zonation maps for the islands of Dominica, Grenada (including Kick 'em Jenny and Ronde/Caille), Nevis, Saba, St. Eustatius, St. Kitts, Saint Lucia and St Vincent in the Lesser Antilles. We developed a systematic approach that accommodated the range in prior knowledge of the volcanoes in the region. A first-order hazard assessment for each island was used to develop one or more scenario(s) of likely future activity, for which scenario-based hazard maps were generated. For the most-likely scenario on each island we also produced a poster-sized integrated volcanic hazard zonation map, which combined the individual hazardous phenomena depicted in the scenario-based hazard maps into integrated hazard zones. We document the philosophy behind the generation of this suite of maps, and the method by which hazard information was combined to create integrated hazard zonation maps, and illustrate our approach through a case study of St. Vincent. We also outline some of the challenges we faced using this approach, and the lessons we have learned by observing how stakeholders have interacted with the maps over the past 10 years. Based on our experience, we recommend that future map makers involve stakeholders in the entire map generation process, especially when making design choices such as type of base map, use of colour and gradational boundaries, and indeed what to depict on the map. We also recommend careful consideration of how to evaluate and depict offshore hazard of island volcanoes, and recommend computer-assisted modelling of all phenomena to generate more realistic hazard footprints. Finally, although our systematic approach to integrating individual hazard data into zones generally worked well, we suggest that a better approach might be to treat the integration of hazards on a case-by-case basis to ensure the final product meets map users' needs. We hope that the documentation of

  20. The Impact Hazard in the Context of Other Natural Hazards and Predictive Science

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    1998-09-01

    The hazard due to impact of asteroids and comets has been recognized as analogous, in some ways, to other infrequent but consequential natural hazards (e.g. floods and earthquakes). Yet, until recently, astronomers and space agencies have felt no need to do what their colleagues and analogous agencies must do in order the assess, quantify, and communicate predictions to those with a practical interest in the predictions (e.g. public officials who must assess the threats, prepare for mitigation, etc.). Recent heightened public interest in the impact hazard, combined with increasing numbers of "near misses" (certain to increase as Spaceguard is implemented) requires that astronomers accept the responsibility to place their predictions and assessments in terms that may be appropriately considered. I will report on preliminary results of a multi-year GSA/NCAR study of "Prediction in the Earth Sciences: Use and Misuse in Policy Making" in which I have represented the impact hazard, while others have treated earthquakes, floods, weather, global climate change, nuclear waste disposal, acid rain, etc. The impact hazard presents an end-member example of a natural hazard, helping those dealing with more prosaic issues to learn from an extreme. On the other hand, I bring to the astronomical community some lessons long adopted in other cases: the need to understand the policy purposes of impact predictions, the need to assess potential societal impacts, the requirements to very carefully assess prediction uncertainties, considerations of potential public uses of the predictions, awareness of ethical considerations (e.g. conflicts of interest) that affect predictions and acceptance of predictions, awareness of appropriate means for publicly communicating predictions, and considerations of the international context (especially for a hazard that knows no national boundaries).

  1. Special Issue "Natural Hazards' Impact on Urban Areas and Infrastructure" in Natural Hazards

    NASA Astrophysics Data System (ADS)

    Bostenaru Dan, M.

    2009-04-01

    In 2006 and 2007, at the 3rd and 4th General Assembly of the European Geosciences Union respectivelly, the session on "Natural Hazards' Impact on Urban Areas and Infrastructure" was convened by Maria Bostenaru Dan, then at the Istituto Universitario di Studi Superiori di Pavia, ROSE School, Italy, who conducts research on earthquake management and Heidi Kreibich from the GFZ Potsdam, Germany, who conducts research on flood hazards, in 2007 being co-convened also by Agostino Goretti from the Civil Protection in Rome, Italy. The session initially started from an idea of Friedemann Wenzel from the Universität Karlsruhe (TH), Germany, the former speaker of the SFB 461 "Strong earthquakes", the university where also Maria Bostenaru graduated and worked and which runs together with the GFZ Potsdam the CEDIM, the Center for Disaster Management and Risk Reduction Technology. Selected papers from these two sessions as well as invited papers from other specialists were gathered for a special issue to be published in the journal "Natural Hazards" under the guest editorship of Heidi Kreibich and Maria Bostenaru Dan. Unlike the former special issue, this one contains a well balanced mixture of many hazards: climate change, floods, mountain hazards like avalanches, volcanoes, earthquakes. Aim of the issue was to enlarge the co-operation prospects between geosciences and other professions in field of natural hazards. Earthquake engineering and engineering seismology are seen more frequently co-operating, but in field of natural hazards there is a need to co-operate with urban planners, and, looking to the future, also in the field of integrated conservation, which implies co-operation between architecture and urban planning for the preservation of our environment. Integrated conservation is stipulated since the 1970s, which are the years when the participatism, and so the involvment of social sciences started.

  2. Understanding risk and resilience to natural hazards

    USGS Publications Warehouse

    Wood, Nathan

    2011-01-01

    Natural hazards threaten the safety and economic wellbeing of communities. These hazards include sudden-onset hazards, such as earthquakes, and slowly emerging, chronic hazards, such as those associated with climate change. To help public officials, emergency and other managers, the business community, and at-risk individuals reduce the risks posed by such hazards, the USGS Western Geographic Science Center is developing new ways to assess and communicate societal risk and resilience to catastrophic and chronic natural hazards.

  3. Federal Agency Hazardous Waste Compliance Docket

    EPA Pesticide Factsheets

    The Federal Agency Hazardous Waste Compliance Docket contains information reported to EPA by federal facilities that manage hazardous waste or from which hazardous substances, pollutants, or contaminants have been - or may be - released.

  4. An Introduction to Hazardous Material Management.

    ERIC Educational Resources Information Center

    Reinhardt, Peter A.; And Others

    1987-01-01

    Colleges must have a system to safely control the ordering, delivery, transport, storage, and use of hazardous material. Information on hazardous material management is excerpted from "Managing Hazardous Waste at Educational Institutions. (MLW)

  5. Hazardous Waste Manifest System

    EPA Pesticide Factsheets

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  6. Rail-highway crossing hazard prediction : research results

    DOT National Transportation Integrated Search

    1979-12-01

    This document presents techniques for constructing and evaluating railroad grade : crossing hazard indexes. Hazard indexes are objective formulas for comparing or ranking : crossings according to relative hazard or for calculating absolute hazard (co...

  7. Hazard Detection Software for Lunar Landing

    NASA Technical Reports Server (NTRS)

    Huertas, Andres; Johnson, Andrew E.; Werner, Robert A.; Montgomery, James F.

    2011-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing a system for safe and precise manned lunar landing that involves novel sensors, but also specific algorithms. ALHAT has selected imaging LIDAR (light detection and ranging) as the sensing modality for onboard hazard detection because imaging LIDARs can rapidly generate direct measurements of the lunar surface elevation from high altitude. Then, starting with the LIDAR-based Hazard Detection and Avoidance (HDA) algorithm developed for Mars Landing, JPL has developed a mature set of HDA software for the manned lunar landing problem. Landing hazards exist everywhere on the Moon, and many of the more desirable landing sites are near the most hazardous terrain, so HDA is needed to autonomously and safely land payloads over much of the lunar surface. The HDA requirements used in the ALHAT project are to detect hazards that are 0.3 m tall or higher and slopes that are 5 or greater. Steep slopes, rocks, cliffs, and gullies are all hazards for landing and, by computing the local slope and roughness in an elevation map, all of these hazards can be detected. The algorithm in this innovation is used to measure slope and roughness hazards. In addition to detecting these hazards, the HDA capability also is able to find a safe landing site free of these hazards for a lunar lander with diameter .15 m over most of the lunar surface. This software includes an implementation of the HDA algorithm, software for generating simulated lunar terrain maps for testing, hazard detection performance analysis tools, and associated documentation. The HDA software has been deployed to Langley Research Center and integrated into the POST II Monte Carlo simulation environment. The high-fidelity Monte Carlo simulations determine the required ground spacing between LIDAR samples (ground sample distances) and the noise on the LIDAR range measurement. This simulation has also been used to determine the effect of

  8. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Peter P.; Wagner, Katie A.

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affectingmore » the public.« less

  9. Los Angeles County Department of Public Health's Health Hazard Assessment: putting the "health" into hazard assessment.

    PubMed

    Dean, Brandon; Bagwell, Dee Ann; Dora, Vinita; Khan, Sinan; Plough, Alonzo

    2013-01-01

    A ll communities, explicitly or implicitly, assess and prepare for the natural and manmade hazards that they know could impact their community. The commonality of hazard-based threats in most all communities does not usually result in standard or evidence-based preparedness practice and outcomes across those communities. Without specific efforts to build a shared perspective and prioritization, "all-hazards" preparedness can result in a random hodgepodge of priorities and preparedness strategies, resulting in diminished emergency response capabilities. Traditional risk assessments, with a focus on physical infrastructure, do not present the potential health and medical impacts of specific hazards and threats. With the implementation of Centers for Disease Control and Prevention's capability-based planning, there is broad recognition that a health-focused hazard assessment process--that engages the "Whole of Community"--is needed. Los Angeles County's Health Hazard Assessment and Prioritization tool provides a practical and innovative approach to enhance existing planning capacities. Successful utilization of this tool can provide a way for local and state health agencies and officials to more effectively identify the health consequences related to hazard-specific threats and risk, determine priorities, and develop improved and better coordinated agency planning, including community engagement in prioritization.

  10. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection...

  11. Using hazard maps to identify and eliminate workplace hazards: a union-led health and safety training program.

    PubMed

    Anderson, Joe; Collins, Michele; Devlin, John; Renner, Paul

    2012-01-01

    The Institute for Sustainable Work and Environment and the Utility Workers Union of America worked with a professional evaluator to design, implement, and evaluate the results of a union-led system of safety-based hazard identification program that trained workers to use hazard maps to identify workplace hazards and target them for elimination. The evaluation documented program implementation and impact using data collected from both qualitative interviews and an on-line survey from worker trainers, plant managers, and health and safety staff. Managers and workers reported that not only were many dangerous hazards eliminated as a result of hazard mapping, some of which were long-standing, difficult-to-resolve issues, but the evaluation also documented improved communication between union members and management that both workers and managers agreed resulted in better, more sustainable hazard elimination.

  12. Risk analysis based on hazards interactions

    NASA Astrophysics Data System (ADS)

    Rossi, Lauro; Rudari, Roberto; Trasforini, Eva; De Angeli, Silvia; Becker, Joost

    2017-04-01

    Despite an increasing need for open, transparent, and credible multi-hazard risk assessment methods, models, and tools, the availability of comprehensive risk information needed to inform disaster risk reduction is limited, and the level of interaction across hazards is not systematically analysed. Risk assessment methodologies for different hazards often produce risk metrics that are not comparable. Hazard interactions (consecutive occurrence two or more different events) are generally neglected, resulting in strongly underestimated risk assessment in the most exposed areas. This study presents cases of interaction between different hazards, showing how subsidence can affect coastal and river flood risk (Jakarta and Bandung, Indonesia) or how flood risk is modified after a seismic event (Italy). The analysis of well documented real study cases, based on a combination between Earth Observation and in-situ data, would serve as basis the formalisation of a multi-hazard methodology, identifying gaps and research frontiers. Multi-hazard risk analysis is performed through the RASOR platform (Rapid Analysis and Spatialisation Of Risk). A scenario-driven query system allow users to simulate future scenarios based on existing and assumed conditions, to compare with historical scenarios, and to model multi-hazard risk both before and during an event (www.rasor.eu).

  13. Canister Storage Building (CSB) Hazard Analysis Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POWERS, T.B.

    2000-03-16

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safetymore » analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and

  14. USGS National Seismic Hazard Maps

    USGS Publications Warehouse

    Frankel, A.D.; Mueller, C.S.; Barnhard, T.P.; Leyendecker, E.V.; Wesson, R.L.; Harmsen, S.C.; Klein, F.W.; Perkins, D.M.; Dickman, N.C.; Hanson, S.L.; Hopper, M.G.

    2000-01-01

    The U.S. Geological Survey (USGS) recently completed new probabilistic seismic hazard maps for the United States, including Alaska and Hawaii. These hazard maps form the basis of the probabilistic component of the design maps used in the 1997 edition of the NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, prepared by the Building Seismic Safety Council arid published by FEMA. The hazard maps depict peak horizontal ground acceleration and spectral response at 0.2, 0.3, and 1.0 sec periods, with 10%, 5%, and 2% probabilities of exceedance in 50 years, corresponding to return times of about 500, 1000, and 2500 years, respectively. In this paper we outline the methodology used to construct the hazard maps. There are three basic components to the maps. First, we use spatially smoothed historic seismicity as one portion of the hazard calculation. In this model, we apply the general observation that moderate and large earthquakes tend to occur near areas of previous small or moderate events, with some notable exceptions. Second, we consider large background source zones based on broad geologic criteria to quantify hazard in areas with little or no historic seismicity, but with the potential for generating large events. Third, we include the hazard from specific fault sources. We use about 450 faults in the western United States (WUS) and derive recurrence times from either geologic slip rates or the dating of pre-historic earthquakes from trenching of faults or other paleoseismic methods. Recurrence estimates for large earthquakes in New Madrid and Charleston, South Carolina, were taken from recent paleoliquefaction studies. We used logic trees to incorporate different seismicity models, fault recurrence models, Cascadia great earthquake scenarios, and ground-motion attenuation relations. We present disaggregation plots showing the contribution to hazard at four cities from potential earthquakes with various magnitudes and

  15. Preliminary hazards analysis -- vitrification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coordes, D.; Ruggieri, M.; Russell, J.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s constructionmore » and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.« less

  16. Wake-Vortex Hazards During Cruise

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; James, Kevin D.; Nixon, David (Technical Monitor)

    1998-01-01

    Even though the hazard posed by lift-generated wakes of subsonic transport aircraft has been studied extensively for approach and departure at airports, only a small amount of effort has gone into the potential hazard at cruise altitude. This paper reports on a studio of the wake-vortex hazard during cruise because encounters may become more prevalent when free-flight becomes available and each aircraft, is free to choose its own route between destinations. In order to address the problem, the various fluid-dynamic stages that vortex wakes usually go through as they age will be described along with estimates of the potential hazard that each stage poses. It appears that a rolling-moment hazard can be just as severe at cruise as for approach at airports, but it only persists for several minutes. However, the hazard posed by the downwash in the wake due to the lift on the generator aircraft persists for tens of minutes in a long narrow region behind the generating aircraft. The hazard consists of severe vertical loads when an encountering aircraft crosses the wake. A technique for avoiding vortex wakes at cruise altitude will be described. To date the hazard posed by lift-generated vortex wakes and their persistence at cruise altitudes has been identified and subdivided into several tasks. Analyses of the loads to be encounter and are underway and should be completed shortly. A review of published literature on the subject has been nearly completed (see text) and photographs of vortex wakes at cruise altitudes have been taken and the various stages of decay have been identified. It remains to study and sort the photographs for those that best illustrate the various stages of decay after they are shed by subsonic transport aircraft at cruise altitudes. The present status of the analysis and the paper are described.

  17. Hazards on Hazards, Ensuring Spacecraft Safety While Sampling Asteroid Surface Materials

    NASA Astrophysics Data System (ADS)

    Johnson, C. A.; DellaGiustina, D. N.

    2016-12-01

    The near-Earth object Bennu is a carbonaceous asteroid that is a remnant from the earliest stages of the solar-system formation. It is also a potentially hazardous asteroid with a relatively high probability of impacting Earth late in the 22nd century. While the primary focus of the NASA funded OSIRIS-REx mission is the return of pristine organic material from the asteroid's surface, information about Bennu's physical and chemical properties gleaned throughout operations will be critical for a possible future impact mitigation mission. In order to ensure a regolith sample can be successfully acquired, the sample site and surrounding area must be thoroughly assessed for any potential hazards to the spacecraft. The OSIRIS-REx Image Processing Working Group has been tasked with generating global and site-specific hazard maps using mosaics and a trio of fea­­­ture identification techniques. These techniques include expert-lead manual classification, internet-based amateur classification using the citizen science platform CosmoQuest, and automated classification using machine learning and computer vision tools. Because proximity operations around Bennu do not begin until the end of 2018, we have an opportunity to test t­­­he performance of our software on analogue surfaces of other asteroids from previous NASA and other space agencies missions. The entire pipeline from image processing and mosaicking to hazard identification, analysis and mapping will be performed on asteroids of varying size, shape and surface morphology. As a result, upon arrival at Bennu, we will have the software and processes in place to quickly and confidently produce the hazard maps needed to ensure the success of our mission.

  18. A situational analysis of priority disaster hazards in Uganda: findings from a hazard and vulnerability analysis.

    PubMed

    Mayega, R W; Wafula, M R; Musenero, M; Omale, A; Kiguli, J; Orach, G C; Kabagambe, G; Bazeyo, W

    2013-06-01

    Most countries in sub-Saharan Africa have not conducted a disaster risk analysis. Hazards and vulnerability analyses provide vital information that can be used for development of risk reduction and disaster response plans. The purpose of this study was to rank disaster hazards for Uganda, as a basis for identifying the priority hazards to guide disaster management planning. The study as conducted in Uganda, as part of a multi-country assessment. A hazard, vulnerability and capacity analysis was conducted in a focus group discussion of 7 experts representing key stakeholder agencies in disaster management in Uganda. A simple ranking method was used to rank the probability of occurance of 11 top hazards, their potential impact and the level vulnerability of people and infrastructure. In-terms of likelihood of occurance and potential impact, the top ranked disaster hazards in Uganda are: 1) Epidemics of infectious diseases, 2) Drought/famine, 3) Conflict and environmental degradation in that order. In terms of vulnerability, the top priority hazards to which people and infrastructure were vulnerable were: 1) Conflicts, 2) Epidemics, 3) Drought/famine and, 4) Environmental degradation in that order. Poverty, gender, lack of information, and lack of resilience measures were some of the factors promoting vulnerability to disasters. As Uganda develops a disaster risk reduction and response plan, it ought to prioritize epidemics of infectious diseases, drought/famine, conflics and environmental degradation as the priority disaster hazards.

  19. Avoiding the Hazards of Hazardous Waste.

    ERIC Educational Resources Information Center

    Hiller, Richard

    1996-01-01

    Under a 1980 law, colleges and universities can be liable for cleanup of hazardous waste on properties, in companies, and related to stocks they invest in or are given. College planners should establish clear policy concerning gifts, investigate gifts, distance university from business purposes, sell real estate gifts quickly, consult a risk…

  20. Success in transmitting hazard science

    NASA Astrophysics Data System (ADS)

    Price, J. G.; Garside, T.

    2010-12-01

    Money motivates mitigation. An example of success in communicating scientific information about hazards, coupled with information about available money, is the follow-up action by local governments to actually mitigate. The Nevada Hazard Mitigation Planning Committee helps local governments prepare competitive proposals for federal funds to reduce risks from natural hazards. Composed of volunteers with expertise in emergency management, building standards, and earthquake, flood, and wildfire hazards, the committee advises the Nevada Division of Emergency Management on (1) the content of the State’s hazard mitigation plan and (2) projects that have been proposed by local governments and state agencies for funding from various post- and pre-disaster hazard mitigation programs of the Federal Emergency Management Agency. Local governments must have FEMA-approved hazard mitigation plans in place before they can receive this funding. The committee has been meeting quarterly with elected and appointed county officials, at their offices, to encourage them to update their mitigation plans and apply for this funding. We have settled on a format that includes the county’s giving the committee an overview of its infrastructure, hazards, and preparedness. The committee explains the process for applying for mitigation grants and presents the latest information that we have about earthquake hazards, including locations of nearby active faults, historical seismicity, geodetic strain, loss-estimation modeling, scenarios, and documents about what to do before, during, and after an earthquake. Much of the county-specific information is available on the web. The presentations have been well received, in part because the committee makes the effort to go to their communities, and in part because the committee is helping them attract federal funds for local mitigation of not only earthquake hazards but also floods (including canal breaches) and wildfires, the other major concerns in

  1. Natural Hazards within the West Indies.

    ERIC Educational Resources Information Center

    Cross, John A.

    1992-01-01

    Outlines the vulnerability of the West Indies to various natural hazards, especially hurricanes, earthquakes, and volcanic eruptions. Reviews the geologic and meteorologic causes and consequences of the hazards. Suggests methods of incorporating hazards information in geography classes. Includes maps and a hurricane tracking chart. (DK)

  2. 30 CFR 47.21 - Identifying hazardous chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Identifying hazardous chemicals. 47.21 Section... TRAINING HAZARD COMMUNICATION (HazCom) Hazard Determination § 47.21 Identifying hazardous chemicals. The operator must evaluate each chemical brought on mine property and each chemical produced on mine property...

  3. 30 CFR 47.21 - Identifying hazardous chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Identifying hazardous chemicals. 47.21 Section... TRAINING HAZARD COMMUNICATION (HazCom) Hazard Determination § 47.21 Identifying hazardous chemicals. The operator must evaluate each chemical brought on mine property and each chemical produced on mine property...

  4. 30 CFR 47.21 - Identifying hazardous chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Identifying hazardous chemicals. 47.21 Section... TRAINING HAZARD COMMUNICATION (HazCom) Hazard Determination § 47.21 Identifying hazardous chemicals. The operator must evaluate each chemical brought on mine property and each chemical produced on mine property...

  5. 30 CFR 47.21 - Identifying hazardous chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Identifying hazardous chemicals. 47.21 Section... TRAINING HAZARD COMMUNICATION (HazCom) Hazard Determination § 47.21 Identifying hazardous chemicals. The operator must evaluate each chemical brought on mine property and each chemical produced on mine property...

  6. 30 CFR 47.21 - Identifying hazardous chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Identifying hazardous chemicals. 47.21 Section... TRAINING HAZARD COMMUNICATION (HazCom) Hazard Determination § 47.21 Identifying hazardous chemicals. The operator must evaluate each chemical brought on mine property and each chemical produced on mine property...

  7. A Model for Generating Multi-hazard Scenarios

    NASA Astrophysics Data System (ADS)

    Lo Jacomo, A.; Han, D.; Champneys, A.

    2017-12-01

    Communities in mountain areas are often subject to risk from multiple hazards, such as earthquakes, landslides, and floods. Each hazard has its own different rate of onset, duration, and return period. Multiple hazards tend to complicate the combined risk due to their interactions. Prioritising interventions for minimising risk in this context is challenging. We developed a probabilistic multi-hazard model to help inform decision making in multi-hazard areas. The model is applied to a case study region in the Sichuan province in China, using information from satellite imagery and in-situ data. The model is not intended as a predictive model, but rather as a tool which takes stakeholder input and can be used to explore plausible hazard scenarios over time. By using a Monte Carlo framework and varrying uncertain parameters for each of the hazards, the model can be used to explore the effect of different mitigation interventions aimed at reducing the disaster risk within an uncertain hazard context.

  8. Reviewing and visualizing the interactions of natural hazards

    NASA Astrophysics Data System (ADS)

    Gill, Joel C.; Malamud, Bruce D.

    2014-12-01

    This paper presents a broad overview, characterization, and visualization of the interaction relationships between 21 natural hazards, drawn from six hazard groups (geophysical, hydrological, shallow Earth, atmospheric, biophysical, and space hazards). A synthesis is presented of the identified interaction relationships between these hazards, using an accessible visual format particularly suited to end users. Interactions considered are primarily those where a primary hazard triggers or increases the probability of secondary hazards occurring. In this paper we do the following: (i) identify, through a wide-ranging review of grey- and peer-review literature, 90 interactions; (ii) subdivide the interactions into three levels, based on how well we can characterize secondary hazards, given information about the primary hazard; (iii) determine the spatial overlap and temporal likelihood of the triggering relationships occurring; and (iv) examine the relationship between primary and secondary hazard intensities for each identified hazard interaction and group these into five possible categories. In this study we have synthesized, using accessible visualization techniques, large amounts of information drawn from many scientific disciplines. We outline the importance of constraining hazard interactions and reinforce the importance of a holistic (or multihazard) approach to natural hazard assessment. This approach allows those undertaking research into single hazards to place their work within the context of other hazards. It also communicates important aspects of hazard interactions, facilitating an effective analysis by those working on reducing and managing disaster risk within both the policy and practitioner communities.

  9. The Nature of Natural Hazards Communication (Invited)

    NASA Astrophysics Data System (ADS)

    Kontar, Y. Y.

    2013-12-01

    Some of the many issues of interest to natural hazards professionals include the analysis of proactive approaches to the governance of risk from natural hazards and approaches to broaden the scope of public policies related to the management of risks from natural hazards, as well as including emergency and environmental management, community development and spatial planning related to natural hazards. During the talk we will present results of scientific review, analysis and synthesis, which emphasize same new trends in communication of the natural hazards theories and practices within an up-to-the-minute context of new environmental and climate change issues, new technologies, and a new focus on resiliency. The presentation is divided into five sections that focus on natural hazards communication in terms of education, risk management, public discourse, engaging the public, theoretical perspectives, and new media. It includes results of case studies and best practices. It delves into natural hazards communication theories, including diffusion, argumentation, and constructivism, to name a few. The presentation will provide information about: (1) A manual of natural hazards communication for scientists, policymakers, and media; (2) An up-to-the-minute context of environmental hazards, new technologies & political landscape; (3) A work by natural hazards scientists for geoscientists working with social scientists and communication principles; (4) A work underpinned by key natural hazards communication theories and interspersed with pragmatic solutions; (5) A work that crosses traditional natural hazards boundaries: international, interdisciplinary, theoretical/applied. We will further explore how spatial planning can contribute to risk governance by influencing the occupation of natural hazard-prone areas, and review the central role of emergency management in risk policy. The goal of this presentation is to contribute to the augmentation of the conceptual framework

  10. Environmental management of industrial hazardous wastes in India.

    PubMed

    Dutta, Shantanu K; Upadhyay, V P; Sridharan, U

    2006-04-01

    Hazardous wastes are considered highly toxic and therefore disposal of such wastes needs proper attention so as to reduce possible environmental hazards. Industrial growth has resulted in generation of huge volume of hazardous wastes in the country. In addition to this, hazardous wastes sometimes get imported mainly from the western countries for re-processing or recycling. Inventorisation of hazardous wastes generating units in the country is not yet completed. Scientific disposal of hazardous wastes has become a major environmental issue in India. Hazardous Wastes (Management and Handling) Rules, 1989 have been framed by the Central Government and amended in 2000 and 2003 to deal with the hazardous wastes related environmental problems that may arise in the near future. This paper gives details about the hazardous wastes management in India. Health effects of the selected hazardous substances are also discussed in the paper.

  11. 16 CFR 1306.3 - Banned hazardous products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Banned hazardous products. 1306.3 Section 1306.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS BAN OF HAZARDOUS LAWN DARTS § 1306.3 Banned hazardous products. Any lawn dart is a banned hazardous...

  12. 16 CFR 1306.3 - Banned hazardous products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Banned hazardous products. 1306.3 Section 1306.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS BAN OF HAZARDOUS LAWN DARTS § 1306.3 Banned hazardous products. Any lawn dart is a banned hazardous...

  13. 16 CFR 1306.3 - Banned hazardous products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Banned hazardous products. 1306.3 Section 1306.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS BAN OF HAZARDOUS LAWN DARTS § 1306.3 Banned hazardous products. Any lawn dart is a banned hazardous...

  14. 16 CFR 1306.3 - Banned hazardous products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Banned hazardous products. 1306.3 Section 1306.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS BAN OF HAZARDOUS LAWN DARTS § 1306.3 Banned hazardous products. Any lawn dart is a banned hazardous...

  15. A Natural Hazards Workbook.

    ERIC Educational Resources Information Center

    Kohler, Fred

    This paper discusses the development of and provides examples of exercises from a student workbook for a college-level course about natural hazards. The course is offered once a year to undergraduates at Western Illinois University. Students are introduced to 10 hazards (eight meteorological plus earthquakes and volcanoes) through slides, movies,…

  16. LAV@HAZARD: a Web-GIS Framework for Real-Time Forecasting of Lava Flow Hazards

    NASA Astrophysics Data System (ADS)

    Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.

    2014-12-01

    Crucial to lava flow hazard assessment is the development of tools for real-time prediction of flow paths, flow advance rates, and final flow lengths. Accurate prediction of flow paths and advance rates requires not only rapid assessment of eruption conditions (especially effusion rate) but also improved models of lava flow emplacement. Here we present the LAV@HAZARD web-GIS framework, which combines spaceborne remote sensing techniques and numerical simulations for real-time forecasting of lava flow hazards. By using satellite-derived discharge rates to drive a lava flow emplacement model, LAV@HAZARD allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We take advantage of the flexibility of the HOTSAT thermal monitoring system to process satellite images coming from sensors with different spatial, temporal and spectral resolutions. HOTSAT was designed to ingest infrared satellite data acquired by the MODIS and SEVIRI sensors to output hot spot location, lava thermal flux and discharge rate. We use LAV@HAZARD to merge this output with the MAGFLOW physics-based model to simulate lava flow paths and to update, in a timely manner, flow simulations. Thus, any significant changes in lava discharge rate are included in the predictions. A significant benefit in terms of computational speed was obtained thanks to the parallel implementation of MAGFLOW on graphic processing units (GPUs). All this useful information has been gathered into the LAV@HAZARD platform which, due to the high degree of interactivity, allows generation of easily readable maps and a fast way to explore alternative scenarios. We will describe and demonstrate the operation of this framework using a variety of case studies pertaining to Mt Etna, Sicily. Although this study was conducted on Mt Etna, the approach used is designed to be applicable to other volcanic areas around the world.

  17. Hazardous-Materials Robot

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.; Edmonds, Gary O.

    1995-01-01

    Remotely controlled mobile robot used to locate, characterize, identify, and eventually mitigate incidents involving hazardous-materials spills/releases. Possesses number of innovative features, allowing it to perform mission-critical functions such as opening and unlocking doors and sensing for hazardous materials. Provides safe means for locating and identifying spills and eliminates risks of injury associated with use of manned entry teams. Current version of vehicle, called HAZBOT III, also features unique mechanical and electrical design enabling vehicle to operate safely within combustible atmosphere.

  18. 46 CFR 151.03-30 - Hazardous material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Hazardous material. 151.03-30 Section 151.03-30 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-30 Hazardous material. In this part hazardous material means a liquid material or substance that is— (a) Flammable or combustible; (b...

  19. 46 CFR 151.03-30 - Hazardous material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Hazardous material. 151.03-30 Section 151.03-30 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-30 Hazardous material. In this part hazardous material means a liquid material or substance that is— (a) Flammable or combustible; (b...

  20. 46 CFR 151.03-30 - Hazardous material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Hazardous material. 151.03-30 Section 151.03-30 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-30 Hazardous material. In this part hazardous material means a liquid material or substance that is— (a) Flammable or combustible; (b...

  1. Health concerns and hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yassi, A.; Weeks, J.; Kraut, A.

    1990-01-01

    This report discusses health effects of hazardous waste and emphasizes human health concerns related to establishing a hazardous waste management facility. The study reviewed world epidemiological and public health literature to identify cases of suspected or substantiated claims of public health impacts associated with hazardous waste management facilities and potential products or emissions from such facilities, and placed them into perspective, including possible routes and consequences of exposure, risk assessment, and the toxicity of selected organic and inorganic compounds.

  2. 14 CFR 437.55 - Hazard analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Hazard analysis. 437.55 Section 437.55... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee must... safety of property resulting from each permitted flight. This hazard analysis must— (1) Identify and...

  3. 14 CFR 437.55 - Hazard analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Hazard analysis. 437.55 Section 437.55... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee must... safety of property resulting from each permitted flight. This hazard analysis must— (1) Identify and...

  4. BEHAVIORAL HAZARD IN HEALTH INSURANCE*

    PubMed Central

    Baicker, Katherine; Mullainathan, Sendhil; Schwartzstein, Joshua

    2015-01-01

    A fundamental implication of standard moral hazard models is overuse of low-value medical care because copays are lower than costs. In these models, the demand curve alone can be used to make welfare statements, a fact relied on by much empirical work. There is ample evidence, though, that people misuse care for a different reason: mistakes, or “behavioral hazard.” Much high-value care is underused even when patient costs are low, and some useless care is bought even when patients face the full cost. In the presence of behavioral hazard, welfare calculations using only the demand curve can be off by orders of magnitude or even be the wrong sign. We derive optimal copay formulas that incorporate both moral and behavioral hazard, providing a theoretical foundation for value-based insurance design and a way to interpret behavioral “nudges.” Once behavioral hazard is taken into account, health insurance can do more than just provide financial protection—it can also improve health care efficiency. PMID:23930294

  5. Ultrasonic dental scaler: associated hazards.

    PubMed

    Trenter, S C; Walmsley, A D

    2003-02-01

    The ultrasonic dental scaler is a valuable tool in the prevention of periodontal disease; however, this equipment has a number of hazards with which it is associated. These include heating of the tooth during scaling, vibrational hazards causing cell disruption, possible platelet damage by cavitation, associated electromagnetic fields that can interrupt pacemakers, auditory damage to patient and clinician and the release of aerosols containing dangerous bacteria. To collate the research reported on the various hazards associated with the ultrasonic dental scaler and discuss possible future research areas. The scientific literature was searched using Web of Science, EMBASE and Medline, and the results of these were then hand-searched to eliminate nonrelevant papers. This review outlines some of the research conducted into these areas of associated hazard in order to assess their significance in the clinical situation, and discusses ideas for future research. Suggestions of recommendations are given, which have been previously investigated for their aid in reducing possible hazards, to ensure the safe working of ultrasonic scalers in the dental practice.

  6. Hazard avoidance via descent images for safe landing

    NASA Astrophysics Data System (ADS)

    Yan, Ruicheng; Cao, Zhiguo; Zhu, Lei; Fang, Zhiwen

    2013-10-01

    In planetary or lunar landing missions, hazard avoidance is critical for landing safety. Therefore, it is very important to correctly detect hazards and effectively find a safe landing area during the last stage of descent. In this paper, we propose a passive sensing based HDA (hazard detection and avoidance) approach via descent images to lower the landing risk. In hazard detection stage, a statistical probability model on the basis of the hazard similarity is adopted to evaluate the image and detect hazardous areas, so that a binary hazard image can be generated. Afterwards, a safety coefficient, which jointly utilized the proportion of hazards in the local region and the inside hazard distribution, is proposed to find potential regions with less hazards in the binary hazard image. By using the safety coefficient in a coarse-to-fine procedure and combining it with the local ISD (intensity standard deviation) measure, the safe landing area is determined. The algorithm is evaluated and verified with many simulated descent downward looking images rendered from lunar orbital satellite images.

  7. Household Hazardous Waste and Demolition

    EPA Pesticide Factsheets

    Household wastes that are toxic, corrosive, ignitable, or reactive are known as Household Hazardous Waste (HHW). Household Hazardous Waste may be found during residential demolitions, and thus require special handling for disposal.

  8. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  9. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  10. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  11. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4... PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...

  12. Volcanic hazard management in dispersed volcanism areas

    NASA Astrophysics Data System (ADS)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  13. Thinking of Wildfire as a Natural Hazard

    Treesearch

    Sarah McCaffrey

    2004-01-01

    Natural hazards theory with its emphasis on understanding the human-hazard interaction has much to offer in better understanding how individuals respond to the wildfire hazard. Ironically, very few natural hazards studies have actually looked at wildfires, despite the insights the field might offer. This report is structured around four interrelated questions that are...

  14. Hazardous waste management in the Pacific basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used tomore » address them so that new program activities can be designed more efficiently.« less

  15. Controlling organic chemical hazards in food manufacturing: a hazard analysis critical control points (HACCP) approach.

    PubMed

    Ropkins, K; Beck, A J

    2002-08-01

    Hazard analysis by critical control points (HACCP) is a systematic approach to the identification, assessment and control of hazards. Effective HACCP requires the consideration of all hazards, i.e., chemical, microbiological and physical. However, to-date most 'in-place' HACCP procedures have tended to focus on the control of microbiological and physical food hazards. In general, the chemical component of HACCP procedures is either ignored or limited to applied chemicals, e.g., food additives and pesticides. In this paper we discuss the application of HACCP to a broader range of chemical hazards, using organic chemical contaminants as examples, and the problems that are likely to arise in the food manufacturing sector. Chemical HACCP procedures are likely to result in many of the advantages previously identified for microbiological HACCP procedures: more effective, efficient and economical than conventional end-point-testing methods. However, the high costs of analytical monitoring of chemical contaminants and a limited understanding of formulation and process optimisation as means of controlling chemical contamination of foods are likely to prevent chemical HACCP becoming as effective as microbiological HACCP.

  16. Characteristics of civil aviation atmospheric hazards

    NASA Technical Reports Server (NTRS)

    Marshall, Robert E.; Montoya, J.; Richards, Mark A.; Galliano, J.

    1994-01-01

    Clear air turbulence, wake vortices, dry hail, and volcanic ash are hazards to civil aviation that have not been brought to the forefront of public attention by a catastrophic accident. However, these four hazards are responsible for major and minor injuries, emotional trauma, significant aircraft damage, and in route and terminal area inefficiency. Most injuries occur during clear air turbulence. There is significant aircraft damage for any volcanic ash encounter. Rolls induced by wake vortices occur near the ground. Dry hail often appears as an area of weak echo on the weather radar. This paper will present the meteorological, electromagnetic, and spatiotemporal characteristics of each hazard. A description of a typical aircraft encounter with each hazard will be given. Analyzed microwave and millimeter wave sensor systems to detect each hazard will be presented.

  17. Potential primary and secondary hazards of avicides

    USGS Publications Warehouse

    Schafer, E.W.; Clark, Dell O.

    1984-01-01

    There are six chemicals or groups of chemicals that are currently registered as avicides that can be used in some or all of the U.S. Most of these chemicals, because of their diverse chemical composition and innate toxicological effects, present somewhat different primary and secondary hazards to avian and mammalian predators and scavengers. Of the chemicals reviewed, all appear to present some degree of primary hazard to non-target birds and mammals; however, PA-14, the Starlicide family of chemicals and fenthion appear to be the least hazardous when used according to use directions. 4-Aminopyridine, endrin and strychnine, because of their high acute toxicity and lack of selectivity, must be considered potentially more hazardous. With respect to secondary hazards, the ranking of chemicals changes considerably and only PA-14 appears to present a negligible hazard. The Starlicide family of chemicals presents negligible hazards to most animal species under currently registered uses, but may be potentially hazardous to cats and owls under specific use conditions. Two chemicals, 4-aminopyridine and strychnine, are potentially more hazardous to predatory and scavenger animals due to their highly toxic nature and rapid lethal effects in target species, leaving unassimilated chemical in the gastrointestinal tract. The remaining chemicals, endrin and fenthion, have been shown to possess the potential for more significant secondary poisoning; however, because of restrictive uses, most of the potential hazards have been avoided in operational use.

  18. Correlates of household seismic hazard adjustment adoption.

    PubMed

    Lindell, M K; Whitney, D J

    2000-02-01

    This study examined the relationships of self-reported adoption of 12 seismic hazard adjustments (pre-impact actions to reduce danger to persons and property) with respondents' demographic characteristics, perceived risk, perceived hazard knowledge, perceived protection responsibility, and perceived attributes of the hazard adjustments. Consistent with theoretical predictions, perceived attributes of the hazard adjustments differentiated among the adjustments and had stronger correlations with adoption than any of the other predictors. These results identify the adjustments and attributes that emergency managers should address to have the greatest impact on improving household adjustment to earthquake hazard.

  19. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Describes the Superfund, a federal cleanup program created in response to growing public concern over the health and environmental risks posed by hazardous waste sites. Discusses sources, disposal, and movement and risk of hazardous waste. (JRH)

  20. Guatemala Volcanic Eruption Captured in NASA Spacecraft Image

    NASA Image and Video Library

    2015-02-19

    Guatemala's Fuego volcano continued its frequent moderate eruptions in early February 2015. Pyroclastic flows from the eruptions descended multiple drainages, and the eruptions sent ash plumes spewing over Guatemala City 22 miles (35 kilometers) away, and forced closure of the international airport. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument onboard NASA's Terra spacecraft captured a new image of the region on February 17. Fuego is on the left side of the image. The thermal infrared inset image shows the summit crater activity (white equals hot), and remnant heat in the flows on the flank. Other active volcanoes shown in the image are Acatenango close by to the north, Volcano de Agua in the middle of the image, and Pacaya volcano to the east. The image covers an area of 19 by 31 miles (30 by 49.5 kilometers), and is located at 14.5 degrees north, 90.9 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19297

  1. The Average Hazard Ratio - A Good Effect Measure for Time-to-event Endpoints when the Proportional Hazard Assumption is Violated?

    PubMed

    Rauch, Geraldine; Brannath, Werner; Brückner, Matthias; Kieser, Meinhard

    2018-05-01

    In many clinical trial applications, the endpoint of interest corresponds to a time-to-event endpoint. In this case, group differences are usually expressed by the hazard ratio. Group differences are commonly assessed by the logrank test, which is optimal under the proportional hazard assumption. However, there are many situations in which this assumption is violated. Especially in applications were a full population and several subgroups or a composite time-to-first-event endpoint and several components are considered, the proportional hazard assumption usually does not simultaneously hold true for all test problems under investigation. As an alternative effect measure, Kalbfleisch and Prentice proposed the so-called 'average hazard ratio'. The average hazard ratio is based on a flexible weighting function to modify the influence of time and has a meaningful interpretation even in the case of non-proportional hazards. Despite this favorable property, it is hardly ever used in practice, whereas the standard hazard ratio is commonly reported in clinical trials regardless of whether the proportional hazard assumption holds true or not. There exist two main approaches to construct corresponding estimators and tests for the average hazard ratio where the first relies on weighted Cox regression and the second on a simple plug-in estimator. The aim of this work is to give a systematic comparison of these two approaches and the standard logrank test for different time-toevent settings with proportional and nonproportional hazards and to illustrate the pros and cons in application. We conduct a systematic comparative study based on Monte-Carlo simulations and by a real clinical trial example. Our results suggest that the properties of the average hazard ratio depend on the underlying weighting function. The two approaches to construct estimators and related tests show very similar performance for adequately chosen weights. In general, the average hazard ratio defines a

  2. Urban Heat Wave Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Jedlovec, G.; Crane, D. L.; Meyer, P. J.; LaFontaine, F.

    2016-12-01

    Heat waves are one of the largest causes of environmentally-related deaths globally and are likely to become more numerous as a result of climate change. The intensification of heat waves by the urban heat island effect and elevated humidity, combined with urban demographics, are key elements leading to these disasters. Better warning of the potential hazards may help lower risks associated with heat waves. Moderate resolution thermal data from NASA satellites is used to derive high spatial resolution estimates of apparent temperature (heat index) over urban regions. These data, combined with demographic data, are used to produce a daily heat hazard/risk map for selected cities. MODIS data are used to derive daily composite maximum and minimum land surface temperature (LST) fields to represent the amplitude of the diurnal temperature cycle and identify extreme heat days. Compositing routines are used to generate representative daily maximum and minimum LSTs for the urban environment. The limited effect of relative humidity on the apparent temperature (typically 10-15%) allows for the use of modeled moisture fields to convert LST to apparent temperature without loss of spatial variability. The daily max/min apparent temperature fields are used to identify abnormally extreme heat days relative to climatological values in order to produce a heat wave hazard map. Reference to climatological values normalizes the hazard for a particular region (e.g., the impact of an extreme heat day). A heat wave hazard map has been produced for several case study periods and then computed on a quasi-operational basis during the summer of 2016 for Atlanta, GA, Chicago, IL, St. Louis, MO, and Huntsville, AL. A hazard does not become a risk until someone or something is exposed to that hazard at a level that might do harm. Demographic information is used to assess the urban risk associated with the heat wave hazard. Collectively, the heat wave hazard product can warn people in urban

  3. Probabilistic analysis of tsunami hazards

    USGS Publications Warehouse

    Geist, E.L.; Parsons, T.

    2006-01-01

    Determining the likelihood of a disaster is a key component of any comprehensive hazard assessment. This is particularly true for tsunamis, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models. We discuss probabilistic tsunami hazard analysis (PTHA) from the standpoint of integrating computational methods with empirical analysis of past tsunami runup. PTHA is derived from probabilistic seismic hazard analysis (PSHA), with the main difference being that PTHA must account for far-field sources. The computational methods rely on numerical tsunami propagation models rather than empirical attenuation relationships as in PSHA in determining ground motions. Because a number of source parameters affect local tsunami runup height, PTHA can become complex and computationally intensive. Empirical analysis can function in one of two ways, depending on the length and completeness of the tsunami catalog. For site-specific studies where there is sufficient tsunami runup data available, hazard curves can primarily be derived from empirical analysis, with computational methods used to highlight deficiencies in the tsunami catalog. For region-wide analyses and sites where there are little to no tsunami data, a computationally based method such as Monte Carlo simulation is the primary method to establish tsunami hazards. Two case studies that describe how computational and empirical methods can be integrated are presented for Acapulco, Mexico (site-specific) and the U.S. Pacific Northwest coastline (region-wide analysis).

  4. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... identified food safety hazards, including as appropriate: (i) Critical control points designed to control... control points designed to control food safety hazards introduced outside the processing plant environment... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...

  5. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... identified food safety hazards, including as appropriate: (i) Critical control points designed to control... control points designed to control food safety hazards introduced outside the processing plant environment... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...

  6. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... identified food safety hazards, including as appropriate: (i) Critical control points designed to control... control points designed to control food safety hazards introduced outside the processing plant environment... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...

  7. The rockfall hazard rating system.

    DOT National Transportation Integrated Search

    1991-11-01

    The development and dissemination of the Rockfall Hazard Rating System (RHRS) is complete. RHRS is intended to be a proactive tool that will allow transportation agencies to address rationally their rockfall hazards instead of simply reacting to rock...

  8. Occupational hazards to health of port workers.

    PubMed

    Wang, Yukun; Zhan, Shuifen; Liu, Yan; Li, Yan

    2017-12-01

    The aim of this article is to reduce the risk of occupational hazards and improve safety conditions by enhancing hazard knowledge and identification as well as improving safety behavior for freight port enterprises. In the article, occupational hazards to health and their prevention measures of freight port enterprises have been summarized through a lot of occupational health evaluation work, experience and understanding. Workers of freight port enterprises confront an equally wide variety of chemical, physical and psychological hazards in production technology, production environment and the course of labor. Such health hazards have been identified, the risks evaluated, the dangers to health notified and effective prevention measures which should be put in place to ensure the health of the port workers summarized. There is still a long way to go for the freight port enterprises to prevent and control the occupational hazards. Except for occupational hazards and their prevention measures, other factors that influence the health of port workers should also be paid attention to, such as age, work history, gender, contraindication and even the occurrence and development rules of occupational hazards in current production conditions.

  9. Hydrogen Hazards Assessment Protocol (HHAP): Approach and Methodology

    NASA Technical Reports Server (NTRS)

    Woods, Stephen

    2009-01-01

    This viewgraph presentation reviews the approach and methodology to develop a assessment protocol for hydrogen hazards. Included in the presentation are the reasons to perform hazards assessment, the types of hazard assessments that exist, an analysis of hydrogen hazards, specific information about the Hydrogen Hazards Assessment Protocol (HHAP). The assessment is specifically tailored for hydrogen behavior. The end product of the assesment is a compilation of hazard, mitigations and associated factors to facilitate decision making and achieve the best practice.

  10. Natural Hazards - A National Threat

    USGS Publications Warehouse

    Geological Survey, U.S.

    2007-01-01

    The USGS Role in Reducing Disaster Losses -- In the United States each year, natural hazards cause hundreds of deaths and cost billions of dollars in disaster aid, disruption of commerce, and destruction of homes and critical infrastructure. Although the number of lives lost to natural hazards each year generally has declined, the economic cost of major disaster response and recovery continues to rise. Each decade, property damage from natural hazards events doubles or triples. The United States is second only to Japan in economic damages resulting from natural disasters. A major goal of the U.S. Geological Survey (USGS) is to reduce the vulnerability of the people and areas most at risk from natural hazards. Working with partners throughout all sectors of society, the USGS provides information, products, and knowledge to help build more resilient communities.

  11. A Sensor-Independent Gust Hazard Metric

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    2001-01-01

    A procedure for calculating an intuitive hazard metric for gust effects on airplanes is described. The hazard metric is for use by pilots and is intended to replace subjective pilot reports (PIREPs) of the turbulence level. The hazard metric is composed of three numbers: the first describes the average airplane response to the turbulence, the second describes the positive peak airplane response to the gusts, and the third describes the negative peak airplane response to the gusts. The hazard metric is derived from any time history of vertical gust measurements and is thus independent of the sensor making the gust measurements. The metric is demonstrated for one simulated airplane encountering different types of gusts including those derived from flight data recorder measurements of actual accidents. The simulated airplane responses to the gusts compare favorably with the hazard metric.

  12. HAZARDOUS SUBSTANCES DATA BANK (HSDB)

    EPA Science Inventory

    Hazardous Substances Data Bank (HSDB) is a factual, non-bibliographic data bank focusing upon the toxicology of potentially hazardous chemicals. It is enhanced with data from such related areas as emergency handling procedures, environmental fate, human exposure, detection method...

  13. Phytoremediation of Hazardous Wastes

    DTIC Science & Technology

    1995-07-26

    TITLE AND SUBTITLE Phytoremediation of Hazardous Wastes 6. AUTHOR(S) Steven C. McCutcheon, N. Lee Wolfe, Laura H. Carreria and Tse-Yuan Ou 5... phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses...SUBJECT TERMS phytoremediation , nitroreductase, laccase enzymes, SERDP 15. NUMBER OF PAGES 8 16. PRICE CODE N/A 17. SECURITY CLASSIFICATION OF

  14. K Basin Hazard Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PECH, S.H.

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  15. Geological hazard monitoring system in Georgia

    NASA Astrophysics Data System (ADS)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  16. Sensing Hazards with Operational Unmanned Technology

    NASA Astrophysics Data System (ADS)

    Hood, R. E.

    2016-12-01

    The Unmanned Aircraft Systems (UAS) Program of the National Oceanic and Atmospheric Administration (NOAA) is working with the National Weather Service, the National Ocean Service, other Federal agencies, private industry, and academia to evaluate the feasibility of UAS observations to provide time critical information needed for situational awareness, prediction, warning, and damage assessment of hazards. This activity is managed within a portfolio of projects entitled "Sensing Hazards with Operational Unmanned Technology (SHOUT)." The diversity of this portfolio includes evaluations of high altitude UAS observations for high impact oceanic storms prediction to low altitude UAS observations of rivers, severe storms, and coastal areas for pre-hazard situational awareness and post-hazard damage assessments. Each SHOUT evaluation project begins with a proof-of-concept field demonstration of a UAS observing strategy for a given hazard and then matures to joint studies of both scientific data impact along with cost and operational feasibility of the observing strategy for routine applications. The technology readiness and preliminary evaulation results will be presented for several UAS observing strategies designed for improved observations of oceanic storms, floods, severe storms, and coastal ecosystem hazards.

  17. Workplace hazards to women's reproductive health.

    PubMed

    Rice, Heidi Roeber; Baker, Beth A

    2007-09-01

    Women make up nearly half of Minnesota's workforce. Thus, many women, including those of reproductive age, are exposed to workplace hazards. These hazards may be chemical-toxicants such as heavy metals, pesticides, and endocrine disruptors; physical--the result of activities or proximity to something in the environment; or biological-infectious agents. And they are of growing concern among scientists and the public. Although data on the effect of these hazards on the reproductive health of women is limited, there is evidence indicating they ought to be of concern to women and the physicians who treat them. Clinicians are encouraged to assess women for exposure to workplace hazards and to communicate with them about whether such exposure might increase their risk for problems such as infertility, miscarriage, and preterm birth. This article highlights selected job-related hazards and offers suggestions for caring for working women of reproductive age.

  18. Laboratory Safety and Chemical Hazards.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Toxicology/chemical hazards, safety policy, legal responsibilities, adequacy of ventilation, chemical storage, evaluating experimental hazards, waste disposal, and laws governing chemical safety were among topics discussed in 10 papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). Several topics…

  19. Hazardous Materials Flow by Rail

    DOT National Transportation Integrated Search

    1990-03-01

    The report presents a quantitative overview of the movement of hazardous materials by rail in the United States. The data used is a hazardous materials rail waybill sample developed at TSC from the 1983 Rail Waybill Sample. The report examines (1) th...

  20. Environmental Hazards Education for Childbirth Educators

    PubMed Central

    Ondeck, Michele; Focareta, Judith

    2009-01-01

    The purpose of this article is to educate childbirth educators about environmental hazards and provide resources. Hazardous chemicals have been found in cord blood, placenta, meconium, and breastmilk samples. These chemicals include commonly known hazards such as lead, mercury, and environmental tobacco smoke, as well as some pesticides, solvents, products containing chlorine, and other chemicals referred to as “persistent organic pollutants.” The fetus is particularly vulnerable to environmental chemicals that can disrupt the developmental process at critical times during gestation. Childbirth educators are encouraged to inform themselves in order to inform childbearing families to take preventive action and explore alternative behaviors to reduce exposure to environmental hazards. PMID:20808430

  1. Health and Ecological Hazards Caused by Hazardous Substances

    EPA Pesticide Factsheets

    In some cases, hazardous substances may irritate the skin or eyes, make it difficult to breathe, cause headaches and nausea, result in other types of illness, or far more severe health effects. Toxic effects on the environment can be just as devastating.

  2. Tsunami hazard map in eastern Bali

    NASA Astrophysics Data System (ADS)

    Afif, Haunan; Cipta, Athanasius

    2015-04-01

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.

  3. Tsunami hazard map in eastern Bali

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afif, Haunan, E-mail: afif@vsi.esdm.go.id; Cipta, Athanasius; Australian National University, Canberra

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and backmore » thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.« less

  4. 78 FR 45938 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ...] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or...

  5. Identifying Hazards

    EPA Pesticide Factsheets

    The federal government has established a system of labeling hazardous materials to help identify the type of material and threat posed. Summaries of information on over 300 chemicals are maintained in the Envirofacts Master Chemical Integrator.

  6. 29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23 Labor Regulations Relating to... TERMINALS Marine Terminal Operations § 1917.23 Hazardous atmospheres and substances (see also § 1917.2...

  7. 29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23 Labor Regulations Relating to... TERMINALS Marine Terminal Operations § 1917.23 Hazardous atmospheres and substances (see also § 1917.2...

  8. 29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23 Labor Regulations Relating to... TERMINALS Marine Terminal Operations § 1917.23 Hazardous atmospheres and substances (see also § 1917.2...

  9. 29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23 Labor Regulations Relating to... TERMINALS Marine Terminal Operations § 1917.23 Hazardous atmospheres and substances (see also § 1917.2...

  10. A methodology for physically based rockfall hazard assessment

    NASA Astrophysics Data System (ADS)

    Crosta, G. B.; Agliardi, F.

    Rockfall hazard assessment is not simple to achieve in practice and sound, physically based assessment methodologies are still missing. The mobility of rockfalls implies a more difficult hazard definition with respect to other slope instabilities with minimal runout. Rockfall hazard assessment involves complex definitions for "occurrence probability" and "intensity". This paper is an attempt to evaluate rockfall hazard using the results of 3-D numerical modelling on a topography described by a DEM. Maps portraying the maximum frequency of passages, velocity and height of blocks at each model cell, are easily combined in a GIS in order to produce physically based rockfall hazard maps. Different methods are suggested and discussed for rockfall hazard mapping at a regional and local scale both along linear features or within exposed areas. An objective approach based on three-dimensional matrixes providing both a positional "Rockfall Hazard Index" and a "Rockfall Hazard Vector" is presented. The opportunity of combining different parameters in the 3-D matrixes has been evaluated to better express the relative increase in hazard. Furthermore, the sensitivity of the hazard index with respect to the included variables and their combinations is preliminarily discussed in order to constrain as objective as possible assessment criteria.

  11. Volcanic hazards on the Island of Hawaii

    USGS Publications Warehouse

    Mullineaux, Donal Ray; Peterson, Donald W.

    1974-01-01

    Volcanic hazards on the Island of Hawaii have been determined to be chiefly products of eruptions: lava flows, falling fragments, gases, and particle-and-gas clouds. Falling fragments and particle-and-gas clouds can be substantial hazards to life, but they are relatively rare. Lava flows are the chief hazard to property; they are frequent and cover broad areas. Rupture, subsidence, earthquakes, and sea waves (tsunamis) caused by eruptions are minor hazards; those same events caused by large-scale crustal movements, however, are major hazards to both life and property. Volcanic hazards are greatest on Mauna Loa and Kilauea, and the risk is highest along the rift zones of those volcanoes. The hazards are progressively less severe on Hualalai, Mauna Kea, and Kohala volcanoes. Some risk from earthquakes extends across the entire island, and the risk from tsunamis is high all along the coast. The island has been divided into geographic zones of different relative risk for each volcanic hazard, and for all those hazards combined. Each zone is assigned a relative risk for that area as a whole; the degree of risk varies within the zones, however, and in some of them the risk decreases gradationally across the entire zone. Moreover, the risk in one zone may be locally as great or greater than that at some points in the zone of next higher overall risk. Nevertheless, the zones can be highly useful for land-use planning. Planning decisions to which the report is particularly applicable include the selection of kinds of structures and kinds of land use that are appropriate for the severity and types of hazards present. For example, construction of buildings that can resist a lava flow is generally not feasible, but it is both feasible and desirable to build structures that can resist falling rock fragments, earthquakes, and tsunamis in areas where risk from those hazards is relatively high. The report can also be used to select sites where overall risk is relatively low, to

  12. Hazardous Materials Hazard Analysis, Portland, Oregon.

    DTIC Science & Technology

    1981-06-01

    combustible liquids, primarily petroleum products such as gasoline and fuel oil . Although less prevalent, compressed flammable gases (such as liquid...magnitude when hazardous materials are involved. -- Texas City, Texas, 1947--A ship being loaded with ammonium nitrate exploded, killing 468 people...An overturned gasoline or home heating fuel oil tanker or natural gas leak which does not ignite would be a Level 1 emergency. Level 2: A spill or

  13. Seismic hazard in the Intermountain West

    USGS Publications Warehouse

    Haller, Kathleen; Moschetti, Morgan P.; Mueller, Charles; Rezaeian, Sanaz; Petersen, Mark D.; Zeng, Yuehua

    2015-01-01

    The 2014 national seismic-hazard model for the conterminous United States incorporates new scientific results and important model adjustments. The current model includes updates to the historical catalog, which is spatially smoothed using both fixed-length and adaptive-length smoothing kernels. Fault-source characterization improved by adding faults, revising rates of activity, and incorporating new results from combined inversions of geologic and geodetic data. The update also includes a new suite of published ground motion models. Changes in probabilistic ground motion are generally less than 10% in most of the Intermountain West compared to the prior assessment, and ground-motion hazard in four Intermountain West cities illustrates the range and magnitude of change in the region. Seismic hazard at reference sites in Boise and Reno increased as much as 10%, whereas hazard in Salt Lake City decreased 5–6%. The largest change was in Las Vegas, where hazard increased 32–35%.

  14. EVA Hazards due to TPS Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Stewart, Christine E.

    2007-01-01

    Tile inspection and repair activities have implicit hazards associated with them. When an Extra Vehicular Activities (EVA) crewmember and associated hardware are added into the equation, additional hazards are introduced. Potential hazards to the Extravehicular Mobility Unit (EMU), the Orbiter or the crew member themselves are created. In order to accurately assess the risk of performing a TPS inspection or repair, an accurate evaluation of potential hazards and how adequately these hazards are controlled is essential. The EMU could become damaged due to sharp edges, protrusions, thermal extremes, molten metal or impact with the Orbiter. Tools, tethers and the presence of a crew member in the vicinity of the Orbiter Thermal Protection System (TPS) pose hazards to the Orbiter. Hazards such as additional tile or Reinforced Carbon-Carbon (RCC) damage from a loose tool, safety tethers, crewmember or arm impact are introduced. Additionally, there are hazards to the crew which should be addressed. Crew hazards include laser injury, electrical shock, inability to return to the airlock for EMU failures or Orbiter rapid safing scenarios, as well as the potential inadvertent release of a crew member from the arm/boom. The aforementioned hazards are controlled in various ways. Generally, these controls are addressed operationally versus by design, as the majority of the interfaces are to the Orbiter and the Orbiter design did not originally account for tile repair. The Shuttle Remote Manipulator System (SRMS), for instance, was originally designed to deploy experiments, and therefore has insufficient design controls for retention of the Orbiter Boom Sensor System (OBSS). Although multiple methods to repair the Orbiter TPS exist, the majority of the hazards are applicable no matter which specific repair method is being performed. TPS Inspection performed via EVA also presents some of the same hazards. Therefore, the hazards common to all TPS inspection or repair methods will

  15. Hazard ranking systems for chemical wastes and chemical waste sites. Hazardous waste ranking systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be theirmore » ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.« less

  16. 78 FR 14584 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ...; Internal Agency Docket No. FEMA-B-1296] Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the Flood...

  17. 48 CFR 252.223-7001 - Hazard warning labels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...

  18. 48 CFR 252.223-7001 - Hazard warning labels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...

  19. 48 CFR 252.223-7001 - Hazard warning labels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...

  20. 48 CFR 252.223-7001 - Hazard warning labels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...

  1. 48 CFR 252.223-7001 - Hazard warning labels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Hazardous Material Identification and Material Safety Data clause of this contract. (b) The Contractor shall label the item package (unit container) of any hazardous material to be delivered under this contract in... which hazardous material listed in the Hazardous Material Identification and Material Safety Data clause...

  2. Hydrotreater/Distillation Column Hazard Analysis Report Rev. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Peter P.; Wagner, Katie A.

    This project Hazard and Risk Analysis Report contains the results of several hazard analyses and risk assessments. An initial assessment was conducted in 2012, which included a multi-step approach ranging from design reviews to a formal What-If hazard analysis. A second What-If hazard analysis was completed during February 2013 to evaluate the operation of the hydrotreater/distillation column processes to be installed in a process enclosure within the Process Development Laboratory West (PDL-West) facility located on the PNNL campus. The qualitative analysis included participation of project and operations personnel and applicable subject matter experts. The analysis identified potential hazardous scenarios, eachmore » based on an initiating event coupled with a postulated upset condition. The unmitigated consequences of each hazardous scenario were generally characterized as a process upset; the exposure of personnel to steam, vapors or hazardous material; a spray or spill of hazardous material; the creation of a flammable atmosphere; or an energetic release from a pressure boundary.« less

  3. Coastal Hazards.

    ERIC Educational Resources Information Center

    Vandas, Steve

    1998-01-01

    Focuses on hurricanes and tsunamis and uses these topics to address other parts of the science curriculum. In addition to a discussion on beach erosion, a poster is provided that depicts these natural hazards that threaten coastlines. (DDR)

  4. 46 CFR 71.25-45 - Fire hazards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Fire hazards. 71.25-45 Section 71.25-45 Shipping COAST... Inspection § 71.25-45 Fire hazards. (a) At each annual inspection, the inspector shall examine the tank tons... fire hazard. (b) [Reserved] ...

  5. Countermeasures to Hazardous Chemicals,

    DTIC Science & Technology

    1989-04-01

    Chemical Engineers (AIChE), 3. Hazardous Materials Advisery, Council (HMAC), (not the same as the Memphis/Shelby County HMAC), 4. American Petroleum...retired chemical engineers , will volunteer to avos t the I wcal communities in their pl. ining efforts. S1i !NSTITrTE OF HAZARDOUS MATERIALS MANAGEMENT The... chemicals may be considered to be a man-made wind. Such large gas volumes can be produced by blowcr equipment incorporating surplus jet engines . Such blowers

  6. Michigan Household Hazardous Substance Handbook.

    ERIC Educational Resources Information Center

    Senior, Janet; Stone Nancy

    Common household hazardous substances include cleansers, drain cleaners, automotive products, paints, solvents, and pesticides. This handbook was designed to serve as a resource for people frequently contacted by the public for information on household hazardous substances and wastes. Included in the handbook are: (1) an introduction to Michigan's…

  7. Washington Tsunami Hazard Mitigation Program

    NASA Astrophysics Data System (ADS)

    Walsh, T. J.; Schelling, J.

    2012-12-01

    Washington State has participated in the National Tsunami Hazard Mitigation Program (NTHMP) since its inception in 1995. We have participated in the tsunami inundation hazard mapping, evacuation planning, education, and outreach efforts that generally characterize the NTHMP efforts. We have also investigated hazards of significant interest to the Pacific Northwest. The hazard from locally generated earthquakes on the Cascadia subduction zone, which threatens tsunami inundation in less than hour following a magnitude 9 earthquake, creates special problems for low-lying accretionary shoreforms in Washington, such as the spits of Long Beach and Ocean Shores, where high ground is not accessible within the limited time available for evacuation. To ameliorate this problem, we convened a panel of the Applied Technology Council to develop guidelines for construction of facilities for vertical evacuation from tsunamis, published as FEMA 646, now incorporated in the International Building Code as Appendix M. We followed this with a program called Project Safe Haven (http://www.facebook.com/ProjectSafeHaven) to site such facilities along the Washington coast in appropriate locations and appropriate designs to blend with the local communities, as chosen by the citizens. This has now been completed for the entire outer coast of Washington. In conjunction with this effort, we have evaluated the potential for earthquake-induced ground failures in and near tsunami hazard zones to help develop cost estimates for these structures and to establish appropriate tsunami evacuation routes and evacuation assembly areas that are likely to to be available after a major subduction zone earthquake. We intend to continue these geotechnical evaluations for all tsunami hazard zones in Washington.

  8. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY...

  9. 24 CFR 3285.406 - Flood hazard areas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Flood hazard areas. 3285.406... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Anchorage Against Wind § 3285.406 Flood hazard areas. Refer to § 3285.302 for anchoring requirements in flood hazard areas. ...

  10. 49 CFR 393.19 - Hazard warning signals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Hazard warning signals. 393.19 Section 393.19... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.19 Hazard warning signals. The hazard warning signal operating unit on each commercial motor vehicle shall operate...

  11. 49 CFR 393.19 - Hazard warning signals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Hazard warning signals. 393.19 Section 393.19... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.19 Hazard warning signals. The hazard warning signal operating unit on each commercial motor vehicle shall operate...

  12. 49 CFR 393.19 - Hazard warning signals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Hazard warning signals. 393.19 Section 393.19... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.19 Hazard warning signals. The hazard warning signal operating unit on each commercial motor vehicle shall operate...

  13. 49 CFR 393.19 - Hazard warning signals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Hazard warning signals. 393.19 Section 393.19... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.19 Hazard warning signals. The hazard warning signal operating unit on each commercial motor vehicle shall operate...

  14. 49 CFR 393.19 - Hazard warning signals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Hazard warning signals. 393.19 Section 393.19... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.19 Hazard warning signals. The hazard warning signal operating unit on each commercial motor vehicle shall operate...

  15. Energy and solid/hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  16. 49 CFR 659.31 - Hazard management process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., operational changes, or other changes within the rail transit environment. (b) The hazard management process must, at a minimum: (1) Define the rail transit agency's approach to hazard management and the... Agency § 659.31 Hazard management process. (a) The oversight agency must require the rail transit agency...

  17. 49 CFR 659.31 - Hazard management process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., operational changes, or other changes within the rail transit environment. (b) The hazard management process must, at a minimum: (1) Define the rail transit agency's approach to hazard management and the... Agency § 659.31 Hazard management process. (a) The oversight agency must require the rail transit agency...

  18. 14 CFR 139.337 - Wildlife hazard management.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Wildlife hazard management. 139.337 Section... AIRPORTS Operations § 139.337 Wildlife hazard management. (a) In accordance with its Airport Certification... alleviate wildlife hazards whenever they are detected. (b) In a manner authorized by the Administrator, each...

  19. 14 CFR 139.337 - Wildlife hazard management.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Wildlife hazard management. 139.337 Section... AIRPORTS Operations § 139.337 Wildlife hazard management. (a) In accordance with its Airport Certification... alleviate wildlife hazards whenever they are detected. (b) In a manner authorized by the Administrator, each...

  20. 14 CFR 139.337 - Wildlife hazard management.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Wildlife hazard management. 139.337 Section... AIRPORTS Operations § 139.337 Wildlife hazard management. (a) In accordance with its Airport Certification... alleviate wildlife hazards whenever they are detected. (b) In a manner authorized by the Administrator, each...

  1. 14 CFR 139.337 - Wildlife hazard management.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Wildlife hazard management. 139.337 Section... AIRPORTS Operations § 139.337 Wildlife hazard management. (a) In accordance with its Airport Certification... alleviate wildlife hazards whenever they are detected. (b) In a manner authorized by the Administrator, each...

  2. 14 CFR 139.337 - Wildlife hazard management.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Wildlife hazard management. 139.337 Section... AIRPORTS Operations § 139.337 Wildlife hazard management. (a) In accordance with its Airport Certification... alleviate wildlife hazards whenever they are detected. (b) In a manner authorized by the Administrator, each...

  3. Land Disposal Restrictions for Hazardous Waste

    EPA Pesticide Factsheets

    The land disposal restrictions prohibits the land disposal of untreated hazardous wastes. EPA has specified either concentration levels or methods of treatment for hazardous constituents to meet before land disposal.

  4. Modeling and Hazard Analysis Using STPA

    NASA Astrophysics Data System (ADS)

    Ishimatsu, Takuto; Leveson, Nancy; Thomas, John; Katahira, Masa; Miyamoto, Yuko; Nakao, Haruka

    2010-09-01

    A joint research project between MIT and JAXA/JAMSS is investigating the application of a new hazard analysis to the system and software in the HTV. Traditional hazard analysis focuses on component failures but software does not fail in this way. Software most often contributes to accidents by commanding the spacecraft into an unsafe state(e.g., turning off the descent engines prematurely) or by not issuing required commands. That makes the standard hazard analysis techniques of limited usefulness on software-intensive systems, which describes most spacecraft built today. STPA is a new hazard analysis technique based on systems theory rather than reliability theory. It treats safety as a control problem rather than a failure problem. The goal of STPA, which is to create a set of scenarios that can lead to a hazard, is the same as FTA but STPA includes a broader set of potential scenarios including those in which no failures occur but the problems arise due to unsafe and unintended interactions among the system components. STPA also provides more guidance to the analysts that traditional fault tree analysis. Functional control diagrams are used to guide the analysis. In addition, JAXA uses a model-based system engineering development environment(created originally by Leveson and called SpecTRM) which also assists in the hazard analysis. One of the advantages of STPA is that it can be applied early in the system engineering and development process in a safety-driven design process where hazard analysis drives the design decisions rather than waiting until reviews identify problems that are then costly or difficult to fix. It can also be applied in an after-the-fact analysis and hazard assessment, which is what we did in this case study. This paper describes the experimental application of STPA to the JAXA HTV in order to determine the feasibility and usefulness of the new hazard analysis technique. Because the HTV was originally developed using fault tree analysis

  5. Seismic hazard assessment of the Province of Murcia (SE Spain): analysis of source contribution to hazard

    NASA Astrophysics Data System (ADS)

    García-Mayordomo, J.; Gaspar-Escribano, J. M.; Benito, B.

    2007-10-01

    A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA( T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA( T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.

  6. A Probabilistic Tsunami Hazard Study of the Auckland Region, Part II: Inundation Modelling and Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Lane, E. M.; Gillibrand, P. A.; Wang, X.; Power, W.

    2013-09-01

    Regional source tsunamis pose a potentially devastating hazard to communities and infrastructure on the New Zealand coast. But major events are very uncommon. This dichotomy of infrequent but potentially devastating hazards makes realistic assessment of the risk challenging. Here, we describe a method to determine a probabilistic assessment of the tsunami hazard by regional source tsunamis with an "Average Recurrence Interval" of 2,500-years. The method is applied to the east Auckland region of New Zealand. From an assessment of potential regional tsunamigenic events over 100,000 years, the inundation of the Auckland region from the worst 100 events is modelled using a hydrodynamic model and probabilistic inundation depths on a 2,500-year time scale were determined. Tidal effects on the potential inundation were included by coupling the predicted wave heights with the probability density function of tidal heights at the inundation site. Results show that the more exposed northern section of the east coast and outer islands in the Hauraki Gulf face the greatest hazard from regional tsunamis in the Auckland region. Incorporating tidal effects into predictions of inundation reduced the predicted hazard compared to modelling all the tsunamis arriving at high tide giving a more accurate hazard assessment on the specified time scale. This study presents the first probabilistic analysis of dynamic modelling of tsunami inundation for the New Zealand coast and as such provides the most comprehensive assessment of tsunami inundation of the Auckland region from regional source tsunamis available to date.

  7. Robots, systems, and methods for hazard evaluation and visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximatemore » the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.« less

  8. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOEpatents

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1998-04-28

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

  9. Hazardous fluid leak detector

    DOEpatents

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  10. Moral Hazard in Pediatrics.

    PubMed

    Brunnquell, Donald; Michaelson, Christopher M

    2016-07-01

    "Moral hazard" is a term familiar in economics and business ethics that illuminates why rational parties sometimes choose decisions with bad moral outcomes without necessarily intending to behave selfishly or immorally. The term is not generally used in medical ethics. Decision makers such as parents and physicians generally do not use the concept or the word in evaluating ethical dilemmas. They may not even be aware of the precise nature of the moral hazard problem they are experiencing, beyond a general concern for the patient's seemingly excessive burden. This article brings the language and logic of moral hazard to pediatrics. The concept reminds us that decision makers in this context are often not the primary party affected by their decisions. It appraises the full scope of risk at issue when decision makers decide on behalf of others and leads us to separate, respect, and prioritize the interests of affected parties.

  11. Hazardous Waste and You. A Teacher's Guide.

    ERIC Educational Resources Information Center

    Ontario Waste Management Corp., Toronto.

    This teaching guide provides an interactive introduction to hazardous waste, with particular emphasis on personal responsibility and action. Nine lessons engage advanced grade 10 and grade 11-12 science students in group discussions and actions that help them develop awareness of hazardous waste, understanding of the hazardous waste situation in…

  12. 49 CFR 659.31 - Hazard management process.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Hazard management process. 659.31 Section 659.31... Agency § 659.31 Hazard management process. (a) The oversight agency must require the rail transit agency..., operational changes, or other changes within the rail transit environment. (b) The hazard management process...

  13. 49 CFR 659.31 - Hazard management process.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Hazard management process. 659.31 Section 659.31... Agency § 659.31 Hazard management process. (a) The oversight agency must require the rail transit agency..., operational changes, or other changes within the rail transit environment. (b) The hazard management process...

  14. 49 CFR 659.31 - Hazard management process.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Hazard management process. 659.31 Section 659.31... Agency § 659.31 Hazard management process. (a) The oversight agency must require the rail transit agency..., operational changes, or other changes within the rail transit environment. (b) The hazard management process...

  15. [Hazardous materials and work safety in veterinary practice. 1: Hazardous material definition and characterization, practice documentation and general rules for handling].

    PubMed

    Sliwinski-Korell, A; Lutz, F

    1998-04-01

    In the last years the standards for professional handling of hazardous material as well as health and safety in the veterinary practice became considerably more stringent. This is expressed in various safety regulations, particularly the decree of hazardous material and the legislative directives concerning health and safety at work. In part 1, a definition based on the law for hazardous material is given and the potential risks are mentioned. The correct documentation regarding the protection of the purchase, storage, working conditions and removal of hazardous material and of the personal is explained. General rules for the handling of hazardous material are described. In part 2, particular emphasis is put on the handling of flammable liquids, disinfectants, cytostatica, pressurised gas, liquid nitrogen, narcotics, mailing of potentially infectious material and safe disposal of hazardous waste. Advice about possible unrecognized hazards and references is also given.

  16. Lunar mission safety and rescue: Hazards analysis and safety requirements

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented of the hazards analysis which was concerned only with hazards to personnel and not with loss of equipment or property. Hazards characterization includes the definition of a hazard, the hazard levels, and the hazard groups. The analysis methodology is described in detail. The methodology was used to prepare the top level functional flow diagrams, to perform the first level hazards assessment, and to develop a list of conditions and situations requiring individual hazard studies. The 39 individual hazard study results are presented in total.

  17. 32 CFR 643.31 - Policy-Flood hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Policy-Flood hazards. 643.31 Section 643.31... ESTATE Policy § 643.31 Policy—Flood hazards. Each Determination of Availability Report will include an evaluation of the flood hazards, if any, relative to the property involved in the proposed outgrant action...

  18. Hazard perception in emergency medical service responders.

    PubMed

    Johnston, K A; Scialfa, C T

    2016-10-01

    The perception of on-road hazards is critically important to emergency medical services (EMS) professionals, the patients they transport and the general public. This study compared hazard perception in EMS and civilian drivers of similar age and personal driving experience. Twenty-nine EMS professionals and 24 non-professional drivers were given a dynamic hazard perception test (HPT). The EMS group demonstrated an advantage in HPT that was independent of simple reaction time, another indication of the validity of the test. These results are also consistent with the view that professional driving experience results in changes in the ability to identify and respond to on-road hazards. Directions for future research include the development of a profession-specific hazard perception tool for both assessment and training purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Occupational health hazards of mine workers*

    PubMed Central

    Cho, K. S.; Lee, S. H.

    1978-01-01

    Mining has always been among the most hazardous of occupations, and with the increasing demand for coal and minerals safety in mines assumes even greater importance. This article describes the present situation with regard to conditions in mines, the diseases and disabilities resulting from them, and measures that can be taken to prevent or treat them. The hazards covered are: accidents, dust (including poisoning by certain ores), high temperature and humidity, noise and vibration, toxic gases, and miscellaneous other hazards. PMID:307452

  20. A~probabilistic tsunami hazard assessment for Indonesia

    NASA Astrophysics Data System (ADS)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-05-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence based decision making on risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean Tsunami, but this has been largely concentrated on the Sunda Arc, with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent Probabilistic Tsunami Hazard Assessment (PTHA) for Indonesia. This assessment produces time independent forecasts of tsunami hazard at the coast from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte-carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and through sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting larger maximum magnitudes along the Sunda Arc. The annual probability of experiencing a tsunami with a height at the coast of > 0.5 m is greater than 10% for Sumatra, Java, the Sunda Islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of >3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  1. A probabilistic tsunami hazard assessment for Indonesia

    NASA Astrophysics Data System (ADS)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-11-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  2. Landslide and Land Subsidence Hazards to Pipelines

    USGS Publications Warehouse

    Baum, Rex L.; Galloway, Devin L.; Harp, Edwin L.

    2008-01-01

    Landslides and land subsidence pose serious hazards to pipelines throughout the world. Many existing pipeline corridors and more and more new pipelines cross terrain that is affected by either landslides, land subsidence, or both. Consequently the pipeline industry recognizes a need for increased awareness of methods for identifying and evaluating landslide and subsidence hazard for pipeline corridors. This report was prepared in cooperation with the U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration, and Pipeline Research Council International through a cooperative research and development agreement (CRADA) with DGH Consulting, Inc., to address the need for up-to-date information about current methods to identify and assess these hazards. Chapters in this report (1) describe methods for evaluating landslide hazard on a regional basis, (2) describe the various types of land subsidence hazard in the United States and available methods for identifying and quantifying subsidence, and (3) summarize current methods for investigating individual landslides. In addition to the descriptions, this report provides information about the relative costs, limitations and reliability of various methods.

  3. Agent-based simulation for human-induced hazard analysis.

    PubMed

    Bulleit, William M; Drewek, Matthew W

    2011-02-01

    Terrorism could be treated as a hazard for design purposes. For instance, the terrorist hazard could be analyzed in a manner similar to the way that seismic hazard is handled. No matter how terrorism is dealt with in the design of systems, the need for predictions of the frequency and magnitude of the hazard will be required. And, if the human-induced hazard is to be designed for in a manner analogous to natural hazards, then the predictions should be probabilistic in nature. The model described in this article is a prototype model that used agent-based modeling (ABM) to analyze terrorist attacks. The basic approach in this article of using ABM to model human-induced hazards has been preliminarily validated in the sense that the attack magnitudes seem to be power-law distributed and attacks occur mostly in regions where high levels of wealth pass through, such as transit routes and markets. The model developed in this study indicates that ABM is a viable approach to modeling socioeconomic-based infrastructure systems for engineering design to deal with human-induced hazards. © 2010 Society for Risk Analysis.

  4. Hazardous factories: Nigerian evidence.

    PubMed

    Oloyede, Olajide

    2005-06-01

    The past 15 years have seen an increasing governmental and corporate concern for the environment worldwide. For governments, information about the environmental performance of the industrial sector is required to inform macro-level decisions about environmental targets such as those required to meet UN directives. However, in many African, Asian, and Latin American countries, researching and reporting company environmental performance is limited. This article serves as a contribution to filling the gap by presenting evidence of physical and chemical risk in Nigerian factories. One hundred and three factories with a total of 5,021 workers were studied. One hundred and twenty physical and chemical hazards were identified and the result shows a high number of workers exposed to such hazards. The study also reveals that workers' awareness level of chemical hazards was high. Yet the danger was perceived in behavioral terms, especially by manufacturing firms, which tend to see environmental investment in an increasingly global economy as detrimental to profitability.

  5. 46 CFR 91.25-45 - Fire hazards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire hazards. 91.25-45 Section 91.25-45 Shipping COAST... CERTIFICATION Inspection for Certification § 91.25-45 Fire hazards. (a) At each inspection for certification and... that there is no accumulation of oil which might create a fire hazard. [CGFR 65-50, 30 FR 16974, Dec...

  6. 46 CFR 189.25-45 - Fire hazards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire hazards. 189.25-45 Section 189.25-45 Shipping COAST... CERTIFICATION Inspection for Certification § 189.25-45 Fire hazards. At each inspection for certification and... that there is no accumulation of oil which might create a fire hazard. [CGFR 67-83, 33 FR 1118, Jan. 27...

  7. Multi scenario seismic hazard assessment for Egypt

    NASA Astrophysics Data System (ADS)

    Mostafa, Shaimaa Ismail; Abd el-aal, Abd el-aziz Khairy; El-Eraki, Mohamed Ahmed

    2018-01-01

    Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.

  8. Multi scenario seismic hazard assessment for Egypt

    NASA Astrophysics Data System (ADS)

    Mostafa, Shaimaa Ismail; Abd el-aal, Abd el-aziz Khairy; El-Eraki, Mohamed Ahmed

    2018-05-01

    Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.

  9. Rockfall Hazard Process Assessment : [Project Summary

    DOT National Transportation Integrated Search

    2017-10-01

    The Montana Department of Transportation (MDT) implemented its Rockfall Hazard Rating System (RHRS) between 2003 and 2005, obtaining information on the state's rock slopes and their associated hazards. The RHRS data facilitated decision-making in an ...

  10. Previous Federal Agency Hazardous Waste Compliance Docket Updates

    EPA Pesticide Factsheets

    The Federal Agency Hazardous Waste Compliance Docket contains information reported to EPA by federal facilities that manage hazardous waste or from which hazardous substances, pollutants, or contaminants have been - or may be - released.

  11. Guide to Geologic Hazards in Alaska | Alaska Division of Geological &

    Science.gov Websites

    content Guide to Geologic Hazards in Alaska Glossary Coastal and river hazards image Coastal and river Storm surge Tsunami Earthquake related hazards image Earthquake related hazards Earthquake Earthquake Subsidence Surface fault rupture Tsunami Uplift Glacier hazards image Glacier hazards Avalanche Debris flow

  12. Validation of a heteroscedastic hazards regression model.

    PubMed

    Wu, Hong-Dar Isaac; Hsieh, Fushing; Chen, Chen-Hsin

    2002-03-01

    A Cox-type regression model accommodating heteroscedasticity, with a power factor of the baseline cumulative hazard, is investigated for analyzing data with crossing hazards behavior. Since the approach of partial likelihood cannot eliminate the baseline hazard, an overidentified estimating equation (OEE) approach is introduced in the estimation procedure. It by-product, a model checking statistic, is presented to test for the overall adequacy of the heteroscedastic model. Further, under the heteroscedastic model setting, we propose two statistics to test the proportional hazards assumption. Implementation of this model is illustrated in a data analysis of a cancer clinical trial.

  13. Flood Hazard Mapping by Applying Fuzzy TOPSIS Method

    NASA Astrophysics Data System (ADS)

    Han, K. Y.; Lee, J. Y.; Keum, H.; Kim, B. J.; Kim, T. H.

    2017-12-01

    There are lots of technical methods to integrate various factors for flood hazard mapping. The purpose of this study is to suggest the methodology of integrated flood hazard mapping using MCDM(Multi Criteria Decision Making). MCDM problems involve a set of alternatives that are evaluated on the basis of conflicting and incommensurate criteria. In this study, to apply MCDM to assessing flood risk, maximum flood depth, maximum velocity, and maximum travel time are considered as criterion, and each applied elements are considered as alternatives. The scheme to find the efficient alternative closest to a ideal value is appropriate way to assess flood risk of a lot of element units(alternatives) based on various flood indices. Therefore, TOPSIS which is most commonly used MCDM scheme is adopted to create flood hazard map. The indices for flood hazard mapping(maximum flood depth, maximum velocity, and maximum travel time) have uncertainty concerning simulation results due to various values according to flood scenario and topographical condition. These kind of ambiguity of indices can cause uncertainty of flood hazard map. To consider ambiguity and uncertainty of criterion, fuzzy logic is introduced which is able to handle ambiguous expression. In this paper, we made Flood Hazard Map according to levee breach overflow using the Fuzzy TOPSIS Technique. We confirmed the areas where the highest grade of hazard was recorded through the drawn-up integrated flood hazard map, and then produced flood hazard map can be compared them with those indicated in the existing flood risk maps. Also, we expect that if we can apply the flood hazard map methodology suggested in this paper even to manufacturing the current flood risk maps, we will be able to make a new flood hazard map to even consider the priorities for hazard areas, including more varied and important information than ever before. Keywords : Flood hazard map; levee break analysis; 2D analysis; MCDM; Fuzzy TOPSIS

  14. Audits of hazardous waste TSDFs let generators sleep easy. [Hazardous waste treatment, storage and disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, F.H.

    1990-02-01

    Because of the increasingly strict enforcement of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA), generators of hazardous waste are compelled to investigate the hazardous waste treatment, storage and disposal facility (TSDF) they use. This investigation must include an environmental and a financial audit. Simple audits may be performed by the hazardous waste generator, while more thorough ones such as those performed for groups of generators are more likely to be conducted by environmental consultants familiar with treatment, storage, and disposal techniques and the regulatory framework that guides them.

  15. Space vehicle propulsion systems: Environmental space hazards

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Bahr, G. K.

    1990-01-01

    The hazards that exist in geolunar space which may degrade, disrupt, or terminate the performance of space-based LOX/LH2 rocket engines are evaluated. Accordingly, a summary of the open literature pertaining to the geolunar space hazards is provided. Approximately 350 citations and about 200 documents and abstracts were reviewed; the documents selected give current and quantitative detail. The methodology was to categorize the various space hazards in relation to their importance in specified regions of geolunar space. Additionally, the effect of the various space hazards in relation to spacecraft and their systems were investigated. It was found that further investigation of the literature would be required to assess the effects of these hazards on propulsion systems per se; in particular, possible degrading effects on exterior nozzle structure, directional gimbals, and internal combustion chamber integrity and geometry.

  16. Increasing resiliency to natural hazards - A strategic plan for the Multi-Hazards Demonstration Project in Southern California

    USGS Publications Warehouse

    Jones, Lucy; Bernknopf, Richard; Cannon, Susan; Cox, Dale A.; Gaydos, Len; Keeley, Jon; Kohler, Monica; Lee, Homa; Ponti, Daniel; Ross, Stephanie L.; Schwarzbach, Steven; Shulters, Michael; Ward, A. Wesley; Wein, Anne

    2007-01-01

    The U.S. Geological Survey (USGS) is initiating a new project designed to improve resiliency to natural hazards in southern California through the application of science to community decision making and emergency response. The Multi-Hazards Demonstration Project will assist the region’s communities to reduce their risk from natural hazards by directing new and existing research towards the community’s needs, improving monitoring technology, producing innovative products, and improving dissemination of the results. The natural hazards to be investigated in this project include coastal erosion, earthquakes, floods, landslides, tsunamis, and wildfires.Americans are more at risk from natural hazards now than at any other time in our Nation’s history. Southern California, in particular, has one of the Nation’s highest potentials for extreme catastrophic losses due to natural hazards, with estimates of expected losses exceeding $3 billion per year. These losses can only be reduced through the decisions of the southern California community itself. To be effective, these decisions must be guided by the best information about hazards, risk, and the cost-effectiveness of mitigation technologies. The USGS will work with collaborators to set the direction of the research and to create multi-hazard risk frameworks where communities can apply the results of scientific research to their decision-making processes. Partners include state, county, city, and public-lands government agencies, public and private utilities, companies with a significant impact and presence in southern California, academic researchers, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), and local emergency response agencies.Prior to the writing of this strategic plan document, three strategic planning workshops were held in February and March 2006 at the USGS office in Pasadena to explore potential relationships. The goal of these planning

  17. Updated Colombian Seismic Hazard Map

    NASA Astrophysics Data System (ADS)

    Eraso, J.; Arcila, M.; Romero, J.; Dimate, C.; Bermúdez, M. L.; Alvarado, C.

    2013-05-01

    The Colombian seismic hazard map used by the National Building Code (NSR-98) in effect until 2009 was developed in 1996. Since then, the National Seismological Network of Colombia has improved in both coverage and technology providing fifteen years of additional seismic records. These improvements have allowed a better understanding of the regional geology and tectonics which in addition to the seismic activity in Colombia with destructive effects has motivated the interest and the need to develop a new seismic hazard assessment in this country. Taking advantage of new instrumental information sources such as new broad band stations of the National Seismological Network, new historical seismicity data, standardized global databases availability, and in general, of advances in models and techniques, a new Colombian seismic hazard map was developed. A PSHA model was applied. The use of the PSHA model is because it incorporates the effects of all seismic sources that may affect a particular site solving the uncertainties caused by the parameters and assumptions defined in this kind of studies. First, the seismic sources geometry and a complete and homogeneous seismic catalog were defined; the parameters of seismic rate of each one of the seismic sources occurrence were calculated establishing a national seismotectonic model. Several of attenuation-distance relationships were selected depending on the type of seismicity considered. The seismic hazard was estimated using the CRISIS2007 software created by the Engineering Institute of the Universidad Nacional Autónoma de México -UNAM (National Autonomous University of Mexico). A uniformly spaced grid each 0.1° was used to calculate the peak ground acceleration (PGA) and response spectral values at 0.1, 0.2, 0.3, 0.5, 0.75, 1, 1.5, 2, 2.5 and 3.0 seconds with return periods of 75, 225, 475, 975 and 2475 years. For each site, a uniform hazard spectrum and exceedance rate curves were calculated. With the results, it is

  18. Landslide hazard assessment: recent trends and techniques.

    PubMed

    Pardeshi, Sudhakar D; Autade, Sumant E; Pardeshi, Suchitra S

    2013-01-01

    Landslide hazard assessment is an important step towards landslide hazard and risk management. There are several methods of Landslide Hazard Zonation (LHZ) viz. heuristic, semi quantitative, quantitative, probabilistic and multi-criteria decision making process. However, no one method is accepted universally for effective assessment of landslide hazards. In recent years, several attempts have been made to apply different methods of LHZ and to compare results in order to find the best suited model. This paper presents the review of researches on landslide hazard mapping published in recent years. The advanced multivariate techniques are proved to be effective in spatial prediction of landslides with high degree of accuracy. Physical process based models also perform well in LHZ mapping even in the areas with poor database. Multi-criteria decision making approach also play significant role in determining relative importance of landslide causative factors in slope instability process. Remote Sensing and Geographical Information System (GIS) are powerful tools to assess landslide hazards and are being used extensively in landslide researches since last decade. Aerial photographs and high resolution satellite data are useful in detection, mapping and monitoring landslide processes. GIS based LHZ models helps not only to map and monitor landslides but also to predict future slope failures. The advancements in Geo-spatial technologies have opened the doors for detailed and accurate assessment of landslide hazards.

  19. Deterministic seismic hazard macrozonation of India

    NASA Astrophysics Data System (ADS)

    Kolathayar, Sreevalsa; Sitharam, T. G.; Vipin, K. S.

    2012-10-01

    Earthquakes are known to have occurred in Indian subcontinent from ancient times. This paper presents the results of seismic hazard analysis of India (6°-38°N and 68°-98°E) based on the deterministic approach using latest seismicity data (up to 2010). The hazard analysis was done using two different source models (linear sources and point sources) and 12 well recognized attenuation relations considering varied tectonic provinces in the region. The earthquake data obtained from different sources were homogenized and declustered and a total of 27,146 earthquakes of moment magnitude 4 and above were listed in the study area. The sesismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones which are associated with earthquakes of magnitude 4 and above. A new program was developed in MATLAB for smoothing of the point sources. For assessing the seismic hazard, the study area was divided into small grids of size 0.1° × 0.1° (approximately 10 × 10 km), and the hazard parameters were calculated at the center of each of these grid cells by considering all the seismic sources within a radius of 300 to 400 km. Rock level peak horizontal acceleration (PHA) and spectral accelerations for periods 0.1 and 1 s have been calculated for all the grid points with a deterministic approach using a code written in MATLAB. Epistemic uncertainty in hazard definition has been tackled within a logic-tree framework considering two types of sources and three attenuation models for each grid point. The hazard evaluation without logic tree approach also has been done for comparison of the results. The contour maps showing the spatial variation of hazard values are presented in the paper.

  20. Prediction and perception of hazards in professional drivers: Does hazard perception skill differ between safe and less-safe fire-appliance drivers?

    PubMed

    Crundall, David; Kroll, Victoria

    2018-05-18

    Can hazard perception testing be useful for the emergency services? Previous research has found emergency response drivers' (ERDs) to perform better than controls, however these studies used clips of normal driving. In contrast, the current study filmed footage from a fire-appliance on blue-light training runs through Nottinghamshire, and endeavoured to discriminate between different groups of EDRs based on experience and collision risk. Thirty clips were selected to create two variants of the hazard perception test: a traditional push-button test requiring speeded-responses to hazards, and a prediction test that occludes at hazard onset and provides four possible outcomes for participants to choose between. Three groups of fire-appliance drivers (novices, low-risk experienced and high-risk experienced), and age-matched controls undertook both tests. The hazard perception test only discriminated between controls and all FA drivers, whereas the hazard prediction test was more sensitive, discriminating between high and low-risk experienced fire appliance drivers. Eye movement analyses suggest that the low-risk drivers were better at prioritising the hazardous precursors, leading to better predictive accuracy. These results pave the way for future assessment and training tools to supplement emergency response driver training, while supporting the growing literature that identifies hazard prediction as a more robust measure of driver safety than traditional hazard perception tests. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Probabilistic Seismic Hazard Maps for Ecuador

    NASA Astrophysics Data System (ADS)

    Mariniere, J.; Beauval, C.; Yepes, H. A.; Laurence, A.; Nocquet, J. M.; Alvarado, A. P.; Baize, S.; Aguilar, J.; Singaucho, J. C.; Jomard, H.

    2017-12-01

    A probabilistic seismic hazard study is led for Ecuador, a country facing a high seismic hazard, both from megathrust subduction earthquakes and shallow crustal moderate to large earthquakes. Building on the knowledge produced in the last years in historical seismicity, earthquake catalogs, active tectonics, geodynamics, and geodesy, several alternative earthquake recurrence models are developed. An area source model is first proposed, based on the seismogenic crustal and inslab sources defined in Yepes et al. (2016). A slightly different segmentation is proposed for the subduction interface, with respect to Yepes et al. (2016). Three earthquake catalogs are used to account for the numerous uncertainties in the modeling of frequency-magnitude distributions. The hazard maps obtained highlight several source zones enclosing fault systems that exhibit low seismic activity, not representative of the geological and/or geodetical slip rates. Consequently, a fault model is derived, including faults with an earthquake recurrence model inferred from geological and/or geodetical slip rate estimates. The geodetical slip rates on the set of simplified faults are estimated from a GPS horizontal velocity field (Nocquet et al. 2014). Assumptions on the aseismic component of the deformation are required. Combining these alternative earthquake models in a logic tree, and using a set of selected ground-motion prediction equations adapted to Ecuador's different tectonic contexts, a mean hazard map is obtained. Hazard maps corresponding to the percentiles 16 and 84% are also derived, highlighting the zones where uncertainties on the hazard are highest.

  2. 16 CFR 1500.5 - Hazardous mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... defined by section 2(f) of the act (repeated in § 1500.3(b)(4)) should be based on the physical, chemical... hazardous or more hazardous than its components because of synergistic or antagonistic reactions. It may not...

  3. Reducing fire hazard: balancing costs and outcomes.

    Treesearch

    Valerie Rapp

    2004-01-01

    Massive wildfires in recent years have given urgency to questions of how to reduce fire hazard in Western forests, how to finance the work, and how to use the wood, especially in forests crowded with small trees. Scientists have already developed tools that estimate fire hazard in a forest stand. But hazard is more difficult to estimate at a landscape scale, involving...

  4. AWPA biodeterioration hazard map revisited

    Treesearch

    Grant T. Kirker; Amy B. Bishell; William J. Hickey

    2017-01-01

    The fungal decay hazard map used by the American Wood Protection Association (AWPA) currently describes regional decay hazards in ground contact for North America and is based on condition assessments of utility poles from the 1970’s. Current work at the USDA Forest Service, Forest Products Laboratory is underway to analyze soil and wood samples from several National...

  5. Occupational hazards to hospital personnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, W.B.; Craven, D.E.; Schwartz, D.A.

    1985-05-01

    Hospital personnel are subject to various occupational hazards. Awareness of these risks, compliance with basic preventive measures, and adequate resources for interventions are essential components of an occupational health program. Physical, chemical, and radiation hazards; important infectious risks; and psychosocial problems prevalent in hospital workers are reviewed. A rational approach to managing and preventing these problems is offered. 370 references.

  6. Neuropsychological Correlates of Hazard Perception in Older Adults.

    PubMed

    McInerney, Katalina; Suhr, Julie

    2016-03-01

    Hazard perception, the ability to identify and react to hazards while driving, is of growing importance in driving research, given its strong relationship to real word driving variables. Furthermore, although poor hazard perception is associated with novice drivers, recent research suggests that it declines with advanced age. In the present study, we examined the neuropsychological correlates of hazard perception in a healthy older adult sample. A total of 68 adults age 60 and older who showed no signs of dementia and were active drivers completed a battery of neuropsychological tests as well as a hazard perception task. Tests included the Repeatable Battery for the Assessment of Neuropsychological Status, Wechsler Test of Adult Reading, Trail Making Test, Block Design, Useful Field of View, and the Delis-Kaplan Executive Function System Color Word Interference Test. Hazard perception errors were related to visuospatial/constructional skills, processing speed, memory, and executive functioning skills, with a battery of tests across these domains accounting for 36.7% of the variance in hazard perception errors. Executive functioning, particularly Trail Making Test part B, emerged as a strong predictor of hazard perception ability. Consistent with prior work showing the relationship of neuropsychological performance to other measures of driving ability, neuropsychological performance was associated with hazard perception skill. Future studies should examine the relationship of neuropsychological changes in adults who are showing driving impairment and/or cognitive changes associated with Mild Cognitive Impairment or dementia.

  7. Under authority of the Hazardous and Solid Waste ...

    EPA Pesticide Factsheets

    Under authority of the Hazardous and Solid Waste Amendments (HSWA) of 1984 to the RCRA, EPA is proposing rules to minimize the presence of free liquids in containers holding hazardous waste that are disposed in hazardous waste landfills.

  8. Hazardous waste status of discarded electronic cigarettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, Max J.; Townsend, Timothy G., E-mail: ttown@ufl.edu

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Testmore » (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.« less

  9. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    EPA Science Inventory

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  10. Final Report: Seismic Hazard Assessment at the PGDP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhinmeng

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties ofmore » seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.« less

  11. Review of occupational hazards associated with aquaculture.

    PubMed

    Myers, Melvin L

    2010-10-01

    Aquaculture is an emerging sector that is associated with most of the same hazards that are present in agriculture generally, but many fish farming tasks entail added danger, including working around water and working at night. Comprehensive studies of these hazards have not been conducted, and substantial uncertainty exists as to the extent of these hazards. The question addressed in this investigation was, "What is known about potential hazardous occupational exposures to aquatic plant and animal farmers?" In this review, causes of death included drowning, electrocution, crushing-related injury, hydrogen sulfide poisoning, and fatal head injury. Nonfatal injuries were associated with slips, trips, and falls; machines; strains and sprains; chemicals; and fires. Risk factors included cranes (tip over and power line contact), tractors and sprayer-equipped all-terrain vehicles (overturn), heavy loads (lifting), high-pressure sprayers, slippery surfaces, rotting waste (hydrogen sulfide production), eroding levees (overturn hazard), storm-related rushing water, diving conditions (bends and drowning), nighttime conditions, working alone, lack of training, lack of or failure to use personal flotation devices, and all-terrain vehicle speeding. Other hazards included punctures or cuts from fish teeth or spines, needlesticks, exposure to low temperatures, and bacterial and parasitic infections .

  12. Enhancing hazard avoidance in teen-novice riders.

    PubMed

    Vidotto, Giulio; Bastianelli, Alessia; Spoto, Andrea; Sergeys, Filip

    2011-01-01

    Research suggests that novice drivers' safety performance is inferior to that of experienced drivers in different ways. One of the most critical skills related to accident avoidance by a novice driver is the detection, recognition and reaction to traffic hazards; it is called hazard perception and is defined as the ability to identify potentially dangerous traffic situations. The focus of this research is to assess how far a motorcycle simulator could improve hazard avoidance skills in teenagers. Four hundred and ten participants (207 in the experimental group and 203 in the control group) took part in this research. Results demonstrated that the mean proportion of avoided hazards increases as a function of the number of tracks performed in the virtual training. Participants of the experimental group after the training had a better proportion of avoided hazards than participants of the control group with a passive training based on a road safety lesson. Results provide good evidence that training with the simulator increases the number of avoided accidents in the virtual environment. It would be reasonable to explain this improvement by a higher level of hazard perception skills. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Communicating Volcanic Hazards in the North Pacific

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Webley, P.; Cunningham, K. W.

    2014-12-01

    For over 25 years, effective hazard communication has been key to effective mitigation of volcanic hazards in the North Pacific. These hazards are omnipresent, with a large event happening in Alaska every few years to a decade, though in many cases can happen with little or no warning (e.g. Kasatochi and Okmok in 2008). Here a useful hazard mitigation strategy has been built on (1) a large database of historic activity from many datasets, (2) an operational alert system with graduated levels of concern, (3) scenario planning, and (4) routine checks and communication with emergency managers and the public. These baseline efforts are then enhanced in the time of crisis with coordinated talking points, targeted studies and public outreach. Scientists naturally tend to target other scientists as their audience, whereas in effective monitoring of hazards that may only occur on year to decadal timescales, details can distract from the essentially important information. Creating talking points and practice in public communications can help make hazard response a part of the culture. Promoting situational awareness and familiarity can relieve indecision and concerns at the time of a crisis.

  14. 41 CFR 101-42.405 - Transportation of hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Transportation of... Destruction of Surplus Hazardous Materials and Certain Categories of Property § 101-42.405 Transportation of hazardous materials. The transportation of hazardous materials is governed by the hazardous materials...

  15. 41 CFR 101-42.405 - Transportation of hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Transportation of... Destruction of Surplus Hazardous Materials and Certain Categories of Property § 101-42.405 Transportation of hazardous materials. The transportation of hazardous materials is governed by the hazardous materials...

  16. 41 CFR 101-42.405 - Transportation of hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Transportation of... Destruction of Surplus Hazardous Materials and Certain Categories of Property § 101-42.405 Transportation of hazardous materials. The transportation of hazardous materials is governed by the hazardous materials...

  17. Modeling lahar behavior and hazards

    USGS Publications Warehouse

    Manville, Vernon; Major, Jon J.; Fagents, Sarah A.

    2013-01-01

    Lahars are highly mobile mixtures of water and sediment of volcanic origin that are capable of traveling tens to > 100 km at speeds exceeding tens of km hr-1. Such flows are among the most serious ground-based hazards at many volcanoes because of their sudden onset, rapid advance rates, long runout distances, high energy, ability to transport large volumes of material, and tendency to flow along existing river channels where populations and infrastructure are commonly concentrated. They can grow in volume and peak discharge through erosion and incorporation of external sediment and/or water, inundate broad areas, and leave deposits many meters thick. Furthermore, lahars can recur for many years to decades after an initial volcanic eruption, as fresh pyroclastic material is eroded and redeposited during rainfall events, resulting in a spatially and temporally evolving hazard. Improving understanding of the behavior of these complex, gravitationally driven, multi-phase flows is key to mitigating the threat to communities at lahar-prone volcanoes. However, their complexity and evolving nature pose significant challenges to developing the models of flow behavior required for delineating their hazards and hazard zones.

  18. Geothermal hazards - Mercury emission

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Siegel, B. Z.

    1975-01-01

    Enthusiasm for intensified geothermal exploration may induce many participants to overlook a long-term potential toxicity hazard possibly associated with the tapping of magmatic steam. The association of high atmospheric Hg levels with geothermal activity has been established both in Hawaii and Iceland, and it has been shown that mercury can be introduced into the atmosphere from fumaroles, hot springs, and magmatic sources. These arguments, extended to thallium, selenium, and other hazardous elements, underscore the need for environmental monitoring in conjunction with the delivery of magmatic steam to the surface.

  19. 40 CFR 68.50 - Hazard review.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 2 Prevention Program § 68.50 Hazard review. (a) The owner or operator shall conduct a review of the hazards associated with the regulated substances, process, and...

  20. Hazard Analysis for Building 34 Vacuum Glove Box Assembly

    NASA Technical Reports Server (NTRS)

    Meginnis, Ian

    2014-01-01

    One of the characteristics of an effective safety program is the recognition and control of hazards before mishaps or failures occur. Conducting potentially hazardous tests necessitates a thorough hazard analysis in order to prevent injury to personnel, and to prevent damage to facilities and equipment. The primary purpose of this hazard analysis is to define and address the potential hazards and controls associated with the Building 34 Vacuum Glove Box Assembly, and to provide the applicable team of personnel with the documented results. It is imperative that each member of the team be familiar with the hazards and controls associated with his/her particular tasks, assignments and activities while interfacing with facility test systems, equipment and hardware. In fulfillment of the stated purposes, the goal of this hazard analysis is to identify all hazards that have the potential to harm personnel, damage the facility or its test systems or equipment, test articles, Government or personal property, or the environment. This analysis may also assess the significance and risk, when applicable, of lost test objectives when substantial monetary value is involved. The hazards, causes, controls, verifications, and risk assessment codes have been documented on the hazard analysis work sheets in Appendix A of this document. The preparation and development of this report is in accordance with JPR 1700.1, "JSC Safety and Health Handbook" and JSC 17773 Rev D "Instructions for Preparation of Hazard Analysis for JSC Ground Operations".

  1. Ocular hazards of industrial spot welding.

    PubMed

    Chou, B R; Cullen, A P

    1996-06-01

    Any welding process is perceived to be a radiation hazard to the eye. Site visits were made to an automotive assembly plant to assess the levels of optical radiation and other hazards on the production line. Measurements were taken with a scanning spectro-radiometer and optical power and energy meters at operating working distances at spot welding stations where nonrobotic procedures were performed. Ultraviolet (UV) irradiance levels produced while spot welding with electrodes operating at 10 to 15 kA and 10 to 20 V were several orders of magnitude below recommended safety limits for industrial exposure. Flashes were rich in visible light and infrared (IR) radiation, but not at hazardous levels. The principal hazards in manual spot welding with high-current electrodes are high-speed droplets of molten metal produced by the process. These are easily defended against by wraparound polycarbonate eye shields.

  2. Potential hazards in smoke-flavored fish

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Jiang, Jie; Li, Donghua

    2008-08-01

    Smoking is widely used in fish processing for the color and flavor. Smoke flavorings have evolved as a successful alternative to traditional smoking. The hazards of the fish products treated by liquid-smoking process are discussed in this review. The smoke flavoring is one important ingredient in the smoke-flavored fish. This paper gives the definition of smoke flavorings and the hazard of polycyclic aromatic hydrocarbons (PAHs) residue in the smoke flavorings on the market. It gives also an assessment of chemical hazards such as carcinogenic PAHs, especially Benzo-[ a]pyrene, as well as biological hazards such as Listeria monocytogenes, Clostridium botulinum, histamine and parasites in smoke-flavored fish. The limitations in regulations or standards are discussed. Smoke flavored fish have lower content of PAHs as compared with the traditional smoking techniques if the PAHs residue in smoke flavorings is controlled by regulations or standards.

  3. 10 CFR 851.21 - Hazard identification and assessment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Procedures must include methods to: (1) Assess worker exposure to chemical, physical, biological, or safety workplace hazards through appropriate workplace monitoring; (2) Document assessment for chemical, physical... hazards; (6) Perform routine job activity-level hazard analyses; (7) Review site safety and health...

  4. 10 CFR 851.21 - Hazard identification and assessment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Procedures must include methods to: (1) Assess worker exposure to chemical, physical, biological, or safety workplace hazards through appropriate workplace monitoring; (2) Document assessment for chemical, physical... hazards; (6) Perform routine job activity-level hazard analyses; (7) Review site safety and health...

  5. 14 CFR 135.503 - Hazardous materials training: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Hazardous materials training: General. 135.503 Section 135.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.503 Hazardous materials training: General. (a) Each certificate...

  6. 14 CFR 135.507 - Hazardous materials training records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Hazardous materials training records. 135.507 Section 135.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.507 Hazardous materials training records. (a) General requirement...

  7. 14 CFR 135.505 - Hazardous materials training required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Hazardous materials training required. 135.505 Section 135.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.505 Hazardous materials training required. (a) Training...

  8. 14 CFR 135.507 - Hazardous materials training records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Hazardous materials training records. 135.507 Section 135.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.507 Hazardous materials training records. (a) General requirement...

  9. 14 CFR 135.505 - Hazardous materials training required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Hazardous materials training required. 135.505 Section 135.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.505 Hazardous materials training required. (a) Training...

  10. 14 CFR 135.503 - Hazardous materials training: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Hazardous materials training: General. 135.503 Section 135.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.503 Hazardous materials training: General. (a) Each certificate...

  11. 14 CFR 135.503 - Hazardous materials training: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Hazardous materials training: General. 135.503 Section 135.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.503 Hazardous materials training: General. (a) Each certificate...

  12. 14 CFR 135.503 - Hazardous materials training: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Hazardous materials training: General. 135.503 Section 135.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.503 Hazardous materials training: General. (a) Each certificate...

  13. 14 CFR 135.505 - Hazardous materials training required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Hazardous materials training required. 135.505 Section 135.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.505 Hazardous materials training required. (a) Training...

  14. 14 CFR 135.507 - Hazardous materials training records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Hazardous materials training records. 135.507 Section 135.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.507 Hazardous materials training records. (a) General requirement...

  15. 14 CFR 135.505 - Hazardous materials training required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Hazardous materials training required. 135.505 Section 135.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.505 Hazardous materials training required. (a) Training...

  16. 14 CFR 135.505 - Hazardous materials training required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Hazardous materials training required. 135.505 Section 135.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.505 Hazardous materials training required. (a) Training...

  17. 14 CFR 135.503 - Hazardous materials training: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Hazardous materials training: General. 135.503 Section 135.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.503 Hazardous materials training: General. (a) Each certificate...

  18. 14 CFR 135.507 - Hazardous materials training records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Hazardous materials training records. 135.507 Section 135.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.507 Hazardous materials training records. (a) General requirement...

  19. 14 CFR 135.507 - Hazardous materials training records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Hazardous materials training records. 135.507 Section 135.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Hazardous Materials Training Program § 135.507 Hazardous materials training records. (a) General requirement...

  20. 16 CFR 1500.127 - Substances with multiple hazards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Substances with multiple hazards. 1500.127 Section 1500.127 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS HAZARDOUS SUBSTANCES AND ARTICLES; ADMINISTRATION AND ENFORCEMENT REGULATIONS § 1500.127...

  1. A Prototype Flight-Deck Airflow Hazard Visualization System

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2004-01-01

    Airflow hazards such as turbulence, vortices, or low-level wind shear can pose a threat to landing aircraft and are especially dangerous to helicopters. Because pilots usually cannot see airflow, they may be unaware of the extent of the hazard. We have developed a prototype airflow hazard visual display for use in helicopter cockpits to alleviate this problem. We report on the results of a preliminary usability study of our airflow hazard visualization system in helicopter-shipboard operations.

  2. 40 CFR 260.42 - Notification requirement for hazardous secondary materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...

  3. 40 CFR 260.42 - Notification requirement for hazardous secondary materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...

  4. 40 CFR 260.42 - Notification requirement for hazardous secondary materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...

  5. 40 CFR 260.42 - Notification requirement for hazardous secondary materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.42... according to the exclusion (reported as the EPA hazardous waste numbers that would apply if the hazardous secondary materials were managed as hazardous wastes); (8) For each hazardous secondary material, whether...

  6. Causal Mediation Analysis for the Cox Proportional Hazards Model with a Smooth Baseline Hazard Estimator.

    PubMed

    Wang, Wei; Albert, Jeffrey M

    2017-08-01

    An important problem within the social, behavioral, and health sciences is how to partition an exposure effect (e.g. treatment or risk factor) among specific pathway effects and to quantify the importance of each pathway. Mediation analysis based on the potential outcomes framework is an important tool to address this problem and we consider the estimation of mediation effects for the proportional hazards model in this paper. We give precise definitions of the total effect, natural indirect effect, and natural direct effect in terms of the survival probability, hazard function, and restricted mean survival time within the standard two-stage mediation framework. To estimate the mediation effects on different scales, we propose a mediation formula approach in which simple parametric models (fractional polynomials or restricted cubic splines) are utilized to approximate the baseline log cumulative hazard function. Simulation study results demonstrate low bias of the mediation effect estimators and close-to-nominal coverage probability of the confidence intervals for a wide range of complex hazard shapes. We apply this method to the Jackson Heart Study data and conduct sensitivity analysis to assess the impact on the mediation effects inference when the no unmeasured mediator-outcome confounding assumption is violated.

  7. Occupational Health Hazards in ICU Nursing Staff

    PubMed Central

    Shimizu, Helena Eri; Couto, Djalma Ticiani; Merchán-Hamann, Edgar; Branco, Anadergh Barbosa

    2010-01-01

    This study analyzed occupational health hazards for Intensive Care Unit (ICU) nurses and nursing technicians, comparing differences in the number and types of hazards which occur at the beginning and end of their careers. A descriptive cross-sectional study was carried out with 26 nurses and 96 nursing technicians from a public hospital in the Federal District, Brazil. A Likert-type work-related symptom scale (WRSS) was used to evaluate the presence of physical, psychological, and social risks. Data were analyzed with the use of the SPSS, version 12.0, and the Kruskal-Wallis test for statistical significance and differences in occupational health hazards at the beginning and at the end of the workers' careers. As a workplace, ICUs can cause work health hazards, mostly physical, to nurses and nursing technicians due to the frequent use of physical energy and strength to provide care, while psychological and social hazards occur to a lesser degree. PMID:21994814

  8. Seismic hazard in the eastern United States

    USGS Publications Warehouse

    Mueller, Charles; Boyd, Oliver; Petersen, Mark D.; Moschetti, Morgan P.; Rezaeian, Sanaz; Shumway, Allison

    2015-01-01

    The U.S. Geological Survey seismic hazard maps for the central and eastern United States were updated in 2014. We analyze results and changes for the eastern part of the region. Ratio maps are presented, along with tables of ground motions and deaggregations for selected cities. The Charleston fault model was revised, and a new fault source for Charlevoix was added. Background seismicity sources utilized an updated catalog, revised completeness and recurrence models, and a new adaptive smoothing procedure. Maximum-magnitude models and ground motion models were also updated. Broad, regional hazard reductions of 5%–20% are mostly attributed to new ground motion models with stronger near-source attenuation. The revised Charleston fault geometry redistributes local hazard, and the new Charlevoix source increases hazard in northern New England. Strong increases in mid- to high-frequency hazard at some locations—for example, southern New Hampshire, central Virginia, and eastern Tennessee—are attributed to updated catalogs and/or smoothing.

  9. Comparison of the historical record of earthquake hazard with seismic-hazard models for New Zealand and the continental United States

    USGS Publications Warehouse

    Stirling, M.; Petersen, M.

    2006-01-01

    We compare the historical record of earthquake hazard experienced at 78 towns and cities (sites) distributed across New Zealand and the continental United States with the hazard estimated from the national probabilistic seismic-hazard (PSH) models for the two countries. The two PSH models are constructed with similar methodologies and data. Our comparisons show a tendency for the PSH models to slightly exceed the historical hazard in New Zealand and westernmost continental United States interplate regions, but show lower hazard than that of the historical record in the continental United States intraplate region. Factors such as non-Poissonian behavior, parameterization of active fault data in the PSH calculations, and uncertainties in estimation of ground-motion levels from historical felt intensity data for the interplate regions may have led to the higher-than-historical levels of hazard at the interplate sites. In contrast, the less-than-historical hazard for the remaining continental United States (intraplate) sites may be largely due to site conditions not having been considered at the intraplate sites, and uncertainties in correlating ground-motion levels to historical felt intensities. The study also highlights the importance of evaluating PSH models at more than one region, because the conclusions reached on the basis of a solely interplate or intraplate study would be very different.

  10. Truck Transport of Hazardous Chemicals : Acetone

    DOT National Transportation Integrated Search

    1997-03-01

    The transport of hazardous materials by all modes is a major concern of the U.S. Department of Transportation. Estimates place the total amount of hazardous materials transported in the U.S. in excess of 1.5 billion tons per year. Highway, water, and...

  11. Truck Transport of Hazardous Chemicals : Isopropanol

    DOT National Transportation Integrated Search

    1997-12-01

    The transport of hazardous materials by all modes is a major concern of the U.S. Department of Transportation. Estimates place the total amount of hazardous materials transported in the U.S. in excess of 1.5 billion tons per year. Highway, water, and...

  12. Editor's Page: Management of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1980

    1980-01-01

    Discussed is the problem of management of hazardous waste disposal. Included are various federal laws and congressional kills pertinent to the problem of hazardous waste disposal. Suggested is cooperation between government and the chemical industry to work for a comprehensive solution to waste disposal. (DS)

  13. Hazardous Waste Handling Should be Defined

    ERIC Educational Resources Information Center

    Steigman, Harry

    1972-01-01

    An examination of the handling, storage and disposition of hazardous wastes from municipal and industrial sources, with a plea for the development of a uniform national hazardous waste code or listing that would be acceptable and useful to all state and federal agencies. (LK)

  14. 29 CFR 1918.90 - Hazard communication.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Hazard communication. 1918.90 Section 1918.90 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING General Working Conditions. § 1918.90 Hazard...

  15. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    EPA Science Inventory

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  16. 46 CFR 169.662 - Hazardous locations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Hazardous locations. 169.662 Section 169.662 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical § 169.662 Hazardous locations. Electrical equipment must not be...

  17. Dust Hazard Management in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Seal, David A.

    2012-01-01

    Most robotic missions to the outer solar system must grapple with the hazards posed by the dusty rings of the gas giants. Early assessments of these hazards led simply to ring avoidance due to insufficient data and high uncertainties on the dust population present in such rings. Recent approaches, principal among them the Cassini dust hazard management strategy, provide useful results from detailed modeling of spacecraft vulnerabilities and dust hazard regions, which along with the range of mission trajectories are used to to assess the risks posed by each passage through a zone of potential hazard. This paper shows the general approach used to implement the analysis for Cassini, with recommendations for future outer planet missions.

  18. Evaluation of an active learning module to teach hazard and risk in Hazard Analysis and Critical Control Points (HACCP) classes.

    PubMed

    Oyarzabal, Omar A; Rowe, Ellen

    2017-04-01

    The terms hazard and risk are significant building blocks for the organization of risk-based food safety plans. Unfortunately, these terms are not clear for some personnel working in food manufacturing facilities. In addition, there are few examples of active learning modules for teaching adult participants the principles of hazard analysis and critical control points (HACCP). In this study, we evaluated the effectiveness of an active learning module to teach hazard and risk to participants of HACCP classes provided by the University of Vermont Extension in 2015 and 2016. This interactive module is comprised of a questionnaire; group playing of a dice game that we have previously introduced in the teaching of HACCP; the discussion of the terms hazard and risk; and a self-assessment questionnaire to evaluate the teaching of hazard and risk. From 71 adult participants that completed this module, 40 participants (56%) provided the most appropriate definition of hazard, 19 participants (27%) provided the most appropriate definition of risk, 14 participants (20%) provided the most appropriate definitions of both hazard and risk, and 23 participants (32%) did not provide an appropriate definition for hazard or risk. Self-assessment data showed an improvement in the understanding of these terms (P < 0.05). Thirty participants (42%) stated that the most valuable thing they learned with this interactive module was the difference between hazard and risk, and 40 participants (65%) responded that they did not attend similar presentations in the past. The fact that less than one third of the participants answered properly to the definitions of hazard and risk at baseline is not surprising. However, these results highlight the need for the incorporation of modules to discuss these important food safety terms and include more active learning modules to teach food safety classes. This study suggests that active learning helps food personnel better understand important food safety

  19. 10 CFR 851.21 - Hazard identification and assessment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Procedures must include methods to: (1) Assess worker exposure to chemical, physical, biological, or safety..., biological, and safety workplace hazards using recognized exposure assessment and testing methodologies and... hazards and the established controls within 90 days after identifying such hazards. The Head of DOE Field...

  20. 10 CFR 851.21 - Hazard identification and assessment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Procedures must include methods to: (1) Assess worker exposure to chemical, physical, biological, or safety..., biological, and safety workplace hazards using recognized exposure assessment and testing methodologies and... hazards and the established controls within 90 days after identifying such hazards. The Head of DOE Field...

  1. 10 CFR 851.21 - Hazard identification and assessment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Procedures must include methods to: (1) Assess worker exposure to chemical, physical, biological, or safety..., biological, and safety workplace hazards using recognized exposure assessment and testing methodologies and... hazards and the established controls within 90 days after identifying such hazards. The Head of DOE Field...

  2. Leaching behaviour of hazardous demolition waste.

    PubMed

    Roussat, Nicolas; Méhu, Jacques; Abdelghafour, Mohamed; Brula, Pascal

    2008-11-01

    Demolition wastes are generally disposed of in unlined landfills for inert waste. However, demolition wastes are not just inert wastes. Indeed, a small fraction of demolition waste contains components that are hazardous to human health and the environment, e.g., lead-based paint, mercury-contained in fluorescent lamps, treated wood, and asbestos. The objective of this study is to evaluate the release potential of pollutants contained in these hazardous components when they are mixed with inert wastes in unlined landfills. After identification of the different building products which can contain hazardous elements and which can be potentially pollutant in landfill scenario, we performed leaching tests using three different lysimeters: one lysimeter containing only inert wastes and two lysimeters containing inert wastes mixed with hazardous demolition wastes. The leachates from these lysimeters were analysed (heavy metals, chlorides, sulphates fluoride, DOC (Dissolved Organic Carbon), phenol index, and PAH). Finally, we compared concentrations and cumulative releases of elements in leachates with the limits values of European regulation for the acceptance of inert wastes at landfill. Results indicate that limit values are exceeded for some elements. We also performed a percolation column test with only demolition hazardous wastes to evaluate the specific contribution of these wastes in the observed releases.

  3. Hazardous workplace review program in Taiwan.

    PubMed

    Chang, Yi-Kuo; Chuang, Kuen-Yuan; Tseng, Jo-Ming; Lin, Fang-Chen; Su, Teh-Sheng

    2013-01-01

    In Taiwan, relevant mid-term plans and projects of mitigating occupational hazards have been launched in recent years in the hopes of lowering the incidence of occupational hazards. In light of the lack of objective methodologies for researches on issues pertaining occupational safety and health, this research aims to explore the priorities of safety and health issues through focal groups, expert questionnaires and interviews on relevant issues such as hazard installations identified in R181 Prevention of Major Industrial Accidents Recommendation, 1993 proposed during the 18th World Congress on Safety and Health at work in Seoul 2008. Results revealed that distribute reports of major domestic/foreign occupational disasters to relevant sectors for the prevention of major accidents is needed, both from the importance and feasibility analysis. It is the only topic that scored over 4 points in average for expert and focal group consensus. Furthermore, the experts and focal groups came to consensus in the ranking of priority for 4 items, namely: 1) Installations containing/using large quantities of hazardous materials should be prioritized for inspection, 2) Incorporation of hazard installation review/inspection into OSH management system accreditation, 3) Impose operation shutdown as a means of penalty) and 4) Prioritize the promotion of preliminary PHA.

  4. Maritime Tsunami Hazard Assessment in California

    NASA Astrophysics Data System (ADS)

    Lynett, P. J.; Borrero, J. C.; Wilson, R. I.; Miller, K. M.

    2012-12-01

    The California tsunami program in cooperation with NOAA and FEMA has begun implementing a plan to increase awareness of tsunami generated hazards to the maritime community (both ships and harbor infrastructure) through the development of in-harbor hazard maps, offshore safety zones for boater evacuation, and associated guidance for harbors and marinas before, during and following tsunamis. The hope is that the maritime guidance and associated education and outreach program will help save lives and reduce exposure of damage to boats and harbor infrastructure. An important step in this process is to understand the causative mechanism for damage in ports and harbors, and then ensure that the models used to generate hazard maps are able to accurately simulate these processes. Findings will be used to develop maps, guidance documents, and consistent policy recommendations for emergency managers and port authorities and provide information critical to real-time decisions required when responding to tsunami alert notifications. Basin resonance and geometric amplification are two reasonably well understood mechanisms for local magnification of tsunami impact in harbors, and are generally the mechanisms investigated when estimating the tsunami hazard potential in a port or harbor. On the other hand, our understanding of and predictive ability for currents is lacking. When a free surface flow is forced through a geometric constriction, it is readily expected that the enhanced potential gradient will drive strong, possibly unstable currents and the associated turbulent coherent structures such as "jets" and "whirlpools"; a simple example would be tidal flow through an inlet channel. However, these fundamentals have not been quantitatively connected with respect to understanding tsunami hazards in ports and harbors. A plausible explanation for this oversight is the observation that these features are turbulent phenomena with spatial and temporal scales much smaller than that

  5. Volcanic hazards to airports

    USGS Publications Warehouse

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  6. 10 CFR 850.21 - Hazard assessment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Hazard assessment. 850.21 Section 850.21 Energy DEPARTMENT... assessment. (a) If the baseline inventory establishes the presence of beryllium, the responsible employer must conduct a beryllium hazard assessment that includes an analysis of existing conditions, exposure...

  7. 40 CFR 68.50 - Hazard review.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Hazard review. 68.50 Section 68.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 2 Prevention Program § 68.50 Hazard review. (a) The owner or...

  8. 40 CFR 68.50 - Hazard review.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Hazard review. 68.50 Section 68.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 2 Prevention Program § 68.50 Hazard review. (a) The owner or...

  9. 40 CFR 68.50 - Hazard review.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Hazard review. 68.50 Section 68.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 2 Prevention Program § 68.50 Hazard review. (a) The owner or...

  10. 40 CFR 68.50 - Hazard review.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Hazard review. 68.50 Section 68.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 2 Prevention Program § 68.50 Hazard review. (a) The owner or...

  11. 13 CFR 120.174 - Earthquake hazards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  12. 13 CFR 120.174 - Earthquake hazards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  13. 13 CFR 120.174 - Earthquake hazards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  14. 13 CFR 120.174 - Earthquake hazards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  15. Spatial earthquake hazard assessment of Evansville, Indiana

    USGS Publications Warehouse

    Rockaway, T.D.; Frost, J.D.; Eggert, D.L.; Luna, R.

    1997-01-01

    The earthquake hazard has been evaluated for a 150-square-kilometer area around Evansville, Indiana. GIS-QUAKE, a system that combines liquefaction and ground motion analysis routines with site-specific geological, geotechnical, and seismological information, was used for the analysis. The hazard potential was determined by using 586 SPT borings, 27 CPT sounding, 39 shear-wave velocity profiles and synthesized acceleration records for body-wave magnitude 6.5 and 7.3 mid-continental earthquakes, occurring at distances of 50 km and 250 km, respectively. The results of the GIS-QUAKE hazard analyses for Evansville identify areas with a high hazard potential that had not previously been identified in earthquake zonation studies. The Pigeon Creek area specifically is identified as having significant potential for liquefaction-induced damage. Damage as a result of ground motion amplification is determined to be a moderate concern throughout the area. Differences in the findings of this zonation study and previous work are attributed to the size and range of the database, the hazard evaluation methodologies, and the geostatistical interpolation techniques used to estimate the hazard potential. Further, assumptions regarding the groundwater elevations made in previous studies are also considered to have had a significant effect on the results.

  16. A hazard control system for robot manipulators

    NASA Technical Reports Server (NTRS)

    Carter, Ruth Chiang; Rad, Adrian

    1991-01-01

    A robot for space applications will be required to complete a variety of tasks in an uncertain, harsh environment. This fact presents unusual and highly difficult challenges to ensuring the safety of astronauts and keeping the equipment they depend on from becoming damaged. The systematic approach being taken to control hazards that could result from introducing robotics technology in the space environment is described. First, system safety management and engineering principles, techniques, and requirements are discussed as they relate to Shuttle payload design and operation in general. The concepts of hazard, hazard category, and hazard control, as defined by the Shuttle payload safety requirements, is explained. Next, it is shown how these general safety management and engineering principles are being implemented on an actual project. An example is presented of a hazard control system for controlling one of the hazards identified for the Development Test Flight (DTF-1) of NASA's Flight Telerobotic Servicer, a teleoperated space robot. How these schemes can be applied to terrestrial robots is discussed as well. The same software monitoring and control approach will insure the safe operation of a slave manipulator under teleoperated or autonomous control in undersea, nuclear, or manufacturing applications where the manipulator is working in the vicinity of humans or critical hardware.

  17. Early identification systems for emerging foodborne hazards.

    PubMed

    Marvin, H J P; Kleter, G A; Prandini, A; Dekkers, S; Bolton, D J

    2009-05-01

    This paper provides a non-exhausting overview of early warning systems for emerging foodborne hazards that are operating in the various places in the world. Special attention is given to endpoint-focussed early warning systems (i.e. ECDC, ISIS and GPHIN) and hazard-focussed early warning systems (i.e. FVO, RASFF and OIE) and their merit to successfully identify a food safety problem in an early stage is discussed. Besides these early warning systems which are based on monitoring of either disease symptoms or hazards, also early warning systems and/or activities that intend to predict the occurrence of a food safety hazard in its very beginning of development or before that are described. Examples are trend analysis, horizon scanning, early warning systems for mycotoxins in maize and/or wheat and information exchange networks (e.g. OIE and GIEWS). Furthermore, recent initiatives that aim to develop predictive early warning systems based on the holistic principle are discussed. The assumption of the researchers applying this principle is that developments outside the food production chain that are either directly or indirectly related to the development of a particular food safety hazard may also provide valuable information to predict the development of this hazard.

  18. 30 CFR 56.16004 - Containers for hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Containers for hazardous materials. 56.16004 Section 56.16004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16004 Containers for hazardous materials. Containers holding hazardous materials...

  19. 30 CFR 57.16004 - Containers for hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Containers for hazardous materials. 57.16004 Section 57.16004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16004 Containers for hazardous materials. Containers holding hazardous materials...

  20. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  1. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  2. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  3. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  4. 33 CFR 127.1313 - Storage of hazardous materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Storage of hazardous materials. 127.1313 Section 127.1313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1313 Storage of...

  5. 40 CFR 262.60 - Imports of hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Imports of hazardous waste. 262.60 Section 262.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports...

  6. 30 CFR 47.53 - Alternative for hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that— (a...

  7. Quantification of hazard prediction ability at hazard prediction training (Kiken-Yochi Training: KYT) by free-response receiver-operating characteristic (FROC) analysis.

    PubMed

    Hashida, Masahiro; Kamezaki, Ryousuke; Goto, Makoto; Shiraishi, Junji

    2017-03-01

    The ability to predict hazards in possible situations in a general X-ray examination room created for Kiken-Yochi training (KYT) is quantified by use of free-response receiver-operating characteristics (FROC) analysis for determining whether the total number of years of clinical experience, involvement in general X-ray examinations, occupation, and training each have an impact on the hazard prediction ability. Twenty-three radiological technologists (RTs) (years of experience: 2-28), four nurses (years of experience: 15-19), and six RT students observed 53 scenes of KYT: 26 scenes with hazardous points (hazardous points are those that might cause injury to patients) and 27 scenes without points. Based on the results of these observations, we calculated the alternative free-response receiver-operating characteristic (AFROC) curve and the figure of merit (FOM) to quantify the hazard prediction ability. The results showed that the total number of years of clinical experience did not have any impact on hazard prediction ability, whereas recent experience with general X-ray examinations greatly influenced this ability. In addition, the hazard prediction ability varied depending on the occupations of the observers while they were observing the same scenes in KYT. The hazard prediction ability of the radiologic technology students was improved after they had undergone patient safety training. This proposed method with FROC observer study enabled the quantification and evaluation of the hazard prediction capability, and the application of this approach to clinical practice may help to ensure the safety of examinations and treatment in the radiology department.

  8. Traffic Incident Management in the Presence of Hazards

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Zlatanova, S.; Steenbruggen, J.

    2016-09-01

    Traffic incidents can result in different kinds of hazards (e.g., plumes) that influence the status of road networks, therefore there is a great need for incident management in the presence of the hazards. When incidents occur, the created hazards not only affect the normal road users (make them detour or blocked), but also influence the movement of first responders. Traffic managers, who are responsible for maintaining the road safety and traffic stability, should carry out quick and effective measures to manage the incidents. In this paper, we present four issues to help people better understand the situations that could occur in the management of incidents with hazards: 1). Evacuation in the presence of hazards; 2). 3D incident management; 3). Navigation support for first responders; 4). Navigation support for road users. To address these issues, we propose a solution which combines agent technology, geo-database, hazard simulation, and traffic simulation. Further research would be needed to investigate the potentials of the proposed solution in real applications.

  9. Vulnerability of port and harbor communities to earthquake and tsunami hazards: The use of GIS in community hazard planning

    USGS Publications Warehouse

    Wood, Nathan J.; Good, James W.

    2004-01-01

    AbstractEarthquakes and tsunamis pose significant threats to Pacific Northwest coastal port and harbor communities. Developing holistic mitigation and preparedness strategies to reduce the potential for loss of life and property damage requires community-wide vulnerability assessments that transcend traditional site-specific analyses. The ability of a geographic information system (GIS) to integrate natural, socioeconomic, and hazards information makes it an ideal assessment tool to support community hazard planning efforts. This article summarizes how GIS was used to assess the vulnerability of an Oregon port and harbor community to earthquake and tsunami hazards, as part of a larger risk-reduction planning initiative. The primary purposes of the GIS were to highlight community vulnerability issues and to identify areas that both are susceptible to hazards and contain valued port and harbor community resources. Results of the GIS analyses can help decision makers with limited mitigation resources set priorities for increasing community resiliency to natural hazards.

  10. Playing against nature: improving earthquake hazard mitigation

    NASA Astrophysics Data System (ADS)

    Stein, S. A.; Stein, J.

    2012-12-01

    The great 2011 Tohoku earthquake dramatically demonstrated the need to improve earthquake and tsunami hazard assessment and mitigation policies. The earthquake was much larger than predicted by hazard models, and the resulting tsunami overtopped coastal defenses, causing more than 15,000 deaths and $210 billion damage. Hence if and how such defenses should be rebuilt is a challenging question, because the defences fared poorly and building ones to withstand tsunamis as large as March's is too expensive,. A similar issue arises along the Nankai Trough to the south, where new estimates warning of tsunamis 2-5 times higher than in previous models raise the question of what to do, given that the timescale on which such events may occur is unknown. Thus in the words of economist H. Hori, "What should we do in face of uncertainty? Some say we should spend our resources on present problems instead of wasting them on things whose results are uncertain. Others say we should prepare for future unknown disasters precisely because they are uncertain". Thus society needs strategies to mitigate earthquake and tsunami hazards that make economic and societal sense, given that our ability to assess these hazards is poor, as illustrated by highly destructive earthquakes that often occur in areas predicted by hazard maps to be relatively safe. Conceptually, we are playing a game against nature "of which we still don't know all the rules" (Lomnitz, 1989). Nature chooses tsunami heights or ground shaking, and society selects the strategy to minimize the total costs of damage plus mitigation costs. As in any game of chance, we maximize our expectation value by selecting the best strategy, given our limited ability to estimate the occurrence and effects of future events. We thus outline a framework to find the optimal level of mitigation by balancing its cost against the expected damages, recognizing the uncertainties in the hazard estimates. This framework illustrates the role of the

  11. Map Your Hazards! - an Interdisciplinary, Place-Based Educational Approach to Assessing Natural Hazards, Social Vulnerability, Risk and Risk Perception.

    NASA Astrophysics Data System (ADS)

    Brand, B. D.; McMullin-Messier, P. A.; Schlegel, M. E.

    2014-12-01

    'Map your Hazards' is an educational module developed within the NSF Interdisciplinary Teaching about Earth for a Sustainable Future program (InTeGrate). The module engages students in place-based explorations of natural hazards, social vulnerability, and the perception of natural hazards and risk. Students integrate geoscience and social science methodologies to (1) identify and assess hazards, vulnerability and risk within their communities; (2) distribute, collect and evaluate survey data (designed by authors) on the knowledge, risk perception and preparedness within their social networks; and (3) deliver a PPT presentation to local stakeholders detailing their findings and recommendations for development of a prepared, resilient community. 'Map your Hazards' underwent four rigorous assessments by a team of geoscience educators and external review before being piloted in our classrooms. The module was piloted in a 300-level 'Volcanoes and Society' course at Boise State University, a 300-level 'Environmental Sociology' course at Central Washington University, and a 100-level 'Natural Disasters and Environmental Geology' course at the College of Western Idaho. In all courses students reported a fascination with learning about the hazards around them and identifying the high risk areas in their communities. They were also surprised at the low level of knowledge, inaccurate risk perception and lack of preparedness of their social networks. This successful approach to engaging students in an interdisciplinary, place-based learning environment also has the broad implications of raising awareness of natural hazards (survey participants are provided links to local hazard and preparedness information). The data and preparedness suggestions can be shared with local emergency managers, who are encouraged to attend the student's final presentations. All module materials are published at serc.carleton.edu/integrate/ and are appropriate to a wide range of classrooms.

  12. 46 CFR 169.331 - Guards in hazardous locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Guards in hazardous locations. 169.331 Section 169.331 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.331 Guards in hazardous locations. Each exposed hazard...

  13. 30 CFR 57.16003 - Storage of hazardous materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of hazardous materials. 57.16003 Section 57.16003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16003 Storage of hazardous materials. Materials that can create hazards if...

  14. 30 CFR 56.16003 - Storage of hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of hazardous materials. 56.16003 Section 56.16003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16003 Storage of hazardous materials. Materials that can create hazards if...

  15. 30 CFR 56.16003 - Storage of hazardous materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Storage of hazardous materials. 56.16003 Section 56.16003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16003 Storage of hazardous materials. Materials that can create hazards if...

  16. 30 CFR 57.16003 - Storage of hazardous materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Storage of hazardous materials. 57.16003 Section 57.16003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16003 Storage of hazardous materials. Materials that can create hazards if...

  17. 46 CFR 169.331 - Guards in hazardous locations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Guards in hazardous locations. 169.331 Section 169.331 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.331 Guards in hazardous locations. Each exposed hazard...

  18. Comparative risk analysis of technological hazards (a review).

    PubMed Central

    Kates, R W; Kasperson, J X

    1983-01-01

    Hazards are threats to people and what they value and risks are measures of hazards. Comparative analyses of the risks and hazards of technology can be dated to Starr's 1969 paper [Starr, C. (1969) Science 165, 1232-1238] but are rooted in recent trends in the evolution of technology, the identification of hazard, the perception of risk, and the activities of society. These trends have spawned an interdisciplinary quasi profession with new terminology, methodology, and literature. A review of 54 English-language monographs and book-length collections, published between 1970 and 1983, identified seven recurring themes: (i) overviews of the field of risk assessment, (ii) efforts to estimate and quantify risk, (iii) discussions of risk acceptability, (iv) perception, (v) analyses of regulation, (vi) case studies of specific technological hazards, and (vii) agenda for research. Within this field, science occupies a unique niche, for many technological hazards transcend the realm of ordinary experience and require expert study. Scientists can make unique contributions to each area of hazard management but their primary contribution is the practice of basic science. Beyond that, science needs to further risk assessment by understanding the more subtle processes of hazard creation and by establishing conventions for estimating risk and for presenting and handling uncertainty. Scientists can enlighten the discussion of tolerable risk by setting risks into comparative contexts, by studying the process of evaluation, and by participating as knowledgeable individuals, but they cannot decide the issue. Science can inform the hazard management process by broadening the range of alternative control actions and modes of implementation and by devising methods to evaluate their effectiveness. PMID:6580625

  19. 30 CFR 48.11 - Hazard training.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Hazard training. 48.11 Section 48.11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING TRAINING AND RETRAINING OF MINERS Training and Retraining of Underground Miners § 48.11 Hazard training. (a) Operators...

  20. 10 CFR 850.21 - Hazard assessment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Hazard assessment. 850.21 Section 850.21 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.21 Hazard... with the greatest risks of exposure are evaluated first. (b) The responsible employer must ensure that...

  1. Counterfactual Volcano Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Woo, Gordon

    2013-04-01

    The historical database of past disasters is a cornerstone of catastrophe risk assessment. Whereas disasters are fortunately comparatively rare, near-misses are quite common for both natural and man-made hazards. The word disaster originally means 'an unfavourable aspect of a star'. Except for astrologists, disasters are no longer perceived fatalistically as pre-determined. Nevertheless, to this day, historical disasters are treated statistically as fixed events, although in reality there is a large luck element involved in converting a near-miss crisis situation into a disaster statistic. It is possible to conceive a stochastic simulation of the past to explore the implications of this chance factor. Counterfactual history is the exercise of hypothesizing alternative paths of history from what actually happened. Exploring history from a counterfactual perspective is instructive for a variety of reasons. First, it is easy to be fooled by randomness and see regularity in event patterns which are illusory. The past is just one realization of a variety of possible evolutions of history, which may be analyzed through a stochastic simulation of an array of counterfactual scenarios. In any hazard context, there is a random component equivalent to dice being rolled to decide whether a near-miss becomes an actual disaster. The fact that there may be no observed disaster over a period of time may belie the occurrence of numerous near-misses. This may be illustrated using the simple dice paradigm. Suppose a dice is rolled every month for a year, and an event is recorded if a six is thrown. There is still an 11% chance of no events occurring during the year. A variety of perils may be used to illustrate the use of near-miss information within a counterfactual disaster analysis. In the domain of natural hazards, near-misses are a notable feature of the threat landscape. Storm surges are an obvious example. Sea defences may protect against most meteorological scenarios. However

  2. Afghanistan Multi-Risk Assessment to Natural Hazards

    NASA Astrophysics Data System (ADS)

    Diermanse, Ferdinand; Daniell, James; Pollino, Maurizio; Glover, James; Bouwer, Laurens; de Bel, Mark; Schaefer, Andreas; Puglisi, Claudio; Winsemius, Hessel; Burzel, Andreas; Ammann, Walter; Aliparast, Mojtaba; Jongman, Brenden; Ranghieri, Federica; Fallesen, Ditte

    2017-04-01

    The geographical location of Afghanistan and years of environmental degradation in the country make Afghanistan highly prone to intense and recurring natural hazards such as flooding, earthquakes, snow avalanches, landslides, and droughts. These occur in addition to man-made disasters resulting in the frequent loss of live, livelihoods, and property. Since 1980, disasters caused by natural hazards have affected 9 million people and caused over 20,000 fatalities in Afghanistan. The creation, understanding and accessibility of hazard, exposure, vulnerability and risk information is key for effective management of disaster risk. This is especially true in Afghanistan, where reconstruction after recent natural disasters and military conflicts is on-going and will continue over the coming years. So far, there has been limited disaster risk information produced in Afghanistan, and information that does exist typically lacks standard methodology and does not have uniform geo-spatial coverage. There are currently no available risk assessment studies that cover all major natural hazards in Afghanistan, which can be used to assess the costs and benefits of different resilient reconstruction and disaster risk reduction strategies. As a result, the Government of Afghanistan has limited information regarding current and future disaster risk and the effectiveness of policy options on which to base their reconstruction and risk reduction decisions. To better understand natural hazard and disaster risk, the World Bank and Global Facility for Disaster Reduction and Recovery (GFDRR) are supporting the development of new fluvial flood, flash flood, drought, landslide, avalanche and seismic risk information in Afghanistan, as well as a first-order analysis of the costs and benefits of resilient reconstruction and risk reduction strategies undertaken by the authors. The hazard component is the combination of probability and magnitude of natural hazards. Hazard analyses were carried out

  3. A strategic assessment of crown fire hazard in Montana: potential effectiveness and costs of hazard reduction treatments.

    Treesearch

    Carl E. Fiedler; Charles E. Keegan; Christopher W. Woodall; Todd A. Morgan

    2004-01-01

    Estimates of crown fire hazard are presented for existing forest conditions in Montana by density class, structural class, forest type, and landownership. Three hazard reduction treatments were evaluated for their effectiveness in treating historically fire-adapted forests (ponderosa pine (Pinus ponderosa Dougl. ex Laws.), Douglas-fir (...

  4. 34 CFR 75.611 - Avoidance of flood hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Avoidance of flood hazards. 75.611 Section 75.611... by a Grantee? Construction § 75.611 Avoidance of flood hazards. In planning the construction, a...) Evaluate flood hazards in connection with the construction; and (b) As far as practicable, avoid uneconomic...

  5. Supplemental Hazard Analysis and Risk Assessment - Hydrotreater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Peter P.; Wagner, Katie A.

    A supplemental hazard analysis was conducted and quantitative risk assessment performed in response to an independent review comment received by the Pacific Northwest National Laboratory (PNNL) from the U.S. Department of Energy Pacific Northwest Field Office (PNSO) against the Hydrotreater/Distillation Column Hazard Analysis Report issued in April 2013. The supplemental analysis used the hazardous conditions documented by the previous April 2013 report as a basis. The conditions were screened and grouped for the purpose of identifying whether additional prudent, practical hazard controls could be identified, using a quantitative risk evaluation to assess the adequacy of the controls and establish amore » lower level of concern for the likelihood of potential serious accidents. Calculations were performed to support conclusions where necessary.« less

  6. NASA Hydrogen Peroxide Propellant Hazards Technical Manual

    NASA Technical Reports Server (NTRS)

    Baker, David L.; Greene, Ben; Frazier, Wayne

    2005-01-01

    The Fire, Explosion, Compatibility and Safety Hazards of Hydrogen Peroxide NASA technical manual was developed at the NASA Johnson Space Center White Sands Test Facility. NASA Technical Memorandum TM-2004-213151 covers topics concerning high concentration hydrogen peroxide including fire and explosion hazards, material and fluid reactivity, materials selection information, personnel and environmental hazards, physical and chemical properties, analytical spectroscopy, specifications, analytical methods, and material compatibility data. A summary of hydrogen peroxide-related accidents, incidents, dose calls, mishaps and lessons learned is included. The manual draws from art extensive literature base and includes recent applicable regulatory compliance documentation. The manual may be obtained by United States government agencies from NASA Johnson Space Center and used as a reference source for hazards and safe handling of hydrogen peroxide.

  7. Methodologies For A Physically Based Rockfall Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Agliardi, F.; Crosta, G. B.; Guzzetti, F.; Marian, M.

    Rockfall hazard assessment is an important land planning tool in alpine areas, where settlements progressively expand across rockfall prone areas, rising the vulnerability of the elements at risk, the worth of potential losses and the restoration costs. Nev- ertheless, hazard definition is not simple to achieve in practice and sound, physically based assessment methodologies are still missing. In addition, the high mobility of rockfalls implies a more difficult hazard definition with respect to other slope insta- bilities for which runout is minimal. When coping with rockfalls, hazard assessment involves complex definitions for "occurrence probability" and "intensity". The local occurrence probability must derive from the combination of the triggering probability (related to the geomechanical susceptibility of rock masses to fail) and the transit or impact probability at a given location (related to the motion of falling blocks). The intensity (or magnitude) of a rockfall is a complex function of mass, velocity and fly height of involved blocks that can be defined in many different ways depending on the adopted physical description and "destructiveness" criterion. This work is an attempt to evaluate rockfall hazard using the results of numerical modelling performed by an original 3D rockfall simulation program. This is based on a kinematic algorithm and allows the spatially distributed simulation of rockfall motions on a three-dimensional topography described by a DTM. The code provides raster maps portraying the max- imum frequency of transit, velocity and height of blocks at each model cell, easily combined in a GIS in order to produce physically based rockfall hazard maps. The results of some three dimensional rockfall models, performed at both regional and lo- cal scale in areas where rockfall related problems are well known, have been used to assess rockfall hazard, by adopting an objective approach based on three-dimensional matrixes providing a positional

  8. Building Better Volcanic Hazard Maps Through Scientific and Stakeholder Collaboration

    NASA Astrophysics Data System (ADS)

    Thompson, M. A.; Lindsay, J. M.; Calder, E.

    2015-12-01

    All across the world information about natural hazards such as volcanic eruptions, earthquakes and tsunami is shared and communicated using maps that show which locations are potentially exposed to hazards of varying intensities. Unlike earthquakes and tsunami, which typically produce one dominant hazardous phenomenon (ground shaking and inundation, respectively) volcanic eruptions can produce a wide variety of phenomena that range from near-vent (e.g. pyroclastic flows, ground shaking) to distal (e.g. volcanic ash, inundation via tsunami), and that vary in intensity depending on the type and location of the volcano. This complexity poses challenges in depicting volcanic hazard on a map, and to date there has been no consistent approach, with a wide range of hazard maps produced and little evaluation of their relative efficacy. Moreover, in traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map that is then presented to stakeholders. This one-way, top-down approach to hazard communication does not necessarily translate into effective hazard education, or, as tragically demonstrated by Nevado del Ruiz, Columbia in 1985, its use in risk mitigation by civil authorities. Furthermore, messages taken away from a hazard map can be strongly influenced by its visual design. Thus, hazard maps are more likely to be useful, usable and used if relevant stakeholders are engaged during the hazard map process to ensure a) the map is designed in a relevant way and b) the map takes into account how users interpret and read different map features and designs. The IAVCEI Commission on Volcanic Hazards and Risk has recently launched a Hazard Mapping Working Group to collate some of these experiences in graphically depicting volcanic hazard from around the world, including Latin America and the Caribbean, with the aim of preparing some Considerations for Producing Volcanic Hazard Maps that may help map makers in the future.

  9. 38 CFR 36.4329 - Hazard insurance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... located in an area identified by the Federal Emergency Management Agency as having special flood hazards... acquisition or construction of property located in an area identified by the Federal Emergency Management... protect the security against the risks or hazards to which it may be subjected to the extent customary in...

  10. 14 CFR 417.409 - System hazard controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... hazard as identified by the ground safety analysis and satisfy the requirements of this section. A launch... electrical power and signal circuits that interface with hazardous subsystems. (e) Propulsion systems. A...

  11. 14 CFR 417.409 - System hazard controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... hazard as identified by the ground safety analysis and satisfy the requirements of this section. A launch... electrical power and signal circuits that interface with hazardous subsystems. (e) Propulsion systems. A...

  12. 14 CFR 417.409 - System hazard controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... hazard as identified by the ground safety analysis and satisfy the requirements of this section. A launch... electrical power and signal circuits that interface with hazardous subsystems. (e) Propulsion systems. A...

  13. 14 CFR 417.409 - System hazard controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hazard as identified by the ground safety analysis and satisfy the requirements of this section. A launch... electrical power and signal circuits that interface with hazardous subsystems. (e) Propulsion systems. A...

  14. The use of animals as a surveillance tool for monitoring environmental health hazards, human health hazards and bioterrorism.

    PubMed

    Neo, Jacqueline Pei Shan; Tan, Boon Huan

    2017-05-01

    This review discusses the utilization of wild or domestic animals as surveillance tools for monitoring naturally occurring environmental and human health hazards. Besides providing early warning to natural hazards, animals can also provide early warning to societal hazards like bioterrorism. Animals are ideal surveillance tools to humans because they share the same environment as humans and spend more time outdoors than humans, increasing their exposure risk. Furthermore, the biologically compressed lifespans of some animals may allow them to develop clinical signs more rapidly after exposure to specific pathogens. Animals are an excellent channel for monitoring novel and known pathogens with outbreak potential given that more than 60 % of emerging infectious diseases in humans originate as zoonoses. This review attempts to highlight animal illnesses, deaths, biomarkers or sentinel events, to remind human and veterinary public health programs that animal health can be used to discover, monitor or predict environmental health hazards, human health hazards, or bioterrorism. Lastly, we hope that this review will encourage the implementation of animals as a surveillance tool by clinicians, veterinarians, ecosystem health professionals, researchers and governments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Probability-based hazard avoidance guidance for planetary landing

    NASA Astrophysics Data System (ADS)

    Yuan, Xu; Yu, Zhengshi; Cui, Pingyuan; Xu, Rui; Zhu, Shengying; Cao, Menglong; Luan, Enjie

    2018-03-01

    Future landing and sample return missions on planets and small bodies will seek landing sites with high scientific value, which may be located in hazardous terrains. Autonomous landing in such hazardous terrains and highly uncertain planetary environments is particularly challenging. Onboard hazard avoidance ability is indispensable, and the algorithms must be robust to uncertainties. In this paper, a novel probability-based hazard avoidance guidance method is developed for landing in hazardous terrains on planets or small bodies. By regarding the lander state as probabilistic, the proposed guidance algorithm exploits information on the uncertainty of lander position and calculates the probability of collision with each hazard. The collision probability serves as an accurate safety index, which quantifies the impact of uncertainties on the lander safety. Based on the collision probability evaluation, the state uncertainty of the lander is explicitly taken into account in the derivation of the hazard avoidance guidance law, which contributes to enhancing the robustness to the uncertain dynamics of planetary landing. The proposed probability-based method derives fully analytic expressions and does not require off-line trajectory generation. Therefore, it is appropriate for real-time implementation. The performance of the probability-based guidance law is investigated via a set of simulations, and the effectiveness and robustness under uncertainties are demonstrated.

  16. Comparative hazard evaluation of near-infrared diode lasers.

    PubMed

    Marshall, W J

    1994-05-01

    Hazard evaluation methods from various laser protection standards differ when applied to extended-source, near-infrared lasers. By way of example, various hazard analyses are applied to laser training systems, which incorporate diode lasers, specifically those that assist in training military or law enforcement personnel in the proper use of weapons by simulating actual firing by the substitution of a beam of near-infrared energy for bullets. A correct hazard evaluation of these lasers is necessary since simulators are designed to be directed toward personnel during normal use. The differences among laser standards are most apparent when determining the hazard class of a laser. Hazard classification is based on a comparison of the potential exposures with the maximum permissible exposures in the 1986 and 1993 versions of the American National Standard for the Safe Use of Lasers, Z136.1, and the accessible emission limits of the federal laser product performance standard. Necessary safety design features of a particular system depend on the hazard class. The ANSI Z136.1-1993 standard provides a simpler and more accurate hazard assessment of low-power, near-infrared, diode laser systems than the 1986 ANSI standard. Although a specific system is evaluated, the techniques described can be readily applied to other near-infrared lasers or laser training systems.

  17. More About Hazard-Response Robot For Combustible Atmospheres

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.; Ohm, Timothy R.

    1995-01-01

    Report presents additional information about design and capabilities of mobile hazard-response robot called "Hazbot III." Designed to operate safely in combustible and/or toxic atmosphere. Includes cameras and chemical sensors helping human technicians determine location and nature of hazard so human emergency team can decide how to eliminate hazard without approaching themselves.

  18. 46 CFR 2.75-60 - Hazardous ships' stores.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Hazardous ships' stores. 2.75-60 Section 2.75-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC VESSEL... Personnel § 2.75-60 Hazardous ships' stores. Hazardous ships' stores, as defined in § 147.3 of this chapter...

  19. 46 CFR 2.75-60 - Hazardous ships' stores.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Hazardous ships' stores. 2.75-60 Section 2.75-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC VESSEL... Personnel § 2.75-60 Hazardous ships' stores. Hazardous ships' stores, as defined in § 147.3 of this chapter...

  20. 46 CFR 2.75-60 - Hazardous ships' stores.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Hazardous ships' stores. 2.75-60 Section 2.75-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC VESSEL... Personnel § 2.75-60 Hazardous ships' stores. Hazardous ships' stores, as defined in § 147.3 of this chapter...

  1. 46 CFR 2.75-60 - Hazardous ships' stores.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Hazardous ships' stores. 2.75-60 Section 2.75-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC VESSEL... Personnel § 2.75-60 Hazardous ships' stores. Hazardous ships' stores, as defined in § 147.3 of this chapter...

  2. 49 CFR 172.555 - POISON INHALATION HAZARD placard.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false POISON INHALATION HAZARD placard. 172.555 Section... REQUIREMENTS, AND SECURITY PLANS Placarding § 172.555 POISON INHALATION HAZARD placard. (a) Except for size and color, the POISON INHALATION HAZARD placard must be as follows: ER22JY97.025 (b) In addition to...

  3. 49 CFR 172.555 - POISON INHALATION HAZARD placard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false POISON INHALATION HAZARD placard. 172.555 Section... REQUIREMENTS, AND SECURITY PLANS Placarding § 172.555 POISON INHALATION HAZARD placard. (a) Except for size and color, the POISON INHALATION HAZARD placard must be as follows: ER22JY97.025 (b) In addition to...

  4. 49 CFR 172.555 - POISON INHALATION HAZARD placard.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false POISON INHALATION HAZARD placard. 172.555 Section... REQUIREMENTS, AND SECURITY PLANS Placarding § 172.555 POISON INHALATION HAZARD placard. (a) Except for size and color, the POISON INHALATION HAZARD placard must be as follows: ER22JY97.025 (b) In addition to...

  5. 49 CFR 172.555 - POISON INHALATION HAZARD placard.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false POISON INHALATION HAZARD placard. 172.555 Section... REQUIREMENTS, AND SECURITY PLANS Placarding § 172.555 POISON INHALATION HAZARD placard. (a) Except for size and color, the POISON INHALATION HAZARD placard must be as follows: ER22JY97.025 (b) In addition to...

  6. 49 CFR 172.555 - POISON INHALATION HAZARD placard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false POISON INHALATION HAZARD placard. 172.555 Section... REQUIREMENTS, AND SECURITY PLANS Placarding § 172.555 POISON INHALATION HAZARD placard. (a) Except for size and color, the POISON INHALATION HAZARD placard must be as follows: ER22JY97.025 (b) In addition to...

  7. 46 CFR 2.75-60 - Hazardous ships' stores.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Hazardous ships' stores. 2.75-60 Section 2.75-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC VESSEL... Personnel § 2.75-60 Hazardous ships' stores. Hazardous ships' stores, as defined in § 147.3 of this chapter...

  8. 16 CFR § 1306.3 - Banned hazardous products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Banned hazardous products. § 1306.3 Section § 1306.3 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS BAN OF HAZARDOUS LAWN DARTS § 1306.3 Banned hazardous products. Any lawn dart is a banned...

  9. 36 CFR 13.1304 - Ice fall hazard zones.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Ice fall hazard zones. 13.1304 Section 13.1304 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... Provisions § 13.1304 Ice fall hazard zones. Entering an ice fall hazard zone is prohibited. These zones will...

  10. 36 CFR 13.1304 - Ice fall hazard zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Ice fall hazard zones. 13.1304 Section 13.1304 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... Provisions § 13.1304 Ice fall hazard zones. Entering an ice fall hazard zone is prohibited. These zones will...

  11. 36 CFR 13.1304 - Ice fall hazard zones.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Ice fall hazard zones. 13.1304 Section 13.1304 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... Provisions § 13.1304 Ice fall hazard zones. Entering an ice fall hazard zone is prohibited. These zones will...

  12. 36 CFR 13.1304 - Ice fall hazard zones.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Ice fall hazard zones. 13.1304 Section 13.1304 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... Provisions § 13.1304 Ice fall hazard zones. Entering an ice fall hazard zone is prohibited. These zones will...

  13. A comparative evaluation of five hazard screening tools.

    PubMed

    Panko, J M; Hitchcock, K; Fung, M; Spencer, P J; Kingsbury, T; Mason, A M

    2017-01-01

    An increasing number of hazard assessment tools and approaches are being used in the marketplace as a means to differentiate products and ingredients with lower versus higher hazards or to certify what some call greener chemical ingredients in consumer products. Some leading retailers have established policies for product manufacturers and their suppliers to disclose chemical ingredients and their related hazard characteristics often specifying what tools to use. To date, no data exists that show a tool's reliability to provide consistent, credible screening-level hazard scores that can inform greener product selection. We conducted a small pilot study to understand and compare the hazard scoring of several hazard screening tools to determine if hazard and toxicity profiles for chemicals differ. Seven chemicals were selected that represent both natural and man-made chemistries as well as a range of toxicological activity. We conducted the assessments according to each tool provider's guidelines, which included factors such as endpoints, weighting preferences, sources of information, and treatment of data gaps. The results indicate the tools varied in the level of discrimination seen in the scores for these 7 chemicals and that tool classifications of the same chemical varied widely between the tools, ranging from little or no hazard or toxicity to very high hazard or toxicity. The results also highlight the need for transparency in describing the basis for the tool's hazard scores and suggest possible enhancements. Based on this pilot study, tools should not be generalized to fit all situations because their evaluations are context-specific. Before choosing a tool or approach, it is critical that the assessment rationale be clearly defined and matches the selected tool or approach. Integr Environ Assess Manag 2017;13:139-154. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The

  14. 78 FR 18419 - Office of Hazardous Materials Safety; Delayed Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety; Delayed Applications AGENCY: Pipeline and Hazardous Materials Safety.... FOR FURTHER INFORMATION CONTACT: Ryan Paquet, Director, Office of Hazardous Materials Special Permits...

  15. Defining hazard from the mine worker's perspective

    PubMed Central

    Eiter, B.M.; Kosmoski, C.L.; Connor, B.P.

    2016-01-01

    In the recent past, the mining industry has witnessed a substantial increase in the numbers of fatalities occurring at metal and nonmetal mine sites, but it is unclear why this is occurring. One possible explanation is that workers struggle with identifying worksite hazards and accurately assessing the associated risk. The purpose of this research was to explore this possibility within the mining industry and to more fully understand stone, sand and gravel (SSG) mine workers' thoughts, understandings and perceptions of worksite hazards and risks. Eight mine workers were interviewed and asked to identify common hazards they come across when doing their jobs and to then discuss their perceptions of the risks associated with those identified hazards. The results of this exploratory study indicate the importance of workers' job-related experience as it applies to hazard identification and risk perception, particularly their knowledge of or familiarity with a task, whether or not they had personal control over that task, and the frequency with which they perform that task. PMID:28042176

  16. Earthquake Hazard Analysis Methods: A Review

    NASA Astrophysics Data System (ADS)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

  17. Motivational interviewing with hazardous drinkers.

    PubMed

    Beckham, Nancy

    2007-02-01

    To test the effectiveness of motivational interviewing in a population of hazardous drinkers utilizing community health care centers in rural southeastern Idaho. This study targeted rural people at risk for alcohol dependence utilizing low-income community health care centers in rural southeastern Idaho. The Alcohol Use Disorders Identification Test (AUDIT) was used to screen interested clients' alcohol use. Clients achieving an AUDIT score indicating hazardous alcohol use were recruited into the study and randomized into a control or treatment group. Twenty-six hazardous drinkers attending five low-income community health centers participated in the study. The experimental group participated in one motivational interviewing session with the investigator, a family nurse practitioner (NP). The comparison group received no treatment. Alcohol use was tracked for 6 weeks after successful recruitment into the program. Participants in the study significantly decreased their average number of drinks per day. At time 1 (pretreatment), the control group drank 4.37 drinks per day and the treatment group drank 4.65 drinks per day. At time 2 (posttest), the control group drank 3.77 drinks per day and the treatment group drank 1.95 drinks per day. The effects of the motivational interviewing treatment on hazardous drinking also were measured by serum gamma-glutamyltransferase (GGT), a liver function test. There was also a significant decrease in the GGT from pretest to posttest in the treatment group. The results of this investigation found that motivational interviewing shows promise as an effective intervention for hazardous drinkers attending low-income community clinics. Although other possible explanations could be postulated for the positive changes in sample participants, the data indicate that the motivational interviewing approach was responsible for a significant portion of the positive changes within the current sample. The information collected from the study adds

  18. Prevalence of hazardous exposures in veterinary practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiggins, P.; Schenker, M.B.; Green, R.

    1989-01-01

    All female graduates of a major U.S. veterinary school were surveyed by mailed questionnaire to obtain details of work practice and hazard exposure during the most recent year worked and during all pregnancies. Exposure questions were based on previously implicated occupational hazards which included anesthetic gases, radiation, zoonoses, prostaglandins, vaccines, physical trauma, and pesticides. The response rate was 86% (462/537). We found that practice type and pregnancy status were major determinants of hazard exposure within the veterinary profession. Small-animal practitioners reported the highest rates of exposure to anesthetic gas (94%), X-ray (90%), and pesticides (57%). Large-animal practitioners reported greater ratesmore » of trauma (64%) and potential exposure to prostaglandins (92%), Brucella abortus vaccine (23%), and carbon monoxide (18%). Potentially hazardous workplace practices or equipment were common. Forty-one percent of respondents who reported taking X-rays did not wear film badges, and 76% reported physically restraining animals for X-ray procedures. Twenty-seven percent of the respondents exposed to anesthetic gases worked at facilities which did not have waste anesthetic gas scavenging systems. Women who worked as veterinarians during a pregnancy attempted to reduce exposures to X-rays, insecticides, and other potentially hazardous exposures. Some potentially hazardous workplace exposures are common in veterinary practice, and measures to educate workers and to reduce these exposures should not await demonstration of adverse health effects.« less

  19. 21 CFR 120.7 - Hazard analysis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Hazard analysis. 120.7 Section 120.7 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... determine whether there are food hazards that are reasonably likely to occur for each type of juice...

  20. Can hazard risk be communicated through a virtual experience?

    PubMed

    Mitchell, J T

    1997-09-01

    Cyberspace, defined by William Gibson as a consensual hallucination, now refers to all computer-generated interactive environments. Virtual reality, one of a class of interactive cyberspaces, allows us to create and interact directly with objects not available in the everyday world. Despite successes in the entertainment and aviation industries, this technology has been called a 'solution in search of a problem'. The purpose of this commentary is to suggest such a problem: the inability to acquire experience with a hazard to motivate mitigation. Direct experience with a hazard has been demonstrated as a powerful incentive to adopt mitigation measures. While we lack the ability to summon hazard events at will in order to gain access to that experience, a virtual environment can provide an arena where potential victims are exposed to a hazard's effects. Immersion as an active participant within the hazard event through virtual reality may stimulate users to undertake mitigation steps that might otherwise remain undone. This paper details the possible direction in which virtual reality may be applied to hazards mitigation through a discussion of the technology, the role of hazard experience, the creation of a hazard stimulation and the issues constraining implementation.

  1. 49 CFR 172.429 - POISON INHALATION HAZARD label.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false POISON INHALATION HAZARD label. 172.429 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.429 POISON INHALATION HAZARD label. (a) Except for size and color, the POISON INHALATION HAZARD label must be as follows: ER22JY97.023 (b) In addition to complying...

  2. 49 CFR 172.429 - POISON INHALATION HAZARD label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false POISON INHALATION HAZARD label. 172.429 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.429 POISON INHALATION HAZARD label. (a) Except for size and color, the POISON INHALATION HAZARD label must be as follows: ER22JY97.023 (b) In addition to complying...

  3. 49 CFR 172.429 - POISON INHALATION HAZARD label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false POISON INHALATION HAZARD label. 172.429 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.429 POISON INHALATION HAZARD label. (a) Except for size and color, the POISON INHALATION HAZARD label must be as follows: ER22JY97.023 (b) In addition to complying...

  4. 49 CFR 172.429 - POISON INHALATION HAZARD label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false POISON INHALATION HAZARD label. 172.429 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.429 POISON INHALATION HAZARD label. (a) Except for size and color, the POISON INHALATION HAZARD label must be as follows: ER22JY97.023 (b) In addition to complying...

  5. 49 CFR 172.429 - POISON INHALATION HAZARD label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false POISON INHALATION HAZARD label. 172.429 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.429 POISON INHALATION HAZARD label. (a) Except for size and color, the POISON INHALATION HAZARD label must be as follows: ER22JY97.023 (b) In addition to complying...

  6. Risk for household safety hazards: Socioeconomic and sociodemographic factors.

    PubMed

    Mayes, Sunnye; Roberts, Michael C; Stough, Cathleen Odar

    2014-12-01

    Many unintentional injuries to young children occur in the home. The current study examines the relation between family socioeconomic and sociodemographic factors and risk factors for home injury. Presence of household hazards was examined in 80 families with toddler-aged children. Parental ability to identify household hazards in pictures was also assessed. ANOVAs and Pearson product-moment correlations examined the relationship between presence of household hazards, knowledge to identify hazards, and factors of yearly family income, parental age, parental education, parental marital status, child ethnicity, and the number of children living in the home. A greater number of hazards were found in the homes of both the lowest and highest income families, but poorer knowledge to identify household hazards was found only among parents of the lowest income families and younger parents. Across family socioeconomic status, parent knowledge of hazards was related to observed household hazards. The relationship between family income and risk for injury is complex, and children of both lower and higher SES families may be at risk for injury. While historically particular focus has been placed on risk for injury among children in low income families, injury prevention efforts should target reducing presence of household hazards in both high and low SES families. Copyright © 2014 National Safety Council and Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  7. Progress in NTHMP Hazard Assessment

    USGS Publications Warehouse

    Gonzalez, F.I.; Titov, V.V.; Mofjeld, H.O.; Venturato, A.J.; Simmons, R.S.; Hansen, R.; Combellick, Rodney; Eisner, R.K.; Hoirup, D.F.; Yanagi, B.S.; Yong, S.; Darienzo, M.; Priest, G.R.; Crawford, G.L.; Walsh, T.J.

    2005-01-01

    The Hazard Assessment component of the U.S. National Tsunami Hazard Mitigation Program has completed 22 modeling efforts covering 113 coastal communities with an estimated population of 1.2 million residents that are at risk. Twenty-three evacuation maps have also been completed. Important improvements in organizational structure have been made with the addition of two State geotechnical agency representatives to Steering Group membership, and progress has been made on other improvements suggested by program reviewers. ?? Springer 2005.

  8. 32 CFR 935.161 - Fire hazards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Fire hazards. 935.161 Section 935.161 National... WAKE ISLAND CODE Public Safety § 935.161 Fire hazards. (a) Each person engaged in a business or other activity on Wake Island shall, at his expense, provide and maintain (in an accessible location) fire...

  9. 32 CFR 935.161 - Fire hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Fire hazards. 935.161 Section 935.161 National... WAKE ISLAND CODE Public Safety § 935.161 Fire hazards. (a) Each person engaged in a business or other activity on Wake Island shall, at his expense, provide and maintain (in an accessible location) fire...

  10. 32 CFR 935.161 - Fire hazards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Fire hazards. 935.161 Section 935.161 National... WAKE ISLAND CODE Public Safety § 935.161 Fire hazards. (a) Each person engaged in a business or other activity on Wake Island shall, at his expense, provide and maintain (in an accessible location) fire...

  11. 32 CFR 935.161 - Fire hazards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Fire hazards. 935.161 Section 935.161 National... WAKE ISLAND CODE Public Safety § 935.161 Fire hazards. (a) Each person engaged in a business or other activity on Wake Island shall, at his expense, provide and maintain (in an accessible location) fire...

  12. 32 CFR 935.161 - Fire hazards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Fire hazards. 935.161 Section 935.161 National... WAKE ISLAND CODE Public Safety § 935.161 Fire hazards. (a) Each person engaged in a business or other activity on Wake Island shall, at his expense, provide and maintain (in an accessible location) fire...

  13. 49 CFR 171.3 - Hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used to...

  14. Hazards in the hospital.

    PubMed

    Seibert, P J

    1994-02-01

    In an earlier article (JAVMA, Jan 15, 1994), the author outlined some of the first steps necessary in establishing a hospital safety program that will comply with current Occupational Safety and Health Administration (OSHA) guidelines. One of the main concerns of the OSHA guidelines is that there be written plans for managing hazardous materials, performing dangerous jobs, and dealing with other potential safety problems. In this article, the author discusses potentially hazardous situations commonly found in veterinary practices and provides details on how to minimize the risks associated with those situations and how to implement safety procedures that will comply with the OSHA guidelines.

  15. Hazardous Materials Routing Study Phase I: Establishing Hazardous Materials Truck Routes for Shipments Through the Dallas-Fort Worth Area

    DOT National Transportation Integrated Search

    1985-10-01

    The transportation of hazardous materials over streets and highways in the Dallas-Fort Worth area has become a significant transportation safety concern. Recent accidents involving vehicles transporting hazardous materials have resulted in extensive ...

  16. Evaluation of Horizontal Seismic Hazard of Shahrekord, Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiri, G. Ghodrati; Dehkordi, M. Raeisi; Amrei, S. A. Razavian

    2008-07-08

    This paper presents probabilistic horizontal seismic hazard assessment of Shahrekord, Iran. It displays the probabilistic estimate of Peak Ground Horizontal Acceleration (PGHA) for the return period of 75, 225, 475 and 2475 years. The output of the probabilistic seismic hazard analysis is based on peak ground acceleration (PGA), which is the most common criterion in designing of buildings. A catalogue of seismic events that includes both historical and instrumental events was developed and covers the period from 840 to 2007. The seismic sources that affect the hazard in Shahrekord were identified within the radius of 150 km and the recurrencemore » relationships of these sources were generated. Finally four maps have been prepared to indicate the earthquake hazard of Shahrekord in the form of iso-acceleration contour lines for different hazard levels by using SEISRISK III software.« less

  17. 78 FR 24309 - Pipeline and Hazardous Materials Safety Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration List of Special Permit Applications Delayed AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA..., Pipeline and Hazardous Materials Safety Administration, U.S. Department of Transportation, East Building...

  18. Hazardous materials programs in the fifty states.

    DOT National Transportation Integrated Search

    1988-01-01

    This report describes the hazardous materials transportation safety programs, laws, and regulatory programs enacted by each of the fifty states. The report contains a brief description of common elements in the hazardous materials policy-making proce...

  19. 30 CFR 56.9310 - Chute hazards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Chute hazards. 56.9310 Section 56.9310 Mineral... tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or material. ...

  20. 30 CFR 56.9310 - Chute hazards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Chute hazards. 56.9310 Section 56.9310 Mineral... tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or material. ...

  1. 30 CFR 57.9310 - Chute hazards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Chute hazards. 57.9310 Section 57.9310 Mineral... the proper tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or...

  2. 30 CFR 56.9310 - Chute hazards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Chute hazards. 56.9310 Section 56.9310 Mineral... tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or material. ...

  3. 30 CFR 57.9310 - Chute hazards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Chute hazards. 57.9310 Section 57.9310 Mineral... the proper tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or...

  4. 30 CFR 57.9310 - Chute hazards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Chute hazards. 57.9310 Section 57.9310 Mineral... the proper tools to free material. (c) When broken rock or material is dumped into an empty chute, the chute shall be equipped with a guard or all persons shall be isolated from the hazard of flying rock or...

  5. Thrown object hazards in forest operations

    Treesearch

    Robert Rummer; John Klepac

    2011-01-01

    Mechanized equipment for forest operations provide better operator protection in this hazardous work environment. However operators of forestry cutting machines are now exposed to new hazards from the high-energy cutting devices used to cut trees and process logs. Anecdotal reports of thrown objects document a risk of injury and fatality. Two new ISO standards have...

  6. Understanding and responding to earthquake hazards

    NASA Technical Reports Server (NTRS)

    Raymond, C. A.; Lundgren, P. R.; Madsen, S. N.; Rundle, J. B.

    2002-01-01

    Advances in understanding of the earthquake cycle and in assessing earthquake hazards is a topic of great importance. Dynamic earthquake hazard assessments resolved for a range of spatial scales and time scales will allow a more systematic approach to prioritizing the retrofitting of vulnerable structures, relocating populations at risk, protecting lifelines, preparing for disasters, and educating the public.

  7. PyBetVH: A Python tool for probabilistic volcanic hazard assessment and for generation of Bayesian hazard curves and maps

    NASA Astrophysics Data System (ADS)

    Tonini, Roberto; Sandri, Laura; Anne Thompson, Mary

    2015-06-01

    PyBetVH is a completely new, free, open-source and cross-platform software implementation of the Bayesian Event Tree for Volcanic Hazard (BET_VH), a tool for estimating the probability of any magmatic hazardous phenomenon occurring in a selected time frame, accounting for all the uncertainties. New capabilities of this implementation include the ability to calculate hazard curves which describe the distribution of the exceedance probability as a function of intensity (e.g., tephra load) on a grid of points covering the target area. The computed hazard curves are (i) absolute (accounting for the probability of eruption in a given time frame, and for all the possible vent locations and eruptive sizes) and (ii) Bayesian (computed at different percentiles, in order to quantify the epistemic uncertainty). Such curves allow representation of the full information contained in the probabilistic volcanic hazard assessment (PVHA) and are well suited to become a main input to quantitative risk analyses. PyBetVH allows for interactive visualization of both the computed hazard curves, and the corresponding Bayesian hazard/probability maps. PyBetVH is designed to minimize the efforts of end users, making PVHA results accessible to people who may be less experienced in probabilistic methodologies, e.g. decision makers. The broad compatibility of Python language has also allowed PyBetVH to be installed on the VHub cyber-infrastructure, where it can be run online or downloaded at no cost. PyBetVH can be used to assess any type of magmatic hazard from any volcano. Here we illustrate how to perform a PVHA through PyBetVH using the example of analyzing tephra fallout from the Okataina Volcanic Centre (OVC), New Zealand, and highlight the range of outputs that the tool can generate.

  8. 76 FR 45332 - Pipeline and Hazardous Materials Safety Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of... Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: List of Applications for Modification of..., 2011. ADDRESSES: Record Center, Pipeline and Hazardous Materials Safety Administration, U.S. Department...

  9. Flows of Selected Hazardous Materials by Rail

    DOT National Transportation Integrated Search

    1990-03-01

    This report reviews the hazardous materials rail traffic of 33 selected hazardous materials commoditites or commodity groups in 1986, a relatively typical recent year. The flow of the selected commodities by rail are characterized and their geographi...

  10. Exposure to Stress: Occupational Hazards in Hospitals

    MedlinePlus

    EXPOSURE TO STRESS Occupational Hazards in Hospitals DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Exposure to Stress Occupational Hazards in Hospitals DEPARTMENT OF HEALTH AND ...

  11. Chemical incidents resulted in hazardous substances releases in the context of human health hazards.

    PubMed

    Pałaszewska-Tkacz, Anna; Czerczak, Sławomir; Konieczko, Katarzyna

    2017-02-21

    The research purpose was to analyze data concerning chemical incidents in Poland collected in 1999-2009 in terms of health hazards. The data was obtained, using multimodal information technology (IT) system, from chemical incidents reports prepared by rescuers at the scene. The final analysis covered sudden events associated with uncontrolled release of hazardous chemical substances or mixtures, which may potentially lead to human exposure. Releases of unidentified substances where emergency services took action to protect human health or environment were also included. The number of analyzed chemical incidents in 1999-2009 was 2930 with more than 200 different substances released. The substances were classified into 13 groups of substances and mixtures posing analogous risks. Most common releases were connected with non-flammable corrosive liquids, including: hydrochloric acid (199 cases), sulfuric(VI) acid (131 cases), sodium and potassium hydroxides (69 cases), ammonia solution (52 cases) and butyric acid (32 cases). The next group were gases hazardous only due to physico-chemical properties, including: extremely flammable propane-butane (249 cases) and methane (79 cases). There was no statistically significant trend associated with the total number of incidents. Only with the number of incidents with flammable corrosive, toxic and/or harmful liquids, the regression analysis revealed a statistically significant downward trend. The number of victims reported was 1997, including 1092 children and 18 fatalities. The number of people injured, number of incidents and the high 9th place of Poland in terms of the number of Seveso establishments, and 4 times higher number of hazardous industrial establishments not covered by the Seveso Directive justify the need for systematic analysis of hazards and their proper identification. It is advisable enhance health risk assessment, both qualitative and quantitative, by slight modification of the data collection system so as

  12. Volcanic hazards in Central America

    USGS Publications Warehouse

    Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.

    2006-01-01

    This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.

  13. Integrated Geo Hazard Management System in Cloud Computing Technology

    NASA Astrophysics Data System (ADS)

    Hanifah, M. I. M.; Omar, R. C.; Khalid, N. H. N.; Ismail, A.; Mustapha, I. S.; Baharuddin, I. N. Z.; Roslan, R.; Zalam, W. M. Z.

    2016-11-01

    Geo hazard can result in reducing of environmental health and huge economic losses especially in mountainous area. In order to mitigate geo-hazard effectively, cloud computer technology are introduce for managing geo hazard database. Cloud computing technology and it services capable to provide stakeholder's with geo hazards information in near to real time for an effective environmental management and decision-making. UNITEN Integrated Geo Hazard Management System consist of the network management and operation to monitor geo-hazard disaster especially landslide in our study area at Kelantan River Basin and boundary between Hulu Kelantan and Hulu Terengganu. The system will provide easily manage flexible measuring system with data management operates autonomously and can be controlled by commands to collects and controls remotely by using “cloud” system computing. This paper aims to document the above relationship by identifying the special features and needs associated with effective geohazard database management using “cloud system”. This system later will use as part of the development activities and result in minimizing the frequency of the geo-hazard and risk at that research area.

  14. Seismic hazard map of the western hemisphere

    USGS Publications Warehouse

    Shedlock, K.M.; Tanner, J.G.

    1999-01-01

    Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.). Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($6 billion), 1994 Northridge, CA ($ 25 billion), and 1995 Kobe, Japan (> $ 100 billion) earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes), emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the

  15. [Management of hazardous waste in a hospital].

    PubMed

    Neveu C, Alejandra; Matus C, Patricia

    2007-07-01

    An inadequate management of hospital waste, that have toxic, infectious and chemical wastes, is a risk factor for humans and environment. To identify, quantify and assess the risk associated to the management of hospital residues. A cross sectional assessment of the generation of hazardous waste from a hospital, between June and August 2005, was performed. The environmental risk associated to the management of non-radioactive hospital waste was assessed and the main problems related to solid waste were identified. The rate of generation of hazardous non-radioactive waste was 1.35 tons per months or 0.7 kg/bed/day. Twenty five percent of hazardous liquid waste were drained directly to the sewage system. The drug preparation unit of the pharmacy had the higher environmental risk associated to the generation of hazardous waste. The internal transport of hazardous waste had a high risk due to the lack of trip planning. The lack of training of personnel dealing with these waste was another risk factor. Considering that an adequate management of hospital waste should minimize risks for patients, the hospital that was evaluated lacks an integral management system for its waste.

  16. Chemical hazards in aeromedical aircraft.

    PubMed

    Tupper, C R

    1989-01-01

    Several potentially hazardous chemicals are required to make modern military aircraft fly. With each airevac mission, the possibility exists for structural failure of a fluid system, resulting in contamination to flight/medical crews, patients, and passengers. Aeromedical Evacuation Crewmembers (AECMs) need to be aware of the hazardous chemicals used in aircraft and areas where there is an increased risk to those in and around the aircraft. This study identified potential areas for chemical leakage, such as refuel receptacles, hydraulic reservoirs, hydraulic motors, doors, ramps, engines, and more. Further, it identified the basic first aid procedures to perform on people contaminated with jet fuel, hydraulic fluid, engine oil, fire extinguisher agents, LOX and other fluids. First aid procedures are basic and can be performed with supplies and equipment on a routine aeromedical evacuation mission, AECMs trained in a basic awareness of hazardous aircraft chemicals will result in crews better prepared to cope with the unique risks of transporting patients in a complicated military aircraft.

  17. Hazardous Waste Resources for Tribal Nations in the Midwest

    EPA Pesticide Factsheets

    Hazardous waste on tribal lands presents a unique set of opportunities and obstacles. This website is intended to be a host for resources that can help Tribal Nations understand the dynamics of hazardous waste and provide guidance on building tribal hazard

  18. Debris flow hazards mitigation--Mechanics, prediction, and assessment

    USGS Publications Warehouse

    Chen, C.-L.; Major, J.J.

    2007-01-01

    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  19. Rockfall Hazard Process Assessment : Final Project Report

    DOT National Transportation Integrated Search

    2017-10-01

    After a decade of using the Rockfall Hazard Rating System (RHRS), the Montana Department of Transportation (MDT) sought a reassessment of their rockfall hazard evaluation process. Their prior system was a slightly modified version of the RHRS and was...

  20. ANALYSIS OF GEOTHERMAL WASTES FOR HAZARDOUS COMPONENTS

    EPA Science Inventory

    Regulations governing the disposal of hazardous wastes led to an assessment for geothermal solid wastes for potentially hazardous properties. Samples were collected from three active geothermal sites in the western United States: The Geysers, Imperial Valley, and northwestern Nev...

  1. Evolution of vulnerability of communities facing repeated hazards

    PubMed Central

    Guikema, Seth D.; Zhu, Laiyin; Igusa, Takeru

    2017-01-01

    The decisions that individuals make when recovering from and adapting to repeated hazards affect a region’s vulnerability in future hazards. As such, community vulnerability is not a static property but rather a dynamic property dependent on behavioral responses to repeated hazards and damage. This paper is the first of its kind to build a framework that addresses the complex interactions between repeated hazards, regional damage, mitigation decisions, and community vulnerability. The framework enables researchers and regional planners to visualize and quantify how a community could evolve over time in response to repeated hazards under various behavioral scenarios. An illustrative example using parcel-level data from Anne Arundel County, Maryland—a county that experiences fairly frequent hurricanes—is presented to illustrate the methodology and to demonstrate how the interplay between individual choices and regional vulnerability is affected by the region’s hurricane experience. PMID:28953893

  2. Risk factors for hazardous events in olfactory-impaired patients.

    PubMed

    Pence, Taylor S; Reiter, Evan R; DiNardo, Laurence J; Costanzo, Richard M

    2014-10-01

    Normal olfaction provides essential cues to allow early detection and avoidance of potentially hazardous situations. Thus, patients with impaired olfaction may be at increased risk of experiencing certain hazardous events such as cooking or house fires, delayed detection of gas leaks, and exposure to or ingestion of toxic substances. To identify risk factors and potential trends over time in olfactory-related hazardous events in patients with impaired olfactory function. Retrospective cohort study of 1047 patients presenting to a university smell and taste clinic between 1983 and 2013. A total of 704 patients had both clinical olfactory testing and a hazard interview and were studied. On the basis of olfactory function testing results, patients were categorized as normosmic (n = 161), mildly hyposmic (n = 99), moderately hyposmic (n = 93), severely hyposmic (n = 142), and anosmic (n = 209). Patient evaluation including interview, examination, and olfactory testing. Incidence of specific olfaction-related hazardous events (ie, burning pots and/or pans, starting a fire while cooking, inability to detect gas leaks, inability to detect smoke, and ingestion of toxic substances or spoiled foods) by degree of olfactory impairment. The incidence of having experienced any hazardous event progressively increased with degree of impairment: normosmic (18.0%), mildly hyposmic (22.2%), moderately hyposmic (31.2%), severely hyposmic (32.4%), and anosmic (39.2%). Over 3 decades there was no significant change in the overall incidence of hazardous events. Analysis of demographic data (age, sex, race, smoking status, and etiology) revealed significant differences in the incidence of hazardous events based on age (among 397 patients <65 years, 148 [37.3%] with hazardous event, vs 31 of 146 patients ≥65 years [21.3%]; P < .001), sex (among 278 women, 106 [38.1%] with hazardous event, vs 73 of 265 men [27.6%]; P = .009), and race (among 98 African

  3. Toxics Release Inventory Chemical Hazard Information Profiles (TRI-CHIP) Dataset

    EPA Pesticide Factsheets

    The Toxics Release Inventory (TRI) Chemical Hazard Information Profiles (TRI-CHIP) dataset contains hazard information about the chemicals reported in TRI. Users can use this XML-format dataset to create their own databases and hazard analyses of TRI chemicals. The hazard information is compiled from a series of authoritative sources including the Integrated Risk Information System (IRIS). The dataset is provided as a downloadable .zip file that when extracted provides XML files and schemas for the hazard information tables.

  4. Atlas of natural hazards in the Hawaiian coastal zone

    USGS Publications Warehouse

    Fletcher, Charles H.; Grossman, Eric E.; Richmond, Bruce M.; Gibbs, Ann E.

    2002-01-01

    The purpose of this report is to communicate to citizens and regulatory authorities the history and relative intensity of coastal hazards in Hawaii. This information is the key to the wise use and management of coastal resources. The information contained in this document,we hope,will improve the ability of Hawaiian citizens and visitors to safely enjoy the coast and provide a strong data set for planners and managers to guide the future of coastal resources. This work is largely based on previous investigations by scientific and engineering researchers and county, state, and federal offices and agencies. The unique aspect of this report is that, to the extent possible, it assimilates prior efforts in documenting Hawaiian coastal hazards and combines existing knowledge into a single comprehensive coastal hazard data set. This is by no means the final word on coastal hazards in Hawaii. Every hazardous phenomenon described here, and others such as slope failure and rocky shoreline collapse, need to be more carefully quantified, forecast, and mitigated. Our ultimate goal, of course, is to make the Hawaiian coast a safer place by educating the people of the state, and their leaders, about the hazardous nature of the environment. In so doing, we will also be taking steps toward improved preservation of coastal environments, because the best way to avoid coastal hazards is to avoid inappropriate development in the coastal zone. We have chosen maps as the medium for both recording and communicating the hazard history and its intensity along the Hawaiian coast.Two types of maps are used: 1) smallscale maps showing a general history of hazards on each island and summarizing coastal hazards in a readily understandable format for general use, and 2) a large-scale series of technical maps (1:50,000) depicting coastal sections approximately 5 to 7 miles in length with color bands along the coast ranking the relative intensity of each hazard at the adjacent shoreline.

  5. 29 CFR 1910.1450 - Occupational exposure to hazardous chemicals in laboratories.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazard or simple asphyxiant in accordance with the Hazard Communication Standard (§ 1910.1200). Health... whether a chemical is classified as a health hazard are detailed in appendix A of the Hazard Communication... mutagens in accordance with the Hazard Communication Standard (§ 1910.1200) shall be considered mutagens...

  6. Prevention of Major Accident Hazards (MAHs) in major Hazard Installation (MHI) premises via land use planning (LUP): a review

    NASA Astrophysics Data System (ADS)

    Khudbiddin, M. Q.; Rashid, Z. A.; Yeong, A. F. M. S.; Alias, A. B.; Irfan, M. F.; Fuad, M.; Hayati, H.

    2018-03-01

    For a number of years, there is a concern about the causes of major hazards, their identification, risk assessment and the process of its management from the global perspective on the activities of the industries due to the protection of the environment, human and property. Though, industries cannot take pleasure in their business by harming the nature of the land, there are a number of measures that need to be put into consideration by the industries. Such measures are in terms of management and safety for the businesses, lives, properties, as well as the environment. The lack of consideration in the selected appropriate criteria can result in major accidental hazards (MAHs). This paper will review the land use planning (LUP) methods used in the past and present to prevent major accident hazards at major hazard installation (MHI).

  7. Radiation Hazard Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  8. Correlating regional natural hazards for global reinsurance risk assessment

    NASA Astrophysics Data System (ADS)

    Steptoe, Hamish; Maynard, Trevor; Economou, Theo; Fox, Helen; Wallace, Emily; Maisey, Paul

    2016-04-01

    Concurrent natural hazards represent an uncertainty in assessing exposure for the insurance industry. The recently implemented Solvency II Directive requires EU insurance companies to fully understand and justify their capital reserving and portfolio decisions. Lloyd's, the London insurance and reinsurance market, commissioned the Met Office to investigate the dependencies between different global extreme weather events (known to the industry as perils), and the mechanisms for these dependencies, with the aim of helping them assess their compound risk to the exposure of multiple simultaneous hazards. In this work, we base the analysis of hazard-to-hazard dependency on the interaction of different modes of global and regional climate variability. Lloyd's defined 16 key hazard regions, including Australian wildfires, flooding in China and EU windstorms, and we investigate the impact of 10 key climate modes on these areas. We develop a statistical model that facilitates rapid risk assessment whilst allowing for both temporal auto-correlation and, crucially, interdependencies between drivers. The simulator itself is built conditionally using autoregressive regression models for each driver conditional on the others. Whilst the baseline assumption within the (re)insurance industry is that different natural hazards are independent of each other, the assumption of independence of meteorological risks requires greater justification. Although our results suggest that most of the 120 hazard-hazard connections considered are likely to be independent of each other, 13 have significant dependence arising from one or more global modes of climate variability. This allows us to create a matrix of linkages describing the hazard dependency structure that Lloyd's can use to inform their understanding of risk.

  9. Seismic Landslide Hazard for the City of Berkeley, California

    USGS Publications Warehouse

    Miles, Scott B.; Keefer, David K.

    2001-01-01

    This map describes the possible hazard from earthquake-induced landslides for the city of Berkeley, CA. The hazard depicted by this map was modeled for a scenario corresponding to an M=7.1 earthquake on the Hayward, CA fault. This scenario magnitude is associated with complete rupture of the northern and southern segments of the Hayward fault, an event that has an estimated return period of about 500 years. The modeled hazard also corresponds to completely saturated ground-water conditions resulting from an extreme storm event or series of storm events. This combination of earthquake and ground-water scenarios represents a particularly severe state of hazard for earthquake-induced landslides. For dry ground-water conditions, overall hazard will be less, while relative patterns of hazard are likely to change. Purpose: The map is intended as a tool for regional planning. Any site-specific planning or analysis should be undertaken with the assistance of a qualified geotechnical engineer. This hazard map should not be used as a substitute to the State of California Seismic Hazard Zones map for the same area. (See California Department of Conservation, Division of Mines and Geology, 1999). As previously noted for maps of this type by Wieczorek and others (1985), this map should not be used as a basis to determine the absolute risk from seismically triggered landslides at any locality, as the sole justification for zoning or rezoning any parcel, for detailed design of any lifeline, for site-specific hazard-reduction planning, or for setting or modifying insurance rates.

  10. Electromagnetic Radiation Hazards Testing for Non-Ionizing Radio Frequency Transmitting Equipment

    DTIC Science & Technology

    2012-12-19

    Hazards of Electromagnetic Radiation to Ordnance (HERO), Personnel (HERP), and Fuel (HERF) protection guidance for intentional non-ionizing Radio...HERO Hazards of Electromagnetic Radiation to Ordnance HERP Hazards of Electromagnetic Radiation to Personnel IEEE Institute of Electrical and...Systems Command Technical Manual, Electromagnetic Radiation Hazards ( Hazards to Ordnance ), 1 July 2008.

  11. Hazards of Electromagnetic Radiation to Ordnance (HERO) Safety Test

    DTIC Science & Technology

    2013-01-10

    Ordnance Test Procedure (JOTP)-061 Hazards of Electromagnetic Radiation to...DEPARTMENT OF DEFENSE JOINT ORDNANCE TEST PROCEDURE (JOTP)-061 HAZARDS OF ELECTROMAGNETIC RADIATION TO ORDNANCE (HERO) SAFETY...TEST Joint Services Munition Safety Test Working Group Joint Ordnance Test Procedure (JOTP)-061 Hazards of Electromagnetic Radiation

  12. 48 CFR 952.250-70 - Nuclear hazards indemnity agreement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Nuclear hazards indemnity... Nuclear hazards indemnity agreement. Insert the following clause in accordance with section 950.7006: Nuclear Hazards Indemnity Agreement (JUN 1996) (a) Authority. This clause is incorporated into this...

  13. 48 CFR 952.250-70 - Nuclear hazards indemnity agreement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Nuclear hazards indemnity... Nuclear hazards indemnity agreement. Insert the following clause in accordance with section 950.7006: Nuclear Hazards Indemnity Agreement (JUN 1996) (a) Authority. This clause is incorporated into this...

  14. 48 CFR 952.250-70 - Nuclear hazards indemnity agreement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Nuclear hazards indemnity... Nuclear hazards indemnity agreement. Insert the following clause in accordance with section 950.7006: Nuclear Hazards Indemnity Agreement (JUN 1996) (a) Authority. This clause is incorporated into this...

  15. 48 CFR 952.250-70 - Nuclear hazards indemnity agreement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Nuclear hazards indemnity... Nuclear hazards indemnity agreement. Insert the following clause in accordance with section 950.7006: Nuclear Hazards Indemnity Agreement (JUN 1996) (a) Authority. This clause is incorporated into this...

  16. 77 FR 18844 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ...: Internal Agency Docket No. FEMA-B-1236] Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth...

  17. 78 FR 49277 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ...: Internal Agency Docket No. FEMA-B-1345] Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth...

  18. Legislative aspects of hazardous waste management.

    PubMed Central

    Friedman, M

    1983-01-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  19. Flood Hazard Management: British and International Perspectives

    NASA Astrophysics Data System (ADS)

    James, L. Douglas

    This proceedings of an international workshop at the Flood Hazard Research Centre (Queensway, Enfield, Middlesex, U.K.) begins by noting how past British research on flood problems concentrated on refining techniques to implement established policy. In contrast, research covered in North American and Australian publications involved normative issues on policy alternatives and administrative implementation. The workshop's participants included 16 widely recognized scientists, whose origins were about equally divided between Britain and overseas; from this group the workshop's organizers expertly drew ideas for refining British urban riverine flood hazard management and for cultivating links among researchers everywhere. Such intellectual exchange should be of keen interest to flood hazard program managers around the world, to students of comparative institutional performance, to those who make policy on protecting people from hazards, and to hydrologists and other geophysicists who must communicate descriptive information for bureaucratic, political, and public decision- making.

  20. RFID technology for hazardous waste management and tracking.

    PubMed

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored. © The Author(s) 2014.

  1. Development of a Probabilistic Tsunami Hazard Analysis in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka

    2006-07-01

    It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present anmore » example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)« less

  2. Hazardous and toxic waste management in Botswana: practices and challenges.

    PubMed

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  3. A high-resolution global flood hazard model

    NASA Astrophysics Data System (ADS)

    Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.

    2015-09-01

    Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.

  4. GRC Payload Hazard Assessment: Supporting the STS-107 Accident Investigation

    NASA Technical Reports Server (NTRS)

    Schoren, William R.; Zampino, Edward J.

    2004-01-01

    A hazard assessment was conducted on the GRC managed payloads in support of a NASA Headquarters Code Q request to examine STS-107 payloads and determine if they were credible contributors to the Columbia accident. This assessment utilized each payload's Final Flight Safety Data Package for hazard identification. An applicability assessment was performed and most of the hazards were eliminated because they dealt with payload operations or crew interactions. A Fault Tree was developed for all the hazards deemed applicable and the safety verification documentation was reviewed for these applicable hazards. At the completion of this hazard assessment, it was concluded that none of the GRC managed payloads were credible contributors to the Columbia accident.

  5. AGU:Comments Requested on Natural Hazards Position Statement

    NASA Astrophysics Data System (ADS)

    2004-11-01

    Natural hazards (earthquakes, floods, hurricanes, landslides, meteors, space weather, tornadoes, volcanoes, and other geophysical phenomena) are an integral component of our dynamic planet. These can have disastrous effects on vulnerable communities and ecosystems. By understanding how and where hazards occur, what causes them, and what circumstances increase their severity, we can develop effective strategies to reduce their impact. In practice, mitigating hazards requires addressing issues such as real-time monitoring and prediction, emergency preparedness, public education and awareness, post-disaster recovery, engineering, construction practices, land use, and building codes. Coordinated approaches involving scientists, engineers, policy makers, builders, lenders, insurers, news media, educators, relief organizations, and the public are therefore essential to reducing the adverse effects of natural hazards.

  6. Truck Transport of Hazardous Chemicals : Phosphorus Pentasulfide

    DOT National Transportation Integrated Search

    1996-08-01

    The transport of hazardous materials by all modes is a major concern of the U.S. Department of Transportation. Estimates place the total amount of hazardous materials transported in the U.S. in excess of 1.5 billion tons per year. Highway, water, and...

  7. 16 CFR 1302.4 - Banned hazardous products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... BAN OF EXTREMELY FLAMMABLE CONTACT ADHESIVES § 1302.4 Banned hazardous products. Any extremely flammable contact adhesive and similar liquid or semiliquid consumer product as defined in § 1302.3 (b... hazardous product. In addition, any other extremely flammable contact adhesive and similar liquid or...

  8. 40 CFR 264.4 - Imminent hazard action.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Imminent hazard action. 264.4 Section 264.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...

  9. Truck Transport of Hazardous Chemicals: 1-Butanol

    DOT National Transportation Integrated Search

    1995-09-01

    The transport of hazardous materials by all modes is a major concern of the U.S. Department of Transportation. Estimates place the total amount of hazardous materials transported in the U.S. in excess of 1.5 billion tons per year. Highway, water, and...

  10. 76 FR 43509 - Hazardous Materials; Miscellaneous Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... 20590-0001. SUPPLEMENTARY INFORMATION: I. Background A. Notice of Proposed Rulemaking (NPRM) On.... Hazard Communication for IBCs G. HMT Revisions H. Hazard Communication I. Exclusive Use Vehicles for.... Cargo Tanks O. Permeation Devices P. Alcoholic Beverage Exception Q. Special Permits R. Lab Packs S...

  11. Truck Transport of Hazardous Chemicals : Dodecene-1

    DOT National Transportation Integrated Search

    1996-09-01

    The transport of hazardous materials by all modes is a major concern of the U.S. Department of Transportation. Estimates place the total amount of hazardous materials transported in the U.S. in excess of 1.5 billion tons per year. Highway, water, and...

  12. 42 CFR 84.52 - Respiratory hazards; classification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Respiratory hazards; classification. 84.52 Section... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Classification of Approved Respirators; Scope of Approval; Atmospheric Hazards; Service Time § 84.52 Respiratory...

  13. 42 CFR 84.52 - Respiratory hazards; classification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Respiratory hazards; classification. 84.52 Section... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Classification of Approved Respirators; Scope of Approval; Atmospheric Hazards; Service Time § 84.52 Respiratory...

  14. 42 CFR 84.52 - Respiratory hazards; classification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respiratory hazards; classification. 84.52 Section... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Classification of Approved Respirators; Scope of Approval; Atmospheric Hazards; Service Time § 84.52 Respiratory...

  15. 42 CFR 84.52 - Respiratory hazards; classification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Respiratory hazards; classification. 84.52 Section... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Classification of Approved Respirators; Scope of Approval; Atmospheric Hazards; Service Time § 84.52 Respiratory...

  16. 42 CFR 84.52 - Respiratory hazards; classification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Respiratory hazards; classification. 84.52 Section... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Classification of Approved Respirators; Scope of Approval; Atmospheric Hazards; Service Time § 84.52 Respiratory...

  17. Environmental Hazards: What You Need To Know.

    ERIC Educational Resources Information Center

    DiNardo, Cathy

    1996-01-01

    Discusses what school business officials should know concerning environmental hazards in educational facilities, particularly bloodborne pathogens (Human Immunodeficiency Virus and Hepatitis B), lead in paint and water, and asbestos. The keys to managing environmental hazards are education and a knowledgeable inhouse employee or outside consultant…

  18. Mobile machine hazardous working zone warning system

    DOEpatents

    Schiffbauer, William H.; Ganoe, Carl W.

    1999-01-01

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

  19. Mobile machine hazardous working zone warning system

    DOEpatents

    Schiffbauer, W.H.; Ganoe, C.W.

    1999-08-17

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

  20. Challenges in assessing seismic hazard in intraplate Europe

    NASA Astrophysics Data System (ADS)

    Brooks, Edward; Stein, Seth; Liu, Mian; Camelbeeck, Thierry; Merino, Miguel; Landgraf, Angela; Hintersberger, Esther; Kübler, Simon

    2016-04-01

    Intraplate seismicity is often characterized by episodic, clustered and migrating earth- quakes and extended after-shock sequences. Can these observations - primarily from North America, China and Australia - usefully be applied to seismic hazard assessment for intraplate Europe? Existing assessments are based on instrumental and historical seismicity of the past c. 1000 years, as well as some data for active faults. This time span probably fails to capture typical large-event recurrence intervals of the order of tens of thousands of years. Palaeoseismology helps to lengthen the observation window, but preferentially produces data in regions suspected to be seismically active. Thus the expected maximum magnitudes of future earthquakes are fairly uncertain, possibly underestimated, and earthquakes are likely to occur in unexpected locations. These issues particularly arise in considering the hazards posed by low-probability events to both heavily populated areas and critical facilities. For example, are the variations in seismicity (and thus assumed seismic hazard) along the Rhine Graben a result of short sampling or are they real? In addition to a better assessment of hazards with new data and models, it is important to recognize and communicate uncertainties in hazard estimates. The more users know about how much confidence to place in hazard maps, the more effectively the maps can be used.

  1. 77 FR 22229 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... concerning this amendment from Safe Food and Fertilizer (hereafter referred to as Safe Food), a grassroots.... * * * * * (a) * * * Industry and EPA hazardous waste No. Hazardous waste Hazard code * * * * * * * Organic...

  2. Hazard perception test for pedestrians.

    PubMed

    Rosenbloom, Tova; Mandel, Roi; Rosner, Yotam; Eldror, Ehud

    2015-06-01

    This research was aimed to construct and develop a unique system for training of pedestrians - children, adults and older persons - to cross streets safely and especially to detect successfully on-road hazards as pedestrians. For this purpose, an interactive computerized program has been inspired by the format of the popular HPT (hazard perception test) for drivers. The HPTP (hazard perception test for pedestrians) includes 10 pairs of video clips that were filmed in various locations but had a similar hazardous element. The clips presented potentially dangerous crossing scenarios such as a vehicle merging from the right side of the road from the perspective of the pedestrian who is trying to cross the street. The participants were asked to press the spacebar key every time they identified an approaching hazard. The participants were instructed to use the arrow keys for moving the viewing panel to the left or to the right in order to enlarge the field of view accordingly. Totally, 359 participants took part. Adults, children, and elders were assigned to two practice groups and three control groups in a 3 (age groups)×5 (experimental groups) design. One practice group underwent pretest, practice, discussion and posttest, the second experimental group through pretest, practice and posttest, one control group that underwent posttest only, the second control group underwent pretest, discussion and posttest and the third control group underwent both pretest and posttest. The most important finding was that children and adults who underwent practice received higher scores in the posttest compared to the pretest. Also, children who underwent practice increased their use of the arrow keys in the posttest compared to the pretest. Across conditions men scored higher than women on the HPTP, and used the keys more often. Age differences were found, with adults scoring being the highest, followed by children and the older persons. Copyright © 2015 Elsevier Ltd. All rights

  3. The Integrated Hazard Analysis Integrator

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Massie, Michael J.

    2009-01-01

    Hazard analysis addresses hazards that arise in the design, development, manufacturing, construction, facilities, transportation, operations and disposal activities associated with hardware, software, maintenance, operations and environments. An integrated hazard is an event or condition that is caused by or controlled by multiple systems, elements, or subsystems. Integrated hazard analysis (IHA) is especially daunting and ambitious for large, complex systems such as NASA s Constellation program which incorporates program, systems and element components that impact others (International Space Station, public, International Partners, etc.). An appropriate IHA should identify all hazards, causes, controls and verifications used to mitigate the risk of catastrophic loss of crew, vehicle and/or mission. Unfortunately, in the current age of increased technology dependence, there is the tendency to sometimes overlook the necessary and sufficient qualifications of the integrator, that is, the person/team that identifies the parts, analyzes the architectural structure, aligns the analysis with the program plan and then communicates/coordinates with large and small components, each contributing necessary hardware, software and/or information to prevent catastrophic loss. As viewed from both Challenger and Columbia accidents, lack of appropriate communication, management errors and lack of resources dedicated to safety were cited as major contributors to these fatalities. From the accident reports, it would appear that the organizational impact of managers, integrators and safety personnel contributes more significantly to mission success and mission failure than purely technological components. If this is so, then organizations who sincerely desire mission success must put as much effort in selecting managers and integrators as they do when designing the hardware, writing the software code and analyzing competitive proposals. This paper will discuss the necessary and

  4. Using Qualitative Hazard Analysis to Guide Quantitative Safety Analysis

    NASA Technical Reports Server (NTRS)

    Shortle, J. F.; Allocco, M.

    2005-01-01

    Quantitative methods can be beneficial in many types of safety investigations. However, there are many difficulties in using quantitative m ethods. Far example, there may be little relevant data available. This paper proposes a framework for using quantitative hazard analysis to prioritize hazard scenarios most suitable for quantitative mziysis. The framework first categorizes hazard scenarios by severity and likelihood. We then propose another metric "modeling difficulty" that desc ribes the complexity in modeling a given hazard scenario quantitatively. The combined metrics of severity, likelihood, and modeling difficu lty help to prioritize hazard scenarios for which quantitative analys is should be applied. We have applied this methodology to proposed concepts of operations for reduced wake separation for airplane operatio ns at closely spaced parallel runways.

  5. Natural Hazards Science at the U.S. Geological Survey

    USGS Publications Warehouse

    Perry, Suzanne C.; Jones, Lucile M.; Holmes, Robert R.

    2013-01-01

    The mission of the USGS in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. The USGS conducts hazard research and works closely with stakeholders and cooperators to inform a broad range of planning and response activities at individual, local, State, national, and international levels. It has critical statutory and nonstatutory roles regarding floods, earthquakes, tsunamis, landslides, coastal erosion, volcanic eruptions, wildfires, and magnetic storms. USGS science can help to understand and reduce risks from natural hazards by providing the information that decisionmakers need to determine which risk management activities are worth­while.

  6. Assessing Natural Hazard Vulnerability Through Marmara Region Using GIS

    NASA Astrophysics Data System (ADS)

    Sabuncu, A.; Garagon Dogru, A.; Ozener, H.

    2013-12-01

    Natural hazards are natural phenomenon occured in the Earth's system that include geological and meteorological events such as earthquakes, floods, landslides, droughts, fires and tsunamis. The metropolitan cities are vulnerable to natural hazards due to their population densities, industrial facilities and proporties. The urban layout of the megacities are complex since industrial facilities are interference with residential area. The Marmara region is placed in North-western Turkey suffered from natural hazards (earthquakes, floods etc.) for years. After 1999 Kocaeli and Duzce earthquakes and 2009 Istanbul flash floods, dramatic number of casualities and economic losses were reported by the authorities. Geographic information systems (GIS) have substantial capacity in order to develop natural disaster management. As these systems provide more efficient and reliable analysis and evaluation of the data in the management, and also convenient and better solutions for the decision making before during and after the natural hazards. The Earth science data and socio-economic data can be integrated into a GIS as different layers. Additionally, satellite data are used to understand the changes pre and post the natural hazards. GIS is a powerful software for the combination of different type of digital data. A natural hazard database for the Marmara region provides all different types of digital data to the users. All proper data collection processing and analysing are critical to evaluate and identify hazards. The natural hazard database allows users to monitor, analyze and query past and recent disasters in the Marmara Region. The long term aim of this study is to develop geodatabase and identify the natural hazard vulnerabilities of the metropolitan cities.

  7. Statistical analysis of the uncertainty related to flood hazard appraisal

    NASA Astrophysics Data System (ADS)

    Notaro, Vincenza; Freni, Gabriele

    2015-12-01

    The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.

  8. A Marine Hazardous Substances Data System. Volume 2.

    DTIC Science & Technology

    1985-12-01

    substances are considered by the Task III panel ill to exhibit the greatest potential for occupational health effects and warrant the greatest precautions for...Hazards Branch 1111 N NIOSH Registry of Toxic Effects of Chemical Substances 1121 P NIOSH/OSHA Pocket Guideto Chemical Hazards [61 U Undocumented Source...NAS Hazard Liquid or -- Rating Vapor Irritant Solid Irritant Poisons 0 No effect No effect No effect 1 Slight Effect Causes skin Slightly toxic

  9. 49 CFR 172.313 - Poisonous hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TABLE, SPECIAL PROVISIONS, HAZARDOUS MATERIALS COMMUNICATIONS, EMERGENCY RESPONSE INFORMATION, TRAINING... 1,000 kg (2,205 pounds) or more aggregate gross weight of the material in non-bulk packages marked... aggregate gross weight; and (ii) For different materials in both Hazard Zones A and B, with the...

  10. Indoor Pollutants: Environmental Hazards to Young Children.

    ERIC Educational Resources Information Center

    Noyes, Dorothy

    1987-01-01

    Alerts parents, teachers, and others to some of the leading indoor environmental hazards to young children which are caused by various types of indoor pollutants: cigarette smoke; heating/cooking equipment; asbestos; pesticides; art supplies; radon; and lead. Also suggests ways to reduce these health hazards. (BB)

  11. 48 CFR 950.7003 - Nuclear hazards indemnity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Nuclear hazards indemnity... MANAGEMENT EXTRAORDINARY CONTRACTUAL ACTIONS AND THE SAFETY ACT Nuclear Indemnification of DOE Contractors 950.7003 Nuclear hazards indemnity. (a) Section 170d. of the Atomic Energy Act, as amended, requires...

  12. 48 CFR 950.7003 - Nuclear hazards indemnity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Nuclear hazards indemnity... MANAGEMENT EXTRAORDINARY CONTRACTUAL ACTIONS AND THE SAFETY ACT Nuclear Indemnification of DOE Contractors 950.7003 Nuclear hazards indemnity. (a) Section 170d. of the Atomic Energy Act, as amended, requires...

  13. 48 CFR 950.7003 - Nuclear hazards indemnity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Nuclear hazards indemnity... MANAGEMENT EXTRAORDINARY CONTRACTUAL ACTIONS AND THE SAFETY ACT Nuclear Indemnification of DOE Contractors 950.7003 Nuclear hazards indemnity. (a) Section 170d. of the Atomic Energy Act, as amended, requires...

  14. 48 CFR 950.7003 - Nuclear hazards indemnity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Nuclear hazards indemnity... MANAGEMENT EXTRAORDINARY CONTRACTUAL ACTIONS AND THE SAFETY ACT Nuclear Indemnification of DOE Contractors 950.7003 Nuclear hazards indemnity. (a) Section 170d. of the Atomic Energy Act, as amended, requires...

  15. 48 CFR 950.7003 - Nuclear hazards indemnity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Nuclear hazards indemnity... MANAGEMENT EXTRAORDINARY CONTRACTUAL ACTIONS AND THE SAFETY ACT Nuclear Indemnification of DOE Contractors 950.7003 Nuclear hazards indemnity. (a) Section 170d. of the Atomic Energy Act, as amended, requires...

  16. 49 CFR 171.16 - Detailed hazardous materials incident reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... quantity of hazardous waste; (3) A specification cargo tank with a capacity of 1,000 gallons or greater..., DC 20590-0001, or an electronic Hazardous Material Incident Report to the Information System Manager..., submit a written or electronic copy of the Hazardous Materials Incident Report to the FAA Security Field...

  17. 49 CFR 171.16 - Detailed hazardous materials incident reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... quantity of hazardous waste; (3) A specification cargo tank with a capacity of 1,000 gallons or greater..., DC 20590-0001, or an electronic Hazardous Material Incident Report to the Information System Manager..., submit a written or electronic copy of the Hazardous Materials Incident Report to the FAA Security Field...

  18. 49 CFR 171.16 - Detailed hazardous materials incident reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... quantity of hazardous waste; (3) A specification cargo tank with a capacity of 1,000 gallons or greater..., DC 20590-0001, or an electronic Hazardous Material Incident Report to the Information System Manager..., submit a written or electronic copy of the Hazardous Materials Incident Report to the FAA Security Field...

  19. Probabilistic seismic hazard assessment of southern part of Ghana

    NASA Astrophysics Data System (ADS)

    Ahulu, Sylvanus T.; Danuor, Sylvester Kojo; Asiedu, Daniel K.

    2018-05-01

    This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615-2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.

  20. Virtual Research Environments for Natural Hazard Modelling

    NASA Astrophysics Data System (ADS)

    Napier, Hazel; Aldridge, Tim

    2017-04-01

    The Natural Hazards Partnership (NHP) is a group of 17 collaborating public sector organisations providing a mechanism for co-ordinated advice to government and agencies responsible for civil contingency and emergency response during natural hazard events. The NHP has set up a Hazard Impact Model (HIM) group tasked with modelling the impact of a range of UK hazards with the aim of delivery of consistent hazard and impact information. The HIM group consists of 7 partners initially concentrating on modelling the socio-economic impact of 3 key hazards - surface water flooding, land instability and high winds. HIM group partners share scientific expertise and data within their specific areas of interest including hydrological modelling, meteorology, engineering geology, GIS, data delivery, and modelling of socio-economic impacts. Activity within the NHP relies on effective collaboration between partners distributed across the UK. The NHP are acting as a use case study for a new Virtual Research Environment (VRE) being developed by the EVER-EST project (European Virtual Environment for Research - Earth Science Themes: a solution). The VRE is allowing the NHP to explore novel ways of cooperation including improved capabilities for e-collaboration, e-research, automation of processes and e-learning. Collaboration tools are complemented by the adoption of Research Objects, semantically rich aggregations of resources enabling the creation of uniquely identified digital artefacts resulting in reusable science and research. Application of the Research Object concept to HIM development facilitates collaboration, by encapsulating scientific knowledge in a shareable format that can be easily shared and used by partners working on the same model but within their areas of expertise. This paper describes the application of the VRE to the NHP use case study. It outlines the challenges associated with distributed partnership working and how they are being addressed in the VRE. A case