Sample records for accelerate drying process

  1. Accelerating the kiln drying of oak

    Treesearch

    William T. Simpson

    1980-01-01

    Reducing kiln-drying time for oak lumber can reduce energy requirements as well as reduce lumber inventories. In this work, l-inch northern red oak and white oak were kiln dried from green by a combination of individual accelerating techniques– presurfacing, presteaming, accelerated and smooth schedule, and high-temperature drying below 18 percent moisture content....

  2. Accelerated dry curing of hams.

    PubMed

    Marriott, N G; Kelly, R F; Shaffer, C K; Graham, P P; Boling, J W

    1985-01-01

    Uncured pork legs from the right side of 18 carcasses were treated with a Ross Tenderizer and the left side were controls. All 36 samples were dry-cured for 40, 56 or 70 days and evaluated for appearance traits, cure penetration characteristics, microbial load, Kramer Shear force and taste attributes. The tenderization treatment had no effect (P > 0·05) on visual color or cure penetration rate, weight loss before curing, percentage moisture, nitrate level, nitrite level, total plate count, anaerobic counts, psychrotrophic counts, objective and subjective tenderness measurements or juiciness. However, the higher values of salt suggested a possible acceleration of the dry cure penetration process among the tenderized samples. Cure time had no effect (P > 0·05) on percentage moisture, percentage salt, nitrate content, nitrite content, shear force and juiciness. Results suggest a limited effect of the mechanical tenderization process on certain traits related to dry curing and that total process time should be at least 70 days if color stability during cooking is desired. Copyright © 1985. Published by Elsevier Ltd.

  3. Effect of the Drying Process on the Intensification of Phenolic Compounds Recovery from Grape Pomace Using Accelerated Solvent Extraction

    PubMed Central

    Rajha, Hiba N.; Ziegler, Walter; Louka, Nicolas; Hobaika, Zeina; Vorobiev, Eugene; Boechzelt, Herbert G.; Maroun, Richard G.

    2014-01-01

    In light of their environmental and economic interests, food byproducts have been increasingly exploited and valorized for their richness in dietary fibers and antioxidants. Phenolic compounds are antioxidant bioactive molecules highly present in grape byproducts. Herein, the accelerated solvent extraction (ASE) of phenolic compounds from wet and dried grape pomace, at 45 °C, was conducted and the highest phenolic compounds yield (PCY) for wet (16.2 g GAE/100 g DM) and dry (7.28 g GAE/100 g DM) grape pomace extracts were obtained with 70% ethanol/water solvent at 140 °C. The PCY obtained from wet pomace was up to two times better compared to the dry byproduct and up to 15 times better compared to the same food matrices treated with conventional methods. With regard to Resveratrol, the corresponding dry pomace extract had a better free radical scavenging activity (49.12%) than the wet extract (39.8%). The drying pretreatment process seems to ameliorate the antiradical activity, especially when the extraction by ASE is performed at temperatures above 100 °C. HPLC-DAD analysis showed that the diversity of the flavonoid and the non-flavonoid compounds found in the extracts was seriously affected by the extraction temperature and the pretreatment of the raw material. This diversity seems to play a key role in the scavenging activity demonstrated by the extracts. Our results emphasize on ASE usage as a promising method for the preparation of highly concentrated and bioactive phenolic extracts that could be used in several industrial applications. PMID:25322155

  4. Effect of the drying process on the intensification of phenolic compounds recovery from grape pomace using accelerated solvent extraction.

    PubMed

    Rajha, Hiba N; Ziegler, Walter; Louka, Nicolas; Hobaika, Zeina; Vorobiev, Eugene; Boechzelt, Herbert G; Maroun, Richard G

    2014-10-15

    In light of their environmental and economic interests, food byproducts have been increasingly exploited and valorized for their richness in dietary fibers and antioxidants. Phenolic compounds are antioxidant bioactive molecules highly present in grape byproducts. Herein, the accelerated solvent extraction (ASE) of phenolic compounds from wet and dried grape pomace, at 45 °C, was conducted and the highest phenolic compounds yield (PCY) for wet (16.2 g GAE/100 g DM) and dry (7.28 g GAE/100 g DM) grape pomace extracts were obtained with 70% ethanol/water solvent at 140 °C. The PCY obtained from wet pomace was up to two times better compared to the dry byproduct and up to 15 times better compared to the same food matrices treated with conventional methods. With regard to Resveratrol, the corresponding dry pomace extract had a better free radical scavenging activity (49.12%) than the wet extract (39.8%). The drying pretreatment process seems to ameliorate the antiradical activity, especially when the extraction by ASE is performed at temperatures above 100 °C. HPLC-DAD analysis showed that the diversity of the flavonoid and the non-flavonoid compounds found in the extracts was seriously affected by the extraction temperature and the pretreatment of the raw material. This diversity seems to play a key role in the scavenging activity demonstrated by the extracts. Our results emphasize on ASE usage as a promising method for the preparation of highly concentrated and bioactive phenolic extracts that could be used in several industrial applications.

  5. Development of a modified dry curing process for beef.

    PubMed

    Hayes, J E; Kenny, T A; Ward, P; Kerry, J P

    2007-11-01

    The development of a dry curing process using physical treatments to promote the diffusion of the cure ingredients was studied. Vacuum pulsing with and without tumbling, continuous vacuum, and tumbling only treatments were compared with a conventional static dry cure control method on beef M. supraspinatus. Vacuum tumble and tumble only treatments gave highest core salt content after 7 days conditioning (3.3% and 3.1%, respectively). All test treatments resulted in higher colour uniformity and lower % cook loss in comparison to control (P<0.001). The control and vacuum pulsed samples were tougher (P<0.001). Vacuum tumble and tumble only treatments gave higher acceptability (P<0.001). Based on these findings for M. supraspinatus, indicating that the vacuum tumble treatments gave the best results, further testing of this method was conducted using the M. biceps femoris in addition to the M. supraspinatus. Cured beef slices were stored in modified atmosphere packs (MAP) (80%N(2):20%CO(2)) for up to 28 day at 4°C. Redness (a(∗), P<0.001) decreased over storage time in M. biceps femoris. Vacuum tumble treatment increased (P<0.05) redness in M. supraspinatus. Results obtained demonstrate the benefits of vacuum tumbling over the other physical treatments as a method for accelerating the dry curing process, producing dry cured beef products with enhanced organoleptic quality and increased yields.

  6. Turboexpanders with dry gas seals and active magnetic bearings in hydrocarbon processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agahi, R.R.

    1999-07-01

    Since its first application in hydrocarbon processing in the early 1960s, turboexpander design has changed, evolved and improved tremendously. Today, hydrocarbon process designers use turboexpanders for almost all hydrocarbon liquid rejection and hydrocarbon dew point control for onshore and offshore installations. There are presently more than 3,000 turboexpanders operating in hydrocarbon gas processing plants worldwide. Due to the wide application of turboexpanders in hydrocarbon processing, the API-617 committee has assigned a task force to prepare an appendix to API-617 to cover design and manufacturing standards for turboexpanders. Dry gas seals (DGS) were cautiously introduced in the early 1980s for compressorsmore » used in hydrocarbon processing. It took almost a decade before dry gas seals found their application in turboexpanders. Dry gas seals were originally utilized to protect cryogenic hydrocarbon process gas from contamination by lubricating oil. Later on, dry gas seals were used to minimized hydrocarbon process gas leakage and also to provide an inert-gas-purged environment for both oil bearings and active magnetic bearings. The former eliminates the lubricating oil dilution problem and the latter made certification of active magnetic bearings by international certifying agencies possible. Active magnetic bearings (AMB), similar to dry gas seals, were originally introduced into hydrocarbon process gas compressors in the mid 1980s. The hydrocarbon processing industry waited half a decade to adopt this innovative technology for turboexpanders in the hydrocarbon process. The first turboexpander with active magnetic bearings was installed on an offshore platform in 1991. High reliability, low capital investment, low capital investment, low operating costs and more compact design have accelerated demand in recent years for turboexpanders with active magnetic bearings. In this paper, the author describes the technology of turboexpanders with dry gas

  7. [Drying characteristics and apparent change of sludge granules during drying].

    PubMed

    Ma, Xue-Wen; Weng, Huan-Xin; Zhang, Jin-Jun

    2011-08-01

    Three different weight grades of sludge granules (2.5, 5, 10 g) were dried at constant temperature of 100, 200, 300, 400 and 500 degrees C, respectively. Then characteristics of weight loss and change of apparent form during sludge drying were analyzed. Results showed that there were three stages during sludge drying at 100-200 degrees C: acceleration phase, constant-rate phase, and falling-rate phase. At 300-500 degrees C, there were no constant-rate phase, but due to lots of cracks generated at sludge surface, average drying rates were still high. There was a quadratic nonlinear relationship between average drying rate and drying temperature. At 100-200 degrees C, drying processes of different weight grade sludge granules were similar. At 300-500 degrees C, drying processes of same weight grade of sludge granules were similar. Little organic matter decomposed till sludge burning at 100-300 degrees C, while some organic matter began to decompose at the beginning of sludge drying at 400-500 degrees C.

  8. Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, J.H.; Michelotti, M.D.; Riemer, N.

    2016-10-01

    Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removalmore » rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.« less

  9. Regional warming of hot extremes accelerated by surface energy fluxes consistent with drying soils

    NASA Astrophysics Data System (ADS)

    Donat, M.; Pitman, A.; Seneviratne, S. I.

    2017-12-01

    Strong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hotspots of accelerated warming of model-simulated hot extremes in Europe, North America, South America and Southeast China. These hotspots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most CMIP5 models. Exploring the conditions on the specific day the hot extreme occurs demonstrates the hotspots are explained by changes in the surface energy fluxes consistent with drying soils. Furthermore, in these hotspot regions we find a relationship between the temperature - heat flux correlation under current climate conditions and the magnitude of future projected changes in hot extremes, pointing to a potential emergent constraint for simulations of future hot extremes. However, the model-simulated accelerated warming of hot extremes appears inconsistent with observations of the past 60 years, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a re-evaluation of how climate models resolve the relevant terrestrial processes.

  10. FINAL REPORT: Transformational electrode drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus Daniel, C.; Wixom, M.

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheatingmore » and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.« less

  11. Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M. A.; Hirshfield, J. L.; Department of Physics, Yale University, P.O. Box 208124, New Haven, Connecticut 06520-8124

    1999-06-10

    Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96%. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications.« less

  12. Determination of end point of primary drying in freeze-drying process control.

    PubMed

    Patel, Sajal M; Doen, Takayuki; Pikal, Michael J

    2010-03-01

    Freeze-drying is a relatively expensive process requiring long processing time, and hence one of the key objectives during freeze-drying process development is to minimize the primary drying time, which is the longest of the three steps in freeze-drying. However, increasing the shelf temperature into secondary drying before all of the ice is removed from the product will likely cause collapse or eutectic melt. Thus, from product quality as well as process economics standpoint, it is very critical to detect the end of primary drying. Experiments were conducted with 5% mannitol and 5% sucrose as model systems. The apparent end point of primary drying was determined by comparative pressure measurement (i.e., Pirani vs. MKS Baratron), dew point, Lyotrack (gas plasma spectroscopy), water concentration from tunable diode laser absorption spectroscopy, condenser pressure, pressure rise test (manometric temperature measurement or variations of this method), and product thermocouples. Vials were pulled out from the drying chamber using a sample thief during late primary and early secondary drying to determine percent residual moisture either gravimetrically or by Karl Fischer, and the cake structure was determined visually for melt-back, collapse, and retention of cake structure at the apparent end point of primary drying (i.e., onset, midpoint, and offset). By far, the Pirani is the best choice of the methods tested for evaluation of the end point of primary drying. Also, it is a batch technique, which is cheap, steam sterilizable, and easy to install without requiring any modification to the existing dryer.

  13. Drying process strongly affects probiotics viability and functionalities.

    PubMed

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M.A.; Hirshfield, J.L.; Hirshfield, J.L.

    1999-06-01

    Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96{percent}. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDSmore » and other possible environmental applications. {copyright} {ital 1999 American Institute of Physics.}« less

  15. Infrared pre-drying and dry-dehulling of walnuts for improved processing efficiency and product quality

    USDA-ARS?s Scientific Manuscript database

    The walnut industry is faced with an urgent need to improve post-harvest processing efficiency, particularly drying and dehulling operations. This research investigated the feasibility of dry-dehulling and infrared (IR) pre-drying of walnuts for improved processing efficiency and dried product quali...

  16. Accelerating oak air drying by presurfacing

    Treesearch

    W. T. Simpson; R. C. Baltes

    1972-01-01

    A comparison was made between the air-drying rates of rough and presurfaced northern red oak and white oak. In both species, the presurfaced material was about 1/8 inch thinner than the rough material and dried faster than the rough material. The reduction in drying time depends on the method of analyzing the drying curves, but is slightly less than 10 percent.

  17. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors

    PubMed Central

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-01-01

    Micropowder (20–250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  18. Freeze-drying simulation framework coupling product attributes and equipment capability: toward accelerating process by equipment modifications.

    PubMed

    Ganguly, Arnab; Alexeenko, Alina A; Schultz, Steven G; Kim, Sherry G

    2013-10-01

    A physics-based model for the sublimation-transport-condensation processes occurring in pharmaceutical freeze-drying by coupling product attributes and equipment capabilities into a unified simulation framework is presented. The system-level model is used to determine the effect of operating conditions such as shelf temperature, chamber pressure, and the load size on occurrence of choking for a production-scale dryer. Several data sets corresponding to production-scale runs with a load from 120 to 485 L have been compared with simulations. A subset of data is used for calibration, whereas another data set corresponding to a load of 150 L is used for model validation. The model predictions for both the onset and extent of choking as well as for the measured product temperature agree well with the production-scale measurements. Additionally, we study the effect of resistance to vapor transport presented by the duct with a valve and a baffle in the production-scale freeze-dryer. Computation Fluid Dynamics (CFD) techniques augmented with a system-level unsteady heat and mass transfer model allow to predict dynamic process conditions taking into consideration specific dryer design. CFD modeling of flow structure in the duct presented here for a production-scale freeze-dryer quantifies the benefit of reducing the obstruction to the flow through several design modifications. It is found that the use of a combined valve-baffle system can increase vapor flow rate by a factor of 2.2. Moreover, minor design changes such as moving the baffle downstream by about 10 cm can increase the flow rate by 54%. The proposed design changes can increase drying rates, improve efficiency, and reduce cycle times due to fewer obstructions in the vapor flow path. The comprehensive simulation framework combining the system-level model and the detailed CFD computations can provide a process analytical tool for more efficient and robust freeze-drying of bio-pharmaceuticals. Copyright © 2013

  19. New Processes for Freeze-Drying in Dual-Chamber Systems.

    PubMed

    Werk, T; Ludwig, I S; Luemkemann, J; Huwyler, J; Mahler, H-C; Haeuser, C R; Hafner, M

    2016-01-01

    Dual-chamber systems can offer self-administration and home care use for lyophilized biologics. Only a few products have been launched in dual-chamber systems so far-presumably due to dual-chamber systems' complex and costly drug product manufacturing process. Within this paper, two improved processes (both based on tray filling technology) for freeze-drying pharmaceuticals in dual-chamber systems are described. Challenges with regards to heat transfer were tackled by (1) performing the freeze-drying step in a needle-down orientation in combination with an aluminum block, or (2) freeze-drying the drug product "externally" in a metal cartridge with subsequent filling of the lyophilized cake into the dual-chamber system. Metal-mediated heat transfer was shown to be efficient in both cases and batch (unit-to-unit) homogeneity with regards to sublimation rate was increased. It was difficult to influence ice crystal size using different methods when in use with an aluminum block due to its heat capacity. Using such a metal carrier implies a large heat capacity leading to relatively small ice crystals. Compared to the established process, drying times were reduced by half using the new processes. The drying time was, however, longer for syringes compared to vials due to the syringe design (long and slim). The differences in drying times were less pronounced for aggressive drying cycles. The proposed processes may help to considerably decrease investment costs into dual-chamber system fill-finish equipment. Dual-chamber syringes offer self-administration and home care use for freeze-dried pharmaceuticals. Only a few products have been launched in dual-chamber syringes so far-presumably due to their complex and costly drug product manufacturing process. In this paper two improved processes for freeze-drying pharmaceuticals in dual-chamber syringes are described. The major challenge of freeze-drying is to transfer heat through a vacuum. The proposed processes cope with this

  20. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process.

    PubMed

    Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka; Yang, Mingshi

    2013-04-15

    Freeze-drying and spray-drying are often applied drying techniques for biopharmaceutical formulations. The formation of different solid forms upon drying is often dependent on the complex interplay between excipient selection and process parameters. The purpose of this study was to investigate the influence of the chosen drying method on the solid state form. Mannitol-lysozyme solutions of 20mg/mL, with the amount of lysozyme varying between 2.5% and 50% (w/w) of total solid content, were freeze-dried and spray-dried, respectively. The resulting solid state of mannitol was analysed by near-infrared spectroscopy in combination with multivariate analysis and further, results were verified with X-ray powder diffraction. It was seen that the prevalence of the mannitol polymorphic form shifted from β-mannitol to δ-mannitol with increasing protein concentration in freeze-dried formulations. In spray-dried formulations an increase in protein concentration resulted in a shift from β-mannitol to α-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying process in itself, rather than the temperature, that leads to the observed solid state changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Jupiter's Auroras Acceleration Processes

    NASA Image and Video Library

    2017-09-06

    This image, created with data from Juno's Ultraviolet Imaging Spectrometer (UVS), marks the path of Juno's readings of Jupiter's auroras, highlighting the electron measurements that show the discovery of the so-called discrete auroral acceleration processes indicated by the "inverted Vs" in the lower panel (Figure 1). This signature points to powerful magnetic-field-aligned electric potentials that accelerate electrons toward the atmosphere to energies that are far greater than what drive the most intense aurora at Earth. Scientists are looking into why the same processes are not the main factor in Jupiter's most powerful auroras. https://photojournal.jpl.nasa.gov/catalog/PIA21937

  2. Finite-element simulation of ceramic drying processes

    NASA Astrophysics Data System (ADS)

    Keum, Y. T.; Jeong, J. H.; Auh, K. H.

    2000-07-01

    A finite-element simulation for the drying process of ceramics is performed. The heat and moisture movements in green ceramics caused by the temperature gradient, moisture gradient, conduction, convection and evaporation are considered. The finite-element formulation for solving the temperature and moisture distributions, which not only change the volume but also induce the hygro-thermal stress, is carried out. Employing the internally discontinuous interface elements, the numerical divergence problem arising from sudden changes in heat capacity in the phase zone is solved. In order to verify the reliability of the formulation, the drying process of a coal and the wetting process of a graphite epoxy are simulated and the results are compared with the analytical solution and another investigator's result. Finally, the drying process of a ceramic electric insulator is simulated.

  3. Characterisation of Aronia powders obtained by different drying processes.

    PubMed

    Horszwald, Anna; Julien, Heritier; Andlauer, Wilfried

    2013-12-01

    Nowadays, food industry is facing challenges connected with the preservation of the highest possible quality of fruit products obtained after processing. Attention has been drawn to Aronia fruits due to numerous health promoting properties of their products. However, processing of Aronia, like other berries, leads to difficulties that stem from the preparation process, as well as changes in the composition of bioactive compounds. Consequently, in this study, Aronia commercial juice was subjected to different drying techniques: spray drying, freeze drying and vacuum drying with the temperature range of 40-80 °C. All powders obtained had a high content of total polyphenols. Powders gained by spray drying had the highest values which corresponded to a high content of total flavonoids, total monomeric anthocyanins, cyaniding-3-glucoside and total proanthocyanidins. Analysis of the results exhibited a correlation between selected bioactive compounds and their antioxidant capacity. In conclusion, drying techniques have an impact on selected quality parameters, and different drying techniques cause changes in the content of bioactives analysed. Spray drying can be recommended for preservation of bioactives in Aronia products. Powder quality depends mainly on the process applied and parameters chosen. Therefore, Aronia powders production should be adapted to the requirements and design of the final product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Airflow accelerates bovine and human articular cartilage drying and chondrocyte death.

    PubMed

    Paterson, S I; Amin, A K; Hall, A C

    2015-02-01

    Exposure of articular cartilage to static air results in changes to the extracellular matrix (ECM) and stimulates chondrocyte death, which may cause joint degeneration. However during open orthopaedic surgery, cartilage is often exposed to laminar airflow, which may exacerbate these damaging effects. We compared drying in static and moving air in terms of cartilage appearance, hydration and chondrocyte viability, and tested the ability of saline-saturated gauze to limit the detrimental effects of air exposure. Articular cartilage from bovine metatarsophalangeal joints (N = 50) and human femoral heads (N = 6) was exposed for 90 min to (1) static air (2) airflow (up to 0.34 m/s), or (3) airflow (0.18 m/s), covered with gauze. Following air exposure, cartilage was also rehydrated (0.9% saline; 120 min) to determine the reversibility of drying effects. The influence of airflow was assessed by studying macroscopic appearance, and quantifying superficial zone (SZ) chondrocyte viability and cartilage hydration. Airflow caused advanced changes to cartilage appearance, accelerated chondrocyte death, and increased dehydration compared to static air. These effects were prevented if cartilage was covered by saline-saturated gauze. Cartilage rehydration reversed macroscopic changes associated with drying but the chondrocyte death was not altered. Chondrocytes at the cut edge of cartilage were more sensitive to drying compared to cells distant from the edge. Airflow significantly increased articular cartilage dehydration and chondrocyte death compared to static air. As laminar airflow is routinely utilised in operating theatres, it is essential that articular cartilage is kept wet via irrigation or by covering with saline-saturated gauze to prevent chondrocyte death. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Design of freeze-drying processes for pharmaceuticals: practical advice.

    PubMed

    Tang, Xiaolin; Pikal, Michael J

    2004-02-01

    Design of freeze-drying processes is often approached with a "trial and error" experimental plan or, worse yet, the protocol used in the first laboratory run is adopted without further attempts at optimization. Consequently, commercial freeze-drying processes are often neither robust nor efficient. It is our thesis that design of an "optimized" freeze-drying process is not particularly difficult for most products, as long as some simple rules based on well-accepted scientific principles are followed. It is the purpose of this review to discuss the scientific foundations of the freeze-drying process design and then to consolidate these principles into a set of guidelines for rational process design and optimization. General advice is given concerning common stability issues with proteins, but unusual and difficult stability issues are beyond the scope of this review. Control of ice nucleation and crystallization during the freezing step is discussed, and the impact of freezing on the rest of the process and final product quality is reviewed. Representative freezing protocols are presented. The significance of the collapse temperature and the thermal transition, denoted Tg', are discussed, and procedures for the selection of the "target product temperature" for primary drying are presented. Furthermore, guidelines are given for selection of the optimal shelf temperature and chamber pressure settings required to achieve the target product temperature without thermal and/or mass transfer overload of the freeze dryer. Finally, guidelines and "rules" for optimization of secondary drying and representative secondary drying protocols are presented.

  6. [Freeze drying process optimization of ginger juice-adjuvant for Chinese materia medica processing and stability of freeze-dried ginger juice powder].

    PubMed

    Yang, Chun-Yu; Guo, Feng-Qian; Zang, Chen; Cao, Hui; Zhang, Bao-Xian

    2018-02-01

    Ginger juice, a commonly used adjuvant for Chinese materia medica, is applied in processing of multiple Chinese herbal decoction pieces. Because of the raw materials and preparation process of ginger juice, it is difficult to be preserved for a long time, and the dosage of ginger juice in the processing can not be determined base on its content of main compositions. Ginger juice from different sources is hard to achieve consistent effect during the processing of traditional Chinese herbal decoction pieces. Based on the previous studies, the freeze drying of ginger juice under different shelf temperatures and vacuum degrees were studied, and the optimized freeze drying condition of ginger juice was determined. The content determination method for 6-gingerol, 8-gingerol, 10-gingerol and 6-shagaol in ginger juice and redissolved ginger juice was established. The content changes of 6-gingerol, 8-gingerol, 10-gingerol, 6-gingerol, 6-shagaol, volatile oil and total phenol were studied through the drying process and 30 days preservation period. The results showed that the freeze drying time of ginger juice was shortened after process optimization; the compositions basically remained unchanged after freeze drying, and there was no significant changes in the total phenol content and gingerol content, but the volatile oil content was significantly decreased( P <0.05). Within 30 days, the contents of gingerol, total phenol, and volatile oil were on the decline as a whole. This study has preliminarily proved the feasibility of freeze-drying process of ginger juice as an adjuvant for Chinese medicine processing. Copyright© by the Chinese Pharmaceutical Association.

  7. Robustness testing in pharmaceutical freeze-drying: inter-relation of process conditions and product quality attributes studied for a vaccine formulation.

    PubMed

    Schneid, Stefan C; Stärtzel, Peter M; Lettner, Patrick; Gieseler, Henning

    2011-01-01

    The recent US Food and Drug Administration (FDA) legislation has introduced the evaluation of the Design Space of critical process parameters in manufacturing processes. In freeze-drying, a "formulation" is expected to be robust when minor deviations of the product temperature do not negatively affect the final product quality attributes. To evaluate "formulation" robustness by investigating the effect of elevated product temperature on product quality using a bacterial vaccine solution. The vaccine solution was characterized by freeze-dry microscopy to determine the critical formulation temperature. A conservative cycle was developed using the SMART™ mode of a Lyostar II freeze dryer. Product temperature was elevated to imitate intermediate and aggressive cycle conditions. The final product was analyzed using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Karl Fischer, and modulated differential scanning calorimetry (MDSC), and the life cell count (LCC) during accelerated stability testing. The cakes processed at intermediate and aggressive conditions displayed larger pores with microcollapse of walls and stronger loss in LCC than the conservatively processed product, especially during stability testing. For all process conditions, a loss of the majority of cells was observed during storage. For freeze-drying of life bacterial vaccine solutions, the product temperature profile during primary drying appeared to be inter-related to product quality attributes.

  8. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    PubMed

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Modeling of electrohydrodynamic drying process using response surface methodology

    PubMed Central

    Dalvand, Mohammad Jafar; Mohtasebi, Seyed Saeid; Rafiee, Shahin

    2014-01-01

    Energy consumption index is one of the most important criteria for judging about new, and emerging drying technologies. One of such novel and promising alternative of drying process is called electrohydrodynamic (EHD) drying. In this work, a solar energy was used to maintain required energy of EHD drying process. Moreover, response surface methodology (RSM) was used to build a predictive model in order to investigate the combined effects of independent variables such as applied voltage, field strength, number of discharge electrode (needle), and air velocity on moisture ratio, energy efficiency, and energy consumption as responses of EHD drying process. Three-levels and four-factor Box–Behnken design was employed to evaluate the effects of independent variables on system responses. A stepwise approach was followed to build up a model that can map the entire response surface. The interior relationships between parameters were well defined by RSM. PMID:24936289

  10. Exergetic simulation of a combined infrared-convective drying process

    NASA Astrophysics Data System (ADS)

    Aghbashlo, Mortaza

    2016-04-01

    Optimal design and performance of a combined infrared-convective drying system with respect to the energy issue is extremely put through the application of advanced engineering analyses. This article proposes a theoretical approach for exergy analysis of the combined infrared-convective drying process using a simple heat and mass transfer model. The applicability of the developed model to actual drying processes was proved using an illustrative example for a typical food.

  11. Experimental research of solid waste drying in the process of thermal processing

    NASA Astrophysics Data System (ADS)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  12. Emerging freeze-drying process development and scale-up issues.

    PubMed

    Patel, Sajal Manubhai; Pikal, Michael J

    2011-03-01

    Although several guidelines do exist for freeze-drying process development and scale-up, there are still a number of issues that require additional attention. The objective of this review article is to discuss some emerging process development and scale-up issue with emphasis on effect of load condition and freeze-drying in novel container systems such as syringes, Lyoguard trays, ampoules, and 96-well plates. Understanding the heat and mass transfer under different load conditions and for freeze-drying in these novel container systems will help in developing a robust freeze-drying process which is also easier to scale-up. Further research and development needs in these emerging areas have also been addressed. © 2011 American Association of Pharmaceutical Scientists

  13. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    NASA Astrophysics Data System (ADS)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  14. Description of saturation curves and boiling process of dry air

    NASA Astrophysics Data System (ADS)

    Vestfálová, Magda; Petříková, Markéta; Šimko, Martin

    2018-06-01

    Air is a mixture of gases forming the gas wrap of Earth. It is formed by dry air, moisture and other pollutants. Dry air is a substance whose thermodynamic properties in gaseous state, as well as the thermodynamic properties of its main constituents in gaseous state, are generally known and described in detail in the literature. The liquid air is a bluish liquid and is industrially used to produce oxygen, nitrogen, argon and helium by distillation. The transition between the gaseous and liquid state (the condensation process, resp. boiling process), is usually displayed in the basic thermodynamic diagrams using the saturation curves. The saturation curves of all pure substances are of a similar shape. However, since the dry air is a mixture, the shapes of its saturation curves are modified relative to the shapes corresponding to the pure substances. This paper deals with the description of the dry air saturation curves as a mixture, i.e. with a description of the process of phase change of dry air (boiling process). The dry air saturation curves are constructed in the basic thermodynamic charts based on the values obtained from the literature. On the basis of diagrams, data appearing in various publications are interpreted and put into context with boiling process of dry air.

  15. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  16. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Iftikhar; Zhang, Pu

    For this Vehicle Technologies Incubator/Energy Storage R&D topic, Lambda Technologies teamed with Navitas Systems and proposed a new advanced drying process that promised a 5X reduction in electrode drying time and significant reduction in the cost of large format lithium batteries used in PEV's. The operating principle of the proposed process was to use penetrating radiant energy source Variable Frequency Microwaves (VFM), that are selectively absorbed by the polar water or solvent molecules instantly in the entire volume of the electrode. The solvent molecules are thus driven out of the electrode thickness making the process more efficient and much fastermore » than convective drying method. To evaluate the Advanced Drying Process (ADP) a hybrid prototype system utilizing VFM and hot air flow was designed and fabricated. While VFM drives the solvent out of the electrode thickness, the hot air flow exhausts the solvent vapors out of the chamber. The drying results from this prototype were very encouraging. For water based anodes there is a 5X drying advantage (time & length of oven) in using ADP over standard drying system and for the NMP based cathodes the reduction in drying time has 3X benefit. For energy savings the power consumption measurements were performed to ADP prototype and compared with the convection standard drying oven. The data collected demonstrated over 40% saving in power consumption with ADP as compared to the convection drying systems. The energy savings are one of the operational cost benefits possible with ADP. To further speed up the drying process, the ADP prototype was explored as a booster module before the convection oven and for the electrode material being evaluated it was possible to increase the drying speed by a factor of 4, which could not be accomplished with the standard dryer without surface defects and cracks. The instantaneous penetration of microwave in the entire slurry thickness showed a major advantage in rapid drying

  17. Effects of Freeze-Dried Vegetable Products on the Technological Process and the Quality of Dry Fermented Sausages.

    PubMed

    Eisinaite, Viktorija; Vinauskiene, Rimante; Viskelis, Pranas; Leskauskaite, Daiva

    2016-09-01

    The aim of this study was to compare the chemical composition of freeze-dried vegetable powders: celery, celery juice, parsnip and leek. The effect of different freeze-dried vegetables onto the ripening process and the properties of dry fermented sausages was also evaluated. Vegetable products significantly (p < 0.05) differed in their chemical composition: celery products contained higher amounts of nitrates, total phenolic compounds and lower amounts of sucrose, parsnip had higher concentration of proteins, leek was rich in fat. The analysis of pH, water activity, lactic acid bacteria, coagulase-positive staphylococci and coliforms content showed that the incorporation of freeze-dried vegetables had no negative effect on the fermentation and ripening process of dry fermented sausages. In addition, the color parameters for sausages with the added lyophilised celery products were considerable (p < 0.05) more stable during these processes. At the end of the ripening process the sausages made with lyophilised celery juice were characterised by higher lightness and lower hardness than those made with the addition of other vegetable products and control. Freeze-dried celery, celery juice, parsnip and leek have some potential for the usage as a functional ingredient or as a source for indirect addition of nitrate in the production of fermented sausages. © 2016 Institute of Food Technologists®

  18. Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring.

    PubMed

    De Beer, T R M; Allesø, M; Goethals, F; Coppens, A; Heyden, Y Vander; De Diego, H Lopez; Rantanen, J; Verpoort, F; Vervaet, C; Remon, J P; Baeyens, W R G

    2007-11-01

    The aim of the present study was to propose a strategy for the implementation of a Process Analytical Technology system in freeze-drying processes. Mannitol solutions, some of them supplied with NaCl, were used as models to freeze-dry. Noninvasive and in-line Raman measurements were continuously performed during lyophilization of the solutions to monitor real time the mannitol solid state, the end points of the different process steps (freezing, primary drying, secondary drying), and physical phenomena occurring during the process. At-line near-infrared (NIR) and X-ray powder diffractometry (XRPD) measurements were done to confirm the Raman conclusions and to find out additional information. The collected spectra during the processes were analyzed using principal component analysis and multivariate curve resolution. A two-level full factorial design was used to study the significant influence of process (freezing rate) and formulation variables (concentration of mannitol, concentration of NaCl, volume of freeze-dried sample) upon freeze-drying. Raman spectroscopy was able to monitor (i) the mannitol solid state (amorphous, alpha, beta, delta, and hemihydrate), (ii) several process step end points (end of mannitol crystallization during freezing, primary drying), and (iii) physical phenomena occurring during freeze-drying (onset of ice nucleation, onset of mannitol crystallization during the freezing step, onset of ice sublimation). NIR proved to be a more sensitive tool to monitor sublimation than Raman spectroscopy, while XRPD helped to unravel the mannitol hemihydrate in the samples. The experimental design results showed that several process and formulation variables significantly influence different aspects of lyophilization and that both are interrelated. Raman spectroscopy (in-line) and NIR spectroscopy and XRPD (at-line) not only allowed the real-time monitoring of mannitol freeze-drying processes but also helped (in combination with experimental design) us

  19. Radiation processing as a post-harvest quarantine control for raisins, dried figs and dried apricots

    NASA Astrophysics Data System (ADS)

    Cetinkaya, N.; Ozyardımci, B.; Denli, E.; Ic, E.

    2006-03-01

    The commercially packed samples of raisins, dried figs and dried apricots were irradiated using doses in the range of 0.5-1.0 kGy for disinfestation and 0.5-5.0 kGy for sensory analysis with the dose rate ranging from 1.44 to 1.92 kGy/h. Pests on dried fruits were evaluated after 0, 1, 2 and 3 months of storage for irradiated dried figs and 1, 3, 6 and 12 months of storage for raisins and dried apricots. Sensory analysis of dried figs, dried apricots and raisins were carried out after 0, 1, 3, 6 and 12 months of storage. The results indicated that radiation processing at low doses, (˜1.0 kGy) is an effective post-harvest treatment and quarantine control for these products with no adverse effects on sensory (marketing) attributes.

  20. Stepwise drying of medicinal plants as alternative to reduce time and energy processing

    NASA Astrophysics Data System (ADS)

    Cuervo-Andrade, S. P.; Hensel, O.

    2016-07-01

    The objective of drying medicinal plants is to extend the shelf life and conserving the fresh characteristics. This is achieved by reducing the water activity (aw) of the product to a value which will inhibit the growth and development of pathogenic and spoilage microorganisms, significantly reducing enzyme activity and the rate at which undesirable chemical reactions occur. The technical drying process requires an enormous amount of thermal and electrical energy. An improvement in the quality of the product to be dried and at the same time a decrease in the drying cost and time are achieved through the utilization of a controlled conventional drying method, which is based on a good utilization of the renewable energy or looking for other alternatives which achieve lower processing times without sacrificing the final product quality. In this work the method of stepwise drying of medicinal plants is presented as an alternative to the conventional drying that uses a constant temperature during the whole process. The objective of stepwise drying is the decrease of drying time and reduction in energy consumption. In this process, apart from observing the effects on decreases the effective drying process time and energy, the influence of the different combinations of drying phases on several characteristics of the product are considered. The tests were carried out with Melissa officinalis L. variety citronella, sowed in greenhouse. For the stepwise drying process different combinations of initial and final temperature, 40/50°C, are evaluated, with different transition points associated to different moisture contents (20, 30, 40% and 50%) of the product during the process. Final quality of dried foods is another important issue in food drying. Drying process has effect in quality attributes drying products. This study was determining the color changes and essential oil loses by reference the measurement of the color and essential oil content of the fresh product was

  1. Effect of drying parameters on physiochemical and sensory properties of fruit powders processed by PGSS-, Vacuum- and Spray-drying.

    PubMed

    Feguš, Urban; Žigon, Uroš; Petermann, Marcus; Knez, Željko

    2015-01-01

    Aim of this experimental work was to investigate the possibility of producing fruit powders without employing drying aid and to investigate the effect of drying temperatures on the final powder characteristics. Raw fruit materials (banana puree, strawberry puree and blueberry concentrate) were processed using three different drying techniques each operating at a different temperature conditions: vacuum-drying (-27-17 °C), Spray-drying (130-160 °C) and PGSS-drying (112-152 °C). Moisture content, total colour difference, antioxidant activity and sensory characteristics of the processed fruit powders were analysed. The results obtained from the experimental work indicate that investigated fruit powders without or with minimal addition of maltodextrin can be produced. Additionally, it was observed that an increase in process temperature results in a higher loss of colour, antioxidant activity and intensity of the flavour profile.

  2. The physico-chemical basis for the freeze-drying process.

    PubMed

    MacKenzie, A P

    1976-10-01

    To the extent that the final form and quality of a freeze-dried product depends on the way the freeze-drying is conducted, an understanding of the many factors involved is most important. The numerous effects of the design and mode of operation of the freeze-drying equipment on the course of the process need to be known, as do the properties intrinsic to the material to be freeze-dried. Much can be learned and predicted from the study of the "supplemented phase diagram", a series of experimental plots describing the equilibrium and the non-equilibrium phase behavior of the system in question. Such diagrams map and distinguish eutectic and amorphous phase behavior. Further information is available from gravimetric studies allowing the construction of "desorption isotherms", the plots describing the loss of sorbed water accompanying the sublimation of ice, frequently termed "secondary drying". These plots relate the water retained by the product to the "water activity", or relative humidity at different temperatures. Observations in the freeze-drying microscope contribute additional information, in that they reveal the actual course of the process at the microscopic level. These and other laboratory findings facilitate the analysis and comparison of pilot-plant and commercical scale processing experiences. Where scientific and engineering factors appear to interrelate, the nature and extent of the interdependence can often be determined.

  3. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    EPA Science Inventory

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  4. Freeze-drying process monitoring using a cold plasma ionization device.

    PubMed

    Mayeresse, Y; Veillon, R; Sibille, P H; Nomine, C

    2007-01-01

    A cold plasma ionization device has been designed to monitor freeze-drying processes in situ by monitoring lyophilization chamber moisture content. This plasma device, which consists of a probe that can be mounted directly on the lyophilization chamber, depends upon the ionization of nitrogen and water molecules using a radiofrequency generator and spectrometric signal collection. The study performed on this probe shows that it is steam sterilizable, simple to integrate, reproducible, and sensitive. The limitations include suitable positioning in the lyophilization chamber, calibration, and signal integration. Sensitivity was evaluated in relation to the quantity of vials and the probe positioning, and correlation with existing methods, such as microbalance, was established. These tests verified signal reproducibility through three freeze-drying cycles. Scaling-up studies demonstrated a similar product signature for the same product using pilot-scale and larger-scale equipment. On an industrial scale, the method efficiently monitored the freeze-drying cycle, but in a larger industrial freeze-dryer the signal was slightly modified. This was mainly due to the positioning of the plasma device, in relation to the vapor flow pathway, which is not necessarily homogeneous within the freeze-drying chamber. The plasma tool is a relevant method for monitoring freeze-drying processes and may in the future allow the verification of current thermodynamic freeze-drying models. This plasma technique may ultimately represent a process analytical technology (PAT) approach for the freeze-drying process.

  5. Spray-drying nanocapsules in presence of colloidal silica as drying auxiliary agent: formulation and process variables optimization using experimental designs.

    PubMed

    Tewa-Tagne, Patrice; Degobert, Ghania; Briançon, Stéphanie; Bordes, Claire; Gauvrit, Jean-Yves; Lanteri, Pierre; Fessi, Hatem

    2007-04-01

    Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them. Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered. Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions. This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.

  6. Transient aerodynamic characteristics of vans during the accelerated overtaking process

    NASA Astrophysics Data System (ADS)

    Liu, Li-ning; Wang, Xing-shen; Du, Guang-sheng; Liu, Zheng-gang; Lei, Li

    2018-04-01

    This paper studies the influence of the accelerated overtaking process on the vehicles' transient aerodynamic characteristics, through 3-D numerical simulations with dynamic meshes and sliding interface technique. Numerical accuracy is verified by experimental results. The aerodynamic characteristics of vehicles in the uniform overtaking process and the accelerated overtaking process are compared. It is shown that the speed variation of the overtaking van would influence the aerodynamic characteristics of the two vans, with greater influence on the overtaken van than on the overtaking van. The simulations of three different accelerated overtaking processes show that the greater the acceleration of the overtaking van, the larger the aerodynamic coefficients of the overtaken van. When the acceleration of the overtaking van increases by 1 m/s2, the maximum drag force, side force and yawing moment coefficients of the overtaken van all increase by more than 6%, to seriously affect the power performance and the stability of the vehicles. The analysis of the pressure fields under different accelerated conditions reveals the cause of variations of the aerodynamic characteristics of vehicles.

  7. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy.

    PubMed

    Reddy, Jay Poorna; Jones, John W; Wray, Patrick S; Dennis, Andrew B; Brown, Jonathan; Timmins, Peter

    2018-04-25

    Form changes during drug product processing can be a risk to the final product quality in terms of chemical stability and bioavailability. In this study, online Raman spectroscopy was used to monitor the form changes in real time during high shear wet granulation of Compound A, a highly soluble drug present at a high drug load in an extended release formulation. The effect of water content, temperature, wet massing time and drying technique on the degree of drug transformation were examined. A designed set of calibration standards were employed to develop quantitative partial least square regression models to predict the concentration of each drug form during both wet granulation and the drying process. Throughout all our experiments we observed complex changes of the drug form during granulation, manifest as conversions between the initial non-solvated form of Compound A, the hemi-hydrate form and the "apparent" amorphous form (dissolved drug). The online Raman data demonstrate that the non-solvated form converts to an "apparent" amorphous form (dissolved drug) due to drug dissolution with no appearance of the hemi-hydrate form during water addition stage. The extent of conversion of the non-solvated form was governed by the amount of water added and the rate of conversion was accelerated at higher temperatures. Interestingly, in the wet massing zone, the formation of the hemi-hydrate form was observed at a rate equivalent to the rate of depletion of the non-solvated form with no change in the level of the "apparent amorphous" form generated. The level of hemi-hydrate increased with an increase in wet massing time. The drying process had a significant effect on the proportion of each form. During tray drying, changes in drug form continued for hours. In contrast fluid bed drying appeared to lock the final proportions of drug form product attained during granulation, with comparatively small changes observed during drying. In conclusion, it was possible to

  8. Monitoring fluidized bed drying of pharmaceutical granules.

    PubMed

    Briens, Lauren; Bojarra, Megan

    2010-12-01

    Placebo granules consisting of lactose monohydrate, corn starch, and polyvinylpyrrolidone were prepared using de-ionized water in a high-shear mixer and dried in a conical fluidized bed dryer at various superficial gas velocities. Acoustic, vibration, and pressure data obtained over the course of drying was analyzed using various statistical, frequency, fractal, and chaos techniques. Traditional monitoring methods were also used for reference. Analysis of the vibration data showed that the acceleration levels decreased during drying and reached a plateau once the granules had reached a final moisture content of 1–2 wt.%; this plateau did not differ significantly between superficial gas velocities, indicating a potential criterion to support drying endpoint identification. Acoustic emissions could not reliably identify the drying endpoint. However, high kurtosis values of acoustic emissions measured in the filtered air exhaust corresponded to high entrainment rates. This could be used for process control to adjust the fluidization gas velocity to allow drying to continue rapidly while minimizing entrainment and possible product losses.

  9. Physics of direct-contact ultrasonic cloth drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Chang; Ravi, Saitej; Patel, Viral K.

    Existing methods of drying fabrics involve energy-intensive thermal evaporation of moisture from clothes. Drying fabrics using high-frequency vibrations of piezoelectric transducers can substantially reduce drying time and energy consumption. In this method, vibrational energy generates instability on the liquid-air interface and mechanically ejects water from a wet fabric. For the first time, the physics of the ultrasonic fabric drying process in direct-contact mode is studied. The kinematic and thermal responses of water droplets and fabrics on piezoelectric crystal transducers and metal mesh–based transducers are studied. The results suggest that on piezoelectric crystal transducers, the response of a droplet subjected tomore » ultrasonic excitation is dictated by the relative magnitude of the surface tension and the ultrasonic excitation forces. The drying process for a fabric on the studied transducers consists of two regimes—vibrational and thermal. When the water content is high, the vibrational forces can eject bulk water rapidly. But the more strongly bound water within the smaller fabric pores evaporates by the thermal energy generated as a result of the viscous losses. Our study finds that a metal mesh–based transducer is more suitable for dewatering fabrics, as it facilitates the ejection of water from the fabric–transducer interface to the opposite side of the mesh. A demonstration unit developed consumes 10–20% of the water latent heat energy at water contents greater than 20%.« less

  10. Physics of direct-contact ultrasonic cloth drying process

    DOE PAGES

    Peng, Chang; Ravi, Saitej; Patel, Viral K.; ...

    2017-02-27

    Existing methods of drying fabrics involve energy-intensive thermal evaporation of moisture from clothes. Drying fabrics using high-frequency vibrations of piezoelectric transducers can substantially reduce drying time and energy consumption. In this method, vibrational energy generates instability on the liquid-air interface and mechanically ejects water from a wet fabric. For the first time, the physics of the ultrasonic fabric drying process in direct-contact mode is studied. The kinematic and thermal responses of water droplets and fabrics on piezoelectric crystal transducers and metal mesh–based transducers are studied. The results suggest that on piezoelectric crystal transducers, the response of a droplet subjected tomore » ultrasonic excitation is dictated by the relative magnitude of the surface tension and the ultrasonic excitation forces. The drying process for a fabric on the studied transducers consists of two regimes—vibrational and thermal. When the water content is high, the vibrational forces can eject bulk water rapidly. But the more strongly bound water within the smaller fabric pores evaporates by the thermal energy generated as a result of the viscous losses. Our study finds that a metal mesh–based transducer is more suitable for dewatering fabrics, as it facilitates the ejection of water from the fabric–transducer interface to the opposite side of the mesh. A demonstration unit developed consumes 10–20% of the water latent heat energy at water contents greater than 20%.« less

  11. Quality by Design approach to spray drying processing of crystalline nanosuspensions.

    PubMed

    Kumar, Sumit; Gokhale, Rajeev; Burgess, Diane J

    2014-04-10

    Quality by Design (QbD) principles were explored to understand spray drying process for the conversion of liquid nanosuspensions into solid nano-crystalline dry powders using indomethacin as a model drug. The effects of critical process variables: inlet temperature, flow and aspiration rates on critical quality attributes (CQAs): particle size, moisture content, percent yield and crystallinity were investigated employing a full factorial design. A central cubic design was employed to generate the response surface for particle size and percent yield. Multiple linear regression analysis and ANOVA were employed to identify and estimate the effect of critical parameters, establish their relationship with CQAs, create design space and model the spray drying process. Inlet temperature was identified as the only significant factor (p value <0.05) to affect dry powder particle size. Higher inlet temperatures caused drug surface melting and hence aggregation of the dried nano-crystalline powders. Aspiration and flow rates were identified as significant factors affecting yield (p value <0.05). Higher yields were obtained at higher aspiration and lower flow rates. All formulations had less than 3% (w/w) moisture content. Formulations dried at higher inlet temperatures had lower moisture compared to those dried at lower inlet temperatures. Published by Elsevier B.V.

  12. Utilization of geothermal heat in tropical fruit-drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.H.; Lopez, L.P.; King, R.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits producedmore » on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.« less

  13. Creatine and creatinine evolution during the processing of dry-cured ham.

    PubMed

    Mora, Leticia; Hernández-Cázares, Aleida S; Sentandreu, Miguel Angel; Toldrá, Fidel

    2010-03-01

    Dry-curing of ham involves many biochemical reactions that depend on the processing conditions. The aim of this study was to evaluate the effect of the dry-cured processing on the concentration of creatine, creatinine and the creatinine/creatine ratio. Dry-cured hams under study were salted using three different salt mixtures (100% NaCl; NaCl and KCl at 50% each; and 55% NaCl, 25% KCl, 15% CaCl(2) and 5% MgCl(2)) in order to observe its influence on creatinine formation but no significant differences were found between them at any time of processing. However, significant differences between different post-salting times (20, 50 and 80 days) and the ripened hams (7, 9 and 11 months of ripening) were observed. Results showed that creatine and creatinine remain stable once the ripening period is reached. These results were confirmed when analysing dry-cured ham samples submitted to extreme conditions of temperature and time (20, 30, 40 and 70 degrees C during 0, 20, 40 and 60 min) as well as commercial dry-cured hams with more than 12 months of processing. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Mechanistic modelling of infrared mediated energy transfer during the primary drying step of a continuous freeze-drying process.

    PubMed

    Van Bockstal, Pieter-Jan; Mortier, Séverine Thérèse F C; De Meyer, Laurens; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas

    2017-05-01

    Conventional pharmaceutical freeze-drying is an inefficient and expensive batch-wise process, associated with several disadvantages leading to an uncontrolled end product variability. The proposed continuous alternative, based on spinning the vials during freezing and on optimal energy supply during drying, strongly increases process efficiency and improves product quality (uniformity). The heat transfer during continuous drying of the spin frozen vials is provided via non-contact infrared (IR) radiation. The energy transfer to the spin frozen vials should be optimised to maximise the drying efficiency while avoiding cake collapse. Therefore, a mechanistic model was developed which allows computing the optimal, dynamic IR heater temperature in function of the primary drying progress and which, hence, also allows predicting the primary drying endpoint based on the applied dynamic IR heater temperature. The model was validated by drying spin frozen vials containing the model formulation (3.9mL in 10R vials) according to the computed IR heater temperature profile. In total, 6 validation experiments were conducted. The primary drying endpoint was experimentally determined via in-line near-infrared (NIR) spectroscopy and compared with the endpoint predicted by the model (50min). The mean ratio of the experimental drying time to the predicted value was 0.91, indicating a good agreement between the model predictions and the experimental data. The end product had an elegant product appearance (visual inspection) and an acceptable residual moisture content (Karl Fischer). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Improved shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes.

    PubMed

    Mascarin, Gabriel Moura; Jackson, Mark A; Behle, Robert W; Kobori, Nilce N; Júnior, Ítalo Delalibera

    2016-10-01

    The yeast form (blastospore) of the dimorphic insect-pathogenic fungus Beauveria bassiana can be rapidly produced using liquid fermentation methods but is generally unable to survive rapid dehydration processes or storage under non-refrigerated conditions. In this study, we evaluated the influence of two convective drying methods, various modified atmosphere packaging systems, and storage temperatures on the desiccation tolerance, storage stability, and virulence of blastospores of B. bassiana ESALQ 1432. All blastospore formulations were dried to <5 % water content equivalent to aw < 0.3. The viability of B. bassiana blastospores after air drying and spray drying was greater than 80 %. Vacuum-packaged blastospores remained viable longer when stored at 4 °C compared with 28 °C with virtually no loss in viability over 9 months regardless the drying method. When both oxygen and moisture scavengers were added to sealed packages of dried blastospore formulations stored at 28 °C, viability was significantly prolonged for both air- and spray-dried blastospores. The addition of ascorbic acid during spray drying did not improve desiccation tolerance but enhanced cell stability (∼twofold higher half-life) when stored at 28 °C. After storage for 4 months at 28 °C, air-dried blastospores produced a lower LC80 and resulted in higher mortality to whitefly nymphs (Bemisia tabaci) when compared with spray-dried blastospores. These studies identified key storage conditions (low aw and oxygen availability) that improved blastospore storage stability at 28 °C and will facilitate the commercial development of blastospores-based bioinsecticides.

  16. Process and formulation effects on solar thermal drum dried prune pomace

    USDA-ARS?s Scientific Manuscript database

    The processing of dried plums into prune juice and concentrate yields prune pomace as a coproduct; the pomace could potentially be utilized as a food ingredient but requires stabilization for long-term storage. Drum drying is one method that could be used to dry and stabilize prune pomace, and a dru...

  17. Experimental Study of Heat Transfer Performance of Polysilicon Slurry Drying Process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojing; Ma, Dongyun; Liu, Yaqian; Wang, Zhimin; Yan, Yangyang; Li, Yuankui

    2016-12-01

    In recent years, the growth of the solar energy photovoltaic industry has greatly promoted the development of polysilicon. However, there has been little research into the slurry by-products of polysilicon production. In this paper the thermal performance of polysilicon slurry was studied in an industrial drying process with a twin-screw horizontal intermittent dryer. By dividing the drying process into several subunits, the parameters of each unit could be regarded as constant in that period. The time-dependent changes in parameters including temperature, specific heat and evaporation enthalpy were plotted. An equation for the change in the heat transfer coefficient over time was calculated based on heat transfer equations. The concept of a distribution coefficient was introduced to reflect the influence of stirring on the heat transfer area. The distribution coefficient ranged from 1.2 to 1.7 and was obtained with the fluid simulation software FLUENT, which simplified the calculation of heat transfer area during the drying process. These experimental data can be used to guide the study of polysilicon slurry drying and optimize the design of dryers for industrial processes.

  18. Freeze-dried snake antivenoms formulated with sorbitol, sucrose or mannitol: comparison of their stability in an accelerated test.

    PubMed

    Herrera, María; Tattini, Virgilio; Pitombo, Ronaldo N M; Gutiérrez, José María; Borgognoni, Camila; Vega-Baudrit, José; Solera, Federico; Cerdas, Maykel; Segura, Alvaro; Villalta, Mauren; Vargas, Mariángela; León, Guillermo

    2014-11-01

    Freeze-drying is used to improve the long term stability of pharmaceutical proteins. Sugars and polyols have been successfully used in the stabilization of proteins. However, their use in the development of freeze-dried antivenoms has not been documented. In this work, whole IgG snake antivenom, purified from equine plasma, was formulated with different concentrations of sorbitol, sucrose or mannitol. The glass transition temperatures of frozen formulations, determined by Differential Scanning Calorimetry (DSC), ranged between -13.5 °C and -41 °C. In order to evaluate the effectiveness of the different stabilizers, the freeze-dried samples were subjected to an accelerated stability test at 40 ± 2 °C and 75 ± 5% relative humidity. After six months of storage at 40 °C, all the formulations presented the same residual humidity, but significant differences were observed in turbidity, reconstitution time and electrophoretic pattern. Moreover, all formulations, except antivenoms freeze-dried with mannitol, exhibited the same potency for the neutralization of lethal effect of Bothrops asper venom. The 5% (w:v) sucrose formulation exhibited the best stability among the samples tested, while mannitol and sorbitol formulations turned brown. These results suggest that sucrose is a better stabilizer than mannitol and sorbitol in the formulation of freeze-dried antivenoms under the studied conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Analysis of problems with dry fermentation process for biogas production

    NASA Astrophysics Data System (ADS)

    Pilát, Peter; Patsch, Marek; Jandačka, Jozef

    2012-04-01

    The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.

  20. Key composition optimization of meat processed protein source by vacuum freeze-drying technology.

    PubMed

    Ma, Yan; Wu, Xingzhuang; Zhang, Qi; Giovanni, Vigna; Meng, Xianjun

    2018-05-01

    Vacuum freeze-drying technology is a high technology content, a wide range of knowledge of technology in the field of drying technology is involved, it is also a method of the most complex drying equipment, the largest energy consumption, the highest cost of drying method, but due to the particularity of its dry goods: the freeze-drying food has the advantages of complex water performance is good, cooler and luster of freezing and drying food to maintain good products, less nutrient loss, light weight, easy to carry transportation, easy to long-term preservation, and on the quality is far superior to the obvious advantages of other dried food, making it become the forefront of drying technology research and development. The freeze-drying process of Chinese style ham and western Germany fruit tree tenderloin is studied in this paper, their eutectic point, melting point and collapse temperature, freeze-drying curve and its heat and mass transfer characteristics are got, then the precool temperature and the highest limiting temperature of sublimation interface are determined. The effect of system pressure on freeze-dried rate in freeze-drying process is discussed, and the method of regulating pressure circularly is determined.

  1. Resource recovery of organic sludge as refuse derived fuel by fry-drying process.

    PubMed

    Chang, Fang-Chih; Ko, Chun-Han; Wu, Jun-Yi; Wang, H Paul; Chen, Wei-Sheng

    2013-08-01

    The organic sludge and waste oil were collected from the industries of thin film transistor liquid crystal display and the recycled cooking oil. The mixing ratio of waste cooking oil and organic sludge, fry-drying temperatures, fry-drying time, and the characteristics of the organic sludge pellet grain were investigated. After the fry-drying process, the moisture content of the organic sludge pellet grain was lower than 5% within 25 min and waste cooking oil was absorbed on the dry solid. The fry-drying organic sludge pellet grain was easy to handle and odor free. Additionally, it had a higher calorific value than the derived fuel standards and could be processed into organic sludge derived fuels. Thus, the granulation and fry-drying processes of organic sludge with waste cooking oil not only improves the calorific value of organic sludge and becomes more valuable for energy recovery, but also achieves waste material disposal and cost reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Evaporator fouling tendencies of thin stillage and concentrates from the dry grind process

    USDA-ARS?s Scientific Manuscript database

    In the US, more than 200 maize processing plants use multiple effect evaporators to remove water from thin stillage and steepwater during dry grind and wet milling processes, respectively. During the dry grind process, unfermentables are centrifuged and the liquid fraction, thin stillage, is concen...

  3. Graphics Processing Unit Acceleration of Gyrokinetic Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Hause, Benjamin; Parker, Scott

    2012-10-01

    We find a substantial increase in on-node performance using Graphics Processing Unit (GPU) acceleration in gyrokinetic delta-f particle-in-cell simulation. Optimization is performed on a two-dimensional slab gyrokinetic particle simulation using the Portland Group Fortran compiler with the GPU accelerator compiler directives. We have implemented the GPU acceleration on a Core I7 gaming PC with a NVIDIA GTX 580 GPU. We find comparable, or better, acceleration relative to the NERSC DIRAC cluster with the NVIDIA Tesla C2050 computing processor. The Tesla C 2050 is about 2.6 times more expensive than the GTX 580 gaming GPU. Optimization strategies and comparisons between DIRAC and the gaming PC will be presented. We will also discuss progress on optimizing the comprehensive three dimensional general geometry GEM code.

  4. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    PubMed

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  5. A General Accelerated Degradation Model Based on the Wiener Process.

    PubMed

    Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning

    2016-12-06

    Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses.

  6. A General Accelerated Degradation Model Based on the Wiener Process

    PubMed Central

    Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning

    2016-01-01

    Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses. PMID:28774107

  7. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM).

    PubMed

    Šumić, Zdravko; Vakula, Anita; Tepić, Aleksandra; Čakarević, Jelena; Vitas, Jasmina; Pavlić, Branimir

    2016-07-15

    Fresh red currants were dried by vacuum drying process under different drying conditions. Box-Behnken experimental design with response surface methodology was used for optimization of drying process in terms of physical (moisture content, water activity, total color change, firmness and rehydratation power) and chemical (total phenols, total flavonoids, monomeric anthocyanins and ascorbic acid content and antioxidant activity) properties of dried samples. Temperature (48-78 °C), pressure (30-330 mbar) and drying time (8-16 h) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where regression analysis and analysis of variance were used to determine model fitness and optimal drying conditions. The optimal conditions of simultaneously optimized responses were temperature of 70.2 °C, pressure of 39 mbar and drying time of 8 h. It could be concluded that vacuum drying provides samples with good physico-chemical properties, similar to lyophilized sample and better than conventionally dried sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation.

    PubMed

    Zhang, Dong-Qing; He, Pin-Jing; Jin, Tai-Feng; Shao, Li-Ming

    2008-12-01

    To improve the water content reduction of municipal solid waste with high water content, the operations of supplementing a hydrolytic stage prior to aerobic degradation and inoculating the bio-drying products were conducted. A 'bio-drying index' was used to evaluate the bio-drying performance. For the aerobic processes, the inoculation accelerated organics degradation, enhanced the lignocelluloses degradation rate by 10.4%, and lowered water content by 7.0%. For the combined hydrolytic-aerobic processes, the inoculum addition had almost no positive effect on the bio-drying efficiency, but it enhanced the lignocelluloses degradation rate by 9.6% and strengthened the acidogenesis in the hydrolytic stage. Compared with the aerobic processes, the combined processes had a higher bio-drying index (4.20 for non-inoculated and 3.67 for the inoculated trials). Moreover, the lowest final water content occurred in the combined process without inoculation (50.5% decreased from an initial 72.0%).

  9. The determination of optimum condition in water hyacinth drying process by mixed adsorption drying method and modified fly ash as an adsorbent

    NASA Astrophysics Data System (ADS)

    Saputra, Asep Handaya; Putri, Rizky Anggreini

    2017-05-01

    Water hyacinth is an aquatic weed that has a very fast growth which makes it becomes a problem to the ecosystem. On the other hand, water hyacinth has a high fiber content (up to 20% by weight) which makes it potential to become raw material for composites and textile industries. As an aquatic plant, water hyacinth has a high initial moisture content that reaches more than 90%. Meanwhile the moisture content of fiber as a raw material for composite and textile industry should not be more than 10% to maintain the good quality of the products. Mixed adsorption drying method is one of the innovative method that can replace conventional drying process. Fluidization method which has been commonly used in agricultural and pharmaceutical products drying, can be enhanced by combining it with the adsorption method as performed in this study. In mixed fluidization-adsorption drying method, fly ash as adsorbent and water hyacinth fiber were put together into the fluidization column where the drying air evaporate the moisture content in water hyacinth fiber. In addition, the adsorbent adsorb the moisture content in the drying air to make the moisture content of the drying air remain low. The drying process is performed in various temperature and composition of water hyacinth and adsorbent in order to obtain the optimum drying condition. In addition, the effect of fly ash pellet and fly ash powder to the drying process was also performed. The result shows that the higher temperature and the more amount of adsorbent results in the faster drying rate. Fly ash pellet shows a better adsorption since it has a smaller pore diameter and wider surface area. The optimum temperature obtained from this study is 60°C and the optimum ratio of water hyacinth and fly ash is 50:50.

  10. Light assisted drying (LAD) for protein stabilization: optimization of laser processing parameters

    NASA Astrophysics Data System (ADS)

    Young, Madison A.; Antczak, Andrew T.; Elliott, Gloria D.; Trammell, Susan R.

    2017-02-01

    In this study, a novel light-based processing method to create an amorphous trehalose matrix for the stabilization of proteins is discussed. Near-IR radiation is used to remove water from samples, leaving behind an amorphous solid with embedded protein. This method has potential applications in the stabilization of protein-based therapeutics and diagnostics that are becoming widely used in the treatment and diagnosis of a variety of diseases. Freeze-drying or freezing are currently the standard for the preservation of proteins, but these methods are expensive and can be challenging in some environments due to a lack of available infrastructure. Light-assisted drying offers a relatively inexpensive method for drying samples. Proteins suspended in a trehalose solution are dehydrated using near-infrared laser light. The laser radiation speeds drying and as water is removed the sugar forms a protective matrix. The goal of this study is to determine processing parameters that result in fast processing times and low end moisture contents (EMC), while maintaining the functionality of embedded proteins. We compare the effect of changing processing wavelength, power and resulting sample temperature, and substrate material on the EMC for two NIR laser sources (1064 nm and 1850 nm). The 1850 nm laser resulted in the lowest EMC (0.1836+/-0.09 gH2O/gDryWeight) after 10 minutes of processing on borosilicate glass microfiber paper. This suggests a storage temperature of 3°C.

  11. Characteristics of okara color change during convective drying process

    NASA Astrophysics Data System (ADS)

    Taruna, I.; Astuti, J.

    2018-03-01

    Okara is a byproduct of the tofu factory that is perishable in nature and requires an immediate handling and treatment to preserve it. Drying has been a preferred method since it can increase the product compactness. However, the majority of okara drying studies done in the past are disregarding the influences of process condition on color change characteristic. Hence, this work aimed to investigate the characteristic of okara color changes during convective drying at temperatures of 85, 100, and 115°C. The okara color was expressed in terms of L a b values and its derivative attributes, i.e. whiteness, hue angle, chroma and the total color difference. The results showed that an increase in drying time and temperatures decreased the lightness, yellowness and the total color difference, but conversely increased the redness of okara. Fitting of two exponential models to the experimental data revealed that the Page’s equation was better in predicting the okara color degradation than Newton’s model.

  12. Drying kinetics and characteristics of dried gambir leaves using solar heating and silica gel dessicant

    NASA Astrophysics Data System (ADS)

    Hasibuan, R.; Hidayati, J.; Sundari, R.; Wicaksono, A. S.

    2018-02-01

    A drying combination of solar heating and silica gel dessicant has been applied to dry gambir leaves. The solar energy is captured by a collector to heat the air and the hot air is used to dry gambir leaves in a drying chamber. An exhaust fan in drying chamber assists to draw water molecules from gambir leaves accelerated by silica gel dessicant. This study has investigated the drying kinetics and drying characteristics of gambir leaves drying. In drying operation the air velocity is tuned by a PWM (pulse width modulation) controller to adjust minimum and maximum level, which is based on the rotation speed of the exhaust fan. The results show that the air velocity influenced the drying kinetics and drying characteristics of gambir leaves using solar-dessicant drying at 40 cm distance between exhaust fan and silica gel dessicant.

  13. Influence of ripeness and drying process on the polyphenols and tocopherols of Pistacia vera L.

    PubMed

    Ballistreri, Gabriele; Arena, Elena; Fallico, Biagio

    2009-10-30

    This paper highlights, for the first time, the changes in the phenolics fraction (anthocyanins, flavonoids and stilbenes) and tocopherols of unpeeled Pistacia vera L. var. bianca with ripening, and the effect of the sun-drying process. The total polyphenol levels in pistachios, measured as mg of Gallic Acid Equivalent (GAE), were: 201 +/- 10.1, 349 +/- 18.3 and 184.7 +/- 6.2 mg GAE/100 g DM in unripe, ripe and dried ripe samples, respectively. Most phenolics in ripe pistachios were found to be anthocyanins. They increased with ripening, while the sun drying process caused a susbtantial loss. Flavonoids found in all pistachio samples were daidzein, genistein, daidzin, quercetin, eriodictyol, luteolin, genistin and naringenin, which decreased both with ripening and drying. Before the drying process both unripe and ripe pistachios showed a higher content of trans-resveratrol than dried ripe samples. gamma-Tocopherol was the major vitamin E isomer found in pistachios. The total content (of alpha- and gamma-tocopherols) decreased, both during ripening and during the drying process. These results suggested that unpeeled pistachios can be considered an important source of phenolics, particularly of anthocyanins. Moreover, in order to preserve these healthy characteristics, new and more efficient drying processes should be adopted.

  14. Microstructural and bulk property changes in hardened cement paste during the first drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Ippei, E-mail: ippei@dali.nuac.nagoya-u.ac.jp; Nishioka, Yukiko; Igarashi, Go

    2014-04-01

    This paper reports the microstructural changes and resultant bulk physical property changes in hardened cement paste (hcp) during the first desorption process. The microstructural changes and solid-phase changes were evaluated by water vapor sorption, nitrogen sorption, ultrasonic velocity, and {sup 29}Si and {sup 27}Al nuclear magnetic resonance. Strength, Young's modulus, and drying shrinkage were also examined. The first drying process increased the volume of macropores and decreased the volume of mesopores and interlayer spaces. Furthermore, in the first drying process globule clusters were interconnected. During the first desorption, the strength increased for samples cured at 100% to 90% RH, decreasedmore » for 90% to 40% RH, and increased again for 40% to 11% RH. This behavior is explained by both microstructural changes in hcp and C–S–H globule densification. The drying shrinkage strains during rapid drying and slow drying were compared and the effects of the microstructural changes and evaporation were separated.« less

  15. Evaluating the process parameters of the dry coating process using a 2(5-1) factorial design.

    PubMed

    Kablitz, Caroline Désirée; Urbanetz, Nora Anne

    2013-02-01

    A recent development of coating technology is dry coating, where polymer powder and liquid plasticizer are layered on the cores without using organic solvents or water. Several studies evaluating the process were introduced in literature, however, little information about the critical process parameters (CPPs) is given. Aim of the study was the investigation and optimization of CPPs with respect to one of the critical quality attributes (CQAs), the coating efficiency of the dry coating process in a rotary fluid bed. Theophylline pellets were coated with hydroxypropyl methylcellulose acetate succinate as enteric film former and triethyl citrate and acetylated monoglyceride as plasticizer. A 2(5-1) design of experiments (DOEs) was created investigating five independent process parameters namely coating temperature, curing temperature, feeding/spraying rate, air flow and rotor speed. The results were evaluated by multilinear regression using the software Modde(®) 7. It is shown, that generally, low feeding/spraying rates and low rotor speeds increase coating efficiency. High coating temperatures enhance coating efficiency, whereas medium curing temperatures have been found to be optimum in terms of coating efficiency. This study provides a scientific base for the design of efficient dry coating processes with respect to coating efficiency.

  16. Hybrid Drying of Carrot Preliminary Processed with Ultrasonically Assisted Osmotic Dehydration

    PubMed Central

    2017-01-01

    Summary In this paper the kinetics of osmotic dehydration of carrot and the influence of this pretreatment on the post-drying processes and the quality of obtained products are analysed. Osmotic dehydration was carried out in the aqueous fructose solution in two different ways: with and without ultrasound assistance. In the first part of the research, the kinetics of osmotic dehydration was analysed on the basis of osmotic dewatering rate, water loss and solid gain. Next, the effective time of dehydration was determined and in the second part of research samples were initially dehydrated for 30 min and dried. Five different procedures of drying were established on the grounds of convective method enhanced with microwave and infrared radiation. The influence of osmotic dehydration on the drying kinetics and final product quality was analysed. It was found that it did not influence the drying kinetics significantly but positively affected the final product quality. Negligible influence on the drying kinetics was attributed to solid uptake, which may block the pores, hindering heat and mass transfer. It was also concluded that the application of microwave and/or infrared radiation during convective drying significantly influenced the kinetics of the final stage of drying. A proper combination of aforementioned techniques of hybrid drying allows reducing the drying time. Differences between the particular dehydration methods and drying schedules were discussed. PMID:28867949

  17. In-Storage Embedded Accelerator for Sparse Pattern Processing

    DTIC Science & Technology

    2016-08-13

    performance of RAM disk. Since this configuration offloads most of processing onto the FPGA, the host software consists of only two threads for...more. Fig. 13. Document Processed vs CPU Threads Note that BlueDBM efficiency comes from our in-store processing paradigm that uses the FPGA...In-Storage Embedded Accelerator for Sparse Pattern Processing Sang-Woo Jun*, Huy T. Nguyen#, Vijay Gadepally#*, and Arvind* #MIT Lincoln Laboratory

  18. Degradation of carotenoids in apricot (Prunus armeniaca L.) during drying process.

    PubMed

    Fratianni, Alessandra; Albanese, Donatella; Mignogna, Rossella; Cinquanta, Luciano; Panfili, Gianfranco; Di Matteo, Marisa

    2013-09-01

    Carotenoids are natural compounds whose nutritional importance comes from the provitamin A activity of some of them and their protection against several serious human disorders. The degradation of carotenoids was investigated during apricot drying by microwave and convective hot-air at 60 and 70 °C. Seven carotenoids were identified: antheraxanthin, lutein, zeaxanthin, β-cryptoxanthin, 13-cis-β-carotene, all-trans-β-carotene and 9-cis-β-carotene; among these, all-trans-β-carotene was found to be about 50 % of total carotenoids. First-order kinetic models were found to better describe all-trans-β-carotene reduction during drying, with a degradation rate constant (k1) that increased two folds when temperatures increased by 10 °C, in both methods. No differences were found in k1 between apricots dried by hot air at 70 °C (k1 = 0.0340 h(-1)) and by microwave at 60 °C. The evolution of total carotenoids (117.1 mg/kg on dry basis) during drying highlighted a wider decrease (about 50%) when microwave heating was employed, for both set temperatures. Antheraxantin was found to be the carotenoid most susceptible to heat, disappearing at 6 h during both trials with microwave as well as during convective hot-air at 70 °C. For this reason, antheraxanthin could be a useful marker for the evaluation of thermal damage due to the drying process. Also the degree of isomerization of all-trans-β-carotene could be a useful marker for the evaluation of the drying process.

  19. Susceptibility of materials processing experiments to low-level accelerations

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1981-01-01

    The types of material processing experiments being considered for shuttle can be grouped into four categories: (1) contained solidification experiment; (2) quasicontainerless experiments; (3) containerless experiments; and (4) fluids experiments. Low level steady acceleration, compensated and uncompensated transient accelerations, and rotation induced flow factors that must be considered in the acceleration environment of a space vehicle whose importance depends on the type of experiment being performed. Some control of these factors may be exercised by the location and orientation of the experiment relative to shuttle and by the orbit vehicle attitude chosen for mission. The effects of the various residual accelerations can have serious consequence to the control of the experiment and must be factored into the design and operation of the apparatus.

  20. Radiative processes of uniformly accelerated entangled atoms

    NASA Astrophysics Data System (ADS)

    Menezes, G.; Svaiter, N. F.

    2016-05-01

    We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms traveling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that one of the maximally entangled antisymmetric Bell state is a decoherence-free state.

  1. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and... 7 Agriculture 5 2014-01-01 2014-01-01 false Importation of dried, cured, or processed fruits...

  2. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and... 7 Agriculture 5 2013-01-01 2013-01-01 false Importation of dried, cured, or processed fruits...

  3. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and... 7 Agriculture 5 2012-01-01 2012-01-01 false Importation of dried, cured, or processed fruits...

  4. Sensory profiles for dried fig (Ficus carica L.) cultivars commercially grown and processed in California.

    PubMed

    Haug, Megan T; King, Ellena S; Heymann, Hildegarde; Crisosto, Carlos H

    2013-08-01

    A trained sensory panel evaluated the 6 fig cultivars currently sold in the California dried fig market. The main flavor and aroma attributes determined by the sensory panel were "caramel," "honey," "raisin," and "fig," with additional aroma attributes: "common date," "dried plum," and "molasses." Sensory differences were observed between dried fig cultivars. All figs were processed by 2 commercial handlers. Processing included potassium sorbate as a preservative and SO2 application as an antibrowning agent for white cultivars. As a consequence of SO2 use during processing, high sulfite residues affected the sensory profiles of the white dried fig cultivars. Significant differences between dried fig cultivars and sources demonstrate perceived differences between processing and storage methods. The panel-determined sensory lexicon can help with California fig marketing. © 2013 The Regents of California, Davis Campus Department of Plant Sciences.

  5. Effects of drying process on the physicochemical properties of nopal cladodes at different maturity stages.

    PubMed

    Contreras-Padilla, Margarita; Gutiérrez-Cortez, Elsa; Valderrama-Bravo, María Del Carmen; Rojas-Molina, Isela; Espinosa-Arbeláez, Diego Germán; Suárez-Vargas, Raúl; Rodríguez-García, Mario Enrique

    2012-03-01

    Chemical proximate analysis was done in order to determine the changes of nutritional characteristics of nopal powders from three different maturity stages 50, 100, and 150 days and obtained by three different drying processes: freeze dried, forced air oven, and tunnel. Results indicate that nopal powder obtained by the process of freeze dried retains higher contents of protein, soluble fiber, and fat than the other two processes. Also, freeze dried process had less effect on color hue variable. No changes were observed in insoluble fiber content, chroma and lightness with the three different drying processes. Furthermore, the soluble fibers decreased with the age of nopal while insoluble fibers and ash content shows an opposite trend. In addition, the luminosity and hue values did not show differences among the maturity stages studied. The high content of dietary fibers of nopal pad powder could to be an interesting source of these important components for human diets and also could be used in food, cosmetics and pharmaceutical industry.

  6. Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality.

    PubMed

    Rodríguez, Óscar; Eim, Valeria; Rosselló, Carmen; Femenia, Antoni; Cárcel, Juan A; Simal, Susana

    2018-03-01

    Drying gives rise to products with a long shelf life by reducing the water activity to a level that is sufficiently low to inhibit the growth of microorganisms, enzymatic reactions and other deteriorative reactions. Despite the benefits of this operation, the quality of heat sensitive products is diminished when high temperatures are used. The use of low drying temperatures reduces the heat damage but, because of a longer drying time, oxidation reactions occur and a reduction of the quality is also observed. Thus, drying is a method that lends itself to being intensified. For this reason, alternative techniques are being studied. Power ultrasound is considered as an emerging and promising technology in the food industry. The potential of this technology relies on its ability to accelerate the mass transfer processes in solid-liquid and solid-gas systems. Intensification of the drying process with power ultrasound can be achieved by modifying the product behavior during drying, using pre-treatments such as soaking in a liquid medium assisted acoustically or, during the drying process itself, by applying power ultrasound in the gaseous medium. This review summarises the effects of the application of the power ultrasound on the quality of different dried products, such as fruits and vegetables, when the acoustic energy is intended to intensify the drying process, either when the application is performed before pretreatment or during the drying process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. [Characteristics of odors and VOCs from sludge direct drying process].

    PubMed

    Chen, Wen-He; Deng, Ming-Jia; Luo, Hui; Zhang, Jing-Ying; Ding, Wen-Jie; Liu, Jun-Xin; Liu, Jun-Xin

    2014-08-01

    Co-processing sewage sludge by using the high-temperature feature of cement kiln can realize harmless disposal and energy recycling. In this paper, investigation on characteristics of the flue gas from sludge drying process was carried out in Guangzhou Heidelberg Yuexiu Cement Co., LTD. The composition and the main source of odors and volatile organic compounds (VOCs) emitted during the drying process were analyzed, aimed to provide scientific basis for the treatment of sewage sludge. Results showed that there were a large number of malodorous substances and VOCs in the flue gas. Sulfur dioxide and other sulfur-containing compounds were the main components in the malodorous substances, while benzene derivatives were predominant in VOCs. The compositions of odors and VOCs were influenced by the characteristics of the sludge and the heat medium (kiln tail gas). Total organic compounds in the sludge were significantly decreased after drying. Other organic substances such as volatile fatty acid, protein, and polysaccharide were also obviously reduced. The organic matter in sludge was the main source of VOCs in the flue gas. Part of sulfurous substances, such as sulfur dioxide, carbon disulfide, were from sulfur-containing substances in the sludge, and the rest were from the kiln tail gas itself.

  8. [Effects of different drying methods on processing performance and quality in bulbus of Tulipa edulis].

    PubMed

    Yang, Xiao-hua; Guo, Qiao-sheng; Zhu, Zai-biao; Chen, Jun; Miao, Yuan-yuan; Yang, Ying; Sun, Yuan

    2015-10-01

    Effects of different drying methods including sun drying, steamed, boiled, constant temperature drying (at 40, 50, 60 °C) on appearance, hardness, rehydration ratio, dry rate, moisture, total ash, extractive and polysaccharides contents were studied to provide the basis of standard processing method for Tulipa edulis bulbus. The results showed that the treatments of sun drying and 40 °C drying showed higher rehydration ratios, but lower dry rate, higher hardness, worse color, longer time and obvious distortion and shrinkage in comparison with other drying methods. The treatments of 60 °C constant temperature drying resulted in shorter drying time, lower water and higher polysaccharides content. Drying time is shorter and appearance quality is better in the treatment of steaming and boiling compared with other treatments, but the content of extractive and polysaccharides decreased significantly. The treatments of 50 °C constant temperature drying led to similar appearance quality of bulb to commercial bulb, and it resulted in lowest hardness and highest dry rate as well as higher rehydration ratio, extractive and polysaccharides content, moderate moisture and total ash contents among these treatments. Based on the results obtained, 50 °C constant temperature drying is the better way for the processing of T. edulis bulbus.

  9. On the technological development of cotton primary processing, using a new drying-purifying unit

    NASA Astrophysics Data System (ADS)

    Agzamov, M. M.; Yunusov, S. Z.; Gafurov, J. K.

    2017-10-01

    The article reflects feasibility study of conducting research on technological development of cotton primary processing with the modified parameters of drying and cleaning process for small litter. As a result of theoretical and experimental research, drying and purifying unit is designed, in which in the existing processes a heat source, exhaust fans, a dryer drum, a peg-drum cleaner of cotton and the vehicle transmitting raw cotton from the dryer to the purifier will be excluded. The experience has shown that when a drying-purifying unit is installed (with eight wheels) purifying effect on the small litter of 34%, ie cleaning effect is higher than of that currently in operation 1XK drum cleaner. According to the research patent of RU UZ FAP 00674 “Apparatus for drying and cleaning fibrous material” is received.

  10. CO2 (dry ice) cleaning system

    NASA Technical Reports Server (NTRS)

    Barnett, Donald M.

    1995-01-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  11. Mechanistic modelling of fluidized bed drying processes of wet porous granules: a review.

    PubMed

    Mortier, Séverine Thérèse F C; De Beer, Thomas; Gernaey, Krist V; Remon, Jean Paul; Vervaet, Chris; Nopens, Ingmar

    2011-10-01

    Fluidized bed dryers are frequently used in industrial applications and also in the pharmaceutical industry. The general incentives to develop mechanistic models for pharmaceutical processes are listed, and our vision on how this can particularly be done for fluidized bed drying processes of wet granules is given. This review provides a basis for future mechanistic model development for the drying process of wet granules in pharmaceutical processes. It is intended for a broad audience with a varying level of knowledge on pharmaceutical processes and mathematical modelling. Mathematical models are powerful tools to gain process insight and eventually develop well-controlled processes. The level of detail embedded in such a model depends on the goal of the model. Several models have therefore been proposed in the literature and are reviewed here. The drying behaviour of one single granule, a porous particle, can be described using the continuum approach, the pore network modelling method and the shrinkage of the diameter of the wet core approach. As several granules dry at a drying rate dependent on the gas temperature, gas velocity, porosity, etc., the moisture content of a batch of granules will reside in a certain interval. Population Balance Model (ling) (PBM) offers a tool to describe the distribution of particle properties which can be of interest for the application. PBM formulation and solution methods are therefore reviewed. In a fluidized bed, the granules show a fluidization pattern depending on the geometry of the gas inlet, the gas velocity, characteristics of the particles, the dryer design, etc. Computational Fluid Dynamics (CFD) allows to model this behaviour. Moreover, turbulence can be modelled using several approaches: Reynolds-averaged Navier-Stokes Equations (RANS) or Large Eddy Simulation (LES). Another important aspect of CFD is the choice between the Eulerian-Lagrangian and the Eulerian-Eulerian approach. Finally, the PBM and CFD frameworks

  12. Emitting electron spectra and acceleration processes in the jet of PKS 0447-439

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Yan, Dahai; Dai, Benzhong; Zhang, Li

    2014-02-01

    We investigate the electron energy distributions (EEDs) and the corresponding acceleration processes in the jet of PKS 0447-439, and estimate its redshift through modeling its observed spectral energy distribution (SED) in the frame of a one-zone synchrotron-self Compton (SSC) model. Three EEDs formed in different acceleration scenarios are assumed: the power-law with exponential cut-off (PLC) EED (shock-acceleration scenario or the case of the EED approaching equilibrium in the stochastic-acceleration scenario), the log-parabolic (LP) EED (stochastic-acceleration scenario and the acceleration dominating), and the broken power-law (BPL) EED (no acceleration scenario). The corresponding fluxes of both synchrotron and SSC are then calculated. The model is applied to PKS 0447-439, and modeled SEDs are compared to the observed SED of this object by using the Markov Chain Monte Carlo method. The results show that the PLC model fails to fit the observed SED well, while the LP and BPL models give comparably good fits for the observed SED. The results indicate that it is possible that a stochastic acceleration process acts in the emitting region of PKS 0447-439 and the EED is far from equilibrium (acceleration dominating) or no acceleration process works (in the emitting region). The redshift of PKS 0447-439 is also estimated in our fitting: z = 0.16 ± 0.05 for the LP case and z = 0.17 ± 0.04 for BPL case.

  13. Infrared thermography for monitoring of freeze-drying processes: instrumental developments and preliminary results.

    PubMed

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-07-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from -40 °C to 25 °C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5 °C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8 °C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13 °C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10 °C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union.

  14. A modified dynamical model of drying process of polymer blend solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2008-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication. And for example numerical simulation of the model reproduces a typical thickness profile of the polymer film formed after drying. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of numerical simulations. Then we drove nonlinear equations of drying process from the dynamical model and the fruits were reported. The subject of above studies was limited to solution having one kind of solute though the model could essentially deal with solution having some kinds of solutes. But nowadays discussion of drying process of a solution having some kinds of solutes is needed because drying process of solution having some kinds of solutes appears in many industrial scenes. Polymer blend solution is one instance. And typical resist consists of a few kinds of polymers. Then we introduced a dynamical model of drying process of polymer blend solution coated on a flat substrate and results of numerical simulations of the dynamical model. But above model was the simplest one. In this study, we modify above dynamical model of drying process of polymer blend solution adding effects that some parameters change with time as functions of some variables to it. Then we consider essence of drying process of polymer blend solution through comparison between results of numerical simulations of the modified model and those of the former model.

  15. Freeze-drying process design by manometric temperature measurement: design of a smart freeze-dryer.

    PubMed

    Tang, Xiaolin Charlie; Nail, Steven L; Pikal, Michael J

    2005-04-01

    To develop a procedure based on manometric temperature measurement (MTM) and an expert system for good practices in freeze drying that will allow development of an optimized freeze-drying process during a single laboratory freeze-drying experiment. Freeze drying was performed with a FTS Dura-Stop/Dura-Top freeze dryer with the manometric temperature measurement software installed. Five percent solutions of glycine, sucrose, or mannitol with 2 ml to 4 ml fill in 5 ml vials were used, with all vials loaded on one shelf. Details of freezing, optimization of chamber pressure, target product temperature, and some aspects of secondary drying are determined by the expert system algorithms. MTM measurements were used to select the optimum shelf temperature, to determine drying end points, and to evaluate residual moisture content in real-time. MTM measurements were made at 1 hour or half-hour intervals during primary drying and secondary drying, with a data collection frequency of 4 points per second. The improved MTM equations were fit to pressure-time data generated by the MTM procedure using Microcal Origin software to obtain product temperature and dry layer resistance. Using heat and mass transfer theory, the MTM results were used to evaluate mass and heat transfer rates and to estimate the shelf temperature required to maintain the target product temperature. MTM product dry layer resistance is accurate until about two-thirds of total primary drying time is over, and the MTM product temperature is normally accurate almost to the end of primary drying provided that effective thermal shielding is used in the freeze-drying process. The primary drying times can be accurately estimated from mass transfer rates calculated very early in the run, and we find the target product temperature can be achieved and maintained with only a few adjustments of shelf temperature. The freeze-dryer overload conditions can be estimated by calculation of heat/mass flow at the target product

  16. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect

    NASA Astrophysics Data System (ADS)

    Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni

    2018-02-01

    Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data ( R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy ( Ea) values were calculated from effective moisture diffusivity ( Deff), thermal diffusivity ( α) and the rate constant of the best model ( k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.

  17. Secondary electron emission from plasma processed accelerating cavity grade niobium

    NASA Astrophysics Data System (ADS)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  18. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for highermore » energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were

  19. Innovative application of the moisture analyzer for determination of dry mass content of processed cheese

    NASA Astrophysics Data System (ADS)

    Kowalska, Małgorzata; Janas, Sławomir; Woźniak, Magdalena

    2018-04-01

    The aim of this work was the presentation of an alternative method of determination of the total dry mass content in processed cheese. The authors claim that the presented method can be used in industry's quality control laboratories for routine testing and for quick in-process control. For the test purposes both reference method of determination of dry mass in processed cheese and moisture analyzer method were used. The tests were carried out for three different kinds of processed cheese. In accordance with the reference method, the sample was placed on a layer of silica sand and dried at the temperature of 102 °C for about 4 h. The moisture analyzer test required method validation, with regard to drying temperature range and mass of the analyzed sample. Optimum drying temperature of 110 °C was determined experimentally. For Hochland cream processed cheese sample, the total dry mass content, obtained using the reference method, was 38.92%, whereas using the moisture analyzer method, it was 38.74%. An average analysis time in case of the moisture analyzer method was 9 min. For the sample of processed cheese with tomatoes, the reference method result was 40.37%, and the alternative method result was 40.67%. For the sample of cream processed cheese with garlic the reference method gave value of 36.88%, and the alternative method, of 37.02%. An average time of those determinations was 16 min. Obtained results confirmed that use of moisture analyzer is effective. Compliant values of dry mass content were obtained for both of the used methods. According to the authors, the fact that the measurement took incomparably less time for moisture analyzer method, is a key criterion of in-process control and final quality control method selection.

  20. Particle Acceleration and Heating Processes at the Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Lapenta, G.; Richard, R. L.; El-Alaoui, M.; Walker, R. J.; Schriver, D.

    2017-12-01

    It is well established that electrons and ions are accelerated and heated during magnetic reconnection at the dayside magnetopause. However, a detailed description of the actual physical mechanisms driving these processes and where they are operating is still incomplete. Many basic mechanisms are known to accelerate particles, including resonant wave-particle interactions as well as stochastic, Fermi, and betatron acceleration. In addition, acceleration and heating processes can occur over different scales. We have carried out kinetic simulations to investigate the mechanisms by which electrons and ions are accelerated and heated at the dayside magnetopause. The simulation model uses the results of global magnetohydrodynamic (MHD) simulations to set the initial state and the evolving boundary conditions of fully kinetic implicit particle-in-cell (iPic3D) simulations for different solar wind and interplanetary magnetic field conditions. This approach allows us to include large domains both in space and energy. In particular, some of these regional simulations include both the magnetopause and bow shock in the kinetic domain, encompassing range of particle energies from a few eV in the solar wind to keV in the magnetospheric boundary layer. We analyze the results of the iPic3D simulations by discussing wave spectra and particle velocity distribution functions observed in the different regions of the simulation domain, as well as using large-scale kinetic (LSK) computations to follow particles' time histories. We discuss the relevance of our results by comparing them with local observations by the MMS spacecraft.

  1. Optimization of a pharmaceutical freeze-dried product and its process using an experimental design approach and innovative process analyzers.

    PubMed

    De Beer, T R M; Wiggenhorn, M; Hawe, A; Kasper, J C; Almeida, A; Quinten, T; Friess, W; Winter, G; Vervaet, C; Remon, J P

    2011-02-15

    The aim of the present study was to examine the possibilities/advantages of using recently introduced in-line spectroscopic process analyzers (Raman, NIR and plasma emission spectroscopy), within well-designed experiments, for the optimization of a pharmaceutical formulation and its freeze-drying process. The formulation under investigation was a mannitol (crystalline bulking agent)-sucrose (lyo- and cryoprotector) excipient system. The effects of two formulation variables (mannitol/sucrose ratio and amount of NaCl) and three process variables (freezing rate, annealing temperature and secondary drying temperature) upon several critical process and product responses (onset and duration of ice crystallization, onset and duration of mannitol crystallization, duration of primary drying, residual moisture content and amount of mannitol hemi-hydrate in end product) were examined using a design of experiments (DOE) methodology. A 2-level fractional factorial design (2(5-1)=16 experiments+3 center points=19 experiments) was employed. All experiments were monitored in-line using Raman, NIR and plasma emission spectroscopy, which supply continuous process and product information during freeze-drying. Off-line X-ray powder diffraction analysis and Karl-Fisher titration were performed to determine the morphology and residual moisture content of the end product, respectively. In first instance, the results showed that - besides the previous described findings in De Beer et al., Anal. Chem. 81 (2009) 7639-7649 - Raman and NIR spectroscopy are able to monitor the product behavior throughout the complete annealing step during freeze-drying. The DOE approach allowed predicting the optimum combination of process and formulation parameters leading to the desired responses. Applying a mannitol/sucrose ratio of 4, without adding NaCl and processing the formulation without an annealing step, using a freezing rate of 0.9°C/min and a secondary drying temperature of 40°C resulted in

  2. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools.

    PubMed

    De Beer, T R M; Vercruysse, P; Burggraeve, A; Quinten, T; Ouyang, J; Zhang, X; Vervaet, C; Remon, J P; Baeyens, W R G

    2009-09-01

    The aim of the present study was to examine the complementary properties of Raman and near infrared (NIR) spectroscopy as PAT tools for the fast, noninvasive, nondestructive and in-line process monitoring of a freeze drying process. Therefore, Raman and NIR probes were built in the freeze dryer chamber, allowing simultaneous process monitoring. A 5% (w/v) mannitol solution was used as model for freeze drying. Raman and NIR spectra were continuously collected during freeze drying (one Raman and NIR spectrum/min) and the spectra were analyzed using principal component analysis (PCA) and multivariate curve resolution (MCR). Raman spectroscopy was able to supply information about (i) the mannitol solid state throughout the entire process, (ii) the endpoint of freezing (endpoint of mannitol crystallization), and (iii) several physical and chemical phenomena occurring during the process (onset of ice nucleation, onset of mannitol crystallization). NIR spectroscopy proved to be a more sensitive tool to monitor the critical aspects during drying: (i) endpoint of ice sublimation and (ii) monitoring the release of hydrate water during storage. Furthermore, via NIR spectroscopy some Raman observations were confirmed: start of ice nucleation, end of mannitol crystallization and solid state characteristics of the end product. When Raman and NIR monitoring were performed on the same vial, the Raman signal was saturated during the freezing step caused by reflected NIR light reaching the Raman detector. Therefore, NIR and Raman measurements were done on a different vial. Also the importance of the position of the probes (Raman probe above the vial and NIR probe at the bottom of the sidewall of the vial) in order to obtain all required critical information is outlined. Combining Raman and NIR spectroscopy for the simultaneous monitoring of freeze drying allows monitoring almost all critical freeze drying process aspects. Both techniques do not only complement each other, they also

  3. Simulation of the process kinetics and analysis of physicochemical properties in the freeze drying of kale

    NASA Astrophysics Data System (ADS)

    Dziki, Dariusz; Polak, Renata; Rudy, Stanisław; Krzykowski, Andrzej; Gawlik-Dziki, Urszula; Różyło, Renata; Miś, Antoni; Combrzyński, Maciej

    2018-01-01

    Investigations were performed to study the freeze-drying process of kale (Brassica oleracea L. var acephala). The process of freeze-drying was performed at temperatures of 20, 40, and 60°C for whole pieces of leaves and for pulped leaves. The kinetics of the freeze-drying of both kale leaves and kale pulp were best described by the Page model. The increasing freeze-drying temperature from 20 to 60°C induced an approximately two-fold decrease in the drying time. Freeze-drying significantly increased the value of the lightness, delta Chroma, and browning index of kale, and had little influence on the hue angle. The highest increase in the lightness and delta Chroma was observed for whole leaves freeze-dried at 20°C. An increase in the drying temperature brought about a slight decrease in the lightness, delta Chroma and the total colour difference. Pulping decreased the lightness and hue angle, and increased browning index. Freeze-drying engendered a slight decrease in the total phenolics content and antioxidant activity, in comparison to fresh leaves. The temperature of the process and pulping had little influence on the total phenolics content and antioxidant activity of dried kale, but significantly decreased the contents of chlorophyll a and chlorophyll b.

  4. Enhancement of convective drying by application of airborne ultrasound - a response surface approach.

    PubMed

    Beck, Svenja M; Sabarez, Henry; Gaukel, Volker; Knoerzer, Kai

    2014-11-01

    Drying is one of the oldest and most commonly used processes in the food manufacturing industry. The conventional way of drying is by forced convection at elevated temperatures. However, this process step often requires a very long treatment time, is highly energy consuming and detrimental to the product quality. Therefore, an investigation of whether the drying time and temperature can be reduced with the assistance of an airborne ultrasound intervention is of interest. Previous studies have shown that contact ultrasound can accelerate the drying process. It is assumed that mechanical vibrations, creating micro channels in the food matrix or keeping these channels from collapsing upon drying, are responsible for the faster water removal. In food samples, due to their natural origin, drying is also influenced by fluctuations in tissue structure, varying between different trials. For this reason, a model food system with thermo-physical properties and composition (water, cellulose, starch, fructose) similar to those of plant-based foods has been used in this study. The main objective was, therefore, to investigate the influence of airborne ultrasound conditions on the drying behaviour of the model food. The impact of airborne ultrasound at various power levels, drying temperature, relative humidity of the drying air, and the air speed was analysed. To examine possible interactions between these parameters, the experiments were designed with a Response Surface Method using Minitab 16 Statistical Software (Minitab Inc., State College, PA, USA). In addition, a first attempt at improving the process conditions and performance for better suitability and applicability in industrial scale processing was undertaken by non-continuous/intermittent sonication. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    PubMed

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Automatic humidification system to support the assessment of food drying processes

    NASA Astrophysics Data System (ADS)

    Ortiz Hernández, B. D.; Carreño Olejua, A. R.; Castellanos Olarte, J. M.

    2016-07-01

    This work shows the main features of an automatic humidification system to provide drying air that match environmental conditions of different climate zones. This conditioned air is then used to assess the drying process of different agro-industrial products at the Automation and Control for Agro-industrial Processes Laboratory of the Pontifical Bolivarian University of Bucaramanga, Colombia. The automatic system allows creating and improving control strategies to supply drying air under specified conditions of temperature and humidity. The development of automatic routines to control and acquire real time data was made possible by the use of robust control systems and suitable instrumentation. The signals are read and directed to a controller memory where they are scaled and transferred to a memory unit. Using the IP address is possible to access data to perform supervision tasks. One important characteristic of this automatic system is the Dynamic Data Exchange Server (DDE) to allow direct communication between the control unit and the computer used to build experimental curves.

  7. Infrared Thermography for Monitoring of Freeze-Drying Processes: Instrumental Developments and Preliminary Results

    PubMed Central

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-01-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from −40°C to 25°C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5°C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8°C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13°C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10°C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union 103:2088–2097, 2014 PMID:24902839

  8. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, Uthamalingam

    1996-01-01

    A process for the preparation of amorphous precursor powders for Pb-doped Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains.

  9. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, U.

    1996-06-04

    A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.

  10. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    --the dominant mechanism of heat transfer in freeze-drying--is inefficient at the pressures used in freeze-drying. Steps should be taken to improve the thermal contact between the product and the shelf of the freeze dryer, such as eliminating metal trays from the drying process. Quantitation of the heat transfer coefficient for the geometry used is a useful way of assessing the impact of changes in the system such as elimination of product trays and changes in the vial. Because heat transfer by conduction through the vapor increases with increasing pressure, the commonly held point of view that "the lower the pressure, the better" is not true with respect to process efficiency. The optimum pressure for a given product is a function of the temperature at which freeze-drying is carried out, and lower pressures are needed at low product temperatures. The controlling resistance to mass transfer is almost always the resistance of the partially dried solids above the submination interface. This resistance can be minimized by avoiding fill volumes of more than about half the volume of the container. The development scientist should also recognize that very high concentrations of solute may not be appropriate for optimum freeze-drying, particularly if the resistance of the dried product layer increases sharply with concentration. Although the last 10 years has seen the publication of a significant body of literature of great value in allowing development scientists and engineers to "work smarter," there is still much work needed in both the science and the technology of freeze-drying. Scientific development is needed for improving analytical methodology for characterization of frozen systems and freeze-dried solids. A better understanding of the relationship between molecular mobility and reactivity is needed to allow accurate prediction of product stability at the intended storage temperature based on accelerated stability at higher temperatures. This requires that the temperature

  11. Application of exopolysaccharides to improve the performance of ceramic bodies in the unidirectional dry pressing process

    NASA Astrophysics Data System (ADS)

    Caneira, Inês; Machado-Moreira, Bernardino; Dionísio, Amélia; Godinho, Vasco; Neves, Orquídia; Dias, Diamantino; Saiz-Jimenez, Cesareo; Miller, Ana Z.

    2015-04-01

    Ceramic industry represents an important sector of economic activity in the European countries and involves complex and numerous manufacturing processes. The unidirectional dry pressing process includes milling and stirring of raw materials (mainly clay and talc minerals) in aqueous suspensions, followed by spray drying to remove excess water obtaining spray-dried powders further subjected to dry pressing process (conformation). However, spray-dried ceramic powders exhibit an important variability in their performance when subjected to the dry pressing process, particularly in the adhesion to the mold and mechanical strength, affecting the quality of the final conformed ceramic products. Therefore, several synthetic additives (deflocculants, antifoams, binders, lubricants and plasticizers) are introduced in the ceramic slips to achieve uniform and homogeneous pastes, conditioning their rheological properties. However, an important variability associated with the performance of the conformed products is still reported. Exopolysaccharides or Extracellular Polymeric Substances (EPS) are polymers excreted by living organisms, such as bacteria, fungi and algae, which may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation. Polysaccharides, such as pullulan, gellan, carrageenan and xanthan have found a wide range of applications in food, pharmaceutical, petroleum, and in other industries. The aim of this study was the assessment of exopolysaccharides as natural additives to optimize the performance of spray-dried ceramic powders during the unidirectional dry pressing process, replacing the synthetic additives used in the ceramic production process. Six exopolysaccharides, namely pullulan, gellan, xanthan gum, κappa- and iota-carrageenan, and guar gum were tested in steatite-based spray-dried ceramic powders at different concentrations. Subsequently, these ceramic powders were

  12. Effects of annealing on the physical properties of therapeutic proteins during freeze drying process.

    PubMed

    Lim, Jun Yeul; Lim, Dae Gon; Kim, Ki Hyun; Park, Sang-Koo; Jeong, Seong Hoon

    2018-02-01

    Effects of annealing steps during the freeze drying process on etanercept, model protein, were evaluated using various analytical methods. The annealing was introduced in three different ways depending on time and temperature. Residual water contents of dried cakes varied from 2.91% to 6.39% and decreased when the annealing step was adopted, suggesting that they are directly affected by the freeze drying methods Moreover, the samples were more homogenous when annealing was adopted. Transition temperatures of the excipients (sucrose, mannitol, and glycine) were dependent on the freeze drying steps. Size exclusion chromatography showed that monomer contents were high when annealing was adopted and also they decreased less after thermal storage at 60°C. Dynamic light scattering results exhibited that annealing can be helpful in inhibiting aggregation and that thermal storage of freeze-dried samples preferably induced fragmentation over aggregation. Shift of circular dichroism spectrum and of the contents of etanercept secondary structure was observed with different freeze drying steps and thermal storage conditions. All analytical results suggest that the physicochemical properties of etanercept formulation can differ in response to different freeze drying steps and that annealing is beneficial for maintaining stability of protein and reducing the time of freeze drying process. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Process simulation of modified dry grind ethanol plant with recycle of pretreated and enzymatically hydrolyzed distillers' grains.

    PubMed

    Kim, Youngmi; Mosier, Nathan; Ladisch, Michael R

    2008-08-01

    Distillers' grains (DG), a co-product of a dry grind ethanol process, is an excellent source of supplemental proteins in livestock feed. Studies have shown that, due to its high polymeric sugar contents and ease of hydrolysis, the distillers' grains have potential as an additional source of fermentable sugars for ethanol fermentation. The benefit of processing the distillers' grains to extract fermentable sugars lies in an increased ethanol yield without significant modification in the current dry grind technology. Three different potential configurations of process alternatives in which pretreated and hydrolyzed distillers' grains are recycled for an enhanced overall ethanol yield are proposed and discussed in this paper based on the liquid hot water (LHW) pretreatment of distillers' grains. Possible limitations of each proposed process are also discussed. This paper presents a compositional analysis of distillers' grains, as well as a simulation of the modified dry grind processes with recycle of distillers' grains. Simulated material balances for the modified dry grind processes are established based on the base case assumptions. These balances are compared to the conventional dry grind process in terms of ethanol yield, compositions of its co-products, and accumulation of fermentation inhibitors. Results show that 14% higher ethanol yield is achievable by processing and hydrolyzing the distillers' grains for additional fermentable sugars, as compared to the conventional dry grind process. Accumulation of fermentation by-products and inhibitory components in the proposed process is predicted to be 2-5 times higher than in the conventional dry grind process. The impact of fermentation inhibitors is reviewed and discussed. The final eDDGS (enhanced dried distillers' grains) from the modified processes has 30-40% greater protein content per mass than DDGS, and its potential as a value-added process is also analyzed. While the case studies used to illustrate the

  14. Food drying process by power ultrasound.

    PubMed

    de la Fuente-Blanco, S; Riera-Franco de Sarabia, E; Acosta-Aparicio, V M; Blanco-Blanco, A; Gallego-Juárez, J A

    2006-12-22

    Drying processes, which have a great significance in the food industry, are frequently based on the use of thermal energy. Nevertheless, such methods may produce structural changes in the products. Consequently, a great emphasis is presently given to novel treatments where the quality will be preserved. Such is the case of the application of high-power ultrasound which represents an emergent and promising technology. During the last few years, we have been involved in the development of an ultrasonic dehydration process, based on the application of the ultrasonic vibration in direct contact with the product. Such a process has been the object of a detailed study at laboratory stage on the influence of the different parameters involved. This paper deals with the development and testing of a prototype system for the application and evaluation of the process at a pre-industrial stage. Such prototype is based on a high-power rectangular plate transducer, working at a frequency of 20 kHz, with a power capacity of about 100 W. In order to study mechanical and thermal effects, the system is provided with a series of sensors which permit monitoring the parameters of the process. Specific software has also been developed to facilitate data collection and analysis. The system has been tested with vegetable samples.

  15. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Arzner, K.; Benz, A. O.; Browning, P.; Dauphin, C.; Emslie, A. G.; Fletcher, L.; Kontar, E. P.; Mann, G.; Onofri, M.; Petrosian, V.; Turkmani, R.; Vilmer, N.; Vlahos, L.

    2011-09-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  16. A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine.

    PubMed

    Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre

    2016-09-25

    Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Fiber Bragg grating sensor to monitor stress kinetics in drying process of commercial latex paints.

    PubMed

    de Lourenço, Ivo; Possetti, Gustavo R C; Muller, Marcia; Fabris, José L

    2010-01-01

    In this paper, we report a study about the application of packaged fiber Bragg gratings used as strain sensors to monitor the stress kinetics during the drying process of commercial latex paints. Three stages of drying with distinct mechanical deformation and temporal behaviors were identified for the samples, with mechanical deformation from 15 μm to 21 μm in the longitudinal film dimension on time intervals from 370 to 600 minutes. Drying time tests based on human sense technique described by the Brazilian Technical Standards NBR 9558 were also done. The results obtained shows that human sense technique has a limited perception of the drying process and that the optical measurement system proposed can be used to characterize correctly the dry-through stage of paint. The influence of solvent (water) addition in the drying process was also investigated. The paint was diluted with four parts paint and one part water (80% paint), and one part paint and one part water (50% paint). It was observed that the increase of the water ratio mixed into the paint decreases both the mechanical deformation magnitude and the paint dry-through time. Contraction of 5.2 μm and 10.4 μm were measured for concentrations of 50% and 80% of paint in the mixture, respectively. For both diluted paints the dry-through time was approximately 170 minutes less than undiluted paint. The optical technique proposed in this work can contribute to the development of new standards to specify the drying time of paint coatings.

  18. Fiber Bragg Grating Sensor to Monitor Stress Kinetics in Drying Process of Commercial Latex Paints

    PubMed Central

    de Lourenço, Ivo; Possetti, Gustavo R. C.; Muller, Marcia; Fabris, José L.

    2010-01-01

    In this paper, we report a study about the application of packaged fiber Bragg gratings used as strain sensors to monitor the stress kinetics during the drying process of commercial latex paints. Three stages of drying with distinct mechanical deformation and temporal behaviors were identified for the samples, with mechanical deformation from 15 μm to 21 μm in the longitudinal film dimension on time intervals from 370 to 600 minutes. Drying time tests based on human sense technique described by the Brazilian Technical Standards NBR 9558 were also done. The results obtained shows that human sense technique has a limited perception of the drying process and that the optical measurement system proposed can be used to characterize correctly the dry-through stage of paint. The influence of solvent (water) addition in the drying process was also investigated. The paint was diluted with four parts paint and one part water (80% paint), and one part paint and one part water (50% paint). It was observed that the increase of the water ratio mixed into the paint decreases both the mechanical deformation magnitude and the paint dry-through time. Contraction of 5.2 μm and 10.4 μm were measured for concentrations of 50% and 80% of paint in the mixture, respectively. For both diluted paints the dry-through time was approximately 170 minutes less than undiluted paint. The optical technique proposed in this work can contribute to the development of new standards to specify the drying time of paint coatings. PMID:22399906

  19. Energy-efficient regenerative liquid desiccant drying process

    DOEpatents

    Ko, Suk M.; Grodzka, Philomena G.; McCormick, Paul O.

    1980-01-01

    This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.

  20. Method of drying passivated micromachines by dewetting from a liquid-based process

    DOEpatents

    Houston, Michael R.; Howe, Roger T.; Maboudian, Roya; Srinivasan, Uthara

    2000-01-01

    A method of fabricating a micromachine includes the step of constructing a low surface energy film on the micromachine. The micromachine is then rinsed with a rinse liquid that has a high surface energy, relative to the low surface energy film, to produce a contact angle of greater than 90.degree. between the low surface energy film and the rinse liquid. This relatively large contact angle causes any rinse liquid on the micromachine to be displaced from the micromachine when the micromachine is removed from the rinse liquid. In other words, the micromachine is dried by dewetting from a liquid-based process. Thus, a separate evaporative drying step is not required, as the micromachine is removed from the liquid-based process in a dry state. The relatively large contact angle also operates to prevent attractive capillary forces between micromachine components, thereby preventing contact and adhesion between adjacent microstructure surfaces. The low surface energy film may be constructed with a fluorinated self-assembled monolayer film. The processing of the invention avoids the use of environmentally harmful, health-hazardous chemicals.

  1. Study of a dry room in a battery manufacturing plant using a process model

    NASA Astrophysics Data System (ADS)

    Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.

    2016-09-01

    The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studied the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study was conducted with the help of a process model for a dry room with a volume of 16,000 cubic meters. For a defined base case scenario it was found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.

  2. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations.

  3. Characteristics and functionality of appetite-reducing thylakoid powders produced by three different drying processes.

    PubMed

    Östbring, Karolina; Sjöholm, Ingegerd; Sörenson, Henrietta; Ekholm, Andrej; Erlanson-Albertsson, Charlotte; Rayner, Marilyn

    2018-03-01

    Thylakoids, a chloroplast membrane extracted from green leaves, are a promising functional ingredient with appetite-reducing properties via their lipase-inhibiting effect. Thylakoids in powder form have been evaluated in animal and human models, but no comprehensive study has been conducted on powder characteristics. The aim was to investigate the effects of different isolation methods and drying techniques (drum-drying, spray-drying, freeze-drying) on thylakoids' physicochemical and functional properties. Freeze-drying yielded thylakoid powders with the highest lipase-inhibiting capacity. We hypothesize that the specific macromolecular structures involved in lipase inhibition were degraded to different degrees by exposure to heat during spray-drying and drum-drying. We identified lightness (Hunter's L-value), greenness (Hunter's a-value), chlorophyll content and emulsifying capacity to be correlated to lipase-inhibiting capacity. Thus, to optimize the thylakoids functional properties, the internal membrane structure indicated by retained green colour should be preserved. This opens possibilities to use chlorophyll content as a marker for thylakoid functionality in screening processes during process optimization. Thylakoids are heat sensitive, and a mild drying technique should be used in industrial production. Strong links between physicochemical parameters and lipase inhibition capacity were found that can be used to predict functionality. The approach from this study can be applied towards production of standardized high-quality functional food ingredients. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    PubMed Central

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  5. Radiolytic and Thermal Process Relevant to Dry Storage of Spent Nuclear Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven C.; Haustein, Peter E.; Madey, Theodore E.

    1999-06-01

    This project involves basic research in chemistry and physics aimed at providing information pertinent to the safe long-term dry storage of spent nuclear fuel (SNF), thousands of tons of which remain in water storage across the DOE complex. The Hanford Site K-Basins alone hold 2300 tons of spent fuel, much of it severely corroded, and similar situations exist at Savannah River and Idaho National Engineering and Environmental Laboratory. DOE plans to remove this fuel and seal it in overpack canisters for ''dry'' interim storage for up to 75 years while awaiting permanent disposition. Chemically bound water will remain in thismore » fuel even after the proposed drying steps, leading to possible long-term corrosion of the containers and/or fuel rods themselves, generation of H2 and O2 gas via radiolysis (which could lead to deflagration or detonation), and reactions of pyrophoric uranium hydrides. No thoroughly tested model is now available to predict fuel behavior during preprocessing, processing, or storage. In a collaborative effort among Rutgers University, Pacific Northwest National Laboratory, and Brookhaven National Laboratory, we are studying the radiolytic reaction, drying processes, and corrosion behavior of actual SNF materials and of pure and mixed-phase samples. We propose to determine what is omitted from current models: radiolysis of water adsorbed on or in hydrates or hydroxides, thermodynamics of interfacial phases, and kinetics of drying. A model will be developed and tested against actual fuel rod behavior to ensure validity and applicability to the problems associated with developing dry storage strategies for DOE-owned SNF.« less

  6. Application of airborne ultrasound in the convective drying of fruits and vegetables: A review.

    PubMed

    Fan, Kai; Zhang, Min; Mujumdar, Arun S

    2017-11-01

    The application of airborne ultrasound is a promising technology in the drying of foods, particularly to fruits and vegetables. In this paper, designs of dryers using ultrasound to combine the convective drying process are described. The main factors affecting the drying kinetics with the ultrasound application are discussed. The results show that the ultrasound application accelerated the drying kinetics. Ultrasound application during the convective drying of fruits and vegetables shorten the drying time. Ultrasound application can produce an increase of the effective moisture diffusivity and the mass transfer coefficient. The influence of ultrasound on physical and chemical parameters evaluating the product quality is reviewed. Ultrasound application can decrease the total color change, reveal a low water activity and reduce the loss of some nutrient elements. Meanwhile, ultrasound application can also better preserve the microstructure of fruits and vegetables in comparison to convective drying. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Utilization of optical emission endpoint in photomask dry etch processing

    NASA Astrophysics Data System (ADS)

    Faure, Thomas B.; Huynh, Cuc; Lercel, Michael J.; Smith, Adam; Wagner, Thomas

    2002-03-01

    Use of accurate and repeatable endpoint detection during dry etch processing of photomask is very important for obtaining good mask mean-to-target and CD uniformity performance. It was found that the typical laser reflectivity endpoint detecting system used on photomask dry etch systems had several key limitations that caused unnecessary scrap and non-optimum image size performance. Consequently, work to develop and implement use of a more robust optical emission endpoint detection system for chrome dry etch processing of photomask was performed. Initial feasibility studies showed that the emission technique was sensitive enough to monitor pattern loadings on contact and via level masks down to 3 percent pattern coverage. Additional work was performed to further improve this to 1 percent pattern coverage by optimizing the endpoint detection parameters. Comparison studies of mask mean-to-target performance and CD uniformity were performed with the use of optical emission endpoint versus laser endpoint for masks built using TOK IP3600 and ZEP 7000 resist systems. It was found that an improvement in mean-to-target performance and CD uniformity was realized on several types of production masks. In addition, part-to-part endpoint time repeatability was found to be significantly improved with the use of optical emission endpoint.

  8. Biogenic amine profile in unripe Arabica coffee beans processed according to dry and wet methods.

    PubMed

    Dias, Eduardo C; Pereira, Rosemary G F A; Borém, Flávio M; Mendes, Eulália; de Lima, Renato R; Fernandes, José O; Casal, Susana

    2012-04-25

    Immature coffee fruit processing contributes to a high amount of defective beans, which determines a significant amount of low-quality coffee sold in the Brazilian internal market. Unripe bean processing was tested, taking the levels of bioactive amines as criteria for evaluating the extent of fermentation and establishing the differences between processing methods. The beans were processed by the dry method after being mechanically depulped immediately after harvest or after a 12 h resting period in a dry pile or immersed in water. Seven bioactive amines were quantified: putrescine, spermine, spermidine, serotonin, cadaverine, histamine, and tyramine, with global amounts ranging from 71.8 to 80.3 mg/kg. The levels of spermine and spermidine were lower in the unripe depulped coffee than in the natural coffee. The specific conditions of dry and wet processing also influenced cadaverine levels, and histamine was reduced in unripe depulped coffee. A resting period of 12 h does not induce significant alteration on the beans and can be improved if performed in water. These results confirm that peeling immature coffee can decrease fermentation processes while providing more uniform drying, thus reducing the number of defects and potentially increasing beverage quality.

  9. Effects of drying processes on starch-related physicochemical properties, bioactive components and antioxidant properties of yam flours.

    PubMed

    Chen, Xuetao; Li, Xia; Mao, Xinhui; Huang, Hanhan; Wang, Tingting; Qu, Zhuo; Miao, Jing; Gao, Wenyuan

    2017-06-01

    The effects of five different drying processes, air drying (AD), sulphur fumigation drying (SFD), hot air drying (HAD), freeze drying (FD) and microwave drying (MWD) for yams in terms of starch-related properties and antioxidant activity were studied. From the results of scanning electron microscopy (SEM), polarized optical microscopy (POM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR), the MWD sample was found to contain gelatinized starch granules. The FD yam had more slow digestible (SDS) and resistant starches (RS) compared with those processed with other modern drying methods. The bioactive components and the reducing power of the dried yams, were lower than those of fresh yam. When five dried samples were compared by principal component analysis, the HAD and SFD samples were observed to have the highest comprehensive principal component values. Based on our results, HAD would be a better method for yam drying than the more traditional SFD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Effect of gas-turbine green discoloring and drying processing methods on herbal quality of tetraploid Lonicerae Japonicae Flos].

    PubMed

    Hu, Xuan; Li, Wei-dong; Li, Ou; Hao, Jiang-bo; Liu, Jia-kun

    2012-09-01

    To study the effect of gas-turbine green discoloring and drying processing method on the quality of various Lonicerae Japonicae Flos herbs. DIKMA DiamonsilTM-C18 column (4.6 mm x 250 mm, 5 microm) was adopted using HPLC Waters 1525 and eluted with acetonitrile and 0.1% phosphate acid as the mobile phase. The flow rate was 1.0 mL x min(-1) , the column temperature was 25 degrees C the detection wavelength was 355 nm. After being processed by the gas-turbine green discoloring and drying method, tetraploid Lonicerae Japonicae Flos showed a green color. The contents of chlorogenic acid and galuteolin were 5.31% and 0.105% , both significantly higher by 18.0% and 32.1% than those of diploid Lonicerae Japonicae Flos processed by the same method. The content of chlorogenic acid in tetraploid Lonicerae Japonicae Flos processed the gas-turbine green discoloring and drying method were also remarkably higher than that of tetraploid and diploid Lonicerae Japonicae Flos processed by traditional processing method of natural drying. The gas-turbine green discoloring and drying processing method is a new-type drying method suitable for tetraploid Lonicerae Japonicae Flos. Under the condition of gas-turbine green discoloring and drying processing, tetraploid Lonicerae Japonicae Flos shows much higher quality than Lonicerae Japonicae Flos, suggesting that it is a good variety worth popularizing and applying.

  11. Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying.

    PubMed

    Jiang, Hao; Zhang, Min; Mujumdar, Arun S; Lim, Rui-Xin

    2014-07-01

    To overcome the flaws of high energy consumption of freeze drying (FD) and the non-uniform drying of microwave freeze drying (MFD), pulse-spouted microwave vacuum drying (PSMVD) was developed. The results showed that the drying time can be dramatically shortened if microwave was used as the heating source. In this experiment, both MFD and PSMVD could shorten drying time by 50% as compared to the FD process. Depending on the heating method, MFD and PSMVD dried banana cubes showed trends of expansion while FD dried samples demonstrated trends of shrinkage. Shrinkage also brought intensive structure and highest fracturability of all three samples dried by different methods. The residual ascorbic acid content of PSMVD dried samples can be as high as in FD dried samples, which were superior to MFD dried samples. The tests confirmed that PSMVD could bring about better drying uniformity than MFD. Besides, compared with traditional MFD, PSMVD can provide better extrinsic feature, and can bring about improved nutritional features because of the higher residual ascorbic acid content. © 2013 Society of Chemical Industry.

  12. High-conversion hydrolysates and corn sweetener production in dry-grind corn process.

    USDA-ARS?s Scientific Manuscript database

    Most corn is processed to fuel ethanol and distillers’ grain animal feed using the dry grind process. However, wet milling is needed to refine corn starch. Corn starch is in turn processed to numerous products, including glucose and syrup. However, wet milling is a capital, labor, and energy intensi...

  13. Effects of Ultrasound Assistance on Dehydration Processes and Bioactive Component Retention of Osmo-Dried Sour Cherries.

    PubMed

    Siucińska, Karolina; Mieszczakowska-Frąc, Monika; Połubok, Aleksandra; Konopacka, Dorota

    2016-07-01

    Despite having numerous health benefits, dried sour cherries have proven to be more acceptable to consumers when infused with sugar or other sweeteners to enhance their flavor, which, in turn, leads to serious anthocyanin losses. For this reason, a consideration was made for the application of ultrasound to accelerate solid gain and shorten drying time, thus favoring bioactive component retention. To determine the usefulness of ultrasound as a tool for sour cherry osmotic infusion enhancement, the effect of sonication time on dehydration effectiveness, as well as the stability of bioactive components during osmotic treatment and consecutive convective drying, was investigated. Fruits were osmo-dehydrated using a 60% sucrose solution for 120 min (40 °C), during which, ultrasound of 25 kHz (0.4 W/cm(2) ), was applied for 0, 30, 60, 90, and 120 min, after which, the fruits were convectively dried. In the range of the applied ultrasound energy no significant effect of sonication on mass transfer intensification was observed; moreover, longer acoustic treatment seemed to retard moisture removal during subsequent convective drying, which can be related to the breakdown of the parenchyma cell walls caused by the prolonged ultrasound (US) action. It was concluded that although US assistance could be considered neutral for bioactive component retention, excessive sonication time can lead to some anthocyanin deterioration. According to high-performance liquid chromatography analysis, the particular anthocyanin alterations, both during dehydration and final drying, occurred in a similar way. Sonication time prolongation caused approximately 10% more bioactive compound deterioration, than earlier, shorter trials. © 2016 Institute of Food Technologists®

  14. Processes of heat and mass transfer in straw bales using flue gasses as a drying medium

    NASA Astrophysics Data System (ADS)

    Goryl, Wojciech; Szubel, Mateusz; Filipowicz, Mariusz

    2016-03-01

    Moisture content is a main problem of using straw in form of bales for energy production. The paper presents possibility of straw drying in dedicated, innovative and patented in Poland straw dryers which using flue gasses as a drying medium. Paper presents an improved way of drying which proved to be very sufficient. Temperature and humidity of straw during the process of drying were measured. The measurements helped understand and perform numerical model of heat and mass transfer inside the straw bale. By using CFD codes it was possible to perform analysis of phenomenon occurring inside the dried straw bale. Based on the CFD model, proposals of the optimization and improvement process of drying have been discussed. Experimental and computational data have been compared in terms of convergence. A satisfying degree of agreement has been achieved. Applying improved drying method, homogenous field of moisture content and temperature in the straw bale is achieved in a very cost effective way.

  15. Accelerated aging of phenolic-bonded flakeboards

    Treesearch

    Andrew J. Baker; Robert H. Gillespie

    1978-01-01

    Specimens of phenolic-bonded flakeboard, vertical-grain southern pine and Douglas-fir, and marine-grade Douglas-fir plywood were exposed to four accelerated aging situations. These consisted of: 1) Multiple cycles of boiling and elevated-temperature drying, 2) multiple cycles of vacuum- pressure soaking and intermediate-temperature drying, 3) the six-cycle ASTM D-1037...

  16. Study of a dry room in a battery manufacturing plant using a process model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.

    The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studies the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study is conducted with the help of a process model for a dry room with a volumemore » of 16000 cubic meters. For a defined base case scenario it is found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.« less

  17. Process analytical technologies (PAT) in freeze-drying of parenteral products.

    PubMed

    Patel, Sajal Manubhai; Pikal, Michael

    2009-01-01

    Quality by Design (QbD), aims at assuring quality by proper design and control, utilizing appropriate Process Analytical Technologies (PAT) to monitor critical process parameters during processing to ensure that the product meets the desired quality attributes. This review provides a comprehensive list of process monitoring devices that can be used to monitor critical process parameters and will focus on a critical review of the viability of the PAT schemes proposed. R&D needs in PAT for freeze-drying have also been addressed with particular emphasis on batch techniques that can be used on all the dryers independent of the dryer scale.

  18. Global Sensitivity Analysis as Good Modelling Practices tool for the identification of the most influential process parameters of the primary drying step during freeze-drying.

    PubMed

    Van Bockstal, Pieter-Jan; Mortier, Séverine Thérèse F C; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas

    2018-02-01

    Pharmaceutical batch freeze-drying is commonly used to improve the stability of biological therapeutics. The primary drying step is regulated by the dynamic settings of the adaptable process variables, shelf temperature T s and chamber pressure P c . Mechanistic modelling of the primary drying step leads to the optimal dynamic combination of these adaptable process variables in function of time. According to Good Modelling Practices, a Global Sensitivity Analysis (GSA) is essential for appropriate model building. In this study, both a regression-based and variance-based GSA were conducted on a validated mechanistic primary drying model to estimate the impact of several model input parameters on two output variables, the product temperature at the sublimation front T i and the sublimation rate ṁ sub . T s was identified as most influential parameter on both T i and ṁ sub , followed by P c and the dried product mass transfer resistance α Rp for T i and ṁ sub , respectively. The GSA findings were experimentally validated for ṁ sub via a Design of Experiments (DoE) approach. The results indicated that GSA is a very useful tool for the evaluation of the impact of different process variables on the model outcome, leading to essential process knowledge, without the need for time-consuming experiments (e.g., DoE). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Numerical analysis of temperature field in the high speed rotary dry-milling process

    NASA Astrophysics Data System (ADS)

    Wu, N. X.; Deng, L. J.; Liao, D. H.

    2018-01-01

    For the effect of the temperature field in the ceramic dry granulation. Based on the Euler-Euler mathematical model, at the same time, made ceramic dry granulation experiment equipment more simplify and established physical model, the temperature of the dry granulation process was simulated with the granulation time. The relationship between the granulation temperature and granulation effect in dry granulation process was analyzed, at the same time, the correctness of numerical simulation was verified by measuring the fluidity index of ceramic bodies. Numerical simulation and experimental results showed that when granulation time was 4min, 5min, 6min, maximum temperature inside the granulation chamber was: 70°C, 85°C, 95°C. And the equilibrium of the temperature in the granulation chamber was weakened, the fluidity index of the billet particles was: 56.4. 89.7. 81.6. Results of the research showed that when granulation time was 5min, the granulation effect was best. When the granulation chamber temperature was more than 85°C, the fluidity index and the effective particles quantity of the billet particles were reduced.

  20. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production.

    PubMed

    Kanojia, Gaurav; Have, Rimko Ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W; Kersten, Gideon F A; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn's disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab.

  1. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Dry Process for Making Polyimide/ Carbon-and-Boron-Fiber Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Johnston, Norman J.; Marchello, Joseph M.

    2003-01-01

    A dry process has been invented as an improved means of manufacturing composite prepreg tapes that consist of high-temperature thermoplastic polyimide resin matrices reinforced with carbon and boron fibers. Such tapes are used (especially in the aircraft industry) to fabricate strong, lightweight composite-material structural components. The inclusion of boron fibers results in compression strengths greater than can be achieved by use of carbon fibers alone. The present dry process is intended to enable the manufacture of prepreg tapes (1) that contain little or no solvent; (2) that have the desired dimensions, fiber areal weight, and resin content; and (3) in which all of the fibers are adequately wetted by resin and the boron fibers are fully encapsulated and evenly dispersed. Prepreg tapes must have these properties to be useable in the manufacture of high-quality composites by automated tape placement. The elimination of solvent and the use of automated tape placement would reduce the overall costs of manufacturing.

  3. Aeolian process of the dried-up riverbeds of the Hexi Corridor, China: a wind tunnel experiment.

    PubMed

    Zhang, Caixia; Wang, Xunming; Dong, Zhibao; Hua, Ting

    2017-08-01

    Wind tunnel studies, which remain limited, are an important tool to understand the aeolian processes of dried-up riverbeds. The particle size, chemical composition, and the mineral contents of sediments arising from the dried river beds are poorly understood. Dried-up riverbeds cover a wide area in the Hexi Corridor, China, and comprise a complex synthesis of different land surfaces, including aeolian deposits, pavement surfaces, and Takyr crust. The results of the present wind tunnel experiment suggest that aeolian transport from the dried-up riverbeds of the Hexi Corridor ranges from 0 to 177.04 g/m 2 /min and that dry riverbeds could be one of the main sources of dust emissions in this region. As soon as the wind velocity reaches 16 m/s and assuming that there are abundant source materials available, aeolian transport intensity increases rapidly. The dried-up riverbed sediment and the associated aeolian transported material were composed mainly of fine and medium sands. However, the transported samples were coarser than the bed samples, because of the sorting effect of the aeolian processes on the sediment. The aeolian processes also led to regional elemental migration and mineral composition variations.

  4. Sanitizing in Dry-Processing Environments Using Isopropyl Alcohol Quaternary Ammonium Formula.

    PubMed

    Kane, Deborah M; Getty, Kelly J K; Mayer, Brian; Mazzotta, Alejandro

    2016-01-01

    Dry-processing environments are particularly challenging to clean and sanitize because introduced water can favor growth and establishment of pathogenic microorganisms such as Salmonella. Our objective was to determine the efficacy of an isopropyl alcohol quaternary ammonium (IPAQuat) formula for eliminating potential Salmonella contamination on food contact surfaces. Clean stainless steel coupons and conveyor belt materials used in dry-processing environments were spot inoculated in the center of coupons (5 by 5 cm) with a six-serotype composite of Salmonella (approximately 10 log CFU/ml), subjected to IPAQuat sanitizer treatments with exposure times of 30 s, 1 min, or 5 min, and then swabbed for enumeration of posttreatment survivors. A subset of inoculated surfaces was soiled with a breadcrumb-flour blend and allowed to sit on the laboratory bench for a minimum of 16 h before sanitation. Pretreatment Salmonella populations (inoculated controls, 0 s treatment) were approximately 7.0 log CFU/25 cm(2), and posttreatment survivors were 1.31, 0.72, and < 0.7 (detection limit) log CFU/25 cm(2) after sanitizer exposure for 30 s, 1 min, or 5 min, respectively, for both clean (no added soil) and soiled surfaces. Treatment with the IPAQuat formula using 30-s sanitizer exposures resulted in 5.68-log reductions, whereas >6.0-log reductions were observed for sanitizer exposures of 1 and 5 min. Because water is not introduced into the processing environment with this approach, the IPAQuat formula could have sanitation applications in dry-processing environments to eliminate potential contamination from Salmonella on food contact surfaces.

  5. A physical process of the radial acceleration of disc galaxies

    NASA Astrophysics Data System (ADS)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2018-03-01

    An impact model of gravity designed to emulate Newton's law of gravitation is applied to the radial acceleration of disc galaxies. Based on this model (Wilhelm et al. 2013), the rotation velocity curves can be understood without the need to postulate any dark matter contribution. The increased acceleration in the plane of the disc is a consequence of multiple interactions of gravitons (called `quadrupoles' in the original paper) and the subsequent propagation in this plane and not in three-dimensional space. The concept provides a physical process that relates the fit parameter of the acceleration scale defined by McGaugh et al. (2016) to the mean free path length of gravitons in the discs of galaxies. It may also explain the gravitational interaction at low acceleration levels in MOdification of the Newtonian Dynamics (MOND, Milgrom 1983, 1994, 2015, 2016). Three examples are discussed in some detail: the spiral galaxies NGC 7814, NGC 6503 and M 33.

  6. Changes in Composition and Phosphorus Profile during Dry Grind Process of Corn into Ethanol and DDGS

    USDA-ARS?s Scientific Manuscript database

    Demand for alternatives to fossil fuels has resulted in a dramatic increase in ethanol production from corn. Dry grind method has been a major process, resulting in a large volume of dried distiller grains with solubles (DDGS) as a co-product. The process consists of grinding, cooking, liquefactio...

  7. Evaluation of Heat Flux Measurement as a New Process Analytical Technology Monitoring Tool in Freeze Drying.

    PubMed

    Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard

    2017-05-01

    This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. 9 CFR 590.542 - Spray process drying operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., including sifters, conveyors, and powder coolers shall be either wet washed or dry cleaned. A combination of wet washing and dry cleaning of the complete drying unit shall not be permitted unless that segment of...

  9. 9 CFR 590.542 - Spray process drying operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., including sifters, conveyors, and powder coolers shall be either wet washed or dry cleaned. A combination of wet washing and dry cleaning of the complete drying unit shall not be permitted unless that segment of...

  10. 9 CFR 590.542 - Spray process drying operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., including sifters, conveyors, and powder coolers shall be either wet washed or dry cleaned. A combination of wet washing and dry cleaning of the complete drying unit shall not be permitted unless that segment of...

  11. 9 CFR 590.542 - Spray process drying operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., including sifters, conveyors, and powder coolers shall be either wet washed or dry cleaned. A combination of wet washing and dry cleaning of the complete drying unit shall not be permitted unless that segment of...

  12. 9 CFR 590.542 - Spray process drying operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., including sifters, conveyors, and powder coolers shall be either wet washed or dry cleaned. A combination of wet washing and dry cleaning of the complete drying unit shall not be permitted unless that segment of...

  13. Improving the Sun Drying of Apricots (Prunus armeniaca) with Photo-Selective Dryer Cabinet Materials.

    PubMed

    Milczarek, Rebecca R; Avena-Mascareno, Roberto; Alonzo, Jérôme; Fichot, Mélissa I

    2016-10-01

    Photo-selective materials have been studied for their effects on the preharvest quality of horticultural crops, but little work has been done on potential postharvest processing effects. The aim of this work was to characterize the effects of 5 different photo-selective acrylic materials (used as the lid to a single-layer sun drying cabinet) on the drying rate and quality of apricots (Prunus armeniaca). Photo-selective cabinet materials that transmit light in the visible portion of the solar spectrum accelerate the apricots' drying rate in both the early period of drying and the course of drying as a whole. These materials do not significantly affect the measured quality metrics during the first day of sun drying. However, when drying is taken to completion, some minor but significant quality differences are observed. Infrared-blocking material produces dried apricot with lower red color, compared to clear, opaque black, and ultraviolet-blocking materials. Clear material produced dried apricot with significantly lower antioxidant activity, compared to black and infrared-blocking materials. Using appropriate photo-selective drying cabinet materials can reduce the required sun drying time for apricots by 1 to 2 d, compared with fully shaded drying. Ultraviolet-blocking material is recommended to maximize drying rate and minimize quality degradation. © 2016 Institute of Food Technologists®.

  14. Graphics Processing Unit Acceleration of Gyrokinetic Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Hause, Benjamin; Parker, Scott; Chen, Yang

    2013-10-01

    We find a substantial increase in on-node performance using Graphics Processing Unit (GPU) acceleration in gyrokinetic delta-f particle-in-cell simulation. Optimization is performed on a two-dimensional slab gyrokinetic particle simulation using the Portland Group Fortran compiler with the OpenACC compiler directives and Fortran CUDA. Mixed implementation of both Open-ACC and CUDA is demonstrated. CUDA is required for optimizing the particle deposition algorithm. We have implemented the GPU acceleration on a third generation Core I7 gaming PC with two NVIDIA GTX 680 GPUs. We find comparable, or better, acceleration relative to the NERSC DIRAC cluster with the NVIDIA Tesla C2050 computing processor. The Tesla C 2050 is about 2.6 times more expensive than the GTX 580 gaming GPU. We also see enormous speedups (10 or more) on the Titan supercomputer at Oak Ridge with Kepler K20 GPUs. Results show speed-ups comparable or better than that of OpenMP models utilizing multiple cores. The use of hybrid OpenACC, CUDA Fortran, and MPI models across many nodes will also be discussed. Optimization strategies will be presented. We will discuss progress on optimizing the comprehensive three dimensional general geometry GEM code.

  15. Effect of drying process assisted by high-pressure impregnation on protein quality and digestibility in red abalone (Haliotis rufescens).

    PubMed

    Cepero-Betancourt, Yamira; Oliva-Moresco, Patricio; Pasten-Contreras, Alexis; Tabilo-Munizaga, Gipsy; Pérez-Won, Mario; Moreno-Osorio, Luis; Lemus-Mondaca, Roberto

    2017-10-01

    Abalone (Haliotis spp.) is an exotic seafood product recognized as a protein source of high biological value. Traditional methods used to preserve foods such as drying technology can affect their nutritional quality (protein quality and digestibility). A 28-day rat feeding study was conducted to evaluate the effects of the drying process assisted by high-pressure impregnation (HPI) (350, 450, and 500 MPa × 5 min) on chemical proximate and amino acid compositions and nutritional parameters, such as protein efficiency ratio (PER), true digestibility (TD), net protein ratio, and protein digestibility corrected amino acid score (PDCAAS) of dried abalone. The HPI-assisted drying process ensured excellent protein quality based on PER values, regardless of the pressure level. At 350 and 500 MPa, the HPI-assisted drying process had no negative effect on TD and PDCAAS then, based on nutritional parameters analysed, we recommend HPI-assisted drying process at 350 MPa × 5 min as the best process condition to dry abalone. Variations in nutritional parameters compared to casein protein were observed; nevertheless, the high protein quality and digestibility of HPI-assisted dried abalones were maintained to satisfy the metabolic demands of human beings.

  16. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. 319.56-11 Section 319.56-11 Agriculture Regulations of the Department of..., vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and...

  17. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. 319.56-11 Section 319.56-11 Agriculture Regulations of the Department of..., vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and...

  18. Ni-MH battery electrodes made by a dry powder process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Z.; Sakai, T.; Noreus, D.

    1995-12-01

    A dry powder roller pressing process, once developed for making both of the electrodes in low cost Ni-Cd consumer batteries, has been utilized to make electrodes for Ni-MH batteries. The process was evaluated by manually making a series of sub-C type cells that were characterized with respect to specific capacity, cycle life, and self-discharge. The performance was comparable in several respects with that of cells made by more complex Ni-foam technologies.

  19. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W.; Kersten, Gideon F. A.; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn’s disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab. PMID:27706175

  20. Pharmaceutical spray drying: solid-dose process technology platform for the 21st century.

    PubMed

    Snyder, Herman E

    2012-07-01

    Requirement for precise control of solid-dosage particle properties created with a scalable process technology are continuing to expand in the pharmaceutical industry. Alternate methods of drug delivery, limited active drug substance solubility and the need to improve drug product stability under room-temperature conditions are some of the pharmaceutical applications that can benefit from spray-drying technology. Used widely for decades in other industries with production rates up to several tons per hour, pharmaceutical uses for spray drying are expanding beyond excipient production and solvent removal from crystalline material. Creation of active pharmaceutical-ingredient particles with combinations of unique target properties are now more common. This review of spray-drying technology fundamentals provides a brief perspective on the internal process 'mechanics', which combine with both the liquid and solid properties of a formulation to enable high-throughput, continuous manufacturing of precision powder properties.

  1. Application of residual polysaccharide-degrading enzymes in dried shiitake mushrooms as an enzyme preparation in food processing.

    PubMed

    Tatsumi, E; Konishi, Y; Tsujiyama, S

    2016-11-01

    To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing. Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C. Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.

  2. Optimization of process parameters for foam-mat drying of papaya pulp.

    PubMed

    Kandasamy, Palani; Varadharaju, N; Kalemullah, S; Maladhi, D

    2014-10-01

    Experiments were carried out to optimize the process parameters for production of papaya powder using foam-mat drying. Papaya pulp was foamed by incorporating methyl cellulose (0.25, 0.5, 0.75 and 1 %, w/w), glycerol-mono-stearate (1, 2, 3 and 4 %, w/w) and egg white (5, 10, 15 and 20 %, w/w) as foaming agents. The maximum stable foam formation was 72, 90 and 125% at 0.75 % methyl cellulose, 3 % glycerol-mono-stearate and 15 % egg white respectively with 9°Brix pulp and whipping time of 20 min. The foamed pulp was dried at air temperature of 60, 65 and 70 °C with foam thickness of 2, 4, 6, 8 and 10 mm in a batch type cabinet dryer. The drying time required for foamed papaya pulp was lower than non-foamed pulp at all selected temperatures. Biochemical analysis results showed a significant reduction in ascorbic acid, β-carotene and total sugars in the foamed papaya dried product at higher foam thickness (6, 8 and 10 mm) and temperature (65 and 70 °C due to destruction at higher drying temperature and increasing time. There was no significant change in other biochemical constituents such as pH and acidity. The organoleptic and sensory evaluation of the quality attributes of papaya powder obtained from the pulp of 9°Brix added with 3 % glycerol-mono-stearate, whipped for 20 min and dried with a foam thickness of 4 mm at a temperature of 60 °C was found to be optimum to produce the foam-mat dried papaya powder.

  3. Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Cai, Xin; Cao, Wenzhuo; Li, Xibing; Xiong, Cheng

    2016-08-01

    Water content has a pronounced influence on the properties of rock materials, which is responsible for many rock engineering hazards, such as landslides and karst collapse. Meanwhile, water injection is also used for the prevention of some engineering disasters like rock-bursts. To comprehensively investigate the effect of water content on mechanical properties of rocks, laboratory tests were carried out on sandstone specimens with different water contents in both saturation and drying processes. The Nuclear Magnetic Resonance technique was applied to study the water distribution in specimens with variation of water contents. The servo-controlled rock mechanics testing machine and Split Hopkinson Pressure Bar technique were used to conduct both compressive and tensile tests on sandstone specimens with different water contents. From the laboratory tests, reductions of the compressive and tensile strength of sandstone under static and dynamic states in different saturation processes were observed. In the drying process, all of the saturated specimens could basically regain their mechanical properties and recover its strength as in the dry state. However, for partially saturated specimens in the saturation and drying processes, the tensile strength of specimens with the same water content was different, which could be related to different water distributions in specimens.

  4. Accelerated thermokarst formation in the McMurdo Dry Valleys, Antarctica.

    PubMed

    Levy, Joseph S; Fountain, Andrew G; Dickson, James L; Head, James W; Okal, Marianne; Marchant, David R; Watters, Jaclyn

    2013-01-01

    Thermokarst is a land surface lowered and disrupted by melting ground ice. Thermokarst is a major driver of landscape change in the Arctic, but has been considered to be a minor process in Antarctica. Here, we use ground-based and airborne LiDAR coupled with timelapse imaging and meteorological data to show that 1) thermokarst formation has accelerated in Garwood Valley, Antarctica; 2) the rate of thermokarst erosion is presently ~ 10 times the average Holocene rate; and 3) the increased rate of thermokarst formation is driven most strongly by increasing insolation and sediment/albedo feedbacks. This suggests that sediment enhancement of insolation-driven melting may act similarly to expected increases in Antarctic air temperature (presently occurring along the Antarctic Peninsula), and may serve as a leading indicator of imminent landscape change in Antarctica that will generate thermokarst landforms similar to those in Arctic periglacial terrains.

  5. Accelerated thermokarst formation in the McMurdo Dry Valleys, Antarctica

    PubMed Central

    Levy, Joseph S.; Fountain, Andrew G.; Dickson, James L.; Head, James W.; Okal, Marianne; Marchant, David R.; Watters, Jaclyn

    2013-01-01

    Thermokarst is a land surface lowered and disrupted by melting ground ice. Thermokarst is a major driver of landscape change in the Arctic, but has been considered to be a minor process in Antarctica. Here, we use ground-based and airborne LiDAR coupled with timelapse imaging and meteorological data to show that 1) thermokarst formation has accelerated in Garwood Valley, Antarctica; 2) the rate of thermokarst erosion is presently ~ 10 times the average Holocene rate; and 3) the increased rate of thermokarst formation is driven most strongly by increasing insolation and sediment/albedo feedbacks. This suggests that sediment enhancement of insolation-driven melting may act similarly to expected increases in Antarctic air temperature (presently occurring along the Antarctic Peninsula), and may serve as a leading indicator of imminent landscape change in Antarctica that will generate thermokarst landforms similar to those in Arctic periglacial terrains. PMID:23881292

  6. Change of the structure and the digestibility of myofibrillar proteins in Nanjing dry-cured duck during processing.

    PubMed

    Du, Xiaojing; Sun, Yangying; Pan, Daodong; Wang, Ying; Ou, Changrong; Cao, Jinxuan

    2018-06-01

    To investigate the change of bioavailability and structure of myofibrillar proteins during Nanjing dry-cured duck processing, carbonyl content, sulfhydryl (SH) group, disulfide (SS) group, sodium dodecyl sulfate polyacrylamide gel electrophoresis, surface hydrophobicity, secondary structures and in vitro digestibility were determined. During processing, carbonyl content and surface hydrophobicity increased; SH turned into SS group; α-helix turned into β-sheet and random coil fractions. Protein degradation occurred during dry-curing and drying-ripening stages. The in vitro digestibility of pepsin and pancreatic proteases increased during the salt curing stage and decreased during the drying-ripening stage. The increase of digestibility could be attributed to the mild oxidation, degradation and unfolding of proteins while the decrease of digestibility was related to the intensive oxidation and aggregation of proteins. Protein degradation was not a main factor of digestibility during the drying-ripening stage. Results demonstrated that the bioavailability loss of myofibrillar proteins in Nanjing dry-cured duck occurred during the stage of drying-ripening instead of curing. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  8. Modification of dry grain processing for rice nutrition produced

    NASA Astrophysics Data System (ADS)

    Rahman, A. N. F.; Genisa, J.; Dirpan, A.; Badani, A. A.

    2018-05-01

    Rice is a staple food for people in Indonesia that provides high energy and nutrients of up to 360 calories per 100 g. Based on the research it was known that the nutrient content in rice will increased by soaking. This is suspected because the nutrient content in the aleurone layer adsorbed to the endosperm. The purpose of this research was to know the effect of dry grain immersion on the nutrition of rice produced. The method of this research was conducted through some stages: 1. Preparation of raw materials, 2. Grain immersion, 3. Grain drying, 4. Peeling chaff, 5. Testing the nutritional value of rice. The research was processed by using factorial randomized complete random design (RCRD) with three replications. The result showed that soaking the grain for 12 hours has the highest nutritional value increases compared to the control. Proximate test resulted from the best treatment were: protein content of 8.26%, ash content of 0.42% and thiamine content of 0.023%.

  9. Application of Dynamic Speckle Techniques in Monitoring Biofilms Drying Process

    NASA Astrophysics Data System (ADS)

    Enes, Adilson M.; Júnior, Roberto A. Braga; Dal Fabbro, Inácio M.; da Silva, Washington A.; Pereira, Joelma

    2008-04-01

    Horticultural crops exhibit losses far greater than grains in Brazil which are associated to inappropriate maturation, mechanical bruising, infestation by microorganisms, wilting, etc. Appropriate packing prevents excessive mass loss associated to transpiration as well as to respiration, by controlling gas exchanging with outside environment. Common packing materials are identified as plastic films, waxes and biofilms. Although research developed with edible films and biopolymers has increased during last years to attend the food industry demands, avoiding environmental problems, little efforts have been reported on biofilm physical properties investigations. These properties, as drying time and biofilm interactions with environment are considered of basic importance. This research work aimed to contribute to development of a methodology to evaluate yucca (Maniot vulgaris) based biofilms drying time supported by a biospeckle technique. Biospeckle is a phenomenon generated by a laser beam scattered on a dynamic active surface, producing a time varying pattern which is proportional to the surface activity level. By capturing and processing the biospeckle image it is possible to attribute a numerical quantity to the surface bioactivity. Materials exhibiting high moisture content will also show high activity, which will support the drying time determination. Tests were set by placing biofilm samples on polyetilen plates and further submitted to laser exposition at four hours interval to capture the pattern images, generating the Intensities Dispersion Modulus. Results indicates that proposed methodology is applicable in determining biofilm drying time as well as vapor losses to environment.

  10. Selected chemical compounds in firm and mellow persimmon fruit before and after the drying process.

    PubMed

    Senica, Mateja; Veberic, Robert; Grabnar, Jana Jurhar; Stampar, Franci; Jakopic, Jerneja

    2016-07-01

    Persimmon is a seasonal fruit and only available in fresh form for a short period of each year. In addition to freezing, drying is the simplest substitute for the fresh fruit and accessible throughout the year. The effect of mellowing and drying was evaluated in 'Tipo' persimmon, an astringent cultivar. 'Tipo' firm fruit contained high levels of tannins (1.1 mg g(-1) DW), which were naturally decreased to 0.2 mg g(-1) DW after mellowing. The drying process greatly impacted the contents of carotenoids, total phenols, individual phenolics, tannins, organic acids, sugars and colour parameters in firm and mellow fruit. The reduction of tannins, phenolic compounds and organic acids were accompanied by the increase of sugars and carotenoids, improving the colour of the analysed samples. These results showed that the drying process improved the quality of persimmon products and extended their shelf life. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Study on parameters affecting the mechanical properties of dry fiber bundles during continuous composite manufacturing processes

    NASA Astrophysics Data System (ADS)

    Maier, A.; Schledjewski, R.

    2016-07-01

    For continuous manufacturing processes mechanical preloading of the fibers occurs during the delivery of the fibers from the spool creel to the actual manufacturing process step. Moreover preloading of the dry roving bundles might be mandatory, e.g. during winding, to be able to produce high quality components. On the one hand too high tensile loads within dry roving bundles might result in a catastrophic failure and on the other hand the part produced under too low pre-tension might have low quality and mechanical properties. In this work, load conditions influencing mechanical properties of dry glass fiber bundles during continuous composite manufacturing processes were analyzed. Load conditions, i.e. fiber delivery speed, necessary pre-tension and other effects of the delivery system during continuous fiber winding, were chosen in process typical ranges. First, the strain rate dependency under static tensile load conditions was investigated. Furthermore different free gauge lengths up to 1.2 m, interactions between fiber points of contact regarding influence of sizing as well as impregnation were tested and the effect of twisting on the mechanical behavior of dry glass fiber bundles during the fiber delivery was studied.

  12. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: part II measurement of dry-layer resistance.

    PubMed

    Tang, Xiaolin Charlie; Nail, Steven L; Pikal, Michael J

    2006-01-01

    The purpose of this work was to study the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to determine product dry-layer resistance to vapor flow. Product temperature and dry-layer resistance were obtained using MTM software installed on a laboratory freeze-dryer. The MTM resistance values were compared with the resistance values obtained using the "vial method." The product dry-layer resistances obtained by MTM, assuming fixed temperature difference (DeltaT; 2 degrees C), were lower than the actual values, especially when the product temperatures and sublimation rates were low, but with DeltaT determined from the pressure rise data, more accurate results were obtained. MTM resistance values were generally lower than the values obtained with the vial method, particularly whenever freeze-drying was conducted under conditions that produced large variations in product temperature (ie, low shelf temperature, low chamber pressure, and without thermal shields). In an experiment designed to magnify temperature heterogeneity, MTM resistance values were much lower than the simple average of the product resistances. However, in experiments where product temperatures were homogenous, good agreement between MTM and "vial-method" resistances was obtained. The reason for the low MTM resistance problem is the fast vapor pressure rise from a few "warm" edge vials or vials with low resistance. With proper use of thermal shields, and the evaluation of DeltaT from the data, MTM resistance data are accurate. Thus, the MTM method for determining dry-layer resistance is a useful tool for freeze-drying process analytical technology.

  13. CFD Analysis to Calculate the Optimal Air Velocity in Drying Green Tea Process Using Fluidized Bed Dryer

    NASA Astrophysics Data System (ADS)

    Yohana, Eflita; Nugraha, Afif Prasetya; Diana, Ade Eva; Mahawan, Ilham; Nugroho, Sri

    2018-02-01

    Tea processing is basically distinguished into three types which black tea, green tea, and oolong tea. Green tea is processed by heating and drying the leaves. Green tea factories in Indonesia are generally using the process of drying by panning the leaves. It is more recommended to use the fluidization process to speed up the drying process as the quality of the tea can be maintained. Bubbling fluidization is expected to occur in this research. It is a process of bubbles are formed in the fluidization. The effectiveness of the drying process in a fluidized bed dryer machine needs to be improved by using a CFD simulation method to proof that umf < u < ut, where the average velocity value is limited by the minimum and the maximum velocity of the calculation the experimental data. The minimum and the maximum velocity value of the fluidization is 0.96 m/s and 8.2 m/s. The result of the simulation obtained that the average velocity of the upper bed part is 1.81 m/s. From the results obtained, it can be concluded that the calculation and the simulation data is in accordance with the condition of bubbling fluidization in fluidized bed dryer.

  14. Prebiotic Peptide (Amide) Bond Synthesis Accelerated by Glycerol and Bicarbonate Under Neutral to Alkaline Dry-Down Conditions

    NASA Astrophysics Data System (ADS)

    Forsythe, J. G.; Weber, A. L.

    2017-07-01

    We report a new process for robust peptide bond synthesis in the pH 6–10 range that involves dry-down heating of amino acids in the presence of glycerol and bicarbonate (substrates: L-alanine, L-2-aminobutyric acid, β-alanine, isoserine).

  15. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    NASA Astrophysics Data System (ADS)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-07-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient ( R 2 ), varience ( S 2 ) and root mean square deviation ( D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  16. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    NASA Astrophysics Data System (ADS)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-01-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient (R 2 ), varience (S 2 ) and root mean square deviation (D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  17. Foam-mat drying technology: A review.

    PubMed

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  18. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality.

    PubMed

    Korang-Yeboah, Maxwell; Srinivasan, Charudharshini; Siddiqui, Akhtar; Awotwe-Otoo, David; Cruz, Celia N; Muhammad, Ashraf

    2018-01-01

    Optical coherence tomography freeze-drying microscopy (OCT-FDM) is a novel technique that allows the three-dimensional imaging of a drug product during the entire lyophilization process. OCT-FDM consists of a single-vial freeze dryer (SVFD) affixed with an optical coherence tomography (OCT) imaging system. Unlike the conventional techniques, such as modulated differential scanning calorimetry (mDSC) and light transmission freeze-drying microscopy, used for predicting the product collapse temperature (Tc), the OCT-FDM approach seeks to mimic the actual product and process conditions during the lyophilization process. However, there is limited understanding on the application of this emerging technique to the design of the lyophilization process. In this study, we investigated the suitability of OCT-FDM technique in designing a lyophilization process. Moreover, we compared the product quality attributes of the resulting lyophilized product manufactured using Tc, a critical process control parameter, as determined by OCT-FDM versus as estimated by mDSC. OCT-FDM analysis revealed the absence of collapse even for the low protein concentration (5 mg/ml) and low solid content formulation (1%w/v) studied. This was confirmed by lab scale lyophilization. In addition, lyophilization cycles designed using Tc values obtained from OCT-FDM were more efficient with higher sublimation rate and mass flux than the conventional cycles, since drying was conducted at higher shelf temperature. Finally, the quality attributes of the products lyophilized using Tc determined by OCT-FDM and mDSC were similar, and product shrinkage and cracks were observed in all the batches of freeze-dried products irrespective of the technique employed in predicting Tc.

  19. Optimizing chemical conditioning for odour removal of undigested sewage sludge in drying processes.

    PubMed

    Vega, Esther; Monclús, Hèctor; Gonzalez-Olmos, Rafael; Martin, Maria J

    2015-03-01

    Emission of odours during the thermal drying in sludge handling processes is one of the main sources of odour problems in wastewater treatment plants. The objective of this work was to assess the use of the response surface methodology as a technique to optimize the chemical conditioning process of undigested sewage sludges, in order to improve the dewaterability, and to reduce the odour emissions during the thermal drying of the sludge. Synergistic effects between inorganic conditioners (iron chloride and calcium oxide) were observed in terms of sulphur emissions and odour reduction. The developed quadratic models indicated that optimizing the conditioners dosage is possible to increase a 70% the dewaterability, reducing a 50% and 54% the emission of odour and volatile sulphur compounds respectively. The optimization of the conditioning process was validated experimentally. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Solidification of hesperidin nanosuspension by spray drying optimized by design of experiment (DoE).

    PubMed

    Wei, Qionghua; Keck, Cornelia M; Müller, Rainer H

    2018-01-01

    To accelerate the determination of optimal spray drying parameters, a "Design of Experiment" (DoE) software was applied to produce well redispersible hesperidin nanocrystals. For final solid dosage forms, aqueous liquid nanosuspensions need to be solidified, whereas spray drying is a large-scale cost-effective industrial process. A nanosuspension with 18% (w/w) of hesperidin stabilized by 1% (w/w) of poloxamer 188 was produced by wet bead milling. The sizes of original and redispersed spray-dried nanosuspensions were determined by laser diffractometry (LD) and photon correlation spectroscopy (PCS) and used as effect parameters. In addition, light microscopy was performed to judge the redispersion quality. After a two-step design of MODDE 9, screening model and response surface model (RSM), the inlet temperature of spray dryer and the concentration of protectant (polyvinylpyrrolidone, PVP K25) were identified as the most important factors affecting the redispersion of nanocrystals. As predicted in the RSM modeling, when 5% (w/w) of PVP K25 was added in an 18% (w/w) of hesperidin nanosuspension, subsequently spray-dried at an inlet temperature of 100 °C, well redispersed solid nanocrystals with an average particle size of 276 nm were obtained. By the use of PVP K25, the saturation solubility of the redispersed nanocrystals in water was improved to 86.81 µg/ml, about 2.5-fold of the original nanosuspension. In addition, the dissolution velocity was accelerated. This was attributed to the additional effects of steric stabilization on the nanocrystals and solubilization by the PVP polymer from spray drying.

  1. Drying-induced physico-chemical changes in cranberry products.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Honke, Joanna; Ciska, Ewa; Andlauer, Wilfried

    2018-02-01

    Sugar-free cranberry juice (XAD) and juice with 15% of maltodextrin were dried by freeze-, vacuum and spray drying methods. Total phenolics (589-6435mg/kg dry matter) including 5 flavonols, 3 phenolic acids, 2 procyanidins and 5 anthocyanins were stronger affected by juice formulation than by drying methods. Spray drying of juice, regardless of its formulation, was competitive to freeze drying in terms of polyphenols' retention. Increase in temperature up to 100°C during vacuum drying of XAD extracts resulted in degradation of polyphenolics (down to 4%), except chlorogenic acid. Its content increased with rise in temperature and accelerated hydroxymethylfurfural formation. The stronger the impact of drying, the more chlorogenic acid is present in cranberry products. In all powders analysed, formation of furoylmethyl amino acids was noted. Antioxidant capacity of cranberry products was influenced by juice formulation and was linked to content of polyphenols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Comparison of three different wastewater sludge and their respective drying processes: Solar, thermal and reed beds - Impact on organic matter characteristics.

    PubMed

    Collard, Marie; Teychené, Benoit; Lemée, Laurent

    2017-12-01

    Drying process aims at minimising the volume of wastewater sludge (WWS) before disposal, however it can impact sludge characteristics. Due to its high content in organic matter (OM) and lipids, sludge are mainly valorised by land farming but can also be considered as a feedstock for biodiesel production. As sludge composition is a major parameter for the choice of disposal techniques, the objective of this study was to determine the influence of the drying process. To reach this goal, three sludges obtained from solar, reed beds and thermal drying processes were investigated at the global and molecular scales. Before the drying step the sludges presented similar physico-chemical (OM content, elemental analysis, pH, infrared spectra) characteristics and lipid contents. A strong influence of the drying process on lipids and humic-like substances contents was observed through OM fractionation. Thermochemolysis-GCMS of raw sludge and lipids revealed similar molecular content mainly constituted with steroids and fatty acids. Molecular changes were noticeable for thermal drying through differences in branched to linear fatty acids ratio. Finally the thermal drying induced a weakening of OM whereas the solar drying led to a complexification. These findings show that smooth drying processes such as solar or reed-beds are preferable for amendment production whereas thermal process leads to pellets with a high lipid content which could be considered for fuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Space and Industrial Brine Drying Technologies

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  4. Drying process of fermented inulin fiber concentrate by Bifidobacterium bifidum as a dietary fiber source for cholesterol binder

    NASA Astrophysics Data System (ADS)

    Susilowati, Agustine; Aspiyanto, Ghozali, Muhammad

    2017-11-01

    Fermentation on inulin hydrolysate as fructooligosaccharides (FOS) by Bifidobacterium bifidum as a result of hydrolysis by inulase enzyme of Scopulariopsis sp.-CBS1 fungi has been performed to bind cholesterol. Their applications on preparation of fermented pour beverages was conducted via a series of concentration process using dead-end Stirred Ultrafiltration Cell (SUFC) mode at stirrer rotation of 400 rpm, room temperature and pressure of 40 psia for 0 minute (pre-concentration process) as concentrate (A) and 45 minutes as concentrate (B), and drying process using vacuum dryer at 30 °C and 22 cm Hg for 0, 8, 16, 24, 32, 40 and 48 hours. Based on optimization of Total Dietary Fiber (TDF), the best time of drying process was achieved for 40 hours. Long time of drying process would increase TDF and total solids, decreased total acids, and fluctuated dissolved protein and Cholesterol Binding Capacity (CBC). At the optimum condition of drying process was get fermented inulin fiber powder from concentration processes using both UF as pre process (0 minute) as concentrate (A) and UF for 45 minutes as concentrate (B) with compositions of total solids of 92.31 % and 93.67 %, TDF of 59.07 % (dry weight) and 69.28 %, total acids of 7.03 % and 7.5 %, dissolved protein of 3.95 mg/mL and 3.05 mg/mL, and CBC pH 2 15.71 mg/g and 16.8 mg/g, respectively. Concentration process through dead-end SUFC mode gave distribution of particles with better smoothness level than without through dead-end SUFC mode.

  5. A novel electrostatic dry powder coating process for pharmaceutical dosage forms: immediate release coatings for tablets.

    PubMed

    Qiao, Mingxi; Zhang, Liqiang; Ma, Yingliang; Zhu, Jesse; Chow, Kwok

    2010-10-01

    An electrostatic dry powder coating process for pharmaceutical solid dosage forms was developed for the first time by electrostatic dry powder coating in a pan coater system. Two immediate release coating compositions with Opadry® AMB and Eudragit® EPO were successfully applied using this process. A liquid plasticizer was sprayed onto the surface of the tablet cores to increase the conductivity of tablet cores to enhance particle deposition, electrical resistivity reduced from greater than 1×10(13)Ωm to less than 1×10(9)Ωm, and to lower the glass transition temperature (T(g)) of the coating polymer for film forming in the pan coater. The application of liquid plasticizer was followed by spraying charged coating particles using an electrostatic charging gun to enhance the uniform deposition on tablet surface. The coating particles were coalesced into a thin film by curing at an acceptable processing temperature as formation was confirmed by SEM micrographs. The results also show that the optimized dry powder coating process produces tablets with smooth surface, good coating uniformity and release profile that are comparable to that of the tablet cores. The data also suggest that this novel electrostatic dry powder coating technique is an alternative to aqueous- or solvent-based coating process for pharmaceutical products. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  6. An engineering and economic evaluation of quick germ-quick fiber process for dry-grind ethanol facilities: analysis.

    PubMed

    Rodríguez, Luis F; Li, Changying; Khanna, Madhu; Spaulding, Aslihan D; Lin, Tao; Eckhoff, Steven R

    2010-07-01

    An engineering economic model, which is mass balanced and compositionally driven, was developed to compare the conventional corn dry-grind process and the pre-fractionation process called quick germ-quick fiber (QQ). In this model, documented in a companion article, the distillers dried grains with solubles (DDGS) price was linked with its protein and fiber content as well as with the long-term average relationship with the corn price. The detailed economic analysis showed that the QQ plant retrofitted from conventional dry-grind ethanol plant reduces the manufacturing cost of ethanol by 13.5 cent/gallon and has net present value of nearly $4 million greater than the conventional dry-grind plant at an interest rate of 4% in 15years. Ethanol and feedstock price sensitivity analysis showed that the QQ plant gains more profits when ethanol price increases than conventional dry-grind ethanol plant. An optimistic analysis of the QQ process suggests that the greater value of the modified DDGS would provide greater resistance to fluctuations in corn price for QQ facilities. This model can be used to provide decision support for ethanol producers. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Sabah snake grass extract pre-processing: Preliminary studies in drying and fermentation

    NASA Astrophysics Data System (ADS)

    Solibun, A.; Sivakumar, K.

    2016-06-01

    Clinacanthus nutans (Burm. F.) Lindau which also known as ‘Sabah Snake Grass’ among Malaysians have been studied in terms of its medicinal and chemical properties in Asian countries which is used to treat various diseases from cancer to viral-related diseases such as varicella-zoster virus lesions. Traditionally, this plant has been used by the locals to treat insect and snake bites, skin rashes, diabetes and dysentery. In Malaysia, the fresh leaves of this plant are usually boiled with water and consumed as herbal tea. The objectives of this study are to determine the key process parameters for Sabah Snake Grass fermentation which affect the chemical and biological constituent concentrations within the tea, extraction kinetics of fermented and unfermented tea and the optimal process parameters for the fermentation of this tea. Experimental methods such as drying, fermenting and extraction of C.nutans leaves were conducted before subjecting them to analysis of antioxidant capacity. Conventional oven- dried (40, 45 and 50°C) and fermented (6, 12 and 18 hours) whole C.nutans leaves were subjected to tea infusion extraction (water temperature was 80°C, duration was 90 minutes) and the sample liquid was extracted for every 5th, 10th, 15th, 25th, 40th, 60th and 90th minute. Analysis for antioxidant capacity and total phenolic content (TPC) were conducted by using 2, 2-diphenyl-1-pycryl-hydrazyl (DPPH) and Folin-Ciocaltheu reagent, respectively. The 40°C dried leaves sample produced the highest phenolic content at 0.1344 absorbance value in 15 minutes of extraction while 50°C dried leaves sample produced 0.1298 absorbance value in 10 minutes of extraction. The highest antioxidant content was produced by 50°C dried leaves sample with absorbance value of 1.6299 in 5 minutes of extraction. For 40°C dried leaves sample, the highest antioxidant content could be observed in 25 minutes of extraction with the absorbance value of 1.1456. The largest diameter of disc

  8. Calculation of the process of vacuum drying of a metal-concrete container with spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Karyakin, Yu. E.; Lavrent'ev, S. A.; Pavlyukevich, N. V.; Pletnev, A. A.; Fedorovich, E. D.

    2012-01-01

    An algorithm and results of calculation of the process of vacuum drying of a metal-concrete container intended for long-term "dry" storage of spent nuclear fuel are presented. A calculated substantiation of the initial amount of moisture in the container is given.

  9. The spinning disc: studying radial acceleration and its damping process with smartphone acceleration sensors

    NASA Astrophysics Data System (ADS)

    Hochberg, K.; Gröber, S.; Kuhn, J.; Müller, A.

    2014-03-01

    Here, we show the possibility of analysing circular motion and acceleration using the acceleration sensors of smartphones. For instance, the known linear dependence of the radial acceleration on the distance to the centre (a constant angular frequency) can be shown using multiple smartphones attached to a revolving disc. As a second example, the decrease of the radial acceleration and the rotation frequency due to friction can be measured and fitted with a quadratic function, in accordance with theory. Finally, because the disc is not set up exactly horizontal, each smartphone measures a component of the gravitational acceleration that adds to the radial acceleration during one half of the period and subtracts from the radial acceleration during the other half. Hence, every graph shows a small modulation, which can be used to determine the rotation frequency, thus converting a ‘nuisance effect’ into a source of useful information, making additional measurements with stopwatches or the like unnecessary.

  10. TG-DSC method applied to drying characteristics of areca inflorescence during drying

    NASA Astrophysics Data System (ADS)

    Song, Fei; Wang, Hui; Huang, Yulin; Zhang, Yufeng; Chen, Weijun; Zhao, Songlin; Zhang, Ming

    2017-10-01

    In this study, suitability of eight drying models available in literature on defining drying characteristics of areca inflorescence has been examined by non-linear regression analysis using the Statistic Computer Program. The coefficient of determination ( R 2 ) and the reduced chi-square (χ2) are used as indicators to evaluate the best suitable model. According to the results, the Verma et al. model gave the best results for explaining the drying characteristics of areca inflorescence. The drying process could be divided into three periods: rising rate, constant rate and the falling rate period. Fick's second law can describe the moisture transport during the food drying process that takes place in the falling rate period. The values of effective diffusivity during the drying of areca inflorescence ranged from 2.756 × 10-7 to 6.257 × 10-7 m2/s and the activation energy was tested for 35.535 kJ/mol. The heat requirement of areca inflorescence at 40-60 °C was calculated from 50.57 to 60.50 kJ/kg during the drying process.

  11. Stevia rebaudiana Leaves: Effect of Drying Process Temperature on Bioactive Components, Antioxidant Capacity and Natural Sweeteners.

    PubMed

    Lemus-Mondaca, Roberto; Ah-Hen, Kong; Vega-Gálvez, Antonio; Honores, Carolina; Moraga, Nelson O

    2016-03-01

    Stevia leaves are usually used in dried state and undergo the inevitable effect of drying process that changes the quality characteristics of the final product. The aim of this study was to assess temperature effect on Stevia leaves through analysis of relevant bioactive components, antioxidant capacity and content of natural sweeteners and minerals. The drying process was performed in a convective dryer at constant temperatures ranging from 30 to 80 °C. Vitamin C was determined in the leaves and as expected showed a decrease during drying proportional to temperature. Phenolics and flavonoids were also determined and were found to increase during drying below 50 °C. Antioxidant activity was determined by DPPH and ORAC assays, and the latter showed the highest value at 40 °C, with a better correlation with the phenolics and flavonoids content. The content of eight natural sweeteners found in Stevia leaves was also determined and an increase in the content of seven of the sweeteners, excluding steviol bioside, was found at drying temperature up to 50 °C. At temperatures between 60 and 80 °C the increase in sweeteners content was not significant. Stevia leaves proved to be an excellent source of antioxidants and natural sweeteners.

  12. Increase in the free radical scavenging capability of bitter gourd by a heat-drying process.

    PubMed

    Wei, Lu; Shaoyun, Wang; Shutao, Liu; Jianwu, Zhou; Lijing, Ke; Pingfan, Rao

    2013-12-01

    Bitter gourd (Momordica charantia Linn.) is widely regarded as one of the best remedy foods for diabetes. The positive effect of bitter gourd on diabetes has been attributed in part to the remarkable free radical scavenging activity of its boiled water extract from sun-dried fruits. It is well known that a heat process significantly influences the antioxidant activity of fresh fruits. However, the heat drying processes of bitter gourd have not been studied so far. Here, we show that the free radical scavenging capability of bitter gourd extract significantly increases after the heat drying process, while the content of flavonoids and phenols, which are generally regarded as the main antioxidant components in bitter gourd, remain unaffected. Furthermore, the content of free amino acids and the total reducing sugar were found to decrease with increasing browning index, indicating the progression of the Maillard reaction, products of which are known to possess significant antioxidant activity. Therefore, it suggests that Maillard reaction products may be the main contributors to the increase in antioxidant capability. Finally, the bitter gourd extract with the higher antioxidant activity, was shown to manifest a corresponding higher proliferation activity on NIT-1 beta-cells. These results suggest that controllable conditions in the heat-drying processing of fresh bitter gourd fruit is of significance for enhancing the total free radical scavenging capacity, beta-cell proliferation activity and possibly the anti-diabetic activity of this fruit.

  13. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    PubMed

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Probing SEP Acceleration Processes With Near-relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Haggerty, Dennis K.; Roelof, Edmond C.

    2009-11-01

    Processes in the solar corona are prodigious accelerators of near-relativistic electrons. Only a small fraction of these electrons escape the low corona, yet they are by far the most abundant species observed in Solar Energetic Particle events. These beam-like energetic electron events are sometimes time-associated with coronal mass ejections from the western solar hemisphere. However, a significant number of events are observed without any apparent association with a transient event. The relationship between solar energetic particle events, coronal mass ejections, and near-relativistic electron events are better ordered when we classify the intensity time profiles during the duration of the beam-like anisotropies into three broad categories: 1) Spikes (rapid and equal rise and decay) 2) Pulses (rapid rise, slower decay) and 3) Ramps (rapid rise followed by a plateau). We report on the results of a study that is based on our catalog (covering nearly the complete Solar Cycle 23) of 216 near-relativistic electron events and their association with: solar electromagnetic emissions, shocks driven by coronal mass ejections, models of the coronal magnetic fields and energetic protons. We conclude that electron events with time-intensity profiles of Spikes and Pulses are associated with explosive events in the low corona while events with time-intensity profiles of Ramps are associated with the injection/acceleration process of the CME driven shock.

  15. Microstructure Evolution from X-CT Measurements for Concrete/mortar under Multi-actions of Composite Salts Dry-wet Cycles and Loading

    NASA Astrophysics Data System (ADS)

    Chen, Yanjuan; Gao, Jianming; Shen, Daman

    2017-08-01

    Inthis research, microstructure evolution forconcrete/mortar under multi-actions of composite salts dry-wet cycles and loading was investigated through X-CT measurements. The evolution process of pores and micro-cracking with the erosion time were tracked. Compared the different erosion actions, it was found that dry-wet cycles promoted the pores become connected gradually. Besides, the dry-wet cycles accelerated the damage seriously on interface area between concrete and aggregate, whistle, loading contributes to the cracking propagation toward the internal. Moreover, fly ash played a positive role in the increasing of the number of harmless holes again and contributed to the durability of concrete.

  16. [Intensification of the penicillin drying process based on the theory of short-term contact of material with a heat-exchange surface].

    PubMed

    Sadykov, R A; Migunov, V V

    1987-01-01

    The process of potassium benzylpenicillin vacuum drying was investigated. The kinetics of the process showed that a larger period of the drying process was needed for eliminating bound moisture. The influence of the angular velocity of the drier drum rotation on drying duration was studied in a short-term contact model. It was shown that intensity of drying increased with increasing velocity of the drum rotation. Experimental trials confirmed the conclusion and revealed adequacy of the relationship between the drying time and dispersion intensity in the short-term contact model. A qualitative dependence of the coefficient of convective heat exchange between the heating surface and the product on the angular velocity of the drier drum rotation was constructed.

  17. An automated synthesis-purification-sample-management platform for the accelerated generation of pharmaceutical candidates.

    PubMed

    Sutherland, J David; Tu, Noah P; Nemcek, Thomas A; Searle, Philip A; Hochlowski, Jill E; Djuric, Stevan W; Pan, Jeffrey Y

    2014-04-01

    A flexible and integrated flow-chemistry-synthesis-purification compound-generation and sample-management platform has been developed to accelerate the production of small-molecule organic-compound drug candidates in pharmaceutical research. Central to the integrated system is a Mitsubishi robot, which hands off samples throughout the process to the next station, including synthesis and purification, sample dispensing for purity and quantification analysis, dry-down, and aliquot generation.

  18. Radiolytic and thermal process relevant to dry storage of spent nuclear fuels. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, S.C.; Cowin, J.P.; Orlando, T.M.

    1998-06-01

    'This project involves basic research in chemistry and physics aimed at providing information pertinent to the safe long-term dry storage of spent nuclear fuel (SNF), thousands of tons of which remain in water storage across the DOE complex. The Hanford Site K-Basins alone hold 2,300 tons of spent fuel, much of it severely corroded, and similar situations exist at Savannah River and Idaho National Engineering and Environmental Laboratory. The DOE plans to remove this fuel and seal it in overpack canisters for dry interim storage for up to 75 years while awaiting permanent disposition. Chemically-bound water will remain in thismore » fuel even following proposed drying steps, leading to possible long-term corrosion of the containers and/or fuel rods themselves, generation of H{sub 2} and O{sub 2} gas via radiolysis (which could lead to deflagration or detonation), and reactions of pyrophoric uranium hydrides. No thoroughly tested model is currently available to predict fuel behavior during pre-processing, processing, or storage. In a collaboration between Rutgers University, Pacific Northwest National Laboratory, and Brookhaven National Laboratory, the authors are studying the radiolytic reaction, drying processes, and corrosion behavior of actual SNF materials, and of pure and mixed-phase samples. The authors propose to determine what is omitted from current models: radiolysis of water adsorbed on or in hydrates or hydroxides, thermodynamics of interfacial phases, and kinetics of drying. A model will be developed and tested against actual fuel rod behavior to insure validity and applicability to the problems associated with developing dry storage strategies for DOE-owned SNF. This report summarizes work after eight months of a three-year project.'« less

  19. Pyrochemical and Dry Processing Methods Program. A selected bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDuffie, H.F.; Smith, D.H.; Owen, P.T.

    1979-03-01

    This selected bibliography with abstracts was compiled to provide information support to the Pyrochemical and Dry Processing Methods (PDPM) Program sponsored by DOE and administered by the Argonne National Laboratory. Objectives of the PDPM Program are to evaluate nonaqueous methods of reprocessing spent fuel as a route to the development of proliferation-resistant and diversion-resistant methods for widespread use in the nuclear industry. Emphasis was placed on the literature indexed in the ERDA--DOE Energy Data Base (EDB). The bibliography includes indexes to authors, subject descriptors, EDB subject categories, and titles.

  20. Image Analysis, Microscopic, and Spectrochemical Study of the PVC Dry Blending Process,

    DTIC Science & Technology

    The dry blending process used in the production of electrical grade pvc formulations has been studies using a combination of image analysis , microscopic...by image analysis techniques. Optical and scanning electron microscopy were used to assess morphological differences. Spectrochemical techniques were used to indicate chemical changes.

  1. Formulation Development, Process Optimization, and In Vitro Characterization of Spray-Dried Lansoprazole Enteric Microparticles

    PubMed Central

    Vora, Chintan; Patadia, Riddhish; Mittal, Karan; Mashru, Rajashree

    2016-01-01

    This research focuses on the development of enteric microparticles of lansoprazole in a single step by employing the spray drying technique and studies the effects of variegated formulation/process variables on entrapment efficiency and in vitro gastric resistance. Preliminary trials were undertaken to optimize the type of Eudragit and its various levels. Further trials included the incorporation of plasticizer triethyl citrate and combinations of other polymers with Eudragit S 100. Finally, various process parameters were varied to investigate their effects on microparticle properties. The results revealed Eudragit S 100 as the paramount polymer giving the highest gastric resistance in comparison to Eudragit L 100-55 and L 100 due to its higher pH threshold and its polymeric backbone. Incorporation of plasticizer not only influenced entrapment efficiency, but diminished gastric resistance severely. On the contrary, polymeric combinations reduced entrapment efficiency for both sodium alginate and glyceryl behenate, but significantly influenced gastric resistance for only sodium alginate and not for glyceryl behenate. The optimized process parameters were comprised of an inlet temperature of 150°C, atomizing air pressure of 2 kg/cm2, feed solution concentration of 6% w/w, feed solution spray rate of 3 ml/min, and aspirator volume of 90%. The SEM analysis revealed smooth and spherical shape morphologies. The DSC and PXRD study divulged the amorphous nature of the drug. Regarding stability, the product was found to be stable under 3 months of accelerated and long-term stability conditions as per ICH Q1A(R2) guidelines. Thus, the technique offers a simple means to generate polymeric enteric microparticles that are ready to formulate and can be directly filled into hard gelatin capsules. PMID:27222612

  2. Acceleration processes in the quasi-steady magnetoplasmadynamic discharge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Boyle, M. J.

    1974-01-01

    The flow field characteristics within the discharge chamber and exhaust of a quasi-steady magnetoplasmadynamic (MPD) arcjet were examined to clarify the nature of the plasma acceleration process. The observation of discharge characteristics unperturbed by insulator ablation and terminal voltage fluctuations, first requires the satisfaction of three criteria: the use of refractory insulator materials; a mass injection geometry tailored to provide propellant to both electrode regions of the discharge; and a cathode of sufficient surface area to permit nominal MPD arcjet operation for given combinations of arc current and total mass flow. The axial velocity profile and electromagnetic discharge structure were measured for an arcjet configuration which functions nominally at 15.3 kA and 6 g/sec argon mass flow. An empirical two-flow plasma acceleration model is advanced which delineates inner and outer flow regions and accounts for the observed velocity profile and calculated thrust of the accelerator.

  3. The spray-drying process is sufficient to inactivate infectious porcine epidemic diarrhea virus in plasma.

    PubMed

    Gerber, Priscilla F; Xiao, Chao-Ting; Chen, Qi; Zhang, Jianqiang; Halbur, Patrick G; Opriessnig, Tanja

    2014-11-07

    Porcine epidemic diarrhea virus (PEDV) is considered an emergent pathogen associated with high economic losses in many pig rearing areas. Recently it has been suggested that PEDV could be transmitted to naïve pig populations through inclusion of spray-dried porcine plasma (SDPP) into the nursery diet which led to a ban of SDPP in several areas in North America and Europe. To determine the effect of spray-drying on PEDV infectivity, 3-week-old pigs were intragastrically inoculated with (1) raw porcine plasma spiked with PEDV (RAW-PEDV-CONTROL), (2) porcine plasma spiked with PEDV and then spray dried (SD-PEDV-CONTROL), (3) raw plasma from PEDV infected pigs (RAW-SICK), (4) spray-dried plasma from PEDV infected pigs (SD-SICK), or (5) spray-dried plasma from PEDV negative pigs (SD-NEG-CONTROL). For the spray-drying process, a tabletop spray-dryer with industry-like settings for inlet and outlet temperatures was used. In the RAW-PEDV-CONTROL group, PEDV RNA was present in feces at day post infection (dpi) 3 and the pigs seroconverted by dpi 14. In contrast, PEDV RNA in feces was not detected in any of the pigs in the other groups including the SD-PEDV-CONTROL group and none of the pigs had seroconverted by termination of the project at dpi 28. This work provides direct evidence that the experimental spray-drying process used in this study was effective in inactivating infectious PEDV in the plasma. Additionally, plasma collected from PEDV infected pigs at peak disease did not contain infectious PEDV. These findings suggest that the risk for PEDV transmission through commercially produced SDPP is minimal. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Particle Acceleration via Reconnection Processes in the Supersonic Solar Wind

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-12-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = -(3 + MA )/2, where MA is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index -3(1 + τ c /(8τdiff)), where τ c /τdiff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τdiff/τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c -5 (c particle speed) spectra observed by Fisk & Gloeckler and Mewaldt et

  5. Evaluation of hyperspectral reflectance for estimating dry matter and sugar concentration in processing potatoes

    USDA-ARS?s Scientific Manuscript database

    The measurement of sugar concentration and dry matter in processing potatoes is a time and resource intensive activity, cannot be performed in the field, and does not easily measure within tuber variation. A proposed method to improve the phenotyping of processing potatoes is to employ hyperspectral...

  6. 9 CFR 590.547 - Albumen flake process drying operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...

  7. 9 CFR 590.547 - Albumen flake process drying operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...

  8. 9 CFR 590.547 - Albumen flake process drying operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...

  9. 9 CFR 590.547 - Albumen flake process drying operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...

  10. Hydroclimatological Processes in the Central American Dry Corridor

    NASA Astrophysics Data System (ADS)

    Hidalgo, H. G.; Duran-Quesada, A. M.; Amador, J. A.; Alfaro, E. J.; Mora, G.

    2015-12-01

    This work studies the hydroclimatological variability and the climatic precursors of drought in the Central American Dry Corridor (CADC), a subregion located in the Pacific coast of Southern Mexico and Central America. Droughts are frequent in the CADC, which is featured by a higher climatological aridity compared to the highlands and Caribbean coast of Central America. The CADC region presents large social vulnerability to hydroclimatological impacts originated from dry conditions, as there is a large part of population that depends on subsistance agriculture. The influence of large-scale climatic precursors such as ENSO, the Caribbean Low-Level Jet (CLLJ), low frequency signals from the Pacific and Caribbean and some intra-seasonal signals such as the MJO are evaluated. Previous work by the authors identified a connection between the CLLJ and CADC precipitation. This connection is more complex than a simple rain-shadow effect, and instead it was suggested that convection at the exit of the jet in the Costa-Rica and Nicaragua Caribbean coasts and consequent subsidence in the Pacific could be playing a role in this connection. During summer, when the CLLJ is stronger than normal, the Inter-Tropical Convergence Zone (located mainly in the Pacific) displaces to a more southern position, and vice-versa, suggesting a connection between these two processes that has not been fully explained yet. The role of the Western Hemisphere Warm Pool also needs more research. All this is important, as it suggest a working hypothesis that during summer, the effect of the Caribbean wind strength may be responsible for the dry climate of the CADC. Another previous analysis by the authors was based on downscaled precipitation and temperature from GCMs and the NCEP/NCAR reanalysis. The data was later used in a hydrological model. Results showed a negative trend in reanalysis' runoff for 1980-2012 in San José (Costa Rica) and Tegucigalpa (Honduras). This highly significant drying trend

  11. Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process

    PubMed Central

    2010-01-01

    Background US legislation requires the use of advanced biofuels to be made from non-food feedstocks. However, commercialization of lignocellulosic ethanol technology is more complex than expected and is therefore running behind schedule. This is creating a demand for non-food, but more easily converted, starch-based feedstocks other than corn that can fill the gap until the second generation technologies are commercially viable. Winter barley is such a feedstock but its mash has very high viscosity due to its high content of β-glucans. This fact, along with a lower starch content than corn, makes ethanol production at the commercial scale a real challenge. Results A new fermentation process for ethanol production from Thoroughbred, a winter barley variety with a high starch content, was developed. The new process was designated the EDGE (enhanced dry grind enzymatic) process. In this process, in addition to the normal starch-converting enzymes, two accessory enzymes were used to solve the β-glucan problem. First, β-glucanases were used to hydrolyze the β-glucans to oligomeric fractions, thus significantly reducing the viscosity to allow good mixing for the distribution of the yeast and nutrients. Next, β-glucosidase was used to complete the β-glucan hydrolysis and to generate glucose, which was subsequently fermented in order to produce additional ethanol. While β-glucanases have been previously used to improve barley ethanol production by lowering viscosity, this is the first full report on the benefits of adding β-glucosidases to increase the ethanol yield. Conclusions In the EDGE process, 30% of total dry solids could be used to produce 15% v/v ethanol. Under optimum conditions an ethanol yield of 402 L/MT (dry basis) or 2.17 gallons/53 lb bushel of barley with 15% moisture was achieved. The distillers dried grains with solubles (DDGS) co-product had extremely low β-glucan (below 0.2%) making it suitable for use in both ruminant and mono-gastric animal

  12. Amorphous solid dispersion of cyclosporine A prepared with fine droplet drying process: Physicochemical and pharmacokinetic characterization.

    PubMed

    Suzuki, Hiroki; Moritani, Tatsuru; Morinaga, Tadahiko; Seto, Yoshiki; Sato, Hideyuki; Onoue, Satomi

    2017-03-15

    The present study aimed to develop an amorphous solid dispersion (ASD) of cyclosporine A (CsA) by a fine droplet drying (FDD) process for improvement in oral absorption of CsA. CsA and hydroxypropyl cellulose-SSL were dissolved in 1,4-dioxane, and the solution was powdered by the FDD process to obtain the ASD formulation of CsA (ASD/CsA). The ASD/CsA was characterized in terms of morphology, particle size distribution, crystallinity, dissolution behavior, physicochemical stability, and pharmacokinetic behavior in rats. The ASD/CsA was obtained in the form of uniform spherical particles, and the span factor was calculated to be ca. 0.4. CsA in the formulation existed in an amorphous state. The ASD/CsA exhibited a higher dissolution behavior of CsA than amorphous CsA, whereas storage of the ASD/CsA under accelerated conditions led to impairment in the dissolution behavior. The constant release of CsA from non-aged ASD/CsA was observed during dissolution testing. After oral administration of CsA samples (10mg-CsA/kg) in rats, the ASD/CsA showed a high and sustained plasma concentration of CsA as evidenced by a 18-fold increase in the oral bioavailability of CsA compared with amorphous CsA. From these findings, the FDD process might be an efficacious option for the ASD formulation of CsA with enhanced biopharmaceutics properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Design of solar thermal dryers for 24-hour food drying processes (abstract)

    USDA-ARS?s Scientific Manuscript database

    Solar drying is a ubiquitous method that has been adopted for many years as a food preservation method. Most of the published articles in the literature provide insight on the performance of solar dryers in service but little information on the dryer construction material selection process or mater...

  14. Application of Empirical Peleg Model to Study the Water Adsorption of Full Cream Milk in Drying Process

    NASA Astrophysics Data System (ADS)

    Hashib, S. Abd; Rosli, H.; Suzihaque, M. U. H.; Zaki, N. A. Md; Ibrahim, U. K.

    2017-06-01

    The ability of spray dryer in producing full cream milk at different inlet temperatures and the effectiveness of empirical model used in order to interpret the drying process data is evaluated in this study. In this study, a lab-scale spray dryer was used to dry full cream milk into powder with inlet temperature from 100 to 160°C with a constant pump speed 4rpm. Peleg empirical model was chosen in order to manipulate the drying data into the mathematical equation. This research was carry out specifically to determine the equilibrium moisture content of full cream milk powder at various inlet temperature and to evaluate the effectiveness of Peleg empirical model equation in order to describe the moisture sorption curves for full cream milk. There were two conditions set for this experiments; in the first condition (C1), further drying process of milk powder in the oven at 98°C to 100°C while the second condition (C2) is mixing the milk powder with different salt solutions like Magnesium Chloride (MgCl), Potassium Nitrite (KNO2), Sodium Nitrite (NaNO2) and Ammonium Sulfate ((NH4)2SO4). For C1, the optimum temperature were 160°C with equilibrium moisture content at 3.16 weight dry basis and slowest sorption rates (dM/dt) at 0.0743 weight dry basis/hr. For C2, the best temperature for the mixture of dry samples with MgCl is at 115°C with equilibrium moisture content and sorption rates is -78.079 weight dry basis and 0.01 weight dry basis/hr. The best temperature for the mixture of milk powder with KNO2 is also at 115°C with equilibrium moisture content and sorption rates at -83.9645 weight dry basis and 0.0008 weight dry basis/hr respectively. For mixture of dry samples with NaNO2, the best temperature is 160°C with equilibrium moisture content and sorption rates at 84.1306 weight dry basis and 0.0013 weight dry basis/hr respectively. Lastly, the mixture of dry samples with ((NH4)2SO4 where the best temperature is at 115°C with equilibrium moisture content -83

  15. Freeze-Dried Platelet-Rich Plasma Accelerates Bone Union with Adequate Rigidity in Posterolateral Lumbar Fusion Surgery Model in Rats

    NASA Astrophysics Data System (ADS)

    Shiga, Yasuhiro; Orita, Sumihisa; Kubota, Go; Kamoda, Hiroto; Yamashita, Masaomi; Matsuura, Yusuke; Yamauchi, Kazuyo; Eguchi, Yawara; Suzuki, Miyako; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Aoki, Yasuchika; Toyone, Tomoaki; Furuya, Takeo; Koda, Masao; Takahashi, Kazuhisa; Ohtori, Seiji

    2016-11-01

    Fresh platelet-rich plasma (PRP) accelerates bone union in rat model. However, fresh PRP has a short half-life. We suggested freeze-dried PRP (FD-PRP) prepared in advance and investigated its efficacy in vivo. Spinal posterolateral fusion was performed on 8-week-old male Sprague-Dawley rats divided into six groups based on the graft materials (n = 10 per group): sham control, artificial bone (A hydroxyapatite-collagen composite) -alone, autologous bone, artificial bone + fresh-PRP, artificial bone + FD-PRP preserved 8 weeks, and artificial bone + human recombinant bone morphogenetic protein 2 (BMP) as a positive control. At 4 and 8 weeks after the surgery, we investigated their bone union-related characteristics including amount of bone formation, histological characteristics of trabecular bone at remodeling site, and biomechanical strength on 3-point bending. Comparable radiological bone union was confirmed at 4 weeks after surgery in 80% of the FD-PRP groups, which was earlier than in other groups (p < 0.05). Histologically, the trabecular bone had thinner and more branches in the FD-PRP. Moreover, the biomechanical strength was comparable to that of autologous bone. FD-PRP accelerated bone union at a rate comparable to that of fresh PRP and BMP by remodeling the bone with thinner, more tangled, and rigid trabecular bone.

  16. Freeze-Dried Platelet-Rich Plasma Accelerates Bone Union with Adequate Rigidity in Posterolateral Lumbar Fusion Surgery Model in Rats

    PubMed Central

    Shiga, Yasuhiro; Orita, Sumihisa; Kubota, Go; Kamoda, Hiroto; Yamashita, Masaomi; Matsuura, Yusuke; Yamauchi, Kazuyo; Eguchi, Yawara; Suzuki, Miyako; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Aoki, Yasuchika; Toyone, Tomoaki; Furuya, Takeo; Koda, Masao; Takahashi, Kazuhisa; Ohtori, Seiji

    2016-01-01

    Fresh platelet-rich plasma (PRP) accelerates bone union in rat model. However, fresh PRP has a short half-life. We suggested freeze-dried PRP (FD-PRP) prepared in advance and investigated its efficacy in vivo. Spinal posterolateral fusion was performed on 8-week-old male Sprague-Dawley rats divided into six groups based on the graft materials (n = 10 per group): sham control, artificial bone (A hydroxyapatite–collagen composite) –alone, autologous bone, artificial bone + fresh-PRP, artificial bone + FD-PRP preserved 8 weeks, and artificial bone + human recombinant bone morphogenetic protein 2 (BMP) as a positive control. At 4 and 8 weeks after the surgery, we investigated their bone union–related characteristics including amount of bone formation, histological characteristics of trabecular bone at remodeling site, and biomechanical strength on 3-point bending. Comparable radiological bone union was confirmed at 4 weeks after surgery in 80% of the FD-PRP groups, which was earlier than in other groups (p < 0.05). Histologically, the trabecular bone had thinner and more branches in the FD-PRP. Moreover, the biomechanical strength was comparable to that of autologous bone. FD-PRP accelerated bone union at a rate comparable to that of fresh PRP and BMP by remodeling the bone with thinner, more tangled, and rigid trabecular bone. PMID:27833116

  17. [Optimization of vacuum belt drying process of Gardeniae Fructus in Reduning injection by Box-Behnken design-response surface methodology].

    PubMed

    Huang, Dao-sheng; Shi, Wei; Han, Lei; Sun, Ke; Chen, Guang-bo; Wu Jian-xiong; Xu, Gui-hong; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-06-01

    To optimize the belt drying process conditions optimization of Gardeniae Fructus extract from Reduning injection by Box-Behnken design-response surface methodology, on the basis of single factor experiment, a three-factor and three-level Box-Behnken experimental design was employed to optimize the drying technology of Gardeniae Fructus extract from Reduning injection. With drying temperature, drying time, feeding speed as independent variables and the content of geniposide as dependent variable, the experimental data were fitted to a second order polynomial equation, establishing the mathematical relationship between the content of geniposide and respective variables. With the experimental data analyzed by Design-Expert 8. 0. 6, the optimal drying parameter was as follows: the drying temperature was 98.5 degrees C , the drying time was 89 min, the feeding speed was 99.8 r x min(-1). Three verification experiments were taked under this technology and the measured average content of geniposide was 564. 108 mg x g(-1), which was close to the model prediction: 563. 307 mg x g(-1). According to the verification test, the Gardeniae Fructus belt drying process is steady and feasible. So single factor experiments combined with response surface method (RSM) could be used to optimize the drying technology of Reduning injection Gardenia extract.

  18. Zeolite Formation and Weathering Processes in Dry Valleys of Antartica: Martian Analogs

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Wentworth, S. J.; McKay, D. S.; Socki, R. A.

    2004-01-01

    Terrestrial weathering processes in cold-desert climates such as the Dry Valleys of Antarctica may provide an excellent analog to chemical weathering and diagenesis of soils on Mars. Detailed studies of soil development and the chemical and mineralogical alterations occurring within soil columns in Wright Valley, Antarctica show incredible complexity in the upper meter of soil. Previous workers noted the ice-free Dry Valleys are the best terrestrial approximations to contemporary Mars. Images returned from the Pathfinder and Spirit landers show similarities to surfaces observed within the Dry Valleys. Similarities to Mars that exist in these valleys are: mean temperatures always below freezing (-20 C), no rainfall, sparse snowfall-rapidly removed by sublimation, desiccating winds, diurnal freeze-thaw cycles (even during daylight hours), low humidity, oxidative environment, relatively high solar radiation and low magnetic fields . The Dry Valley soils contain irregular distributions and low abundances of soil microorganisms that are somewhat unusual on Earth. Physical processes-such as sand abrasion-are dominant mechanisms of rock weathering in Antarctica. However, chemical weathering is also an important process even in such extreme climates. For example, ionic migration occurs even in frozen soils along liquid films on individual soil particles. It has also been shown that water with liquid-like properties is present in soils at temperatures on the order of approx.-80 C and it has been observed that the percentage of oxidized iron increases with increasing soil age and enrichments in oxidized iron occurs toward the surface. The presence of evaporates is evident and appear similar to "evaporite sites" within the Pathfinder and Spirit sites. Evaporites indicate ionic migration and chemical activity even in the permanently frozen zone. The presence of evaporates indicates that chemical weathering of rocks and possibly soils has been active. Authogenic zeolites have

  19. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  20. Laser cutting eliminates nucleic acid cross-contamination in dried-blood-spot processing.

    PubMed

    Murphy, Sean C; Daza, Glenda; Chang, Ming; Coombs, Robert

    2012-12-01

    Dried blood spots (DBS) are useful for molecular assays but are prone to false positives from cross-contamination. In our malaria DBS assay, cross-contamination was encountered despite cleaning techniques suitable for HIV-1. We therefore developed a contact-free laser cutting system that effectively eliminated cross-contamination during DBS processing.

  1. [Effects of wind speed on drying processes of fuelbeds composed of Mongolian oak broad-leaves.

    PubMed

    Zhang, Li Bin; Sun, Ping; Jin, Sen

    2016-11-18

    Water desorption processes of fuel beds with Mongolian oak broad-leaves were observed under conditions with various wind speeds but nearly constant air temperature and humidity. The effects of wind speed on drying coefficients of fuel beds with various moisture contents were analyzed. Three phases of drying process, namely high initial moisture content (>75%) of phase 1, transition state of phase 2, and equilibrium phase III could be identified. During phase 1, water loss rate under higher wind speed was higher than that under lower wind speed. Water loss rate under higher wind speed was lower than that under lower wind speed during phase 2. During phase 3, water loss rates under different wind speeds were similar. The wind effects decreased with the decrease of fuel moisture. The drying coefficient of the Mongolian oak broad-leaves fuel beds was affected by wind speed and fuel bed compactness, and the interaction between these two factors. The coefficient increased with wind speed roughly in a monotonic cubic polynomial form.

  2. Albedo Drop on the Greenland Ice Sheet: Relative Impacts of Wet and Dry Snow Processes

    NASA Astrophysics Data System (ADS)

    Chen, J.; Polashenski, C.

    2014-12-01

    The energy balance of the Greenland Ice Sheet (GIS) is strongly impacted by changes in snow albedo. MODIS (Moderate Resolution Imaging Spectroradiometer) observations indicate that the GIS albedo has dropped since the early part of this century. We analyze data from the MODIS products MOD10A1 for broadband snow albedo and MOD09A1 for surface spectral reflectance since 2001 to better explain the physical mechanisms driving these changes. The MODIS products are filtered, and the data is masked using microwave-derived surface melt maps to isolate albedo changes due to dry snow processes from those driven by melt impacts. Results show that the majority of recent changes in the GIS albedo - even at high elevations - are driven by snow wetting rather than dry snow processes such as grain metamorphosis and aerosol impurity deposition. The spectral signature of the smaller changes occurring within dry snow areas suggests that grain metamorphosis dominates the albedo decline in these regions.

  3. True density and apparent density during the drying process for vegetables and fruits: a review.

    PubMed

    Rodríguez-Ramírez, J; Méndez-Lagunas, L; López-Ortiz, A; Torres, S Sandoval

    2012-12-01

    This review presents the concepts involved in determining the density of foodstuffs, and summarizes the volumetric determination techniques used to calculate true density and apparent density in foodstuffs exposed to the drying process. The behavior of density with respect to moisture content (X) and drying temperature (T) is presented and explained with a basis in changes in structure, conformation, chemical composition, and second-order phase changes that occur in the processes of mass and heat transport, as reported to date in the literature. A review of the empirical and theoretical equations that represent density is presented, and their application in foodstuffs is discussed. This review also addresses cases with nonideal density behavior, including variations in ρ(s) and ρ(w) as a function of the inside temperature of the material, depending on drying conditions (X, T). A compilation of studies regarding the density of dehydrated foodstuffs is also presented. © 2012 Institute of Food Technologists®

  4. Potential of Near-Infrared Chemical Imaging as Process Analytical Technology Tool for Continuous Freeze-Drying.

    PubMed

    Brouckaert, Davinia; De Meyer, Laurens; Vanbillemont, Brecht; Van Bockstal, Pieter-Jan; Lammens, Joris; Mortier, Séverine; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas

    2018-04-03

    Near-infrared chemical imaging (NIR-CI) is an emerging tool for process monitoring because it combines the chemical selectivity of vibrational spectroscopy with spatial information. Whereas traditional near-infrared spectroscopy is an attractive technique for water content determination and solid-state investigation of lyophilized products, chemical imaging opens up possibilities for assessing the homogeneity of these critical quality attributes (CQAs) throughout the entire product. In this contribution, we aim to evaluate NIR-CI as a process analytical technology (PAT) tool for at-line inspection of continuously freeze-dried pharmaceutical unit doses based on spin freezing. The chemical images of freeze-dried mannitol samples were resolved via multivariate curve resolution, allowing us to visualize the distribution of mannitol solid forms throughout the entire cake. Second, a mannitol-sucrose formulation was lyophilized with variable drying times for inducing changes in water content. Analyzing the corresponding chemical images via principal component analysis, vial-to-vial variations as well as within-vial inhomogeneity in water content could be detected. Furthermore, a partial least-squares regression model was constructed for quantifying the water content in each pixel of the chemical images. It was hence concluded that NIR-CI is inherently a most promising PAT tool for continuously monitoring freeze-dried samples. Although some practicalities are still to be solved, this analytical technique could be applied in-line for CQA evaluation and for detecting the drying end point.

  5. Dry coating of solid dosage forms: an overview of processes and applications.

    PubMed

    Foppoli, Anastasia Anna; Maroni, Alessandra; Cerea, Matteo; Zema, Lucia; Gazzaniga, Andrea

    2017-12-01

    Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous coating systems can be overcome, such as toxicological, environmental, and safety-related issues on the one hand as well as costly drying phases and impaired product stability on the other. The considerable advantages related to solventless coating has been prompting a strong research interest in this field of pharmaceutics. In the article, processes and applications relevant to techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-melt coating and coating by photocuring, while the latter encompass press coating and powder coating. Moreover, solventless techniques, such as injection molding and three-dimensional printing by fused deposition modeling, which are not purposely conceived for coating, are also discussed in that they would open new perspectives in the manufacturing of coated-like dosage forms.

  6. Laser Cutting Eliminates Nucleic Acid Cross-Contamination in Dried-Blood-Spot Processing

    PubMed Central

    Daza, Glenda; Chang, Ming; Coombs, Robert

    2012-01-01

    Dried blood spots (DBS) are useful for molecular assays but are prone to false positives from cross-contamination. In our malaria DBS assay, cross-contamination was encountered despite cleaning techniques suitable for HIV-1. We therefore developed a contact-free laser cutting system that effectively eliminated cross-contamination during DBS processing. PMID:23052309

  7. Raman mapping of mannitol/lysozyme particles produced via spray drying and single droplet drying.

    PubMed

    Pajander, Jari Pekka; Matero, Sanni; Sloth, Jakob; Wan, Feng; Rantanen, Jukka; Yang, Mingshi

    2015-06-01

    This study aimed to investigate the effect of a model protein on the solid state of a commonly used bulk agent in spray-dried formulations. A series of lysozyme/mannitol formulations were spray-dried using a lab-scale spray dryer. Further, the surface temperature of drying droplet/particles was monitored using the DRYING KINETICS ANALYZER™ (DKA) with controllable drying conditions mimicking the spray-drying process to estimate the drying kinetics of the lysozyme/mannitol formulations. The mannitol polymorphism and the spatial distribution of lysozyme in the particles were examined using X-ray powder diffractometry (XRPD) and Raman microscopy. Partial Least Squares Discriminant Analysis was used for analyzing the Raman microscopy data. XRPD results indicated that a mixture of β-mannitol and α-mannitol was produced in the spray-drying process which was supported by the Raman analysis, whereas Raman analysis indicated that a mixture of α-mannitol and δ-mannitol was detected in the single particles from DKA. In addition Raman mapping indicated that the presence of lysozyme seemed to favor the appearance of α-mannitol in the particles from DKA evidenced by close proximity of lysozyme and mannitol in the particles. It suggested that the presence of lysozyme tend to induce metastable solid state forms upon the drying process.

  8. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Panagiotis; /Fermilab; Cary, John

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less

  9. Hybrid response surface methodology-artificial neural network optimization of drying process of banana slices in a forced convective dryer.

    PubMed

    Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad

    2018-06-01

    The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.

  10. Melt extrusion vs. spray drying: The effect of processing methods on crystalline content of naproxen-povidone formulations.

    PubMed

    Haser, Abbe; Cao, Tu; Lubach, Joe; Listro, Tony; Acquarulo, Larry; Zhang, Feng

    2017-05-01

    Our hypothesis is that melt extrusion is a more suitable processing method than spray drying to prepare amorphous solid dispersions of drugs with a high crystallization tendency. Naproxen-povidone K25 was used as the model system in this study. Naproxen-povidone K25 solid dispersions at 30% and 60% drug loadings were characterized by modulated DSC, powder X-ray diffraction, FT-IR, and solid-state 13 C NMR to identify phase separation and drug recrystallization during processing and storage. At 30% drug loading, hydrogen bond (H-bond) sites of povidone K25 were not saturated and the glass transition (T g ) temperature of the formulation was higher. As a result, both melt-extruded and spray-dried materials were amorphous initially and remained so after storage at 40°C. At 60% drug loading, H-bond sites were saturated, and T g was low. We were not able to prepare amorphous materials. The initial crystallinity of the formulations was 0.4%±0.2% and 5.6%±0.6%, and increased to 2.7%±0.3% and 21.6%±1.0% for melt-extruded and spray-dried materials, respectively. Spray-dried material was more susceptible to re-crystallization during processing, due to the high diffusivity of naproxen molecules in the formulation matrix and lack of kinetic stabilization from polymer solution. A larger number of crystalline nucleation sites and high surface area made the spray-dried material more susceptible to recrystallization during storage. This study demonstrated the unique advantages of melt extrusion over spray drying for the preparation of amorphous solid dispersions of naproxen at high drug level. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Experimental study on drying kinetic of cassava starch in a pneumatic drying system

    NASA Astrophysics Data System (ADS)

    Suherman, Kumoro, Andri Cahyo; Kusworo, Tutuk Djoko

    2015-12-01

    The aims of this study are to present the experimental research on the drying of cassava starch in a pneumatic dryer, to describe its drying curves, as well as to calculate its thermal efficiency. The effects of operating conditions, namely the inlet air temperature (60-100 °C) and solid-gas flow rate ratio (Ms/Mg 0.1-0.3) were studied. Heat transfer is accomplished through convection mechanism in a drying chamber based on the principle of direct contact between the heated air and the moist material. During the drying process, intensive heat and mass transfer between the drying air and the cassava starch take place. In order to meet the SNI standards on solid water content, the drying process was done in two cycles. The higher the temperature of the drying air, the lower the water content of the solids exiting the dryer. Thermal efficiency of the 2nd cycle was found to be lower than the 1st cycle.

  12. Effects of steam-microwave blanching and different drying processes on drying characteristics and quality attributes of Thunbergia laurifolia Linn. leaves.

    PubMed

    Phahom, Traiphop; Phoungchandang, Singhanat; Kerr, William L

    2017-08-01

    Dried Thunbergia laurifolia leaves are usually prepared using tray drying, resulting in products that have lost substantial amounts of bioactive compounds and antioxidant activity. The maturity of the raw material, blanching techniques and drying methods were investigated in order to select the best condition to produce high qualities of dried T. laurifolia leaves. The 1st stage of maturity was selected and steam-microwave blanching (SMB) for 4 min was adequate for blanching leading to the maximum recovery of bioactive compounds. The modified Halsey model was the best desorption isotherm model. A new drying model proposed in this study was the best to fit the drying curves as compared to five common drying models. Moisture diffusivities were increased with the increase of drying temperature when combining SMB and heat pump-dehumidified drying. Microwave heat pump-dehumidified drying (MHPD) provided the shortest drying time, high specific moisture extraction rate (SMER) and could reduce drying time by 67.5% and increase caffeic acid and quercetin by 51.24% and 60.89%, respectively. MHPD was found to be the best drying method and provided the highest antioxidant activity and bioactive compounds content, high SMER and short drying time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Nonlinear dynamics that appears in the dynamical model of drying process of a polymer solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2007-01-01

    We have proposed and modified the dynamical model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through some meetings and so on. Though basic equations of the dynamical model have characteristic nonlinearity, character of the nonlinearity has not been studied enough yet. In this paper, at first, we derive nonlinear equations from the dynamical model of drying process of polymer solution. Then we introduce results of numerical simulations of the nonlinear equations and consider roles of various parameters. Some of them are indirectly concerned in strength of non-equilibriumity. Through this study, we approach essential qualities of nonlinearity in non-equilibrium process of drying process.

  14. Key variables analysis of a novel continuous biodrying process for drying mixed sludge.

    PubMed

    Navaee-Ardeh, Shahram; Bertrand, François; Stuart, Paul R

    2010-05-01

    A novel continuous biodrying process has been developed whose goal is to increase the dry solids content of the sludge to economic levels rendering it suitable for a safe and economic combustion operation in a biomass boiler. The sludge drying rates are enhanced by the metabolic bioheat produced in the matrix of mixed sludge. The goal of this study was to systematically analyze the continuous biodrying reactor. By performing a variable analysis, it was found that the outlet relative humidity profile was the key variable in the biodrying reactor. The influence of different outlet relative humidity profiles was then evaluated using biodrying efficiency index. It was found that by maintaining the air outlet relative humidity profile at 85/85/96/96% in the four compartments of the reactor, the highest biodrying efficiency index can be achieved, while economic dry solids level (>45%w/w) are guaranteed. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  15. Particle acceleration via reconnection processes in the supersonic solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced bymore » quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M{sub A} )/2, where M{sub A} is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ {sub c}/(8τ{sub diff})), where τ {sub c}/τ{sub diff} is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ{sub diff}/τ {sub c}. Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c {sup –5} (c

  16. Engineering of an inhalable DDA/TDB liposomal adjuvant: a quality-by-design approach towards optimization of the spray drying process.

    PubMed

    Ingvarsson, Pall Thor; Yang, Mingshi; Mulvad, Helle; Nielsen, Hanne Mørck; Rantanen, Jukka; Foged, Camilla

    2013-11-01

    The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB). A quality by design (QbD) approach was applied to identify and link critical process parameters (CPPs) of the spray drying process to critical quality attributes (CQAs) using risk assessment and design of experiments (DoE), followed by identification of an optimal operating space (OOS). A central composite face-centered design was carried out followed by multiple linear regression analysis. Four CQAs were identified; the mass median aerodynamic diameter (MMAD), the liposome stability (size) during processing, the moisture content and the yield. Five CPPs (drying airflow, feed flow rate, feedstock concentration, atomizing airflow and outlet temperature) were identified and tested in a systematic way. The MMAD and the yield were successfully modeled. For the liposome size stability, the ratio between the size after and before spray drying was modeled successfully. The model for the residual moisture content was poor, although, the moisture content was below 3% in the entire design space. Finally, the OOS was drafted from the constructed models for the spray drying of trehalose stabilized DDA/TDB liposomes. The QbD approach for the spray drying process should include a careful consideration of the quality target product profile. This approach implementing risk assessment and DoE was successfully applied to optimize the spray drying of an inhalable DDA/TDB liposomal adjuvant designed for pulmonary vaccination.

  17. Optimization of the Büchi B-90 spray drying process using central composite design for preparation of solid dispersions.

    PubMed

    Gu, Bing; Linehan, Brian; Tseng, Yin-Chao

    2015-08-01

    A central composite design approach was applied to study the effect of polymer concentration, inlet temperature and air flow rate on the spray drying process of the Büchi B-90 nano spray dryer (B-90). Hypromellose acetate succinate-LF was used for the Design of Experiment (DoE) study. Statistically significant models to predict the yield, spray rate, and drying efficiency were generated from the study. The spray drying conditions were optimized according to the models to maximize the yield and efficiency of the process. The models were further validated using a poorly water-soluble investigational compound (BI064) from Boehringer Ingelheim Pharmaceuticals. The polymer/drug ratio ranged from 1/1 to 3/1w/w. The spray dried formulations were amorphous determined by differential scanning calorimetry and X-ray powder diffraction. The particle size of the spray dried formulations was 2-10 μm under polarized light microscopy. All the formulations were physically stable for at least 3h when suspended in an aqueous vehicle composed of 1% methyl cellulose. This study demonstrates that DoE is a useful tool to optimize the spray drying process, and the B-90 can be used to efficiently produce amorphous solid dispersions with a limited quantity of drug substance available during drug discovery stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. First muon acceleration using a radio-frequency accelerator

    NASA Astrophysics Data System (ADS)

    Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.

    2018-05-01

    Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  19. Digital Signal Processing and Generation for a DC Current Transformer for Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorzetti, Silvia

    2013-01-01

    The thesis topic, digital signal processing and generation for a DC current transformer, focuses on the most fundamental beam diagnostics in the field of particle accelerators, the measurement of the beam intensity, or beam current. The technology of a DC current transformer (DCCT) is well known, and used in many areas, including particle accelerator beam instrumentation, as non-invasive (shunt-free) method to monitor the DC current in a conducting wire, or in our case, the current of charged particles travelling inside an evacuated metal pipe. So far, custom and commercial DCCTs are entirely based on analog technologies and signal processing, whichmore » makes them inflexible, sensitive to component aging, and difficult to maintain and calibrate.« less

  20. Textile drying using solarized can dryers to demonstrate the application of solar energy to industrial drying or dehydration processes, Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, P.D.; Beesing, M.E.; Bessler, G.L.

    This program has resulted in the installation of a solar energy collection system for providing process heat to a textile drying process. The solar collection subsystem uses 700 square meters (7500 square feet) of parabolic trough, single-axis tracking, concentrating collectors to heat water in a high temperature water (HTW) loop. The solar collectors nominally generate 193/sup 0/C (380/sup 0/F) water with the HTW loop at 1.9 x 10/sup 6/ Pa (275 psi). A steam generator is fueled with the HTW and produces 450 kg/hour (1000 pounds per hour) of process steam at the nominal design point conditions. The solar-generated processmore » steam is at 0.5 x 10/sup 6/ Pa (75 psi) and 160/sup 0/C (321/sup 0/F). It is predicted that the solar energy system will provide 1.2 x 10/sup 6/ MJ/year (1.1 x 10/sup 9/ Btu/year) to the process. This is 46 percent of the direct isolation available to the collector field during the operational hours (300 days/year of the Fairfax mill. The process being solarized is textile drying using can dryers. The can dryers are part of a slashing operation in a WestPoint Pepperell mill in Fairfax, Alabama. Over 50 percent of all woven goods are processed through slashers and dried on can dryers. The collectors were fabricated by Honeywell at a pilot production facility in Minneapolis, Minnesota, under a 3000-square-meter (32,000-square-foot) production run. The collectors and other system components were installed at the site by the Bahnson Service Company and their subcontractors, acting as the project general contractor. System checkout and start-up was conducted. Preliminary system performance was determined from data collected during start-up. System design, fabrication and installation, data analysis, operation and maintenance procedures, and specifications and drawings are presented.« less

  1. Exploring the benefits and challenges of establishing a DRI-like process for bioactives.

    PubMed

    Lupton, Joanne R; Atkinson, Stephanie A; Chang, Namsoo; Fraga, Cesar G; Levy, Joseph; Messina, Mark; Richardson, David P; van Ommen, Ben; Yang, Yuexin; Griffiths, James C; Hathcock, John

    2014-04-01

    Bioactives can be defined as: "Constituents in foods or dietary supplements, other than those needed to meet basic human nutritional needs, which are responsible for changes in health status" (Office of Disease Prevention and Health Promotion, Office of Public Health and Science, Department of Health and Human Services in Fed Reg 69:55821-55822, 2004). Although traditional nutrients, such as vitamins, minerals, protein, essential fatty acids and essential amino acids, have dietary reference intake (DRI) values, there is no such evaluative process for bioactives. For certain classes of bioactives, substantial scientific evidence exists to validate a relationship between their intake and enhanced health conditions or reduced risk of disease. In addition, the study of bioactives and their relationship to disease risk is a growing area of research supported by government, academic institutions, and food and supplement manufacturers. Importantly, consumers are purchasing foods containing bioactives, yet there is no evaluative process in place to let the public know how strong the science is behind the benefits or the quantitative amounts needed to achieve these beneficial health effects. This conference, Bioactives: Qualitative Nutrient Reference Values for Life-stage Groups?, explored why it is important to have a DRI-like process for bioactives and challenges for establishing such a process.

  2. Silicone absorption of elastomeric closures--an accelerated study.

    PubMed

    Degrazio, F L; Hlobik, T; Vaughan, S

    1998-01-01

    There is a trend in the parenteral industry to move from the use of elastomeric closures which are washed, siliconized, dried and sterilized in-house at the pharmaceutical manufacturers' site to pre-prepared closures purchased from the closure supplier. This preparation can consist of washing to reduce particle-load and bioburden, siliconization, placement in ready-to-sterilize bags and may eventually extend to sterilization by steam autoclave or gamma irradiation. Since silicone oil lubrication is critical to the processability/machinability of closures, research was designed to investigate this phenomenon in closures prepared using the Westar RS (Ready-to-Sterilize) process. This paper presents the data gathered in a study of the characteristic of silicone absorption into elastomeric closures under accelerated conditions. Variables such as silicone viscosity, rubber formulation, effect of sterilization and others are considered.

  3. 9 CFR 590.547 - Albumen flake process drying operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and sanitary condition. (c) Drying pans, trays, belts, scrapers, or curing racks, if used, shall be kept in a...

  4. Time Recovery for a Complex Process Using Accelerated Dynamics.

    PubMed

    Paz, S Alexis; Leiva, Ezequiel P M

    2015-04-14

    The hyperdynamics method (HD) developed by Voter (J. Chem. Phys. 1996, 106, 4665) sets the theoretical basis to construct an accelerated simulation scheme that holds the time scale information. Since HD is based on transition state theory, pseudoequilibrium conditions (PEC) must be satisfied before any system in a trapped state may be accelerated. As the system evolves, many trapped states may appear, and the PEC must be assumed in each one to accelerate the escape. However, since the system evolution is a priori unknown, the PEC cannot be permanently assumed to be true. Furthermore, the different parameters of the bias function used may need drastic recalibration during this evolution. To overcome these problems, we present a general scheme to switch between HD and conventional molecular dynamics (MD) in an automatic fashion during the simulation. To decide when HD should start and finish, criteria based on the energetic properties of the system are introduced. On the other hand, a very simple bias function is proposed, leading to a straightforward on-the-fly set up of the required parameters. A way to measure the quality of the simulation is suggested. The efficiency of the present hybrid HD-MD method is tested for a two-dimensional model potential and for the coalescence process of two nanoparticles. In spite of the important complexity of the latter system (165 degrees of freedoms), some relevant mechanistic properties were recovered within the present method.

  5. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.

    PubMed

    Li, Jian; Bloch, Pavel; Xu, Jing; Sarunic, Marinko V; Shannon, Lesley

    2011-05-01

    Fourier domain optical coherence tomography (FD-OCT) provides faster line rates, better resolution, and higher sensitivity for noninvasive, in vivo biomedical imaging compared to traditional time domain OCT (TD-OCT). However, because the signal processing for FD-OCT is computationally intensive, real-time FD-OCT applications demand powerful computing platforms to deliver acceptable performance. Graphics processing units (GPUs) have been used as coprocessors to accelerate FD-OCT by leveraging their relatively simple programming model to exploit thread-level parallelism. Unfortunately, GPUs do not "share" memory with their host processors, requiring additional data transfers between the GPU and CPU. In this paper, we implement a complete FD-OCT accelerator on a consumer grade GPU/CPU platform. Our data acquisition system uses spectrometer-based detection and a dual-arm interferometer topology with numerical dispersion compensation for retinal imaging. We demonstrate that the maximum line rate is dictated by the memory transfer time and not the processing time due to the GPU platform's memory model. Finally, we discuss how the performance trends of GPU-based accelerators compare to the expected future requirements of FD-OCT data rates.

  6. Roll splitting for field processing of biomass

    Treesearch

    Dennis T. Curtin; Donald L. Sirois; John A. Sturos

    1987-01-01

    The concept of roll splitting wood originated in 1967 when the Tennessee Valley Authority (TVA) forest products specialists developed a wood fibrator. The objective of that work was to produce raw materials for reconstituted board products. More recently, TVA focused on roll splitting as a field process to accelerate drying of small trees (3-15 cm diameter), much...

  7. Ozonation of oil sands process-affected water accelerates microbial bioremediation.

    PubMed

    Martin, Jonathan W; Barri, Thaer; Han, Xiumei; Fedorak, Phillip M; El-Din, Mohamed Gamal; Perez, Leonidas; Scott, Angela C; Jiang, Jason Tiange

    2010-11-01

    Ozonation can degrade toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW), but even after extensive treatment a residual NA fraction remains. Here we hypothesized that mild ozonation would selectively oxidize the most biopersistent NA fraction, thereby accelerating subsequent NA biodegradation and toxicity removal by indigenous microbes. OSPW was ozonated to achieve approximately 50% and 75% NA degradation, and the major ozonation byproducts included oxidized NAs (i.e., hydroxy- or keto-NAs). However, oxidized NAs are already present in untreated OSPW and were shown to be formed during the microbial biodegradation of NAs. Ozonation alone did not affect OSPW toxicity, based on Microtox; however, there was a significant acceleration of toxicity removal in ozonated OSPW following inoculation with native microbes. Furthermore, all residual NAs biodegraded significantly faster in ozonated OSPW. The opposite trend was found for ozonated commercial NAs, which are known to contain no significant biopersistent fraction. Thus, we suggest that ozonation preferentially degraded the most biopersistent OSPW NA fraction, and that ozonation is complementary to the biodegradation capacity of microbial populations in OSPW. The toxicity of ozonated OSPW to higher organisms needs to be assessed, but there is promise that this technique could be applied to accelerate the bioremediation of large volumes of OSPW in Northern Alberta, Canada.

  8. The influence of sun drying process and prolonged storage on composition of essential oil from clove buds (Syzygium aromaticum)

    NASA Astrophysics Data System (ADS)

    Hastuti, L. T.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Murni, V. W.; Haib, J.

    2017-07-01

    Clove (Syzygium aromaticum) is native to Indonesia and used as a spice in virtually all of the world's cuisine. Clove bud oil, a yellow liquid, is obtained from distillation of buds. The quality of oil is influenced by origin, post-harvest processing, pre-treatment before distillation, the distillation method, and post-distillation treatment. The objective of this study is to investigate the effect of drying process and prolonged storage on essential oil composition of clove bud from the Tolitoli, Indonesia. To determine the effect of drying, fresh clove bud was dried under sunlight until it reached moisture content 13±1 %. The effect of storage was studied in the oil extracted from clove bud that was stored in laboratory at 25 °C for 4 months. The essential oil of each treatment was obtained by steam distillation and its chemical composition was analyzed by GC/MS. The major components found in fresh and dried clove are as follows: eugenol, eugenyl acetate, and caryophyllene. Percentage of caryophyllene was slightly increase after drying but decrease during storage. While the content of eugenyl acetate decreased during drying and storage, the content of eugenol increased. The drying and storage also affect to the change on minor compounds of essential oil of clove.

  9. Effect of Sol Concentration, Aging and Drying Process on Cerium Stabilization Zirconium Gel Produced by External Gelation

    NASA Astrophysics Data System (ADS)

    Sukarsono, R.; Rachmawati, M.; Susilowati, S. R.; Husnurrofiq, D.; Nurwidyaningrum, K.; Dewi, A. K.

    2018-02-01

    Cerium Stabilized Zirconium gel has been prepared using external gelation process. As the raw materials was used ZrO(NO3)2 and Ce(NO3)4 nitrate salt which was dissolved with water into Zr-Ce nitrate mixture. The concentration of the nitrate salt mixture in the sol solution was varied by varying the concentration of zirconium and cerium nitrate in the sol solution and the addition of PVA and THFA to produce a sol with a viscosity of 40-60 cP. The viscosity range of 40-60cP is the viscosity of the sol solution that was easy to produce a good gel in the gelation apparatus. Sol solution was casted in a gelation column equipped with following tools: a 1 mm diameter drip nozzle which was vibrated to adjust the best frequency and amplitude of vibration, a flow meter to measure the flow rate of sol, flowing of NH3 gas to presolidification process. Gelation column was contained NH4OH solution as gelation medium and gel container to collect gel product. Gel obtained from the gelation process than processed with ageing, washing, drying and calcinations to get round gel and not broken at calcinations up to 500°C. The parameters observed in this research are variation of Zr nitrate concentration, Ce nitrate concentration, ratio of Zr and Ce in the sol and ageing and drying process method which was appropriate to get a good gel. From the gelation processes that has been done, it can be seen that with the presolidification process can be obtained a round gel and without presolidification process, produce not round gel. In the process of ageing to get not broken gel, ageing was done on the rotary flask so that during the ageing, gels rotate in gelation media. Gels, then be washed by dilute ammonium nitrate, demireralized water and iso prophyl alcohol. The washed gel was then dried by vacuum drying to form pores on the gel which become the path for the gases resulting from decomposition of the gel to exit the gel. Vacuum drying can prevent cracking because the pores allow the gel

  10. Changes in the carotenoid metabolism of capsicum fruits during application of modelized slow drying process for paprika production.

    PubMed

    Pérez-Gálvez, Antonio; Hornero-Méndez, Dámaso; Mínguez-Mosquera, María Isabel

    2004-02-11

    A temperature profile simulating the traditional slow drying process of red pepper fruits, which is conducted in La Vera region (Spain) for paprika production, was developed. Carotenoid and ascorbic acid content, as well as moisture of fruits, were monitored during the slow drying process designed. Data obtained suggested that the evolution of carotenoid concentration, the main quality trait for paprika, directly depend on the physical conditions imposed. During the drying process, three different stages could be observed in relation to the carotenoids. The first stage corresponds to a physiological adaptation to the new imposed conditions that implied a decrease (ca. 20%) in the carotenoid content during the first 24 h. After that short period and during 5 days, a second stage was noticed, recovering the biosynthetic (carotenogenic) capability of the fruits, which denotes an accommodation of the fruits to the new environmental conditions. During the following 48 h (third stage) a sharp increase in the carotenoid content was observed. This last phenomenon seems to be related with an oxidative-thermal stress, which took place during the first stage, inducing a carotenogenesis similar to that occurring in over-ripening fruits. Results demonstrate that a fine control of the temperature and moisture content would help to positively modulate carotenogenesis and minimize catabolism, making it possible to adjust the drying process to the ripeness stage of fruits with the aim of improving carotenoid retention and therefore quality of the resulting product. In the case of ascorbic acid, data demonstrated that this compound is very sensitive to the drying process, with a decrease of about 76% during the first 24 h and remaining only at trace levels during the rest of the process. Therefore, no antioxidant role should be expected from ascorbic acid during the whole process and in the corresponding final product (paprika), despite that red pepper fruit is well-known to be rich

  11. Assessment of HER2 status in breast cancer biopsies is not affected by accelerated tissue processing.

    PubMed

    Bulte, Joris P; Halilovic, Altuna; Kalkman, Shona; van Cleef, Patricia H J; van Diest, Paul J; Strobbe, Luc J A; de Wilt, Johannes H W; Bult, Peter

    2018-03-01

    To establish whether core needle biopsy (CNB) specimens processed with an accelerated processing method with short fixation time can be used to determine accurately the human epidermal growth factor receptor 2 (HER2) status of breast cancer. A consecutive case-series from two high-volume breast clinics was created. We compared routine HER2 immunohistochemistry (IHC) assessment between accelerated processing CNB specimens and routinely processed postoperative excision specimens. Additional amplification-based testing was performed in cases with equivocal results. The formalin fixation time was less than 2 h and between 6 and 72 h, respectively. Fluorescence in-situ hybridisation and multiplex ligation-dependent probe amplification were used for amplification testing. One hundred and forty-four cases were included, 15 of which were HER2-positive on the routinely processed excision specimens. On the CNB specimens, 44 were equivocal on IHC and required an amplification-based test. Correlation between the CNB specimens and the corresponding excision specimens was high for final HER2 status, with an accuracy of 97% and a kappa of 0.85. HER2 status can be determined reliably on CNB specimens with accelerated processing time using standard clinical testing methods. Using this accelerated technology the minimum 6 h of formalin fixation, which current guidelines consider necessary, can be decreased safely. This allows for a complete and expedited histology-based diagnosis of breast lesions in the setting of a one-stop-shop, same-day breast clinic. © 2018 The Authors. Histopathology Published by John Wiley & Sons Ltd.

  12. A Dry-Etch Process for Low Temperature Superconducting Transition Edge Sensors for Far Infrared Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Allen, Christine A.; Chervenak, James A.; Hsieh, Wen-Ting; McClanahan, Richard A.; Miller, Timothy M.; Mitchell, Robert; Moseley, S. Harvey; Staguhn, Johannes; Stevenson, Thomas R.

    2003-01-01

    The next generation of ultra-low power bolometer arrays, with applications in far infrared imaging, spectroscopy and polarimetry, utilizes a superconducting bilayer as the sensing element to enable SQUID multiplexed readout. Superconducting transition edge sensors (TES s) are being produced with dual metal systems of superconductinghormal bilayers. The transition temperature (Tc) is tuned by altering the relative thickness of the superconductor with respect to the normal layer. We are currently investigating MoAu and MoCu bilayers. We have developed a dry-etching process for MoAu TES s with integrated molybdenum leads, and are working on adapting the process to MoCu. Dry etching has the advantage over wet etching in the MoAu system in that one can achieve a high degree of selectivity, greater than 10, using argon ME, or argon ion milling, for patterning gold on molybdenum. Molybdenum leads are subsequently patterned using fluorine plasma.. The dry-etch technique results in a smooth, featureless TES with sharp sidewalls, no undercutting of the Mo beneath the normal metal, and Mo leads with high critical current. The effects of individual processing parameters on the characteristics of the transition will be reported.

  13. Analysis of the moisture evaporation process during vacuum freeze-drying of koumiss and shubat

    NASA Astrophysics Data System (ADS)

    Shingisov, Azret Utebaevich; Alibekov, Ravshanbek Sultanbekovich

    2017-05-01

    The equation for the calculating of a moisture evaporation rate in the vacuum freeze-drying, wherein as a driving force instead of the generally accepted in the drying theory of Δt temperature difference, Δp pressure difference, Δc concentration difference, a difference of water activity in the product and the relative air humidity (a_{{w}} - \\varphi) is suggested. By using the proposed equation, the processes of vacuum freeze-drying of koumiss and shubat were analyzed, and it was found two drying periods: constant and falling. On the first drying period, a moisture evaporation rate of koumiss is j = 2.75 × 10-3 kg/(m2 h) and of shubat is j = 2.37 × 10-3 kg/(m2 h). On the second period, values decrease for koumiss from j = 2.65 × 10-3 kg/(m2 h) to j = 1.60 × 10-3 kg/(m2 h), and for shubat from j = 2.25 × 10-3 kg/(m2 h) to j = 1.62 × 10-3 kg/(m2 h). Specific humidity for koumiss is ueq = 0.61 kg/kg and for shubat is ueq = 0.58 kg/kg. The comparative analyze of the experimental data of the moisture evaporation rate versus the theoretical calculation shows that the approximation reliability is R2 = 0.99. Consequently, the proposed equation is useful for the analyzing a moisture evaporation rate during a vacuum freeze-drying of dairy products, including cultured milk foods.

  14. Konjac gel as pork backfat replacer in dry fermented sausages: processing and quality characteristics.

    PubMed

    Ruiz-Capillas, C; Triki, M; Herrero, A M; Rodriguez-Salas, L; Jiménez-Colmenero, F

    2012-10-01

    The effect of replacing animal fat (0%, 50% and 80% of pork backfat) by an equal proportion of konjac gel, on processing and quality characteristics of reduced and low-fat dry fermented sausage was studied. Weight loss, pH, and water activity of the sausage were affected (P<0.05) by fat reduction and processing time. Low lipid oxidation levels were observed during processing time irrespective of the dry sausage formulation. The fat content for normal-fat (NF), reduced-fat (RF) and low-fat (LF) sausages was 29.96%, 19.69% and 13.79%, respectively. This means an energy reduction of about 14.8% for RF and 24.5% for LF. As the fat content decreases there is an increase (P<0.05) in hardness and chewiness and a decrease (P<0.05) in cohesiveness. No differences were appreciated (P>0.05) in the presence of microorganisms as a result of the reformulation. The sensory panel considered that NF and RF products had acceptable sensory characteristics. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  15. Effect of Dietary Processed Sulfur Supplementation on Texture Quality, Color and Mineral Status of Dry-cured Ham

    PubMed Central

    2015-01-01

    This study was performed to investigate the chemical composition, mineral status, oxidative stability, and texture attributes of dry-cured ham from pigs fed processed sulfur (S, 1 g/kg feed), and from those fed a basal diet (CON), during the period from weaning to slaughter (174 d). Total collagen content and soluble collagen of the S group was significantly higher than that of the control group (p<0.05). The pH of the S group was significantly higher than that of the control group, whereas the S group had a lower expressible drip compared to the control group. The S group also showed the lower lightness compared to the control group (p<0.05). In regard to the mineral status, the S group had significantly lower Fe2+ and Ca2+ content than the control group (p<0.05), whereas the proteolysis index of the S group was significantly increased compared to the control group (p<0.05). The feeding of processed sulfur to pigs led to increased oxidative stability, related to lipids and pigments, in the dry-cured ham (p<0.05). Compared to the dry-cured ham from the control group, that from the S group exhibited lower springiness and gumminess; these results suggest that feeding processed sulfur to pigs can improve the quality of the texture and enhance the oxidative stability of dry-cured ham. PMID:26761895

  16. Effect of Dietary Processed Sulfur Supplementation on Texture Quality, Color and Mineral Status of Dry-cured Ham.

    PubMed

    Kim, Ji-Han; Ju, Min-Gu; Yeon, Su-Jung; Hong, Go-Eun; Park, WooJoon; Lee, Chi-Ho

    2015-01-01

    This study was performed to investigate the chemical composition, mineral status, oxidative stability, and texture attributes of dry-cured ham from pigs fed processed sulfur (S, 1 g/kg feed), and from those fed a basal diet (CON), during the period from weaning to slaughter (174 d). Total collagen content and soluble collagen of the S group was significantly higher than that of the control group (p<0.05). The pH of the S group was significantly higher than that of the control group, whereas the S group had a lower expressible drip compared to the control group. The S group also showed the lower lightness compared to the control group (p<0.05). In regard to the mineral status, the S group had significantly lower Fe(2+) and Ca(2+) content than the control group (p<0.05), whereas the proteolysis index of the S group was significantly increased compared to the control group (p<0.05). The feeding of processed sulfur to pigs led to increased oxidative stability, related to lipids and pigments, in the dry-cured ham (p<0.05). Compared to the dry-cured ham from the control group, that from the S group exhibited lower springiness and gumminess; these results suggest that feeding processed sulfur to pigs can improve the quality of the texture and enhance the oxidative stability of dry-cured ham.

  17. EVALUATION OF A TEST METHOD FOR MEASURING INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPIERS

    EPA Science Inventory

    A large chamber test method for measuring indoor air emissions from office equipment was developed, evaluated, and revised based on the initial testing of four dry-process photocopiers. Because all chambers may not necessarily produce similar results (e.g., due to differences in ...

  18. Plasma inverse transition acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ming

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood,more » and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.« less

  19. Morphology of drying blood pools

    NASA Astrophysics Data System (ADS)

    Laan, Nick; Smith, Fiona; Nicloux, Celine; Brutin, David; D-Blood project Collaboration

    2016-11-01

    Often blood pools are found on crime scenes providing information concerning the events and sequence of events that took place on the scene. However, there is a lack of knowledge concerning the drying dynamics of blood pools. This study focuses on the drying process of blood pools to determine what relevant information can be obtained for the forensic application. We recorded the drying process of blood pools with a camera and measured the weight. We found that the drying process can be separated into five different: coagulation, gelation, rim desiccation, centre desiccation, and final desiccation. Moreover, we found that the weight of the blood pool diminishes similarly and in a reproducible way for blood pools created in various conditions. In addition, we verify that the size of the blood pools is directly related to its volume and the wettability of the surface. Our study clearly shows that blood pools dry in a reproducible fashion. This preliminary work highlights the difficult task that represents blood pool analysis in forensic investigations, and how internal and external parameters influence its dynamics. We conclude that understanding the drying process dynamics would be advancement in timeline reconstitution of events. ANR funded project: D-Blood Project.

  20. Headspace Moisture Mapping and the Information That Can Be Gained about Freeze-Dried Materials and Processes.

    PubMed

    Cook, Isobel A; Ward, Kevin R

    2011-01-01

    Regulatory authorities require proof that lyophilization (freeze drying) cycles have been developed logically and demonstrate uniformity. One measure of uniformity can be consistency of residual water content throughout a batch. In primary drying, heat transfer is effected by gaseous convection and conduction as well as the degree of shelf contact and evenness of heat applied; therefore residual water can be affected by container location, degree of container/tray/shelf contact, radiative heating, packing density, product formulation, and the cycle conditions themselves. In this study we have used frequency modulation spectroscopy (FMS) to create a map of headspace moisture (HSM) for 100% of vials within a number of freeze-dried batches. Karl Fischer (KF)/HSM correlations were investigated in parallel with the moisture mapping studies. A clear, linear relationship was observed between HSM and KF values for vials containing freeze-dried sucrose, implying a relatively straightforward interaction between water and the lyophilized cake for this material. Mannitol demonstrated a more complex correlation, with the interaction of different crystalline forms giving important information on the uniformity of the material produced. It was observed that annealing had a significant impact on the importance of heat transfer by conduction for vials in direct and non-direct contact with the shelf. Moisture mapping of all vials within the freeze dryer enabled further information to be obtained on the relationship of the formulation, process conditions, and equipment geometry on the intra-batch variability in HSM level. The ability of FMS to allow 100% inspection could mean that this method could play an important part in process validation and quality assurance. Lyophilization, also known as freeze drying, is a relatively old technique that has been used in its most basic form for thousands of years (e.g., preservation of fish and meat products). In its more advanced form it is

  1. Evaluating energy efficient strategies and product quality for distillers' dried grains with solubles (DDGS) in dry-grind ethanol plants

    NASA Astrophysics Data System (ADS)

    Lan, Tian

    The drying of distillers dried grains with solubles (DDGS), a coproduct of dry-grind corn processing to ethanol utilizes about 30% of the total energy required for the production of a liter of fuel ethanol. Therefore, improving DDGS drying energy efficiency could have significant impact on the economics of the dry-grind corn-to-ethanol process. Drying process improvements must take account into the effects of various drying strategies on the final quality of DDGS which is primarily utilized as a feed ingredient. Previous studies in the literature have shown that physical and chemical properties of DDGS vary according to the ratio of the two primarily feed streams, wet distillers grains (WDG) and condensed distillers solubles (CDS) which make up DDGS. Extensive research using plant-scale and bench-scale experiments have been conducted on the effect of process variables (ratios of WDG, CDS and DDGS add-back) during drying on the physical and chemical properties of DDGS. However, these investigations did not correlate the product characteristics data to drying efficiency. Additionally, it cannot be clearly determined from the literature on DDGS drying that processes used in the industry are optimized for both product quality and energy efficiency. A bench-scale rotary drum dryer heated by an electrically powered heat gun was used to investigate the effects of WDG, CDS and add-back ratios on both energy efficiency, drying performance and DDGS physical and chemical properties. A two stage drying process with the bench-scale rotary dryer was used to simulate the drying of DDGS using ICM (ICM, Inc., Colwich, KS) dry-grind process technology for DDGS drying which uses two rotary drum dryers in series. Effects of drying process variables, CDS content (0, 10, 20 and 40% by mass) and percent DDGS add-back (0, 20, 40 and 60% by mass) on energy performance and product quality were determined. Sixteen different drying strategies based on drying process variable ratios were

  2. No Heat Spray Drying Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beetz, Charles

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. Inmore » short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.« less

  3. Influence of drying and cooking process on the phytochemical content, antioxidant and hypoglycaemic properties of two bell Capsicum annum L. cultivars.

    PubMed

    Loizzo, Monica Rosa; Pugliese, Alessandro; Bonesi, Marco; De Luca, Damiano; O'Brien, Nora; Menichini, Francesco; Tundis, Rosa

    2013-03-01

    The present study evaluates the influence of drying and cooking processes on the health properties of two bell Capsicum annuum L. cultivars Roggiano and Senise compared with fresh peppers. The content of phytochemicals decreased in the order fresh>dried>dried frying processes. HPLC analysis was applied to quantify five flavonoids from peppers. Apigenin was identified as main constituent. Its content was affected by drying and dried frying processes. The antioxidant activity was evaluated by DPPH, ABTS, β-carotene bleaching test and Fe-chelating activity assay. A comparable radical scavenging activity was observed for both cultivars. Interestingly, frying process did not influenced this property. Roggiano peppers exhibited the highest antioxidant activity using β-carotene bleaching test with IC(50) values of 38.1 and 24.9 μg/mL for total extract and n-hexane fraction, respectively. GC-MS analysis of lipophilic fraction revealed the presence of fatty acids and vitamin E as major components. In the inhibition of the carbohydrate-hydrolyzing enzymes fresh Senise peppers exerted the strongest activity against α-amylase with an IC(50) value of 55.3 μg/mL. Our results indicate that C. annuum cultivars Roggiano and Senise have an interestingly potential health benefits not influenced by processes that are used before consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Michael R.

    2006-11-16

    Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

  5. Evaluation of the impact of food matrix change on the in vitro bioaccessibility of carotenoids in pumpkin (Cucurbita moschata) slices during two drying processes.

    PubMed

    Zhang, Zhongyuan; Wang, Xiaoyan; Li, Yixiang; Wei, Qiuyu; Liu, Chunju; Nie, Meimei; Li, Dajing; Xiao, Yadong; Liu, Chunquan; Xu, Lang; Zhang, Min; Jiang, Ning

    2017-12-13

    The food matrix is a limiting factor in determining the bioaccessibility of carotenoids. The impact of food matrix change on the bioaccessibility of carotenoids during drying processes is still unknown. The effect of intermittent microwave vacuum-assisted drying (IMVD) and hot air drying (HAD) on the in vitro liberation and micellization of carotenoids in pumpkin slices was studied. This variable depended on the changes of the matrix driven by the drying process. Different changes in the cell morphology and carotenoid distribution of pumpkin slices during the two processing methods were observed. For IMVD, cell wall degradation and complete chromoplast organelle disruption contributed to the improvement in the liberation and micellization of carotenoids. In the HAD-dried sample, large pigment aggregates hindered the liberation of carotenoids. The carotenoid level in the micellar fraction appeared to be lower than that in the aqueous supernatant during the two processes, suggesting that the new obstacles formed during processing and/or digestion hindered the incorporation of carotenoids in mixed micelles.

  6. The secondary drying and the fate of organic solvents for spray dried dispersion drug product.

    PubMed

    Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark

    2015-05-01

    To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.

  7. 77 FR 21991 - Federal Housing Administration (FHA): Multifamily Accelerated Processing (MAP)-Lender and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... Administration (FHA): Multifamily Accelerated Processing (MAP)--Lender and Underwriter Eligibility Criteria and....gov . FOR FURTHER INFORMATION CONTACT: Terry W. Clark, Office of Multifamily Development, Office of... qualifications could underwrite loans involving more complex multifamily housing programs and transactions. II...

  8. The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes.

    PubMed

    Gabbott, Ian P; Al Husban, Farhan; Reynolds, Gavin K

    2016-09-01

    A pharmaceutical compound was used to study the effect of batch wet granulation process parameters in combination with the residual moisture content remaining after drying on granule and tablet quality attributes. The effect of three batch wet granulation process parameters was evaluated using a multivariate experimental design, with a novel constrained design space. Batches were characterised for moisture content, granule density, crushing strength, porosity, disintegration time and dissolution. Mechanisms of the effect of the process parameters on the granule and tablet quality attributes are proposed. Water quantity added during granulation showed a significant effect on granule density and tablet dissolution rate. Mixing time showed a significant effect on tablet crushing strength, and mixing speed showed a significant effect on the distribution of tablet crushing strengths obtained. The residual moisture content remaining after granule drying showed a significant effect on tablet crushing strength. The effect of moisture on tablet tensile strength has been reported before, but not in combination with granulation parameters and granule properties, and the impact on tablet dissolution was not assessed. Correlations between the energy input during granulation, the density of granules produced, and the quality attributes of the final tablets were also identified. Understanding the impact of the granulation and drying process parameters on granule and tablet properties provides a basis for process optimisation and scaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Antioxidant enzyme activities are affected by salt content and temperature and influence muscle lipid oxidation during dry-salted bacon processing.

    PubMed

    Jin, Guofeng; He, Lichao; Yu, Xiang; Zhang, Jianhao; Ma, Meihu

    2013-12-01

    Fresh pork bacon belly was used as material and manufactured into dry-salted bacon through salting and drying-ripening. During processing both oxidative stability and antioxidant enzyme stability were evaluated by assessing peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and activities of catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and their correlations were also analysed. The results showed that all antioxidant enzyme activities decreased (p<0.05) until the end of process; GSH-Px was the most unstable one followed by catalase. Antioxidant enzyme activities were negatively correlated with TBARS (p<0.05), but the correlations were decreased with increasing process temperature. Salt showed inhibitory effect on all antioxidant enzyme activities and was concentration dependent. These results indicated that when process temperature and salt content were low at the same time during dry-salted bacon processing, antioxidant enzymes could effectively control lipid oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves.

    PubMed

    Figiel, Adam; Michalska, Anna

    2016-12-30

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  11. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves

    PubMed Central

    Figiel, Adam; Michalska, Anna

    2016-01-01

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying. PMID:28042845

  12. Continuous and scalable fabrication of bioinspired dry adhesives via a roll-to-roll process with modulated ultraviolet-curable resin.

    PubMed

    Yi, Hoon; Hwang, Insol; Lee, Jeong Hyeon; Lee, Dael; Lim, Haneol; Tahk, Dongha; Sung, Minho; Bae, Won-Gyu; Choi, Se-Jin; Kwak, Moon Kyu; Jeong, Hoon Eui

    2014-08-27

    A simple yet scalable strategy for fabricating dry adhesives with mushroom-shaped micropillars is achieved by a combination of the roll-to-roll process and modulated UV-curable elastic poly(urethane acrylate) (e-PUA) resin. The e-PUA combines the major benefits of commercial PUA and poly(dimethylsiloxane) (PDMS). It not only can be cured within a few seconds like commercial PUA but also possesses good mechanical properties comparable to those of PDMS. A roll-type fabrication system equipped with a rollable mold and a UV exposure unit is also developed for the continuous process. By integrating the roll-to-roll process with the e-PUA, dry adhesives with spatulate tips in the form of a thin flexible film can be generated in a highly continuous and scalable manner. The fabricated dry adhesives with mushroom-shaped microstructures exhibit a strong pull-off strength of up to ∼38.7 N cm(-2) on the glass surface as well as high durability without any noticeable degradation. Furthermore, an automated substrate transportation system equipped with the dry adhesives can transport a 300 mm Si wafer over 10,000 repeating cycles with high accuracy.

  13. Yeast diversity and dynamics in the production processes of Norwegian dry-cured meat products.

    PubMed

    Asefa, Dereje T; Møretrø, Trond; Gjerde, Ragnhild O; Langsrud, Solveig; Kure, Cathrine F; Sidhu, Maan S; Nesbakken, Truls; Skaar, Ida

    2009-07-31

    This study investigate the diversity and dynamics of yeasts in the production processes of one unsmoked and two smoked dry-cured meat products of a Norwegian dry-cured meat production facility. A longitudinal observational study was performed to collect 642 samples from the meat, production materials, room installations and indoor and outdoor air of the production facility. Nutrient rich agar media were used to isolate the yeasts. Morphologically different isolates were re-cultivated in their pure culture forms. Both classical and molecular methods were employed for species identification. Totally, 401 yeast isolates belonging to 10 species of the following six genera were identified: Debaryomyces, Candida, Rhodotorula, Rhodosporidium, Cryptococcus and Sporidiobolus. Debaryomyces hansenii and Candida zeylanoides were dominant and contributed by 63.0% and 26.4% respectively to the total isolates recovered from both smoked and unsmoked products. The yeast diversity was higher at the pre-salting production processes with C. zeylanoides being the dominant. Later at the post-salting stages, D. hansenii occurred frequently. Laboratory studies showed that D. hansenii was more tolerant to sodium chloride and nitrite than C. zeylanoides. Smoking seems to have a killing or a temporary growth inhibiting effect on yeasts that extend to the start of the drying process. Yeasts were isolated only from 31.1% of the environmental samples. They belonged to six different species of which five of them were isolated from the meat samples too. Debaryomyces hansenii and Rhodotorula glutinis were dominant with a 62.6% and 22.0% contribution respectively. As none of the air samples contained D. hansenii, the production materials and room installations used in the production processes were believed to be the sources of contamination. The dominance of D. hansenii late in the production process replacing C. zeylanoides should be considered as a positive change both for the quality and safety

  14. Graphics Processing Unit-Accelerated Nonrigid Registration of MR Images to CT Images During CT-Guided Percutaneous Liver Tumor Ablations.

    PubMed

    Tokuda, Junichi; Plishker, William; Torabi, Meysam; Olubiyi, Olutayo I; Zaki, George; Tatli, Servet; Silverman, Stuart G; Shekher, Raj; Hata, Nobuhiko

    2015-06-01

    Accuracy and speed are essential for the intraprocedural nonrigid magnetic resonance (MR) to computed tomography (CT) image registration in the assessment of tumor margins during CT-guided liver tumor ablations. Although both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique on the basis of volume subdivision with hardware acceleration using a graphics processing unit (GPU). We compared the registration accuracy and processing time of GPU-accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid B-spline registration technique. Fourteen image data sets of preprocedural MR and intraprocedural CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images was registered using the GPU-accelerated volume subdivision technique and the B-spline technique. Manual contouring of ROI was used only for the B-spline technique. Registration accuracies (Dice similarity coefficient [DSC] and 95% Hausdorff distance [HD]) and total processing time including contouring of ROIs and computation were compared using a paired Student t test. Accuracies of the GPU-accelerated registrations and B-spline registrations, respectively, were 88.3 ± 3.7% versus 89.3 ± 4.9% (P = .41) for DSC and 13.1 ± 5.2 versus 11.4 ± 6.3 mm (P = .15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration techniques was 88 ± 14 versus 557 ± 116 seconds (P < .000000002), respectively; there was no significant difference in computation time despite the difference in the complexity of the algorithms (P = .71). The GPU-accelerated volume subdivision technique was as accurate as the B-spline technique and required significantly less processing time. The GPU-accelerated

  15. Analyzing collision processes with the smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2014-02-01

    It has been illustrated several times how the built-in acceleration sensors of smartphones can be used gainfully for quantitative experiments in school and university settings (see the overview in Ref. 1). The physical issues in that case are manifold and apply, for example, to free fall,2 radial acceleration,3 several pendula, or the exploitation of everyday contexts.6 This paper supplements these applications and presents an experiment to study elastic and inelastic collisions. In addition to the masses of the two impact partners, their velocities before and after the collision are of importance, and these velocities can be determined by numerical integration of the measured acceleration profile.

  16. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.

    PubMed

    Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis; Larsen, Niels Bent; Hinrichs, Wouter Leonardus Joseph; Andersen, Peter; Rantanen, Jukka; Nielsen, Hanne Mørck; Yang, Mingshi; Foged, Camilla

    2013-05-10

    Dry powder vaccine formulations are highly attractive due to improved storage stability and the possibility for particle engineering, as compared to liquid formulations. However, a prerequisite for formulating vaccines into dry formulations is that their physicochemical and adjuvant properties remain unchanged upon rehydration. Thus, we have identified and optimized the parameters of importance for the design of a spray dried powder formulation of the cationic liposomal adjuvant formulation 01 (CAF01) composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) via spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol. Trehalose and lactose were in the glassy state upon co-spray drying with the liposomes, whereas mannitol appeared crystalline, suggesting that the ability of the stabilizer to form a glassy matrix around the liposomes is one of the prerequisites for stabilization. Systematic studies on the effect of process parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome formulations. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Carotenoid Stability during Dry Milling, Storage, and Extrusion Processing of Biofortified Maize Genotypes.

    PubMed

    Ortiz, Darwin; Ponrajan, Amudhan; Bonnet, Juan Pablo; Rocheford, Torbert; Ferruzzi, Mario G

    2018-05-09

    Translation of the breeding efforts designed to biofortify maize ( Z. mays) genotypes with higher levels of provitamin A carotenoid (pVAC) content for sub-Saharan Africa is dependent in part on the stability of carotenoids during postharvest through industrial and in-home food processing operations. The purpose of this study was to simulate production of commercial milled products by determining the impact of dry milling and extrusion processing on carotenoid stability in three higher pVAC maize genotypes (C17xDE3, Orange ISO, Hi27xCML328). Pericarp and germ removal of biofortified maize kernels resulted in ∼10% loss of total carotenoids. Separating out the maize flour fraction (<212 μm) resulted in an additional ∼15% loss of total carotenoids. Carotenoid degradation was similar across milled maize fractions. Dry-milled products of Orange ISO and Hi27xCML328 genotypes showed ∼28% pVAC loss after 90-days storage. Genotype C17xDE3, with highest levels of all- trans-β-carotene, showed a 68% pVAC loss after 90-day storage. Extrusion processing conditions were optimal at 35% extrusion moisture, producing fully cooked instant maize flours with high pVAC retention (70-93%). These results support the notion that postharvest losses in maize milled fractions may be dependent, in part, on genotype and that extrusion processing may provide an option for preserving biofortified maize products.

  18. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  19. Acceleration of integral imaging based incoherent Fourier hologram capture using graphic processing unit.

    PubMed

    Jeong, Kyeong-Min; Kim, Hee-Seung; Hong, Sung-In; Lee, Sung-Keun; Jo, Na-Young; Kim, Yong-Soo; Lim, Hong-Gi; Park, Jae-Hyeung

    2012-10-08

    Speed enhancement of integral imaging based incoherent Fourier hologram capture using a graphic processing unit is reported. Integral imaging based method enables exact hologram capture of real-existing three-dimensional objects under regular incoherent illumination. In our implementation, we apply parallel computation scheme using the graphic processing unit, accelerating the processing speed. Using enhanced speed of hologram capture, we also implement a pseudo real-time hologram capture and optical reconstruction system. The overall operation speed is measured to be 1 frame per second.

  20. Formulation and dissolution kinetics study of hydrophilic matrix tablets with tramadol hydrochloride and different co-processed dry binders.

    PubMed

    Komersová, Alena; Lochař, Václav; Myslíková, Kateřina; Mužíková, Jitka; Bartoš, Martin

    2016-12-01

    The aim of this study is to present the possibility of using of co-processed dry binders for formulation of matrix tablets with drug controlled release. Hydrophilic matrix tablets with tramadol hydrochloride, hypromellose and different co-processed dry binders were prepared by direct compression method. Hypromelloses Methocel™ K4M Premium CR or Methocel™ K100M Premium CR were used as controlled release agents and Prosolv® SMCC 90 or Disintequik™ MCC 25 were used as co-processed dry binders. Homogeneity of the tablets was evaluated using scanning electron microscopy and energy dispersive X-ray microanalysis. The release of tramadol hydrochloride from prepared formulations was studied by dissolution test method. The dissolution profiles obtained were evaluated by non-linear regression analysis, release rate constants and other kinetic parameters were determined. It was found that matrix tablets based on Prosolv® SMCC 90 and Methocel™ Premium CR cannot control the tramadol release effectively for >12h and tablets containing Disintequik™ MCC 25 and Methocel™ Premium CR >8h. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Analyzing Collision Processes with the Smartphone Acceleration Sensor

    ERIC Educational Resources Information Center

    Vogt, Patrik; Kuhn, Jochen

    2014-01-01

    It has been illustrated several times how the built-in acceleration sensors of smartphones can be used gainfully for quantitative experiments in school and university settings (see the overview in Ref. 1 ). The physical issues in that case are manifold and apply, for example, to free fall, radial acceleration, several pendula, or the exploitation…

  2. Hardware accelerator of convolution with exponential function for image processing applications

    NASA Astrophysics Data System (ADS)

    Panchenko, Ivan; Bucha, Victor

    2015-12-01

    In this paper we describe a Hardware Accelerator (HWA) for fast recursive approximation of separable convolution with exponential function. This filter can be used in many Image Processing (IP) applications, e.g. depth-dependent image blur, image enhancement and disparity estimation. We have adopted this filter RTL implementation to provide maximum throughput in constrains of required memory bandwidth and hardware resources to provide a power-efficient VLSI implementation.

  3. Transport and solubility of Hetero-disperse dry deposition particulate matter subject to urban source area rainfall-runoff processes

    NASA Astrophysics Data System (ADS)

    Ying, G.; Sansalone, J.

    2010-03-01

    SummaryWith respect to hydrologic processes, the impervious pavement interface significantly alters relationships between rainfall and runoff. Commensurate with alteration of hydrologic processes the pavement also facilitates transport and solubility of dry deposition particulate matter (PM) in runoff. This study examines dry depositional flux rates, granulometric modification by runoff transport, as well as generation of total dissolved solids (TDS), alkalinity and conductivity in source area runoff resulting from PM solubility. PM is collected from a paved source area transportation corridor (I-10) in Baton Rouge, Louisiana encompassing 17 dry deposition and 8 runoff events. The mass-based granulometric particle size distribution (PSD) is measured and modeled through a cumulative gamma function, while PM surface area distributions across the PSD follow a log-normal distribution. Dry deposition flux rates are modeled as separate first-order exponential functions of previous dry hours (PDH) for PM and suspended, settleable and sediment fractions. When trans-located from dry deposition into runoff, PSDs are modified, with a d50m decreasing from 331 to 14 μm after transport and 60 min of settling. Solubility experiments as a function of pH, contact time and particle size using source area rainfall generate constitutive models to reproduce pH, alkalinity, TDS and alkalinity for historical events. Equilibrium pH, alkalinity and TDS are strongly influenced by particle size and contact times. The constitutive leaching models are combined with measured PSDs from a series of rainfall-runoff events to demonstrate that the model results replicate alkalinity and TDS in runoff from the subject watershed. Results illustrate the granulometry of dry deposition PM, modification of PSDs along the drainage pathway, and the role of PM solubility for generation of TDS, alkalinity and conductivity in urban source area rainfall-runoff.

  4. New Ultrasonic Controller and Characterization System for Low Temperature Drying Process Intensification

    NASA Astrophysics Data System (ADS)

    Andrés, R. R.; Blanco, A.; Acosta, V. M.; Riera, E.; Martínez, I.; Pinto, A.

    Process intensification constitutes a high interesting and promising industrial area. It aims to modify conventional processes or develop new technologies in order to reduce energy needs, increase yields and improve product quality. It has been demonstrated by this research group (CSIC) that power ultrasound have a great potential in food drying processes. The effects associated with the application of power ultrasound can enhance heat and mass transfer and may constitute a way for process intensification. The objective of this work has been the design and development of a new ultrasonic system for the power characterization of piezoelectric plate-transducers, as excitation, monitoring, analysis, control and characterization of their nonlinear response. For this purpose, the system proposes a new, efficient and economic approach that separates the effect of different parameters of the process like excitation, medium and transducer parameters and variables (voltage, current, frequency, impedance, vibration velocity, acoustic pressure and temperature) by observing the electrical, mechanical, acoustical and thermal behavior, and controlling the vibrational state.

  5. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods.

    PubMed

    Hong, Shiqi; Shen, Shoucang; Tan, David Cheng Thiam; Ng, Wai Kiong; Liu, Xueming; Chia, Leonard S O; Irwan, Anastasia W; Tan, Reginald; Nowak, Steven A; Marsh, Kennan; Gokhale, Rajeev

    2016-01-01

    Encapsulation of drugs in mesoporous silica using co-spray drying process has been recently explored as potential industrial method. However, the impact of spray drying on manufacturability, physiochemical stability and bioavailability in relation to conventional drug load processes are yet to be fully investigated. Using a 2(3) factorial design, this study aims to investigate the effect of drug-loading process (co-spray drying and solvent impregnation), mesoporous silica pore size (SBA-15, 6.5 nm and MCM-41, 2.5 nm) and percentage drug load (30% w/w and 50% w/w) on material properties, crystallinity, physicochemical stability, release profiles and bioavailability of fenofibrate (FEN) loaded into mesoporous silica. From the scanning electronic microscopy (SEM) images, powder X-ray diffraction and Differential scanning calorimetry measurements, it is indicated that the co-spray drying process was able to load up to 50% (w/w) FEN in amorphous form onto the mesoporous silica as compared to the 30% (w/w) for solvent impregnation. The in vitro dissolution rate of the co-spray dried formulations was also significantly (p = 0.044) better than solvent impregnated formulations at the same drug loading. Six-month accelerated stability test at 40 °C/75 RH in open dish indicated excellent physical and chemical stability of formulations prepared by both methods. The amorphous state of FEN and the enhanced dissolution profiles were well preserved, and very low levels of degradation were detected after storage. The dog data for the three selected co-spray-dried formulations revealed multiple fold increment in FEN bioavailability compared to the reference crystalline FEN. These results validate the viability of co-spray-dried mesoporous silica formulations with high amorphous drug load as potential drug delivery systems for poorly water soluble drugs.

  6. Monitoring oil displacement processes with k-t accelerated spin echo SPI.

    PubMed

    Li, Ming; Xiao, Dan; Romero-Zerón, Laura; Balcom, Bruce J

    2016-03-01

    Magnetic resonance imaging (MRI) is a robust tool to monitor oil displacement processes in porous media. Conventional MRI measurement times can be lengthy, which hinders monitoring time-dependent displacements. Knowledge of the oil and water microscopic distribution is important because their pore scale behavior reflects the oil trapping mechanisms. The oil and water pore scale distribution is reflected in the magnetic resonance T2 signal lifetime distribution. In this work, a pure phase-encoding MRI technique, spin echo SPI (SE-SPI), was employed to monitor oil displacement during water flooding and polymer flooding. A k-t acceleration method, with low-rank matrix completion, was employed to improve the temporal resolution of the SE-SPI MRI measurements. Comparison to conventional SE-SPI T2 mapping measurements revealed that the k-t accelerated measurement was more sensitive and provided higher-quality results. It was demonstrated that the k-t acceleration decreased the average measurement time from 66.7 to 20.3 min in this work. A perfluorinated oil, containing no (1) H, and H2 O brine were employed to distinguish oil and water phases in model flooding experiments. High-quality 1D water saturation profiles were acquired from the k-t accelerated SE-SPI measurements. Spatially and temporally resolved T2 distributions were extracted from the profile data. The shift in the (1) H T2 distribution of water in the pore space to longer lifetimes during water flooding and polymer flooding is consistent with increased water content in the pore space. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters

    NASA Astrophysics Data System (ADS)

    Nadi, Fatemeh; Tzempelikos, Dimitrios

    2018-01-01

    In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.

  8. Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters

    NASA Astrophysics Data System (ADS)

    Nadi, Fatemeh; Tzempelikos, Dimitrios

    2018-07-01

    In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy ( ΔH), entropy ( ΔS) and Gibbs free energy ( ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.

  9. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  10. Tools for studying dry-cured ham processing by using computed tomography.

    PubMed

    Santos-Garcés, Eva; Muñoz, Israel; Gou, Pere; Sala, Xavier; Fulladosa, Elena

    2012-01-11

    An accurate knowledge and optimization of dry-cured ham elaboration processes could help to reduce operating costs and maximize product quality. The development of nondestructive tools to characterize chemical parameters such as salt and water contents and a(w) during processing is of special interest. In this paper, predictive models for salt content (R(2) = 0.960 and RMSECV = 0.393), water content (R(2) = 0.912 and RMSECV = 1.751), and a(w) (R(2) = 0.906 and RMSECV = 0.008), which comprise the whole elaboration process, were developed. These predictive models were used to develop analytical tools such as distribution diagrams, line profiles, and regions of interest (ROIs) from the acquired computed tomography (CT) scans. These CT analytical tools provided quantitative information on salt, water, and a(w) in terms of content but also distribution throughout the process. The information obtained was applied to two industrial case studies. The main drawback of the predictive models and CT analytical tools is the disturbance that fat produces in water content and a(w) predictions.

  11. Single droplet drying step characterization in microsphere preparation.

    PubMed

    Al Zaitone, Belal; Lamprecht, Alf

    2013-05-01

    Spray drying processes are difficult to characterize since process parameters are not directly accessible. Acoustic levitation was used to investigate microencapsulation by spray drying on one single droplet facilitating the analyses of droplet behavior upon drying. Process parameters were simulated on a poly(lactide-co-glycolide)/ethyl acetate combination for microencapsulation. The results allowed quantifying the influence of process parameters such as temperature (0-40°C), polymer concentration (5-400 mg/ml), and droplet size (0.5-1.37 μl) on the drying time and drying kinetics as well as the particle morphology. The drying of polymer solutions at temperature of 21°C and concentration of 5 mg/ml, shows that the dimensionless particle diameter (Dp/D0) approaches 0.25 and the particle needs 350 s to dry. At 400 mg/ml, Dp/D0=0.8 and the drying time increases to one order of magnitude and a hollow particle is formed. The study demonstrates the benefit of using the acoustic levitator as a lab scale method to characterize and study the microparticle formation. This method can be considered as a helpful tool to mimic the full scale spray drying process by providing identical operational parameters such as air velocity, temperature, and variable droplet sizes. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr; Badyda, Krzysztof

    2011-12-01

    The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.

  13. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel

    PubMed Central

    Naz, M. Y.; Ismail, N. I.; Sulaiman, S. A.; Shukrullah, S.

    2015-01-01

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm2 and 809 Ω.cm2, respectively. PMID:26561231

  14. Electrochemical and Dry Sand Impact Erosion Studies on Carbon Steel.

    PubMed

    Naz, M Y; Ismail, N I; Sulaiman, S A; Shukrullah, S

    2015-11-12

    This study investigated the dry and aqueous erosion of mild steel using electrochemical and dry sand impact techniques. In dry sand impact experiments, mild steel was eroded with 45 μm and 150 μm sand particles. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and micro-hardness techniques were used to elaborate the surface morphology of the eroded samples. The results revealed significant change in morphology of the eroded samples. In-depth analysis showed that although the metal erosion due to larger particles was significantly higher, the fines also notably damaged the metal surface. The surface damages were appreciably reduced with decrease in impact angle of the accelerated particles. The maximum damages were observed at an impact angle of 90°. The hardness of the samples treated with 45 μm and 150 μm sand remained in the range of 88.34 to 102.31 VHN and 87.7 to 97.55 VHN, respectively. In electrochemical experiments, a triple electrode probe was added into the metal treatment process. The linear polarization resistance (LPR) measurements were performed in slurries having 5% (by weight) of sand particles. LPR of the samples treated with 45 μm and 150 μm sand slurries was calculated about 949 Ω.cm(2) and 809 Ω.cm(2), respectively.

  15. Spray drying formulation of amorphous solid dispersions.

    PubMed

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The Com

  17. Economic analysis of fuel ethanol production from hulled barley by the EDGE (Enhanced Dry Grind Enzymatic) process

    USDA-ARS?s Scientific Manuscript database

    A cost model was developed for fuel ethanol production from barley based on the EDGE (Enhanced Dry Grind Enzymatic) process (Nghiem, et al., 2008). In this process, in addition to beta-glucanases, which is added to reduce the viscosity of the barley mash for efficient mixing, another enzyme, beta-...

  18. Drying and color characteristics of coriander foliage using convective thin-layer and microwave drying.

    PubMed

    Shaw, Mark; Meda, Venkatesh; Tabil, Lope; Opoku, Anthony

    2007-01-01

    Heat sensitive properties (aromatic, medicinal, color) provide herbs and spices with their high market value. In order to prevent extreme loss of heat sensitive properties when drying herbs, they are normally dried at low temperatures for longer periods of time to preserve these sensory properties. High energy consumption often results from drying herbs over a long period. Coriander (Coriandrum sativum L., Umbelliferae) was dehydrated in two different drying units (thin layer convection and microwave dryers) in order to compare the drying and final product quality (color) characteristics. Microwave drying of the coriander foliage was faster than convective drying. The entire drying process took place in the falling rate period for both microwave and convective dried samples. The drying rate for the microwave dried samples ranged from 42.3 to 48.2% db/min and that of the convective dried samples ranged from 7.1 to 12.5% db/min. The fresh sample color had the lowest L value at 26.83 with higher L values for all dried samples. The results show that convective thin layer dried coriander samples exhibited a significantly greater color change than microwave dried coriander samples. The color change index values for the microwave dried samples ranged from 2.67 to 3.27 and that of the convective dried samples varied from 4.59 to 6.58.

  19. Accelerated numerical processing of electronically recorded holograms with reduced speckle noise.

    PubMed

    Trujillo, Carlos; Garcia-Sucerquia, Jorge

    2013-09-01

    The numerical reconstruction of digitally recorded holograms suffers from speckle noise. An accelerated method that uses general-purpose computing in graphics processing units to reduce that noise is shown. The proposed methodology utilizes parallelized algorithms to record, reconstruct, and superimpose multiple uncorrelated holograms of a static scene. For the best tradeoff between reduction of the speckle noise and processing time, the method records, reconstructs, and superimposes six holograms of 1024 × 1024 pixels in 68 ms; for this case, the methodology reduces the speckle noise by 58% compared with that exhibited by a single hologram. The fully parallelized method running on a commodity graphics processing unit is one order of magnitude faster than the same technique implemented on a regular CPU using its multithreading capabilities. Experimental results are shown to validate the proposal.

  20. Spatial structure of the neck and acceleration processes in a micropinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgov, A. N., E-mail: alnikdolgov@mail.ru; Klyachin, N. A., E-mail: NAKlyachin@mephi.ru; Prokhorovich, D. E., E-mail: prokhorovich73@mail.ru

    2016-12-15

    It is shown that the spatial structure of the micropinch neck during the transition from magnetohydrodynamic to radiative compression and the bremsstrahlung spectrum of the discharge in the photon energy range of up to 30 keV depend on the configuration of the inner electrode of the coaxial electrode system of the micropinch discharge. Analysis of the experimental results indicates that the acceleration processes in the electron component of the micropinch plasma develop earlier than radiative compression.

  1. Drying characteristics of electro-osmosis dewatered sludge.

    PubMed

    Ma, Degang; Qian, Jingjing; Zhu, Hongmin; Zhai, Jun

    2016-12-01

    Electro-osmotic dewatering (EDW) is one of the effective deeply dewatering technologies that is suitable for treating sludge with 55-80% of moisture content. Regarding EDW as the pre-treatment process of drying or incinerating, this article investigated the drying characteristics of electro-osmosis-dewatered sludge, including shear stress test, drying curves analysis, model analysis, and energy balance calculation. After EDW pre-treatment, sludge adhesion was reduced. The sludge drying rate was higher compared to the non-pre-treated sludge, especially under high temperatures (80-120°C). In addition, it is better to place the sludge cake with cathode surface facing upward for improving the drying rate. An adjusted model based on the Logarithmic model could better describe the EDW sludge drying process. Using the energy balance calculation, EDW can save the energy consumed in the process of sludge incineration and electricity generation and enable the system to run without extra energy input.

  2. Monitoring of the secondary drying in freeze-drying of pharmaceuticals.

    PubMed

    Fissore, Davide; Pisano, Roberto; Barresi, Antonello A

    2011-02-01

    This paper is focused on the in-line monitoring of the secondary drying phase of a lyophilization process. An innovative software sensor is presented to estimate reliably the residual moisture in the product and the time required to complete secondary drying, that is, to reach the target value of the residual moisture or of the desorption rate. Such results are obtained by coupling a mathematical model of the process and the in-line measurement of the solvent desorption rate and by means of the pressure rise test or another sensors (e.g., windmills, laser sensors) that can measure the vapor flux in the drying chamber. The proposed method does not require extracting any vial during the operation or using expensive sensors to measure off-line the residual moisture. Moreover, it does not require any preliminary experiment to determine the relationship between the desorption rate and residual moisture in the product. The effectiveness of the proposed approach is demonstrated by means of experiments carried out in a pilot-scale apparatus: in this case, some vials were extracted from the drying chamber and the moisture content was measured to validate the estimations provided by the soft-sensor. Copyright © 2010 Wiley-Liss, Inc.

  3. Consumer perception of dry-cured sheep meat products: Influence of process parameters under different evoked contexts.

    PubMed

    de Andrade, Juliana Cunha; Nalério, Elen Silveira; Giongo, Citieli; de Barcellos, Marcia Dutra; Ares, Gastón; Deliza, Rosires

    2017-08-01

    The development of high-quality air-dried cured sheep meat products adapted to meet consumer demands represent an interesting option to add value to the meat of adult animals. The present study aimed to evaluate the influence of process parameters on consumer choice of two products from sheep meat under different evoked contexts, considering product concepts. A total of 375 Brazilian participants completed a choice-based conjoint task with three 2-level variables for each product: maturation time, smoking, and sodium reduction for dry-cured sheep ham, and natural antioxidant, smoking, and sodium reduction for sheep meat coppa. A between-subjects experimental design was used to evaluate the influence of consumption context on consumer choices. All the process parameters significantly influenced consumer choice. However, their relative importance was affected by evoked context. Copyright © 2017. Published by Elsevier Ltd.

  4. Physical quality characteristics of the microwave-dried breadfruit powders due to different processing conditions

    NASA Astrophysics Data System (ADS)

    Taruna, I.; Hakim, A. L.; Sutarsi

    2018-03-01

    Production of breadfruit powder has been an option to make easy its uses in various food processing. Accordingly, there is a need recently to apply advanced drying method, i.e. microwave drying, for improving quality since conventional methods produced highly variable product quality and required longer process. The present work was aimed to study the effect of microwave power and grinding time on physical quality of breadfruit powders. The experiment was done initially by drying breadfruit slices in a microwave dryer at power level of 420, 540, and 720 W and then grinding for 3, 5, and 7 min to get powdery product of less than 80 mesh. The physical quality of breadfruit powders were measured in terms of fineness modulus (FM), average particle size (D), whiteness (WI), total color difference (ΔE), water absorption (Wa), oil absorption (La), bulk density (ρb) and consistency gel (Gc). The results showed that physical quality of powders and its ranged-values included the FM (2.08-2.62), D (0.44-0.68 mm), WI (75.2-77.9), ΔE (7.4-10.5), Wa (5.5-6.2 ml/g), La (0.7-0.9 ml/g), ρb (0.62-0.70 g/cm3) and Gc (41.3-46.8 mm). The experiment revealed that variation of microwave power and grinding time affected significantly the quality of the breadfruit powders. However, microwave power was more dominant factor to affect quality of breadfruit powder in comparison to the grinding time.

  5. Immunoglobulin G particles manufacturing by spray drying process for pressurised metered dose inhaler formulations.

    PubMed

    Carli, V; Menu-Bouaouiche, L; Cardinael, P; Benissan, L; Coquerel, G

    2018-07-01

    The objective of this work is to show the feasibility of manufacturing from a spray drying process particles containing immunoglobulin G capable of being administered by inhalation via a pressurized metered dose inhaler. Spray drying were made from aqueous solutions containing IgG and two types of excipients, mannitol and trehalose, with two ratios: 25% w/w and 75%w/w. The physicochemical and aerodynamic properties of the powders obtained were characterized just after manufacturing and after 1 month of storage at 40°C/75% RH according to criteria defined as needed to satisfy an inhaled formulation with a pressurized metered dose inhaler. Maintain of the biological activity and the structure of IgG after atomization was also tested by slot blot and circular dichroism. All spray-dried powders presented a median diameter lower than 5μm. The powders atomized with trehalose showed a solid state more stable than those atomized with mannitol. All atomized powders were in the form of wrinkled particles regardless the nature and the ratios of excipients. The results showed that the aerosolisation properties were compliant with the target, independently of the excipient used at a ratio of 25% w/w IgG-excipient. Moreover, the addition of excipient during the atomization process the denaturation of IgG was limited. This study showed that the use of trehalose as excipient could satisfy the requirements of an inhaled formulation with a pressurized metered dose inhaler. Copyright © 2018 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  6. [Effect of Aeration Strategies on Emissions of Nitrogenous Gases and Methane During Sludge Bio-Drying].

    PubMed

    Qi, Lu; Wei, Yuan-song; Zhang, Jun-ya; Zhao, Chen-yang; Cai, Xing; Zhang, Yuan-li; Shao, Chun-yan; Li, Hong-mei

    2016-01-15

    The data on nitrogen gas (NH3, N2O, NO) emissions during sludge bio-drying process in China is scarce, especially NO due to its unstable chemical property. In this study, effect of two aeration modes on emissions of methane and nitrogenous gas was compared during the continuous aerated turning pile sludge bio-drying process at full scale. In these two aeration strategies, the one currently used in the plant was set as the control, and the other was set as the test in which the aeration was used for oxygen supply, pile temperature control, and moisture removal in the start-up, middle and final stages, respectively. The results showed that the aeration strategy used in the test could not only obviously accelerate the rate of sludge drying (the moisture contents of the test and the control were 36.6% and 42% on day 11) , but also had a better drying performance (the final moisture contents of the test and the control were 33.6% and 37.6%, respectively) and decreased the ammonia cumulative emission by 5%, (ammonia cumulative emission of the test and the control were 208 mg x m(-3) and 219.8 mg x m(-3), respectively). Though a lower accumulated emission (eCO2) of greenhouse gas in the test at 3.61 kg x t(-1) was observed than that of the control (3.73 kg x t(-1) dry weight) , the cumulative emission of NO in the test at 1.9 g x m(-2) was 15. 9% higher than that of the control (1.6 g x m(-2)).

  7. Accelerated laboratory weathering of acrylic lens materials

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  8. Development of automated control system for wood drying

    NASA Astrophysics Data System (ADS)

    Sereda, T. G.; Kostarev, S. N.

    2018-05-01

    The article considers the parameters of convective wood drying which allows changing the characteristics of the air that performs drying at different stages: humidity, temperature, speed and direction of air movement. Despite the prevalence of this type of drying equipment, the main drawbacks of it are: the high temperature and humidity, negatively affecting the working conditions of maintenance personnel when they enter the drying chambers. It makes the automation of wood drying process necessary. The synthesis of a finite state of a machine control of wood drying process is implemented on a programmable logic device Omron.

  9. Quality of dry-cured ham compared with quality of dry-cured shoulder.

    PubMed

    Reina, Raquel; Sánchez del Pulgar, José; Tovar, Jorge; López-Buesa, Pascual; García, Carmen

    2013-08-01

    The physicochemical and sensory properties of 30 dry-cured hams and 30 dry-cured shoulders were analyzed to determine the relationships between them. The variables used to characterize both products were: compositional parameters, instrumental texture, amino acid and fatty acid composition, and sensory profile. Despite being products from the same animal and composed mainly of fat, lean, and bone, their morphological differences determine the conditions of the processing time, which produced differences between products in most of the parameters evaluated. Dry-cured shoulders showed lower moisture content and greater instrumental hardness due to their morphology and muscular structure. Besides, these samples showed lower amino acid content according to the shorter ripening time. For the same reason, the dry-cured hams showed higher moisture content, lower instrumental hardness, and higher amino acid content. However, the differences in the muscular structure did not affect the sensory characteristics, which were more related with some compositional parameters, such as chloride, moisture, and amino acid content and with the length of the curing process. © 2013 Extremadura University.

  10. Effect of Drying Moisture Exposed Almonds on the Development of the Quality Defect Concealed Damage.

    PubMed

    Rogel-Castillo, Cristian; Luo, Kathleen; Huang, Guangwei; Mitchell, Alyson E

    2017-10-11

    Concealed damage (CD), is a term used by the nut industry to describe a brown discoloration of kernel nutmeat that becomes visible after moderate heat treatments (e.g., roasting). CD can result in consumer rejection and product loss. Postharvest exposure of almonds to moisture (e.g., rain) is a key factor in the development of CD as it promotes hydrolysis of proteins, carbohydrates, and lipids. The effect of drying moisture-exposed almonds between 45 to 95 °C, prior to roasting was evaluated as a method for controlling CD in roasted almonds. Additionally, moisture-exposed almonds dried at 55 and 75 °C were stored under accelerated shelf life conditions (45 °C/80% RH) and evaluated for headspace volatiles. Results indicate that drying temperatures below 65 °C decreases brown discoloration of nutmeat up to 40% while drying temperatures above 75 °C produce significant increases in brown discoloration and volatiles related to lipid oxidation, and nonsignificant increases in Amadori compounds. Results also demonstrate that raw almonds exposed to moisture and dried at 55 °C prior to roasting, reduce the visual sign of CD and maintain headspace volatiles profiles similar to almonds without moisture damage during accelerated storage.

  11. Lipid oxidation and fatty acid composition in salt-dried yellow croaker ( Pseudosciaena polyactis) during processing

    NASA Astrophysics Data System (ADS)

    Cai, Qiuxing; Wu, Yanyan; Li, Laihao; Wang, Yueqi; Yang, Xianqing; Zhao, Yongqiang

    2017-10-01

    Lipid oxidation in salt-dried yellow croaker ( Pseudosciaena polyactis) was evaluated during processing with commonly used analytical indices, such as the peroxide value (POV), the thiobarbituric acid reactive substances (TBARS) value, and oxidative-relative lipoxygenase (LOX) activity. Additionally, fatty acids were analyzed using gas chromatography-mass spectrometry. Both POV and TBARS increased significantly ( P < 0.05) at the rinsing stage. POV reached its peak value of 3.63 meq O2 per kg sample at the drying stage, whereas TBARS constantly increased from 0.05 to 0.20 mg MDA per kg sample. Processing of salt-dried yellow croaker had an extremely significant ( P < 0.01) effect on LOX activity. Twenty-six fatty acids were identified. Combined eicosapentaenoic acid (EPA; C20:5n3) and docosahexaenoic acid (DHA; C22:6n3) content varied between (19.20 ± 0.37) mg g-1 and (23.45 ± 1.05) mg g-1. The polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio in yellow croaker was 0.73-1.10, and the n-6/n-3 PUFA ratio was approximately 0.13-0.20. The contents of most fatty acids varied significantly ( P < 0.05) during the different processing stages, and these differences were caused by lipid oxidation. C18:0, C16:1n7, C19:0, and C22:6n3 showed clear changes in principle component one of a principle components analysis. These fatty acids are potential markers for evaluating lipid oxidation in fish muscle because there was a significant correlation between these markers and TBARS and LOX activity ( P < 0.05) with Pearson's coefficients > 0.931.

  12. Modeling a Material's Instantaneous Velocity during Acceleration Driven by a Detonation's Gas-Push Process

    NASA Astrophysics Data System (ADS)

    Backofen, Joseph E.

    2005-07-01

    This paper will describe both the scientific findings and the model developed in order to quantfy a material's instantaneous velocity versus position, time, or the expansion ratio of an explosive's gaseous products while its gas pressure is accelerating the material. The formula derived to represent this gas-push process for the 2nd stage of the BRIGS Two-Step Detonation Propulsion Model was found to fit very well the published experimental data available for twenty explosives. When the formula's two key parameters (the ratio Vinitial / Vfinal and ExpansionRatioFinal) were adjusted slightly from the average values describing closely many explosives to values representing measured data for a particular explosive, the formula's representation of that explosive's gas-push process was improved. The time derivative of the velocity formula representing acceleration and/or pressure compares favorably to Jones-Wilkins-Lee equation-of-state model calculations performed using published JWL parameters.

  13. Engineering functionality gradients by dip coating process in acceleration mode.

    PubMed

    Faustini, Marco; Ceratti, Davide R; Louis, Benjamin; Boudot, Mickael; Albouy, Pierre-Antoine; Boissière, Cédric; Grosso, David

    2014-10-08

    In this work, unique functional devices exhibiting controlled gradients of properties are fabricated by dip-coating process in acceleration mode. Through this new approach, thin films with "on-demand" thickness graded profiles at the submillimeter scale are prepared in an easy and versatile way, compatible for large-scale production. The technique is adapted to several relevant materials, including sol-gel dense and mesoporous metal oxides, block copolymers, metal-organic framework colloids, and commercial photoresists. In the first part of the Article, an investigation on the effect of the dip coating speed variation on the thickness profiles is reported together with the critical roles played by the evaporation rate and by the viscosity on the fluid draining-induced film formation. In the second part, dip-coating in acceleration mode is used to induce controlled variation of functionalities by playing on structural, chemical, or dimensional variations in nano- and microsystems. In order to demonstrate the full potentiality and versatility of the technique, original graded functional devices are made including optical interferometry mirrors with bidirectional gradients, one-dimensional photonic crystals with a stop-band gradient, graded microfluidic channels, and wetting gradient to induce droplet motion.

  14. Modeling the Secondary Drying Stage of Freeze Drying: Development and Validation of an Excel-Based Model.

    PubMed

    Sahni, Ekneet K; Pikal, Michael J

    2017-03-01

    Although several mathematical models of primary drying have been developed over the years, with significant impact on the efficiency of process design, models of secondary drying have been confined to highly complex models. The simple-to-use Excel-based model developed here is, in essence, a series of steady state calculations of heat and mass transfer in the 2 halves of the dry layer where drying time is divided into a large number of time steps, where in each time step steady state conditions prevail. Water desorption isotherm and mass transfer coefficient data are required. We use the Excel "Solver" to estimate the parameters that define the mass transfer coefficient by minimizing the deviations in water content between calculation and a calibration drying experiment. This tool allows the user to input the parameters specific to the product, process, container, and equipment. Temporal variations in average moisture contents and product temperatures are outputs and are compared with experiment. We observe good agreement between experiments and calculations, generally well within experimental error, for sucrose at various concentrations, temperatures, and ice nucleation temperatures. We conclude that this model can serve as an important process development tool for process design and manufacturing problem-solving. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Mass transfer characteristics during convective, microwave and combined microwave-convective drying of lemon slices.

    PubMed

    Sadeghi, Morteza; Mirzabeigi Kesbi, Omid; Mireei, Seyed Ahmad

    2013-02-01

    The investigation of drying kinetics and mass transfer phenomena is important for selecting optimum operating conditions, and obtaining a high quality dried product. Two analytical models, conventional solution of the diffusion equation and the Dincer and Dost model, were used to investigate mass transfer characteristics during combined microwave-convective drying of lemon slices. Air temperatures of 50, 55 and 60 °C, and specific microwave powers of 0.97 and 2.04 W g(-1) were the process variables. Kinetics curves for drying indicated one constant rate period followed by one falling rate period in convective and microwave drying methods, and only one falling rate period with the exception of a very short accelerating period at the beginning of microwave-convective treatments. Applying the conventional method, the effective moisture diffusivity varied from 2.4 × 10(-11) to 1.2 × 10(-9) m(2) s(-1). The Biot number, the moisture transfer coefficient, and the moisture diffusivity, respectively in the ranges of 0.2 to 3.0 (indicating simultaneous internal and external mass transfer control), 3.7 × 10(-8) to 4.3 × 10(-6) m s(-1), and 2.2 × 10(-10) to 4.2 × 10(-9) m(2) s(-1) were also determined using the Dincer and Dost model. The higher degree of prediction accuracy was achieved by using the Dincer and Dost model for all treatments. Therefore, this model could be applied as an effective tool for predicting mass transfer characteristics during the drying of lemon slices. Copyright © 2012 Society of Chemical Industry.

  16. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  17. Processing of surrogate nuclear fuel pellets for better dimensional control with dry bag isostatic pressing

    DOE PAGES

    Hoggan, Rita E.; Zuck, Larry D.; Cannon, W. Roger; ...

    2016-05-26

    A study of improved methods of processing fuel pellets was undertaken using ceria and zirconia/yttria/alumina as surrogates. Through proper granulation and vertical vibration (tapping) of the parts bag prior to dry bag isostatic pressing (DBIP), reproducibility of diameter profiles among multiple pellets of ceria was improved by almost an order of magnitude. Reproducibility of sintered pellets was sufficiently good to possibly avoid grinding. Deviation from the mean diameter along the length of multiple pellets, as well as, deviation from roundness, decreased after sintering. This is not generally observed with dry pressed pellets. Thus it is possible to machine to tolerancemore » before sintering if grinding is necessary.« less

  18. Advantages and Challenges of Dried Blood Spot Analysis by Mass Spectrometry Across the Total Testing Process.

    PubMed

    Zakaria, Rosita; Allen, Katrina J; Koplin, Jennifer J; Roche, Peter; Greaves, Ronda F

    2016-12-01

    Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; "blood spot" and "mass spectrometry"; while excluding "newborn"; and "neonate". In addition, databases were restricted to English language and human specific. There was no time period limit applied. As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required.

  19. On the understanding and control of the spontaneous heating of dried tannery wastewater sludge.

    PubMed

    Biasin, A; Della Zassa, M; Zerlottin, M; Refosco, D; Bertani, R; Canu, P

    2014-04-01

    We studied the spontaneous heating of dried sludge produced by treating wastewater mainly originating from tanneries. Heating up to burning has been observed in the presence of air and moisture, starting at ambient temperature. To understand and prevent the process we combined chemical and morphological analyses (ESEM) with thermal activity monitoring in insulated vessels. Selective additions of chemicals, either to amplify or depress the reactivity, have been used to investigate and identify both the chemical mechanism causing the sludge self-heating, and a prevention or a mitigation strategy. FeS additions accelerate the onset of reactivity, while S sustains it over time. On the contrary, Ca(OH)2, Na2CO3, NaHCO3, FeCl2, EDTA, NaClO can limit, up to completely preventing, the exothermic activity. All the experimental evidences show that the reactions supporting the dried sludge self-heating involve the Fe/S/O system. The total suppression of the reactivity requires amounts of additives that are industrially incompatible with waste reduction and economics. The best prevention requires reduction or removal of S and Fe from the dried solid matrix. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Hepatoprotective activity of dried- and fermented-processed virgin coconut oil.

    PubMed

    Zakaria, Z A; Rofiee, M S; Somchit, M N; Zuraini, A; Sulaiman, M R; Teh, L K; Salleh, M Z; Long, K

    2011-01-01

    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study.

  1. Hepatoprotective Activity of Dried- and Fermented-Processed Virgin Coconut Oil

    PubMed Central

    Zakaria, Z. A.; Rofiee, M. S.; Somchit, M. N.; Zuraini, A.; Sulaiman, M. R.; Teh, L. K.; Salleh, M. Z.; Long, K.

    2011-01-01

    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study. PMID:21318140

  2. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  3. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE PAGES

    Persaud, A.; Seidl, P. A.; Ji, Q.; ...

    2017-10-26

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  4. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persaud, A.; Seidl, P. A.; Ji, Q.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  5. Quality characteristic of spray-drying egg white powders.

    PubMed

    Ma, Shuang; Zhao, Songning; Zhang, Yan; Yu, Yiding; Liu, Jingbo; Xu, Menglei

    2013-10-01

    Spray drying is a useful method for developing egg process and utilization. The objective of this study was to evaluate effects on spray drying condition of egg white. The optimized conditions were spraying flow 22 mL/min, feeding temperature 39.8 °C and inlet-air temperature 178.2 °C. Results of sulfydryl (SH) groups measurement indicated conformation structure have changed resulting in protein molecule occur S-S crosslinking phenomenon when heating. It led to free SH content decreased during spray drying process. There was almost no change of differential scanning calorimetry between fresh egg white and spray-drying egg white powder (EWP). For a given protein, the apparent SH reactivity is in turn influenced by the physico-chemical characteristics of the reactant. The phenomenon illustrated the thermal denaturation of these proteins was unrelated to their free SH contents. Color measurement was used to study browning level. EWP in optimized conditions revealed insignificant brown stain. Swelling capacity and scanning electron micrograph both proved well quality characteristic of spray-drying EWP. Results suggested spray drying under the optimized conditions present suitable and alternative method for egg processing industrial implementation. Egg food industrialization needs new drying method to extend shelf-life. The purpose of the study was to provide optimal process of healthy and nutritional instant spray-drying EWP and study quality characteristic of spray-drying EWP.

  6. In-situ plasma processing to increase the accelerating gradients of SRF cavities

    DOE PAGES

    Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; ...

    2015-12-31

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipactingmore » issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.« less

  7. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.

    PubMed

    Sarciaux, J M; Mansour, S; Hageman, M J; Nail, S L

    1999-12-01

    The objective of this study was to identify critical formulation and processing variables affecting aggregation of bovine IgG during freeze-drying when no lyoprotective solute is used. Parameters examined were phosphate buffer concentration and counterion (Na versus K phosphate), added salts, cooling rate, IgG concentration, residual moisture level, and presence of a surfactant. No soluble aggregates were detected in any formulation after either freezing/thawing or freeze-drying. No insoluble aggregates were detected in any formulation after freezing, but insoluble aggregate levels were always detectable after freeze-drying. The data are consistent with a mechanism of aggregate formation involving denaturation of IgG at the ice/freeze-concentrate interface which is reversible upon freeze-thawing, but becomes irreversible after freeze-drying and reconstitution. Rapid cooling (by quenching in liquid nitrogen) results in more and larger aggregates than slow cooling on the shelf of the freeze-dryer. This observation is consistent with surface area measurements and environmental electron microscopic data showing a higher surface area of freeze-dried solids after fast cooling. Annealing of rapidly cooled solutions results in significantly less aggregation in reconstituted freeze-dried solids than in nonannealed controls, with a corresponding decrease in specific surface area of the freeze-dried, annealed system. Increasing the concentration of IgG significantly improves the stability of IgG against freeze-drying-induced aggregation, which may be explained by a smaller percentage of the protein residing at the ice/freeze-concentrate interface as IgG concentration is increased. A sodium phosphate buffer system consistently results in more turbid reconstituted solids than a potassium phosphate buffer system at the same concentration, but this effect is not attributable to a pH shift during freezing. Added salts such as NaCl or KCl contribute markedly to insoluble aggregate

  8. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.

    PubMed

    Pikal, M J; Cardon, S; Bhugra, Chandan; Jameel, F; Rambhatla, S; Mascarenhas, W J; Akay, H U

    2005-01-01

    Theoretical models of the freeze-drying process are potentially useful to guide the design of a freeze-drying process as well as to obtain information not readily accessible by direct experimentation, such as moisture distribution and glass transition temperature, Tg, within a vial during processing. Previous models were either restricted to the steady state and/or to one-dimensional problems. While such models are useful, the restrictions seriously limit applications of the theory. An earlier work from these laboratories presented a nonsteady state, two-dimensional model (which becomes a three-dimensional model with an axis of symmetry) of sublimation and desorption that is quite versatile and allows the user to investigate a wide variety of heat and mass transfer problems in both primary and secondary drying. The earlier treatment focused on the mathematical details of the finite element formulation of the problem and on validation of the calculations. The objective of the current study is to provide the physical rational for the choice of boundary conditions, to validate the model by comparison of calculated results with experimental data, and to discuss several representative pharmaceutical applications. To validate the model and evaluate its utility in studying distribution of moisture and glass transition temperature in a representative product, calculations for a sucrose-based formulation were performed, and selected results were compared with experimental data. THEORETICAL MODEL: The model is based on a set of coupled differential equations resulting from constraints imposed by conservation of energy and mass, where numerical results are obtained using finite element analysis. Use of the model proceeds via a "modular software package" supported by Technalysis Inc. (Passage/ Freeze Drying). This package allows the user to define the problem by inputing shelf temperature, chamber pressure, container properties, product properties, and numerical analysis

  9. Role of Biotic and Abiotic Processes on Soil CO2 Dynamics in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Risk, D. A.; Macintyre, C. M.; Lee, C.; Cary, C.; Shanhun, F.; Almond, P. C.

    2016-12-01

    In the harsh conditions of the Antarctic Dry Valleys, microbial activity has been recorded via measurements of soil carbon dioxide (CO2) concentration and surface efflux. However, high temporal resolution studies in the Dry Valleys have also shown that abiotic solubility-driven processes can strongly influence (and perhaps even dominate) the CO2 dynamics in these low flux environments and suggests that biological activity may be lower than previously thought. In this study, we aim to improve our understanding of CO2 dynamics (biotic and abiotic) in Antarctic Dry Valley soils using long-term automated measurements of soil CO2 surface flux and soil profile concentration at several sites, often at sub-diel frequency. We hypothesize that soil CO2 variations are driven primarily by environmental factors affecting CO2 solubility in soil solution, mainly temperature, and that these processes may even overprint biologic production in representative Dry Valley soils. Monitoring of all sites revealed only one likely biotic CO2 production event, lasting three weeks during the Austral summer and reaching fluxes of 0.4 µmol/m2/s. Under more typical low flux conditions (<0.10 µmol/m2/s) we observed a cyclical daily sink/source pattern consistent with CO2 solubility cycling that would not generally have been evident with normal synoptic afternoon sampling campaigns. Subsurface CO2 monitoring and a lab-controlled Antarctic soil simulation experiment confirmed that abiotic processes are capable of dominating soil CO2 variability. Diel temperature cycles crossing the freezing boundary revealed a dual abiotic cycle of solubility cycling and gas exclusion from ice formation observed only by high temporal frequency measurements (30 min). This work demonstrates a need for a numerical model to partition the dynamic abiotic processes underlying any biotic CO2 production in order to understand potential climate-change induced increases in microbial productivity in terrestrial Antarctica.

  10. Management type affects composition and facilitative processes in altoandine dry grassland

    NASA Astrophysics Data System (ADS)

    Catorci, Andrea; Cesaretti, Sabrina; Velasquez, Jose Luis; Burrascano, Sabina; Zeballos, Horacio

    2013-10-01

    We performed our study in the Dry Puna of the southern Peruvian Andes. Through a comparative approach we aimed to assess the effects of the two management systems, low grazing pressure by wild camelids vs. high grazing pressure by domestic livestock and periodic burning. Our general hypothesis was that the traditional high disturbance regime affects the dry Puna species diversity and composition through modifications of the magnitude of plant-plant-interactions and changes of the community structure due to shifts in species dominance. In 40 plots of 10 × 10 m, the cover value of each species was recorded and the species richness, floristic diversity, and community similarity of each treatment were compared. For each disturbance regime, differences of soil features (organic matter, carbon/nitrogen ratio, and potassium content) were tested. To evaluate plant-plant interactions, 4 linear transect divided into 500 plots of 10 × 10 cm were laid out and co-occurrence analysis was performed. We found that different disturbance regimes were associated with differences in the floristic composition, and that the high disturbance condition had lower species diversity and evenness. A decrease of tall species such as Festuca orthophylla and increase of dwarf and spiny Tetraglochin cristatum shrubs was observed as well. In addition, different disturbance intensities caused differences in the functional composition of the plant communities, since species with avoidance strategies are selected by high grazing pressure. High disturbance intensity was also associated to differences of soil features and to different clumped spatial structure of the dry Puna. Our results indicate also that: positive interactions are often species-specific mainly depending on the features of nurse and beneficiary species; the importance of positive interaction is higher at low grazing pressure than at high disturbance intensity; the magnitude and direction of the herbivory-mediated facilitation

  11. Critical moisture content for microbial growth in dried food-processing residues.

    PubMed

    Rezaei, Farzaneh; Vandergheynst, Jean S

    2010-09-01

    Food-processing residues are good feedstocks for biofuel and biochemical production because they have high energy content and are abundant. Year-round biofuel and biochemical production requires proper storage to prevent microbial decomposition and thermal runaway. In this study, microbial activity of tomato pomace (TP), grape pomace (GP), fermented grape pomace (FGP) and sugar beet pulp (SBP) was monitored at nine different moisture contents. Maximum and cumulative respirations for each feedstock with respect to moisture content followed a sigmoidal relationship. The critical moisture content below which no microbial activity was detected for SBP, TP, FGP and GP was 24-31, 16-21, 23-33 and 43-46% (dry basis) respectively. A logarithmic relationship was observed (R(2) = 0.94) between critical moisture content and initial water-soluble carbohydrate (WSC) content of the processing residues. The critical moisture content below which no microbial activity was detected and the relationship between critical moisture content and initial WSC content were determined in this study for four food-processing residues. Both parameters permit evaluation of the potential for deterioration of food-processing residues during storage based on moisture content and WSC content. Copyright 2010 Society of Chemical Industry.

  12. Structural changes and rheological properties of dry abalone meat ( Haliotis diversicolor) during the process of water restoration

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Zhang, Yaqi; Xu, Jiachao; Sun, Yan; Zhao, Qingxi; Chang, Yaoguang

    2007-10-01

    Changes in tissue structure, rheological property and water content of dry abalone meat in the process of water restoration were studied. The weight and volume of dry abalone meat increased with water restoration. When observed under a light microscope, structural change in myofibrils was obvious and a distinct network was found. When water restoration time increased from 24 h to 72 h, the instantaneous modulus E 0 and viscosity η 1 increased, whereas the rupture strength and relaxation time ( τ 1) were reduced. There were no significant changes of rheological parameters ( E 0, η 1, τ 1, rupture strength) from 72 h to 96 h of water restoration. Therefore, the dry abalone meat was swollen enough at the time of 72 h. The rheological parameters were obviously influenced by the structural changes.

  13. Breakage and drying behaviour of granules in a continuous fluid bed dryer: Influence of process parameters and wet granule transfer.

    PubMed

    De Leersnyder, F; Vanhoorne, V; Bekaert, H; Vercruysse, J; Ghijs, M; Bostijn, N; Verstraeten, M; Cappuyns, P; Van Assche, I; Vander Heyden, Y; Ziemons, E; Remon, J P; Nopens, I; Vervaet, C; De Beer, T

    2018-03-30

    Although twin screw granulation has already been widely studied in recent years, only few studies addressed the subsequent continuous drying which is required after wet granulation and still suffers from a lack of detailed understanding. The latter is important for optimisation and control and, hence, a cost-effective practical implementation. Therefore, the aim of the current study is to increase understanding of the drying kinetics and the breakage and attrition phenomena during fluid bed drying after continuous twin screw granulation. Experiments were performed on a continuous manufacturing line consisting of a twin-screw granulator, a six-segmented fluid bed dryer, a mill, a lubricant blender and a tablet press. Granulation parameters were fixed in order to only examine the effect of drying parameters (filling time, drying time, air flow, drying air temperature) on the size distribution and moisture content of granules (both of the entire granulate and of size fractions). The wet granules were transferred either gravimetrically or pneumatically from the granulator exit to the fluid bed dryer. After a certain drying time, the moisture content reached an equilibrium. This drying time was found to depend on the applied airflow, drying air temperature and filling time. The moisture content of the granules decreased with an increasing drying time, airflow and drying temperature. Although smaller granules dried faster, the multimodal particle size distribution of the granules did not compromise uniform drying of the granules when the target moisture content was achieved. Extensive breakage of granules was observed during drying. Especially wet granules were prone to breakage and attrition during pneumatic transport, either in the wet transfer line or in the dry transfer line. Breakage and attrition of granules during transport and drying should be anticipated early on during process and formulation development by performing integrated experiments on the granulator

  14. Prebiotic Peptide (Amide) Bond Synthesis Accelerated by Glycerol and Bicarbonate Under Neutral to Alkaline Dry-Down Conditions

    NASA Technical Reports Server (NTRS)

    Forsythe, J. G.; Weber, A. L.

    2017-01-01

    Past studies of prebiotic peptide bond synthesis have generally been carried out in the acidic to neutral pH range [1, 2]. Here we report a new process for peptide bond (amide) synthesis in the neutral to alkaline pH range that involves simple dry-down heating of amino acids in the presence of glycerol and bicarbonate. Glycerol was included in the reaction mixture as a solvent and to provide hydroxyl groups for possible formation of ester intermediates previously implicated in peptide bond synthesis under acidic to neutral conditions [1]. Bicarbonate was added to raise the reaction pH to 8-9.

  15. On the Design of a Fuzzy Logic-Based Control System for Freeze-Drying Processes.

    PubMed

    Fissore, Davide

    2016-12-01

    This article is focused on the design of a fuzzy logic-based control system to optimize a drug freeze-drying process. The goal of the system is to keep product temperature as close as possible to the threshold value of the formulation being processed, without trespassing it, in such a way that product quality is not jeopardized and the sublimation flux is maximized. The method involves the measurement of product temperature and a set of rules that have been obtained through process simulation with the goal to obtain a unique set of rules for products with very different characteristics. Input variables are the difference between the temperature of the product and the threshold value, the difference between the temperature of the heating fluid and that of the product, and the rate of change of product temperature. The output variables are the variation of the temperature of the heating fluid and the pressure in the drying chamber. The effect of the starting value of the input variables and of the control interval has been investigated, thus resulting in the optimal configuration of the control system. Experimental investigation carried out in a pilot-scale freeze-dryer has been carried out to validate the proposed system. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Radiolytic and Thermal Processes Relevant to Dry Storage of Spent Nuclear Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marschman, Steven C.; Madey,Theodore E.; Haustein, Peter E.

    2000-06-01

    The purpose of this project is to deliver pertinent information that can be used to make rational decisions about the safety and treatment issues associated with dry storage of spent nuclear fuel materials. In particular, we will establish an understanding of: (1) water interactions with failed-fuel rods and metal-oxide materials; (2) the role of thermal processes and radiolysis (solid-state and interfacial) in the generation of potentially explosive mixtures of gaseous H2 and O2; and (3) the potential role of radiation-assisted corrosion during fuel rod storage.

  17. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  18. Improving survival and storage stability of bacteria recalcitrant to freeze-drying: a coordinated study by European culture collections.

    PubMed

    Peiren, Jindrich; Buyse, Joke; De Vos, Paul; Lang, Elke; Clermont, Dominique; Hamon, Sylviane; Bégaud, Evelyne; Bizet, Chantal; Pascual, Javier; Ruvira, María A; Macián, M Carmen; Arahal, David R

    2015-04-01

    The objective of this study is to improve the viability after freeze-drying and during storage of delicate or recalcitrant strains safeguarded at biological resource centers. To achieve this objective, a joint experimental strategy was established among the different involved partner collections of the EMbaRC project ( www.embarc.eu ). Five bacterial strains considered as recalcitrant to freeze-drying were subjected to a standardized freeze-drying protocol and to seven agreed protocol variants. Viability of these strains was determined before and after freeze-drying (within 1 week, after 6 and 12 months, and after accelerated storage) for each of the protocols. Furthermore, strains were exchanged between partners to perform experiments with different freeze-dryer-dependent parameters. Of all tested variables, choice of the lyoprotectant had the biggest impact on viability after freeze-drying and during storage. For nearly all tested strains, skim milk as lyoprotectant resulted in lowest viability after freeze-drying and storage. On the other hand, best freeze-drying and storage conditions were strain and device dependent. For Aeromonas salmonicida CECT 894(T), best survival was obtained when horse serum supplemented with trehalose was used as lyoprotectant, while Aliivibrio fischeri LMG 4414(T) should be freeze-dried in skim milk supplemented with marine broth in a 1:1 ratio. Freeze-drying Campylobacter fetus CIP 53.96(T) using skim milk supplemented with trehalose as lyoprotectant resulted in best recovery. Xanthomonas fragariae DSM 3587(T) expressed high viability after freeze-drying and storage for all tested lyoprotectants and could not be considered as recalcitrant. In contrary, Flavobacterium columnare LMG 10406(T) did not survive the freeze-drying process under all tested conditions.

  19. Uncertainty analysis as essential step in the establishment of the dynamic Design Space of primary drying during freeze-drying.

    PubMed

    Mortier, Séverine Thérèse F C; Van Bockstal, Pieter-Jan; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas

    2016-06-01

    Large molecules, such as biopharmaceuticals, are considered the key driver of growth for the pharmaceutical industry. Freeze-drying is the preferred way to stabilise these products when needed. However, it is an expensive, inefficient, time- and energy-consuming process. During freeze-drying, there are only two main process variables to be set, i.e. the shelf temperature and the chamber pressure, however preferably in a dynamic way. This manuscript focuses on the essential use of uncertainty analysis for the determination and experimental verification of the dynamic primary drying Design Space for pharmaceutical freeze-drying. Traditionally, the chamber pressure and shelf temperature are kept constant during primary drying, leading to less optimal process conditions. In this paper it is demonstrated how a mechanistic model of the primary drying step gives the opportunity to determine the optimal dynamic values for both process variables during processing, resulting in a dynamic Design Space with a well-known risk of failure. This allows running the primary drying process step as time efficient as possible, hereby guaranteeing that the temperature at the sublimation front does not exceed the collapse temperature. The Design Space is the multidimensional combination and interaction of input variables and process parameters leading to the expected product specifications with a controlled (i.e., high) probability. Therefore, inclusion of parameter uncertainty is an essential part in the definition of the Design Space, although it is often neglected. To quantitatively assess the inherent uncertainty on the parameters of the mechanistic model, an uncertainty analysis was performed to establish the borders of the dynamic Design Space, i.e. a time-varying shelf temperature and chamber pressure, associated with a specific risk of failure. A risk of failure acceptance level of 0.01%, i.e. a 'zero-failure' situation, results in an increased primary drying process time

  20. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaury, C.; Ta Phuoc, K.; Corde, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction lengthmore » to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.« less

  1. Use of a continuous twin screw granulation and drying system during formulation development and process optimization.

    PubMed

    Vercruysse, J; Peeters, E; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2015-01-01

    Since small scale is key for successful introduction of continuous techniques in the pharmaceutical industry to allow its use during formulation development and process optimization, it is essential to determine whether the product quality is similar when small quantities of materials are processed compared to the continuous processing of larger quantities. Therefore, the aim of this study was to investigate whether material processed in a single cell of the six-segmented fluid bed dryer of the ConsiGma™-25 system (a continuous twin screw granulation and drying system introduced by GEA Pharma Systems, Collette™, Wommelgem, Belgium) is predictive of granule and tablet quality during full-scale manufacturing when all drying cells are filled. Furthermore, the performance of the ConsiGma™-1 system (a mobile laboratory unit) was evaluated and compared to the ConsiGma™-25 system. A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch and sodium starch glycolate was granulated with distilled water. After drying and milling (1000 μm, 800 rpm), granules were blended with magnesium stearate and compressed using a Modul™ P tablet press (tablet weight: 430 mg, main compression force: 12 kN). Single cell experiments using the ConsiGma™-25 system and ConsiGma™-1 system were performed in triplicate. Additionally, a 1h continuous run using the ConsiGma™-25 system was executed. Process outcomes (torque, barrel wall temperature, product temperature during drying) and granule (residual moisture content, particle size distribution, bulk and tapped density, hausner ratio, friability) as well as tablet (hardness, friability, disintegration time and dissolution) quality attributes were evaluated. By performing a 1h continuous run, it was detected that a stabilization period was needed for torque and barrel wall temperature due to initial layering of the screws and the screw chamber walls with material. Consequently, slightly deviating

  2. Moisture and drug solid-state monitoring during a continuous drying process using empirical and mass balance models.

    PubMed

    Fonteyne, Margot; Gildemyn, Delphine; Peeters, Elisabeth; Mortier, Séverine Thérèse F C; Vercruysse, Jurgen; Gernaey, Krist V; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; De Beer, Thomas

    2014-08-01

    Classically, the end point detection during fluid bed drying has been performed using indirect parameters, such as the product temperature or the humidity of the outlet drying air. This paper aims at comparing those classic methods to both in-line moisture and solid-state determination by means of Process Analytical Technology (PAT) tools (Raman and NIR spectroscopy) and a mass balance approach. The six-segmented fluid bed drying system being part of a fully continuous from-powder-to-tablet production line (ConsiGma™-25) was used for this study. A theophylline:lactose:PVP (30:67.5:2.5) blend was chosen as model formulation. For the development of the NIR-based moisture determination model, 15 calibration experiments in the fluid bed dryer were performed. Six test experiments were conducted afterwards, and the product was monitored in-line with NIR and Raman spectroscopy during drying. The results (drying endpoint and residual moisture) obtained via the NIR-based moisture determination model, the classical approach by means of indirect parameters and the mass balance model were then compared. Our conclusion is that the PAT-based method is most suited for use in a production set-up. Secondly, the different size fractions of the dried granules obtained during different experiments (fines, yield and oversized granules) were compared separately, revealing differences in both solid state of theophylline and moisture content between the different granule size fractions. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Influence of pre-drying treatments on physicochemical and organoleptic properties of explosion puff dried jackfruit chips.

    PubMed

    Yi, Jianyong; Zhou, Linyan; Bi, Jinfeng; Chen, Qinqin; Liu, Xuan; Wu, Xinye

    2016-02-01

    The effects of hot air drying (AD), freeze drying (FD), infrared drying (IR), microwave drying (MV), vacuum drying (VD) as pre-drying treatments for explosion puff drying (EPD) on qualities of jackfruit chips were studied. The lowest total color differences (∆E) were found in the FD-, MV- and VD-EPD dried chips. Volume expansion effect (9.2 %) was only observed in the FD-EPD dried chips, which corresponded to its well expanded honeycomb microstructures and high rehydration rate. Compared with AD-, IR-, MV- and VD-EPD, the FD-EPD dried fruit chips exhibited lower hardness and higher crispness, indicative of a crispier texture. FD-EPD dried fruits also obtained high retentions of ascorbic acid, phenolics and carotenoids compared with that of the other puffed products. The results of sensory evaluation suggested that the FD-EPD was a more beneficial combination because it enhanced the overall qualities of jackfruit chips. In conclusion, the FD-EPD could be used as a novel combination drying method for processing valuable and/or high quality fruit chips.

  4. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  5. Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer

    NASA Astrophysics Data System (ADS)

    Coşkun, Salih; Doymaz, İbrahim; Tunçkal, Cüneyt; Erdoğan, Seçil

    2017-06-01

    In this study, tomato slices were dried at three different drying air temperatures (35, 40 and 45 °C) and at 1 m/s air velocities by using a closed loop heat pump dryer (HPD). To explain the drying characteristics of tomato slices, ten thin-layer drying models were applied. The drying of tomato slices at each temperature occurred in falling-rate period; no constant-rate period of drying was observed. The drying rate was significantly influenced by drying temperature. The effective moisture diffusivity varied between 8.28 × 10-11 and 1.41 × 10-10 m2/s, the activation energy was found to be 43.12 kJ/mol. Besides, at the end of drying process, the highest mean specific moisture extraction ratio and coefficient of performance of HPD system were obtained as 0.324 kg/kWh and 2.71, respectively, at the highest drying air temperature (45 °C).

  6. Advantages and Challenges of Dried Blood Spot Analysis by Mass Spectrometry Across the Total Testing Process

    PubMed Central

    Zakaria, Rosita; Allen, Katrina J.; Koplin, Jennifer J.; Roche, Peter

    2016-01-01

    Introduction Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. Methods To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; “blood spot” and “mass spectrometry”; while excluding “newborn”; and “neonate”. In addition, databases were restricted to English language and human specific. There was no time period limit applied. Results As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. Conclusions DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required. PMID:28149263

  7. Viscous Creep in Dry Unconsolidated Gulf of Mexico Shale

    NASA Astrophysics Data System (ADS)

    Chang, C.; Zoback, M. D.

    2002-12-01

    We conducted laboratory experiments to investigate creep characteristics of dry unconsolidated shale recovered from the pathfinder well, Gulf of Mexico (GOM). We subjected jacketed cylindrical specimens (25.4 mm diameter) to hydrostatic pressure that increased from 10 to 50 MPa in steps of 5 MPa. We kept the pressure constant in each step for at least 6 hours and measured axial and lateral strains (provided by LVDTs) and ultrasonic velocities (provided by seismic-wave transducers). The dry shale exhibited pronounced creep strain at all pressure levels, indicating that the dry frame of the shale possesses an intrinsic viscous property. Interestingly, the creep behavior of the shale is different above and below 30 MPa confining pressure. Above 30 MPa, the amount of creep strain in 6 hours is nearly constant with equal pressurization steps, indicating a linear viscous rheology. Below 30 MPa, the amount of creep increases linearly as pressure is raised in constant incremental steps, suggesting that the creep deformation accelerates as pressure increases within this pressure range. Thus, the general creep behavior of the GOM shale is characterized by a bilinear dependence on pressure magnitude. This creep characteristic is quite different from that observed in unconsolidated reservoir sands (Hagin and Zoback, 2002), which exhibited nearly constant amount of creep regardless of the pressure magnitude for equal increasing steps of pressure. The shale exhibits a lack of creep (and nearly negligible strain recovery) when unloaded, suggesting that the creep strain is irrecoverable and can be considered viscoplastic deformation. SEM observations show that the major mechanism of compaction of the dry shale appears to be packing of clay and a progressive collapse of pore (void) spaces. Creep compaction is considerably more significant than compaction that occurs instantaneously, indicating that the process of shale compaction is largely time-dependent.

  8. Acceleration of tropical cyclogenesis by self-aggregation feedbacks

    NASA Astrophysics Data System (ADS)

    Muller, Caroline J.; Romps, David M.

    2018-03-01

    Idealized simulations of tropical moist convection have revealed that clouds can spontaneously clump together in a process called self-aggregation. This results in a state where a moist cloudy region with intense deep convection is surrounded by extremely dry subsiding air devoid of deep convection. Because of the idealized settings of the simulations where it was discovered, the relevance of self-aggregation to the real world is still debated. Here, we show that self-aggregation feedbacks play a leading-order role in the spontaneous genesis of tropical cyclones in cloud-resolving simulations. Those feedbacks accelerate the cyclogenesis process by a factor of 2, and the feedbacks contributing to the cyclone formation show qualitative and quantitative agreement with the self-aggregation process. Once the cyclone is formed, wind-induced surface heat exchange (WISHE) effects dominate, although we find that self-aggregation feedbacks have a small but nonnegligible contribution to the maintenance of the mature cyclone. Our results suggest that self-aggregation, and the framework developed for its study, can help shed more light into the physical processes leading to cyclogenesis and cyclone intensification. In particular, our results point out the importance of the longwave radiative cooling outside the cyclone.

  9. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (acceleration. At least three different groups of central response dynamics were described according to the properties observed for motion along the maximum sensitivity direction. "High-pass" neurons exhibited increasing gains and phase values as a function of frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements

  10. Infrared drying of strawberry.

    PubMed

    Adak, Nafiye; Heybeli, Nursel; Ertekin, Can

    2017-03-15

    The effects of different drying conditions, such as infrared power, drying air temperature and velocity, on quality of strawberry were evaluated. Drying time decreased with increased infrared power, air temperature and velocity. An increase in power from 100W to 300W, temperature from 60 to 80°C and velocity from 1.0m.s -1 to 2.0m.s -1 decreased fruit color quality index. For total phenol and anthocyanin content, 300W, 60°C, and 1.0m.s -1 were superior to the other experimental conditions. The drying processes increased N, P and K and decreased Ca, Mg, Fe, Mn, Zn and Cu contents. The optimal conditions to preserve nutrients in infrared drying of strawberry were 200W, 100°C and 1.5m.s -1 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Novel dry-desulfurization process using Ca(OH)2/fly ash sorbent in a circulating fluidized bed.

    PubMed

    Matsushima, Norihiko; Li, Yan; Nishioka, Masateru; Sadakata, Masayoshi; Qi, Haiying; Xu, Xuchang

    2004-12-15

    A dry-desulfurization process using Ca(OH)2/fly ash sorbent and a circulating fluidized bed (CFB) was developed. Its aim was to achieve high SO2 removal efficiency without humidification and production of CaSO4 as the main byproduct. The CaSO4 produced could be used to treat alkalized soil. An 83% SO2 removal rate was demonstrated, and a byproduct with a high CaSO4 content was produced through baghouse ash. These results indicated that this process could remove SO2 in flue gas with a high efficiency under dry conditions and simultaneously produce soil amendment. It was shown that NO and NO2 enhanced the SO2 removal rate markedly and that NO2 increased the amount of CaSO4 in the final product more than NO. These results confirmed that the significant effects of NO and NO2 on the SO2 removal rate were due to chain reactions that occurred under favorable conditions. The amount of baghouse ash produced increased as the reaction progressed, indicating that discharge of unreacted Ca(OH)2 from the reactor was suppressed. Hence, unreacted Ca(OH)2 had a long residence time in the CFB, resulting in a high SO2 removal rate. It was also found that 350 degrees C is the optimum reaction temperature for dry desulfurization in the range tested (320-380 degrees C).

  12. [Conversion methods of freshwater snail tissue dry mass and ash free dry mass].

    PubMed

    Zhao, Wei-Hua; Wang, Hai-Jun; Wang, Hong-Zhu; Liu, Xue-Qin

    2009-06-01

    Mollusk biomass is usually expressed as wet mass with shell, but this expression fails to represent real biomass due to the high calcium carbonate content in shells. Tissue dry mass and ash free dry mass are relatively close to real biomass. However, the determination process of these two parameters is very complicated, and thus, it is necessary to establish simple and practical conversion methods for these two parameters. A total of six taxa of freshwater snails (Bellamya sp., Alocinma longicornis, Parafossarulus striatulus, Parafossarulus eximius, Semisulcospira cancellata, and Radix sp.) common in the Yangtze Basin were selected to explore the relations of their five shell dimension parameters, dry and wet mass with shells with their tissue dry mass and ash free dry mass. The regressions of the tissue dry mass and ash free dry mass with the five shell dimension parameters were all exponential (y = ax(b)). Among them, shell width and shell length were more precise (the average percentage error between observed and predicted value being 22.0% and 22.5%, respectively) than the other three parameters in the conversion of dry mass. Wet mass with shell could be directly converted to tissue dry mass and ash free dry mass, with an average percentage error of 21.7%. According to the essence of definition and the errors of conversion, ash free dry mass would be the optimum parameter to express snail biomass.

  13. Biodegradability of poly(butylene succinate-co-butylene adipate) (PBSA) controlled by temperature during the dried-gel process

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hana; Maeda, Tomoki; Hotta, Atsushi

    Currently there is a growing interest in biodegradable plastics that can be readily degraded into H2O and CO2. Among them, poly(butylene succinate-co-butylene adipate)(PBSA) is one of the mechanically attractive materials that can be biodegraded by surrounding water molecules and microorganisms after the disposal of the plastics. In order to expand the use of PBSA, the proper and effective control of the biodegradability of PBSA should be realized. In this work, the dried-gel process of the PBSA was carefully studied considering the temperature of the process. Three different types of dried PBSA gels were prepared at three different gel-process temperatures. From the biodegradability testing by immersing the PBSA samples in NaOH aq., it was found that the percentage of the weight loss of the PBSA was increased, indicating that the biodegradability was enhanced as the gel preparation temperature became lower. In fact, smaller spherocrystals were observed in PBSA dried at cooler temperature, studied by the scanning electron microscopy (SEM). It was therefore concluded that the microstructures of PBSA could be well controlled by changing the gel preparation temperatures for the precise control of the biodegradability of PBSA. This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI\\x9D.

  14. Explore the influence of agglomeration on electrochemical performance of an amorphous MnO2/C composite by controlling drying process

    NASA Astrophysics Data System (ADS)

    Cui, Mangwei; Kang, Litao; Shi, Mingjie; Xie, Lingli; Wang, Xiaomin; Zhao, Zhe; Yun, Shan; Liang, Wei

    2017-09-01

    Amorphous MnO2/C composite is prepared by a facile redox reaction between potassium permanganate (KMnO4) and commercial black pen ink. Afterwards, two different drying processes, air drying or freeze drying, are employed to adjust the agglomeration state of particles in samples and explore its influence on capacitive performance. Experimental results indicate that the air-dried sample demonstrates much better cycling stability than the freeze-dried one (capacity retention at 5000 cycles: 70.9 vs. 60.7%), probably because of the relatively strong agglomeration between particles in this sample. Nevertheless, strong agglomeration seems to deteriorate the specific capacitance (from 492 down to 440.5 F/g at 1 A/g) due to the decrease of porosity and specific surface area. This study suggests that agglomeration of primary particles plays an important role to balance the specific capacitance and cycling stability for electrode materials.

  15. State of polyphenols in the drying process of fruits and vegetables.

    PubMed

    McSweeney, M; Seetharaman, K

    2015-01-01

    This review presents an overview of drying technologies and its impact on the polyphenol content of vegetables and fruits. Polyphenols contribute to many health benefits and can act as antioxidants. Specifically an increased intake of polyphenols has been shown to decrease the incidence of cardiovascular disease; furthermore, it has been shown to help reduce the risk of neurodegenerative diseases in humans. Many researchers have reported on the effect of different drying techniques on the polyphenol content in fruits and vegetables. Polyphenol degradation mechanisms proposed in literature and pretreatments that potentially lead to higher retention of polyphenols during drying are also discussed.

  16. Sensory evaluation of dry-fermented sausage containing ground deodorized yellow mustard.

    PubMed

    Li, Shuliu; Aliani, Michel; Holley, Richard A

    2013-10-01

    Ground deodorized yellow mustard is used as a binder and meat protein substitute in cooked processed meat products. Recent studies have shown that it has the potential to be used in uncooked processed meat products because of its natural antimicrobial properties. In the present study, ground deodorized yellow mustard was added to uncooked dry-fermented sausage during manufacture at 1% to 4% (w/w) and analyzed for its effects on starter cultures, physico-chemical properties, and consumer acceptability. Mustard had a nondose-dependent inhibitory effect on the Staphylococcus starter culture, had no effect on water activity or instrumental texture, and tended to accelerate sausage pH reduction. At 3% and 4% mustard, consumer scores on all sensory attributes as well as overall acceptability were significantly lower. The appearance and color of 3% and 4% mustard-treated sausages were liked slightly, whereas flavor, texture, and overall acceptability scores were reduced. The control without mustard and 1% mustard-treated sausages had similar sensory properties and were the most acceptable, while 2% mustard-treated sausages were given "like moderately" and "like slightly" descriptors. Sensory results mean that at concentrations necessary for mandated regulatory control of Escherichia coli O157:H7 in dry sausages, mustard may have a negative effect on consumer acceptance. © 2013 Institute of Food Technologists®

  17. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays

    PubMed Central

    2013-01-01

    Background Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. Results We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5′-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface. Conclusions Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different

  18. Effects of four different drying methods on the carotenoid composition and antioxidant capacity of dried Gac peel.

    PubMed

    Chuyen, Hoang V; Roach, Paul D; Golding, John B; Parks, Sophie E; Nguyen, Minh H

    2017-03-01

    Gac fruit (Momordica cochinchinensis Spreng.) is a rich source of carotenoids for the manufacture of powder, oil and capsules for food, cosmetic and pharmaceutical uses. Currently, only the aril of the Gac fruit is processed and the peel, similar to the other components, is discarded, although it contains high level of carotenoids, which could be extracted for commercial use. In the present study, four different drying methods (hot-air, vacuum, heat pump and freeze drying), different temperatures and drying times were investigated for producing dried Gac peel suitable for carotenoid extraction. The drying methods and drying temperatures significantly affected the drying time, carotenoid content and antioxidant capacity of the dried Gac peel. Among the investigated drying methods, hot-air drying at 80  o C and vacuum drying at 50  o C produced dried Gac peel that exhibited the highest retention of carotenoids and the strongest antioxidant capacity. Hot-air drying at 80  o C and vacuum drying at 50  o C are recommended for the drying of Gac peel. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Enhanced dissolution of sildenafil citrate as dry foam tablets.

    PubMed

    Sawatdee, Somchai; Atipairin, Apichart; Sae Yoon, Attawadee; Srichana, Teerapol; Changsan, Narumon

    2017-01-30

    Dry foam formulation technology is alternative approach to enhance dissolution of the drug. Sildenafil citrate was suspended in sodium dodecyl sulfate solution and adding a mixture of maltodextrin and mannitol as diluent to form a paste. Sildenafil citrate paste was passed through a nozzle spray bottle to obtain smooth foam. The homogeneous foam was dried in a vacuum oven and sieved to obtain dry foam granules. The granules were mixed with croscarmellose sodium, magnesium stearate and compressed into tablet. All formulations were evaluated for their physicochemical properties and dissolution profiles. All the tested excipients were compatible with sildenafil citrate by both differential scanning calorimetry (DSC) and infrared (IR) analysis. There are no X-ray diffraction (XRD) peaks representing crystals of sildenafil citrate observed form dry foam formulations. The hardness of tablets was about 5 kg, friability test <1% with a disintegration time <5 min. The sildenafil citrate dry foam tablet had higher dissolution rate in 0.1 N HCl in comparison with commercial sildenafil citrate tablet, sildenafil citrate prepared by direct compression and wet granulation method. Sildenafil citrate dry foam tablet with the high-level composition of surfactant, water and diluent showed enhanced dissolution rate than that of the lower-level composition of these excipients. This formulation was stable under accelerated conditions for at least 6 months.

  20. Differences in fundamental and functional properties of HPMC co-processed fillers prepared by fluid-bed coating and spray drying.

    PubMed

    Dong, QianQian; Zhou, MiaoMiao; Lin, Xiao; Shen, Lan; Feng, Yi

    2018-07-01

    This study aimed to develop novel co-processed tablet fillers based on the principle of particle engineering for direct compaction and to compare the characteristics of co-processed products obtained by fluid-bed coating and co-spray drying, respectively. Water-soluble mannitol and water-insoluble calcium carbonate were selected as representative fillers for this study. Hydroxypropyl methylcellulose (HPMC), serving as a surface property modifier, was distributed on the surface of primary filler particles via the two co-processing methods. Both fundamental and functional properties of the products were comparatively investigated. The results showed that functional properties of the fillers, like flowability, compactibility, and drug-loading capacity, were effectively improved by both co-processing methods. However, fluid-bed coating showed greater advantages over co-spray drying in some aspects, which was mainly attributed to the remarkable differences in some fundamental properties of co-processed powders, like particle size, surface topology, and particle structure. For example, the more irregular surface and porous structure induced by fluid-bed coating could contribute to better compaction properties and lower lubricant sensitivity due to the increasing contact area and mechanical interlocking between particles under pressure. More effective surface distribution of HPMC during fluid-bed coating was also a contributor. In addition, such a porous agglomerate structure could also reduce the separation of drug and excipients after mixing, resulting in the improvement in drug loading capacity and tablet uniformity. In summary, fluid-bed coating appears to be more promising for co-processing than spray drying in some aspects, and co-processed excipients produced by it have a great prospect for further investigations and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The effect of dryer load on freeze drying process design.

    PubMed

    Patel, Sajal M; Jameel, Feroz; Pikal, Michael J

    2010-10-01

    Freeze-drying using a partial load is a common occurrence during the early manufacturing stages when insufficient amounts of active pharmaceutical ingredient (API) are available. In such cases, the immediate production needs are met by performing lyophilization with less than a full freeze dryer load. However, it is not obvious at what fractional load significant deviations from full load behavior begin. The objective of this research was to systematically study the effects of variation in product load on freeze drying behavior in laboratory, pilot and clinical scale freeze-dryers. Experiments were conducted with 5% mannitol (high heat and mass flux) and 5% sucrose (low heat and mass flux) at different product loads (100%, 50%, 10%, and 2%). Product temperature was measured in edge as well as center vials with thermocouples. Specific surface area (SSA) was measured by BET gas adsorption analysis and residual moisture was measured by Karl Fischer. In the lab scale freeze-dryer, the molar flux of inert gas was determined by direct flow measurement using a flowmeter and the molar flux of water vapor was determined by manometric temperature measurement (MTM) and tunable diode laser absorption spectroscopy (TDLAS) techniques. Comparative pressure measurement (capacitance manometer vs. Pirani) was used to determine primary drying time. For both 5% mannitol and 5% sucrose, primary drying time decreases and product temperature increases as the load on the shelves decreases. No systematic variation was observed in residual moisture and vapor composition as load decreased. Further, SSA data suggests that there are no significant freezing differences under different load conditions. Independent of dryer scale, among all the effects, variation in radiation heat transfer from the chamber walls to the product seems to be the dominant effect resulting in shorter primary drying time as the load on the shelf decreases (i.e., the fraction of edge vials increases).

  2. Methods to recover value-added coproducts from dry grind processing of grains into fuel ethanol.

    PubMed

    Liu, Keshun; Barrows, Frederic T

    2013-07-31

    Three methods are described to fractionate condensed distillers solubles (CDS) into several new coproducts, including a protein-mineral fraction and a glycerol fraction by a chemical method; a protein fraction, an oil fraction and a glycerol-mineral fraction by a physical method; or a protein fraction, an oil fraction, a mineral fraction, and a glycerol fraction by a physicochemical method. Processing factors (ethanol concentration and centrifuge force) were also investigated. Results show that the three methods separated CDS into different fractions, with each fraction enriched with one or more of the five components (protein, oil, ash, glycerol and other carbohydrates) and thus having different targeted end uses. Furthermore, because glycerol, a hygroscopic substance, was mostly shifted to the glycerol or glycerol-mineral fraction, the other fractions had much faster moisture reduction rates than CDS upon drying in a forced air oven at 60 °C. Thus, these methods could effectively solve the dewatering problem of CDS, allowing elimination of the current industrial practice of blending distiller wet grains with CDS for drying together and production of distiller dried grains as a standalone coproduct in addition to a few new fractions.

  3. Decomposition of PCBs in transformer oil using an electron beam accelerator

    NASA Astrophysics Data System (ADS)

    Jung, In-Ha; Lee, Myun-Joo; Mah, Yoon-Jung

    2012-07-01

    Decomposition of PCBs in commercially used transformer oil used for more than 30 years has been carried out at normal temperature and pressure without any additives using an electron beam accelerator. The experiments were carried out in two ways: batch and continuous pilot plant with 1.5 MeV of energy, a 50 mA current, and 75 kW of power in a commercial scale accelerator. The electron beam irradiation seemed to transform large molecular weight compounds into lower ones, but the impact was considered too small on the physical properties of oil. Residual concentrations of PCBs after irradiation depend on the absorption dose of the electron beam energy, but aliphatic chloride compounds were produced at higher doses of irradiation. As the results from FT-NMR, chloride ions decomposed from the PCBs are likely to react with aliphatic hydro carbon compounds rather than existing as free radical ions in the transformer oil. Since this is a dry process, treated oil can be used as cutting oil or machine oil for heavy equipment without any additional treatments.

  4. [Investigation on Spray Drying Technology of Auricularia auricular Extract].

    PubMed

    Zhou, Rong; Chen, Hui; Xie, Yuan; Chen, Peng; Wang, Luo-lin

    2015-07-01

    To investigate the feasibility of spray drying technology of Auricularia auricular extract and its optimum process. On the basis of single factor test, with the yield of dry extract and the content of polysaccharide as indexes, orthogonal test method was used to optimize the spray drying technology on the inlet air temperature, injection speed and crude drug content. Using ultraviolet spectrophotometry, thin layer chromatography(TLC) and pharmacodynamics as indicators, extracts prepared by traditional alcohol precipitation drying process and spray drying process were compared. Compared with the traditional preparation method, the extract prepared by spray drying had little differences from the polysaccharide content, TLC and the function of reducing TG and TC, and its optimum technology condition were as follows: The inlet air temperature was 180 °C, injection speed was 10 ml/min and crude drugs content was 0. 4 g/mL. Auricularia auricular extract by spray drying technology is stable and feasible with high economic benefit.

  5. Effects of drying pretreatment and particle size adjustment on the composting process of discarded flue-cured tobacco leaves.

    PubMed

    Zhao, Gui-Hong; Yu, Yan-Ling; Zhou, Xiang-Tong; Lu, Bin-Yu; Li, Zi-Mu; Feng, Yu-Jie

    2017-05-01

    The main characteristic of discarded flue-cured tobacco leaves is their high nicotine content. Aerobic composting is an effective method to decrease the nicotine level in tobacco leaves and stabilize tobacco wastes. However, high levels of nicotine in discarded flue-cured tobacco leaves complicate tobacco waste composting. This work proposes a drying pretreatment process to reduce the nicotine content in discarded flue-cured tobacco leaves and thus enhance its carbon-to-nitrogen ratio to a suitable level for composting. The effect of another pretreatment method, particle size adjustment, on composting efficiency was also tested in this work. The results indicated that the air-dried (nicotine content: 1.35%) and relatively long discarded flue-cured tobacco leaves (25 mm) had a higher composting efficiency than damp (nicotine content: 1.57%) and short discarded flue-cured tobacco leaves (15 mm). When dry/25 mm discarded flue-cured tobacco leaves mixed with tobacco stems in an 8:2 ratio was composted at a temperature above 55 °C for 9 days, the nicotine content dropped from 1.29% to 0.28%. Since the discarded flue-cured tobacco leaves was successfully composted to a fertile and harmless material, the germination index values increased to 85.2%. The drying pretreatment and particle size adjustment offered ideal physical and chemical conditions to support microbial growth and bioactivity during the composting process, resulting in efficient conversion of discarded flue-cured tobacco leaves into a high quality and mature compost.

  6. Localized analysis of paint-coat drying using dynamic speckle interferometry

    NASA Astrophysics Data System (ADS)

    Sierra-Sosa, Daniel; Tebaldi, Myrian; Grumel, Eduardo; Rabal, Hector; Elmaghraby, Adel

    2018-07-01

    The paint-coating is part of several industrial processes, including the automotive industry, architectural coatings, machinery and appliances. These paint-coatings must comply with high quality standards, for this reason evaluation techniques from paint-coatings are in constant development. One important factor from the paint-coating process is the drying, as it has influence on the quality of final results. In this work we present an assessment technique based on the optical dynamic speckle interferometry, this technique allows for the temporal activity evaluation of the paint-coating drying process, providing localized information from drying. This localized information is relevant in order to address the drying homogeneity, optimal drying, and quality control. The technique relies in the definition of a new temporal history of the speckle patterns to obtain the local activity; this information is then clustered to provide a convenient indicative of different drying process stages. The experimental results presented were validated using the gravimetric drying curves

  7. Piling-to-buckling transition in the drying process of polymer solution drop on substrate having a large contact angle.

    PubMed

    Kajiya, Tadashi; Nishitani, Eisuke; Yamaue, Tatsuya; Doi, Masao

    2006-01-01

    We studied the drying process of polymer solution drops placed on a substrate having a large contact angle with the drop. The drying process takes place in three stages. First, the droplet evaporates keeping the contact line fixed. Second, the droplet shrinks uniformly with receding contact line. Finally the contact line is pinned again, and the droplet starts to be deformed. The shape of the final polymer deposit changes from concave dot, to flat dot, and then to concave dot again with the increase of the initial polymer concentration. This shape change is caused by the gradual transition from the solute piling mechanism proposed by Deegan to the crust buckling mechanism proposed by de Gennes and Pauchard.

  8. Recent developments in drying of food products

    NASA Astrophysics Data System (ADS)

    Valarmathi, T. N.; Sekar, S.; Purushothaman, M.; Sekar, S. D.; Rama Sharath Reddy, Maddela; Reddy, Kancham Reddy Naveen Kumar

    2017-05-01

    Drying is a dehydration process to preserve agricultural products for long period usage. The most common and cheapest method is open sun drying in which the products are simply laid on ground, road, mats, roof, etc. But the open sun drying has some disadvantages like dependent on good weather, contamination by dust, birds and animals consume a considerable quantity, slow drying rate and damages due to strong winds and rain. To overcome these difficulties solar dryers are developed with closed environment for drying agricultural products effectively. To obtain good quality food with reduced energy consumption, selection of appropriate drying process and proper input parameters is essential. In recent years several researchers across the world have developed new drying systems for improving the product quality, increasing the drying rate, decreasing the energy consumption, etc. Some of the new systems are fluidized bed, vibrated fluidized bed, desiccant, microwave, vacuum, freeze, infrared, intermittent, electro hydrodynamic and hybrid dryers. In this review the most recent progress in the field of drying of agricultural food products such as new methods, new products and modeling and optimization techniques has been presented. Challenges and future directions are also highlighted. The review will be useful for new researchers entering into this ever needed and ever growing field of engineering.

  9. Design of solar thermal dryers for 24-hour food drying processes

    USDA-ARS?s Scientific Manuscript database

    Solar drying is a method that has been adopted for many years as a food preservation method. To this date, significant advancements have been made in this field with the adoption of a multitude of solar thermal dryer designs for single-layer and multi-layer drying of fruit and vegetables e.g. cabine...

  10. Electrohydrodynamic drying of carrot slices.

    PubMed

    Ding, Changjiang; Lu, Jun; Song, Zhiqing

    2015-01-01

    Carrots have one of the highest levels of carotene, and they are rich in vitamins, fiber and minerals. However, since fresh carrots wilt rapidly after harvest under inappropriate storage conditions, drying has been used to improve their shelf life and retain nutritional quality. Therefore, to further investigate the potential of this method, carrot slices were dried in an EHD system in order to study the effect of different voltages on drying rate. As measures of quality, carotene content and rehydration ratio were, respectively, compared against the conventional oven drying regime. Carotene, the main component of the dried carrot, and rehydration characteristics of the dried product can both indicate quality by physical and chemical changes during the drying process. Mathematical modeling and simulation of drying curves were also performed, using root mean square error, reduced mean square of the deviation and modeling efficiency as the primary criteria to select the equation that best accounts for the variation in the drying curves of the dried samples. Theoretically, the Page model was best suited for describing the drying rate curve of carrot slices at 10kV to 30kV. Experimentally, the drying rate of carrots was notably greater in the EHD system when compared to control, and quality, as determined by carotene content and rehydration ratio, was also improved when compared to oven drying. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the drying properties of carrots, and, as a result, it provides deeper insight into the industrial potential of the EHD drying technique.

  11. Microcapsules loaded with the probiotic Lactobacillus paracasei BGP-1 produced by co-extrusion technology using alginate/shellac as wall material: Characterization and evaluation of drying processes.

    PubMed

    Silva, Marluci P; Tulini, Fabricio L; Ribas, Marcela M; Penning, Manfred; Fávaro-Trindade, Carmen S; Poncelet, Denis

    2016-11-01

    Microcapsules containing Lactobacillus paracasei BGP-1 were produced by co-extrusion technology using alginate and alginate-shellac blend as wall materials. Sunflower oil and coconut fat were used as vehicles to incorporate BGP-1 into the microcapsules. The microcapsules were evaluated with regard the particle size, morphology, water activity and survival of probiotics after 60days of storage at room temperature. Fluidized bed and lyophilization were used to dry the microcapsules and the effect of these processes on probiotic viability was also evaluated. Next, dried microcapsules were exposed to simulated gastrointestinal fluids to verify the survival of BGP-1. Microcapsules dried by fluidized bed had spherical shape and robust structures, whereas lyophilized microcapsules had porous and fragile structures. Dried microcapsules presented a medium size of 0.71-0.86mm and a w ranging from 0.14 to 0.36, depending on the drying process. When comparing the effects of drying processes on BGP-1 viability, the fluidized bed was less aggressive than lyophilization. The alginate-shellac blend combined with coconut fat as core effectively protected the encapsulated probiotic under simulated gastrointestinal conditions. Thus, the production of microcapsules by co-extrusion followed by drying using the fluidized bed is a promising strategy for protection of probiotic cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    PubMed

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  13. Dry etching, surface passivation and capping processes for antimonide based photodetectors

    NASA Astrophysics Data System (ADS)

    Dutta, Partha; Langer, Jeffery; Bhagwat, Vinay; Juneja, Jasbir

    2005-05-01

    III-V antimonide based devices suffer from leakage currents. Surface passivation and subsequent capping of the surfaces are absolutely essential for any practical applicability of antimonide based devices. The quest for a suitable surface passivation technology is still on. In this paper, we will present some of the promising recent developments in this area based on dry etching of GaSb based homojunction photodiodes structures followed by various passivation and capping schemes. We have developed a damage-free, universal dry etching recipe based on unique ratios of Cl2/BCl3/CH4/Ar/H2 in ECR plasma. This novel dry plasma process etches all III-V compounds at different rates with minimal damage to the side walls. In GaSb based photodiodes, an order of magnitude lower leakage current, improved ideality factor and higher responsivity has been demonstrated using this recipe compared to widely used Cl2/Ar and wet chemical etch recipes. The dynamic zero bias resistance-area product of the Cl2/BCl3/CH4/Ar/H2 etched diodes (830 Ω cm2) is higher than the Cl2/Ar (300 Ω cm2) and wet etched (330 Ω cm2) diodes. Ammonium sulfide has been known to passivate surfaces of III-V compounds. In GaSb photodiodes, the leakage current density reduces by a factor of 3 upon sulfur passivation using ammonium sulfide. However, device performance degrades over a period of time in the absence of any capping or protective layer. Silicon Nitride has been used as a cap layer by various researchers. We have found that by using silicon nitride caps, the devices exhibit higher leakage than unpassivated devices probably due to plasma damage during SiNx deposition. We have experimented with various polymers for capping material. It has been observed that ammonium sulfide passivation when combined with parylene capping layer (150 Å), devices retain their improved performance for over 4 months.

  14. Physical-chemical quality of onion analyzed under drying temperature

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Arifin, U. F.; Sasongko, S. B.

    2017-03-01

    Drying is one of conventional processes to enhance shelf life of onion. However, the active compounds such as vitamin and anthocyanin (represented in red color), degraded due to the introduction of heat during the process. The objective of this research was to evaluate thiamine content as well as color in onion drying under different temperature. As an indicator, the thiamine and color was observed every 30 minutes for 2 hours. Results showed that thiamine content and color were sensitvely influenced by the temperature change. For example, at 50°C for 2 hours drying process, the thiamine degradation was 55.37 %, whereas, at 60°C with same drying time, the degradation was 74.01%. The quality degradation also increased by prolonging drying time.

  15. Accelerators for E-beam and X-ray processing

    NASA Astrophysics Data System (ADS)

    Auslender, V. L.; Bryazgin, A. A.; Faktorovich, B. L.; Gorbunov, V. A.; Kokin, E. N.; Korobeinikov, M. V.; Krainov, G. S.; Lukin, A. N.; Maximov, S. A.; Nekhaev, V. E.; Panfilov, A. D.; Radchenko, V. N.; Tkachenko, V. O.; Tuvik, A. A.; Voronin, L. A.

    2002-03-01

    During last years the demand for pasteurization and desinsection of various food products (meat, chicken, sea products, vegetables, fruits, etc.) had increased. The treatment of these products in industrial scale requires the usage of powerful electron accelerators with energy 5-10 MeV and beam power at least 50 kW or more. The report describes the ILU accelerators with energy range up to 10 MeV and beam power up to 150 kW.The different irradiation schemes in electron beam and X-ray modes for various products are described. The design of the X-ray converter and 90° beam bending system are also given.

  16. Swarm motility inhibitory and antioxidant activities of pomegranate peel processed under three drying conditions.

    PubMed

    John, K M Maria; Bhagwat, Arvind A; Luthria, Devanand L

    2017-11-15

    During processing of ready-to-eat fresh fruits, large amounts of peel and seeds are discarded as waste. Pomegranate (Punicagranatum) peels contain high amounts of bioactive compounds which inhibit migration of Salmonella on wet surfaces. The metabolic distribution of bioactives in pomegranate peel, inner membrane, and edible aril portion was investigated under three different drying conditions along with the anti-swarming activity against Citrobacter rodentium. Based on the multivariate analysis, 29 metabolites discriminated the pomegranate peel, inner membrane, and edible aril portion, as well as the three different drying methods. Punicalagins (∼38.6-50.3mg/g) were detected in higher quantities in all fractions as compared to ellagic acid (∼0.1-3.2mg/g) and punicalins (∼0-2.4mg/g). The bioactivity (antioxidant, anti-swarming) and phenolics content was significantly higher in peels than the edible aril portion. Natural anti-swarming agents from food waste may have promising potential for controlling food borne pathogens. Published by Elsevier Ltd.

  17. High Gradient Accelerator Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temkin, Richard

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less

  18. Nano spray drying for encapsulation of pharmaceuticals.

    PubMed

    Arpagaus, Cordin; Collenberg, Andreas; Rütti, David; Assadpour, Elham; Jafari, Seid Mahdi

    2018-05-17

    Many pharmaceuticals such as pills, capsules, or tablets are prepared in a dried and powdered form. In this field, spray drying plays a critical role to convert liquid pharmaceutical formulations into powders. In addition, in many cases it is necessary to encapsulate bioactive drugs into wall materials to protect them against harsh process and environmental conditions, as well as to deliver the drug to the right place and at the correct time within the body. Thus, spray drying is a common process used for encapsulation of pharmaceuticals. In view of the rapid progress of nanoencapsulation techniques in pharmaceutics, nano spray drying is used to improve drug formulation and delivery. The nano spray dryer developed in the recent years provides ultrafine powders at nanoscale and high product yields. In this paper, after explaining the concept of nano spray drying and understanding the key elements of the equipment, the influence of the process parameters on the final powders properties, like particle size, morphology, encapsulation efficiency, drug loading and release, will be discussed. Then, numerous application examples are reviewed for nano spray drying and encapsulation of various drugs in the early stages of product development along with a brief overview of the obtained results and characterization techniques. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Use of a soft sensor for the fast estimation of dried cake resistance during a freeze-drying cycle.

    PubMed

    Bosca, Serena; Barresi, Antonello A; Fissore, Davide

    2013-07-15

    This paper deals with the determination of dried cake resistance in a freeze-drying process using the Smart Soft Sensor, a process analytical technology recently proposed by the authors to monitor the primary drying stage of a freeze-drying process. This sensor uses the measurement of product temperature, a mathematical model of the process, and the Kalman filter algorithm to estimate the residual amount of ice in the vial as a function of time, as well as the coefficient of heat transfer between the shelf and the product and the resistance of the dried cake to vapor flow. It does not require expensive (additional) hardware in a freeze-dryer, provided that thermocouples are available. At first, the effect of the insertion of the thermocouple in a vial on the structure of the product is investigated by means of experimental tests, comparing both sublimation rate and cake structure in vials with and without thermocouple. This is required to assess that the temperature measured by the thermocouple is the same of the product in the non-monitored vials, at least in a non-GMP environment, or when controlled nucleation methods are used. Then, results about cake resistance obtained in an extended experimental campaign with aqueous solutions containing different excipients (sucrose, mannitol and polyvinylpyrrolidone), processed in various operating conditions, are presented, with the goal to point out the accuracy of the proposed methodology. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. [Evaluating the Significance of Odor Gas Released During the Directly Drying Process of Sludge: Based on the Multi-index Integrated Assessment Method].

    PubMed

    Ding, Wen-jie; Chen, Wen-he; Deng, Ming-jia; Luo, Hui; Li, Lin; Liu, Jun-xin

    2016-02-15

    Co-processing of sewage sludge using the cement kiln can realize sludge harmless treatment, quantity reduction, stabilization and reutilization. The moisture content should be reduced to below 30% to meet the requirement of combustion. Thermal drying is an effective way for sludge desiccation. Odors and volatile organic compounds are generated and released during the sludge drying process, which could lead to odor pollution. The main odor pollutants were selected by the multi-index integrated assessment method. The concentration, olfactory threshold, threshold limit value, smell security level and saturated vapor pressure were considered as indexes based on the related regulations in China and foreign countries. Taking the pollution potential as the evaluation target, and the risk index and odor emission intensity as evaluation indexes, the odor pollution potential rated evaluation model of the pollutants was built according to the Weber-Fechner law. The aim of the present study is to form the rating evaluation method of odor potential pollution capacity suitable for the directly drying process of sludge.

  1. [Research about effect of spray drying conditions on hygroscopicity of spray dry powder of gubi compound's water extract and its mechanism].

    PubMed

    Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei

    2014-02-01

    To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).

  2. Hibiscus sabdariffa L extract drying with different carrier agent: Drying rate evaluation and color analysis

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Utari, F. D.; Kumoro, A. C.

    2017-03-01

    The aim of this study was to investigate the effect of different carrier agents on roselle or Hibiscus sabdariffa L.extract drying. Carrier agent was used for reducing stickiness of material and avoiding agglomeration as well as improving stability. The method consisted of two steps involving roselle extraction and drying process. The liquid roselle extract was mixed with carrier agent (maltodextrin-arabic gum) in various composition. The mixture was then dried at different air temperature ranging 40 - 80°C. As a response, moisture content in the extract was observed by gravimetry every 10 minutes during90 minutes. The procedurewas repeated for the drying without carrieragent. The result showed that constant rate of drying with carrier agent was higher up to l.7 times than that of without carrier agent. Based on the color analysis,roselle extract drying with carrier agent also showed reasonable quality.

  3. Carotenoid content of the varieties Jaranda and Jariza (Capsicumannuum L.) and response during the industrial slow drying and grinding steps in paprika processing.

    PubMed

    Mínguez-Mosquera, M I; Pérez-Gálvez, A; Garrido-Fernández, J

    2000-07-01

    Fruits of the pepper varieties Jaranda and Jariza (Capsicum annuum L. ) ripen as a group, enabling a single harvesting, showed a uniform carotenoid content that is high enough (7.9 g/kg) for the production of paprika. The drying system at mild temperature showed that fruits with moisture content of 85-88% generated a dry product with carotenoid content equal to or higher than the initial one. Those high moisture levels allowed the fruits to have a longer period of metabolic activity, increasing the yellow fraction, the red fraction, or both as a function of what biosynthetic process was predominant. This fact indicates under-ripeness of the fruits in the drying step. The results obtained allow us to establish that both varieties, Jaranda and Jariza, fit the dehydration process employed, yielding a dry fruit with carotenoid concentration similar to that the initial one. During the grinding step of the dry fruit, the heat generated by the hammers of the mill caused degradation of the yellow fraction, while the red fraction is maintained. The ripeness state of the harvested fruits and the appropriateness or severity of the processing steps are indicated by the ratio of red to yellow (R/Y) and/or red to total (R/T) pigments, since fluctuations in both fractions and in total pigments are reflected in and monitored by these parameters.

  4. SU-F-T-475: An Evaluation of the Overlap Between the Acceptance Testing and Commissioning Processes for Conventional Medical Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, A; Rangaraj, D; Perez-Andujar, A

    2016-06-15

    Purpose: This work’s objective is to determine the overlap of processes, in terms of sub-processes and time, between acceptance testing and commissioning of a conventional medical linear accelerator and to evaluate the time saved by consolidating the two processes. Method: A process map for acceptance testing for medical linear accelerators was created from vendor documentation (Varian and Elekta). Using AAPM TG-106 and inhouse commissioning procedures, a process map was created for commissioning of said accelerators. The time to complete each sub-process in each process map was evaluated. Redundancies in the processes were found and the time spent on each weremore » calculated. Results: Mechanical testing significantly overlaps between the two processes - redundant work here amounts to 9.5 hours. Many beam non-scanning dosimetry tests overlap resulting in another 6 hours of overlap. Beam scanning overlaps somewhat - acceptance tests include evaluating PDDs and multiple profiles but for only one field size while commissioning beam scanning includes multiple field sizes and depths of profiles. This overlap results in another 6 hours of rework. Absolute dosimetry, field outputs, and end to end tests are not done at all in acceptance testing. Finally, all imaging tests done in acceptance are repeated in commissioning, resulting in about 8 hours of rework. The total time overlap between the two processes is about 30 hours. Conclusion: The process mapping done in this study shows that there are no tests done in acceptance testing that are not also recommended to do for commissioning. This results in about 30 hours of redundant work when preparing a conventional linear accelerator for clinical use. Considering these findings in the context of the 5000 linacs in the United states, consolidating acceptance testing and commissioning would have allowed for the treatment of an additional 25000 patients using no additional resources.« less

  5. Temperature and relative humidity estimation and prediction in the tobacco drying process using Artificial Neural Networks.

    PubMed

    Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M; Aguiar, Javier M; Carro, Belén

    2012-10-17

    This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.

  6. Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks

    PubMed Central

    Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M.; Aguiar, Javier M.; Carro, Belén

    2012-01-01

    This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed. PMID:23202032

  7. Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying.

    PubMed

    Pei, Fei; Shi, Ying; Gao, Xingyang; Wu, Fangning; Mariga, Alfred Mugambi; Yang, Wenjian; Zhao, Liyan; An, Xinxin; Xin, Zhihong; Yang, Fangmei; Hu, Qiuhui

    2014-12-15

    Button mushroom slices were dehydrated using freeze drying (FD) or FD combined with microwave vacuum drying (FMVD), and the non-volatile component profiles were studied. The results showed that the level of non-volatile components in button mushroom firstly increased during sublimation of FD/FMVD process and then fell during desorption in FD process and MVD in FMVD process. Compared to FD products, the contents of soluble sugars and polyols in FMVD products were relatively low, whereas the contents of total free amino acids were significantly higher, close to the level of fresh mushroom. However, there was no significant difference in the contents of 5'-nucleotides and organic acids between FD and FMVD products. The equivalent umami concentration (EUC) values for FD and FMVD products did not differ from fresh, indicating that both drying methods could effectively preserve MSG (monosodium glutamate)-like components in button mushroom. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Optimisation of spray-drying process variables for dry powder inhalation (DPI) formulations of corticosteroid/cyclodextrin inclusion complexes.

    PubMed

    Cabral-Marques, Helena; Almeida, Rita

    2009-09-01

    This study aims to develop and characterise a beclomethasone diproprionate:gamma-cyclodextrin (BDP:gamma-CYD) complex and to optimise the variables on the spray-drying process, in order to obtain a powder with the most suitable characteristics for lung delivery. The spray-dried powder--in a mass ratio of 2:5 (BDP:gamma-CYD)--was physically mixed with three carriers of different particle sizes and in different ratios. Particle-size distribution, shape and morphology, moisture content, and uniformity in BDP content of formulations were studied. In vitro aerolisation behaviour of the formulations was evaluated using the Rotahaler, and the performance was characterised based on the uniformity of emitted dose and aerodynamic particle-size distribution (respirable fraction (RF), as a percentage of nominal dose (RFN) and emitted dose (RFE)). The most suitable conditions for the preparation of BDP:gamma-CYD complexes were obtained with the solution flow of 5 ml/min, T(in) of 70 degrees C and T(out) of 50 degrees C. Statistically significant differences in the aerodynamic performances were obtained for formulations containing BDP:gamma-CYD complexes prepared using different solution flows and different T(in) (p<0.05). RFN and RFE vary in direct proportion with T(in), while an inverse relationship was observed for the solution flow. A direct correlation between the RFE and the T(out) was identified. Performance of the formulations was compared with an established commercial product (Beclotaide Rotacaps 100 microg) with improved performance of RF: formulations with respitose carrier attained RFN and RFE twofold greater, and formulations based on 63-90 microm fraction lactose and trehalose achieved a threefold improvement; also, all formulations showed that the percentage of dose of BDP deposited in the "oropharynx" compartment was reduced to half.

  9. Analysis of maizena drying system using temperature control based fuzzy logic method

    NASA Astrophysics Data System (ADS)

    Arief, Ulfah Mediaty; Nugroho, Fajar; Purbawanto, Sugeng; Setyaningsih, Dyah Nurani; Suryono

    2018-03-01

    Corn is one of the rice subtitution food that has good potential. Corn can be processed to be a maizena, and it can be used to make type of food that has been made from maizena, viz. Brownies cake, egg roll, and other cookies. Generally, maizena obtained by drying process carried out 2-3 days under the sun. However, drying process not possible during the rainy season. This drying process can be done using an automatic drying tool. This study was to analyze the design result and manufacture of maizena drying system with temperature control based fuzzylogic method. The result show that temperature of drying system with set point 40°C - 60°C work in suitable condition. The level of water content in 15% (BSN) and temperatureat 50°C included in good drying process. Time required to reach the set point of temperature in 50°C is 7.05 minutes. Drying time for 500 gr samples with temperature 50°C and power capacity 127.6 watt was 1 hour. Based on the result, drying process using temperature control based fuzzy logic method can improve energy efficiency than the conventional method of drying using a direct sunlight source with a temperature that cannot be directly controlled by human being causing the quality of drying result of flour is erratic.

  10. Disaccharides Protect Antigens from Drying-Induced Damage in Routinely Processed Tissue Sections

    PubMed Central

    Boi, Giovanna; Scalia, Carla Rossana; Gendusa, Rossella; Ronchi, Susanna; Cattoretti, Giorgio

    2015-01-01

    Drying of the tissue section, partial or total, during immunostaining negatively affects both the staining of tissue antigens and the ability to remove previously deposited antibody layers, particularly during sequential rounds of de-staining and re-staining for multiple antigens. The cause is a progressive loss of the protein-associated water up to the removal of the non-freezable water, a step which abolishes the immunoavailability of the epitope. In order to describe and prevent these adverse effects, we tested, among other substances, sugars, which are known to protect unicellular organisms from freezing and dehydration, and stabilize drugs and reagents in solid state form in medical devices. Disaccharides (lactose, sucrose) prevented the air drying-induced antigen masking and protected tissue-bound antigens and antibodies from air drying-induced damage. Complete removal of the bound antibody layers by chemical stripping was permitted if lactose was present during air drying. Lactose, sucrose and other disaccharides prevent air drying artifacts, allow homogeneous, consistent staining and the reuse of formalin-fixed, paraffin-embedded tissue sections for repeated immunostaining rounds by guaranteeing constant staining quality in suboptimal hydration conditions. PMID:26487185

  11. Effect of processing history on the surface interfacial properties of budesonide in carrier-based dry-powder inhalers.

    PubMed

    Shur, Jagdeep; Pitchayajittipong, Chonladda; Rogueda, Philippe; Price, Robert

    2013-08-01

    Influence of air-jet micronization, post-micronization conditioning and storage on the surface properties of budesonide in dry-powder inhaler formulations was investigated. Crystalline budesonide was air jet-micronized and conditioned using organic vapor. Particle engineering was also used to fabricate respirable particles of budesonide. Surface imaging by atomic force microscopy suggested that micronized material possessed process-induced surface disorder, which relaxed upon conditioning with organic vapor. Particle engineered material was devoid of such surface disorder. Surface interfacial properties of all batches were different and correlated to in vitro fine particle delivery. The surface properties and in vitro performance of the conditioned material changed upon storage of the budesonide at 44% relative humidity and 25°C, while the micronized and particle-engineered material remained stable. These data suggest that processing conditions of budesonide affected the surface properties of the material, which was demonstrated to have direct affect on dry-powder inhaler formulation performance.

  12. Antibacterial effect of citrus press-cakes dried by high speed and far-infrared radiation drying methods

    PubMed Central

    Samarakoon, Kalpa; Senevirathne, Mahinda; Lee, Won-Woo; Kim, Young-Tae; Kim, Jae-Il; Oh, Myung-Cheol

    2012-01-01

    In this study, the antibacterial effect was evaluated to determine the benefits of high speed drying (HSD) and far-infrared radiation drying (FIR) compared to the freeze drying (FD) method. Citrus press-cakes (CPCs) are released as a by-product in the citrus processing industry. Previous studies have shown that the HSD and FIR drying methods are much more economical for drying time and mass drying than those of FD, even though FD is the most qualified drying method. The disk diffusion assay was conducted, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined with methanol extracts of the dried CPCs against 11 fish and five food-related pathogenic bacteria. The disk diffusion results indicated that the CPCs dried by HSD, FIR, and FD prevented growth of all tested bacteria almost identically. The MIC and MBC results showed a range from 0.5-8.0 mg/mL and 1.0-16.0 mg/mL respectively. Scanning electron microscopy indicated that the extracts changed the morphology of the bacteria cell wall, leading to destruction. These results suggest that CPCs dried by HSD and FIR showed strong antibacterial activity against pathogenic bacteria and are more useful drying methods than that of the classic FD method in CPCs utilization. PMID:22808341

  13. Tribological investigations of the applicability of surface functionalization for dry extrusion processes

    NASA Astrophysics Data System (ADS)

    Teller, Marco; Prünte, Stephan; Ross, Ingo; Temmler, André; Schneider, Jochen M.; Hirt, Gerhard

    2017-10-01

    Cold extrusion processes are characterized by large relative contact stresses combined with a severe surface enlargement of the workpiece. Under these process conditions a high risk for galling of workpiece material to the tool steel occurs especially in processing of aluminum and aluminum alloys. In order to reduce adhesive wear lubricants for separation of workpiece and tool surfaces are used. As a consequence additional process steps (e.g. preparation and cleaning of workpieces) are necessary. Thus, the realization of a dry forming process is aspired from an environmental and economic perspective. In this paper a surface functionalization with self-assembled-monolayers (SAM) of the tool steels AISI D2 (DIN 1.2379) and AISI H11 (DIN 1.2343) is evaluated by a process-oriented tribological test. The tribological experiment is able to resemble and scale the process conditions of cold extrusion related to relative contact stress and surface enlargement for the forming of pure aluminum (Al99.5). The effect of reduced relative contact stress, surface enlargement and relative velocity on adhesive wear and tool lifetime is evaluated. Similar process conditions are achievable by different die designs with decreased extrusion ratios and adjusted die angles. The effect of surface functionalization critically depends on the substrate material. The different microstructure and the resulting differences in surface chemistry of the two tested tool steels appear to affect the performance of the tool surface functionalization with SAM.

  14. Genome-Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content.

    PubMed

    Rabbi, Ismail Y; Udoh, Lovina I; Wolfe, Marnin; Parkes, Elizabeth Y; Gedil, Melaku A; Dixon, Alfred; Ramu, Punna; Jannink, Jean-Luc; Kulakow, Peter

    2017-11-01

    Cassava is a starchy root crop cultivated in the tropics for fresh consumption and commercial processing. Primary selection objectives in cassava breeding include dry matter content and micronutrient density, particularly provitamin A carotenoids. These traits are negatively correlated in the African germplasm. This study aimed at identifying genetic markers associated with these traits and uncovering whether linkage and/or pleiotropy were responsible for observed negative correlation. A genome-wide association mapping using 672 clones genotyped at 72,279 single nucleotide polymorphism (SNP) loci was performed. Root yellowness was used indirectly to assess variation in carotenoid content. Two major loci for root yellowness were identified on chromosome 1 at positions 24.1 and 30.5 Mbp. A single locus for dry matter content that colocated with the 24.1 Mbp peak for carotenoids was identified. Haplotypes at these loci explained 70 and 37% of the phenotypic variability for root yellowness and dry matter content, respectively. Evidence of megabase-scale linkage disequilibrium (LD) around the major loci of the two traits and detection of the major dry matter locus in independent analysis for the white- and yellow-root subpopulations suggests that physical linkage rather that pleiotropy is more likely to be the cause of the negative correlation between the target traits. Moreover, candidate genes for carotenoid () and starch biosynthesis ( and ) occurred in the vicinity of the identified locus at 24.1 Mbp. These findings elucidate the genetic architecture of carotenoids and dry matter in cassava and provide an opportunity to accelerate breeding of these traits. Copyright © 2017 Crop Science Society of America.

  15. Research on the drying kinetics of household food waste for the development and optimization of domestic waste drying technique.

    PubMed

    Sotiropoulos, A; Malamis, D; Michailidis, P; Krokida, M; Loizidou, M

    2016-01-01

    Domestic food waste drying foresees the significant reduction of household food waste mass through the hygienic removal of its moisture content at source. In this manuscript, a new approach for the development and optimization of an innovative household waste dryer for the effective dehydration of food waste at source is presented. Food waste samples were dehydrated with the use of the heated air-drying technique under different air-drying conditions, namely air temperature and air velocity, in order to investigate their drying kinetics. Different thin-layer drying models have been applied, in which the drying constant is a function of the process variables. The Midilli model demonstrated the best performance in fitting the experimental data in all tested samples, whereas it was found that food waste drying is greatly affected by temperature and to a smaller scale by air velocity. Due to the increased moisture content of food waste, an appropriate configuration of the drying process variables can lead to a total reduction of its mass by 87% w/w, thus achieving a sustainable residence time and energy consumption level. Thus, the development of a domestic waste dryer can be proved to be economically and environmentally viable in the future.

  16. Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems.

    PubMed

    Ballesteros, Daniel; Walters, Christina

    2011-11-01

    Slow movement of molecules in glassy matrices controls the kinetics of chemical and physical reactions in dry seeds. Variation in physiological activity among seeds suggests that there are differences in mobility among seed glasses. Testing this hypothesis is difficult because few tools are available to measure molecular mobility within dry seeds. Here, motional properties within dry pea cotyledons were assessed using dynamic mechanical analysis. The technique detected several molecular relaxations between -80 and +80°C and gave a more detailed description of water content-temperature effects on molecular motion than previously understood from studies of glass formation in seeds at glass transition (Tg). Diffusive movement is delimited by the α relaxation, which appears to be analogous to Tg. β and γ relaxations were also detected at temperatures lower than α relaxations, clearly demonstrating intramolecular motion within the glassy matrix of the pea cotyledon. Glass transitions, or the mechanical counterpart α relaxation, appear to be less relevant to seed aging during dry storage than previously thought. On the other hand, β relaxation occurs at temperature and moisture conditions typically used for seed storage and has established importance for physical aging of synthetic polymer glasses. Our data show that the nature and extent of molecular motion varies considerably with moisture and temperature, and that the hydrated conditions used for accelerated aging experiments and ultra-dry conditions sometimes recommended for seed storage give greater molecular mobility than more standard seed storage practices. We believe characterization of molecular mobility is critical for evaluating how dry seeds respond to the environment and persist through time. Published 2011. This article is a US Government work and is in the public domain in the USA.

  17. Characteristics of four SPE groups with different origins and acceleration processes

    NASA Astrophysics Data System (ADS)

    Kim, R.-S.; Cho, K.-S.; Lee, J.; Bong, S.-C.; Joshi, A. D.; Park, Y.-D.

    2015-09-01

    Solar proton events (SPEs) can be categorized into four groups based on their associations with flare or CME inferred from onset timings as well as acceleration patterns using multienergy observations. In this study, we have investigated whether there are any typical characteristics of associated events and acceleration sites in each group using 42 SPEs from 1997 to 2012. We find the following: (i) if the proton acceleration starts from a lower energy, a SPE has a higher chance to be a strong event (> 5000 particle flux per unit (pfu)) even if its associated flare and/or CME are not so strong. The only difference between the SPEs associated with flare and CME is the location of the acceleration site. (ii) For the former (Group A), the sites are very low (˜ 1 Rs) and close to the western limb, while the latter (Group C) have relatively higher (mean = 6.05 Rs) and wider acceleration sites. (iii) When the proton acceleration starts from the higher energy (Group B), a SPE tends to be a relatively weak event (< 1000 pfu), although its associated CME is relatively stronger than previous groups. (iv) The SPEs categorized by the simultaneous acceleration in whole energy range within 10 min (Group D) tend to show the weakest proton flux (mean = 327 pfu) in spite of strong associated eruptions. Based on those results, we suggest that the different characteristics of SPEs are mainly due to the different conditions of magnetic connectivity and particle density, which are changed with longitude and height as well as their origin.

  18. Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour.

    PubMed

    Lenaerts, S; Van Der Borght, M; Callens, A; Van Campenhout, L

    2018-07-15

    Freeze drying represents the current practice to stabilize mealworms, even though it is an energy demanding technique. Therefore, it was examined in the present study whether microwave drying could be a proper alternative. To this end, the impact of both drying techniques on the proximate composition, vitamin B 12 content, fatty acid profile, oxidation status and colour parameters of mealworms was investigated. Furthermore, the influence of the application of vacuum during microwave drying was studied. The different drying technologies resulted in small differences in the proximate composition, while the vitamin B 12 content was only reduced by microwave drying. The fat fraction of freeze dried mealworms showed a higher oxidation status than the fat of microwave dried mealworms. Application of a vacuum during the microwave drying process did not appear to offer advantages. This research shows that for mealworms microwave drying can be a proper alternative to freeze drying. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. [Analysis of dynamic changes of flavonoids and alkaloids during different drying process of Morus alba leaves].

    PubMed

    Bai, Yong-liang; Duan, Jin-ao; Su, Shu-lan; Qian, Ye-fei; Qian, Da-wei; Ouyang, Zhen

    2014-07-01

    To find out dynamic changes of flavonoids and alkaloids in Morus alba leaves by analyzing influence of different drying method and drying degrees, in order to provide evidence for quality evaluation of Morus alba leaves. Different drying methods, programmed temperature methods and constant temperature methods were adopted to dry Morus alba leaves samples respectively. Contents of flavonoids and alkaloids were analyzed by HPLC-PDA and LC-TQ/MS respectively. It's shown obviously that the content of flavonoids were influenced heavily by different drying methods. Methods that suitable for flavonoids were freezing-dried > shade-dried > dried > sun-dried > microwave-dried > infrared-dried; Methods that suitable for alkaloids were freezing-dried > shade-dried > dried > sun-dried > infrared-dried > microwave-dried. The 55 -65 degrees C group was shown to be the lowest in both flavonoids and DNJ while the 85 - 95 degrees C group was shown to be the best for DNJ. For fagomine, the 45 degrees C group was shown to be the lowest concentrations while the 95 - 105 degrees C group was shown to be the highest. Samples with different moisture were shown to be different in content of flavonoids and alkaloids. And samples with 10% moisture contain highest flavonoids while those with 30% - 50% moisture contain lowest flavonoids. Content of DNJ and fagomine raised as moisture decreasing. In addition, the 55 - 65 degrees C group was better than the 95 -105 degrees C one in alkaloids content. The results provide optimal drying methods and condition for drying Morus alba leaves, and foundations for uncovering biochemical transform of Morus alba leaves.

  20. Effect of different drying technologies on drying characteristics and quality of red pepper (Capsicum frutescens L.): a comparative study.

    PubMed

    Cao, Zhen-Zhen; Zhou, Lin-Yan; Bi, Jin-Feng; Yi, Jian-Yong; Chen, Qin-Qin; Wu, Xin-Ye; Zheng, Jin-Kai; Li, Shu-Rong

    2016-08-01

    Hot air drying and sun drying are traditional drying technologies widely used in the drying of agricultural products for a long time, but usually recognized as time-consuming or producing lower-quality products. Infrared drying is a rather effective drying technology that has advantages over traditional drying technologies. Thus, in order to investigate the application of infrared drying in the dehydration of red pepper, the drying characteristics and quality of infrared-dried red pepper were compared with those of sun-dried and hot air-dried red pepper. The infrared drying technology significantly enhanced the drying rate when compared with hot air drying and sun drying. Temperature was the most important factor affecting the moisture transfer during the process of infrared drying as well as hot air drying. Effective moisture diffusivity (Deff ) values of infrared drying ranged from 1.58 × 10(-9) to 3.78 × 10(-9) m(2) s(-1) . The Ea values of infrared drying and hot air drying were 42.67 and 44.48 kJ mol(-1) respectively. Infrared drying and hot air drying produced color loss to a similar extent. Relatively higher crispness values were observed for infrared-dried samples. Sun drying produced dried red pepper with the best color when compared with hot air drying and infrared drying. Meanwhile, infrared drying markedly improved the drying rate at the same drying temperature level of hot air drying, and the products obtained had relatively better quality with higher crispness values. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: an HPLC/DAD/MS study.

    PubMed

    Mulinacci, N; Innocenti, M; Bellumori, M; Giaccherini, C; Martini, V; Michelozzi, M

    2011-07-15

    The Rosmarinus officinalis L. is widely known for its numerous applications in the food field but also for the increasing interest in its pharmaceutical properties. Two groups of compounds are mainly responsible for the biological activities of the plant: the volatile fraction and the phenolic constituents. The latter group is mainly constituted by rosmarinic acid, by a flavonoidic fraction and by some diterpenoid compounds structurally derived from the carnosic acid. The aim of our work was to optimize the extractive and analytical procedure for the determination of all the phenolic constituents. Moreover the chemical stability of the main phenols, depending on the storage condition, the different drying procedures and the extraction solvent, have been evaluated. This method allowed to detect up to 29 different constituents at the same time in a relatively short time. The described procedure has the advantage to being able to detect and quantify several classes of compounds, among them numerous minor flavonoids, thus contributing to improving knowledge of the plant. The findings from this study have demonstrated that storing the raw fresh material in the freezer is not appropriate for rosemary, mainly due to the rapid disappearing of the rosmarinic acid during the freezing/thawing process. Regarding the flavonoidic fraction, consistent decrements, were highlighted in the dried samples at room temperature if compared with the fresh leaf. Rosmarinic acid, appeared very sensitive also to mild drying processes. The total diterpenoidic content undergoes to little changes when the leaves are freeze dried or frozen and limited losses are observed working on dried leaves at room temperature. Nevertheless it can be taken in account that this fraction is very sensitive to the water presence during the extraction that favors the conversion of carnosic acid toward it oxidized form carnosol. From our findings, it appear evident that when evaluating the phenolic content in

  2. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture.

    PubMed

    Zielinska, Magdalena; Michalska, Anna

    2016-12-01

    The aim of the study was to evaluate the effect of hot air convective drying (HACD), microwave vacuum drying (MWVD) and their combination (HACD+MWVD) on the drying kinetics, colour, total polyphenols, anthocyanins antioxidant capacity and texture of frozen/thawed blueberries. Drying resulted in reduction of total polyphenols content and antioxidant capacity (69 and 77%, respectively). The highest content of total polyphenols was noted after HACD at 90°C. Lower air temperature and prolonged exposure to oxygen resulted in greater degradation of polyphenols and antioxidant capacity. Drying processes caused a significant decrease (from 70 to 95%) in the content of anthocyanins. The highest content of anthocyanins and the strongest antioxidant capacity was found in blueberries dried using HACD at 90°C+MWVD. Among drying methods, HACD at 90°C+MWVD satisfied significant requirements for dried fruits i.e. short drying time and improved product quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Design of experiments-based monitoring of critical quality attributes for the spray-drying process of insulin by NIR spectroscopy.

    PubMed

    Maltesen, Morten Jonas; van de Weert, Marco; Grohganz, Holger

    2012-09-01

    Moisture content and aerodynamic particle size are critical quality attributes for spray-dried protein formulations. In this study, spray-dried insulin powders intended for pulmonary delivery were produced applying design of experiments methodology. Near infrared spectroscopy (NIR) in combination with preprocessing and multivariate analysis in the form of partial least squares projections to latent structures (PLS) were used to correlate the spectral data with moisture content and aerodynamic particle size measured by a time of flight principle. PLS models predicting the moisture content were based on the chemical information of the water molecules in the NIR spectrum. Models yielded prediction errors (RMSEP) between 0.39% and 0.48% with thermal gravimetric analysis used as reference method. The PLS models predicting the aerodynamic particle size were based on baseline offset in the NIR spectra and yielded prediction errors between 0.27 and 0.48 μm. The morphology of the spray-dried particles had a significant impact on the predictive ability of the models. Good predictive models could be obtained for spherical particles with a calibration error (RMSECV) of 0.22 μm, whereas wrinkled particles resulted in much less robust models with a Q (2) of 0.69. Based on the results in this study, NIR is a suitable tool for process analysis of the spray-drying process and for control of moisture content and particle size, in particular for smooth and spherical particles.

  4. Quality evaluation of onion bulbs during low temperature drying

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Asiah, N.; Wibowo, Y. P.; Yusron, D. A. A.

    2016-06-01

    A drying technology must be designed carefully by evaluating the foods' final quality properties as a dried material. Thermal processing should be operated with the minimum chance of substantial flavour, taste, color and nutrient loss. The main objective of this research was to evaluate the quality parameters of quercetin content, color, non-enzymatic browning and antioxidant activity. The experiments showed that heating at different temperatures for several drying times resulted in a percentage of quercetin being generally constant. The quercetin content maintained at the value of ±1.2 % (dry basis). The color of onion bulbs was measured by CIE standard illuminant C. The red color (a*) of the outer layer of onion bulbs changed significantly when the drying temperature was increased. However the value of L* and b* changed in a fluctuating way based on the temperature. The change of onion colors was influenced by temperature and moisture content during the drying process. The higher the temperature, the higher it affects the rate of non-enzymatic browning reaction. The correlation between temperature and reaction rate constant was described as Arrhenius equation. The rate of non-enzymatic browning increases along with the increase of drying temperature. The results showed that higher drying temperatures were followed by a lower IC10. This condition indicated the increase of antioxidant activity after the drying process.

  5. Investigation of the effects of temperature and sludge characteristics on odors and VOC emissions during the drying process of sewage sludge.

    PubMed

    Ding, Wenjie; Li, Lin; Liu, Junxin

    2015-01-01

    Sludge drying is a necessary step for sludge disposal. In this study, sludge was collected from two wastewater treatment plants, and dried at different temperatures in the laboratory. The emission of odor and total volatile organic compounds (TVOCs) during the sludge drying process were determined by an online odor monitoring system. The volatile organic compounds (VOCs) in off-gas were analyzed by gas chromatography-mass spectrometry. Results showed that sludge with 30% moisture content could be obtained in 51 minutes under drying temperature 100 °C but only within 27 minutes under 150 °C. Concentration of odor, TVOCs, sulfur-containing compounds (SCCs), and amines were changed with drying temperature and sludge sources. The maximum concentration of odor, TVOCs, SCCs, and amines were 503.13 ppm, 3.01 ppm, 8.15 ppm, and 11.27 ppm, respectively, at drying temperature 100 °C. These values reached 1,250.79, 8.10, 53.51, and 37.80 ppm when sludge dried at 150 °C. Odor concentration had a close relationship with emission of SCCs, amines, and TVOCs. The main VOCs released were benzene series and organic acid. Potential migration of substances in sludge was examined via analysis of off-gas and condensate, aiming to provide scientific data for effective sludge treatment and off-gas control.

  6. Hypoglycemic activity of dried extracts of Bauhinia forficata Link.

    PubMed

    da Cunha, A M; Menon, S; Menon, R; Couto, A G; Bürger, C; Biavatti, M W

    2010-01-01

    Leaves of the pantropical genus Bauhinia (Fabaceae) are known popularly as cow's foot, due to their unique characteristic bilobed aspect. The species Bauhinia forficata (Brazilian Orchid-tree) is widely used in folk medicine as an antidiabetic. The present work investigates the hypoglycemic activity of the dried extracts of Bauhinia forficata leaves in vivo, as well as the influence of the drying and granulation processes on this activity. The fluid extract was dried to generate oven-dried (ODE), spray-dried (SDE) and wet granulation (WGE) extracts, with the aid of colloidal silicon dioxide and/or cellulose:lactose mixture. The dried extracts were characterized by spectrophotometric, chromatographic and photo microscopy image analysis. 200 mg/kg body wt., p.o. of each dried product were administered orally to male Wistar rats over 7 days old, for biomonitoring of the hypoglycemic activity profile. The effect of the extracts was studied in STZ-induced diabetic rats. After 7 days of treatment, fasting glucose was determined, and the livers were removed, dried on tissue paper, weighed, and stored at -20 degrees C to estimate hepatic glycogen. Our results show that spray-drying or oven-drying processes applied to B. forficata extracts did not significantly alter its flavonoid profile or its hypoglycemic activity. Indeed, the dried extracts of B. forficata act differently from glibenclamide. Despite the lower active content in WGE, because of the higher concentration of adjuvants, the use of the granulation process improved the manufacturing properties of the ODE, making this material more appropriate for use in tablets or capsules.

  7. Phase locked multiple rings in the radiation pressure ion acceleration process

    NASA Astrophysics Data System (ADS)

    Wan, Y.; Hua, J. F.; Pai, C.-H.; Li, F.; Wu, Y. P.; Lu, W.; Zhang, C. J.; Xu, X. L.; Joshi, C.; Mori, W. B.

    2018-04-01

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. the interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. A theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.

  8. Integrated condition monitoring of a fleet of offshore wind turbines with focus on acceleration streaming processing

    NASA Astrophysics Data System (ADS)

    Helsen, Jan; Gioia, Nicoletta; Peeters, Cédric; Jordaens, Pieter-Jan

    2017-05-01

    Particularly offshore there is a trend to cluster wind turbines in large wind farms, and in the near future to operate such a farm as an integrated power production plant. Predictability of individual turbine behavior across the entire fleet is key in such a strategy. Failure of turbine subcomponents should be detected well in advance to allow early planning of all necessary maintenance actions; Such that they can be performed during low wind and low electricity demand periods. In order to obtain the insights to predict component failure, it is necessary to have an integrated clean dataset spanning all turbines of the fleet for a sufficiently long period of time. This paper illustrates our big-data approach to do this. In addition, advanced failure detection algorithms are necessary to detect failures in this dataset. This paper discusses a multi-level monitoring approach that consists of a combination of machine learning and advanced physics based signal-processing techniques. The advantage of combining different data sources to detect system degradation is in the higher certainty due to multivariable criteria. In order to able to perform long-term acceleration data signal processing at high frequency a streaming processing approach is necessary. This allows the data to be analysed as the sensors generate it. This paper illustrates this streaming concept on 5kHz acceleration data. A continuous spectrogram is generated from the data-stream. Real-life offshore wind turbine data is used. Using this streaming approach for calculating bearing failure features on continuous acceleration data will support failure propagation detection.

  9. On the use of mathematical models to build the design space for the primary drying phase of a pharmaceutical lyophilization process.

    PubMed

    Giordano, Anna; Barresi, Antonello A; Fissore, Davide

    2011-01-01

    The aim of this article is to show a procedure to build the design space for the primary drying of a pharmaceuticals lyophilization process. Mathematical simulation of the process is used to identify the operating conditions that allow preserving product quality and meeting operating constraints posed by the equipment. In fact, product temperature has to be maintained below a limit value throughout the operation, and the sublimation flux has to be lower than the maximum value allowed by the capacity of the condenser, besides avoiding choking flow in the duct connecting the drying chamber to the condenser. Few experimental runs are required to get the values of the parameters of the model: the dynamic parameters estimation algorithm, an advanced tool based on the pressure rise test, is used to this purpose. A simple procedure is proposed to take into account parameters uncertainty and, thus, it is possible to find the recipes that allow fulfilling the process constraints within the required uncertainty range. The same approach can be effective to take into account the heterogeneity of the batch when designing the freeze-drying recipe. Copyright © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  10. Challenges to a blow/fill/seal process with airborne microorganisms having different resistances to dry heat.

    PubMed

    Poisson, Patrick; Sinclair, Colin S; Tallentire, Alan

    2006-01-01

    Controlled challenges with air dispersed microorganisms having widely different resistances to dry heat, carried out on 624 BFS machine processing growth medium, have shown that higher the heat resistance, the greater the extent of vial contamination. Differences in heat resistance affected also the extent of vial contamination when parison and vial formation were knowingly manipulated through changes made to each of three process variables, provision of ballooning air, mould vacuum delay, and parison extrusion rate. The findings demonstrate that, in this investigational system, exposure of challenge micoorganisms to heat inherent in the process has a controlling influence on vial contamination, an influence that could also control microbiological risk in production environments.

  11. Protective effect of sugars on storage stability of microwave freeze-dried and freeze-dried Lactobacillus paracasei F19.

    PubMed

    Ambros, S; Hofer, F; Kulozik, U

    2018-05-31

    Microwave freeze drying in comparison to conventional freeze drying allows for intensification of the preservation process of lactic acid bacteria without imposing additional processing stress. Viability as a function of storage time of microwave freeze-dried Lactobacillus paracasei ssp. paracasei F19 was investigated in comparison to conventionally lyophilized bacteria of the same strain. Further, the impact of the protectants, sorbitol, trehalose and maltodextrin, on shelf life was analyzed. The highest inactivation rates of 0.035 and 0.045 d -1 , respectively, were found for cultures without protectants. Thus, all additives were found to exhibit a protective effect during storage with inactivation rates between 0.015 and 0.040 d -1 . Although trehalose and maltodextrin samples were in the glassy state during storage, in contrast to samples containing sorbitol as protectant, the best protective effect could be found for sorbitol with the lowest inactivation rate of 0.015 d -1 . Due to its low molecular weight, it might protect cells owing to better adsorption to the cytoplasma membrane. Sorbitol additionally shows antioxidative properties. Storage behavior of microwave freeze-dried cultures follows the typical behavior of a product dried by conventional lyophilization. No significant influence of the drying technique on storage behavior was detected. General findings concerning storage behavior in freeze drying are likely to be applicable in microwave freeze drying with only slight adjustments. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity.

    PubMed

    Aral, Serdar; Beşe, Ayşe Vildan

    2016-11-01

    Thin layer drying characteristics and physicochemical properties of hawthorn fruit (Crataegus spp.) were investigated using a convective dryer at air temperatures 50, 60 and 70°C and air velocities of 0.5, 0.9 and 1.3m/s. The drying process of hawthorn took place in the falling rate period, and the drying time decreased with increasing air temperature and velocity. The experimental data obtained during the drying process were fitted to eleven different mathematical models. The Midilli et al.'s model was found to be the best appropriate model for explaining the drying behavior of hawthorn fruit. Effective moisture diffusion coefficients (Deff) were calculated by Fick's diffusion model and their values varied from 2.34×10(-10)m(2)/s to 2.09×10(-9)m(2)/s. An Arrhenius-type equation was applied to determine the activation energies. While the shrinkage decreased, the rehydration ratio increased with increasing air temperature and air velocity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Evaluation of the mass transfer process on thin layer drying of papaya seeds from the perspective of diffusive models

    NASA Astrophysics Data System (ADS)

    Dotto, Guilherme Luiz; Meili, Lucas; Tanabe, Eduardo Hiromitsu; Chielle, Daniel Padoin; Moreira, Marcos Flávio Pinto

    2018-02-01

    The mass transfer process that occurs in the thin layer drying of papaya seeds was studied under different conditions. The external mass transfer resistance and the dependence of effective diffusivity ( D EFF ) in relation to the moisture ratio ( \\overline{MR} ) and temperature ( T) were investigated from the perspective of diffusive models. It was verified that the effective diffusivity was affected by the moisture content and temperature. A new correlation was proposed for drying of papaya seeds in order to describe these influences. Regarding the use of diffusive models, the results showed that, at conditions of low drying rates ( T ≤ 70 °C), the external mass transfer resistance, as well as the dependence of the effective diffusivity with respect to the temperature and moisture content should be considered. At high drying rates ( T > 90 °C), the dependence of the effective diffusivity with respect to the temperature and moisture content can be neglected, but the external mass transfer resistance was still considerable in the range of air velocities used in this work.

  14. Degradation Dynamics and Dietary Risk Assessments of Two Neonicotinoid Insecticides during Lonicera japonica Planting, Drying, and Tea Brewing Processes.

    PubMed

    Fang, Qingkui; Shi, Yanhong; Cao, Haiqun; Tong, Zhou; Xiao, Jinjing; Liao, Min; Wu, Xiangwei; Hua, Rimao

    2017-03-01

    The degradation dynamics and dietary risk assessments of thiamethoxam and thiacloprid during Lonicera japonica planting, drying, and tea brewing processes were systematically investigated using high-performance liquid chromatography. The half-lives of thiamethoxam and thiacloprid were 1.0-4.1 d in the honeysuckle flowers and leaves, with degradation rate constants k ranging from -0.169 to -0.696. The safety interval time was 7 d. The sun- and oven-drying (70 °C) percent digestions were 59.4-81.0% for the residues, which were higher than the shade- and oven-drying percentages at lower temperatures (30, 40, 50, and 60 °C, which ranged from 37.7% to 57.0%). The percent transfers of thiamethoxam and thiacloprid were 0-48.4% and 0-25.2%, respectively, for the different tea brewing conditions. On the basis of the results of this study, abiding by the safety interval time is important, and using reasonable drying methods and tea brewing conditions can reduce the transfer of thiamethoxam and thiacloprid to humans.

  15. Nanoparticle preparation of Mefenamic acid by electrospray drying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolkepali, Nurul Karimah, E-mail: fitrah@salam.uitm.edu.my; Bakar, Noor Fitrah Abu, E-mail: fitrah@salam.uitm.edu.my; Anuar, Nornizar

    2014-02-24

    Nanoparticles preparation of Mefenamic acid (MA) by using an electrospray drying method was conducted in this study. Electrospray drying is a process that uses electrostatic force to disperse a conductive liquid stream into fine charged droplets through the coulomb fission of charges in the liquid and finally dry into fine particles. Electrospray drying modes operation usually in Taylor cone jet, and it was formed by controlling applied voltage and liquid flow rate. A conductive liquid (2.77–8.55μScm{sup −1}) which is MA solution was prepared by using acetone with concentration 0.041 and 0.055 M before pumping at a flow rate of 3–6ml/h.more » By applying the applied voltage at 1.3–1.5 kV, Taylor cone jet mode was formed prior to the electrospray. During electrospray drying process, solvent evaporation from the droplet was occurring that leads to coulomb disruption and may generate to nanoparticles. The dried nanoparticles were collected on a grounded substrate that was placed at varying distance from the electrospray. MA particle with size range of 100–400 nm were produced by electrospray drying process. Characterization of particles by using X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) show that particles formed into polymorph I.« less

  16. Sliding-surface-liquefaction of sand-dry ice mixture and submarine landslides

    NASA Astrophysics Data System (ADS)

    Fukuoka, H.; Tsukui, A.

    2010-12-01

    In the historic records of off-shore mega-earthquakes along the subduction zone offshore Japan, there are a lot of witnesses about large-scale burning of flammable gas possibly ejected from sea floor. This gas was supposed to be the dissolved methane hydrates (MH), which have been found in the soundings of IODP and other oceanology projects. Since the vast distribution of the BSR in the continental margins, a lot of papers have been published which pointed out the possibilities of that gasification of those hydrates could have triggered gigantic submarine landslides. Global warming or large earthquake or magma intrusion may trigger extremely deep gigantic landslides in continental margins that which could cause catastrophic tsunami. However, recent triaxial compression tests on artificially prepared sand-MH-mixture samples revealed that the they have slightly higher strength than the ones of only sands and MH’s endothermal characteristics may resist against accelerating shear and large-displacement landslides as well. While, the stress-controlled undrained ring shear apparatuses have been developed by Sassa and Fukuoka at Disaster Prevention Research Institute, Kyoto University to reproduce subaerial landslides induced by earthquakes and rainfalls. Using the apparatuses, they found localized liquefaction phenomenon along the deep saturated potential sliding surface due to excess pore pressure generation during the grain crushing induced bulk volume change. This phenomenon was named as “sliding surface liquefaction.” Similar sudden large pore pressure generation was observed in pore pressure control test simulating rain-induced landslides. In this paper, authors examined the shear behavior of the dry sand-dry ice mixture under constant normal stress and shear speed control tests using the latest ring shear apparatus. Sample was mixture of silica sands and dry-ice pellets (frozen carbon-dioxide). Those mixtures are often used for studying the mechanism of the

  17. Freeze-drying of tert-butyl alcohol/water cosolvent systems: effects of formulation and process variables on residual solvents.

    PubMed

    Wittaya-Areekul, S; Nail, S L

    1998-04-01

    The objective of this study was to identify significant formulation and processing variables affecting levels of tert-butyl alcohol (TBA) and isopropyl alcohol (IPA) in freeze-dried solids prepared from TBA/water cosolvent systems. The variables examined were the physical state of the solute (crystalline vs amorphous), initial TBA concentration, freezing rate, cake thickness, and the temperature and duration of secondary drying. Sucrose and glycine were used as models for noncrystallizing and crystallizing solutes, respectively. The TBA concentration above which eutectic crystallization takes place was determined by differential scanning calorimetry. Model formulations were subjected to extremes of freezing rate by either dipping in liquid nitrogen or by slowly freezing on the shelf of a freeze-dryer. Dynamics of solvent loss during secondary drying was determined by withdrawing samples as a function of time at different shelf temperatures using a thief system. On the basis of these studies, the most important determinant of residual TBA level is the physical state of the solute. Freeze-dried glycine contained very low levels of residual TBA (0.01-0.03%) regardless of freezing rate or initial TBA concentration. For freeze-dried sucrose, residual TBA levels were approximately 2 orders of magnitude higher and were significantly affected by initial TBA concentration and freezing rate. For the sucrose/TBA/water system, relatively low residual TBA levels were obtained when the initial TBA level was above the threshold concentration for eutectic crystallization of TBA, whereas samples freeze-dried from solutions containing TBA concentrations below this threshold contained significantly higher levels of TBA. Residual IPA levels increased continuously with initial concentration of TBA in the sucrose/TBA/water system. Formulations of sucrose/TBA/water which were frozen rapidly contained residual TBA levels which were approximately twice those measured in the same

  18. Thin Layer Drying Model of Bacterial Cellulose Film

    NASA Astrophysics Data System (ADS)

    Hadi Jatmiko, Tri; Taufika Rosyida, Vita; Wheni Indrianingsih, Anastasia; Apriyana, Wuri

    2017-12-01

    The bacterial cellulose film produced by Acetobacter xylinum using coconut water as a carbon source was dried at a temperature of 60 to 100 C. The drying process of bacterial cellulose film occur at falling rate drying period. Increasing drying temperature will shorten the drying time. The drying data fitted with thin layer drying models that widely used, Newton, Page and Henderson and Pabis models. All thin layer drying models describe the experimental data well, but Page model is better than the other models on all various temperature with coefficients of determination (R2) range from 0.9908 to 0.9979, chi square range from 0.000212 to 0.000851 and RMSE range from 0.014307 to 0.0289458.

  19. Effect of fiber removal from ground corn, distillers dried grains with solubles and soybean meal using the Elusieve process on broiler performance and processing yield

    USDA-ARS?s Scientific Manuscript database

    The Elusieve process, a combination of sieving and elutriation (air classification), has been found to be effective in fiber separation from ground corn, distillers dried grains with solubles (DDGS) and soybean meal (SBM). The objective of this study was to determine the effect of removing fiber fro...

  20. Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples.

    PubMed

    Dalmau, Maria Esperanza; Bornhorst, Gail M; Eim, Valeria; Rosselló, Carmen; Simal, Susana

    2017-01-15

    The influence of processing (freezing at -196°C in liquid N2, FN sample; freeze-drying at -50°C and 30Pa, FD sample; and convective drying at 60°C and 2m/s, CD sample) on apple (var. Granny Smith) behavior during in vitro gastric digestion was investigated. Dried apples (FD and CD samples) were rehydrated prior to digestion. Changes in carbohydrate composition, moisture, soluble solids, acidity, total polyphenol content (TPC), and antioxidant activity (AA) of apple samples were measured at different times during digestion. Processing resulted in disruption of the cellular structure during digestion, as observed by scanning electron microscopy, light microscopy, and changes in carbohydrate composition. Moisture content increased (6-11% dmo), while soluble solids (55-78% dmo), acidity (44-72% dmo), total polyphenol content (30-61% dmo), and antioxidant activity (41-87%) decreased in all samples after digestion. Mathematical models (Weibull and exponential models) were used to better evaluate the influence of processing on apple behavior during gastric digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Contents Changes of Triterpenic Acids, Nucleosides, Nucleobases, and Saccharides in Jujube (Ziziphus jujuba) Fruit During the Drying and Steaming Process.

    PubMed

    Guo, Sheng; Duan, Jin-Ao; Zhang, Ying; Qian, Dawei; Tang, Yuping; Zhu, Zhenhua; Wang, Hanqing

    2015-12-12

    Chinese jujube (Ziziphus jujuba), a medicinal and edible plant, is widely consumed in Asian countries owing to the remarkable health activities of its fruits. To facilitate selection of the suitable processing method for jujube fruits, in this study their contents of triterpenic acids, nucleosides, nucleobases and saccharides after drying and steaming treatment were determined using ultra-high performance liquid chromatography and high performance liquid chromatography coupled with evaporative light scattering detector methods. The results showed that except for sucrose, the content levels of most analytes were increasing in the jujube fruits during drying treatment at 45 °C. The levels of cyclic nucleotides such as adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, were significantly decreased after the fruits were steamed. Therefore, owing to the bioactivities of these components for human health, the dried fruits would be the better choice as medicinal material or functional food, and dried jujube fruit should not be further steamed.

  2. GaN MOSFET with Boron Trichloride-Based Dry Recess Process

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Wang, Q. P.; Tamai, K.; Miyashita, T.; Motoyama, S.; Wang, D. J.; Ao, J. P.; Ohno, Y.

    2013-06-01

    The dry recessed-gate GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure using boron trichloride (BCl3) as etching gas were fabricated and characterized. Etching with different etching power was conducted. Devices with silicon tetrachloride (SiCl4) etching gas were also prepared for comparison. Field-effect mobility and interface state density were extracted from current-voltage (I-V) characteristics. GaN MOSFETs on AlGaN/GaN heterostructure with BCl3 based dry recess achieved a high maximum electron mobility of 141.5 cm2V-1s-1 and a low interface state density.

  3. Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1992-01-01

    This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.

  4. Accelerated construction

    DOT National Transportation Integrated Search

    2004-01-01

    Accelerated Construction Technology Transfer (ACTT) is a strategic process that uses various innovative techniques, strategies, and technologies to minimize actual construction time, while enhancing quality and safety on today's large, complex multip...

  5. Scale-up of ethanol production from winter barley by the EDGE (enhanced dry grind enzymatic) process in fermentors up to 300 liters

    USDA-ARS?s Scientific Manuscript database

    A fermentation process, which was designated the EDGE (enhanced dry grind enzymatic) process, has recently been developed for barley ethanol production. In the EDGE process, in addition to the enzymes normally required for starch hydrolysis, commercial Beta-glucanases were used to hydrolyze (1,3)(1,...

  6. Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to the Enterprise

    DTIC Science & Technology

    2010-04-29

    Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to

  7. Phosphorus Control in DRI-EAF Steelmaking: Thermodynamics, Effect of Alumina, and Process Modeling

    NASA Astrophysics Data System (ADS)

    Tayeb, Mohammed A.

    improve. Alumina becomes less acidic acting as a diluting agent and probably forming [AlO6 9-]-octahedra according to which alumina is hypothesized to behave amphoterically. While understanding the equilibrium and kinetics of the phosphorus reaction is important in order to improve the ability to remove phosphorus from the melt, practical use of this understanding in industry is limited. Modeling the phosphorus reaction in steelmaking, however, would result in a better and easier use of conceptual understanding by operators and engineers in plants. This work describes dynamic process models for phosphorus and sulfur reactions when using DRI, scrap, and pig iron in EAF steelmaking. The present models are based on the assumption that thermodynamic equilibrium is locally established at the steel-slag interface, the bulk liquid steel and slag remain homogeneous throughout the reaction, and the rate is predominantly controlled by the mass transfer of phosphorus in the metal and slag boundary layers. The models, which consist of a series of rate and mass balance equations, were converted into a Python code and are capable of predicting trajectories of steel and slag phosphorus and sulfur levels as well as slag chemistry and slag liquid and solid phases. The effect of operating variables on the final phosphorus and sulfur contents, for instance the effect of DRI and pig iron P and S concentrations, oxygen use, temperature, melting rates, and flux addition were tested. The results imply that dephosphorization could be improved by maintaining lower bath temperatures for period of time. Additionally, dephosphorization and desulfurization were improved by higher flux addition.

  8. Implementation of hazard analysis and critical control point (HACCP) in dried anchovy production process

    NASA Astrophysics Data System (ADS)

    Citraresmi, A. D. P.; Wahyuni, E. E.

    2018-03-01

    The aim of this study was to inspect the implementation of Hazard Analysis and Critical Control Point (HACCP) for identification and prevention of potential hazards in the production process of dried anchovy at PT. Kelola Mina Laut (KML), Lobuk unit, Sumenep. Cold storage process is needed in each anchovy processing step in order to maintain its physical and chemical condition. In addition, the implementation of quality assurance system should be undertaken to maintain product quality. The research was conducted using a survey method, by following the whole process of making anchovy from the receiving raw materials to the packaging of final product. The method of data analysis used was descriptive analysis method. Implementation of HACCP at PT. KML, Lobuk unit, Sumenep was conducted by applying Pre Requisite Programs (PRP) and preparation stage consisting of 5 initial stages and 7 principles of HACCP. The results showed that CCP was found in boiling process flow with significant hazard of Listeria monocytogenesis bacteria and final sorting process with significant hazard of foreign material contamination in the product. Actions taken were controlling boiling temperature of 100 – 105°C for 3 - 5 minutes and training for sorting process employees.

  9. Optimization of the secondary drying step in freeze drying using TDLAS technology.

    PubMed

    Schneid, Stefan C; Gieseler, Henning; Kessler, William J; Luthra, Suman A; Pikal, Michael J

    2011-03-01

    The secondary drying phase in freeze drying is mostly developed on a trial-and-error basis due to the lack of appropriate noninvasive process analyzers. This study describes for the first time the application of Tunable Diode Laser Absorption Spectroscopy, a spectroscopic and noninvasive sensor for monitoring secondary drying in laboratory-scale freeze drying with the overall purpose of targeting intermediate moisture contents in the product. Bovine serum albumin/sucrose mixtures were used as a model system to imitate high concentrated antibody formulations. First, the rate of water desorption during secondary drying at constant product temperatures (-22 °C, -10 °C, and 0 °C) was investigated for three different shelf temperatures. Residual moisture contents of sampled vials were determined by Karl Fischer titration. An equilibration step was implemented to ensure homogeneous distribution of moisture (within 1%) in all vials. The residual moisture revealed a linear relationship to the water desorption rate for different temperatures, allowing the evaluation of an anchor point from noninvasive flow rate measurements without removal of samples from the freeze dryer. The accuracy of mass flow integration from this anchor point was found to be about 0.5%. In a second step, the concept was successfully tested in a confirmation experiment. Here, good agreement was found for the initial moisture content (anchor point) and the subsequent monitoring and targeting of intermediate moisture contents. The present approach for monitoring secondary drying indicated great potential to find wider application in sterile operations on production scale in pharmaceutical freeze drying. © 2011 American Association of Pharmaceutical Scientists

  10. Recent advances in fluidized bed drying

    NASA Astrophysics Data System (ADS)

    Haron, N. S.; Zakaria, J. H.; Mohideen Batcha, M. F.

    2017-09-01

    Fluidized bed drying are very well known to yield high heat and mass transfer and hence adopted to many industrial drying processes particularly agricultural products. In this paper, recent advances in fluidized bed drying were reviewed and focus is given to the drying related to the usage of Computational Fluid Dynamics (CFD). It can be seen that usage of modern computational tools such as CFD helps to optimize the fluidized bed dryer design and operation for lower energy consumption and thus better thermal efficiency. Among agricultural products that were reviewed in this paper were oil palm frond, wheat grains, olive pomace, coconut, pepper corn and millet.

  11. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  12. Transcriptomic impacts of rumen epithelium induced by butyrate infusion in dairy cattle in dry period

    USDA-ARS?s Scientific Manuscript database

    Transcriptomics and bioinformatics are utilized to accelerate our understanding of regulation in rumen epithelial transcriptome of cattle in the dry period induced by butyrate infusion. Butyrate, as an essential element of nutrients, is an HDAC inhibitor that can alter histone acetylation and methyl...

  13. Evolution of proteolytic and physico-chemical characteristics of Norwegian dry-cured ham during its processing.

    PubMed

    Petrova, Inna; Tolstorebrov, Ignat; Mora, Leticia; Toldrá, Fidel; Eikevik, Trygve Magne

    2016-11-01

    Proteolytic activity and physico-chemical characteristics were studied for Norwegian dry-cured ham at four different times of processing: raw hams, post-salted hams (3 months of processing), hams selected in the middle of the production (12 months of processing) and hams at the end of the processing (24 months). Cathepsin H activity decreased until negligible values after 3 months of processing, whereas cathepsins B and B+L were inactive at 12 months. AAP was the most active aminopeptidase whereas RAP and MAP were active just during the first 12 months of processing. Proteolysis index reached a value of 4.56±1.03 % with non-significant differences between 12 and 24 months of ripening. Peptide identification by LC-MS/MS was done and two peptides (GVEEPPKGHKGNKK and QAISNNKDQGSY) showing a linear response with the time of processing were found. Unfreezable water content and glass transition temperature were investigated using differential scanning calorimetry (DSC) technique with non-significant differences in the temperature of glass transition for 12 and 24 months of processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Metabolomic Profiling as a Possible Reverse Engineering Tool for Estimating Processing Conditions of Dry-Cured Hams.

    PubMed

    Sugimoto, Masahiro; Obiya, Shinichi; Kaneko, Miku; Enomoto, Ayame; Honma, Mayu; Wakayama, Masataka; Soga, Tomoyoshi; Tomita, Masaru

    2017-01-18

    Dry-cured hams are popular among consumers. To increase the attractiveness of the product, objective analytical methods and algorithms to evaluate the relationship between observable properties and consumer acceptability are required. In this study, metabolomics, which is used for quantitative profiling of hundreds of small molecules, was applied to 12 kinds of dry-cured hams from Japan and Europe. In total, 203 charged metabolites, including amino acids, organic acids, nucleotides, and peptides, were successfully identified and quantified. Metabolite profiles were compared for the samples with different countries of origin and processing methods (e.g., smoking or use of a starter culture). Principal component analysis of the metabolite profiles with sensory properties revealed significant correlations for redness, homogeneity, and fat whiteness. This approach could be used to design new ham products by objective evaluation of various features.

  15. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying.

    PubMed

    Scutellà, Bernadette; Trelea, Ioan Cristian; Bourlès, Erwan; Fonseca, Fernanda; Passot, Stephanie

    2018-07-01

    During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (R p ) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation. Five repetitions of each condition were performed. Global (pressure rise test) and local (gravimetric) methods were applied as complementary approaches to estimate R p . The global method allowed to assess variability of the evolution of R p with the dried layer thickness between different experiments whereas the local method informed about R p variability at a fixed time within the vial batch. A product temperature variability of approximately ±4.4 °C was defined for a product dried layer thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due to mass transfer variability when designing freeze-drying cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE PAGES

    Wan, Y.; Hua, J. F.; Pai, C. -H.; ...

    2018-03-05

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  17. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Y.; Hua, J. F.; Pai, C. -H.

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  18. Predictive modeling of infrared radiative heating in tomato dry-peeling process: Part II. Model validation and sensitivity analysis

    USDA-ARS?s Scientific Manuscript database

    A predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of this study were to validate the developed model using experimental data and to investigate different engineering parameters that mos...

  19. Evaluation of Drying Process on the Composition of Black Pepper Ethanolic Extract by High Performance Liquid Chromatography With Diode Array Detector

    PubMed Central

    Namjoyan, Foroogh; Hejazi, Hoda; Ramezani, Zahra

    2012-01-01

    Background Black pepper (Piper nigrum) is one of the well-known spices extensively used worldwide especially in India, and Southeast Asia. The presence of alkaloids in the pepper, namely, piperine and its three stereoisomers, isopiperine, chavicine and isochavicine are well noticed. Objectives The current study evaluated the effect of lyophilization and oven drying on the stability and decomposition of constituents of black pepper ethanolic extract. Materials and Methods In the current study ethanolic extract of black pepper obtained by maceration method was dried using two methods. The effect of freeze and oven drying on the chemical composition of the extract especially piperine and its three isomers were evaluated by HPLC analysis of the ethanolic extract before and after drying processes using diode array detector. The UV Vis spectra of the peaks at piperine retention time before and after each drying methods indicated maximum absorbance at 341.2 nm corresponding to standard piperine. Results The results indicated a decrease in intensity of the chromatogram peaks at approximately all retention times after freeze drying, indicating a few percent loss of piperine and its isomers upon lyophilization. Two impurity peaks were completely removed from the extract. Conclusions In oven dried samples two of the piperine stereoisomers were completely removed from the extract and the intensity of piperine peak was increased. PMID:24624176

  20. A field survey on coffee beans drying methods of Indonesian small holder farmers

    NASA Astrophysics Data System (ADS)

    Siagian, Parulian; Setyawan, Eko Y.; Gultom, Tumiur; Napitupulu, Farel H.; Ambarita, Himsar

    2017-09-01

    Drying agricultural product is a post-harvest process that consumes significant energy. It can affect the quality of the product. This paper deals with literature review and field survey of drying methods of coffee beans of Indonesia farmers. The objective is to supply the necessary information on developing continuous solar drier. The results show that intermittent characteristic of sun drying results in a better quality of coffee beans in comparison with constant convective drying. In order to use energy efficiently, the drying process should be divided into several stages. In the first stage when the moist content is high, higher drying air temperature is more effective. After this step, where the moist content is low, lower drying air temperature is better. The field survey of drying coffee beans in Sumatera Utara province reveals that the used drying process is very traditional. It can be divided into two modes and depend on the coffee beans type. The Arabica coffee is firstly fermented and dried to moisture content of 80% using sun drying method, then followed by Green House model of drying up to moisture content about 12%. The latter typically spends 3 days of drying time. On the other hand, The Robusta coffee is dried by exposing to the sun directly without any treatment. After the coffee beans dried follow by peeled process. These findings can be considered to develop a continuous solar drying that suitable for coffee beans drying.

  1. Development of Acceleration Sensor and Acceleration Evaluation System for Super-Low-Range Frequencies

    NASA Astrophysics Data System (ADS)

    Asano, Shogo; Matsumoto, Hideki

    2001-05-01

    This paper describes the development process for acceleration sensors used on automobiles and an acceleration evaluation system designed specifically for acceleration at super-low-range frequencies. The features of the newly developed sensor are as follows. 1) Original piezo-bimorph design based on a disc-center-fixed structure achieves pyroeffect cancelling and stabilization of sensor characteristics and enables the detection of the acceleration of 0.0009 G at the super-low-range-frequency of 0.03 Hz. 2) The addition of a self-diagnostic function utilizing the characteristics of piezoceramics enables constant monitoring of sensor failure. The frequency range of acceleration for accurate vehicle motion control is considered to be from DC to about 50 Hz. However, the measurement of acceleration in the super-low-range frequency near DC has been difficult because of mechanical and electrical noise interruption. This has delayed the development of the acceleration sensor for automotive use. We have succeeded in the development of an acceleration evaluation system for super-low-range frequencies from 0.015 Hz to 2 Hz with detection of the acceleration range from 0.0002 G (0.2 gal) to 1 G, as well as the development of a piezoelectric-type acceleration sensor for automotive use.

  2. Overview Of Dry-Etch Techniques

    NASA Astrophysics Data System (ADS)

    Salzer, John M.

    1986-08-01

    With pattern dimensions shrinking, dry methods of etching providing controllable degrees of anisotropy become a necessity. A number of different configurations of equipment - inline, hex, planar, barrel - have been offered, and within each type, there are numerous significant variations. Further, each specific type of machine must be perfected over a complex, interactive parameter space to achieve suitable removal of various materials. Among the most critical system parameters are the choice of cathode or anode to hold the wafers, the chamber pressure, the plasma excitation frequency, and the electrode and magnetron structures. Recent trends include the use of vacuum load locks, multiple chambers, multiple electrodes, downstream etching or stripping, and multistep processes. A major percentage of etches in production handle the three materials: polysilicon, oxide and aluminum. Recent process developments have targeted refractory metals, their silicides, and with increasing emphasis, silicon trenching. Indeed, with new VLSI structures, silicon trenching has become the process of greatest interest. For stripping, dry processes provide advantages other than anisotropy. Here, too, new configurations and methods have been introduced recently. While wet processes are less than desirable from a number of viewpoints (handling, safety, disposal, venting, classes of clean room, automatability), dry methods are still being perfected as a direct, universal replacement. The paper will give an overview of these machine structures and process solutions, together with examples of interest. These findings and the trends discussed are based on semiannual survey of manufacturers and users of the various types of equipment.

  3. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste.

    PubMed

    Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin

    2015-03-01

    Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.

  4. Dry formulations of the biocontrol agent Candida sake CPA-1 using fluidised bed drying to control the main postharvest diseases on fruits.

    PubMed

    Carbó, Anna; Torres, Rosario; Usall, Josep; Fons, Estanislau; Teixidó, Neus

    2017-08-01

    The biocontrol agent Candida sake CPA-1 is effective against several diseases. Consequently, the optimisation of a dry formulation of C. sake to improve its shelf life and manipulability is essential for increasing its potential with respect to future commercial applications. The present study aimed to optimise the conditions for making a dry formulation of C. sake using a fluidised bed drying system and then to determine the shelf life of the optimised formulation and its efficacy against Penicillium expansum on apples. The optimal conditions for the drying process were found to be 40 °C for 45 min and the use of potato starch as the carrier significantly enhanced the viability. However, none of the protective compounds tested increased the viability of the dried cells. A temperature of 25 °C for 10 min in phosphate buffer was considered as the optimum condition to recover the dried formulations. The dried formulations should be stored at 4 °C and air-packaged; moreover, shelf life assays indicated good results after 12 months of storage. The formulated products maintained their biocontrol efficacy. A fluidised bed drying system is a suitable process for dehydrating C. sake cells; moreover, the C. sake formulation is easy to pack, store and transport, and is a cost-effective process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Dielectric characterization of neutralized and nonneutralized chitosan upon drying.

    PubMed

    Viciosa, M T; Dionísio, M; Mano, J F

    2006-02-15

    Isothermal dielectric loss spectra of neutralized and nonneutralized chitosan were acquired in successive runs from -130 degrees C up to increasing final temperatures, in a frequency range between 20 Hz and 1 MHz. Essentially, three relaxation processes were detected in the temperature range covered: (i) a beta-wet process, detected when the sample has a higher water content that vanishes after heating to 150 degrees C; (ii) a beta process, which is located at temperatures below 0 degrees C, becoming better defined and maintaining its location after annealing at 150 degrees C independently of the protonation state of the amino side group; and (iii) a sigma process that deviates to higher temperatures with drying, being more mobile in the nonneutralized form. Moreover, in dried neutralized chitosan, a fourth process was detected in the low frequency side of the secondary beta process that diminishes after annealing. Whether this process is a distinct relaxation of the dried polymer or a deviated beta-wet process due to the loss of water residues achieved by annealing is not straightforward. Only beta and sigma processes persist after annealing at 150 degrees C. The changes in molecular mobility upon drying of these two relaxation processes were evaluated. Copyright (c) 2005 Wiley Periodicals, Inc.

  6. Effect of drying conditions on crystallinity of amylose nanoparticles prepared by nanoprecipitation.

    PubMed

    Yan, Xiaoxia; Chang, Yanjiao; Wang, Qian; Fu, Youjia; Zhou, Jiang

    2017-04-01

    In this study, amylose nanoparticles prepared by nanoprecipitation were dried at different conditions. The crystalline structure, crystallinity, re-dispersibility and morphological characteristic of the amylose nanoparticles after drying were investigated. X-ray diffraction analysis revealed that the V-type crystalline structure of the amylose nanoparticles formed in the drying process instead of the precipitation process, and drying condition significantly affects the crystallinity. The temperature cycles drying at 4°C and 40°C considerably increased crystallinity of the amylose nanoparticles, 24h (4/40°C, 12h/12h) drying under 11% relative humidity could give rise to a crystallinity up to 50.05%. The applied drying procedures had no obvious effect on the appearance of the amylose nanoparticles. The Z average-size (d. nm) and polydispersity index (PDI) obtained from dynamic light scattering analysis suggested that the drying processes caused some aggregates, but the dried amylose nanoparticles could be well dispersed in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Non-isothermal processes during the drying of bare soil: Model Development and Validation

    NASA Astrophysics Data System (ADS)

    Sleep, B.; Talebi, A.; O'Carrol, D. M.

    2017-12-01

    Several coupled liquid water, water vapor, and heat transfer models have been developed either to study non-isothermal processes in the subsurface immediately below the ground surface, or to predict the evaporative flux from the ground surface. Equilibrium phase change between water and gas phases is typically assumed in these models. Recently, a few studies have questioned this assumption and proposed a coupled model considering kinetic phase change. However, none of these models were validated against real field data. In this study, a non-isothermal coupled model incorporating kinetic phase change was developed and examined against the measured data from a green roof test module. The model also incorporated a new surface boundary condition for water vapor transport at the ground surface. The measured field data included soil moisture content and temperature at different depths up to the depth of 15 cm below the ground surface. Lysimeter data were collected to determine the evaporation rates. Short and long wave radiation, wind velocity, air ambient temperature and relative humidity were measured and used as model input. Field data were collected for a period of three months during the warm seasons in south eastern Canada. The model was calibrated using one drying period and then several other drying periods were simulated. In general, the model underestimated the evaporation rates in the early stage of the drying period, however, the cumulative evaporation was in good agreement with the field data. The model predicted the trends in temperature and moisture content at the different depths in the green roof module. The simulated temperature was lower than the measured temperature for most of the simulation time with the maximum difference of 5 ° C. The simulated moisture content changes had the same temporal trend as the lysimeter data for the events simulated.

  8. Preparation and pharmaceutical characterization of amorphous cefdinir using spray-drying and SAS-process.

    PubMed

    Park, Junsung; Park, Hee Jun; Cho, Wonkyung; Cha, Kwang-Ho; Kang, Young-Shin; Hwang, Sung-Joo

    2010-08-30

    The aim of this study was to investigate the effects of micronization and amorphorization of cefdinir on solubility and dissolution rate. The amorphous samples were prepared by spray-drying (SD) and supercritical anti-solvent (SAS) process, respectively and their amorphous natures were confirmed by DSC, PXRD and FT-IR. Thermal gravimetric analysis was performed by TGA. SEM was used to investigate the morphology of particles and the processed particle had a spherical shape, while the unprocessed crystalline particle had a needle-like shape. The mean particle size and specific surface area were measured by dynamic light scattering (DLS) and BET, respectively. The DLS result showed that the SAS-processed particle was the smallest, followed by SD and the unprocessed cefdinir. The BET result was the same as DLS result in that the SAS-processed particle had the largest surface area. Therefore, the processed cefdinir, especially the SAS-processed particle, appeared to have enhanced apparent solubility, improved intrinsic dissolution rate and better drug release when compared with SD-processed and unprocessed crystalline cefdinir due not only to its amorphous nature, but also its reduced particle size. Conclusions were that the solubility and dissolution rate of crystalline cefdinir could be improved by physically modifying the particles using SD and SAS-process. Furthermore, SAS-process was a powerful methodology for improving the solubility and dissolution rate of cefdinir. Copyright 2010 Elsevier B.V. All rights reserved.

  9. A comprehensive review of thin-layer drying models used in agricultural products.

    PubMed

    Ertekin, Can; Firat, M Ziya

    2017-03-04

    Drying is one of the widely used methods of grain, fruit, and vegetable preservation. The important aim of drying is to reduce the moisture content and thereby increase the lifetime of products by limiting enzymatic and oxidative degradation. In addition, by reducing the amount of water, drying reduces the crop losses, improves the quality of dried products, and facilitates its transportation, handling, and storage requirements. Drying is a process comprising simultaneous heat and mass transfer within the material, and between the surface of the material and the surrounding media. Many models have been used to describe the drying process for different agricultural products. These models are used to estimate drying time of several products under different drying conditions, and how to increase the drying process efficiency and also to generalize drying curves, for the design and operation of dryers. Several investigators have proposed numerous mathematical models for thin-layer drying of many agricultural products. This study gives a comprehensive review of more than 100 different semitheoretical and empirical thin-layer drying models used in agricultural products and evaluates the statistical criteria for the determination of appropriate model.

  10. Assessment of the lumber drying industry and current potential for value-added processing in Alaska.

    Treesearch

    David L. Nicholls; Kenneth A. Kilborn

    2001-01-01

    An assessment was done of the lumber drying industry in Alaska. Part 1 of the assessment included an evaluation of kiln capacity, kiln type, and species dried, by geographic region of the state. Part 2 of the assessment considered the value-added potential associated with lumber drying. Various costs related to lumber drying were evaluated in an Excel spreadsheet....

  11. Risk management for moisture related effects in dry manufacturing processes: a statistical approach.

    PubMed

    Quiroz, Jorge; Strong, John; Zhang, Lanju

    2016-03-01

    A risk- and science-based approach to control the quality in pharmaceutical manufacturing includes a full understanding of how product attributes and process parameters relate to product performance through a proactive approach in formulation and process development. For dry manufacturing, where moisture content is not directly manipulated within the process, the variability in moisture of the incoming raw materials can impact both the processability and drug product quality attributes. A statistical approach is developed using individual raw material historical lots as a basis for the calculation of tolerance intervals for drug product moisture content so that risks associated with excursions in moisture content can be mitigated. The proposed method is based on a model-independent approach that uses available data to estimate parameters of interest that describe the population of blend moisture content values and which do not require knowledge of the individual blend moisture content values. Another advantage of the proposed tolerance intervals is that, it does not require the use of tabulated values for tolerance factors. This facilitates the implementation on any spreadsheet program like Microsoft Excel. A computational example is used to demonstrate the proposed method.

  12. Ground Test of the Urine Processing Assembly for Accelerations and Transfer Functions

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Almond, Deborah F. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the ground test of the urine processing assembly for accelerations and transfer functions. Details are given on the test setup, test data, data analysis, analytical results, and microgravity assessment. The conclusions of the tests include the following: (1) the single input/multiple output method is useful if the data is acquired by tri-axial accelerometers and inputs can be considered uncorrelated; (2) tying coherence with the matrix yields higher confidence in results; (3) the WRS#2 rack ORUs need to be isolated; (4) and future work includes a plan for characterizing performance of isolation materials.

  13. Employing OpenCL to Accelerate Ab Initio Calculations on Graphics Processing Units.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2017-06-13

    We present an extension of our graphics processing units (GPU)-accelerated quantum chemistry package to employ OpenCL compute kernels, which can be executed on a wide range of computing devices like CPUs, Intel Xeon Phi, and AMD GPUs. Here, we focus on the use of AMD GPUs and discuss differences as compared to CUDA-based calculations on NVIDIA GPUs. First illustrative timings are presented for hybrid density functional theory calculations using serial as well as parallel compute environments. The results show that AMD GPUs are as fast or faster than comparable NVIDIA GPUs and provide a viable alternative for quantum chemical applications.

  14. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE PAGES

    Doche, A.; Beekman, C.; Corde, S.; ...

    2017-10-27

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  15. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doche, A.; Beekman, C.; Corde, S.

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  16. Theory of unfolded cyclotron accelerator

    NASA Astrophysics Data System (ADS)

    Rax, J.-M.; Robiche, J.

    2010-10-01

    An acceleration process based on the interaction between an ion, a tapered periodic magnetic structure, and a circularly polarized oscillating electric field is identified and analyzed, and its potential is evaluated. A Hamiltonian analysis is developed in order to describe the interplay between the cyclotron motion, the electric acceleration, and the magnetic modulation. The parameters of this universal class of magnetic modulation leading to continuous acceleration without Larmor radius increase are expressed analytically. Thus, this study provides the basic scaling of what appears as a compact unfolded cyclotron accelerator.

  17. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  18. Laboratory Testing of a Fluidized-Bed Dry-Scrubbing Process for the Removal of Acidic Gases from a Simulated Incinerator Flue Gas

    DTIC Science & Technology

    1989-04-01

    100 MW). Cost data for two conventional wet processes (limestone and wet lime) are shown in Table 5.1. Table 5.1. Costs for flue gas desulfurization ...Results of short-term dry-scrubbing tests ............... 8 5.1 Costs for flue gas desulfurization systems .............. 15 A.1 Detailed description of...this report is part of an effort by USATHAMA to develop and test a flue gas dry-scrubbing system that can be used as a replacement for wet scrubbers for

  19. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    PubMed Central

    Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856

  20. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions.

    PubMed

    Groot, S P C; Surki, A A; de Vos, R C H; Kodde, J

    2012-11-01

    Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. methods: Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice.

  1. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  2. Freeze-drying of lactic acid bacteria.

    PubMed

    Fonseca, Fernanda; Cenard, Stéphanie; Passot, Stéphanie

    2015-01-01

    Lactic acid bacteria are of great importance for the food and biotechnology industry. They are widely used as starters for manufacturing food (e.g., yogurt, cheese, fermented meats, and vegetables) and probiotic products, as well as for green chemistry applications. Freeze-drying or lyophilization is a convenient method for preservation of bacteria. By reducing water activity to values below 0.2, it allows long-term storage and low-cost distribution at suprazero temperatures, while minimizing losses in viability and functionality. Stabilization of bacteria via freeze-drying starts with the addition of a protectant solution to the bacterial suspension. Freeze-drying includes three steps, namely, (1) freezing of the concentrated and protected cell suspension, (2) primary drying to remove ice by sublimation, and (3) secondary drying to remove unfrozen water by desorption. In this chapter we describe a method for freeze-drying of lactic acid bacteria at a pilot scale, thus allowing control of the process parameters for maximal survival and functionality recovery.

  3. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  4. Optimization and characterization of spray-dried IgG formulations: a design of experiment approach.

    PubMed

    Faghihi, Homa; Najafabadi, Abdolhosein Rouholamini; Vatanara, Alireza

    2017-10-24

    The purpose of the present study is to optimize a spray-dried formulation as a model antibody regarding stability and aerodynamic property for further aerosol therapy of this group of macromolecules. A three-factor, three-level, Box-Behnken design was employed milligrams of Cysteine (X 1 ), Trehalose (X 2 ), and Tween 20 (X 3 ) as independent variables. The dependent variables were quantified and the optimized formulation was prepared accordingly. SEC-HPLC and FTIR-spectroscopy were conducted to evaluate the molecular and structural status of spray-dried preparations. Particle characterization of optimized sample was performed with the aid of DSC, SEM, and TSI examinations. Experimental responses of a total of 17 formulations resulted in yield values, (Y 1 ), ranging from 21.1 ± 0.2 to 40.2 ± 0.1 (%); beta-sheet content, (Y 2 ), from 66.22 ± 0.19 to 73.78 ± 0.26 (%); amount of aggregation following process, (Y 3 ), ranging from 0.11 ± 0.03 to 0.95 ± 0.03 (%); and amount of aggregation upon storage, (Y 4 ), from 0.81 ± 0.01 to 3.13 ± 0.64 (%) as dependent variables. Results-except for those of the beta sheet content-were fitted to quadratic models describing the inherent relationship between main factors. Co-application of Cysteine and Tween 20 preserved antibody molecules from molecular degradation and improved immediate and accelerated stability of spry-dried antibodies. Validation of the optimization study indicated high degree of prognostic ability of response surface methodology in preparation of stable spray-dried IgG. Graphical abstract Spray drying of IgG in the presence of Trehalose, Cysteine and Tween 20.

  5. Factors affecting dry-cured ham consumer acceptability.

    PubMed

    Morales, R; Guerrero, L; Aguiar, A P S; Guàrdia, M D; Gou, P

    2013-11-01

    The objectives of the present study were (1) to compare the relative importance of price, processing time, texture and intramuscular fat in purchase intention of dry-cured ham through conjoint analysis, (2) to evaluate the effect of dry-cured ham appearance on consumer expectations, and (3) to describe the consumer sensory preferences of dry-cured ham using external preference mapping. Texture and processing time influenced the consumer preferences in conjoint analysis. Red colour intensity, colour uniformity, external fat and white film presence/absence influenced consumer expectations. The consumer disliked hams with bitter and metallic flavour and with excessive saltiness and piquantness. Differences between expected and experienced acceptability were found, which indicates that the visual preference of consumers does not allow them to select a dry-cured ham that satisfies their sensory preferences of flavour and texture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Influence of partial replacement of NaCl with KCl on profiles of volatile compounds in dry-cured bacon during processing.

    PubMed

    Wu, Haizhou; Zhuang, Hong; Zhang, Yingyang; Tang, Jing; Yu, Xiang; Long, Men; Wang, Jiamei; Zhang, Jianhao

    2015-04-01

    This study investigated the influence of partial substitution of NaCl with KCl on the formation of volatile compounds in bacons during processing using a purge and trap dynamic headspace GC/MS system. Three substitutions were 0% KCl (I), 40% KCl (II), and 70% KCl (III). The profiles of the volatile compounds significantly changed during processing, particularly during the drying/ripening. At the end of process, the bacons from substitution III formed significantly higher levels of lipid-derived volatiles, such as straight chain aldehydes, hydrocarbons than bacons from substitution I and II, whereas the latter formed higher levels of volatiles from amino acid degradation such as 3-methylbutanal. There were very few differences in volatile formation between 0% and 40% KCl application. These results suggest that K(+) substitution of Na(+) by more than 40% may significantly change profiles of volatiles in finished dry-cured bacons and therefore would result in changes in the product aroma and/or flavour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Dry and Semi-Dry Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  8. Development of Friction Stir Processing for Repair of Nuclear Dry Cask Storage System Canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Kenneth A.; Sutton, Ben; Grant, Glenn J.

    The Nuclear Regulatory Commission has identified chloride-induced stress corrosion cracking (CISCC) of austenitic stainless steel dry cask storage systems (DCSS) as an area of great concern. Friction Stir Processing (FSP) was used to repair laboratory-generated stress corrosion cracking (SCC) in representative stainless steel 304 coupons. Results of this study show FSP is a viable method for repair and mitigation CISCC. This paper highlights lessons learned and developed techniques relative to FSP development for crack repair in sensitized thick section stainless steel 304. These include: development of process parameters, welding at low spindle speed, use of weld power and temperature controlmore » and optimization of these controls. NDE and destructive analysis are also presented to demonstrate effectiveness of the developed methods for SCC crack repair.« less

  9. Auroral particle acceleration: An example of a universal plasma process

    NASA Astrophysics Data System (ADS)

    Haerendel, G.

    1980-06-01

    The occurrence of discrete and narrow auroral arcs is attributed to a sudden release of magnetic tensions set up in a magnetospheric-ionospheric current circuit of high strength. At altitudes of several 1000 km the condition of frozen in magnetic fields can be broken temporarily in thin regions corresponding to the observed width of auroral arcs. This implies magnetic field-aligned potential drops of several kilovolts supported by certain anomalous transport processes which can only be maintained in a quasi-stationary fashion if the current density exceeds a critical limit. The region of field aligned potential drops is structured by two pairs of standing waves which are generalized Alfven waves of large amplitude across which the parallel electric field has a finite jump. The waves are emitted from the leading edge of the acceleration region which propagates slowly into the stressed magnetic field.

  10. Application of a novel 3-fluid nozzle spray drying process for the microencapsulation of therapeutic agents using incompatible drug-polymer solutions.

    PubMed

    Sunderland, Tara; Kelly, John G; Ramtoola, Zebunnissa

    2015-04-01

    The aim of this study was to evaluate a novel 3-fluid concentric nozzle (3-N) spray drying process for the microencapsulation of omeprazole sodium (OME) using Eudragit L100 (EL100). Feed solutions containing OME and/or EL100 in ethanol were assessed visually for OME stability. Addition of OME solution to EL100 solution resulted in precipitation of OME followed by degradation of OME reflected by a colour change from colourless to purple and brown. This was related to the low pH of 2.8 of the EL100 solution at which OME is unstable. Precipitation and progressive discoloration of the 2-fluid nozzle (2-N) feed solution was observed over the spray drying time course. In contrast, 3-N solutions of EL100 or OME in ethanol were stable over the spray drying period. Microparticles prepared using either nozzle showed similar characteristics and outer morphology however the internal morphology was different. DSC showed a homogenous matrix of drug and polymer for 2-N microparticles while 3-N microparticles had defined drug and polymer regions distributed as core and coat. The results of this study demonstrate that the novel 3-N spray drying process can allow the microencapsulation of a drug using an incompatible polymer and maintain the drug and polymer in separate regions of the microparticles.

  11. Dehydration of Traditional Dried Instant Noodle (Mee Siput) Using Controlled Temperature & Humidity Dryer

    NASA Astrophysics Data System (ADS)

    Mamat, K. A.; Yusof, M. S.; Yusoff, Wan Fauziah Wan; Zulafif Rahim, M.; Hassan, S.; Rahman, M. Qusyairi. A.; Karim, M. A. Abd

    2017-05-01

    Drying process is an essential step to produce instant noodles. Yet, the industries especially Small and Medium Enterprises (SMEs), is seeking for an efficient method to dry the noodles. This paper discusses the performance of an invented drying system which employed heating and humidifying process. The drying system was tested using 30 kilogram of the raw noodle known as “Mee Siput”. Temperature controlled system were used in the study to control the temperature of the drying process and prevent the dried noodles from damage by maintaining the temperature of lower than 80°C. The analysis shows that the system was drastically decreased the humidity from 80% to 40% just after 200 minutes of the drying process. The complete dehydration time of noodle has also decreased to only 4 hours from 16 hours when using traditional drying system without sacrificed the good quality of the dried noodle. In overall, the invented system believed to increase the production capacity of the noodle, reduce cost of production which would highly beneficial for Small Medium Industries (SMEs) in Malaysia.

  12. Freeze-drying of yeast cultures.

    PubMed

    Bond, Chris

    2007-01-01

    A method is described that allows yeast species to be stored using a variation on the standard freeze-drying method, which employs evaporative cooling in a two-stage process. Yeast cultures are placed in glass ampoules after having been mixed with a lyoprotectant. Primary drying is carried out using a centrifuge head connected to a standard freeze-dryer. Once the centrifuge head is running, air is removed and evaporated liquid is captured in the freeze-dryer. Centrifugation continues for 15 min and primary drying for a further 3 h. The ampoules are constricted using a glass blowing torch. They are then placed on the freeze-dryer manifold for secondary drying under vacuum overnight, using phosphorus pentoxide as a desiccant. The ampoules are sealed and removed from the manifold by melting the constricted section. Although the process causes an initial large drop in viability, further losses after storage are minimal. Yeast strains have remained viable for more than 30 yr when stored using this method and sufficient cells are recovered to produce new working stocks. Although survival rates are strain specific, nearly all National Collection of Yeast Cultures strains covering most yeast genera, have been successfully stored with little or no detectable change in strain characteristics.

  13. Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing.

    PubMed

    Salahshoor, M; Li, C; Liu, Z Y; Fang, X Y; Guo, Y B

    2018-02-01

    Biodegradable magnesium-calcium (MgCa) alloy is a very attractive orthopedic biomaterial compared to permanent metallic alloys. However, the critical issue is that MgCa alloy corrodes too fast in the human organism. Compared to dry cutting, the synergistic dry cutting-finish burnishing can significantly improve corrosion performance of MgCa0.8 (wt%) alloy by producing a superior surface integrity including good surface finish, high compressive hook-shaped residual stress profile, extended strain hardening in subsurface, and little change of grain size. A FEA model was developed to understand the plastic deformation of MgCa materials during burnishing process. The measured polarization curves, surface micrographs, and element distributions of the corroded surfaces by burnishing show an increasing and uniform corrosion resistance to simulated body fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Lack of a synergistic effect of arginine-glutamic acid on the physical stability of spray-dried bovine serum albumin.

    PubMed

    Reslan, Mouhamad; Demir, Yusuf K; Trout, Bernhardt L; Chan, Hak-Kim; Kayser, Veysel

    2017-09-01

    Improving the physical stability of spray-dried proteins is essential for enabling pulmonary delivery of biotherapeutics as a noninvasive alternative to injections. Recently, a novel combination of two amino acids - l-arginine (l-Arg) and l-glutamic acid (l-Glu), has been reported to have synergistic protein-stabilizing effects on various protein solutions. Using spray-dried bovine serum albumin (BSA) reconstituted in solution as a model protein, we investigated the synergistic effect of these amino acids on the physical stability of proteins. Five BSA solutions were prepared: (1) BSA with no amino acids (control); (2) with 50 mM l-Arg; (3) with 200 mM l-Arg, (4) with 50 mM l-Glu and (5) with 25:25 mM of Arg:Glu. All solutions were spray-dried and accelerated studies at high temperatures were performed. Following accelerated studies, monomer BSA loss was measured using SE-HPLC. We found that l-Arg significantly improved the physical stability of spray-dried BSA even at low concentrations, however, when combined with l-Glu, was ineffective at reducing monomer BSA loss. Our findings demonstrate the limitations in using Arg-Glu for the stabilization of spray-dried BSA. Furthermore, we found that a low concentration of l-Glu enhanced monomer BSA loss. These findings may have significant implications on the design of future biotherapeutic formulations.

  15. Open sun drying of green bean: influence of pretreatments on drying kinetics, colour and rehydration capacity

    NASA Astrophysics Data System (ADS)

    İsmail, Osman; Kantürk Figen, Aysel; Pişkin, Sabriye

    2017-04-01

    Green bean ( Phaseolus Vulgaris L), classified under legume family, is a primary source of dietary protein in human diets especially in the agricultural countries. Green bean is susceptible to rapid deterioration because of their high moisture content and in order to prevent and present the green bean drying process is applied. In this study, effects of pretreatments on drying kinetics, colour and rehydration capacity of green bean were investigated. It was observed that the pretreatment affected the drying time. The shortest drying times were obtained from pretreated samples with blanched. Drying times were determined as 47, 41 and 29 h for natural, salted and blanch, respectively. The results showed that pretreatment and ambient temperature significantly ( P = 0.05) affected the drying rate and the drying time. The effective moisture diffusivity was determined by using Fick's second law and was found to be range between 3.15 × 10-10 and 1.2 × 10-10 m2/s for the pre-treated and natural green bean samples. The rehydration values were obtained 2.75, 2.71, 2.29 (g water/g dry matter) for the blanched, salted and natural samples. The effective diffusion coefficients were calculated using the data collected during the falling rate period and the experimental data are fitted to seven thin layer drying models which found in the literature. The Logarithmic model was found to best describe the drying behavior of fresh green beans under open air sun. Rehydration time and color parameters had been determined in order to improve the quality of dried green bean. Regarding with rehydration time and colour data, the best results were obtained at blanched drying conditions.

  16. Organic scintillator detector response simulations with DRiFT

    NASA Astrophysics Data System (ADS)

    Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.

    2016-09-01

    This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.

  17. Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying.

    PubMed

    Venkitasamy, Chandrasekar; Brandl, Maria T; Wang, Bini; McHugh, Tara H; Zhang, Ruihong; Pan, Zhongli

    2017-04-04

    Pistachio nuts have been associated with outbreaks of foodborne disease and the industry has been impacted by numerous product recalls due to contamination with Salmonella enterica. The current hot air drying of pistachios has low energy efficiency and drying rates, and also does not guarantee the microbial safety of products. In the study described herein, dehulled and water-sorted pistachios with a moisture content (MC) of 38.14% (wet basis) were dried in a sequential infrared and hot air (SIRHA) drier to <9% MC. The decontamination efficacy was assessed by inoculating pistachios with Enterococcus faecium, a surrogate of Salmonella enterica used for quality control in the almond industry. Drying with IR alone saved 105min (34.4%) of drying time compared with hot air drying. SIRHA drying of pistachios for 2h with infrared (IR) heat followed by tempering at a product temperature of 70°C for 2h and then by hot air drying shortened the drying time by 40min (9.1%) compared with drying by hot air only. This SIRHA method also reduced the E. faecium cell population by 6.1-logCFU/g kernel and 5.41-logCFU/g shell of pistachios. The free fatty acid contents of SIRHA dried pistachios were on par with that of hot air dried samples. Despite significant differences in peroxide values (PV) of pistachio kernels dried with the SIRHA method compared with hot air drying at 70°C, the PV were within the permissible limit of 5Meq/kg for edible oils. Our findings demonstrate the efficacy of SIRHA drying in achieving simultaneous drying and decontamination of pistachios. Published by Elsevier B.V.

  18. Effects of spring season solar drying process on sanitation indicators in sewage sludge and potential as a method for fertilizer production.

    PubMed

    Sypuła, Małgorzata; Paluszak, Zbigniew; Ligocka, Anna; Skowron, Krzysztof

    2013-01-01

    The agricultural use of sewage sludge is possible on condition of maintaining microbiological and parasitological standards, and one of the most modern methods improving its sanitary state is solar drying. In the presented study, the effect of this process on the elimination of indicator microorganisms (Escherichia coli, Salmonella Senftenberg W775, Enterococcus spp.) and eggs of Ascaris suum introduced into the biomass of sludge was examined. The experiment was carried out in the spring period with a maximal temperature of 18 °C inside the drying plant. Bacteria and parasite eggs were introduced into special carriers (cylinders filled with sewage sludge) and placed at selected points of the drier. The carriers were removed every 7 days and subject to a research procedure in order to estimate the number of bacteria and percentage of live eggs of Ascaris suum. Sanitization of the material was not obtained, since after 28 days of the process the final product contained a large concentration of Enterococcus spp. and S. Senftenberg W775 (10(5) -10(9) MPNg(-1)). Only the number of E. coli decreased by 6 log. During the process, the fastest decrease in the number of bacteria was observed in E. coli (ca 0.2 log/day), slower in enterococci (0.02-0.081 log/day), and the slowest in bacilli of the genus Salmonella (0.011-0.061 log/day). Sludge after drying also still contained 57-66% of live eggs of A. suum. The study proved that the solar drying of sludge in the spring period results in a product which poses a hazard for public and animal health and environmental sustainability, and should not be used as a fertilizer.

  19. Gelcasting compositions having improved drying characteristics and machinability

    DOEpatents

    Janney, Mark A.; Walls, Claudia A. H.

    2001-01-01

    A gelcasting composition has improved drying behavior, machinability and shelf life in the dried and unfired state. The composition includes an inorganic powder, solvent, monomer system soluble in the solvent, an initiator system for polymerizing the monomer system, and a plasticizer soluble in the solvent. Dispersants and other processing aides to control slurry properties can be added. The plasticizer imparts an ability to dry thick section parts, to store samples in the dried state without cracking under conditions of varying relative humidity, and to machine dry gelcast parts without cracking or chipping. A method of making gelcast parts is also disclosed.

  20. Stabilities of Dried Suspensions of Influenza Virus Sealed in a Vacuum or Under Different Gases

    PubMed Central

    Greiff, Donald; Rightsel, Wilton A.

    1969-01-01

    Suspensions of purified influenza virus, dried to a 1.4% content of residual moisture by sublimation of ice in vacuo, were sealed in a vacuum or under different gases of high purity. The stabilities of the several preparations were determined by an accelerated storage test. Based on the times predicted for the dried preparations stored at different temperatures to lose 1 log of infectivity titer, the order of stabilities in relation to sealing in vacuum or under different gases was as follows: helium > hydrogen > vacuum > argon > nitrogen > oxygen > carbon dioxide. Images PMID:5797938

  1. Random-walk diffusion and drying of porous materials

    NASA Astrophysics Data System (ADS)

    Mehrafarin, M.; Faghihi, M.

    2001-12-01

    Based on random-walk diffusion, a microscopic model for drying is proposed to explain the characteristic features of the drying-rate curve of porous materials. The constant drying-rate period is considered as a normal diffusion process. The transition to the falling-rate regime is attributed to the fractal nature of porous materials which results in crossover to anomalous diffusion.

  2. The Effect of Operating Conditions on Drying Characteristics and Quality of Ginger (Zingiber Officinale Roscoe) Using Combination of Solar Energy-Molecular Sieve Drying System

    NASA Astrophysics Data System (ADS)

    Hasibuan, R.; Zamzami, M. A.

    2017-03-01

    Ginger (Zingiber officinale Roscoe) is an agricultural product that can be used as beverages and snacks, and especially for traditional medicines. One of the important stages in the processing of ginger is drying. The drying process intended to reduce the water content of 85-90% to 8-10%, making it safe from the influence of fungi or insecticide. During the drying takes place, the main ingredient contained in ginger is homologous ketone phenolic known as gingerol are chemically unstable at high temperatures, for the drying technology is an important factor in maintaining the active ingredient (gingerol) which is in ginger. The combination of solar energy and molecular sieve dryer that are used in the research is capable of operating 24 hours. The purpose of this research is to study the effect of operating conditions (in this case the air velocity) toward the drying characteristics and the quality of dried ginger using the combination of solar energy and molecular sieve dryer. Drying system consist of three main parts which is: desiccator, solar collector, and the drying chamber. To record data changes in the mass of the sample, a load cell mounted in the drying chamber, and then connected to the automated data recording system using a USB data cable. All data of temperature and RH inside the dryer box and the change of samples mass recorded during the drying process takes place and the result is stored in the form of Microsoft Excel. The results obtained, shows that the air velocity is influencing the moisture content and ginger drying rate, where the moisture content equilibrium of ginger for the air velocity of 1.3 m/s was obtained on drying time of 360 minutes and moisture content of 2.8%, at 1.0 m/s was obtained on drying time of 300 minutes and moisture content of 1.4%, at 0, 8 m/s was obtained at 420 minutes drying time and the moisture content is 2.0%. The drying characteristics shows that there are two drying periods, which is: the increasing drying rate

  3. Solvent-free dry powder coating process for low-cost manufacturing of LiNi1/3Mn1/3Co1/3O2 cathodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Al-Shroofy, Mohanad; Zhang, Qinglin; Xu, Jiagang; Chen, Tao; Kaur, Aman Preet; Cheng, Yang-Tse

    2017-06-01

    We report a solvent-free dry powder coating process for making LiNi1/3Mn1/3Co1/3O2 (NMC) positive electrodes in lithium-ion batteries. This process eliminates volatile organic compound emission and reduces thermal curing time from hours to minutes. A mixture of NMC, carbon black, and poly(vinylidene difluoride) was electrostatically sprayed onto an aluminum current collector, forming a uniformly distributed electrode with controllable thickness and porosity. Charge/discharge cycling of the dry-powder-coated electrodes in lithium-ion half cells yielded a discharge specific capacity of 155 mAh g-1 and capacity retention of 80% for more than 300 cycles when the electrodes were tested between 3.0 and 4.3 V at a rate of C/5. The long-term cycling performance and durability of dry-powder coated electrodes are similar to those made by the conventional wet slurry-based method. This solvent-free dry powder coating process is a potentially lower-cost, higher-throughput, and more environmentally friendly manufacturing process compared with the conventional wet slurry-based electrode manufacturing method.

  4. Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by-product.

    PubMed

    Figueroa, Jorge G; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Quirantes-Piné, Rosa; Segura-Carretero, Antonio

    2018-04-16

    The aim of the present study was to optimize the extraction of phenolic compounds in avocado peel using pressurized liquid extraction (PLE) with GRAS solvents. Response surface methodology (RSM) based on Central Composite Design 2 2 model was used in order to optimize PLE conditions. Moreover, the effect of air drying temperature on the total polyphenol content (TPC) and individual phenolic compounds concentration were evaluated. The quantification of individual compounds was performed by HPLC-DAD-ESI-TOF-MS. The optimized extraction conditions were 200°C as extraction temperature and 1:1 v/v as ethanol/water ratio. Regarding to the effect of drying, the highest TPC was obtained with a drying temperature of 85°C. Forty seven phenolic compounds were quantified in the obtained extracts, showing that phenolic acids found to be the more stables compounds to drying process, while procyanidins were the more thermolabiles analytes. To our knowledge, this is the first available study in which phenolic compounds extraction was optimized using PLE and such amount of phenolic compounds was quantified in avocado peel. These results confirm that PLE represents a powerful tool to obtain avocado peel extracts with high concentration in bioactive compounds suitable for its use in the food, cosmetic or pharmaceutical sector. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. [Treatment of Flue Gas from Sludge Drying Process by A Thermophilic Biofilter].

    PubMed

    Chen, Wen-he; Deng, Ming-jia; Luo, Hui; Ding, Wen-iie; Li, Lin; Lin, Jian; Liu, Jun-xin

    2016-01-15

    A thermophilic biofilter was employed to treat the flue gas generated from sludge drying process, and the performance in both the start period and the stationary phase was studied under the gas flow rate of 2 700-3 100 m3 x h(-1) and retention time of 21.88-25.10 s. The results showed that the thermophilic biofilter could effectively treat gases containing sulfur dioxide, ammonia and volatile organic compounds (VOC). The removal efficiencies could reach 100%, 93.61% and 87.01%, respectively. Microbial analysis indicated that most of the population belonged to thermophilic bacteria. Paenibacillus sp., Chelatococcus sp., Bacillus sp., Clostridium thermosuccinogenes, Pseudoxanthomonas sp. and Geobacillus debilis which were abundant in the thermophilic biofilter, had the abilities of denitrification, desulfurization and degradation of volatile organic compounds.

  6. Impact of critical process and formulation parameters affecting in-process stability of lactate dehydrogenase during the secondary drying stage of lyophilization: a mini freeze dryer study.

    PubMed

    Luthra, Sumit; Obert, Jean-Philippe; Kalonia, Devendra S; Pikal, Michael J

    2007-09-01

    The stresses during the secondary-drying stage of lyophilization were investigated using a controlled humidity mini-freeze-dryer [Luthra S, Obert J-P, Kalonia DS, Pikal MJ. 2007. Investigation of drying stresses on proteins during lyophilization: Differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer. J Pharm Sci 96: 61-70.]. Lactate dehydrogenase (LDH), was formulated in: (1) Tween 80, (2) citrate buffer, and (3) both Tween 80 and citrate buffer. Protein activity recovery was measured as a function of relative humidity (RH), product temperature, and drying duration. Studies were also conducted with different concentrations of sucrose, sorbitol, and poly (vinyl pyrrolidone) (PVP). LDH stability was affected to a small extent by RH and significantly by drying temperature and duration. Complete stabilization of LDH was observed when lyophilized with sucrose and PVP but only a partial stabilization was observed with sorbitol. The mini-freeze-dryer enabled studying the process parameters independently, unlike a conventional study where these effects are generally convoluted. The results suggest that the stability of the protein is a function of the dynamics of the system during lyophilization. The origin of the stabilization effect of sucrose, which could, in principle, be attributed both to direct interaction with the protein or vitrification of the protein was elucidated using lyoprotectants that can either hydrogen bond well with the protein (sorbitol) or form a good glass (PVP). It appears both effects are required for complete stabilization of the protein. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  7. 40 CFR 405.100 - Applicability; description of the dry milk subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are applicable to discharges resulting from the manufacture of dry whole milk, dry skim milk and dry... milk subcategory. 405.100 Section 405.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Dry Milk...

  8. Prediction of porosity of food materials during drying: Current challenges and directions.

    PubMed

    Joardder, Mohammad U H; Kumar, C; Karim, M A

    2017-07-18

    Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.

  9. Electron acceleration by turbulent plasmoid reconnection

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.

    2018-04-01

    In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.

  10. Developments in the formulation and delivery of spray dried vaccines.

    PubMed

    Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-10-03

    Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery.

  11. Developments in the formulation and delivery of spray dried vaccines

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Soema, Peter C.; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-01-01

    ABSTRACT Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery. PMID:28925794

  12. A Study on Ohmic Contact to Dry-Etched p-GaN

    NASA Astrophysics Data System (ADS)

    Hu, Cheng-Yu; Ao, Jin-Ping; Okada, Masaya; Ohno, Yasuo

    Low-power dry-etching process has been adopted to study the influence of dry-etching on Ohmic contact to p-GaN. When the surface layer of as-grown p-GaN was removed by low-power SiCl4/Cl2-etching, no Ohmic contact can be formed on the low-power dry-etched p-GaN. The same dry-etching process was also applied on n-GaN to understand the influence of the low-power dry-etching process. By capacitance-voltage (C-V) measurement, the Schottky barrier heights (SBHs) of p-GaN and n-GaN were measured. By comparing the change of measured SBHs on p-GaN and n-GaN, it was suggested that etching damage is not the only reason responsible for the degraded Ohmic contacts to dry-etched p-GaN and for Ohmic contact formatin, the original surface layer of as-grown p-GaN have some special properties, which were removed by dry-etching process. To partially recover the original surface of as-grown p-GaN, high temperature annealing (1000°C 30s) was tried on the SiCl4/Cl2-etched p-GaN and Ohmic contact was obtained.

  13. Investigation of application of two-degree-of-freedom dry tuned-gimbal gyroscopes to strapdown navigation systems. [for use in VTOL aircraft

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The work is described which was accomplished during the investigation of the application of dry-tuned gimbal gyroscopes to strapdown navigation systems. A conventional strapdown configuration, employing analog electronics in conjunction with digital attitude and navigation computation, was examined using various levels of redundancy and both orthogonal and nonorthogonal sensor orientations. It is concluded that the cost and reliability performance constraints which had been established could not be met simultaneously with such a system. This conclusion led to the examination of an alternative system configuration which utilizes an essentially new strapdown system concept. This system employs all-digital signal processing in conjunction with the newly-developed large scale integration (LSI) electronic packaging techniques and a new two-degree-of-freedom dry tuned-gimbal instrument which is capable of providing both angular rate and acceleration information. Such a system is capable of exceeding the established performance goals.

  14. Improved respirable fraction of budesonide powder for dry powder inhaler formulations produced by advanced supercritical CO2 processing and use of a novel additive.

    PubMed

    Miyazaki, Yuta; Aruga, Naoki; Kadota, Kazunori; Tozuka, Yuichi; Takeuchi, Hirofumi

    2017-08-07

    A budesonide (BDS) suspension was obtained via advanced supercritical carbon dioxide (scCO 2 ) processing. Thereafter, the suspension was freeze-dried (FD) to produce BDS particles for dry powder inhaler formulations (scCO 2 /FD processing). The scCO 2 /FD processed BDS powder showed low crystallinity by powder X-ray diffraction and a rough surface by scanning electron microscopy. The respirable fraction of BDS was assessed using a twin impinger and revealed that the amount of the scCO 2 /FD processed sample that reached stage 2 was 4-fold higher than that of the supplied powder. To extend the utility of scCO 2 processing, BDS particles for dry powder inhalers were fabricated by combining the scCO 2 system with various additives. When BDS was processed via scCO 2 /FD in the presence of the novel additive, namely, monoglyceride stearate (MGS), the residual BDS/MGS particles remaining in the capsule and devices decreased, followed by an increase in the respirable fraction of BDS 6-fold higher than with the supplied powder. The scCO 2 /FD processed BDS/MGS particles had a smooth surface, in contrast to the scCO 2 /FD processed BDS particles. A combination of BDS and an appropriate additive in scCO 2 treatment may induce changes in particle surface morphology, leading to an improvement in the inhalation properties of BDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer

    NASA Astrophysics Data System (ADS)

    Matilainen, Mika; Tuononen, Ari

    2015-02-01

    We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.

  16. Combination Chemotherapeutic Dry Powder Aerosols via Controlled Nanoparticle Agglomeration

    PubMed Central

    El-Gendy, Nashwa; Berkland, Cory

    2014-01-01

    Purpose To develop an aerosol system for efficient local lung delivery of chemotherapeutics where nanotechnology holds tremendous potential for developing more valuable cancer therapies. Concurrently, aerosolized chemotherapy is generating interest as a means to treat certain types of lung cancer more effectively with less systemic exposure to the compound. Methods Nanoparticles of the potent anticancer drug, paclitaxel, were controllably assembled to form low density microparticles directly after preparation of the nanoparticle suspension. The amino acid, L-leucine, was used as a colloid destabilizer to drive the assembly of paclitaxel nanoparticles. A combination chemotherapy aerosol was formed by assembling the paclitaxel nanoparticles in the presence of cisplatin in solution. Results Freeze-dried powders of the combination chemotherapy possessed desirable aerodynamic properties for inhalation. In addition, the dissolution rates of dried nanoparticle agglomerate formulations (~60% to 66% after 8 h) were significantly faster than that of micronized paclitaxel powder as received (~18% after 8 h). Interestingly, the presence of the water soluble cisplatin accelerated the dissolution of paclitaxel. Conclusions Nanoparticle agglomerates of paclitaxel alone or in combination with cisplatin may serve as effective chemotherapeutic dry powder aerosols to enable regional treatment of certain lung cancers. PMID:19415471

  17. Drying kinetic of industrial cassava flour: Experimental data in view.

    PubMed

    Odetunmibi, Oluwole A; Adejumo, Oluyemisi A; Oguntunde, Pelumi E; Okagbue, Hilary I; Adejumo, Adebowale O; Suleiman, Esivue A

    2017-12-01

    In this data article, laboratory experimental investigation results on drying kinetic properties: the drying temperature ( T ), drying air velocity ( V ) and dewatering time (Te), each of the factors has five levels, and the experiment was replicated three times and the output: drying rate and drying time obtained, were observed. The experiment was conducted at National Centre for Agricultural Mechanization (NCAM) for a period of eight months, in 2014. Analysis of variance was carried out using randomized complete block design with factorial experiment on each of the outputs: drying rate and drying times of the industrial cassava flour. A clear picture on each of these outputs was provided separately using tables and figures. It was observed that all the main factors as well as two and three ways interactions are significant at 5% level for both drying time and rate. This also implies that the rate of drying grated unfermented cassava mash, to produce industrial cassava flour, depend on the dewatering time (the initial moisture content), temperature of drying, velocity of drying air as well as the combinations of these factors altogether. It was also discovered that all the levels of each of these factors are significantly difference from one another. In summary, the time of drying is a function of the dewatering time which was responsible for the initial moisture content. The higher the initial moisture content the longer the time of drying, and the lower the initial moisture content, the lower the time of drying. Also, the higher the temperature of drying the shorter the time of drying and vice versa. Also, the air velocity effect on the drying process was significant. As velocity increases, rate of drying also increases and vice versa. Finally, it can be deduced that the drying kinetics are influenced by these processing factors.

  18. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor

    PubMed Central

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin. PMID:24729702

  19. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor.

    PubMed

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin.

  20. Accelerated rescaling of single Monte Carlo simulation runs with the Graphics Processing Unit (GPU).

    PubMed

    Yang, Owen; Choi, Bernard

    2013-01-01

    To interpret fiber-based and camera-based measurements of remitted light from biological tissues, researchers typically use analytical models, such as the diffusion approximation to light transport theory, or stochastic models, such as Monte Carlo modeling. To achieve rapid (ideally real-time) measurement of tissue optical properties, especially in clinical situations, there is a critical need to accelerate Monte Carlo simulation runs. In this manuscript, we report on our approach using the Graphics Processing Unit (GPU) to accelerate rescaling of single Monte Carlo runs to calculate rapidly diffuse reflectance values for different sets of tissue optical properties. We selected MATLAB to enable non-specialists in C and CUDA-based programming to use the generated open-source code. We developed a software package with four abstraction layers. To calculate a set of diffuse reflectance values from a simulated tissue with homogeneous optical properties, our rescaling GPU-based approach achieves a reduction in computation time of several orders of magnitude as compared to other GPU-based approaches. Specifically, our GPU-based approach generated a diffuse reflectance value in 0.08ms. The transfer time from CPU to GPU memory currently is a limiting factor with GPU-based calculations. However, for calculation of multiple diffuse reflectance values, our GPU-based approach still can lead to processing that is ~3400 times faster than other GPU-based approaches.