Sample records for accelerate manufacturing cost

  1. Does technology acceleration equate to mask cost acceleration?

    NASA Astrophysics Data System (ADS)

    Trybula, Walter J.; Grenon, Brian J.

    2003-06-01

    The technology acceleration of the ITRS Roadmap has many implications on both the semiconductor sup-plier community and the manufacturers. INTERNATIONAL SEMATECH has revaluated the projected cost of advanced technology masks. Building on the methodology developed in 1996 for mask costs, this work provided a critical review of mask yields and factors relating to the manufacture of photolithography masks. The impact of the yields provided insight into the learning curve for leading edge mask manufac-turing. The projected mask set cost was surprising, and the ability to provide first and second year cost estimates provided additional information on technology introduction. From this information, the impact of technology acceleration can be added to the projected yields to evaluate the impact on mask costs.

  2. Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detrick, Adam

    The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already hadmore » the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today

  3. Solar Photovoltaic Manufacturing Cost Analysis | Energy Analysis | NREL

    Science.gov Websites

    Solar Photovoltaic Manufacturing Cost Analysis Solar Photovoltaic Manufacturing Cost Analysis NREL's photovoltaic (PV) manufacturing cost analysis-part of our broader effort supporting manufacturing manufacturing sector, and is that growth sustainable? NREL's manufacturing cost analysis studies show that: U.S

  4. Manufacturing cost/design trade-studies for flywheel

    NASA Astrophysics Data System (ADS)

    Noton, B. R.

    1982-12-01

    A procedure is described for enabling comparison of different flywheel designs based on both performance ratings, and manufacturing and inspection cost. Development of the methodology requires identification of all the steps in the manufacture and inspection of each design, the cost drivers, and the ground rules. A man-hour summary must also be provided. The approach to determine the recurring and nonrecurring manufacturing man-hours is presented. Cost drivers in composite manufacture are discussed as well as the approach to address cost driver data from industry. Some indications for cost driver data from industry. Some indications for cost reduction are included.

  5. Tritium target manufacturing for use in accelerators

    NASA Astrophysics Data System (ADS)

    Bach, P.; Monnin, C.; Van Rompay, M.; Ballanger, A.

    2001-07-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium target on copper substrate, and going to more sophisticated devices. A wide range of possible uses is covered, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets for higher lifetimes, or large size rotating targets for accelerators used in boron neutron therapy. Activity of targets lies in the 1 to 1000 Curie, diameter of targets being up to 30 cm. Special targets are also considered, including surface layer targets for lowering tritium desorption under irradiation, or those made from different kinds of occluders such as titanium, zirconium, erbium, scandium, with different substrates. It is then possible to optimize either neutron output, or lifetime and stability, or thermal behavior.

  6. Cost Accounting in the Automated Manufacturing Environment

    DTIC Science & Technology

    1988-06-01

    1 NAVAL POSTGRADUATE SCHOOL M terey, California 0 DTIC II ELECTE R AD%$° NO 0,19880 -- THESIS COST ACCOUNTING IN THE AUTOMATED MANUFACTURING...PROJECT TASK WORK UNIT ELEMENT NO. NO NO ACCESSION NO 11. TITLE (Include Security Classification) E COST ACCOUNTING IN THE AUTOMATED MANUFACTURING...GROUP ’" Cost Accounting ; Product Costing ; Automated Manufacturing; CAD/CAM- CIM 19 ABSTRACT (Continue on reverse if necessary and identify by blo

  7. Manufacturing cost/design system: A CAD/CAM dialogue

    NASA Technical Reports Server (NTRS)

    Loshigian, H. H.; Rachowitz, B. I.; Judson, D.

    1980-01-01

    The development of the Manufacturing Cost/Design System (MC/DS) will provide the aerospace design engineer a tool with which to perform heretofore impractical design manufacturing cost tradeoffs. The Air Force Integrated Computer Aided Manufacturing (ICAM) Office has initiated the development and demonstration of an MC/DS which, when fully implemented, will integrate both design and manufacturing data bases to provide real time visibility into the manufacturing costs associated with various design options. The first release of a computerized system will be made before the end of 1981.

  8. Methodology for Estimating Total Automotive Manufacturing Costs

    DOT National Transportation Integrated Search

    1983-04-01

    A number of methodologies for estimating manufacturing costs have been developed. This report discusses the different approaches and shows that an approach to estimating manufacturing costs in the automobile industry based on surrogate plants is pref...

  9. Accelerating yield ramp through design and manufacturing collaboration

    NASA Astrophysics Data System (ADS)

    Sarma, Robin C.; Dai, Huixiong; Smayling, Michael C.; Duane, Michael P.

    2004-12-01

    Ramping an integrated circuit from first silicon bring-up to production yield levels is a challenge for all semiconductor products on the path to profitable market entry. Two approaches to accelerating yield ramp are presented. The first is the use of laser mask writers for fast throughput, high yield, and cost effective pattern transfer. The second is the use of electrical test to find a defect and identify the physical region to probe in failure analysis that is most likely to uncover the root cause. This provides feedback to the design team on modifications to make to the design to avoid the yield issue in a future tape-out revision. Additionally, the process parameter responsible for the root cause of the defect is forward annotated through the design, mask and wafer coordinate systems so it can be monitored in-line on subsequent lots of the manufacturing run. This results in an improved recipe for the manufacturing equipment to potentially prevent the recurrence of the defect and raise yield levels on the following material. The test diagnostics approach is enabled by the seamless traceability of a feature across the design, photomask and wafer, made possible by a common data model for design, mask pattern generation and wafer fabrication.

  10. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs: Cost Assessment of Manufacturing/Design Concepts

    NASA Technical Reports Server (NTRS)

    Metschan, S.

    2000-01-01

    The objective of the Integral Airframe Structures (IAS) program was to demonstrate, for an integrally stiffened structural concept, performance and weight equal to "built-up" structure with lower manufacturing cost. This report presents results of the cost assessment for several design configuration/manufacturing method combinations. The attributes of various cost analysis models were evaluated and COSTRAN selected for this study. A process/design cost evaluation matrix was developed based on material, forming, machining, and assembly of structural sub-elements and assembled structure. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current built-up technology baseline. This would correspond to a total cost reduction of $1.7 million per ship set for a 777-sized airplane. However, there are important outstanding issues with regard to the cost of capacity of high technology machinery, and the ability to cost-effectively provide surface finish acceptable to the commercial aircraft industry. The projected high raw material cost of large extrusions also played an important role in the trade-off between plate and extruded concepts.

  11. Manufacturing Cost Levelization Model – A User’s Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, William R.; Shehabi, Arman; Smith, Sarah Josephine

    The Manufacturing Cost Levelization Model is a cost-performance techno-economic model that estimates total large-scale manufacturing costs for necessary to produce a given product. It is designed to provide production cost estimates for technology researchers to help guide technology research and development towards an eventual cost-effective product. The model presented in this user’s guide is generic and can be tailored to the manufacturing of any product, including the generation of electricity (as a product). This flexibility, however, requires the user to develop the processes and process efficiencies that represents a full-scale manufacturing facility. The generic model is comprised of several modulesmore » that estimate variable costs (material, labor, and operating), fixed costs (capital & maintenance), financing structures (debt and equity financing), and tax implications (taxable income after equipment and building depreciation, debt interest payments, and expenses) of a notional manufacturing plant. A cash-flow method is used to estimate a selling price necessary for the manufacturing plant to recover its total cost of production. A levelized unit sales price ($ per unit of product) is determined by dividing the net-present value of the manufacturing plant’s expenses ($) by the net present value of its product output. A user defined production schedule drives the cash-flow method that determines the levelized unit price. In addition, an analyst can increase the levelized unit price to include a gross profit margin to estimate a product sales price. This model allows an analyst to understand the effect that any input variables could have on the cost of manufacturing a product. In addition, the tool is able to perform sensitivity analysis, which can be used to identify the key variables and assumptions that have the greatest influence on the levelized costs. This component is intended to help technology researchers focus their research attention on

  12. Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective.

    PubMed

    Thomas, Douglas

    2016-07-01

    There are three primary aspects to the economics of additive manufacturing: measuring the value of goods produced, measuring the costs and benefits of using the technology, and estimating the adoption and diffusion of the technology. This paper provides an updated estimate of the value of goods produced. It then reviews the literature on additive manufacturing costs and identifies those instances in the literature where this technology is cost effective. The paper then goes on to propose an approach for examining and understanding the societal costs and benefits of this technology both from a monetary viewpoint and a resource consumption viewpoint. The final section discusses the trends in the adoption of additive manufacturing. Globally, there is an estimated $667 million in value added produced using additive manufacturing, which equates to 0.01 % of total global manufacturing value added. US value added is estimated as $241 million. Current research on additive manufacturing costs reveals that it is cost effective for manufacturing small batches with continued centralized production; however, with increased automation distributed production may become cost effective. Due to the complexities of measuring additive manufacturing costs and data limitations, current studies are limited in their scope. Many of the current studies examine the production of single parts and those that examine assemblies tend not to examine supply chain effects such as inventory and transportation costs along with decreased risk to supply disruption. The additive manufacturing system and the material costs constitute a significant portion of an additive manufactured product; however, these costs are declining over time. The current trends in costs and benefits have resulted in this technology representing 0.02 % of the relevant manufacturing industries in the US; however, as the costs of additive manufacturing systems decrease, this technology may become widely adopted and change the

  13. Innovative manufacturing technologies for low-cost, high efficiency PERC-based PV modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yelundur, Vijay

    2017-04-19

    The goal this project was to accelerate the deployment of innovative solar cell and module technologies that reduce the cost of PERC-based modules to best-in-class. New module integration technology was to be used to reduce the cost and reliance on conventional silver bus bar pastes and enhance cell efficiency. On the cell manufacturing front, the cost of PERC solar cells was to be reduced by introducing advanced metallization approaches to increase cell efficiency. These advancements will be combined with process optimization to target cell efficiencies in the range of 21 to 21.5%. This project will also explore the viability ofmore » a bifacial PERC solar cell design to enable cost savings through the use of thin silicon wafers. This project was terminated on 4/30/17 after four months of activity due financial challenges facing the recipient.« less

  14. Cost Models for MMC Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    Processes for the manufacture of advanced metal matrix composites are rapidly approaching maturity in the research laboratory and there is growing interest in their transition to industrial production. However, research conducted to date has almost exclusively focused on overcoming the technical barriers to producing high-quality material and little attention has been given to the economical feasibility of these laboratory approaches and process cost issues. A quantitative cost modeling (QCM) approach was developed to address these issues. QCM are cost analysis tools based on predictive process models relating process conditions to the attributes of the final product. An important attribute, of the QCM approach is the ability to predict the sensitivity of material production costs to product quality and to quantitatively explore trade-offs between cost and quality. Applications of the cost models allow more efficient direction of future MMC process technology development and a more accurate assessment of MMC market potential. Cost models were developed for two state-of-the art metal matrix composite (MMC) manufacturing processes: tape casting and plasma spray deposition. Quality and Cost models are presented for both processes and the resulting predicted quality-cost curves are presented and discussed.

  15. Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective

    PubMed Central

    Thomas, Douglas

    2017-01-01

    There are three primary aspects to the economics of additive manufacturing: measuring the value of goods produced, measuring the costs and benefits of using the technology, and estimating the adoption and diffusion of the technology. This paper provides an updated estimate of the value of goods produced. It then reviews the literature on additive manufacturing costs and identifies those instances in the literature where this technology is cost effective. The paper then goes on to propose an approach for examining and understanding the societal costs and benefits of this technology both from a monetary viewpoint and a resource consumption viewpoint. The final section discusses the trends in the adoption of additive manufacturing. Globally, there is an estimated $667 million in value added produced using additive manufacturing, which equates to 0.01 % of total global manufacturing value added. US value added is estimated as $241 million. Current research on additive manufacturing costs reveals that it is cost effective for manufacturing small batches with continued centralized production; however, with increased automation distributed production may become cost effective. Due to the complexities of measuring additive manufacturing costs and data limitations, current studies are limited in their scope. Many of the current studies examine the production of single parts and those that examine assemblies tend not to examine supply chain effects such as inventory and transportation costs along with decreased risk to supply disruption. The additive manufacturing system and the material costs constitute a significant portion of an additive manufactured product; however, these costs are declining over time. The current trends in costs and benefits have resulted in this technology representing 0.02 % of the relevant manufacturing industries in the US; however, as the costs of additive manufacturing systems decrease, this technology may become widely adopted and change the

  16. Cost analysis of advanced turbine blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  17. Additive Manufacturing of Low Cost Upper Stage Propulsion Components

    NASA Technical Reports Server (NTRS)

    Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda

    2014-01-01

    NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.

  18. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  19. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable: (1...

  20. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable: (1...

  1. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable: (1...

  2. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable: (1...

  3. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable: (1...

  4. The complexity and cost of vaccine manufacturing - An overview.

    PubMed

    Plotkin, Stanley; Robinson, James M; Cunningham, Gerard; Iqbal, Robyn; Larsen, Shannon

    2017-07-24

    As companies, countries, and governments consider investments in vaccine production for routine immunization and outbreak response, understanding the complexity and cost drivers associated with vaccine production will help to inform business decisions. Leading multinational corporations have good understanding of the complex manufacturing processes, high technological and R&D barriers to entry, and the costs associated with vaccine production. However, decision makers in developing countries, donors and investors may not be aware of the factors that continue to limit the number of new manufacturers and have caused attrition and consolidation among existing manufacturers. This paper describes the processes and cost drivers in acquiring and maintaining licensure of childhood vaccines. In addition, when export is the goal, we describe the requirements to supply those vaccines at affordable prices to low-resource markets, including the process of World Health Organization (WHO) prequalification and supporting policy recommendation. By providing a generalized and consolidated view of these requirements we seek to build awareness in the global community of the benefits and costs associated with vaccine manufacturing and the challenges associated with maintaining consistent supply. We show that while vaccine manufacture may prima facie seem an economic growth opportunity, the complexity and high fixed costs of vaccine manufacturing limit potential profit. Further, for most lower and middle income countries a large majority of the equipment, personnel and consumables will need to be imported for years, further limiting benefits to the local economy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leavitt, Mark; Lam, Patrick

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizingmore » composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  6. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    NASA Technical Reports Server (NTRS)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  7. A review of the solar array manufacturing industry costing standards

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar array manufacturing industry costing standards model is designed to compare the cost of producing solar arrays using alternative manufacturing processes. Constructive criticism of the methodology used is intended to enhance its implementation as a practical design tool. Three main elements of the procedure include workbook format and presentation, theoretical model validity and standard financial parameters.

  8. Diamond field emitter array cathodes and possibilities of employing additive manufacturing for dielectric laser accelerating structures

    NASA Astrophysics Data System (ADS)

    Simakov, Evgenya I.; Andrews, Heather L.; Herman, Matthew J.; Hubbard, Kevin M.; Weis, Eric

    2017-03-01

    Demonstration of a stand-alone practical dielectric laser accelerator (DLA) requires innovation in two major critical components: high-current ultra-low-emittance cathodes and efficient laser accelerator structures. LANL develops two technologies that in our opinion are applicable to the novel DLA architectures: diamond field emitter array (DFEA) cathodes and additive manufacturing of photonic band-gap (PBG) structures. This paper discusses the results of testing of DFEA cathodes in the field-emission regime and the possibilities for their operation in the photoemission regime, and compares their emission characteristics to the specific needs of DLAs. We also describe recent advances in additive manufacturing of dielectric woodpile structures using a Nanoscribe direct laser-writing device capable of maskless lithography and additive manufacturing, and the development of novel infrared dielectric materials compatible with additive manufacturing.

  9. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    PubMed

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Space system production cost benefits from contemporary philosophies in management and manufacturing

    NASA Technical Reports Server (NTRS)

    Rosmait, Russell L.

    1991-01-01

    The cost of manufacturing space system hardware has always been expensive. The Engineering Cost Group of the Program Planning office at Marshall is attempting to account for cost savings that result from new technologies in manufacturing and management. The objective is to identify and define contemporary philosophies in manufacturing and management. The seven broad categories that make up the areas where technological advances can assist in reducing space system costs are illustrated. Included within these broad categories is a list of the processes or techniques that specifically provide the cost savings within todays design, test, production and operations environments. The processes and techniques listed achieve savings in the following manner: increased productivity; reduced down time; reduced scrap; reduced rework; reduced man hours; and reduced material costs. In addition, it should be noted that cost savings from production and processing improvements effect 20 to 40 pct. of production costs whereas savings from management improvements effects 60 to 80 of production cost. This is important because most efforts in reducing costs are spent trying to reduce cost in the production.

  11. Benchmarking DoD Use of Additive Manufacturing and Quantifying Costs

    DTIC Science & Technology

    2017-03-01

    46 VI. Cost Benefit ...developing a cost model. The US Army Logistics Innovation Agency published a study called “Additive Manufacturing Cost - Benefit Analysis”. This...to over fifteen thousand dollars on GSA Advantage. Desktop printers do not require extensive support equipment. 47    VI. Cost Benefit

  12. Plywood manufacturing cost trends, excluding wood, in Western U.S. mills: 1975-1988

    Treesearch

    Henry Spelter

    1989-01-01

    Plywood manufacturing costs have increased over the years with inflation. In recent years, new technologies that improve productivity and reduce costs have become available. Cost data published by the American Plywood Association (APA) show moderating rates of increase by 1983. New data from a sample of western U.S. mills show that nonwood manufacturing costs have...

  13. 2D net shape weaving for cost effective manufacture of textile reinforced composites

    NASA Astrophysics Data System (ADS)

    Vo, D. M. P.; Kern, M.; Hoffmann, G.; Cherif, C.

    2017-10-01

    Despite significant weight and performance advantages over metal parts, the today’s demand for fibre-reinforced polymer composites (FRPC) has been limited mainly by their large manufacturing cost. The combination of dry textile preforms and low-cost consolidation processes such as resin transfer molding (RTM) has been appointed as a promising approach to low-cost FRPC manufacture. At the current state of the art, tooling and impregnation technology is well understood whereas preform fabrication technology has not been developed effectively. This paper presents an advanced 2D net shape weaving technology developed with the aim to establish a more cost effective system for the manufacture of dry textile preforms for FRPC. 2D net shape weaving is developed based on open reed weave (ORW) technology and enables the manufacture of 2D contoured woven fabrics with firm edge, so that oversize cutting and hand trimming after molding are no longer required. The introduction of 2D net shape woven fabrics helps to reduce material waste, cycle time and preform manufacturing cost significantly. Furthermore, higher grade of automation in preform fabrication can be achieved.

  14. Additively Manufactured Low Cost Upper Stage Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Protz, Christopher; Cooper, Ken; Ellis, David; Fikes, John; Jones, Zachary; Kim, Tony; Medina, Cory; Taminger, Karen; Willingham, Derek

    2016-01-01

    Over the past two years NASA's Low Cost Upper Stage Propulsion (LCUSP) project has developed Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. High pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design fabrication to be costly and time consuming due to the number of individual steps and different processes required. Under LCUSP, AM technologies in Sintered Laser Melting (SLM) GRCop-84 and Electron Beam Freeform Fabrication (EBF3) Inconel 625 have been significantly advanced, allowing the team to successfully fabricate a 25k-class regenerative chamber. Estimates of the costs and schedule of future builds indicate cost reductions and significant schedule reductions will be enabled by this technology. Characterization of the microstructural and mechanical properties of the SLM-produced GRCop-84, EBF3 Inconel 625 and the interface layer between the two has been performed and indicates the properties will meet the design requirements. The LCUSP chamber is to be tested with a previously demonstrated SLM injector in order to advance the Technology Readiness Level (TRL) and demonstrate the capability of the application of these processes. NASA is advancing these technologies to reduce cost and schedule for future engine applications and commercial needs.

  15. Cost-effective method of manufacturing a 3D MEMS optical switch

    NASA Astrophysics Data System (ADS)

    Carr, Emily; Zhang, Ping; Keebaugh, Doug; Chau, Kelvin

    2009-02-01

    growth of data and video transport networks. All-optical switching eliminates the need for optical-electrical conversion offering the ability to switch optical signals transparently: independent of data rates, formats and wavelength. It also provides network operators much needed automation capabilities to create, monitor and protect optical light paths. To further accelerate the market penetration, it is necessary to identify a path to reduce the manufacturing cost significantly as well as enhance the overall system performance, uniformity and reliability. Currently, most MEMS optical switches are assembled through die level flip-chip bonding with either epoxies or solder bumps. This is due to the alignment accuracy requirements of the switch assembly, defect matching of individual die, and cost of the individual components. In this paper, a wafer level assembly approach is reported based on silicon fusion bonding which aims to reduce the packaging time, defect count and cost through volume production. This approach is successfully demonstrated by the integration of two 6-inch wafers: a mirror array wafer and a "snap-guard" wafer, which provides a mechanical structure on top of the micromirror to prevent electrostatic snap-down. The direct silicon-to-silicon bond eliminates the CTEmismatch and stress issues caused by non-silicon bonding agents. Results from a completed integrated switch assembly will be presented, which demonstrates the reliability and uniformity of some key parameters of this MEMS optical switch.

  16. Cost benefit of investment on quality in pharmaceutical manufacturing: WHO GMP pre- and post-certification of a Nigerian pharmaceutical manufacturer.

    PubMed

    Anyakora, Chimezie; Ekwunife, Obinna; Alozie, Faith; Esuga, Mopa; Ukwuru, Jonathan; Onya, Steve; Nwokike, Jude

    2017-09-18

    Pharmaceutical companies in Africa need to invest in both facilities and quality management systems to achieve good manufacturing practice (GMP) compliance. Compliance to international GMP standards is important to the attainment of World Health Organization (WHO) prequalification. However, most of the local pharmaceutical manufacturing companies may be deterred from investing in quality because of many reasons, ranging from financial constraints to technical capacity. This paper primarily evaluates benefits against the cost of investing in GMP, using a Nigerian pharmaceutical company, Chi Pharmaceuticals Limited, as a case study. This paper also discusses how to drive more local manufacturers to invest in quality to attain GMP compliance; and proffers practical recommendations for local manufacturers who would want to invest in quality to meet ethical and regulatory obligations. The cost benefit of improving the quality of Chi Pharmaceuticals Limited's facilities and system to attain WHO GMP certification for the production of zinc sulfate 20-mg dispersible tablets was calculated by dividing the annual benefits derived from quality improvement interventions by the annual costs of implementing quality improvement interventions, referred to as a benefit-cost ratio (BCR). Cost benefit of obtaining WHO GMP certification for the production of zinc sulfate 20-mg dispersible tablets was 5.3 (95% confidence interval of 5.0-5.5). Investment in quality improvement intervention is cost-beneficial for local manufacturing companies. Governments and regulators in African countries should support pharmaceutical companies striving to invest in quality. Collaboration of local manufacturing companies with global companies will further improve quality. Local pharmaceutical companies should be encouraged to key into development opportunities available for pharmaceutical companies in Africa.

  17. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    NASA Technical Reports Server (NTRS)

    Pettit, R. G.; Wang, J. J.; Toh, C.

    2000-01-01

    The continual need to reduce airframe cost and the emergence of high speed machining and other manufacturing technologies has brought about a renewed interest in large-scale integral structures for aircraft applications. Applications have been inhibited, however, because of the need to demonstrate damage tolerance, and by cost and manufacturing risks associated with the size and complexity of the parts. The Integral Airframe Structures (IAS) Program identified a feasible integrally stiffened fuselage concept and evaluated performance and manufacturing cost compared to conventional designs. An integral skin/stiffener concept was produced both by plate hog-out and near-net extrusion. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511 extrusion, and 7475-T7351 plate. Mechanical properties, structural details, and joint performance were evaluated as well as repair, static compression, and two-bay crack residual strength panels. Crack turning behavior was characterized through panel tests and improved methods for predicting crack turning were developed. Manufacturing cost was evaluated using COSTRAN. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current technology baseline.

  18. Manufacturing Error Effects on Mechanical Properties and Dynamic Characteristics of Rotor Parts under High Acceleration

    NASA Astrophysics Data System (ADS)

    Jia, Mei-Hui; Wang, Cheng-Lin; Ren, Bin

    2017-07-01

    Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this problem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is proposed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The changes of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantly affected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.

  19. VAR and generalized impulse response analysis of manufacturing unit labor costs

    NASA Astrophysics Data System (ADS)

    Ewing, Bradley T.; Thompson, Mark A.

    2008-04-01

    This paper examines the relationship among manufacturing unit labor costs in the United States, United Kingdom, and Canada. The analysis is conducted within the context of an economic system utilizing the recently developed method of generalized impulse response analysis to simulate the responses of the cost series to disturbances. The results indicate that, while unit labor costs do not share a common stochastic trend, there are significant responses in the unit labor costs of each country to shocks in the costs of other countries that are not captured by standard interpretation of the multiple-equation model results. The findings indicate the presence of significant linkages among unit labor costs in the countries studied. The results are consistent with the economic environment of manufacturing operations being characterized by a competitive, integrated marketplace.

  20. Using PAT to accelerate the transition to continuous API manufacturing.

    PubMed

    Gouveia, Francisca F; Rahbek, Jesper P; Mortensen, Asmus R; Pedersen, Mette T; Felizardo, Pedro M; Bro, Rasmus; Mealy, Michael J

    2017-01-01

    Significant improvements can be realized by converting conventional batch processes into continuous ones. The main drivers include reduction of cost and waste, increased safety, and simpler scale-up and tech transfer activities. Re-designing the process layout offers the opportunity to incorporate a set of process analytical technologies (PAT) embraced in the Quality-by-Design (QbD) framework. These tools are used for process state estimation, providing enhanced understanding of the underlying variability in the process impacting quality and yield. This work describes a road map for identifying the best technology to speed-up the development of continuous processes while providing the basis for developing analytical methods for monitoring and controlling the continuous full-scale reaction. The suitability of in-line Raman, FT-infrared (FT-IR), and near-infrared (NIR) spectroscopy for real-time process monitoring was investigated in the production of 1-bromo-2-iodobenzene. The synthesis consists of three consecutive reaction steps including the formation of an unstable diazonium salt intermediate, which is critical to secure high yield and avoid formation of by-products. All spectroscopic methods were able to capture critical information related to the accumulation of the intermediate with very similar accuracy. NIR spectroscopy proved to be satisfactory in terms of performance, ease of installation, full-scale transferability, and stability to very adverse process conditions. As such, in-line NIR was selected to monitor the continuous full-scale production. The quantitative method was developed against theoretical concentration values of the intermediate since representative sampling for off-line reference analysis cannot be achieved. The rapid and reliable analytical system allowed the following: speeding up the design of the continuous process and a better understanding of the manufacturing requirements to ensure optimal yield and avoid unreacted raw materials

  1. Manufacturing and Cost Considerations in Multidisciplinary Aircraft Design (Research on Mathematical Modeling of Manufacturability Factors)

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1996-01-01

    The identification of airframe Manufacturability Factors/Cost Drivers (MFCD) and the method by which the relationships between MFCD and designer-controlled parameters could be properly modeled are described.

  2. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  3. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  4. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  5. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  6. 26 CFR 1.168(a)-1 - Modified accelerated cost recovery system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Modified accelerated cost recovery system. 1.168(a)-1 Section 1.168(a)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.168(a)-1 Modified accelerated cost recovery system. (a) Section 168 determines the...

  7. SAMICS: Input data preparation. [Solar Array Manufacturing Industry Costing Standards

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.; Aster, R. W.

    1979-01-01

    The Solar Array Manufacturing Industry Costing Standards (SAMICS) provide standard formats, data, assumptions, and procedures for estimating the price that a manufacturer would have to charge for the product of a specified manufacturing process sequence. A line-by-line explanation is given of those standard formats which describe the economically important characteristics of the manufacturing processes and the technological structure of the companies and the industry. This revision provides an updated presentation of Format A Process Description, consistent with the October 1978 version of that form. A checklist of items which should be entered on Format A as direct expenses is included.

  8. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Paul

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  9. Automated packaging platform for low-cost high-performance optical components manufacturing

    NASA Astrophysics Data System (ADS)

    Ku, Robert T.

    2004-05-01

    Delivering high performance integrated optical components at low cost is critical to the continuing recovery and growth of the optical communications industry. In today's market, network equipment vendors need to provide their customers with new solutions that reduce operating expenses and enable new revenue generating IP services. They must depend on the availability of highly integrated optical modules exhibiting high performance, small package size, low power consumption, and most importantly, low cost. The cost of typical optical system hardware is dominated by linecards that are in turn cost-dominated by transmitters and receivers or transceivers and transponders. Cost effective packaging of optical components in these small size modules is becoming the biggest challenge to be addressed. For many traditional component suppliers in our industry, the combination of small size, high performance, and low cost appears to be in conflict and not feasible with conventional product design concepts and labor intensive manual assembly and test. With the advent of photonic integration, there are a variety of materials, optics, substrates, active/passive devices, and mechanical/RF piece parts to manage in manufacturing to achieve high performance at low cost. The use of automation has been demonstrated to surpass manual operation in cost (even with very low labor cost) as well as product uniformity and quality. In this paper, we will discuss the value of using an automated packaging platform.for the assembly and test of high performance active components, such as 2.5Gb/s and 10 Gb/s sources and receivers. Low cost, high performance manufacturing can best be achieved by leveraging a flexible packaging platform to address a multitude of laser and detector devices, integration of electronics and handle various package bodies and fiber configurations. This paper describes the operation and results of working robotic assemblers in the manufacture of a Laser Optical Subassembly

  10. Solid state laser applications in photovoltaics manufacturing

    NASA Astrophysics Data System (ADS)

    Dunsky, Corey; Colville, Finlay

    2008-02-01

    Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by increasing government and societal pressure to use renewable energy as part of an overall strategy to address global warming attributed to greenhouse gas emissions. Initially supported in several countries by generous tax subsidies, solar cell manufacturers are relentlessly pushing the performance/cost ratio of these devices in a quest to reach true cost parity with grid electricity. Clearly this eventual goal will result in further acceleration in the overall market growth. Silicon wafer based solar cells are currently the mainstay of solar end-user installations with a cost up to three times grid electricity. But next-generation technology in the form of thin-film devices promises streamlined, high-volume manufacturing and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. Notwithstanding the modest conversion efficiency of thin-film devices compared to wafered silicon products (around 6-10% versus 15-20%), this cost reduction is driving existing and start-up solar manufacturers to switch to thin-film production. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. Lasers are the technology of choice for these processes, delivering the desired combination of high throughput and narrow, clean scribes. This paper examines these processes and discusses the optimization of industrial lasers to meet their specific needs.

  11. Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamer, John; Scott, David

    In this project, OLEDWorks developed and demonstrated the innovative high-performance deposition technology required to deliver dramatic reductions in the cost of manufacturing OLED lighting in production equipment. The current high manufacturing cost of OLED lighting is the most urgent barrier to its market acceptance. The new deposition technology delivers solutions to the two largest parts of the manufacturing cost problem – the expense per area of good product for organic materials and for the capital cost and depreciation of the equipment. Organic materials cost is the largest expense item in the bill of materials and is predicted to remain somore » through 2020. The high-performance deposition technology developed in this project, also known as the next generation source (NGS), increases material usage efficiency from 25% found in current Gen2 deposition technology to 60%. This improvement alone results in a reduction of approximately 25 USD/m 2 of good product in organic materials costs, independent of production volumes. Additionally, this innovative deposition technology reduces the total depreciation cost from the estimated value of approximately 780 USD/m 2 of good product for state-of-the-art G2 lines (at capacity, 5-year straight line depreciation) to 170 USD/m 2 of good product from the OLEDWorks production line.« less

  12. PCS: a pallet costing system for wood pallet manufacturers (version 1.0 for Windows®)

    Treesearch

    A. Jefferson, Jr. Palmer; Cynthia D. West; Bruce G. Hansen; Marshall S. White; Hal L. Mitchell

    2002-01-01

    The Pallet Costing System (PCS) is a computer-based, Microsoft Windows® application that computes the total and per-unit cost of manufacturing an order of wood pallets. Information about the manufacturing facility, along with the pallet-order requirements provided by the customer, is used in determining production cost. The major cost factors addressed by PCS...

  13. Cost analysis of composite fan blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Stelson, T. S.; Barth, C. F.

    1980-01-01

    The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  14. Diamond field emitter array cathodes and possibilities for employing additive manufacturing for dielectric laser accelerating structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya Ivanovna; Andrews, Heather Lynn; Herman, Matthew Joseph

    2016-09-20

    These are slides for a presentation at Stanford University. The outline is as follows: Motivation: customers for compact accelerators, LANL's technologies for laser acceleration, DFEA cathodes, and additive manufacturing of micron-size structures. Among the stated conclusions are the following: preliminary study identified DFEA cathodes as promising sources for DLAs--high beam current and small emittance; additive manufacturing with Nanoscribe Professional GT can produce structures with the right scale features for a DLA operating at micron wavelengths (fabrication tolerances need to be studied, DLAs require new materials). Future plans include DLA experiment with a beam produced by the DFEA cathode with fieldmore » emission, demonstration of photoemission from DFEAs, and new structures to print and test.« less

  15. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  16. Development of hybrid lifecycle cost estimating tool (HLCET) for manufacturing influenced design tradeoff

    NASA Astrophysics Data System (ADS)

    Sirirojvisuth, Apinut

    In complex aerospace system design, making an effective design decision requires multidisciplinary knowledge from both product and process perspectives. Integrating manufacturing considerations into the design process is most valuable during the early design stages since designers have more freedom to integrate new ideas when changes are relatively inexpensive in terms of time and effort. Several metrics related to manufacturability are cost, time, and manufacturing readiness level (MRL). Yet, there is a lack of structured methodology that quantifies how changes in the design decisions impact these metrics. As a result, a new set of integrated cost analysis tools are proposed in this study to quantify the impacts. Equally important is the capability to integrate this new cost tool into the existing design methodologies without sacrificing agility and flexibility required during the early design phases. To demonstrate the applicability of this concept, a ModelCenter environment is used to develop software architecture that represents Integrated Product and Process Development (IPPD) methodology used in several aerospace systems designs. The environment seamlessly integrates product and process analysis tools and makes effective transition from one design phase to the other while retaining knowledge gained a priori. Then, an advanced cost estimating tool called Hybrid Lifecycle Cost Estimating Tool (HLCET), a hybrid combination of weight-, process-, and activity-based estimating techniques, is integrated with the design framework. A new weight-based lifecycle cost model is created based on Tailored Cost Model (TCM) equations [3]. This lifecycle cost tool estimates the program cost based on vehicle component weights and programmatic assumptions. Additional high fidelity cost tools like process-based and activity-based cost analysis methods can be used to modify the baseline TCM result as more knowledge is accumulated over design iterations. Therefore, with this

  17. Collaborative Manufacturing for Small-Medium Enterprises

    NASA Astrophysics Data System (ADS)

    Irianto, D.

    2016-02-01

    Manufacturing systems involve decisions concerning production processes, capacity, planning, and control. In a MTO manufacturing systems, strategic decisions concerning fulfilment of customer requirement, manufacturing cost, and due date of delivery are the most important. In order to accelerate the decision making process, research on decision making structure when receiving order and sequencing activities under limited capacity is required. An effective decision making process is typically required by small-medium components and tools maker as supporting industries to large industries. On one side, metal small-medium enterprises are expected to produce parts, components or tools (i.e. jigs, fixture, mold, and dies) with high precision, low cost, and exact delivery time. On the other side, a metal small- medium enterprise may have weak bargaining position due to aspects such as low production capacity, limited budget for material procurement, and limited high precision machine and equipment. Instead of receiving order exclusively, a small-medium enterprise can collaborate with other small-medium enterprise in order to fulfill requirements high quality, low manufacturing cost, and just in time delivery. Small-medium enterprises can share their best capabilities to form effective supporting industries. Independent body such as community service at university can take a role as a collaboration manager. The Laboratory of Production Systems at Bandung Institute of Technology has implemented shared manufacturing systems for small-medium enterprise collaboration.

  18. Cost Models for MMC Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    The quality cost modeling (QCM) tool is intended to be a relatively simple-to-use device for obtaining a first-order assessment of the quality-cost relationship for a given process-material combination. The QCM curve is a plot of cost versus quality (an index indicating microstructural quality), which is unique for a given process-material combination. The QCM curve indicates the tradeoff between cost and performance, thus enabling one to evaluate affordability. Additionally, the effect of changes in process design, raw materials, and process conditions on the cost-quality relationship can be evaluated. Such results might indicate the most efficient means to obtain improved quality at reduced cost by process design refinements, the implementation of sensors and models for closed loop process control, or improvement in the properties of raw materials being fed into the process. QCM also allows alternative processes for producing the same or similar material to be compared in terms of their potential for producing competitively priced, high quality material. Aside from demonstrating the usefulness of the QCM concept, this is one of the main foci of the present research program, namely to compare processes for making continuous fiber reinforced, metal matrix composites (MMC's). Two processes, low pressure plasma spray deposition and tape casting are considered for QCM development. This document consists of a detailed look at the design of the QCM approach, followed by discussion of the application of QCM to each of the selected MMC manufacturing processes along with results, comparison of processes, and finally, a summary of findings and recommendations.

  19. Strategic research on the sustainable development cost of manufacturing industry under the background of carbon allowance and trade policy

    NASA Astrophysics Data System (ADS)

    Ma, Zhongmin; Cheng, Mengting; Wang, Mei

    2017-08-01

    The important subjects of energy consumption and carbon emission are manufacturing enterprises, with the deepening of international cooperation, and the implementation of carbon limit and trade policy, costs of manufacturing industry will rise sharply. How can the manufacturing industry survive in this reform, and it has to be a problem that the managers of the manufacturing industry need to solve. This paper analyses sustainable development cost connotation and value basis on the basis of sustainable development concept, discusses the influence of carbon allowance and trade policy for cost strategy of manufacturing industry, thinks that manufacturing industry should highlight social responsibility and realize maximization of social value, implement cost strategy the sustainable development, and pointed out the implementation way.

  20. INTEGRATION OF COST MODELS AND PROCESS SIMULATION TOOLS FOR OPTIMUM COMPOSITE MANUFACTURING PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pack, Seongchan; Wilson, Daniel; Aitharaju, Venkat

    Manufacturing cost of resin transfer molded composite parts is significantly influenced by the cycle time, which is strongly related to the time for both filling and curing of the resin in the mold. The time for filling can be optimized by various injection strategies, and by suitably reducing the length of the resin flow distance during the injection. The curing time can be reduced by the usage of faster curing resins, but it requires a high pressure injection equipment, which is capital intensive. Predictive manufacturing simulation tools that are being developed recently for composite materials are able to provide variousmore » scenarios of processing conditions virtually well in advance of manufacturing the parts. In the present study, we integrate the cost models with process simulation tools to study the influence of various parameters such as injection strategies, injection pressure, compression control to minimize high pressure injection, resin curing rate, and demold time on the manufacturing cost as affected by the annual part volume. A representative automotive component was selected for the study and the results are presented in this paper« less

  1. Manufacturing Large Membrane Mirrors at Low Cost

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Relatively inexpensive processes have been developed for manufacturing lightweight, wide-aperture mirrors that consist mainly of reflectively coated, edge-supported polyimide membranes. The polyimide and other materials in these mirrors can withstand the environment of outer space, and the mirrors have other characteristics that make them attractive for use on Earth as well as in outer space: With respect to the smoothness of their surfaces and the accuracy with which they retain their shapes, these mirrors approach the optical quality of heavier, more expensive conventional mirrors. Unlike conventional mirrors, these mirrors can be stowed compactly and later deployed to their full sizes. In typical cases, deployment would be effected by inflation. Potential terrestrial and outer-space applications for these mirrors include large astronomical telescopes, solar concentrators for generating electric power and thermal power, and microwave reflectors for communication, radar, and short-distance transmission of electric power. The relatively low cost of manufacturing these mirrors stems, in part, from the use of inexpensive tooling. Unlike in the manufacture of conventional mirrors, there is no need for mandrels or molds that have highly precise surface figures and highly polished surfaces. The surface smoothness is an inherent property of a polyimide film. The shaped area of the film is never placed in contact with a mold or mandrel surface: Instead the shape of a mirror is determined by a combination of (1) the shape of a fixture that holds the film around its edge and (2) control of manufacturing- process parameters. In a demonstration of this manufacturing concept, spherical mirrors having aperture diameters of 0.5 and 1.0 m were fabricated from polyimide films having thicknesses ranging from <20 m to 150 m. These mirrors have been found to maintain their preformed shapes following deployment.

  2. Affordable Design: A Methodolgy to Implement Process-Based Manufacturing Cost into the Traditional Performance-Focused Multidisciplinary Design Optimization

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.

    2000-01-01

    The primary objective of this paper is to demonstrate the use of process-based manufacturing and assembly cost models in a traditional performance-focused multidisciplinary design and optimization process. The use of automated cost-performance analysis is an enabling technology that could bring realistic processbased manufacturing and assembly cost into multidisciplinary design and optimization. In this paper, we present a new methodology for incorporating process costing into a standard multidisciplinary design optimization process. Material, manufacturing processes, and assembly processes costs then could be used as the objective function for the optimization method. A case study involving forty-six different configurations of a simple wing is presented, indicating that a design based on performance criteria alone may not necessarily be the most affordable as far as manufacturing and assembly cost is concerned.

  3. Innovative manufacturing and materials for low cost lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Steven

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator andmore » any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat

  4. Implementation of activity-based costing (ABC) to drive cost reduction efforts in a semiconductor manufacturing operation

    NASA Astrophysics Data System (ADS)

    Naguib, Hussein; Bol, Igor I.; Lora, J.; Chowdhry, R.

    1994-09-01

    This paper presents a case study on the implementation of ABC to calculate the cost per wafer and to drive cost reduction efforts for a new IC product line. The cost reduction activities were conducted through the efforts of 11 cross-functional teams which included members of the finance, purchasing, technology development, process engineering, equipment engineering, production control, and facility groups. The activities of these cross functional teams were coordinated by a cost council. It will be shown that these activities have resulted in a 57% reduction in the wafer manufacturing cost of the new product line. Factors contributed to successful implementation of an ABC management system are discussed.

  5. Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost

    NASA Astrophysics Data System (ADS)

    Shen, A. W.; Guo, J. L.; Wang, Z. J.

    2015-12-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.

  6. Automotive Manufacturers' Cost/Revenue, Financial and Risk Analysis : Projected Impact of Automobile Manufacturing on the Plastics Industry

    DOT National Transportation Integrated Search

    1979-08-01

    The report is part of a study to update the historical and projected cost/revenue analysis of the U.S. domestic automobile manufacturers. It includes the evaluation of the historical and projected financial data to assess the corporate financial posi...

  7. Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; Watkins, Thomas R.; List, III, Frederick Alyious

    2015-12-01

    The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offersmore » an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.« less

  8. Accelerated longitudinal designs: An overview of modelling, power, costs and handling missing data.

    PubMed

    Galbraith, Sally; Bowden, Jack; Mander, Adrian

    2017-02-01

    Longitudinal studies are often used to investigate age-related developmental change. Whereas a single cohort design takes a group of individuals at the same initial age and follows them over time, an accelerated longitudinal design takes multiple single cohorts, each one starting at a different age. The main advantage of an accelerated longitudinal design is its ability to span the age range of interest in a shorter period of time than would be possible with a single cohort longitudinal design. This paper considers design issues for accelerated longitudinal studies. A linear mixed effect model is considered to describe the responses over age with random effects for intercept and slope parameters. Random and fixed cohort effects are used to cope with the potential bias accelerated longitudinal designs have due to multiple cohorts. The impact of other factors such as costs and the impact of dropouts on the power of testing or the precision of estimating parameters are examined. As duration-related costs increase relative to recruitment costs the best designs shift towards shorter duration and eventually cross-sectional design being best. For designs with the same duration but differing interval between measurements, we found there was a cutoff point for measurement costs relative to recruitment costs relating to frequency of measurements. Under our model of 30% dropout there was a maximum power loss of 7%.

  9. Cost comparisons for the use of nonterrestrial materials in space manufacturing of large structures

    NASA Technical Reports Server (NTRS)

    Bock, E. H.; Risley, R. C.

    1979-01-01

    This paper presents results of a study sponsored by NASA to evaluate the relative merits of constructing solar power satellites (SPS) using resources obtained from the earth and from the moon. Three representative lunar resources utilization (LRU) concepts are developed and compared with a previously defined earth baseline concept. Economic assessment of the alternatives includes cost determination, economic threshold sensitivity to manufacturing cost variations, cost uncertainties, program funding schedule, and present value of costs. Results indicate that LRU for space construction is competitive with the earth baseline approach for a program requiring 100,000 metric tons per year of completed satellites. LRU can reduce earth-launched cargo requirements to less than 10% of that needed to build satellites exclusively from earth materials. LRU is potentially more cost-effective than earth-derived material utilization, due to significant reductions in both transportation and manufacturing costs. Because of uncertainties, cost-effectiveness cannot be ascertained with great confidence. The probability of LRU attaining a lower total program cost within the 30-year program appears to range from 57 to 93%.

  10. Utilization of UV Curing Technology to Significantly Reduce the Manufacturing Cost of LIB Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voelker, Gary; Arnold, John

    2015-11-30

    Previously identified novel binders and associated UV curing technology have been shown to reduce the time required to apply and finish electrode coatings from tens of minutes to less than one second. This revolutionary approach can result in dramatic increases in process speeds, significantly reduced capital (a factor of 10 to 20) and operating costs, reduced energy requirements, and reduced environmental concerns and costs due to the virtual elimination of harmful volatile organic solvents and associated solvent dryers and recovery systems. The accumulated advantages of higher speed, lower capital and operating costs, reduced footprint, lack of VOC recovery, and reducedmore » energy cost is a reduction of 90% in the manufacturing cost of cathodes. When commercialized, the resulting cost reduction in Lithium batteries will allow storage device manufacturers to expand their sales in the market and thereby accrue the energy savings of broader utilization of HEVs, PHEVs and EVs in the U.S., and a broad technology export market is also envisioned.« less

  11. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    NASA Technical Reports Server (NTRS)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  12. Current Developments in Cost Accounting/Performance Measuring Systems for Implementing Advanced Manufacturing Technology

    DTIC Science & Technology

    1989-11-01

    incomplete accounting of benefits, few strategic projects will * be adopted. Nanni , et al [21], provide similar discussion regarding a benefit analysis in...management tends to ignore the fact that minimizing costs within departments does not guarantee minimization of overall costs ( Nanni (21]). Sullivan, et...changes in the manufacturing environment. The author also remarks that these cost systems need to be modified or replaced by entirely new systems

  13. 38 CFR 36.4251 - Loans to finance the purchase of manufactured homes and the cost of necessary site preparation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Loans to finance the purchase of manufactured homes and the cost of necessary site preparation. 36.4251 Section 36.4251 Pensions... Manufactured Home Lot Loans § 36.4251 Loans to finance the purchase of manufactured homes and the cost of...

  14. 38 CFR 36.4251 - Loans to finance the purchase of manufactured homes and the cost of necessary site preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Loans to finance the purchase of manufactured homes and the cost of necessary site preparation. 36.4251 Section 36.4251 Pensions... Manufactured Home Lot Loans § 36.4251 Loans to finance the purchase of manufactured homes and the cost of...

  15. 38 CFR 36.4251 - Loans to finance the purchase of manufactured homes and the cost of necessary site preparation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Loans to finance the purchase of manufactured homes and the cost of necessary site preparation. 36.4251 Section 36.4251 Pensions... Manufactured Home Lot Loans § 36.4251 Loans to finance the purchase of manufactured homes and the cost of...

  16. 38 CFR 36.4251 - Loans to finance the purchase of manufactured homes and the cost of necessary site preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Loans to finance the purchase of manufactured homes and the cost of necessary site preparation. 36.4251 Section 36.4251 Pensions... Manufactured Home Lot Loans § 36.4251 Loans to finance the purchase of manufactured homes and the cost of...

  17. Estimating Drug Costs: How do Manufacturer Net Prices Compare with Other Common US Price References?

    PubMed

    Mattingly, T Joseph; Levy, Joseph F; Slejko, Julia F; Onwudiwe, Nneka C; Perfetto, Eleanor M

    2018-05-12

    Drug costs are frequently estimated in economic analyses using wholesale acquisition cost (WAC), but what is the best approach to develop these estimates? Pharmaceutical manufacturers recently released transparency reports disclosing net price increases after accounting for rebates and other discounts. Our objective was to determine whether manufacturer net prices (MNPs) could approximate the discounted prices observed by the U.S. Department of Veterans Affairs (VA). We compared the annual, average price discounts voluntarily reported by three pharmaceutical manufacturers with the VA price for specific products from each company. The top 10 drugs by total sales reported from company tax filings for 2016 were included. The discount observed by the VA was determined from each drug's list price, reported as WAC, in 2016. Descriptive statistics were calculated for the VA discount observed and a weighted price index was calculated using the lowest price to the VA (Weighted VA Index), which was compared with the manufacturer index. The discounted price as a percentage of the WAC ranged from 9 to 74%. All three indexes estimated by the average discount to the VA were at or below the manufacturer indexes (42 vs. 50% for Eli Lilly, 56 vs. 65% for Johnson & Johnson, and 59 vs. 59% for Merck). Manufacturer-reported average net prices may provide a close approximation of the average discounted price granted to the VA, suggesting they may be a useful proxy for the true pharmacy benefits manager (PBM) or payer cost. However, individual discounts for products have wide variation, making a standard discount adjustment across multiple products less acceptable.

  18. Low Cost Manufacturing of Composite Cryotanks

    NASA Technical Reports Server (NTRS)

    Meredith, Brent; Palm, Tod; Deo, Ravi; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This viewgraph presentation reviews research and development of cryotank manufacturing conducted by Northrup Grumman. The objectives of the research and development included the development and validation of manufacturing processes and technology for fabrication of large scale cryogenic tanks, the establishment of a scale-up and facilitization plan for full scale cryotanks, the development of non-autoclave composite manufacturing processes, the fabrication of subscale tank joints for element tests, the performance of manufacturing risk reduction trials for the subscale tank, and the development of full-scale tank manufacturing concepts.

  19. Optical Metrology for CIGS Solar Cell Manufacturing and its Cost Implications

    NASA Astrophysics Data System (ADS)

    Sunkoju, Sravan Kumar

    Solar energy is a promising source of renewable energy which can meet the demand for clean energy in near future with advances in research in the field of photovoltaics and cost reduction by commercialization. Availability of a non-contact, in-line, real time robust process control strategies can greatly aid in reducing the gap between cell and module efficiencies, thereby leading to cost-effective large-scale manufacturing of high efficiency CIGS solar cells. In order to achieve proper process monitoring and control for the deposition of the functional layers of CuIn1-xGaxSe 2 (CIGS) based thin film solar cell, optical techniques such as spectroscopic reflectometry and polarimetry are advantageous because they can be set up in an unobtrusive manner in the manufacturing line, and collect data in-line and in-situ. The use of these techniques requires accurate optical models that correctly represent the properties of the layers being deposited. In this study, Spectroscopic ellipsometry (SE) has been applied for the characterization of each individual stage of CIGS layers deposited using the 3-stage co-evaporation process along with the other functional layers. Dielectric functions have been determined for the energy range from 0.7 eV to 5.1 eV. Critical-point line-shape analysis was used in this study to determine the critical point energies of the CIGS based layers. To control the compositional and thickness uniformity of all the functional layers during the fabrication of CIGS solar cells over large areas, multilayer photovoltaics (PV) stack optical models were developed with the help of extracted dielectric functions. In this study, mapping capability of RC2 spectroscopic ellipsometer was used to map all the functional layer thicknesses of a CIGS solar cell in order to probe the spatial non-uniformities that can affect the performance of a cell. The optical functions for each of the stages of CIGS 3-stage deposition process along with buffer layer and transparent

  20. Reducing workers' compensation costs for latex allergy and litigation against glove manufacturing companies.

    PubMed

    Edlich, Richard F; Mason, Shelley S; Swainston, Erin; Dahlstrom, Jill J; Gubler, K; Long, William B

    2009-01-01

    It has been well documented in the medical literature that powdered medical gloves can have serious consequences to patients and health-care workers. Adverse reactions to natural latex gloves, such as contact dermatitis and urticaria, occupational asthma, and anaphylaxis, have been documented as a significant cause of Workers' Compensation claims among health-care workers. While the cost of examination and surgical gloves is significant, this factor must be considered with the total cost of Workers' Compensation claims and possible litigation bestowed upon hospitals and glove manufacturing companies. In the United States, Canada, Belgium, and Germany, medical leaders have documented the dangers of powdered latex gloves and have implemented transition programs that are reducing Workers' Compensation claims filed by health-care workers. While attorneys view litigation against powdered glove manufacturers as the "next big tort", the authors of this article were not able to document all compensation costs to disabled workers because many settlements do not allow the claimant to disclose this information.

  1. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  2. Overview of the Photovoltaic Manufacturing Technology (PVMaT) project

    NASA Astrophysics Data System (ADS)

    Witt, C. E.; Mitchell, R. L.; Mooney, G. D.

    1993-08-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R&D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project's ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. These 'generic' problem areas are being addressed through a teamed research approach.

  3. III-Vs at Scale: A PV Manufacturing Cost Analysis of the Thin Film Vapor-Liquid-Solid Growth Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Maxwell; Horowitz, Kelsey; Woodhouse, Michael

    The authors present a manufacturing cost analysis for producing thin-film indium phosphide modules by combining a novel thin-film vapor-liquid-solid (TF-VLS) growth process with a standard monolithic module platform. The example cell structure is ITO/n-TiO2/p-InP/Mo. For a benchmark scenario of 12% efficient modules, the module cost is estimated to be $0.66/W(DC) and the module cost is calculated to be around $0.36/W(DC) at a long-term potential efficiency of 24%. The manufacturing cost for the TF-VLS growth portion is estimated to be ~$23/m2, a significant reduction compared with traditional metalorganic chemical vapor deposition. The analysis here suggests the TF-VLS growth mode could enablemore » lower-cost, high-efficiency III-V photovoltaics compared with manufacturing methods used today and open up possibilities for other optoelectronic applications as well.« less

  4. Hot forming and quenching pilot process development for low cost and low environmental impact manufacturing.

    NASA Astrophysics Data System (ADS)

    Hall, Roger W.; Foster, Alistair; Herrmann Praturlon, Anja

    2017-09-01

    The Hot Forming and in-tool Quenching (HFQ®) process is a proven technique to enable complex shaped stampings to be manufactured from high strength aluminium. Its widespread uptake for high volume production will be maximised if it is able to wholly amortise the additional investment cost of this process compared to conventional deep drawing techniques. This paper discusses the use of three techniques to guide some of the development decisions taken during upscaling of the HFQ® process. Modelling of Process timing, Cost and Life-cycle impact were found to be effective tools to identify where development budget could be focused in order to be able to manufacture low cost panels of different sizes from many different alloys in a sustainable way. The results confirm that raw material cost, panel trimming, and artificial ageing were some of the highest contributing factors to final component cost. Additionally, heat treatment and lubricant removal stages played a significant role in the overall life-cycle assessment of the final products. These findings confirmed development priorities as novel furnace design, fast artificial ageing and low-cost alloy development.

  5. Costs to physician offices of providing medications to medically indigent patients via pharmaceutical manufacturer prescription assistance programs.

    PubMed

    Clay, Patrick; Vaught, Eric; Glaros, Alan; Mangum, Stacy; Hansen, Daniel; Lindsey, Cameron

    2007-01-01

    Prescription assistance programs (PAPs) are offered by pharmaceutical manufacturers to provide medications at no out-of-pocket cost to various categories of medically indigent patients. some PAPs require only 1 application whereas others require as many as 4 applications per year per drug per patient, depending on the manufacturer's requirements. to measure the costs incurred by a medical clinic that provides chronic prescription medications via PAPs. this project was conducted in a free-standing, inner-city, Midwestern health clinic on the PAP application process for 1 representative drug for 32 pharmaceutical manufacturers that offered PAPs for drugs taken on a long-term basis for chronic conditions. time and motion studies were conducted using a medical assistant with the greatest amount of PAP experience. Assessment of time-to-access and time-to-complete forms was performed outside of normal clinic business hours to avoid interruptions. Personnel time costs also included receipt and delivery of drug to the patient (drug distribution time), which were assessed during normal business hours for actual medications received for 10 patients and included the time required to notify the patient of the arrival of the drug and to dispense the medication to the patient. supply costs for this PAP service included printing and copying costs. submission costs associated with mailing or faxing the documents were determined and calculated using the price of materials only. total application cost was calculated by adding the personnel time cost, supply cost, and submission cost. Annual PAP time was the time spent completing PAPs for 1 medication for 1 patient for 1 year. the time and resources required and the associated costs were aggregated separately for the pharmaceutical manufacturers that required 1, 2, or 4 applications per drug per patient per year. The total average application cost for all 32 companies was $25.18 [SD, $17.23]. Personnel time costs accounted for half

  6. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saifee, T.; Konnerth, A. III

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction.more » The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.« less

  7. Novel Structured Metal Bipolar Plates for Low Cost Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Conghua

    2013-08-15

    Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate technology without using any preciousmore » metal. The technology will meet the performance and cost requirements for automobile applications. Through the Phase I project, TreadStone has identified the corrosion resistant and electrically conductive titanium oxide for the metal bipolar plate surface protection for automotive PEM fuel cell applications. TreadStone has overcome the manufacturing issues to apply the coating on metal substrate surface, and has demonstrated the feasibility of the coated stainless steel plates by ex-situ evaluation tests and the in-situ fuel cell long term durability test. The test results show the feasibility of the proposed nano-structured coating as the low cost metal bipolar plates of PEM fuel cells. The plan for further technology optimization is also outlined for the Phase II project.« less

  8. Establishment of reference costs for occupational health services and implementation of cost management in Japanese manufacturing companies.

    PubMed

    Nagata, Tomohisa; Mori, Koji; Aratake, Yutaka; Ide, Hiroshi; Nobori, Junichiro; Kojima, Reiko; Odagami, Kiminori; Kato, Anna; Hiraoka, Mika; Shiota, Naoki; Kobayashi, Yuichi; Ito, Masato; Tsutsumi, Akizumi; Matsuda, Shinya

    2016-07-22

    We developed a standardized cost estimation method for occupational health (OH) services. The purpose of this study was to set reference OH services costs and to conduct OH services cost management assessments in two workplaces by comparing actual OH services costs with the reference costs. Data were obtained from retrospective analyses of OH services costs regarding 15 OH activities over a 1-year period in three manufacturing workplaces. We set the reference OH services costs in one of the three locations and compared OH services costs of each of the two other workplaces with the reference costs. The total reference OH services cost was 176,654 Japanese yen (JPY) per employee. The personnel cost for OH staff to conduct OH services was JPY 47,993, and the personnel cost for non-OH staff was JPY 38,699. The personnel cost for receipt of OH services-opportunity cost-was JPY 19,747, expense was JPY 25,512, depreciation expense was 34,849, and outsourcing cost was JPY 9,854. We compared actual OH services costs from two workplaces (the total OH services costs were JPY 182,151 and JPY 238,023) with the reference costs according to OH activity. The actual costs were different from the reference costs, especially in the case of personnel cost for non-OH staff, expense, and depreciation expense. Using our cost estimation tool, it is helpful to compare actual OH services cost data with reference cost data. The outcomes help employers make informed decisions regarding investment in OH services.

  9. Establishment of reference costs for occupational health services and implementation of cost management in Japanese manufacturing companies

    PubMed Central

    Nagata, Tomohisa; Mori, Koji; Aratake, Yutaka; Ide, Hiroshi; Nobori, Junichiro; Kojima, Reiko; Odagami, Kiminori; Kato, Anna; Hiraoka, Mika; Shiota, Naoki; Kobayashi, Yuichi; Ito, Masato; Tsutsumi, Akizumi; Matsuda, Shinya

    2016-01-01

    Objectives: We developed a standardized cost estimation method for occupational health (OH) services. The purpose of this study was to set reference OH services costs and to conduct OH services cost management assessments in two workplaces by comparing actual OH services costs with the reference costs. Methods: Data were obtained from retrospective analyses of OH services costs regarding 15 OH activities over a 1-year period in three manufacturing workplaces. We set the reference OH services costs in one of the three locations and compared OH services costs of each of the two other workplaces with the reference costs. Results: The total reference OH services cost was 176,654 Japanese yen (JPY) per employee. The personnel cost for OH staff to conduct OH services was JPY 47,993, and the personnel cost for non-OH staff was JPY 38,699. The personnel cost for receipt of OH services-opportunity cost-was JPY 19,747, expense was JPY 25,512, depreciation expense was 34,849, and outsourcing cost was JPY 9,854. We compared actual OH services costs from two workplaces (the total OH services costs were JPY 182,151 and JPY 238,023) with the reference costs according to OH activity. The actual costs were different from the reference costs, especially in the case of personnel cost for non-OH staff, expense, and depreciation expense. Conclusions: Using our cost estimation tool, it is helpful to compare actual OH services cost data with reference cost data. The outcomes help employers make informed decisions regarding investment in OH services. PMID:27170449

  10. Systematic review of drug administration costs and implications for biopharmaceutical manufacturing.

    PubMed

    Tetteh, Ebenezer; Morris, Stephen

    2013-10-01

    The acquisition costs of biologic drugs are often considered to be relatively high compared with those of nonbiologics. However, the total costs of delivering these drugs also depend on the cost of administration. Ignoring drug administration costs may distort resource allocation decisions because these affect cost effectiveness. The objectives of this systematic review were to develop a framework of drug administration costs that considers both the costs of physical administration and the associated proximal costs; and, as a case example, to use this framework to evaluate administration costs for biologics within the UK National Health Service (NHS). We reviewed literature that reported estimates of administration costs for biologics within the UK NHS to identify how these costs were quantified and to examine how differences in dosage forms and regimens influenced administration costs. The literature reviewed were identified by searching the Centre for Review and Dissemination Databases (DARE, NHS EED and HTA); EMBASE (The Excerpta Medica Database); MEDLINE (using the OVID interface); Econlit (EBSCO); Tufts Medical Center Cost Effectiveness Analysis (CEA) Registry; and Google Scholar. We identified 4,344 potentially relevant studies, of which 43 studies were selected for this systematic review. We extracted estimates of the administration costs of biologics from these studies. We found evidence of variation in the way that administration costs were measured, and that this affected the magnitude of costs reported, which could then influence cost effectiveness. Our findings suggested that manufacturers of biologic medicines should pay attention to formulation issues and their impact on administration costs, because these affect the total costs of healthcare delivery and cost effectiveness.

  11. Design and high-volume manufacture of low-cost molded IR aspheres for personal thermal imaging devices

    NASA Astrophysics Data System (ADS)

    Zelazny, A. L.; Walsh, K. F.; Deegan, J. P.; Bundschuh, B.; Patton, E. K.

    2015-05-01

    The demand for infrared optical elements, particularly those made of chalcogenide materials, is rapidly increasing as thermal imaging becomes affordable to the consumer. The use of these materials in conjunction with established lens manufacturing techniques presents unique challenges relative to the cost sensitive nature of this new market. We explore the process from design to manufacture, and discuss the technical challenges involved. Additionally, facets of the development process including manufacturing logistics, packaging, supply chain management, and qualification are discussed.

  12. Warranty optimisation based on the prediction of costs to the manufacturer using neural network model and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Stamenkovic, Dragan D.; Popovic, Vladimir M.

    2015-02-01

    Warranty is a powerful marketing tool, but it always involves additional costs to the manufacturer. In order to reduce these costs and make use of warranty's marketing potential, the manufacturer needs to master the techniques for warranty cost prediction according to the reliability characteristics of the product. In this paper a combination free replacement and pro rata warranty policy is analysed as warranty model for one type of light bulbs. Since operating conditions have a great impact on product reliability, they need to be considered in such analysis. A neural network model is used to predict light bulb reliability characteristics based on the data from the tests of light bulbs in various operating conditions. Compared with a linear regression model used in the literature for similar tasks, the neural network model proved to be a more accurate method for such prediction. Reliability parameters obtained in this way are later used in Monte Carlo simulation for the prediction of times to failure needed for warranty cost calculation. The results of the analysis make possible for the manufacturer to choose the optimal warranty policy based on expected product operating conditions. In such a way, the manufacturer can lower the costs and increase the profit.

  13. A Manufacturing Cost and Supply Chain Analysis of SiC Power Electronics Applicable to Medium-Voltage Motor Drives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Kelsey; Remo, Timothy; Reese, Samantha

    Wide bandgap (WBG) semiconductor devices are increasingly being considered for use in certain power electronics applications, where they can improve efficiency, performance, footprint, and, potentially, total system cost compared to systems using traditional silicon (Si) devices. Silicon carbide (SiC) devices in particular -- which are currently more mature than other WBG devices -- are poised for growth in the coming years. Today, the manufacturing of SiC wafers is concentrated in the United States, and chip production is split roughly equally between the United States, Japan, and Europe. Established contract manufacturers located throughout Asia typically carry out manufacturing of WBG powermore » modules. We seek to understand how global manufacturing of SiC components may evolve over time by illustrating the regional cost drivers along the supply chain and providing an overview of other factors that influence where manufacturing is sited. We conduct this analysis for a particular case study where SiC devices are used in a medium-voltage motor drive.« less

  14. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    DOE PAGES

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less

  15. Additive Manufacturing of Wind Turbine Molds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Brian; Richardson, Bradley; Lloyd, Peter

    The objective of this project was to explore the utility of Big Area Additive Manufacturing (BAAM) for low cost manufacturing of wind turbine molds. Engineers at Oak Ridge National Laboratory (ORNL) and TPI Composites (TPI) collaborated to design and manufacture a printed mold that can be used for resin infusion of wind turbine components. Specific focus was on required material properties (operating temperatures and pressures, coefficient of thermal expansion (CTE), thermal conductivity), surface finish (accuracy and coatings) and system integration (integrated vacuum ports, and heating element). The project began with a simple proof of principle components, targeting surface coatings andmore » material properties for printing a small section (approximately 4’ x 4’ x 2’) of a mold. Next, the second phase scaled up and integrated with the objective of capturing all of the necessary components (integrated heating to accelerate cure time, and vacuum, sealing) for resin infusion on a mold of significant size (8’ x 20’ x 6’).« less

  16. The effect of adopting new storage methods for extending product validity periods on manufacturers expected inventory costs.

    PubMed

    Chen, Po-Yu

    2014-01-01

    The validness of the expiration dates (validity period) that manufacturers provide on food product labels is a crucial food safety problem. Governments must study how to use their authority by implementing fair awards and punishments to prompt manufacturers into adopting rigorous considerations, such as the effect of adopting new storage methods for extending product validity periods on expected costs. Assuming that a manufacturer sells fresh food or drugs, this manufacturer must respond to current stochastic demands at each unit of time to determine the purchase amount of products for sale. If this decision maker is capable and an opportunity arises, new packaging methods (e.g., aluminum foil packaging, vacuum packaging, high-temperature sterilization after glass packaging, or packaging with various degrees of dryness) or storage methods (i.e., adding desiccants or various antioxidants) can be chosen to extend the validity periods of products. To minimize expected costs, this decision maker must be aware of the processing costs of new storage methods, inventory standards, inventory cycle lengths, and changes in relationships between factors such as stochastic demand functions in a cycle. Based on these changes in relationships, this study established a mathematical model as a basis for discussing the aforementioned topics.

  17. Historic (1971-1975) Cost-Revenue Analysis of the Automotive Operations of the Major U.S Automotive Products Manufacturers

    DOT National Transportation Integrated Search

    1979-01-01

    A cost-revenue analysis is performed for the manufacture of automotive vehicles for the four major U.S. automotive manufacturers: American Motors Corp., Chrysler Corp., Ford Motor Co., and General Motors Corp. The analysis used a "top-down" methodolo...

  18. Linear accelerator: a reproducible, efficacious and cost effective alternative for blood irradiation.

    PubMed

    Shastry, Shamee; Ramya, B; Ninan, Jefy; Srinidhi, G C; Bhat, Sudha S; Fernandes, Donald J

    2013-12-01

    The dedicated devices for blood irradiation are available only at a few centers in developing countries thus the irradiation remains a service with limited availability due to prohibitive cost. To implement a blood irradiation program at our center using linear accelerator. The study is performed detailing the specific operational and quality assurance measures employed in providing a blood component-irradiation service at tertiary care hospital. X-rays generated from linear accelerator were used to irradiate the blood components. To facilitate and standardize the blood component irradiation, a blood irradiator box was designed and fabricated in acrylic. Using Elekta Precise Linear Accelerator, a dose of 25 Gy was delivered at the centre of the irradiation box. Standardization was done using five units of blood obtained from healthy voluntary blood donors. Each unit was divided to two parts. One aliquot was subjected to irradiation. Biochemical and hematological parameters were analyzed on various days of storage. Cost incurred was analyzed. Progressive increase in plasma hemoglobin, potassium and lactate dehydrogenase was noted in the irradiated units but all the parameters were within the acceptable range indicating the suitability of the product for transfusion. The irradiation process was completed in less than 30 min. Validation of the radiation dose done using TLD showed less than ± 3% variation. This study shows that that the blood component irradiation is within the scope of most of the hospitals in developing countries even in the absence of dedicated blood irradiators at affordable cost. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Manufacturing of Low Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busby, Colin

    Over the past 20 years significant progress in membrane-electrode assembly (MEA) technology development for polymer electrolyte fuel cells (PEMFCs) has resulted in the PEMFC technology approaching a commercial reality for transportation applications. However, there remain two primary technical challenges to be addressed in the MEA. First and foremost is meeting the automotive cost targets: Producing a fuel cell stack cost competitive with today’s internal combustion engine. In addition to the material cost, MEA (and other components) and stack assembly production methods must be amenable for use in low cost, high speed, automotive assembly line. One impediment to this latter goalmore » is that stack components must currently go through a long and tedious conditioning procedure before they produce optimal power. This so-called “break-in” can take many hours, and can involve quite complex voltage, temperature and/or pressure steps. These break-in procedures must be simplified and the time required reduced if fuel cells are to become a viable automotive engine. The second challenge is to achieve the durability targets in real-world automotive duty cycle operations. Significant improvements in cost, break-in time, and durability for the key component of fuel cell stacks, MEAs were achieved in this project. Advanced modeling was used to guide design of the new MEA to maximize performance and durability. A new, innovative process and manufacturing approach utilizing direct in-line coating using scalable, cost-competitive, continuous high volume 3-layer rolled-good manufacturing processes was developed and validated by single cell and short stack testing. In addition, the direct coating methods employed were shown to reduce the cost for sacrificial films. Furthermore, Gore has demonstrated a 10 µm reinforced membrane that is used in the new low-cost process and can meet automotive power density and durability targets. Across a wide range of operating conditions

  20. Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space

    DOEpatents

    Schach Von Wittenau, Alexis E.

    2003-01-01

    A method is provided to represent the calculated phase space of photons emanating from medical accelerators used in photon teletherapy. The method reproduces the energy distributions and trajectories of the photons originating in the bremsstrahlung target and of photons scattered by components within the accelerator head. The method reproduces the energy and directional information from sources up to several centimeters in radial extent, so it is expected to generalize well to accelerators made by different manufacturers. The method is computationally both fast and efficient overall sampling efficiency of 80% or higher for most field sizes. The computational cost is independent of the number of beams used in the treatment plan.

  1. Rapid Prototyping Technology for Manufacturing GTE Turbine Blades

    NASA Astrophysics Data System (ADS)

    Balyakin, A. V.; Dobryshkina, E. M.; Vdovin, R. A.; Alekseev, V. P.

    2018-03-01

    The conventional approach to manufacturing turbine blades by investment casting is expensive and time-consuming, as it takes a lot of time to make geometrically precise and complex wax patterns. Turbine blade manufacturing in pilot production can be sped up by accelerating the casting process while keeping the geometric precision of the final product. This paper compares the rapid prototyping method (casting the wax pattern composition into elastic silicone molds) to the conventional technology. Analysis of the size precision of blade casts shows that silicon-mold casting features sufficient geometric precision. Thus, this method for making wax patterns can be a cost-efficient solution for small-batch or pilot production of turbine blades for gas-turbine units (GTU) and gas-turbine engines (GTE). The paper demonstrates how additive technology and thermographic analysis can speed up the cooling of wax patterns in silicone molds. This is possible at an optimal temperature and solidification time, which make the process more cost-efficient while keeping the geometric quality of the final product.

  2. Investigation of Re-X glass ceramic for acceleration insulating columns

    NASA Astrophysics Data System (ADS)

    Faltens, A.; Rosenblum, S.

    1985-05-01

    In an induction linac the accelerating voltage appears along a voltage-graded vacuum insulator column which is a performance limiting and major cost component. Re-X glass ceramic insulators have the long-sought properties of allowing cast-in gradient electrodes, good breakdown characteristics, and compatibility with high vacuum systems. Re-X is a glass ceramic developed by General Electric for use in the manufacture of electrical apparatus, such as vacuum arc interrupters. We have examined vacuum outgassing behavior and voltage breakdown in vacuum and find excellent performance. The housings are in the shape of tubes with type 430 stainless steel terminations. Due to a matched coefficient of thermal expansion between metal and insulator, no vacuum leaks have resulted from any welding operation. The components should be relatively inexpensive to manufacture in large sizes and appear to be a very attractive accelerator column. We are planning to use a standard GE housing in our MBE-4 induction linac.

  3. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  4. Electron beam additive manufacturing with wire - Analysis of the process

    NASA Astrophysics Data System (ADS)

    Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz

    2018-05-01

    The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.

  5. Microeconomics of process control in semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Monahan, Kevin M.

    2003-06-01

    Process window control enables accelerated design-rule shrinks for both logic and memory manufacturers, but simple microeconomic models that directly link the effects of process window control to maximum profitability are rare. In this work, we derive these links using a simplified model for the maximum rate of profit generated by the semiconductor manufacturing process. We show that the ability of process window control to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process variation at the lot, wafer, x-wafer, x-field, and x-chip levels. We conclude that x-wafer and x-field CD control strategies will be critical enablers of density, performance and optimum profitability at the 90 and 65nm technology nodes. These analyses correlate well with actual factory data and often identify millions of dollars in potential incremental revenue and cost savings. As an example, we show that a scatterometry-based CD Process Window Monitor is an economically justified, enabling technology for the 65nm node.

  6. Industrialization of Superconducting RF Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  7. Design of a low-cost, compact SRF accelerator for flue gas and wastewater treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciovati, Gianluigi

    2016-04-01

    Funding is being requested pursuant to a proposal that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). PAMS Proposal ID: 222439. The proposed project consists of the design of a novel superconducting continuous-wave accelerator capable of providing a beam current of ~1 A at an energy of 1-2 MeV for the treatment of flue gases and wastewater streams. The novel approach consists on studying the feasibility of using a single-cell Nb cavity coated with a thin Nb3Sn layer of the inner surface and conductively cooled by to 4.2 K by cryocoolers inside a compact cryomodule. Themore » proposed study will include beam transport simulations, thermal and mechanical engineering analysis of the cryomodule and a cost analysis for both the fabrications costs and the operational and maintenance costs of such accelerator. The outcome of the project will be a report summarizing the analysis and results from the design study.« less

  8. Photovoltaic Manufacturing Consortium (PVMC) – Enabling America’s Solar Revolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metacarpa, David

    The U.S. Photovoltaic Manufacturing Consortium (US-PVMC) is an industry-led consortium which was created with the mission to accelerate the research, development, manufacturing, field testing, commercialization, and deployment of next-generation solar photovoltaic technologies. Formed as part of the U.S. Department of Energy's (DOE) SunShot initiative, and headquartered in New York State, PVMC is managed by the State University of New York Polytechnic Institute (SUNY Poly) at the Colleges of Nanoscale Science and Engineering. PVMC is a hybrid of industry-led consortium and manufacturing development facility, with capabilities for collaborative and proprietary industry engagement. Through its technology development programs, advanced manufacturing development facilities,more » system demonstrations, and reliability and testing capabilities, PVMC has demonstrated itself to be a recognized proving ground for innovative solar technologies and system designs. PVMC comprises multiple locations, with the core manufacturing and deployment support activities conducted at the Solar Energy Development Center (SEDC), and the core Si wafering and metrology technologies being headed out of the University of Central Florida. The SEDC provides a pilot line for proof-of-concept prototyping, offering critical opportunities to demonstrate emerging concepts in PV manufacturing, such as evaluations of innovative materials, system components, and PV system designs. The facility, located in Halfmoon NY, encompasses 40,000 square feet of dedicated PV development space. The infrastructure and capabilities housed at PVMC includes PV system level testing at the Prototype Demonstration Facility (PDF), manufacturing scale cell & module fabrication at the Manufacturing Development Facility (MDF), cell and module testing, reliability equipment on its PV pilot line, all integrated with a PV performance database and analytical characterizations for PVMC and its partners test and commercial

  9. Framework for Sustainability Performance Assessment for Manufacturing Processes- A Review

    NASA Astrophysics Data System (ADS)

    Singh, K.; Sultan, I.

    2017-07-01

    Manufacturing industries are facing tough competition due to increasing raw material cost and depleting natural resources. There is great pressure on the industry to produce environmental friendly products using environmental friendly processes. To address these issues modern manufacturing industries are focusing on sustainable manufacturing. To develop more sustainable societies, industries need to better understand how to respond to environmental, economic and social challenges. This paper proposed some framework and tools that accelerate the transition towards a sustainable system. The developed framework will be beneficial for sustainability assessment comparing different plans alongside material properties, ultimately helping the manufacturing industries to reduce the carbon emissions and material waste, besides improving energy efficiency. It is expected that this would be highly beneficial for determination of environmental impact of a process at early design stages. Therefore, it would greatly help the manufacturing industries for selection of process plan based on sustainable indices. Overall objective of this paper would have good impact on reducing air emissions and protecting environment. We expect this work to contribute to the development of a standard reference methodology to help further sustainability in the manufacturing sector.

  10. Modeling the Downstream Processing of Monoclonal Antibodies Reveals Cost Advantages for Continuous Methods for a Broad Range of Manufacturing Scales.

    PubMed

    Hummel, Jonathan; Pagkaliwangan, Mark; Gjoka, Xhorxhi; Davidovits, Terence; Stock, Rick; Ransohoff, Thomas; Gantier, Rene; Schofield, Mark

    2018-01-17

    The biopharmaceutical industry is evolving in response to changing market conditions, including increasing competition and growing pressures to reduce costs. Single-use (SU) technologies and continuous bioprocessing have attracted attention as potential facilitators of cost-optimized manufacturing for monoclonal antibodies. While disposable bioprocessing has been adopted at many scales of manufacturing, continuous bioprocessing has yet to reach the same level of implementation. In this study, the cost of goods of Pall Life Science's integrated, continuous bioprocessing (ICB) platform is modeled, along with that of purification processes in stainless-steel and SU batch formats. All three models include costs associated with downstream processing only. Evaluation of the models across a broad range of clinical and commercial scenarios reveal that the cost savings gained by switching from stainless-steel to SU batch processing are often amplified by continuous operation. The continuous platform exhibits the lowest cost of goods across 78% of all scenarios modeled here, with the SU batch process having the lowest costs in the rest of the cases. The relative savings demonstrated by the continuous process are greatest at the highest feed titers and volumes. These findings indicate that existing and imminent continuous technologies and equipment can become key enablers for more cost effective manufacturing of biopharmaceuticals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Composite fuselage crown panel manufacturing technology

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, materials costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structure. Key technologies, such as large crown panel fabrication, were pursued for low cost. An intricate bond panel design and manufacturing concept were selected based on the efforts of the Design Build Team. The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and use of low cost materials forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing costs by 18 pct. and weight by 45 pct. relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  12. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Arrieta, Victor M.

    2013-01-01

    A document describes the low-cost manufacturing of C103 niobium alloy combustion chambers, and the use of a high-temperature, oxidation-resistant coating that is superior to the standard silicide coating. The manufacturing process involved low-temperature spray deposition of C103 on removable plastic mandrels produced by rapid prototyping. Thin, vapor-deposited platinum-indium coatings were shown to substantially improve oxidation resistance relative to the standard silicide coating. Development of different low-cost plastic thrust chamber mandrel materials and prototyping processes (selective laser sintering and stereolithography) yielded mandrels with good dimensional accuracy (within a couple of mils) for this stage of development. The feasibility of using the kinetic metallization cold-spray process for fabrication of free-standing C1O3 thrusters on removable plastic mandrels was also demonstrated. The ambient and elevated temperature mechanical properties of the material were shown to be reasonably good relative to conventionally processed C103, but the greatest potential benefit is that coldsprayed chambers require minimal post-process machining, resulting in substantially lower machining and material costs. The platinum-iridium coating was shown to provide greatly increased oxidation resistance over the silicide when evaluated through oxyacetylene torch testing to as high as 300 F (= 150 C). The iridium component minimizes reaction with the niobium alloy chamber at high temperatures, and provides the high-temperature oxidation resistance needed at the throat.

  13. Workshop Report on Additive Manufacturing for Large-Scale Metal Components - Development and Deployment of Metal Big-Area-Additive-Manufacturing (Large-Scale Metals AM) System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Peter, William H.

    Additive manufacturing (AM) is considered an emerging technology that is expected to transform the way industry can make low-volume, high value complex structures. This disruptive technology promises to replace legacy manufacturing methods for the fabrication of existing components in addition to bringing new innovation for new components with increased functional and mechanical properties. This report outlines the outcome of a workshop on large-scale metal additive manufacturing held at Oak Ridge National Laboratory (ORNL) on March 11, 2016. The charter for the workshop was outlined by the Department of Energy (DOE) Advanced Manufacturing Office program manager. The status and impact ofmore » the Big Area Additive Manufacturing (BAAM) for polymer matrix composites was presented as the background motivation for the workshop. Following, the extension of underlying technology to low-cost metals was proposed with the following goals: (i) High deposition rates (approaching 100 lbs/h); (ii) Low cost (<$10/lbs) for steel, iron, aluminum, nickel, as well as, higher cost titanium, (iii) large components (major axis greater than 6 ft) and (iv) compliance of property requirements. The above concept was discussed in depth by representatives from different industrial sectors including welding, metal fabrication machinery, energy, construction, aerospace and heavy manufacturing. In addition, DOE’s newly launched High Performance Computing for Manufacturing (HPC4MFG) program was reviewed. This program will apply thermo-mechanical models to elucidate deeper understanding of the interactions between design, process, and materials during additive manufacturing. Following these presentations, all the attendees took part in a brainstorming session where everyone identified the top 10 challenges in large-scale metal AM from their own perspective. The feedback was analyzed and grouped in different categories including, (i) CAD to PART software, (ii) selection of energy source, (iii

  14. Additive Manufacturing and Casting Technology Comparison: Mechanical Properties, Productivity and Cost Benchmark

    NASA Astrophysics Data System (ADS)

    Vevers, A.; Kromanis, A.; Gerins, E.; Ozolins, J.

    2018-04-01

    The casting technology is one of the oldest production technologies in the world but in the recent years metal additive manufacturing also known as metal 3D printing has been evolving with huge steps. Both technologies have capabilities to produce parts with internal holes and at first glance surface roughness is similar for both technologies, which means that for precise dimensions parts have to be machined in places where precise fit is necessary. Benchmark tests have been made to find out if parts which are produced with metal additive manufacturing can be used to replace parts which are produced with casting technology. Most of the comparative tests have been made with GJS-400-15 grade which is one of the most popular cast iron grades. To compare mechanical properties samples have been produced using additive manufacturing and tested for tensile strength, hardness, surface roughness and microstructure and then the results have been compared with the samples produced with casting technology. In addition, both technologies have been compared in terms of the production time and production costs to see if additive manufacturing is competitive with the casting technology. The original paper has been written in the Latvian language as part of the Master Thesis within the framework of the production technology study programme at Riga Technical University.

  15. Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Brian K.; Chesser, Phillip C.; Lind, Randall F.

    The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. andmore » the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.« less

  16. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  17. Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization

    DTIC Science & Technology

    2015-05-01

    management during operations 4 Potential Technology 3: Additive Manufacturing (“ 3D Printing ”) 5 • 3D design/image (e.g. from 3D LS) of final part...1 Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship...DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology

  18. Composite fuselage crown panel manufacturing technology

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.

    1992-01-01

    Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.

  19. Sustainable vaccine development: a vaccine manufacturer's perspective.

    PubMed

    Rappuoli, Rino; Hanon, Emmanuel

    2018-05-08

    Vaccination remains the most cost-effective public health intervention after clean water, and the benefits impressively outweigh the costs. The efforts needed to fulfill the steadily growing demands for next-generation and novel vaccines designed for emerging pathogens and new indications are only realizable in a sustainable business model. Vaccine development can be fast-tracked through strengthening international collaborations, and the continuous innovation of technologies to accelerate their design, development, and manufacturing. However, these processes should be supported by a balanced project portfolio, and by managing sustainable vaccine procurement strategies for different types of markets. Collectively this will allow a gradual shift to a more streamlined and profitable vaccine production, which can significantly contribute to the worldwide effort to shape global health. Copyright © 2018 GlaxoSmithKine Biologicals SA. Published by Elsevier Ltd.. All rights reserved.

  20. 38 CFR 36.4251 - Loans to finance the purchase of manufactured homes and the cost of necessary site preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Loans to finance the purchase of manufactured homes and the cost of necessary site preparation. 36.4251 Section 36.4251 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) LOAN GUARANTY Guaranty of Loans to Veterans to Purchase Manufactured...

  1. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  2. Process-Based Cost Modeling of Photonics Manufacture: The Cost Competitiveness of Monolithic Integration of a 1550-nm DFB Laser and an Electroabsorptive Modulator on an InP Platform

    NASA Astrophysics Data System (ADS)

    Fuchs, Erica R. H.; Bruce, E. J.; Ram, R. J.; Kirchain, Randolph E.

    2006-08-01

    The monolithic integration of components holds promise to increase network functionality and reduce packaging expense. Integration also drives down yield due to manufacturing complexity and the compounding of failures across devices. Consensus is lacking on the economically preferred extent of integration. Previous studies on the cost feasibility of integration have used high-level estimation methods. This study instead focuses on accurate-to-industry detail, basing a process-based cost model of device manufacture on data collected from 20 firms across the optoelectronics supply chain. The model presented allows for the definition of process organization, including testing, as well as processing conditions, operational characteristics, and level of automation at each step. This study focuses on the cost implications of integration of a 1550-nm DFB laser with an electroabsorptive modulator on an InP platform. Results show the monolithically integrated design to be more cost competitive over discrete component options regardless of production scale. Dominant cost drivers are packaging, testing, and assembly. Leveraging the technical detail underlying model projections, component alignment, bonding, and metal-organic chemical vapor deposition (MOCVD) are identified as processes where technical improvements are most critical to lowering costs. Such results should encourage exploration of the cost advantages of further integration and focus cost-driven technology development.

  3. Low cost method for manufacturing a data acquisition system with USB connectivity

    NASA Astrophysics Data System (ADS)

    Niculescu, V.; Dobre, R. A.; Popovici, E.

    2016-06-01

    In the process of designing and manufacturing an electronic system the digital oscilloscope plays an essential role but it also represents one of the most expensive equipment present on the typical workbench. In order to make electronic design more accessible to students and hobbyists, an affordable data acquisition system was imagined. The paper extensively presents the development and testing of a low cost, medium speed, data acquisition system which can be used in a wide range of electronic measurement and debugging applications, assuring also great portability due to the small physical dimensions. Each hardware functional block and is thoroughly described, highlighting the challenges that occurred as well as the solutions to overcome them. The entire system was successfully manufactured using high quality components to assure increased reliability, and high frequency PCB materials and techniques were preferred. The measured values determined based on test signals were compared to the ones obtained using a digital oscilloscope available on the market and differences less than 1% were observed.

  4. Low cost composite manufacturing utilizing intelligent pultrusion and resin transfer molding (IPRTM)

    NASA Astrophysics Data System (ADS)

    Bradley, James E.; Wysocki, Tadeusz S., Jr.

    1993-02-01

    This article describes an innovative method for the economical manufacturing of large, intricately-shaped tubular composite parts. Proprietary intelligent process control techniques are combined with standard pultrusion and RTM methodologies to provide high part throughput, performance, and quality while substantially reducing scrap, rework costs, and labor requirements. On-line process monitoring and control is achieved through a smart tooling interface consisting of modular zone tiles installed on part-specific die assemblies. Real-time archiving of process run parameters provides enhanced SPC and SQC capabilities.

  5. Heat pipe manufacturing study

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  6. Low Cost Manufacturing Approach of High Temperature PMC Components

    NASA Technical Reports Server (NTRS)

    Kannmacher, Kevin

    1997-01-01

    The overall objective is to develop a satisfactory sheet molding compound (SMC) of a high temperature polyimide, such as PMR-11-50, VCAP-75, or NB2-76, and to develop compression molding processing parameters for a random, chopped fiber, high temperature, sheet molding compound that will be more affordable than the traditional hand lay-up fabrication methods. Compression molding will reduce manufacturing costs of composites by: (1) minimizing the conventional machining required after fabrication due to the use of full 360 deg matched tooling, (2) reducing fabrication time by minimizing the intensive hand lay-up operations associated with individual ply fabrication techniques, such as ply orientation and ply count and (3) possibly reducing component mold time by advanced B-staging prior to molding. This program is an integral part of Allison's T406/AE engine family's growth plan, which will utilize technologies developed under NASA's Sub-sonic Transport (AST) programs, UHPTET initiatives, and internally through Allison's IR&D projects. Allison is aggressively pursuing this next generation of engines, with both commercial and military applications, by reducing the overall weight of the engine through the incorporation of advanced, lightweight, high temperature materials, such as polymer matrix composites. This infusion of new materials into the engine is also a major factor in reducing engine cost because it permits the use of physically smaller structural components to achieve the same thrust levels as the generation that it replaced. A lighter, more efficient propulsion system translates to a substantial cost and weight savings to an airframe's structure.

  7. SATCOM simulator speeds MSS deployment and lowers costs

    NASA Technical Reports Server (NTRS)

    Carey, Tim; Hassun, Roland; Koberstein, Dave

    1993-01-01

    Mobile satellite systems (MSS) are being proposed and licensed at an accelerating rate. How can the design, manufacture, and performance of these systems be optimized at costs that allow a reasonable return on investment? The answer is the use of system simulation techniques beginning early in the system design and continuing through integration, pre- and post-launch monitoring, and in-orbit monitoring. This paper focuses on using commercially available, validated simulation instruments to deliver accurate, repeatable, and cost effective measurements throughout the life of a typical mobile satellite system. A satellite communications test set is discussed that provides complete parametric test capability with a significant improvement in measurement speed for manufacturing, integration, and pre-launch and in-orbit testing. The test set can simulate actual up and down link traffic conditions to evaluate the effects of system impairments, propagation and multipath on bit error rate (BER), channel capacity and transponder and system load balancing. Using a standard set of commercial instruments to deliver accurate, verifiable measurements anywhere in the world speeds deployment, generates measurement confidence, and lowers total system cost.

  8. Cost-Effective Additive Manufacturing in Space: HELIOS Technology Challenge Guide

    NASA Technical Reports Server (NTRS)

    DeVieneni, Alayna; Velez, Carlos Andres; Benjamin, David; Hollenbeck, Jay

    2012-01-01

    Welcome to the HELIOS Technology Challenge Guide. This document is intended to serve as a general road map for participants of the HELIOS Technology Challenge [HTC] Program and the associated inaugural challenge: HTC-01: Cost-Effective Additive Manufacturing in Space. Please note that this guide is not a rule book and is not meant to hinder the development of innovative ideas. Its primary goal is to highlight the objectives of the HTC-01 Challenge and to describe possible solution routes and pitfalls that such technology may encounter in space. Please also note that participants wishing to demonstrate any hardware developed under this program during any future HELIOS Technology Challenge showcase event(s) may be subject to event regulations to be published separately at a later date.

  9. The Economics of Big Area Addtiive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Brian; Lloyd, Peter D; Lindahl, John

    Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupledmore » with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.« less

  10. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology

    NASA Astrophysics Data System (ADS)

    Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.

    2017-11-01

    Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.

  11. Powder Injection Molding (PIM) for Low Cost Manufacturing of Intricate Parts to Net-Shape

    DTIC Science & Technology

    2006-05-01

    tungsten - or molybdenum-pseudoalloys, which can be net-shape manufactured only by PIM because of the tight dimension tolerances needed for the final...materials. Rhenium metal, for instance, which costs about US$ 800 /lb, offers the advantage of a high melting point. It can maintain reasonable...tubes, valves and thrusters of solid fluid propeller systems. Production of these components is however both expensive and difficult, as rhenium cannot

  12. Integrating post-manufacturing issues into design and manufacturing decisions

    NASA Technical Reports Server (NTRS)

    Eubanks, Charles F.

    1996-01-01

    An investigation is conducted on research into some of the fundamental issues underlying the design for manufacturing, service and recycling that affect engineering decisions early in the conceptual design phase of mechanical systems. The investigation focuses on a system-based approach to material selection, manufacturing methods and assembly processes related to overall product requirements, performance and life-cycle costs. Particular emphasis is placed on concurrent engineering decision support for post-manufacturing issues such as serviceability, recyclability, and product retirement.

  13. Aspheric design for manufacturability

    NASA Astrophysics Data System (ADS)

    Kreischer, Cody B.

    2007-05-01

    The experienced lens designer is well aware of the potential advantages aspherics can afford. Within the last few years, machines specifically designed for the CNC machining and polishing of glass aspheres have become commercially available through several manufacturers. This has brought down manufacturing cost to the point that designs incorporating aspheres can be used to reduce system cost compared to all spherical designs. (That is aspheres are no longer used just to save space and weight at the expense of cost.) Not all aspheres are equally manufacturable, however. Arbitrary choices at the beginning of a design can have major impact on manufacturing cost and limit final "as built" performance. This paper considers factors in designing ground and polished (as opposed to molded) glass aspheres which may not be obvious to even the experienced lens designer accustomed to using spherical surfaces or who has dealt with diamond turned aspheres. Factors considered include the surface shape, how the shape is specified, how the surface is to be tested and how it is toleranced. Emphasis will be placed on medium priced components where practical considerations are important.

  14. Manufacturing information system

    NASA Astrophysics Data System (ADS)

    Allen, D. K.; Smith, P. R.; Smart, M. J.

    1983-12-01

    The size and cost of manufacturing equipment has made it extremely difficult to perform realistic modeling and simulation of the manufacturing process in university research laboratories. Likewise the size and cost factors, coupled with many uncontrolled variables of the production situation has even made it difficult to perform adequate manufacturing research in the industrial setting. Only the largest companies can afford manufacturing research laboratories; research results are often held proprietary and seldom find their way into the university classroom to aid in education and training of new manufacturing engineers. It is the purpose for this research to continue the development of miniature prototype equipment suitable for use in an integrated CAD/CAM Laboratory. The equipment being developed is capable of actually performing production operations (e.g. drilling, milling, turning, punching, etc.) on metallic and non-metallic workpieces. The integrated CAD/CAM Mini-Lab is integrating high resolution, computer graphics, parametric design, parametric N/C parts programmings, CNC machine control, automated storage and retrieval, with robotics materials handling. The availability of miniature CAD/CAM laboratory equipment will provide the basis for intensive laboratory research on manufacturing information systems.

  15. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulman, Holly; Ross, Nicole

    2015-10-30

    An additive manufacture technique known as laminated object manufacturing (LOM) was used to fabricate compact ceramic heat exchanger prototypes. LOM uses precision CO2 laser cutting of ceramic green tapes, which are then precision stacked to build a 3D object with fine internal features. Modeling was used to develop prototype designs and predict the thermal response, stress, and efficiency in the ceramic heat exchangers. Build testing and materials analyses were used to provide feedback for the design selection. During this development process, laminated object manufacturing protocols were established. This included laser optimization, strategies for fine feature integrity, lamination fluid control, greenmore » handling, and firing profile. Three full size prototypes were fabricated using two different designs. One prototype was selected for performance testing. During testing, cross talk leakage prevented the application of a high pressure differential, however, the prototype was successful at withstanding the high temperature operating conditions (1300 °F). In addition, analysis showed that the bulk of the part did not have cracks or leakage issues. This led to the development of a module method for next generation LOM heat exchangers. A scale-up cost analysis showed that given a purpose built LOM system, these ceramic heat exchangers would be affordable for the applications.« less

  16. Controlling high-throughput manufacturing at the nano-scale

    NASA Astrophysics Data System (ADS)

    Cooper, Khershed P.

    2013-09-01

    Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.

  17. 49 CFR 573.14 - Accelerated remedy program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Accelerated remedy program. 573.14 Section 573.14... § 573.14 Accelerated remedy program. (a) An accelerated remedy program is one in which the manufacturer expands the sources of replacement parts needed to remedy the defect or noncompliance, or expands the...

  18. 49 CFR 573.14 - Accelerated remedy program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Accelerated remedy program. 573.14 Section 573.14... § 573.14 Accelerated remedy program. (a) An accelerated remedy program is one in which the manufacturer expands the sources of replacement parts needed to remedy the defect or noncompliance, or expands the...

  19. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Iftikhar; Zhang, Pu

    of the electrode materials. For the existing electrode materials, the material analysis and cell characterization data from ADP dried electrodes showed equivalent (or slightly better) performance. However, for high loading and thicker electrode materials (for high energy densities) the ADP advantages are more prominent. There was less binder migration, the resistance was lower hence the current capacities and retention of the battery cells were higher. The success of the project has enabled credible communications with commercial end users as well as battery coating line integrators. Goal is to scale ADP up for high volume manufacturing of Li-ion battery electrodes. The implementation of ADP in high volume manufacturing will reduce a high cost production step to bring the overall price of Li-ion batteries down. This will ultimately have a positive impact on the public by making electric and hybrid vehicles more affordable.« less

  20. Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules: Final Subcontract Report, 7 August 2003--30 September 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keshner, M. S.; Arya, R.

    2004-10-01

    Hewlett Packard has created a design for a ''Solar City'' factory that will process 30 million sq. meters of glass panels per year and produce 2.1-3.6 GW of solar panels per year-100x the volume of a typical, thin-film, solar panel manufacturer in 2004. We have shown that with a reasonable selection of materials, and conservative assumptions, this ''Solar City'' can produce solar panels and hit the price target of $1.00 per peak watt (6.5x-8.5x lower than prices in 2004) as the total price for a complete and installed rooftop (or ground mounted) solar energy system. This breakthrough in the pricemore » of solar energy comes without the need for any significant new invention. It comes entirely from the manufacturing scale of a large plant and the cost savings inherent in operating at such a large manufacturing scale. We expect that further optimizations from these simple designs will lead to further improvements in cost. The manufacturing process and cost depend on the choice for the active layer that converts sunlight into electricity. The efficiency by which sunlight is converted into electricity can range from 7% to 15%. This parameter has a large effect on the overall price per watt. There are other impacts, as well, and we have attempted to capture them without creating undue distractions. Our primary purpose is to demonstrate the impact of large-scale manufacturing. This impact is largely independent of the choice of active layer. It is not our purpose to compare the pro's and con's for various types of active layers. Significant improvements in cost per watt can also come from scientific advances in active layers that lead to higher efficiency. But, again, our focus is on manufacturing gains and not on the potential advances in the basic technology.« less

  1. Doing More with Less: Cost-effective, Compact Particle Accelerators (489th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trbojevic, Dejan

    2013-10-22

    Replace a 135-ton magnet used for cancer-fighting particle therapies with a magnet that weighs only two tons? Such a swap is becoming possible thanks to new particle accelerator advances being developed by researchers at Brookhaven Lab. With an approach that combines techniques used by synchrotron accelerators with the ability to accept more energy, these new technologies could be used for more than fighting cancer. They could also decrease the lifecycle of byproducts from nuclear power plants and reduce costs for eRHIC—a proposed electron-ion collider for Brookhaven Lab that researchers from around the world would use to explore the glue thatmore » holds together the universe’s most basic building blocks and explore the proton-spin puzzle. During this lecture, Dr. Trbojevic provides an overview of accelerator technologies and techniques—particularly a non-scaling, fixed-focused alternating gradient—to focus particle beams using fewer, smaller magnets. He discusses how these technologies will benefit eRHIC and other applications, including particle therapies being developed to combat cancer.« less

  2. Workforce Development for Manufacturing

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2007-01-01

    In a recent skills gap report, the National Association of Manufacturers (NAM) noted some disturbing trends in the gap between the demand for highly skilled manufacturing workers and the potential supply. The NAM report notes that smaller manufacturers rank finding qualified workers ahead of energy costs, taxes and government regulations on the…

  3. Low-cost small scale parabolic trough collector design for manufacturing and deployment in Africa

    NASA Astrophysics Data System (ADS)

    Orosz, Matthew; Mathaha, Paul; Tsiu, Anadola; Taele, B. M.; Mabea, Lengeta; Ntee, Marcel; Khakanyo, Makoanyane; Teker, Tamer; Stephens, Jordan; Mueller, Amy

    2016-05-01

    Concentrating Solar Power is expanding its deployment on the African subcontinent, highlighting the importance of efforts to indigenize manufacturing of this technology to increase local content and therefore local economic benefits of these projects. In this study a design for manufacturing (DFM) exercise was conducted to create a locally produced parabolic trough collector (the G4 PTC). All parts were sourced or fabricated at a production facility in Lesotho, and several examples of the design were prototyped and tested with collaborators in the Government of Lesotho's Appropriate Technology Services division and the National University of Lesotho. Optical and thermal performance was simulated and experimentally validated, and pedagogical pre-commercial versions of the PTC have been distributed to higher education partners in Lesotho and Europe. The cost to produce the PTC is 180 USD/m2 for a locally manufactured heat collection element (HCE) capable of sustaining 250C operation at ~65% efficiency. A version with an imported evacuated HCE can operate at 300°C with 70% efficiency. Economically relevant applications for this locally produced PTC include industrial process heat and distributed generation scenarios where cogeneration is required.

  4. Integrated Glass Coating Manufacturing Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brophy, Brenor

    2015-09-30

    This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs andmore » a detailed deployment plan for the equipment.« less

  5. Innovative hybrid optics: combining the thermal stability of glass with low manufacturing cost of polymers

    NASA Astrophysics Data System (ADS)

    Doushkina, Valentina

    2010-08-01

    Innovative hybrid glass-polymer optical solutions on a component, module, or system level offer thermal stability of glass with low manufacturing cost of polymers reducing component weight, enhancing the safety and appeal of the products. Narrow choice of polymer materials is compensated by utilizing sophisticated optical surfaces such as refractive, reflective, and diffractive substrates with spherical, aspherical, cylindrical, and freeform prescriptions. Current advancements in polymer technology and injection molding capabilities placed polymer optics in the heart of many high tech devices and applications including Automotive Industry, Defense & Aerospace; Medical/Bio Science; Projection Displays, Sensors, Information Technology, Commercial and Industrial. This paper is about integration of polymer and glass optics for enhanced optical performance with reduced number of components, thermal stability, and low manufacturing cost. The listed advantages are not achievable when polymers or glass optics are used as stand-alone. The author demonstrates that integration of polymer and glass on component or optical system level on one hand offers high resolution and diffraction limited image quality, similar to the glass optics with stable refractive index and stable thermal performance when design is athermalized within the temperature range. On the other hand, the integrated hybrid solution significantly reduces cost, weight, and complexity, just like the polymer optics. The author will describe the design and analyzes process of combining glass and polymer optics for variety of challenging applications such as fast optics with low F/#, wide field of view lenses or systems, free form optics, etc.

  6. Accelerant-related burns and drug abuse: Challenging combination.

    PubMed

    Leung, Leslie T F; Papp, Anthony

    2018-05-01

    Accelerants are flammable substances that may cause explosion when added to existing fires. The relationships between drug abuse and accelerant-related burns are not well elucidated in the literature. Of these burns, a portion is related to drug manufacturing, which have been shown to be associated with increased burn complications. 1) To evaluate the demographics and clinical outcomes of accelerant-related burns in a Provincial Burn Centre. 2) To compare the clinical outcomes with a control group of non-accelerant related burns. 3) To analyze a subgroup of patients with history of drug abuse and drug manufacturing. Retrospective case control study. Patient data associated with accelerant-related burns from 2009 to 2014 were obtained from the British Columbia Burn Registry. These patients were compared with a control group of non-accelerant related burns. Clinical outcomes that were evaluated include inhalational injury, ICU length of stay, ventilator support, surgeries needed, and burn complications. Chi-square test was used to evaluate categorical data and Student's t-test was used to evaluate mean quantitative data with the p value set at 0.05. A logistic regression model was used to evaluate factors affecting burn complications. Accelerant-related burns represented 28.2% of all burn admissions (N=532) from 2009 to 2014. The accelerant group had higher percentage of patients with history of drug abuse and was associated with higher TBSA burns, ventilator support, ICU stay and pneumonia rates compared to the non-accelerant group. Within the accelerant group, there was no difference in clinical outcomes amongst people with or without history of drug abuse. Four cases were associated with methamphetamine manufacturing, all of which underwent ICU stay and ventilator support. Accelerant-related burns cause significant burden to the burn center. A significant proportion of these patients have history of drug abuse. Copyright © 2017 Elsevier Ltd and ISBI. All rights

  7. Designing using manufacturing features

    NASA Astrophysics Data System (ADS)

    Szecsi, T.; Hoque, A. S. M.

    2012-04-01

    This paper presents a design system that enables the composition of a part using manufacturing features. Features are selected from feature libraries. Upon insertion, the system ensures that the feature does not contradict the design-for-manufacture rules. This helps eliminating costly manufacturing problems. The system is developed as an extension to a commercial CAD/CAM system Pro/Engineer.

  8. Manufacturing Planning Guide

    NASA Technical Reports Server (NTRS)

    Waid, Michael

    2011-01-01

    Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  9. Electrostatic accelerators with high energy resolution

    NASA Astrophysics Data System (ADS)

    Uchiyama, T.; Agawa, Y.; Nishihashi, T.; Takagi, K.; Yamakawa, H.; Isoya, A.; Takai, M.; Namba, S.

    1991-05-01

    Several models of electrostatic accelerators based on rotating disks (Disktron) have been manufactured for various ion beam applications like surface analyses and implantation. The high voltage terminal of the Disktron with a terminal voltage of up to 500 kV is open in air, while the generator part is enclosed in FRP (fiber reinforced plastics) or a ceramic vessel filled with sf 6 gas. The 1 MV model is completely enclosed in a steel vessel. A compact tandem accelerator of the pellet chain type with a terminal voltage of 1.5 MV has also been manufactured. The good energy stability of these accelerators, typically in the range of 10 -4, has proved to be quite favorable for applications in precise studies of material surfaces, including the use of microbeam techniques.

  10. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  11. A Process Management System for Networked Manufacturing

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Wang, Huifen; Liu, Linyan

    With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.

  12. Compliance by Design: Influence of Acceleration Trade-offs on CO2 Emissions and Costs of Fuel Economy and Greenhouse Gas Regulations.

    PubMed

    Whitefoot, Kate S; Fowlie, Meredith L; Skerlos, Steven J

    2017-09-19

    The ability of automakers to improve the fuel economy of vehicles using engineering design modifications that compromise other performance attributes, such as acceleration, is not currently considered when setting fuel economy and greenhouse-gas emission standards for passenger cars and light trucks. We examine the role of these design trade-offs by simulating automaker responses to recently reformed vehicle standards with and without the ability to adjust acceleration performance. Results indicate that acceleration trade-offs can be important in two respects: (1) they can reduce the compliance costs of the standards, and (2) they can significantly reduce emissions associated with a particular level of the standards by mitigating incentives to shift sales toward larger vehicles and light trucks relative to passenger cars. We contrast simulation-based results with observed changes in vehicle attributes under the reformed standards. We find evidence that is consistent with firms using acceleration trade-offs to achieve compliance. Taken together, our analysis suggests that acceleration trade-offs play a role in automaker compliance strategies with potentially large implications for both compliance costs and emissions.

  13. The comparison of properties and cost of material use of natural rubber and sand in manufacturing cement mortar for construction sub-base layer

    NASA Astrophysics Data System (ADS)

    Rahman, R.; Nemmang, M. S.; Hazurina, Nor; Shahidan, S.; Khairul Tajuddin Jemain, Raden; Abdullah, M. E.; Hassan, M. F.

    2017-11-01

    The main issue related to this research was to examine the feasibility of natural rubber SMR 20 in the manufacturing of cement mortar for sub-base layer construction. Subbase layers have certain functions that need to be fulfilled in order to assure strong and adequate permeability of pavement performance. In a pavement structure, sub-base is below the base and serves as the foundation for the overall pavement structure, transmitting traffic loads to the sub-grade and providing drainage. Based on this research, the natural rubber, SMR 20 was with the percentages of 0%, 5%, 10% and 15% to mix with sand in the manufacture of the cement mortar. This research describes some of the properties and cost of the materials for the natural rubber and sand in cement mortar manufacturing by laboratory testing. Effects of the natural rubber replacement on mechanical properties of mortar were investigated by laboratory testing such as compressive strength test and density. This study obtained the 5% of natural rubber replaced in sand can achieved the strength of normal mortar after 7 days and 28 days. The strength of cement mortar depends on the density of cement mortar. According to the cost of both materials, sand shows the lower cost in material for the cement mortar manufacturing than the uses of natural rubber. Thus, the convectional cement mortar which used sand need lower cost than the modified rubber cement mortar and the most economical to apply in industrial. As conclusion, the percentage of 5% natural rubber in the cement mortar would have the same with normal cement mortar in terms of the strength. However, in terms of the cost of the construction, it will increase higher than cost of normal cement mortar production. So that, this modified cement mortar is not economical for the road sub-base construction.

  14. Spraying Techniques for Large Scale Manufacturing of PEM-FC Electrodes

    NASA Astrophysics Data System (ADS)

    Hoffman, Casey J.

    Fuel cells are highly efficient energy conversion devices that represent one part of the solution to the world's current energy crisis in the midst of global climate change. When supplied with the necessary reactant gasses, fuel cells produce only electricity, heat, and water. The fuel used, namely hydrogen, is available from many sources including natural gas and the electrolysis of water. If the electricity for electrolysis is generated by renewable energy (e.g., solar and wind power), fuel cells represent a completely 'green' method of producing electricity. The thought of being able to produce electricity to power homes, vehicles, and other portable or stationary equipment with essentially zero environmentally harmful emissions has been driving academic and industrial fuel cell research and development with the goal of successfully commercializing this technology. Unfortunately, fuel cells cannot achieve any appreciable market penetration at their current costs. The author's hypothesis is that: the development of automated, non-contact deposition methods for electrode manufacturing will improve performance and process flexibility, thereby helping to accelerate the commercialization of PEMFC technology. The overarching motivation for this research was to lower the cost of manufacturing fuel cell electrodes and bring the technology one step closer to commercial viability. The author has proven this hypothesis through a detailed study of two non-contact spraying methods. These scalable deposition systems were incorporated into an automated electrode manufacturing system that was designed and built by the author for this research. The electrode manufacturing techniques developed by the author have been shown to produce electrodes that outperform a common lab-scale contact method that was studied as a baseline, as well as several commercially available electrodes. In addition, these scalable, large scale electrode manufacturing processes developed by the author are

  15. Continuous Manufacturing in Pharmaceutical Process Development and Manufacturing.

    PubMed

    Burcham, Christopher L; Florence, Alastair J; Johnson, Martin D

    2018-06-07

    The pharmaceutical industry has found new applications for the use of continuous processing for the manufacture of new therapies currently in development. The transformation has been encouraged by regulatory bodies as well as driven by cost reduction, decreased development cycles, access to new chemistries not practical in batch, improved safety, flexible manufacturing platforms, and improved product quality assurance. The transformation from batch to continuous manufacturing processing is the focus of this review. The review is limited to small, chemically synthesized organic molecules and encompasses the manufacture of both active pharmaceutical ingredients (APIs) and the subsequent drug product. Continuous drug product is currently used in approved processes. A few examples of production of APIs under current good manufacturing practice conditions using continuous processing steps have been published in the past five years, but they are lagging behind continuous drug product with respect to regulatory filings.

  16. Manufacturing cost analysis of a parabolic dish concentrator (General Electric design) for solar thermal electric power systems in selected production volumes

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The manufacturing cost of a General Electric 12 meter diameter concentrator was estimated. This parabolic dish concentrator for solar thermal system was costed in annual production volumes of 100 - 1,000 - 5,000 - 10,000 - 50,000 100,000 - 400,000 and 1,000,000 units. Presented for each volume are the costs of direct labor, material, burden, tooling, capital equipment and buildings. Also presented is the direct labor personnel and factory space requirements. All costs are based on early 1981 economics.

  17. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2018-02-07

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  18. Breakthrough: Fermilab Accelerator Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-04-23

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  19. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Steve

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing andmore » material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.« less

  20. Compensation of the impact of low-cost manufacturing techniques in the design of E-plane multiport waveguide junctions

    NASA Astrophysics Data System (ADS)

    San-Blas, A. A.; Roca, J. M.; Cogollos, S.; Morro, J. V.; Boria, V. E.; Gimeno, B.

    2016-06-01

    In this work, a full-wave tool for the accurate analysis and design of compensated E-plane multiport junctions is proposed. The implemented tool is capable of evaluating the undesired effects related to the use of low-cost manufacturing techniques, which are mostly due to the introduction of rounded corners in the cross section of the rectangular waveguides of the device. The obtained results show that, although stringent mechanical effects are imposed, it is possible to compensate for the impact of the cited low-cost manufacturing techniques by redesigning the matching elements considered in the original device. Several new designs concerning a great variety of E-plane components (such as right-angled bends, T-junctions and magic-Ts) are presented, and useful design guidelines are provided. The implemented tool, which is mainly based on the boundary integral-resonant mode expansion technique, has been successfully validated by comparing the obtained results to simulated data provided by a commercial software based on the finite element method.

  1. The Role of Advanced Manufacturing in Our Journey to Mars

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.

    2017-01-01

    The National Additive Manufacturing Innovation Institute was launched in August 2012 as a result of President Obama's proposed need for a whole-of-government advanced manufacturing effort. Mission: To accelerate the adoption of additive manufacturing technologies to increase domestic manufacturing competitiveness. Funding: Five federal agencies - the Departments of Defense, Energy, and Commerce, the National Science Foundation, and NASA - jointly committed to invest $45 million.

  2. Clinical outcomes and cost effectiveness of accelerated diagnostic protocol in a chest pain center compared with routine care of patients with chest pain.

    PubMed

    Asher, Elad; Reuveni, Haim; Shlomo, Nir; Gerber, Yariv; Beigel, Roy; Narodetski, Michael; Eldar, Michael; Or, Jacob; Hod, Hanoch; Shamiss, Arie; Matetzky, Shlomi

    2015-01-01

    The aim of this study was to compare in patients presenting with acute chest pain the clinical outcomes and cost-effectiveness of an accelerated diagnostic protocol utilizing contemporary technology in a chest pain unit versus routine care in an internal medicine department. Hospital and 90-day course were prospectively studied in 585 consecutive low-moderate risk acute chest pain patients, of whom 304 were investigated in a designated chest pain center using a pre-specified accelerated diagnostic protocol, while 281 underwent routine care in an internal medicine ward. Hospitalization was longer in the routine care compared with the accelerated diagnostic protocol group (p<0.001). During hospitalization, 298 accelerated diagnostic protocol patients (98%) vs. 57 (20%) routine care patients underwent non-invasive testing, (p<0.001). Throughout the 90-day follow-up, diagnostic imaging testing was performed in 125 (44%) and 26 (9%) patients in the routine care and accelerated diagnostic protocol patients, respectively (p<0.001). Ultimately, most patients in both groups had non-invasive imaging testing. Accelerated diagnostic protocol patients compared with those receiving routine care was associated with a lower incidence of readmissions for chest pain [8 (3%) vs. 24 (9%), p<0.01], and acute coronary syndromes [1 (0.3%) vs. 9 (3.2%), p<0.01], during the follow-up period. The accelerated diagnostic protocol remained a predictor of lower acute coronary syndromes and readmissions after propensity score analysis [OR = 0.28 (CI 95% 0.14-0.59)]. Cost per patient was similar in both groups [($2510 vs. $2703 for the accelerated diagnostic protocol and routine care group, respectively, (p = 0.9)]. An accelerated diagnostic protocol is clinically superior and as cost effective as routine in acute chest pain patients, and may save time and resources.

  3. Clinical Outcomes and Cost Effectiveness of Accelerated Diagnostic Protocol in a Chest Pain Center Compared with Routine Care of Patients with Chest Pain

    PubMed Central

    Asher, Elad; Reuveni, Haim; Shlomo, Nir; Gerber, Yariv; Beigel, Roy; Narodetski, Michael; Eldar, Michael; Or, Jacob; Hod, Hanoch; Shamiss, Arie; Matetzky, Shlomi

    2015-01-01

    Aims The aim of this study was to compare in patients presenting with acute chest pain the clinical outcomes and cost-effectiveness of an accelerated diagnostic protocol utilizing contemporary technology in a chest pain unit versus routine care in an internal medicine department. Methods and Results Hospital and 90-day course were prospectively studied in 585 consecutive low-moderate risk acute chest pain patients, of whom 304 were investigated in a designated chest pain center using a pre-specified accelerated diagnostic protocol, while 281 underwent routine care in an internal medicine ward. Hospitalization was longer in the routine care compared with the accelerated diagnostic protocol group (p<0.001). During hospitalization, 298 accelerated diagnostic protocol patients (98%) vs. 57 (20%) routine care patients underwent non-invasive testing, (p<0.001). Throughout the 90-day follow-up, diagnostic imaging testing was performed in 125 (44%) and 26 (9%) patients in the routine care and accelerated diagnostic protocol patients, respectively (p<0.001). Ultimately, most patients in both groups had non-invasive imaging testing. Accelerated diagnostic protocol patients compared with those receiving routine care was associated with a lower incidence of readmissions for chest pain [8 (3%) vs. 24 (9%), p<0.01], and acute coronary syndromes [1 (0.3%) vs. 9 (3.2%), p<0.01], during the follow-up period. The accelerated diagnostic protocol remained a predictor of lower acute coronary syndromes and readmissions after propensity score analysis [OR = 0.28 (CI 95% 0.14–0.59)]. Cost per patient was similar in both groups [($2510 vs. $2703 for the accelerated diagnostic protocol and routine care group, respectively, (p = 0.9)]. Conclusion An accelerated diagnostic protocol is clinically superior and as cost effective as routine in acute chest pain patients, and may save time and resources. PMID:25622029

  4. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    NASA Astrophysics Data System (ADS)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with

  5. Manufacturing Methods for Liposome Adjuvants.

    PubMed

    Perrie, Yvonne; Kastner, Elisabeth; Khadke, Swapnil; Roces, Carla B; Stone, Peter

    2017-01-01

    A wide range of studies have shown that liposomes can act as suitable adjuvants for a range of vaccine antigens. Properties such as their amphiphilic character and biphasic nature allow them to incorporate antigens within the lipid bilayer, on the surface, or encapsulated within the inner core. However, appropriate methods for the manufacture of liposomes are limited and this has resulted in issues with cost, supply, and wider scale application of these systems. Within this chapter we explore manufacturing processes that can be used for the production of liposomal adjuvants, and we outline new manufacturing methods can that offer fast, scalable, and cost-effective production of liposomal adjuvants.

  6. The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles.

    PubMed

    Minetti, Alberto E; Gaudino, Paolo; Seminati, Elena; Cazzola, Dario

    2013-02-15

    Although most of the literature on locomotion energetics and biomechanics is about constant-speed experiments, humans and animals tend to move at variable speeds in their daily life. This study addresses the following questions: 1) how much extra metabolic energy is associated with traveling a unit distance by adopting acceleration/deceleration cycles in walking and running, with respect to constant speed, and 2) how can biomechanics explain those metabolic findings. Ten males and ten females walked and ran at fluctuating speeds (5 ± 0, ± 1, ± 1.5, ± 2, ± 2.5 km/h for treadmill walking, 11 ± 0, ± 1, ± 2, ± 3, ± 4 km/h for treadmill and field running) in cycles lasting 6 s. Field experiments, consisting of subjects following a laser spot projected from a computer-controlled astronomic telescope, were necessary to check the noninertial bias of the oscillating-speed treadmill. Metabolic cost of transport was found to be almost constant at all speed oscillations for running and up to ±2 km/h for walking, with no remarkable differences between laboratory and field results. The substantial constancy of the metabolic cost is not explained by the predicted cost of pure acceleration/deceleration. As for walking, results from speed-oscillation running suggest that the inherent within-stride, elastic energy-free accelerations/decelerations when moving at constant speed work as a mechanical buffer for among-stride speed fluctuations, with no extra metabolic cost. Also, a recent theory about the analogy between sprint (level) running and constant-speed running on gradients, together with the mechanical determinants of gradient locomotion, helps to interpret the present findings.

  7. Smart Manufacturing.

    PubMed

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  8. Automotive manufacturing assessment system. Volume IV: engine manufacturing analysis. Final report Jun 77-Aug 78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T. Jr

    Volume IV represents the results of one of four major study areas under the Automotive Manufacturing Assessment System (AMAS) sponsored by the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of industry's capability to produce fuel efficient vehicles. An analysis of automotive engine manufacturing was conducted in order to determine the impact of regulatory changes on tooling costs and the production process. The 351W CID V-8 engine at Ford's Windsor No. 1 Plant was the subject of the analysis. A review of plant history and its product is presented along with an analysis of manufacturing operations, includingmore » material and production flow, plant layout, machining and assembly processes, tooling, supporting facilities, inspection, service and repair. Four levels of product change intensity showing the impact on manufacturing methods and cost is also presented.« less

  9. Bio-Manufacturing to market pilot project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressen, Tiffaney

    The Bio-Manufacturing to Market pilot project was a part of the AMJIAC, the Advanced Manufacturing Jobs and Innovation Accelerator Challenge grant. This internship program set out to further define and enhance the talent pipeline from the University and local Community Colleges to startup culture in East Bay Area, provide undergraduate STEM students with opportunities outside academia, and provide startup companies with much needed talent. Over the 4 year period of performance, the Bio-Manufacturing to Market internship program sponsored 75 undergraduate STEM students who were able to spend anywhere from one to six semesters working with local Bay Area startup companiesmore » and DOE sponsored facilities/programs in the biotech, bio-manufacturing, and biomedical device fields.« less

  10. NREL, Abengoa Making Concentrating Solar Power System Manufacturing More

    Science.gov Websites

    Cost Effective | Energy Systems Integration Facility | NREL Abengoa NREL, Abengoa Making Concentrating Solar Power System Manufacturing More Cost Effective Abengoa is working with NREL researchers to develop a new and more cost-effective manufacturing process for critical components of concentrating solar

  11. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA's Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aid in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI.

  12. Accelerated degradation of silicon metallization systems

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Clemson University has been engaged for the past five years in a program to determine the reliability attributes of solar cells by means of accelerated test procedures. The cells are electrically measured and visually inspected and then subjected for a period of time to stress in excess of that normally encountered in use, and then they are reinspected. Changes are noted and the process repeated. This testing has thus far involved 23 different unencapsulated cell types from 12 different manufacturers, and 10 different encapsulated cell types from 9 different manufacturers. Reliability attributes of metallization systems can be classified as major or minor, depending on the severity of the effects observed. As a result of the accelerated testing conducted under the Clemson program, major effects have been observed related to contact resistance and to mechanical adherence and solderability. This paper does not attempt a generalized survey of accelerated test results, but rather concentrates on one particular attribute of metallization that has been observed to cause electrical degradation - increased contact resistance due to Schottky barrier formation. In this example basic semiconductor theory was able to provide an understanding of the electrical effects observed during accelerated stress testing.

  13. Graphical simulation for aerospace manufacturing

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Bien, Christopher

    1994-01-01

    Simulation software has become a key technological enabler for integrating flexible manufacturing systems and streamlining the overall aerospace manufacturing process. In particular, robot simulation and offline programming software is being credited for reducing down time and labor cost, while boosting quality and significantly increasing productivity.

  14. Ferroelectric ceramics in a pyroelectric accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shchagin, A. V., E-mail: shchagin@kipt.kharkov.ua; Belgorod State University, Belgorod 308015; Miroshnik, V. S.

    2015-12-07

    The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.

  15. Manufacturing Analysis | Energy Analysis | NREL

    Science.gov Websites

    , state, and community levels. Solar photovoltaic manufacturing cost analysis Examining the regional competitiveness of solar photovoltaic manufacturing points to access to capital as a critical component for scale of rare material-based photovoltaic PV technology deployment may influence the United States

  16. Dramatically improve the Safety Performance of Li ion Battery Separators and Reduce the Manufacturing Cost Using Ultraviolet Curing and High Precision Coating Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voelker, Gary; Arnold, John

    The objective of this project was to improve the safety of operation of Lithium ion batteries (LIB)and at the same time significantly reduce the manufacturing cost of LIB separators. The project was very successful in demonstrating the improved performance and reduced cost attributed to using UV curable binder and high speed printing technology to place a very thin and precisely controlled ceramic layer on the surface of base separators made of polyolefins such as Polyethylene, Polypropylene and combinations of the two as well as cellulosic base separators. The underlying need for this new technology is the recently identified potential ofmore » fire in large format Lithium ion batteries used in hybrid, plug-in hybrid and electric vehicles. The primary potential cause of battery fire is thermal runaway caused by several different electrical or mechanical mechanisms; such as, overcharge, puncture, overheating, compaction, and internal short circuit. During thermal runaway, the ideal separator prevents ion flow and continues to physically separate the anode from the cathode. If the temperature of the battery gets higher, the separator may melt and partially clog the pores and help prevent ion flows but it also can shrink which can result in physical contact of the electrodes and accelerate thermal run-away even further. Ceramic coated separators eliminate many of the problems related to the usage of traditional separators. The ceramic coating provides an electrically insulating layer that retains its physical integrity at high temperature, allows for more efficient thermal heat transfer, helps reduce thermal shrinkage, and inhibits dendrite growth that could create a potential short circuit. The use of Ultraviolet (UV) chemistry to bind fine ceramic particles on separators is a unique and innovative approach primarily because of the instant curing of the UV curable binder upon exposure to UV light. This significant reduction in drying/curing time significantly

  17. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  18. The Science of and Advanced Technology for Cost-Effective Manufacture of High Precision Engineering Products. Volume 5. Automatic Generation of Process Outlines of Forming and Machining Processes.

    DTIC Science & Technology

    1986-08-01

    THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR COST-EFFECTIVE MANUFACTURE Lfl OF HIGH PRECISION ENGINEERING PRODUCTS N iA6/*N ONR Contract No. 83K0385...ADVANCED TECHNOLOGY FOR1 COST-EFFECTIVE MANUFACTURE OF1’ HIGH PRECISION ENGINEERING PRODUCTS ONR Contract No. 83K0385 Final Report Vol. 5 AUTOMATIC...Ck 53N Drawing #: 03116-6233 Raw Material: Iiz’ 500mm diameter and 3000mm length Ma, rial Alloy steel. high carbon content, quenched to Min 45Rc

  19. A retrospective investigation of energy efficiency standards: Policies may have accelerated long term declines in appliance costs

    DOE PAGES

    Van Buskirk, R. D.; Kantner, C. L. S.; Gerke, B. F.; ...

    2014-11-14

    We perform a retrospective investigation of multi-decade trends in price and life-cycle cost (LCC) for home appliances in periods with and without energy efficiency (EE) standards and labeling polices. In contrast to the classical picture of the impact of efficiency standards, the introduction and updating of appliance standards is not associated with a long-term increase in purchase price; rather, quality-adjusted prices undergo a continued or accelerated long-term decline. In addition, long term trends in appliance LCCs—which include operating costs—consistently show an accelerated long term decline with EE policies. We also show that the incremental price of efficiency improvements has declinedmore » faster than the baseline product price for selected products. These observations are inconsistent with a view of EE standards that supposes a perfectly competitive market with static supply costs. These results suggest that EE policies may be associated with other forces at play, such as innovation and learning-by-doing in appliance production and design, that can affect long term trends in quality-adjusted prices and LCCs.« less

  20. Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging?

    PubMed

    Shalev, Idan; Belsky, Jay

    2016-05-01

    Two seemingly independent bodies of research suggest a two-hit model of accelerated aging, one highlighting early-life stress and the other reproduction. The first, informed by developmental models of early-life stress, highlights reduced longevity effects of early adversity on telomere erosion, whereas the second, informed by evolutionary theories of aging, highlights such effects with regard to reproductive cost (in females). The fact that both early-life adversity and reproductive effort are associated with shorter telomeres and increased oxidative stress raises the prospect, consistent with life-history theory, that these two theoretical frameworks currently informing much research are tapping into the same evolutionary-developmental process of increased senescence and reduced longevity. Here we propose a mechanistic view of a two-hit model of accelerated aging in human females through (a) early-life adversity and (b) early reproduction, via a process of telomere erosion, while highlighting mediating biological embedding mechanisms that might link these two developmental aging processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Metal Additive Manufacturing: A Review

    NASA Astrophysics Data System (ADS)

    Frazier, William E.

    2014-06-01

    This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

  2. Photovoltaic Manufacturing R&D Project | Photovoltaic Research | NREL

    Science.gov Websites

    Photovoltaic (PV) Manufacturing Research and Development (R&D) Project was a cost-shared partnership between NREL and a number of private-sector solar companies. The primary project goals were to reduce costs for consumers and solar companies by improving products and manufacturing processes and ensure the

  3. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    PASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.« less

  4. Product costing program for wood component manufacturers

    Treesearch

    Adrienn Andersch; Urs Buehlmann; Jeff Palmer; Janice K Wiedenbeck; Steve Lawser

    2013-01-01

    Accurate and timely product costing information is critically important for companies in planning the optimal utilization of company resources. While an overestimation of product costs can lead to loss of potential business and market share, underestimation of product costs can result in financial losses to the company. This article introduces a product costing program...

  5. Advanced accelerator and mm-wave structure research at LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya Ivanovna

    2016-06-22

    This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.

  6. Low Cost and Energy Efficient Methods for the Manufacture of Semi-Solid (SSM) Feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diran Apelian; Qingyue Pan; Makhlouf Makhlouf

    2005-11-07

    The SSM Consortium (now ACRC) at WPI has been carrying out fundamental, pre-competitive research in SSM for several years. Current and past research (at WPI) has generated many results of fundamental and applied nature, which are available to the SSM community. These include materials characterization, yield stress effects, alloy development, rheological properties, process modeling/simulation, semi-solid slurry formation, etc. Alternative method to produce SSM slurries at lower processing costs and with reduced energy consumption is a critical need. The production of low cost SSM feedstock will certainly lead to a dramatic increase in the tonnage of castings produced by SSM, andmore » will provide end users such as the transportation industry, with lighter, cheaper and high performance materials. In this program, the research team has addressed three critical issues in semi-solid processing. They are: (1) Development of low cost, reliable slurry-on-demand approaches for semi-solid processing; (2) Application of the novel permanent grain refining technology-SiBloy for the manufacture of high-quality SSM feedstock, and (3) Development of computational and modeling tools for semi-solid processing to enhance SSM process control. Salient results from these studies are summarized and detailed in our final technical report.« less

  7. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, Sertac; Augustine, Chad R; Kurup, Parthiv

    The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparisonmore » to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number

  8. Low cost Czochralski crystal growing technology. Near implementation of the flat plate photovoltaic cost reduction of the low cost solar array project

    NASA Technical Reports Server (NTRS)

    Roberts, E. G.

    1980-01-01

    Equipment developed for the manufacture of over 100 kg of silicon ingot from one crucible by rechanging from another crucible is described. Attempts were made to eliminate the cost of raising the furnace temperature to 250 C above the melting point of silicon by using an RF coil to melt polycrystalline silicon rod as a means of rechanging the crucible. Microprocessor control of the straight growth process was developed and domonstrated for both 4 inch and 6 inch diameter. Both meltdown and melt stabilization processes were achieved using operator prompting through the microprocessor. The use of the RF work coil in poly rod melting as a heat sink in the accelerated growth process was unsuccessful. The total design concept for fabrication and interfacing of the total cold crucible system was completed.

  9. Low-Cost Opportunity for Small-Scale Manufacture of Hardwood Blanks

    Treesearch

    Bruce G. Hansen; Philip A. Araman

    1985-01-01

    We analyzed the manufacture of standard-size hardwood blanks from lumber on a relatively small scale by conventional processing. Requiring an investment of just over $200,000, the conventional mill can process 500 M bf (thousand board feet) of kiln-dried lumber annually. The study focused on the economics associated with manufacture of blanks from four species -...

  10. Cost of Natural Gas Used in Manufacturing Sector Has Fallen

    EIA Publications

    2013-01-01

    Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers

  11. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing

  12. Low-cost composited accelerants for anaerobic digestion of dairy manure: Focusing on methane yield, digestate utilization and energy evaluation.

    PubMed

    Zhang, Chen; Yun, Sining; Li, Xue; Wang, Ziqi; Xu, Hongfei; Du, Tingting

    2018-05-11

    To improve the methane yield and digestate utilization of anaerobic digestion (AD), low-cost composited accelerants consisting of urea (0.2-0.5%), bentonite (0.5-0.8%), active carbon (0.6-0.9%), and plant ash (0.01-0.3%) were designed and tested in batch experiments. Total biogas yield (485.7-681.9 mL/g VS) and methane content (63.0-66.6%) were remarkably enhanced in AD systems by adding accelerants compared to those of control group (361.9 mL/g VS, 59.4%). Composited accelerant addition led to the highest methane yield (454.1 mL/g VS), more than double that of control group. The TS, VS, and CODt removal rates (29.7-55.3%, 50.9-63.0%, and 46.8-69.1%) for AD with accelerants were much higher than control group (26.2%, 37.1%, and 39.6%). The improved digestate stability and enhanced fertilizer nutrient content (4.95-5.66%) confirmed that the digestate of AD systems with composited accelerants could safely serve as a potential component of bioorganic fertilizer. These findings open innovative avenues in composited accelerant development and application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2014-01-16

    ZACK JONES AND JIM LYDON OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S M2 SELECTIVE LASER MELTING SYSTEM. THE M2 IS CURRENTLY DEDICATED TO ADVANCED COPPER MATERIAL DEVELOPMENT FOR THE LOW COST UPPER STAGE PROGRAM.

  14. Measures of International Manufacturing and Trade of Clean Energy Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel-Cox, Jill; Sandor, Debbie; Keyser, David

    The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metricsmore » for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.« less

  15. Thermoplastic composite parts manufacture at Du Pont

    NASA Astrophysics Data System (ADS)

    Medwin, Steven J.; Coyle, Edward J.

    1993-01-01

    Low-cost routes to the manufacture of complex shaped composite parts have been defined using metal forming techniques and Du Pont's long discontinuous fiber (LDF) Technology. These manufacturing techniques include roll forming, stretch forming, and press forming. Near equivalence between the static, dynamic, and damage tolerance properties of LDF and continuous fiber composites have been demonstrated. Several examples are cited which demonstrate the potential for this technology to significantly reduce the cost of aerospace components.

  16. Using the pallet costing system to determine costs and stay competitive in the pallet industry

    Treesearch

    A. Jefferson Jr. Palmer; Bruce G. Hansen; Bruce G. Hansen

    2002-01-01

    In order to stay competitive and keep production costs at a minimum, wood pallet manufacturers must plan, monitor, and control their various production activities. Cost information on pallet manufacturing operations, must be gathered and analyzed so that the plant manager can determine whether certain activities are efficient and profitable. The Pallet Costing System (...

  17. Atomic and close-to-atomic scale manufacturing—A trend in manufacturing development

    NASA Astrophysics Data System (ADS)

    Fang, Fengzhou

    2016-12-01

    Manufacturing is the foundation of a nation's economy. It is the primary industry to promote economic and social development. To accelerate and upgrade China's manufacturing sector from "precision manufacturing" to "high-performance and high-quality manufacturing", a new breakthrough should be found in terms of achieving a "leap-frog development". Unlike conventional manufacturing, the fundamental theory of "Manufacturing 3.0" is beyond the scope of conventional theory; rather, it is based on new principles and theories at the atomic and/or closeto- atomic scale. Obtaining a dominant role at the international level is a strategic move for China's progress.

  18. A Single-use Strategy to Enable Manufacturing of Affordable Biologics.

    PubMed

    Jacquemart, Renaud; Vandersluis, Melissa; Zhao, Mochao; Sukhija, Karan; Sidhu, Navneet; Stout, Jim

    2016-01-01

    The current processing paradigm of large manufacturing facilities dedicated to single product production is no longer an effective approach for best manufacturing practices. Increasing competition for new indications and the launch of biosimilars for the monoclonal antibody market have put pressure on manufacturers to produce at lower cost. Single-use technologies and continuous upstream processes have proven to be cost-efficient options to increase biomass production but as of today the adoption has been only minimal for the purification operations, partly due to concerns related to cost and scale-up. This review summarizes how a single-use holistic process and facility strategy can overcome scale limitations and enable cost-efficient manufacturing to support the growing demand for affordable biologics. Technologies enabling high productivity, right-sized, small footprint, continuous, and automated upstream and downstream operations are evaluated in order to propose a concept for the flexible facility of the future.

  19. Prepreg effects on honeycomb composite manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, Cary Joseph

    Fiber reinforced composites offer many advantages over traditional materials and are widely utilized in aerospace applications. Advantages include a high stiffness to weight ratio and excellent fatigue resistance. However, the pace of new implementation is slow. The manufacturing processes used to transform composite intermediates into final products are poorly understood and are a source of much variability. This limits new implementation and increases the manufacturing costs of existing designs. One such problem is honeycomb core crush, in which a core-stiffened structure collapses during autoclave manufacture, making the structure unusable and increasing the overall manufacturing cost through increased scrap rates. Consequently, the major goal of this research was to investigate the scaling of core crush from prepreg process-structure-property relations to commercial composite manufacture. The material dependent nature of this defect was of particular interest. A methodology and apparatus were developed to measure the frictional resistance of prepreg materials under typical processing conditions. Through a characterization of commercial and experimental prepregs, it was found that core crush behavior was the result of differences in prepreg frictional resistance. This frictional resistance was related to prepreg morphology and matrix rheology and elasticity. Resin composition and prepreg manufacturing conditions were also found to affect manufacturing behavior. Mechanical and dimensional models were developed and demonstrated utility for predicting this crushing behavior. Collectively, this work explored and identified the process-structure-property relations as they relate to the manufacture of composite materials and suggested several avenues by which manufacturing-robust materials may be developed.

  20. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2014-01-16

    QUINCY BEAN, JIM LYDON, AND ZACK JONES OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S M2 SELECTIVE LASER MELTING SYSTEM. THE M2 IS CURRENTLY DEDICATED TO ADVANCED COPPER MATERIAL DEVELOPMENT FOR THE LOW COST UPPER STAGE PROGRAM.

  1. High Temperature Thermoplastic Additive Manufacturing Using Low-Cost, Open-Source Hardware

    NASA Technical Reports Server (NTRS)

    Gardner, John M.; Stelter, Christopher J.; Yashin, Edward A.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing (or 3D printing) via Fused Filament Fabrication (FFF), also known as Fused Deposition Modeling (FDM), is a process where material is placed in specific locations layer-by-layer to create a complete part. Printers designed for FFF build parts by extruding a thermoplastic filament from a nozzle in a predetermined path. Originally developed for commercial printers, 3D printing via FFF has become accessible to a much larger community of users since the introduction of Reprap printers. These low-cost, desktop machines are typically used to print prototype parts or novelty items. As the adoption of desktop sized 3D printers broadens, there is increased demand for these machines to produce functional parts that can withstand harsher conditions such as high temperature and mechanical loads. Materials meeting these requirements tend to possess better mechanical properties and higher glass transition temperatures (Tg), thus requiring printers with high temperature printing capability. This report outlines the problems and solutions, and includes a detailed description of the machine design, printing parameters, and processes specific to high temperature thermoplastic 3D printing.

  2. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, Sertac; Augustine, Chad R; Kurup, Parthiv

    The global geothermal electricity market has significantly grown over the last decade and is expected to reach a total installed capacity of 18.4 GWe in 2021 (GEA, 2016). Currently, geothermal project developers customize the size of the power plant to fit the resource being developed. In particular, the turbine is designed and sized to optimize efficiency and resource utilization for electricity production; most often, other power plant components are then chosen to complement the turbine design. These custom turbine designs demand one-off manufacturing processes, which result in higher manufacturing setup costs, longer lead-times, and higher capital costs overall in comparisonmore » to larger-volume line manufacturing processes. In contrast, turbines produced in standard increments, manufactured in larger volumes, could result in lower costs per turbine. This study focuses on analysis of the global supply chain and manufacturing costs for Organic Rankine Cycle (ORC) turboexpanders and steam turbines used in geothermal power plants. In this study, we developed a manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases 1) 1 MWe geothermal ORC turboexpander 2) 5 MWe ORC turboexpander and 3) 20 MWe geothermal steam turbine, and calculated the cost of manufacturing the major components, such as the impellers/blades, shaft/rotor, nozzles, inlet guide lanes, disks, and casings. Then we used discounted cash flow (DCF) analysis to calculate the minimum sustainable price (MSP). MSP is the minimum price that a company must sell its product for in order to pay back the capital and operating expenses during the plant lifetime (CEMAC, 2017). The results showed that MSP could highly vary between 893 dollar/kW and 30 dollar/kW based on turbine size, standardization and volume of manufacturing. The analysis also showed that the economy of scale applies both to the size of the turbine and the number

  3. Microgravity Manufacturing

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Manufacturing capability in outer space remains one of the critical milestones to surpass to allow humans to conduct long-duration manned space exploration. The high cost-to-orbit for leaving the Earth's gravitational field continues to be the limiting factor in carrying sufficient hardware to maintain extended life support in microgravity or on other planets. Additive manufacturing techniques, or 'chipless' fabrication, like RP are being considered as the most promising technologies for achieving in situ or remote processing of hardware components, as well as for the repair of existing hardware. At least three RP technologies are currently being explored for use in microgravity and extraterrestrial fabrication.

  4. Additive Manufacturing for Affordable Rocket Engines

    NASA Technical Reports Server (NTRS)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  5. Costs incurred by applying computer-aided design/computer-aided manufacturing techniques for the reconstruction of maxillofacial defects.

    PubMed

    Rustemeyer, Jan; Melenberg, Alex; Sari-Rieger, Aynur

    2014-12-01

    This study aims to evaluate the additional costs incurred by using a computer-aided design/computer-aided manufacturing (CAD/CAM) technique for reconstructing maxillofacial defects by analyzing typical cases. The medical charts of 11 consecutive patients who were subjected to the CAD/CAM technique were considered, and invoices from the companies providing the CAD/CAM devices were reviewed for every case. The number of devices used was significantly correlated with cost (r = 0.880; p < 0.001). Significant differences in mean costs were found between cases in which prebent reconstruction plates were used (€3346.00 ± €29.00) and cases in which they were not (€2534.22 ± €264.48; p < 0.001). Significant differences were also obtained between the costs of two, three and four devices, even when ignoring the cost of reconstruction plates. Additional fees provided by statutory health insurance covered a mean of 171.5% ± 25.6% of the cost of the CAD/CAM devices. Since the additional fees provide financial compensation, we believe that the CAD/CAM technique is suited for wide application and not restricted to complex cases. Where additional fees/funds are not available, the CAD/CAM technique might be unprofitable, so the decision whether or not to use it remains a case-to-case decision with respect to cost versus benefit. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. Economics of Future Growth in Photovoltaics Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basore, Paul A.; Chung, Donald; Buonassisi, Tonio

    2015-06-14

    The past decade's record of growth in the photovoltaics manufacturing industry indicates that global investment in manufacturing capacity for photovoltaic modules tends to increase in proportion to the size of the industry. The slope of this proportionality determines how fast the industry will grow in the future. Two key parameters determine this slope. One is the annual global investment in manufacturing capacity normalized to the manufacturing capacity for the previous year (capacity-normalized capital investment rate, CapIR, units $/W). The other is how much capital investment is required for each watt of annual manufacturing capacity, normalized to the service life ofmore » the assets (capacity-normalized capital demand rate, CapDR, units $/W). If these two parameters remain unchanged from the values they have held for the past few years, global manufacturing capacity will peak in the next few years and then decline. However, it only takes a small improvement in CapIR to ensure future growth in photovoltaics. Any accompanying improvement in CapDR will accelerate that growth.« less

  7. Computed Tomography Inspection and Analysis for Additive Manufacturing Components

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2017-01-01

    Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws and geometric features were inspected using a 2-megavolt linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed to determine the impact of additive manufacturing on inspectability of objects with complex geometries.

  8. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean roommore » facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.« less

  9. Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.

    1996-01-01

    Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.

  10. Manufacturing High-Quality Carbon Nanotubes at Lower Cost

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M.; Lidecker, Henning

    2004-01-01

    A modified electric-arc welding process has been developed for manufacturing high-quality batches of carbon nanotubes at relatively low cost. Unlike in some other processes for making carbon nanotubes, metal catalysts are not used and, consequently, it is not necessary to perform extensive cleaning and purification. Also, unlike some other processes, this process is carried out at atmospheric pressure under a hood instead of in a closed, pressurized chamber; as a result, the present process can be implemented more easily. Although the present welding-based process includes an electric arc, it differs from a prior electric-arc nanotube-production process. The welding equipment used in this process includes an AC/DC welding power source with an integral helium-gas delivery system and circulating water for cooling an assembly that holds one of the welding electrodes (in this case, the anode). The cathode is a hollow carbon (optionally, graphite) rod having an outside diameter of 2 in. (approximately equal to 5.1 cm) and an inside diameter of 5/8 in. (approximately equal to 1.6 cm). The cathode is partly immersed in a water bath, such that it protrudes about 2 in. (about 5.1 cm) above the surface of the water. The bottom end of the cathode is held underwater by a clamp, to which is connected the grounding cable of the welding power source. The anode is a carbon rod 1/8 in. (approximately equal to 0.3 cm) in diameter. The assembly that holds the anode includes a thumbknob- driven mechanism for controlling the height of the anode. A small hood is placed over the anode to direct a flow of helium downward from the anode to the cathode during the welding process. A bell-shaped exhaust hood collects the helium and other gases from the process. During the process, as the anode is consumed, the height of the anode is adjusted to maintain an anode-to-cathode gap of 1 mm. The arc-welding process is continued until the upper end of the anode has been lowered to a specified height

  11. Evaluating the administration costs of biologic drugs: development of a cost algorithm.

    PubMed

    Tetteh, Ebenezer K; Morris, Stephen

    2014-12-01

    Biologic drugs, as with all other medical technologies, are subject to a number of regulatory, marketing, reimbursement (financing) and other demand-restricting hurdles applied by healthcare payers. One example is the routine use of cost-effectiveness analyses or health technology assessments to determine which medical technologies offer value-for-money. The manner in which these assessments are conducted suggests that, holding all else equal, the economic value of biologic drugs may be determined by how much is spent on administering these drugs or trade-offs between drug acquisition and administration costs. Yet, on the supply-side, it seems very little attention is given to how manufacturing and formulation choices affect healthcare delivery costs. This paper evaluates variations in the administration costs of biologic drugs, taking care to ensure consistent inclusion of all relevant cost resources. From this, it develops a regression-based algorithm with which manufacturers could possibly predict, during process development, how their manufacturing and formulation choices may impact on the healthcare delivery costs of their products.

  12. Low-Cost Manufacturing of Bioresorbable Conductors by Evaporation-Condensation-Mediated Laser Printing and Sintering of Zn Nanoparticles.

    PubMed

    Shou, Wan; Mahajan, Bikram K; Ludwig, Brandon; Yu, Xiaowei; Staggs, Joshua; Huang, Xian; Pan, Heng

    2017-07-01

    Currently, bioresorbable electronic devices are predominantly fabricated by complex and expensive vacuum-based integrated circuit (IC) processes. Here, a low-cost manufacturing approach for bioresorbable conductors on bioresorbable polymer substrates by evaporation-condensation-mediated laser printing and sintering of Zn nanoparticle is reported. Laser sintering of Zn nanoparticles has been technically difficult due to the surface oxide on nanoparticles. To circumvent the surface oxide, a novel approach is discovered to print and sinter Zn nanoparticle facilitated by evaporation-condensation in confined domains. The printing process can be performed on low-temperature substrates in ambient environment allowing easy integration on a roll-to-roll platform for economical manufacturing of bioresorbable electronics. The fabricated Zn conductors show excellent electrical conductivity (≈1.124 × 10 6 S m -1 ), mechanical durability, and water dissolvability. Successful demonstration of strain gauges confirms the potential application in various environmentally friendly sensors and circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Manufacturing technology: Fabrication innovations

    NASA Astrophysics Data System (ADS)

    Mason, Nigel

    2008-05-01

    Advances at every stage of the manufacturing process are helping to reduce costs in the photovoltaics industry, but there is still a long way to go before photovoltaic cells reach their true potential.

  14. PowerGuard® manufacturing innovation and expansion

    NASA Astrophysics Data System (ADS)

    Dinwoodie, Thomas; Kleiner, Tim; O'Brien, Colleen; Quiroz, Maurice

    1999-03-01

    PowerLight Corporation, with support from the DOE's PVMaT program, has undertaken a comprehensive agenda to automate the manufacture of its PowerGuard PV roof tile system. The advanced manufacturing will lead to substantially reduced costs, quality improvements, and increased production capacity. Over the three years of the PVMaT contract, system costs are expected to fall 2.65/Wp, with annual production capability increasing from 5 to 16 MW. PowerLight is on schedule with meeting its objectives under this program.

  15. Cincinnati Big Area Additive Manufacturing (BAAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duty, Chad E.; Love, Lonnie J.

    Oak Ridge National Laboratory (ORNL) worked with Cincinnati Incorporated (CI) to demonstrate Big Area Additive Manufacturing which increases the speed of the additive manufacturing (AM) process by over 1000X, increases the size of parts by over 10X and shows a cost reduction of over 100X. ORNL worked with CI to transition the Big Area Additive Manufacturing (BAAM) technology from a proof-of-principle (TRL 2-3) demonstration to a prototype product stage (TRL 7-8).

  16. Synchronized manufacture of composites knowledge study (SMACKS)

    NASA Astrophysics Data System (ADS)

    Strickland, B.; Oliver, M.

    1990-06-01

    The need for a competitive manufacturing knowledge base for the composites industry, encompasses a change from a 'functionally' organized factory to a product-based organization, and has led to major reductions in inventories, manufacturing costs and cycle times. The net effect was that products became more price- and delivery-competitive. It is believed that composite manufacturers have an equal need to improve their competitive edge, particularly as the demand for composite products grows and more manufacturers enter the marketplace. 'SMACKS' has begun to establish these needs and market trends, with a view to establishing the advantages offered to composite manufacturers by synchronized manufacturing methods.

  17. Life-cycle and cost of goods assessment of fed-batch and perfusion-based manufacturing processes for mAbs.

    PubMed

    Bunnak, Phumthep; Allmendinger, Richard; Ramasamy, Sri V; Lettieri, Paola; Titchener-Hooker, Nigel J

    2016-09-01

    Life-cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost-efficient, robust and environmentally-friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale-up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed-batch (FB) and perfusion-based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO 2 than the FB process. Water consumption was the most important impact category, especially when scaling-up the processes, as energy was required to produce process water and water-for-injection, while CO 2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally-friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324-1335, 2016. © 2016 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  18. 75 FR 7556 - Energy Efficiency Standards for Manufactured Housing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... financial considerations and life cycle costs. (4) Statistics associated with HVAC system and equipment type... standards. Provide a system for enforcement in which ``[a]ny manufacturer of manufactured housing that... available for products, systems, equipment, and materials used in the construction of manufactured homes...

  19. Toward Cost-Effective Manufacturing of Silicon Solar Cells: Electrodeposition of High-Quality Si Films in a CaCl2 -based Molten Salt.

    PubMed

    Yang, Xiao; Ji, Li; Zou, Xingli; Lim, Taeho; Zhao, Ji; Yu, Edward T; Bard, Allen J

    2017-11-20

    Electrodeposition of Si films from a Si-containing electrolyte is a cost-effective approach for the manufacturing of solar cells. Proposals relying on fluoride-based molten salts have suffered from low product quality due to difficulties in impurity control. Here we demonstrate the successful electrodeposition of high-quality Si films from a CaCl 2 -based molten salt. Soluble Si IV -O anions generated from solid SiO 2 are electrodeposited onto a graphite substrate to form a dense film of crystalline Si. Impurities in the deposited Si film are controlled at low concentrations (both B and P are less than 1 ppm). In the photoelectrochemical measurements, the film shows p-type semiconductor character and large photocurrent. A p-n junction fabricated from the deposited Si film exhibits clear photovoltaic effects. This study represents the first step to the ultimate goal of developing a cost-effective manufacturing process for Si solar cells based on electrodeposition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology

    NASA Astrophysics Data System (ADS)

    Goodwin, Bruce

    2015-03-01

    This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.

  1. The Future of Additive Manufacturing in Air Force Acquisition

    DTIC Science & Technology

    2017-03-22

    manufacturing data - Designing and deploying a virtual aircraft fleet for future conflict - Space-based satellite production for defense capabilities via...changing system design via lower production costs, enhanced performance possibilities, and rapid replenishment. In the Technology Maturation and Risk... manufacturing as well as major cost savings via reduction of required materials, unique tooling, specialized production plans, and segments of the

  2. Advanced Manufacturing Processes in the Motor Vehicle Industry

    DOT National Transportation Integrated Search

    1983-05-01

    Advanced manufacturing processes, which include a range of automation and management techniques, are aiding U.S. motor vehicle manufacturers to reduce vehicle costs. This report discusses these techniques in general and their specific applications in...

  3. Computed Tomography Inspection and Analysis for Additive Manufacturing Components

    NASA Technical Reports Server (NTRS)

    Beshears, Ronald D.

    2016-01-01

    Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws were inspected using a 2MeV linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed using standard image analysis techniques to determine the impact of additive manufacturing on inspectability of objects with complex geometries.

  4. Additive Manufacturing: From Rapid Prototyping to Flight

    NASA Technical Reports Server (NTRS)

    Prater, Tracie

    2015-01-01

    Additive manufacturing (AM) offers tremendous promise for the rocket propulsion community. Foundational work must be performed to ensure the safe performance of AM parts. Government, industry, and academia must collaborate in the characterization, design, modeling, and process control to accelerate the certification of AM parts for human-rated flight.

  5. When America Makes, America Works A Successful Public Private 3D Printing (Additive Manufacturing) Partnership

    DTIC Science & Technology

    2016-10-01

    Additive Manufacturing ) Partnership Jennifer Fielding, Ph.D.  Ed Morris  Rob Gorham  Emily Fehrman Cory, Ph.D.  Scott Leonard Fielding is the...government partners for America Makes and other Manufacturing Innovation Institutes. America Makes is the National Additive Manufactur -ing Innovation Institute...vision for America Makes is to accelerate additive manufacturing (AM) inno-vation to enable widespread adoption by bridging the gap between basic

  6. A Statistical Perspective on Highly Accelerated Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Edward V.

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use ofmore » highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning

  7. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, Sertac; Augustine, Chad; Kurup, Parthiv

    In this study, we have undertaken a robust analysis of the global supply chain and manufacturing costs for components of Organic Rankine Cycle (ORC) Turboexpander and steam turbines used in geothermal power plants. We collected a range of market data influencing manufacturing from various data sources and determined the main international manufacturers in the industry. The data includes the manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases; 1) 1 MW geothermal ORC Turboexpander 2) 5 MW ORC Turboexpander 3) 20 MW geothermal Steam Turbine

  8. How much domestic quick response manufacturing can a business afford?

    NASA Astrophysics Data System (ADS)

    Warburton, Roger D. H.; Warner, Steven B.

    2000-10-01

    Employment in the U.S. apparel industry has declined dramatically since the 1960s. Will it fall inexorably to zero, or is there some base level that can endure? If so, what strategic characteristics are required to survive? There is considerable interest in Quick Response Manufacturing (QRM), not only as a reason to support domestic manufacturing, but also as part of the larger goal of reducing supply chain costs. However, since Domestic Manufacturing is more expensive, why should anyone bother considering it? This paper presents an analytical model of a team approach that includes both domestic and offshore manufacturing. Despite the additional costs associated with U.S. manufacturing, our model predicts that including a domestic contractor is legitimate and cost effective. However, the alliance must be genuinely cooperative. A partnership has to be established early in the retailer's planning cycle, and the manufacturer should participate in the planning. Also, sharing data and making timely decisions imposes a strategic business approach, and the model allows us to describe the characteristic roles and capabilities required. Using this model for guidance, we anticipate that retailers will have the stock to satisfy more customers with fewer markdowns, while manufacturers will see increased margins and lower inventories.

  9. Manufacturing development of DC-10 advanced rudder

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1979-01-01

    The design, manufacture, and ground test activities during development of production methods for an advanced composite rudder for the DC-10 transport aircraft are described. The advanced composite aft rudder is satisfactory for airline service and a cost saving in a full production manufacturing mode is anticipated.

  10. Cost Benefit Studies. Final Report.

    ERIC Educational Resources Information Center

    Weiner, Arthur; Marson, Arthur A.

    This document applies Dr. Mehar Aurora's method for conducting cost benefit studies to the Food Manufacturing Technology-Dairy and the Food Manufacturing Technology-Canning and Freezing programs offered by the Moraine Park Technical Institute. Costs to individual students enrolled in the programs include tuition, fees, housing, travel, books,…

  11. 24 CFR 982.623 - Manufactured home space rental: Housing assistance payment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Manufactured home space rental... Special Housing Types Manufactured Home Space Rental § 982.623 Manufactured home space rental: Housing...) Manufactured home space cost minus the total tenant payment. (ii) The rent to owner for the manufactured home...

  12. 24 CFR 982.623 - Manufactured home space rental: Housing assistance payment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Manufactured home space rental... Special Housing Types Manufactured Home Space Rental § 982.623 Manufactured home space rental: Housing...) Manufactured home space cost minus the total tenant payment. (ii) The rent to owner for the manufactured home...

  13. 24 CFR 982.623 - Manufactured home space rental: Housing assistance payment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Manufactured home space rental... Special Housing Types Manufactured Home Space Rental § 982.623 Manufactured home space rental: Housing...) Manufactured home space cost minus the total tenant payment. (ii) The rent to owner for the manufactured home...

  14. Warranty Policies: Consumer Value Versus Manufacturer Costs.

    DTIC Science & Technology

    1981-04-28

    manufacturer’s point of view, the one quantity which stands out when comparing warranty policies is the profit per customer. Profit per item sold does not work...types of warranties but most seem to fall into one of two categories as defined by the Federal Trade Commission. These two categories are the "full...managerial decision of choosing the type and length of warranty to offer. This advance in "consumerism" will require increasing attention on the part of

  15. Electron Beam Freeform Fabrication for Cost Effective Near-Net Shape Manufacturing

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.

    2006-01-01

    Manufacturing of structural metal parts directly from computer aided design (CAD) data has been investigated by numerous researchers over the past decade. Researchers at NASA Langley Research Center are developing a new solid freeform fabrication process, electron beam freeform fabrication (EBF3), as a rapid metal deposition process that works efficiently with a variety of weldable alloys. EBF3 deposits of 2219 aluminium and Ti-6Al-4V have exhibited a range of grain morphologies depending upon the deposition parameters. These materials have exhibited excellent tensile properties comparable to typical handbook data for wrought plate product after post-processing heat treatments. The EBF3 process is capable of bulk metal deposition at deposition rates in excess of 2500 cm3/hr (150 in3/hr) or finer detail at lower deposition rates, depending upon the desired application. This process offers the potential for rapidly adding structural details to simpler cast or forged structures rather than the conventional approach of machining large volumes of chips to produce a monolithic metallic structure. Selective addition of metal onto simpler blanks of material can have a significant effect on lead time reduction and lower material and machining costs.

  16. Feedstock powder processing research needs for additive manufacturing development

    DOE PAGES

    Anderson, Iver E.; White, Emma M. H.; Dehoff, Ryan

    2018-02-01

    Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. Here, by significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapidmore » growth of AM. Finally, other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.« less

  17. Feedstock powder processing research needs for additive manufacturing development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Iver E.; White, Emma M. H.; Dehoff, Ryan

    Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. Here, by significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapidmore » growth of AM. Finally, other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.« less

  18. A magnetorheological haptic cue accelerator for manual transmission vehicles

    NASA Astrophysics Data System (ADS)

    Han, Young-Min; Noh, Kyung-Wook; Lee, Yang-Sub; Choi, Seung-Bok

    2010-07-01

    This paper proposes a new haptic cue function for manual transmission vehicles to achieve optimal gear shifting. This function is implemented on the accelerator pedal by utilizing a magnetorheological (MR) brake mechanism. By combining the haptic cue function with the accelerator pedal, the proposed haptic cue device can transmit the optimal moment of gear shifting for manual transmission to a driver without requiring the driver's visual attention. As a first step to achieve this goal, a MR fluid-based haptic device is devised to enable rotary motion of the accelerator pedal. Taking into account spatial limitations, the design parameters are optimally determined using finite element analysis to maximize the relative control torque. The proposed haptic cue device is then manufactured and its field-dependent torque and time response are experimentally evaluated. Then the manufactured MR haptic cue device is integrated with the accelerator pedal. A simple virtual vehicle emulating the operation of the engine of a passenger vehicle is constructed and put into communication with the haptic cue device. A feed-forward torque control algorithm for the haptic cue is formulated and control performances are experimentally evaluated and presented in the time domain.

  19. FMS: The New Wave of Manufacturing Technology.

    ERIC Educational Resources Information Center

    Industrial Education, 1986

    1986-01-01

    Flexible manufacturing systems (FMS) are described as a marriage of all of the latest technologies--robotics, numerical control, CAD/CAM (computer-assisted design/computer-assisted manufacturing), etc.--into a cost-efficient, optimized production process yielding the greatest flexibility in making various parts. A typical curriculum to teach FMS…

  20. 7 CFR 3555.208 - Special requirements for manufactured homes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Special requirements for manufactured homes. 3555.208... Property § 3555.208 Special requirements for manufactured homes. Loans may be guaranteed for manufactured homes if all the requirements in this section are met. (a) Eligible costs. In addition to the loan...

  1. Additive Manufacture of Plasma Diagnostic Components Final Report Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Simon; Romero-Talamas, Carlos; You, Setthivoine

    There is now a well-established set of plasma diagnostics (see e.g. [3]), but these remain some of the mostexpensive assemblies in fusion systems since for every system they have to be custom built, and time fordiagnostic development can pace the project. Additive manufacturing (AM) has the potential to decreaseproduction cost and significantly lower design time of fusion diagnostic subsystems, which would realizesignificant cost reduction for standard diagnostics. In some cases, these basic components can be additivelymanufactured for less than 1/100th costs of conventional manufacturing.In our DOE Phase II SBIR, we examined the impact that AM can have on plasma diagnosticmore » cost bytaking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) tech-niques, then optimizing the design to exploit the benefits of AM. The impact of AM techniques on cost isfound to be in several areas. First, the cost of materials falls because AM parts can be manufactured withlittle to no waste, and engineered to use less material than CM. Next, the cost of fabrication falls for AMparts relative to CM since the fabrication time can be computed exactly, and often no post-processing isrequired for the part to be functional. We find that AM techniques are well suited for plasma diagnosticssince typical diagnostic complexity comes at no additional cost. Cooling channels, for example, can be builtin to plasma-facing components at no extra cost. Fabrication costs associated with assembly are lower forAM parts because many components can be combined and printed as monoliths, thereby mitigating the needfor alignment or calibration. Finally, the cost of engineering is impacted by exploiting AM design tools thatallow standard components to be customized through web-interfaces. Furthermore, we find that conceptdesign costs can be impacted by scripting interfaces for online engineering design tools.« less

  2. Product pricing in the Solar Array Manufacturing Industry - An executive summary of SAMICS

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1978-01-01

    Capabilities, methodology, and a description of input data to the Solar Array Manufacturing Industry Costing Standards (SAMICS) are presented. SAMICS were developed to provide a standardized procedure and data base for comparing manufacturing processes of Low-cost Solar Array (LSA) subcontractors, guide the setting of research priorities, and assess the progress of LSA toward its hundred-fold cost reduction goal. SAMICS can be used to estimate the manufacturing costs and product prices and determine the impact of inflation, taxes, and interest rates, but it is limited by its ignoring the effects of the market supply and demand and an assumption that all factories operate in a production line mode. The SAMICS methodology defines the industry structure, hypothetical supplier companies, and manufacturing processes and maintains a body of standardized data which is used to compute the final product price. The input data includes the product description, the process characteristics, the equipment cost factors, and production data for the preparation of detailed cost estimates. Activities validating that SAMICS produced realistic price estimates and cost breakdowns are described.

  3. Mechanics and energetics in tool manufacture and use: a synthetic approach.

    PubMed

    Wang, Liyu; Brodbeck, Luzius; Iida, Fumiya

    2014-11-06

    Tool manufacture and use are observed not only in humans but also in other animals such as mammals, birds and insects. Manufactured tools are used for biomechanical functions such as effective control of fluids and small solid objects and extension of reaching. These tools are passive and used with gravity and the animal users' own energy. From the perspective of evolutionary biology, manufactured tools are extended phenotypes of the genes of the animal and exhibit phenotypic plasticity. This incurs energetic cost of manufacture as compared to the case with a fixed tool. This paper studies mechanics and energetics aspects of tool manufacture and use in non-human beings. Firstly, it investigates possible mechanical mechanisms of the use of passive manufactured tools. Secondly, it formulates the energetic cost of manufacture and analyses when phenotypic plasticity benefits an animal tool maker and user. We take a synthetic approach and use a controlled physical model, i.e. a robot arm. The robot is capable of additively manufacturing scoop and gripper structures from thermoplastic adhesives to pick and place fluid and solid objects, mimicking primates and birds manufacturing tools for a similar function. We evaluate the effectiveness of tool use in pick-and-place and explain the mechanism for gripper tools picking up solid objects with a solid-mechanics model. We propose a way to formulate the energetic cost of tool manufacture that includes modes of addition and reshaping, and use it to analyse the case of scoop tools. Experiment results show that with a single motor trajectory, the robot was able to effectively pick and place water, rice grains, a pebble and a plastic box with a scoop tool or gripper tools that were manufactured by itself. They also show that by changing the dimension of scoop tools, the energetic cost of tool manufacture and use could be reduced. The work should also be interesting for engineers to design adaptive machines. © 2014 The Author

  4. Mechanics and energetics in tool manufacture and use: a synthetic approach

    PubMed Central

    Wang, Liyu; Brodbeck, Luzius; Iida, Fumiya

    2014-01-01

    Tool manufacture and use are observed not only in humans but also in other animals such as mammals, birds and insects. Manufactured tools are used for biomechanical functions such as effective control of fluids and small solid objects and extension of reaching. These tools are passive and used with gravity and the animal users' own energy. From the perspective of evolutionary biology, manufactured tools are extended phenotypes of the genes of the animal and exhibit phenotypic plasticity. This incurs energetic cost of manufacture as compared to the case with a fixed tool. This paper studies mechanics and energetics aspects of tool manufacture and use in non-human beings. Firstly, it investigates possible mechanical mechanisms of the use of passive manufactured tools. Secondly, it formulates the energetic cost of manufacture and analyses when phenotypic plasticity benefits an animal tool maker and user. We take a synthetic approach and use a controlled physical model, i.e. a robot arm. The robot is capable of additively manufacturing scoop and gripper structures from thermoplastic adhesives to pick and place fluid and solid objects, mimicking primates and birds manufacturing tools for a similar function. We evaluate the effectiveness of tool use in pick-and-place and explain the mechanism for gripper tools picking up solid objects with a solid-mechanics model. We propose a way to formulate the energetic cost of tool manufacture that includes modes of addition and reshaping, and use it to analyse the case of scoop tools. Experiment results show that with a single motor trajectory, the robot was able to effectively pick and place water, rice grains, a pebble and a plastic box with a scoop tool or gripper tools that were manufactured by itself. They also show that by changing the dimension of scoop tools, the energetic cost of tool manufacture and use could be reduced. The work should also be interesting for engineers to design adaptive machines. PMID:25209405

  5. Overview of Accelerator Applications in Energy

    NASA Astrophysics Data System (ADS)

    Garnett, Robert W.; Sheffield, Richard L.

    An overview of the application of accelerators and accelerator technology in energy is presented. Applications span a broad range of cost, size, and complexity and include large-scale systems requiring high-power or high-energy accelerators to drive subcritical reactors for energy production or waste transmutation, as well as small-scale industrial systems used to improve oil and gas exploration and production. The enabling accelerator technologies will also be reviewed and future directions discussed.

  6. Manipulative therapy in addition to usual medical care accelerates recovery of shoulder complaints at higher costs: economic outcomes of a randomized trial.

    PubMed

    Bergman, Gert J D; Winter, Jan C; van Tulder, Maurits W; Meyboom-de Jong, Betty; Postema, Klaas; van der Heijden, Geert J M G

    2010-09-06

    Shoulder complaints are common in primary care and have unfavourable long term prognosis. Our objective was to evaluate the clinical effectiveness of manipulative therapy of the cervicothoracic spine and the adjacent ribs in addition to usual medical care (UMC) by the general practitioner in the treatment of shoulder complaints. This economic evaluation was conducted alongside a randomized trial in primary care. Included were 150 patients with shoulder complaints and a dysfunction of the cervicothoracic spine and adjacent ribs. Patients were treated with UMC (NSAID's, corticosteroid injection or referral to physical therapy) and were allocated at random (yes/no) to manipulative therapy (manipulation and mobilization). Patient perceived recovery, severity of main complaint, shoulder pain, disability and general health were outcome measures. Data about direct and indirect costs were collected by means of a cost diary. Manipulative therapy as add-on to UMC accelerated recovery on all outcome measures included. At 26 weeks after randomization, both groups reported similar recovery rates (41% vs. 38%), but the difference between groups in improvement of severity of the main complaint, shoulder pain and disability sustained. Compared to the UMC group the total costs were higher in the manipulative group (€1167 vs. €555). This is explained mainly by the costs of the manipulative therapy itself and the higher costs due sick leave from work. The cost effectiveness ratio showed that additional manipulative treatment is more costly but also more effective than UMC alone. The cost-effectiveness acceptability curve shows that a 50%-probability of recovery with AMT within 6 months after initiation of treatment is achieved at €2876. Manipulative therapy in addition to UMC accelerates recovery and is more effective than UMC alone on the long term, but is associated with higher costs. INTERNATIONAL STANDARD RANDOMIZED CONTROLLED TRIAL NUMBER REGISTER: ISRCTN11216.

  7. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  8. Is Accelerated Partner Therapy (APT) a cost-effective alternative to routine patient referral partner notification in the UK? Preliminary cost-consequence analysis of an exploratory trial.

    PubMed

    Roberts, Tracy E; Tsourapas, Angelos; Sutcliffe, Lorna; Cassell, Jackie; Estcourt, Claudia

    2012-02-01

    To undertake a cost-consequence analysis to assess two new models of partner notification (PN), known as Accelerated Partner Therapy (APT Hotline and APT Pharmacy), as compared with routine patient referral PN, for sex partners of people with chlamydia, gonorrhoea and non-gonococcal urethritis. Comparison of costs and outcomes alongside an exploratory trial involving two genitourinary medicine clinics and six community pharmacies. Index patients selected the PN method (APT Hotline, APT Pharmacy or routine PN) for their partners. Clinics and pharmacies recorded cost and resource use data including duration of consultation and uptake of treatment pack. Cost data were collected prospectively for two out of three interventions, and data were synthesised and compared in terms of effectiveness and costs. Routine PN had the lowest average cost per partner treated (approximately £46) compared with either APT Hotline (approximately £54) or APT Pharmacy (approximately £53) strategies. The cost-consequence analysis revealed that APT strategies were more costly but also more effective at treating partners compared to routine PN. The hotline strategy costs more than both the alternative PN strategies. If we accept that strategies which identify and treat partners the fastest are likely to be the most effective in reducing reinfection and onward transmission, then APT Hotline appears an effective PN strategy by treating the highest number of partners in the shortest duration. Whether the additional benefit is worth the additional cost cannot be determined in this preliminary analysis. These data will be useful for informing development of future randomised controlled trials of APT.

  9. Reticle variation influence on manufacturing line and wafer device performance

    NASA Astrophysics Data System (ADS)

    Nistler, John L.; Spurlock, Kyle

    1994-01-01

    Cost effective manufacturing of devices at 0.5, 0.35 and 0.25μm geometries will be highly dependent on a companys' ability to obtain an economic return on investment. The high capital investment in equipment and facilities, not to mention the related chemical and wafer costs, for producing 200mm silicon wafers requires aspects of wafer processing to be tightly controlled. Reduction in errors and enhanced yield management requires early correction or avoidance of reticle problems. It is becoming increasingly important to recognize and track all pertinent factors impacting both the technical and financial viability of a wafer manufacturing fabrication area. Reticle related effects on wafer manufacturing can be costly and affect the total quality perceived by the device customer.

  10. Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies.

    PubMed

    Patil, Rohan; Walther, Jason

    2017-03-07

    Continuous biomanufacturing of recombinant therapeutic proteins offers several potential advantages over conventional batch processing, including reduced cost of goods, more flexible and responsive manufacturing facilities, and improved and consistent product quality. Although continuous approaches to various upstream and downstream unit operations have been considered and studied for decades, in recent years interest and application have accelerated. Researchers have achieved increasingly higher levels of process intensification, and have also begun to integrate different continuous unit operations into larger, holistically continuous processes. This review first discusses approaches for continuous cell culture, with a focus on perfusion-enabling cell separation technologies including gravitational, centrifugal, and acoustic settling, as well as filtration-based techniques. We follow with a review of various continuous downstream unit operations, covering categories such as clarification, chromatography, formulation, and viral inactivation and filtration. The review ends by summarizing case studies of integrated and continuous processing as reported in the literature.

  11. Design of high-reliability low-cost amorphous silicon modules for high energy yield

    NASA Astrophysics Data System (ADS)

    Jansen, Kai W.; Varvar, Anthony; Twesme, Edward; Berens, Troy; Dhere, Neelkanth G.

    2008-08-01

    For PV modules to fulfill their intended purpose, they must generate sufficient economic return over their lifetime to justify their initial cost. Not only must modules be manufactured at a low cost/Wp with a high energy yield (kWh/kWp), they must also be designed to withstand the significant environmental stresses experienced throughout their 25+ year lifetime. Based on field experience, the most common factors affecting the lifetime energy yield of glass-based amorphous silicon (a-Si) modules have been identified; these include: 1) light-induced degradation; 2) moisture ingress and thin film corrosion; 3) transparent conductive oxide (TCO) delamination; and 4) glass breakage. The current approaches to mitigating the effect of these degradation mechanisms are discussed and the accelerated tests designed to simulate some of the field failures are described. In some cases, novel accelerated tests have been created to facilitate the development of improved manufacturing processes, including a unique test to screen for TCO delamination. Modules using the most reliable designs are tested in high voltage arrays at customer and internal test sites, as well as at independent laboratories. Data from tests at the Florida Solar Energy Center has shown that a-Si tandem modules can demonstrate an energy yield exceeding 1200 kWh/kWp/yr in a subtropical climate. In the same study, the test arrays demonstrated low long-term power loss over two years of data collection, after initial stabilization. The absolute power produced by the test arrays varied seasonally by approximately +/-7%, as expected.

  12. Scale-up of 2G wire manufacturing at American Superconductor Corporation

    NASA Astrophysics Data System (ADS)

    Fleshler, S.; Buczek, D.; Carter, B.; Cedrone, P.; DeMoranville, K.; Gannon, J.; Inch, J.; Li, X.; Lynch, J.; Otto, A.; Podtburg, E.; Roy, D.; Rupich, M.; Sathyamurthy, S.; Schreiber, J.; Thieme, C.; Thompson, E.; Tucker, D.; Nagashima, K.; Ogata, M.

    2009-10-01

    American Superconductor Corporation (AMSC) has developed the base technology and a manufacturing line for initial volume production of low-cost second generation high temperature superconductor (2G HTS) wire for commercial and military applications. The manufacturing line is based on reel-to-reel processing of wide HTS strips using rolling assisted bi-axially textured substrate (RABiTS™) for the template and Metal Organic Deposition (MOD) for the HTS layer. AMSC’s wide strip process is a low cost manufacturing technology since multiple wires are produced in a single manufacturing pass by slitting the wide strip to narrower width in the last stage of the manufacturing process. Industry standard 4.4 mm wide wires are produced by laminating metallic foils, such as copper, stainless steel or any other material, to the HTS insert wire, and are chosen to tailor the electrical, thermal and mechanical properties of the wire for specific applications. The laminated, 4.4 mm wide wires are known as “344 superconductors.” In this paper, we summarize the status of AMSC’s manufacturing capability, the performance of the wire presently being produced, as well as the cost and technical advantages of AMSC’s manufacturing approach. In addition, future direction for research and development to improve electrical performance is presented.

  13. U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fullenkamp, Patrick H; Holody, Diane S

    The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assessmore » U.S. manufacturers’ competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers’ to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOE’s Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a

  14. A manufacturing database of advanced materials used in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Bao, Han P.

    1994-01-01

    Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer

  15. A manufacturing database of advanced materials used in spacecraft structures

    NASA Astrophysics Data System (ADS)

    Bao, Han P.

    1994-12-01

    Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer

  16. Space Manufacturing: The Next Great Challenge

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Curreri, Peter; Sharpe, Jonathan B.; Colberg, Wendell R.; Vickers, John H.

    1998-01-01

    Space manufacturing encompasses the research, development and manufacture necessary for the production of any product to be used in near zero gravity, and the production of spacecraft required for transporting research or production devices to space. Manufacturing for space, and manufacturing in space will require significant breakthroughs in materials and manufacturing technology, as well as in equipment designs. This report reviews some of the current initiatives in achieving space manufacturing. The first initiative deals with materials processing in space, e.g., processing non-terrestrial and terrestrial materials, especially metals. Some of the ramifications of the United States Microgravity Payloads fourth (USMP-4) mission are discussed. Some problems in non-terrestrial materials processing are mentioned. The second initiative is structures processing in space. In order to accomplish this, the International Space Welding Experiment was designed to demonstrate welding technology in near-zero gravity. The third initiative is advancements in earth-based manufacturing technologies necessary to achieve low cost access to space. The advancements discussed include development of lightweight material having high specific strength, and automated fabrication and manufacturing methods for these materials.

  17. Payer and Pharmaceutical Manufacturer Considerations for Outcomes-Based Agreements in the United States.

    PubMed

    Brown, Joshua D; Sheer, Rich; Pasquale, Margaret; Sudharshan, Lavanya; Axelsen, Kirsten; Subedi, Prasun; Wiederkehr, Daniel; Brownfield, Fred; Kamal-Bahl, Sachin

    2018-01-01

    Considerable interest exists among health care payers and pharmaceutical manufacturers in designing outcomes-based agreements (OBAs) for medications for which evidence on real-world effectiveness is limited at product launch. To build hypothetical OBA models in which both payer and manufacturer can benefit. Models were developed for a hypothetical hypercholesterolemia OBA, in which the OBA was assumed to increase market access for a newly marketed medication. Fixed inputs were drug and outcome event costs from the literature over a 1-year OBA period. Model estimates were developed using a range of inputs for medication effectiveness, medical cost offsets, and the treated population size. Positive or negative feedback to the manufacturer was incorporated on the basis of expectations of drug performance through changes in the reimbursement level. Model simulations demonstrated that parameters had the greatest impact on payer cost and manufacturer reimbursement. Models suggested that changes in the size of the population treated and drug effectiveness had the largest influence on reimbursement and costs. Despite sharing risk for potential product underperformance, manufacturer reimbursement increased relative to having no OBA, if the OBA improved market access for the new product. Although reduction in medical costs did not fully offset the cost of the medication, the payer could still save on net costs per patient relative to having no OBA by tying reimbursement to drug effectiveness. Pharmaceutical manufacturers and health care payers have demonstrated interest in OBAs, and under a certain set of assumptions both may benefit. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  18. The Capital Intensity of Photovoltaics Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basore, Paul

    2015-10-19

    Factory capital expenditure (capex) for photovoltaic (PV) module manufacturing strongly influences the per-unit cost of a c-Si module. This provides a significant opportunity to address the U.S. DOE SunShot module price target through capex innovation. Innovation options to reduce the capex of PV manufacturing include incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches. and financial approaches.

  19. Clean Energy Manufacturing Initiative Solid-State Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Sunil; Edmond, John; Krames, Michael

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reducemore » risk, improve quality, increase yields, and lower costs.« less

  20. Clean Energy Manufacturing Initiative Solid-State Lighting

    ScienceCinema

    Thomas, Sunil; Edmond, John; Krames, Michael; Rama

    2018-05-30

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  1. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  2. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  3. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator.

    PubMed

    Odero, D O; Shimm, D S

    2009-07-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers' proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources.

  4. Real time and accelerated stability studies of Tetanus toxoid manufactured in public sector facilities of Pakistan.

    PubMed

    Parveen, Ghazala; Hussain, Shahzad; Malik, Farnaz; Begum, Anwar; Mahmood, Sidra; Raza, Naeem

    2013-11-01

    Tetanus is an acute illness represented by comprehensive increased inflexibility and spastic spasms of skeletal muscles. The poor quality tetanus toxoid vaccine can raise the prevalence of neonatal tetanus. WHO has taken numerous steps to assist national regulatory authorities and vaccine manufacturers to ensure its quality and efficacy. It has formulated international principles for stability evaluation of each vaccine, which are available in the form of recommendations and guidelines. The aim of present study was to ensure the stability of tetanus vaccines produced by National Institute of Health, Islamabad, Pakistan by employing standardized methods to ensure constancy of tetanus toxoid at elevated temperature, if during storage/transportation cold chain may not be maintained in hot weather. A total of three batches filled during full-scale production were tested. All Stability studies determination were performed on final products stored at 2-8°C and elevated temperatures in conformance with the ICH Guideline of Stability Testing of Biological Products. These studies gave comparison between real time shelf-life stability and accelerated stability studies. The findings indicate long﷓term thermo stability and prove that this tetanus vaccine can remain efficient under setting of routine use when suggested measures for storage and handling are followed in true spirit.

  5. Mask manufacturing improvement through capability definition and bottleneck line management

    NASA Astrophysics Data System (ADS)

    Strott, Al

    1994-02-01

    In 1989, Intel's internal mask operation limited itself to research and development activities and re-inspection and pellicle application of externally manufactured masks. Recognizing the rising capital cost of mask manufacturing at the leading edge, Intel's Mask Operation management decided to offset some of these costs by manufacturing more masks internally. This was the beginning of the challenge they set to manufacture at least 50% of Intel's mask volume internally, at world class performance levels. The first step in responding to this challenge was the completion of a comprehensive operation capability analysis. A series of bottleneck improvements by focus teams resulted in an average cycle time improvement to less than five days on all product and less than two days on critical products.

  6. Pulsed-focusing recirculating linacs for muon acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcsmore » to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a

  7. Using Innovative Techniques for Manufacturing Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, Erin M.; Reynolds, David C.; Eddleman, David E.; Hardin, Andy

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using the Workhorse Gas Generator (WHGG) test setup at MSFC?s East Test Area test stand 116, the duct was subject to extreme J-2X gas generator environments and endured a total of 538 seconds of hot-fire time. The duct survived the testing and was inspected after the test. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  8. The beam business: Accelerators in industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, Robert W.; Hamm, Marianne E.

    Most physicists know that particle accelerators are widely used for treating cancer. But few are acquainted with the depth and breadth of their use in a myriad of applications outside of pure science and medicine. Society benefits from the use of particle beams in the areas of communications, transportation, the environment, security, health, and safety - in terms both of the global economy and quality of life. On the manufacturing level, the use of industrial accelerators has resulted in the faster and cheaper production of better parts for medical devices, automobiles, aircraft, and virtually all modern electronics. Consumers also benefitmore » from the use of accelerators to explore for oil, gas, and minerals; sterilize food, wastewater, and medical supplies; and aid in the development of drugs and biomaterials.« less

  9. Accomplishments in Photovoltaic Manufacturing R&D | Photovoltaic Research |

    Science.gov Websites

    made that significantly reduced the cost of solar modules while increasing their reliability and -area efficiency. Manufacturing Processes Half the cost of producing a solar module is incurred in wafer project partners marked significant progress in module cost reduction. A few notable examples follow

  10. A Profile of Defense Manufacturing Costs and Enabling Technologies

    DTIC Science & Technology

    1992-01-01

    RECEIVE MODULE F Missiles 75mm Cadmium Zinc Telluride F 94 GHZ MILLIMETER WAVE TRANSCEIVER F COMPOSITES FOR PASSIVE THERMAL MANAGEMENT F COMPOSITES FOR... PASSIVE THERMAL MANAGEMENT F Design standards for surface mount devices I Electro-optic Components Advanced Manufacturing PrDcess I FIBER OPTIC

  11. Towards a manufacturing ecosystem for integrated photonic sensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Miller, Benjamin L.

    2017-03-01

    Laboratory-scale demonstrations of optical biosensing employing structures compatible with CMOS fabrication, including waveguides, Mach-Zehnder interferometers, ring resonators, and photonic crystals, have provided ample validation of the promise of these technologies. However, to date there are relatively few examples of integrated photonic biosensors in the commercial sphere. The lack of successful translation from the laboratory to the marketplace is due in part to a lack of robust manufacturing processes for integrated photonics overall. This talk will describe efforts within the American Institute for Manufacturing Photonics (AIM Photonics), a public-private consortium funded by the Department of Defense, State governments, Universities, and Corporate partners to accelerate manufacturing of integrated photonic sensors.

  12. Maximum Acceleration Recording Circuit

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  13. Development of high intensity linear accelerator for heavy ion inertial fusion driver

    NASA Astrophysics Data System (ADS)

    Lu, Liang; Hattori, Toshiyuki; Hayashizaki, Noriyosu; Ishibashi, Takuya; Okamura, Masahiro; Kashiwagi, Hirotsugu; Takeuchi, Takeshi; Zhao, Hongwei; He, Yuan

    2013-11-01

    In order to verify the direct plasma injection scheme (DPIS), an acceleration test was carried out in 2001 using a radio frequency quadrupole (RFQ) heavy ion linear accelerator (linac) and a CO2-laser ion source (LIS) (Okamura et al., 2002) [1]. The accelerated carbon beam was observed successfully and the obtained current was 9.22 mA for C4+. To confirm the capability of the DPIS, we succeeded in accelerating 60 mA carbon ions with the DPIS in 2004 (Okamura et al., 2004; Kashiwagi and Hattori, 2004) [2,3]. We have studied a multi-beam type RFQ with an interdigital-H (IH) cavity that has a power-efficient structure in the low energy region. We designed and manufactured a two-beam type RFQ linac as a prototype for the multi-beam type linac; the beam acceleration test of carbon beams showed that it successfully accelerated from 5 keV/u up to 60 keV/u with an output current of 108 mA (2×54 mA/channel) (Ishibashi et al., 2011) [4]. We believe that the acceleration techniques of DPIS and the multi-beam type IH-RFQ linac are technical breakthroughs for heavy-ion inertial confinement fusion (HIF). The conceptual design of the RF linac with these techniques for HIF is studied. New accelerator-systems using these techniques for the HIF basic experiment are being designed to accelerate 400 mA carbon ions using four-beam type IH-RFQ linacs with DPIS. A model with a four-beam acceleration cavity was designed and manufactured to establish the proof of principle (PoP) of the accelerator.

  14. Electronic manufacturing and packaging in Japan

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John A.; Meieran, Eugene S.; Pecht, Michael; Peeples, John W.; Tummala, Rao R.

    1995-01-01

    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies. Japan has established this marked competitive advantage in electronics as a consequence of developing low-cost, high-volume consumer products. Japan's infrastructure, and the remarkable cohesiveness of vision and purpose in government and industry, are key factors in the success of Japan's electronics industry. Although Japan will continue to dominate consumer electronics in the foreseeable future, opportunities exist for the United States and other industrial countries to capture an increasingly large part of the market. The JTEC panel has identified no insurmountable barriers that would prevent the United States from regaining a significant share of the consumer electronics market; in fact, there is ample evidence that the United States needs to aggressively pursue high-volume, low-cost electronic assembly, because it is a critical path leading to high-performance electronic systems.

  15. Additive manufacture (3d printing) of plasma diagnostic components and assemblies for fusion experiments

    NASA Astrophysics Data System (ADS)

    Sieck, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; Rivera, William; You, Setthivoine; Card, Alexander

    2015-11-01

    Additive manufacturing (or 3D printing) is now becoming sufficiently accurate with a large range of materials for use in printing sensors needed universally in fusion energy research. Decreasing production cost and significantly lowering design time of energy subsystems would realize significant cost reduction for standard diagnostics commonly obtained through research grants. There is now a well-established set of plasma diagnostics, but these expensive since they are often highly complex and require customization, sometimes pace the project. Additive manufacturing (3D printing) is developing rapidly, including open source designs. Basic components can be printed for (in some cases) less than 1/100th costs of conventional manufacturing. We have examined the impact that AM can have on plasma diagnostic cost by taking 15 separate diagnostics through an engineering design using Conventional Manufacturing (CM) techniques to determine costs of components and labor costs associated with getting the diagnostic to work as intended. With that information in hand, we set about optimizing the design to exploit the benefits of AM. Work performed under DOE Contract DE-SC0011858.

  16. Product costing guide for wood dimension and component manufacturers

    Treesearch

    Adrienn Andersch; Urs Buehlmann; Jeff Palmer; Janice K. Wiedenbeck; Steve Lawser

    2014-01-01

    The North American hardwood dimension and components industry plays a critical role in the hardwood forest products industry as the industry is a user of high-value hardwood lumber. Customer expectations, global markets, and international competition, however, require hardwood dimension and components manufacturers to continuously improve their ability to manage their...

  17. Integral Airframe Structures (IAS): Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    NASA Technical Reports Server (NTRS)

    Munroe, J.; Wilkins, K.; Gruber, M.; Domack, Marcia S. (Technical Monitor)

    2000-01-01

    The Integral Airframe Structures (IAS) program investigated the feasibility of using "integrally stiffened" construction for commercial transport fuselage structure. The objective of the program was to demonstrate structural performance and weight equal to current "built-up" structure with lower manufacturing cost. Testing evaluated mechanical properties, structural details, joint performance, repair, static compression, and two-bay crack residual strength panels. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511x extrusion, and 7475-T7351 plate. Structural performance was evaluated with a large 7475-T7351 pressure test that included the arrest of a two-bay longitudinal crack, and a measure of residual strength for a two-bay crack centered on a broken frame. Analysis predictions for the two-bay longitudinal crack panel correlated well with the test results. Analysis activity conducted by the IAS team strongly indicates that current analysis tools predict integral structural behavior as accurately as built-up structure. The cost study results indicated that, compared to built-up fabrication methods, high-speed machining structure from aluminum plate would yield a recurring cost savings of 61%. Part count dropped from 78 individual parts on a baseline panel to just 7 parts for machined IAS structure.

  18. Using Innovative Technologies for Manufacturing Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  19. Modeling the Impact and Costs of Semiannual Mass Drug Administration for Accelerated Elimination of Lymphatic Filariasis

    PubMed Central

    de Vlas, Sake J.; Fischer, Peter U.; Weil, Gary J.; Goldman, Ann S.

    2013-01-01

    The Global Program to Eliminate Lymphatic Filariasis (LF) has a target date of 2020. This program is progressing well in many countries. However, progress has been slow in some countries, and others have not yet started their mass drug administration (MDA) programs. Acceleration is needed. We studied how increasing MDA frequency from once to twice per year would affect program duration and costs by using computer simulation modeling and cost projections. We used the LYMFASIM simulation model to estimate how many annual or semiannual MDA rounds would be required to eliminate LF for Indian and West African scenarios with varied pre-control endemicity and coverage levels. Results were used to estimate total program costs assuming a target population of 100,000 eligibles, a 3% discount rate, and not counting the costs of donated drugs. A sensitivity analysis was done to investigate the robustness of these results with varied assumptions for key parameters. Model predictions suggested that semiannual MDA will require the same number of MDA rounds to achieve LF elimination as annual MDA in most scenarios. Thus semiannual MDA programs should achieve this goal in half of the time required for annual programs. Due to efficiency gains, total program costs for semiannual MDA programs are projected to be lower than those for annual MDA programs in most scenarios. A sensitivity analysis showed that this conclusion is robust. Semiannual MDA is likely to shorten the time and lower the cost required for LF elimination in countries where it can be implemented. This strategy may improve prospects for global elimination of LF by the target year 2020. PMID:23301115

  20. Designing and specifying aspheres for manufacturability

    NASA Astrophysics Data System (ADS)

    Kumler, Jay

    2005-08-01

    New technologies for the fabrication of aspheres have increased opportunities for using aspheres in a wider range of optical systems. If manufacturability is considered early in the optical design process, the short and long term costs of the aspheric surface can be greatly reduced without sacrificing performance. The optical designer must learn how to select optimum materials for aspheres. Using non-staining glasses, higher index glass types, and softer glass types can help reduce production costs. If the optical designer understands what range of aspheric surfaces can be manufactured, they can constrain the aspheric surface during optimization. The steepness of the aspheric departure (the slope of the aspheric departure) often has a larger impact on manufacturing difficulty than the amplitude of the asphere or the steepness of the base radius. Tolerancing can increase the difficulty without measurably improving optical performance. Finally, the asphere can be designed for ease of metrology. Understanding the options that are available for aspheric metrology will allow the engineer to control tooling and fixturing that is required for testing.

  1. Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1982-01-01

    The accelerated stress test results obtained on all terrestrial solar cells since the inception of the program are summarized. Tested cells were grouped according to the method used to form the conductive metallization layer: solder dipped, vacuum deposited, screen printed, and copper plated. Although metallization systems within each group were quite similar, they differed in numerous details according to the procedures employed by each manufacturer. Test results were summarized for all cells according to both electrical degradation and catastrophic mechanical changes. These results indicated a variability within each metallization category which was dependent on the manufacturer. Only one manufacturer was represented in the copper plated category and, although these showed no signs of detrimental copper diffusion during high temperature testing, their metallization was removed easily during high humidity pressure cooker testing. Preliminary testing of encapsulated cells showed no major differences between encapsulated and unencapsulated cells when subjected to accelerated testing.

  2. Towards automatic planning for manufacturing generative processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CALTON,TERRI L.

    2000-05-24

    Generative process planning describes methods process engineers use to modify manufacturing/process plans after designs are complete. A completed design may be the result from the introduction of a new product based on an old design, an assembly upgrade, or modified product designs used for a family of similar products. An engineer designs an assembly and then creates plans capturing manufacturing processes, including assembly sequences, component joining methods, part costs, labor costs, etc. When new products originate as a result of an upgrade, component geometry may change, and/or additional components and subassemblies may be added to or are omitted from themore » original design. As a result process engineers are forced to create new plans. This is further complicated by the fact that the process engineer is forced to manually generate these plans for each product upgrade. To generate new assembly plans for product upgrades, engineers must manually re-specify the manufacturing plan selection criteria and re-run the planners. To remedy this problem, special-purpose assembly planning algorithms have been developed to automatically recognize design modifications and automatically apply previously defined manufacturing plan selection criteria and constraints.« less

  3. Method and apparatus for manufacturing gas tags

    DOEpatents

    Gross, K.C.; Laug, M.T.

    1996-12-17

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  4. Method and apparatus for manufacturing gas tags

    DOEpatents

    Gross, Kenny C.; Laug, Matthew T.

    1996-01-01

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  5. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE PAGES

    Doche, A.; Beekman, C.; Corde, S.; ...

    2017-10-27

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  6. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doche, A.; Beekman, C.; Corde, S.

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  7. Impact of a musculoskeletal disability management program on medical costs and productivity in a large manufacturing company.

    PubMed

    Bunn, William B; Baver, Robin S; Ehni, Thomas K; Stowers, Allan D; Taylor, David D; Holloway, Anita M; Duong, Duyen; Pikelny, Dan B; Sotolongo, David

    2006-12-01

    To evaluate a program to reduce musculoskeletal disability-related absenteeism at a North American manufacturing facility. Staged communication and educational interventions targeting physicians to improve care of musculoskeletal conditions and reduce related absenteeism. The program was implemented in three 1-year stages. The first stage required physicians to complete assessment forms for employees claiming disability because of musculoskeletal injuries. The second stage added physician education programs focusing on current clinical guidelines. The third stage incorporated local physician education about the facility's onsite physical therapy program. Annual number of work-related injuries, days lost per injury and per scheduled full-time-equivalent (FTE) employee, light-duty days per injury, average annual indemnity per FTE, indemnity per injury, medical costs per FTE, and medical costs per injury were examined to determine the program's effectiveness. Overall productivity improved by a mean of 12.5 days per injured employee. Mean days lost per work-related injury decreased from 35.1 to 27.6. Number of light-duty days increased from 6.1 to 11.1 per work-related injury. Mean annual indemnity per work-related injury decreased from $9327 to $4493; mean annual medical costs per work-related injury decreased from $4848 to $2679. The annual incidence of musculoskeletal injuries declined by up to 50%. This intervention was associated with reduced musculoskeletal disability-related absenteeism and increased productivity. The program reduced medical costs per work-related injury and improved the company's communications and relationship with local physicians.

  8. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  9. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE PAGES

    Persaud, A.; Seidl, P. A.; Ji, Q.; ...

    2017-10-26

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  10. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persaud, A.; Seidl, P. A.; Ji, Q.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  11. Mathematical model for dynamic cell formation in fast fashion apparel manufacturing stage

    NASA Astrophysics Data System (ADS)

    Perera, Gayathri; Ratnayake, Vijitha

    2018-05-01

    This paper presents a mathematical programming model for dynamic cell formation to minimize changeover-related costs (i.e., machine relocation costs and machine setup cost) and inter-cell material handling cost to cope with the volatile production environments in apparel manufacturing industry. The model is formulated through findings of a comprehensive literature review. Developed model is validated based on data collected from three different factories in apparel industry, manufacturing fast fashion products. A program code is developed using Lingo 16.0 software package to generate optimal cells for developed model and to determine the possible cost-saving percentage when the existing layouts used in three factories are replaced by generated optimal cells. The optimal cells generated by developed mathematical model result in significant cost saving when compared with existing product layouts used in production/assembly department of selected factories in apparel industry. The developed model can be considered as effective in minimizing the considered cost terms in dynamic production environment of fast fashion apparel manufacturing industry. Findings of this paper can be used for further researches on minimizing the changeover-related costs in fast fashion apparel production stage.

  12. Economic feasibility of manufacturing COM-PLY studs in the South

    Treesearch

    Gerald A. Koenigshof

    1978-01-01

    The investment and production cost required to manufacture COM-PLY studs in the South are presented. It is possible to obtain a 20 percent or greater internal rate of return on an investment in manufacturing COM-PLY.

  13. Clean Energy Manufacturing Initiative Solid-State Lighting Video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Sunil; Edmond, John; Krames, Michael

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reducemore » risk, improve quality, increase yields, and lower costs.« less

  14. Clean Energy Manufacturing Initiative Solid-State Lighting Video

    ScienceCinema

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2018-01-16

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  15. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50% over typical manufactured homes produced in the northwest.« less

  16. Japan's technology and manufacturing infrastructure

    NASA Astrophysics Data System (ADS)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-02-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  17. Japan's technology and manufacturing infrastructure

    NASA Technical Reports Server (NTRS)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-01-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  18. Improved Large Aperture Collector Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Rourke, Deven; Farr, Adrian

    2015-12-01

    The parabolic trough is the most established CSP technology and carries a long history of design experimentation dating back to the 1970’s. This has led to relatively standardized collector architectures, a maturing global supply chain, and a fairly uniform cost reduction strategy. Abengoa has deployed more than 1,500MWe of CSP troughs across several countries and has built and tested full-scale prototypes of many R&D concepts. The latest trough R&D efforts involved efforts to internalize non-CSP industry experience including a preliminary DFMA principles review done with Boothroyd Dewhurst, a construction literature review by the Arizona State University School of Construction Management,more » and two more focused manufacturing engineering subcontracts done by Ricardo Inc. and the nonprofit Edison Welding Institute. The first two studies highlighted strong opportunities in lowering part count, standardizing components and fasteners, developing modular designs to support prefabrication and automation, and devising simple, error-proof manual assembly methods. These principles have delivered major new cost savings in otherwise “mature” products in analogous industries like automotive, truck trailer manufacture, metal building fabrication, and shipbuilding. For this reason, they were core in the design development of the SpaceTube® collector, and arguably key to its early successes. The latter two studies were applied specifically to the first-generation SpaceTube® design and were important in setting the direction of the present SolarMat project. These studies developed a methodology to analyze the costs of manufacture and assembly, and identify new tooling concepts for more efficient manufacture. Among the main opportunities identified in these studies were the automated mirror arm manufacturing concept and the need for a less infrastructure-intensive assembly line, both of which now form central pillars of the SolarMat project strategy. These new designs

  19. Rising Cost of Cancer Pharmaceuticals: Cost Issues and Interventions to Control Costs.

    PubMed

    Glode, Ashley E; May, Megan Brafford

    2017-01-01

    The rising cost of pharmaceuticals and, in particular, cancer drugs has made headline news in recent years. Several factors contribute to increasing costs and the burden this places on the health care system and patients. Some of these factors include costly cancer pharmaceutical research and development, longer clinical trials required to achieve drug approval, manufacturing costs for complex compounds, and the economic principles surrounding oncology drug pricing. Strategies to control costs have been proposed, and some have already been implemented to mitigate cancer drug costs such as the use of clinical treatment pathways and tools to facilitate cost discussions with patients. In this article, we briefly review some of the potential factors contributing to increasing cancer pharmaceutical costs and interventions to mitigate costs, and touch on the role of health care providers in addressing this important issue. © 2016 Pharmacotherapy Publications, Inc.

  20. Air Force Manufacturing Technology Electronics Program, FY72-FY85.

    DTIC Science & Technology

    1985-04-01

    magnetic films of the composition Yl.52 EuO.30 TmO.30 CaO.88 Fe4.12 012 on 1.5 inch and 2.0 inch gadolinium gallium garnet substrates. Ten film were...volume manufacturing of hybrid MIC’s. A systematic integrated cost effective approach to testing, trimming/matching, fabri - cation, and assembly is...ESTABLISH MANUFACTURING METHODS FOR LOW COST HIGH RELIABILITY FABRI - CATION AND ACTIVATION OF OXIDE CATHODES FOR USE IN SPACE TRAVELING WAVE TUBES

  1. Development of a simple, low cost, indirect ion beam fluence measurement system for ion implanters, accelerators

    NASA Astrophysics Data System (ADS)

    Suresh, K.; Balaji, S.; Saravanan, K.; Navas, J.; David, C.; Panigrahi, B. K.

    2018-02-01

    We developed a simple, low cost user-friendly automated indirect ion beam fluence measurement system for ion irradiation and analysis experiments requiring indirect beam fluence measurements unperturbed by sample conditions like low temperature, high temperature, sample biasing as well as in regular ion implantation experiments in the ion implanters and electrostatic accelerators with continuous beam. The system, which uses simple, low cost, off-the-shelf components/systems and two distinct layers of in-house built softwarenot only eliminates the need for costly data acquisition systems but also overcomes difficulties in using properietry software. The hardware of the system is centered around a personal computer, a PIC16F887 based embedded system, a Faraday cup drive cum monitor circuit, a pair of Faraday Cups and a beam current integrator and the in-house developed software include C based microcontroller firmware and LABVIEW based virtual instrument automation software. The automatic fluence measurement involves two important phases, a current sampling phase lasting over 20-30 seconds during which the ion beam current is continuously measured by intercepting the ion beam and the averaged beam current value is computed. A subsequent charge computation phase lasting 700-900 seconds is executed making the ion beam to irradiate the samples and the incremental fluence received by the sampleis estimated usingthe latest averaged beam current value from the ion beam current sampling phase. The cycle of current sampling-charge computation is repeated till the required fluence is reached. Besides simplicity and cost-effectiveness, other important advantages of the developed system include easy reconfiguration of the system to suit customisation of experiments, scalability, easy debug and maintenance of the hardware/software, ability to work as a standalone system. The system was tested with different set of samples and ion fluences and the results were verified using

  2. Modeling OPC complexity for design for manufacturability

    NASA Astrophysics Data System (ADS)

    Gupta, Puneet; Kahng, Andrew B.; Muddu, Swamy; Nakagawa, Sam; Park, Chul-Hong

    2005-11-01

    Increasing design complexity in sub-90nm designs results in increased mask complexity and cost. Resolution enhancement techniques (RET) such as assist feature addition, phase shifting (attenuated PSM) and aggressive optical proximity correction (OPC) help in preserving feature fidelity in silicon but increase mask complexity and cost. Data volume increase with rise in mask complexity is becoming prohibitive for manufacturing. Mask cost is determined by mask write time and mask inspection time, which are directly related to the complexity of features printed on the mask. Aggressive RET increase complexity by adding assist features and by modifying existing features. Passing design intent to OPC has been identified as a solution for reducing mask complexity and cost in several recent works. The goal of design-aware OPC is to relax OPC tolerances of layout features to minimize mask cost, without sacrificing parametric yield. To convey optimal OPC tolerances for manufacturing, design optimization should drive OPC tolerance optimization using models of mask cost for devices and wires. Design optimization should be aware of impact of OPC correction levels on mask cost and performance of the design. This work introduces mask cost characterization (MCC) that quantifies OPC complexity, measured in terms of fracture count of the mask, for different OPC tolerances. MCC with different OPC tolerances is a critical step in linking design and manufacturing. In this paper, we present a MCC methodology that provides models of fracture count of standard cells and wire patterns for use in design optimization. MCC cannot be performed by designers as they do not have access to foundry OPC recipes and RET tools. To build a fracture count model, we perform OPC and fracturing on a limited set of standard cells and wire configurations with all tolerance combinations. Separately, we identify the characteristics of the layout that impact fracture count. Based on the fracture count (FC) data

  3. Computational Process Modeling for Additive Manufacturing (OSU)

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  4. A guide to manufacturing CAR T cell therapies.

    PubMed

    Vormittag, Philipp; Gunn, Rebecca; Ghorashian, Sara; Veraitch, Farlan S

    2018-02-17

    In recent years, chimeric antigen receptor (CAR) modified T cells have been used as a treatment for haematological malignancies in several phase I and II trials and with Kymriah of Novartis and Yescarta of KITE Pharma, the first CAR T cell therapy products have been approved. Promising clinical outcomes have yet been tempered by the fact that many therapies may be prohibitively expensive to manufacture. The process is not yet defined, far from being standardised and often requires extensive manual handling steps. For academia, big pharma and contract manufacturers it is difficult to obtain an overview over the process strategies and their respective advantages and disadvantages. This review details current production processes being used for CAR T cells with a particular focus on efficacy, reproducibility, manufacturing costs and release testing. By undertaking a systematic analysis of the manufacture of CAR T cells from reported clinical trial data to date, we have been able to quantify recent trends and track the uptake of new process technology. Delivering new processing options will be key to the success of the CAR-T cells ensuring that excessive manufacturing costs do not disrupt the delivery of exciting new therapies to the wide possible patient cohort. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Ohio Advanced Energy Manufacturing Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing andmore » implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall

  6. Cryogenic distribution box for Fermi National Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Svehla, M. R.; Bonnema, E. C.; Cunningham, E. K.

    2017-12-01

    Meyer Tool & Mfg., Inc (Meyer Tool) of Oak Lawn, Illinois is manufacturing a cryogenic distribution box for Fermi National Accelerator Laboratory (FNAL). The distribution box will be used for the Muon-to-electron conversion (Mu2e) experiment. The box includes twenty-seven cryogenic valves, two heat exchangers, a thermal shield, and an internal nitrogen separator vessel, all contained within a six-foot diameter ASME coded vacuum vessel. This paper discusses the design and manufacturing processes that were implemented to meet the unique fabrication requirements of this distribution box. Design and manufacturing features discussed include: 1) Thermal strap design and fabrication, 2) Evolution of piping connections to heat exchangers, 3) Nitrogen phase separator design, 4) ASME code design of vacuum vessel, and 5) Cryogenic valve installation.

  7. Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware

    NASA Technical Reports Server (NTRS)

    Betts, Erin M.; Hardin, Andy

    2011-01-01

    Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.

  8. Cesic: manufacturing study for next generation telescopes

    NASA Astrophysics Data System (ADS)

    Kroedel, M.; Lichtscheindl, J.; Mair, Hp.

    2005-08-01

    Under ESO - European Southern Observatory - contract ECM has performed a feasibility study for the manufacturing of Cesic primary and secondary mirror segments for the OWL-Telescope. The main issues of this study were to demonstrate the feasibility of the serial production (~ 2550 segments) of Cesic mirror segments under a certain schedule and cost optimisation aspect for the segments. Part of this study was also a pre-design of a manufacturing facility for this big amount of mirror segments. This study is limited only up to the manufacturing of a polishable surface, the feasibility of the polishing capability is not part of this study.

  9. Framework for Identifying Cybersecurity Risks in Manufacturing

    DOE PAGES

    Hutchins, Margot J.; Bhinge, Raunak; Micali, Maxwell K.; ...

    2015-10-21

    Increasing connectivity, use of digital computation, and off-site data storage provide potential for dramatic improvements in manufacturing productivity, quality, and cost. However, there are also risks associated with the increased volume and pervasiveness of data that are generated and potentially accessible to competitors or adversaries. Enterprises have experienced cyber attacks that exfiltrate confidential and/or proprietary data, alter information to cause an unexpected or unwanted effect, and destroy capital assets. Manufacturers need tools to incorporate these risks into their existing risk management processes. This article establishes a framework that considers the data flows within a manufacturing enterprise and throughout its supplymore » chain. The framework provides several mechanisms for identifying generic and manufacturing-specific vulnerabilities and is illustrated with details pertinent to an automotive manufacturer. Finally, in addition to providing manufacturers with insights into their potential data risks, this framework addresses an outcome identified by the NIST Cybersecurity Framework.« less

  10. Framework for Identifying Cybersecurity Risks in Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchins, Margot J.; Bhinge, Raunak; Micali, Maxwell K.

    Increasing connectivity, use of digital computation, and off-site data storage provide potential for dramatic improvements in manufacturing productivity, quality, and cost. However, there are also risks associated with the increased volume and pervasiveness of data that are generated and potentially accessible to competitors or adversaries. Enterprises have experienced cyber attacks that exfiltrate confidential and/or proprietary data, alter information to cause an unexpected or unwanted effect, and destroy capital assets. Manufacturers need tools to incorporate these risks into their existing risk management processes. This article establishes a framework that considers the data flows within a manufacturing enterprise and throughout its supplymore » chain. The framework provides several mechanisms for identifying generic and manufacturing-specific vulnerabilities and is illustrated with details pertinent to an automotive manufacturer. Finally, in addition to providing manufacturers with insights into their potential data risks, this framework addresses an outcome identified by the NIST Cybersecurity Framework.« less

  11. Summary and recommendations. [reduced gravitational effects on materials manufactured in space

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An economic analysis using econometric and cost benefit analysis techniques was performed to determine the feasibility of space processing of certain products. The overall objectives of the analysis were (1) to determine specific products or processes uniquely connected with space manufacturing, (2) to select a specific product or process from each of the areas of semiconductors, metals, and biochemicals, and (3) to determine the overall price/cost structure of each product or process considered. The economic elements of the analysis involved a generalized decision making format for analyzing space manufacturing, a comparative cost study of the selected processes in space vs. earth manufacturing, and a supply and demand study of the economic relationships of one of the manufacturing processes. Space processing concepts were explored. The first involved the use of the shuttle as the factory with all operations performed during individual flights. The second concept involved a permanent unmanned space factory which would be launched separately. The shuttle in this case would be used only for maintenance and refurbishment. Finally, some consideration was given to a permanent manned space factory.

  12. The scope of additive manufacturing in cryogenics, component design, and applications

    NASA Astrophysics Data System (ADS)

    Stautner, W.; Vanapalli, S.; Weiss, K.-P.; Chen, R.; Amm, K.; Budesheim, E.; Ricci, J.

    2017-12-01

    Additive manufacturing techniques using composites or metals are rapidly gaining momentum in cryogenic applications. Small or large, complex structural components are now no longer limited to mere design studies but can now move into the production stream thanks to new machines on the market that allow for light-weight, cost optimized designs with short turnaround times. The potential for cost reductions from bulk materials machined to tight tolerances has become obvious. Furthermore, additive manufacturing opens doors and design space for cryogenic components that to date did not exist or were not possible in the past, using bulk materials along with elaborate and expensive machining processes, e.g. micromachining. The cryogenic engineer now faces the challenge to design toward those new additive manufacturing capabilities. Additionally, re-thinking designs toward cost optimization and fast implementation also requires detailed knowledge of mechanical and thermal properties at cryogenic temperatures. In the following we compile the information available to date and show a possible roadmap for additive manufacturing applications of parts and components typically used in cryogenic engineering designs.

  13. Process and assembly plans for low cost commercial fuselage structure

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, Stephen; Starkey, Val

    1991-01-01

    Cost and weight reduction for a composite structure is a result of selecting design concepts that can be built using efficient low cost manufacturing and assembly processes. Since design and manufacturing are inherently cost dependent, concurrent engineering in the form of a Design-Build Team (DBT) is essential for low cost designs. Detailed cost analysis from DBT designs and hardware verification must be performed to identify the cost drivers and relationships between design and manufacturing processes. Results from the global evaluation are used to quantitatively rank design, identify cost centers for higher ranking design concepts, define and prioritize a list of technical/economic issues and barriers, and identify parameters that control concept response. These results are then used for final design optimization.

  14. Development and Industrialization of InGaN/GaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flemish, Joseph; Soer, Wouter

    2015-11-30

    Patterned sapphire substrate (PSS) technology has proven to be an effective approach to improve efficacy and reduce cost of light-emitting diodes (LEDs). The volume emission from the transparent substrate leads to high package efficiency, while the simple and robust architecture of PSS-based LEDs enables low cost. PSS substrates have gained wide use in mid-power LEDs over the past years. In this project, Lumileds has developed and industrialized PSS and epitaxy technology for high- power flip-chip LEDs to bring these benefits to a broader range of applications and accelerate the adoption of energy-efficient solid-state lighting (SSL). PSS geometries were designed formore » highly efficient light extraction in a flip-chip architecture and high-volume manufacturability, and corresponding sapphire patterning and epitaxy manufacturing processes were integrally developed. Concurrently, device and package architectures were developed to take advantage of the PSS flip-chip die in different types of products that meet application needs. The developed PSS and epitaxy technology has been fully implemented in manufacturing at Lumileds’ San Jose, CA location, and incorporated in illumination-grade LED products that have been successfully introduced to the market, including LUXEON Q and LUXEON FlipChip White.« less

  15. Metrology for Fuel Cell Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. Themore » objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.« less

  16. Design of a high power TM01 mode launcher optimized for manufacturing by milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo

    2016-12-15

    Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, atmore » the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.« less

  17. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2018-05-18

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  18. Cost estimating Brayton and Stirling engines

    NASA Technical Reports Server (NTRS)

    Fortgang, H. R.

    1980-01-01

    Brayton and Stirling engines were analyzed for cost and selling price for production quantities ranging from 1000 to 400,000 units per year. Parts and components were subjected to indepth scrutiny to determine optimum manufacturing processes coupled with make or buy decisions on materials and small parts. Tooling and capital equipment costs were estimated for each detail and/or assembly. For low annual production volumes, the Brayton engine appears to have a lower cost and selling price than the Stirling Engine. As annual production quantities increase, the Stirling becomes a lower cost engine than the Brayton. Both engines could benefit cost wise if changes were made in materials, design and manufacturing process as annual production quantities increase.

  19. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  20. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.« less

  1. Hybrid and disposable facilities for manufacturing of biopharmaceuticals: pros and cons.

    PubMed

    Ravisé, Aline; Cameau, Emmanuelle; De Abreu, Georges; Pralong, Alain

    2009-01-01

    Modern biotechnology has grown over the last 35 years to a maturing industry producing and delivering high-value biopharmaceuticals that yield important medical and economical benefits. The constantly increasing need for biopharmaceuticals and significant costs related to time-consuming R&D work makes this industry risky and highly competitive. This trend is confirmed by the important number of biopharmaceuticals that are actually under development at all stages by all major pharmaceutical industry companies. A consequence of this evolution is an increasing need for development and manufacturing capacity. The build up of traditional - stainless steel - technology is complicated, time consuming and very expensive. The decision for such a major investment needs to be taken early in the development cycle of a promising drug to cope with future demands for clinical trials and product launch. Possibilities for the reduction of R&D and manufacturing costs are therefore of significant interest in order to be competitive.In this chapter, four case studies are presented which outline ways to reduce significantly R&D and manufacturing costs by using disposable technology in the frame of a the transfer of an antibody manufacturing process, the preparation of media and buffers in commercial manufacturing and a direct comparison of a traditional and a fully disposable pilot plant.

  2. Investigation of low cost, high reliability sealing techniques for hybrid microcircuits, phase 1

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1976-01-01

    A preliminary investigation was made to determine the feasibility of using adhesive package sealing for hybrid microcircuits. Major effort consisted of: (1) surveying representative hybrid manufacturers to assess the current use of adhesives for package sealing; (2) making a cost comparison of metallurgical versus adhesive package sealing; (3) determining the seal integrity of gold plated flatpack type packages sealed with selected adhesives, thermal shock, temperature cycling, mechanical shock, and constant acceleration test environments; and (4) defining a more comprehensive study to continue the evaluation of adhesives for package sealing. Results showed that 1.27 cm square gold plated flatpack type packages sealed with the film adhesives and the paste adhesive retained their seal integrity after all tests, and that similarly prepared 2.54 cm square packages retained their seal integrity after all tests except the 10,000 g's constant acceleration test. It is concluded that these results are encouraging, but by no means sufficient to establish the suitability of adhesives for sealing high reliability hybrid microcircuits.

  3. Make or buy analysis model based on tolerance allocation to minimize manufacturing cost and fuzzy quality loss

    NASA Astrophysics Data System (ADS)

    Rosyidi, C. N.; Puspitoingrum, W.; Jauhari, W. A.; Suhardi, B.; Hamada, K.

    2016-02-01

    The specification of tolerances has a significant impact on the quality of product and final production cost. The company should carefully pay attention to the component or product tolerance so they can produce a good quality product at the lowest cost. Tolerance allocation has been widely used to solve problem in selecting particular process or supplier. But before merely getting into the selection process, the company must first make a plan to analyse whether the component must be made in house (make), to be purchased from a supplier (buy), or used the combination of both. This paper discusses an optimization model of process and supplier selection in order to minimize the manufacturing costs and the fuzzy quality loss. This model can also be used to determine the allocation of components to the selected processes or suppliers. Tolerance, process capability and production capacity are three important constraints that affect the decision. Fuzzy quality loss function is used in this paper to describe the semantic of the quality, in which the product quality level is divided into several grades. The implementation of the proposed model has been demonstrated by solving a numerical example problem that used a simple assembly product which consists of three components. The metaheuristic approach were implemented to OptQuest software from Oracle Crystal Ball in order to obtain the optimal solution of the numerical example.

  4. Cost-Effectiveness Analysis of Ixekizumab vs Etanercept and Their Manufacturer-Recommended Dosing Regimens in Moderate to Severe Plaque Psoriasis.

    PubMed

    Udkoff, Jeremy; Eichenfield, Lawrence F

    2017-10-01

    Biologic therapies have revolutionized the treatment of psoriasis; however, their use is limited by costs. Ixekizumab was more effective than etanercept in the UNCOVER trials, and the Food and Drug Administration (FDA) approved ixekizumab for treating psoriasis. Evaluating the cost-effectiveness of these therapies is crucial for medical decision making and our objective was to determine the cost-effectiveness of various ixekizumab dosing frequencies compared with etanercept. We utilized published data from the UNCOVER comparative efficacy trials, including transitional probabilities and treatment response rates, to create a Markov model simulating the clinical course and cost-effectiveness of three treatment algorithms for patients with moderate to severe plaque psoriasis over 60-weeks: (1) ixekizumab every 2 weeks for 12 weeks then every 4 weeks, (2) ixekizumab every 4 weeks throughout the treatment period, (3) biweekly etanercept for 12 weeks then once weekly. We utilized a standard willingness-to-pay (WTP) threshold of $150,000 per quality adjusted life year (QALY) and Medicaid drug acquisition costs for our calculations. Ixekizumab every 4 weeks was $28,681 (USD) less expensive than biweekly etanercept, and $21,375 less expensive, and 0.006 QALY less effective, than ixekizumab every 2 weeks-- a savings of $28.7 and $21.4 million, respectively, per 1,000 patients. A 95.6% cost reduction to $197.83 per dose is required for ixekizumab every 2 weeks to be more cost-effective than every 4 weeks. Biweekly etanercept requires a 29.5% cost reduction ($743.82 per dose) to be competitive with ixekizumab every 4 weeks. This cost-effectiveness model utilizes strong input data but is a limited approximation of real-life scenarios. Treatment with ixekizumab every 2 weeks is unlikely to be cost-effective compared with ixekizumab every 4 weeks at current U.S. market prices. Yet, the U.S. FDA approval and manufacturer's recommendation are for ixekizumab every 2 weeks

  5. Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, William G.; Rios, Orlando; Akers, Ronald R.

    To improve the flow of materials used in in polymer additive manufacturing, ORNL and Ajax Tocco created an induction system for heating fused deposition modeling (FDM) nozzles used in polymer additive manufacturing. The system is capable of reaching a temperature of 230 C, a typical nozzle temperature for extruding ABS polymers, in 17 seconds. A prototype system was built at ORNL and sent to Ajax Tocco who analyzed the system and created a finalized power supply. The induction system was mounted to a PrintSpace Altair desktop printer and used to create several test parts similar in quality to those createdmore » using a resistive heated nozzle.« less

  6. The Manufacturing Industry

    DTIC Science & Technology

    2005-06-01

    South Korea Samsung Electronics, Suwon, South Korea US Embassy Country Brief, Beijing, China US Consulate General Brief, Hong Kong Joint US... employees . Innovation, leveraged by science and technology (S&T), has created opportunities within the manufacturing sector. This paper summarizes the...productivity, both per hour and per employee . This fact has enabled the US to maintain a labor cost advantage despite the higher wages/benefits paid to US

  7. SAMICS support study. Volume 1: Cost account catalog

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Jet Propulsion Laboratory (JPL) is examining the feasibility of a new industry to produce photovoltaic solar energy collectors similar to those used on spacecraft. To do this, a standardized costing procedure was developed. The Solar Array Manufacturing Industry Costing Standards (SAMICS) support study supplies the following information: (1) SAMICS critique; (2) Standard data base--cost account structure, expense item costs, inflation rates, indirect requirements relationships, and standard financial parameter values; (3) Facilities capital cost estimating relationships; (4) Conceptual plant designs; (5) Construction lead times; (6) Production start-up times; (7) Manufacturing price estimates.

  8. 10 CFR 52.171 - Finality of manufacturing licenses; information requests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Finality of manufacturing licenses; information requests. 52.171 Section 52.171 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND... manufactured reactor, the costs and benefits of severe accident mitigation design alternatives, and the bases...

  9. 10 CFR 52.171 - Finality of manufacturing licenses; information requests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Finality of manufacturing licenses; information requests. 52.171 Section 52.171 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND... manufactured reactor, the costs and benefits of severe accident mitigation design alternatives, and the bases...

  10. 10 CFR 52.171 - Finality of manufacturing licenses; information requests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Finality of manufacturing licenses; information requests. 52.171 Section 52.171 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND... manufactured reactor, the costs and benefits of severe accident mitigation design alternatives, and the bases...

  11. 10 CFR 52.171 - Finality of manufacturing licenses; information requests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Finality of manufacturing licenses; information requests. 52.171 Section 52.171 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND... manufactured reactor, the costs and benefits of severe accident mitigation design alternatives, and the bases...

  12. PREFACE: Trends in Aerospace Manufacturing 2009 International Conference

    NASA Astrophysics Data System (ADS)

    Ridgway, Keith; Gault, Rosemary; Allen, Adrian

    2011-12-01

    The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.

  13. Democratizing science with the aid of parametric design and additive manufacturing: Design and fabrication of a versatile and low-cost optical instrument for scattering measurement.

    PubMed

    Nadal-Serrano, Jose M; Nadal-Serrano, Adolfo; Lopez-Vallejo, Marisa

    2017-01-01

    This paper focuses on the application of rapid prototyping techniques using additive manufacturing in combination with parametric design to create low-cost, yet accurate and reliable instruments. The methodology followed makes it possible to make instruments with a degree of customization until now available only to a narrow audience, helping democratize science. The proposal discusses a holistic design-for-manufacturing approach that comprises advanced modeling techniques, open-source design strategies, and an optimization algorithm using free parametric software for both professional and educational purposes. The design and fabrication of an instrument for scattering measurement is used as a case of study to present the previous concepts.

  14. Democratizing science with the aid of parametric design and additive manufacturing: Design and fabrication of a versatile and low-cost optical instrument for scattering measurement

    PubMed Central

    Lopez-Vallejo, Marisa

    2017-01-01

    This paper focuses on the application of rapid prototyping techniques using additive manufacturing in combination with parametric design to create low-cost, yet accurate and reliable instruments. The methodology followed makes it possible to make instruments with a degree of customization until now available only to a narrow audience, helping democratize science. The proposal discusses a holistic design-for-manufacturing approach that comprises advanced modeling techniques, open-source design strategies, and an optimization algorithm using free parametric software for both professional and educational purposes. The design and fabrication of an instrument for scattering measurement is used as a case of study to present the previous concepts. PMID:29112987

  15. Manufacturing PDMS micro lens array using spin coating under a multiphase system

    NASA Astrophysics Data System (ADS)

    Sun, Rongrong; Yang, Hanry; Rock, D. Mitchell; Danaei, Roozbeh; Panat, Rahul; Kessler, Michael R.; Li, Lei

    2017-05-01

    The development of micro lens arrays has garnered much interest due to increased demand of miniaturized systems. Traditional methods for manufacturing micro lens arrays have several shortcomings. For example, they require expensive facilities and long lead time, and traditional lens materials (i.e. glass) are typically heavy, costly and difficult to manufacture. In this paper, we explore a method for manufacturing a polydimethylsiloxane (PDMS) micro lens array using a simple spin coating technique. The micro lens array, formed under an interfacial tension dominated system, and the influence of material properties and process parameters on the fabricated lens shape are examined. The lenses fabricated using this method show comparable optical properties—including surface finish and image quality—with a reduced cost and manufacturing lead time.

  16. Stroke rehabilitation services to accelerate hospital discharge and provide home-based care: an overview and cost analysis.

    PubMed

    Anderson, Craig; Ni Mhurchu, Cliona; Brown, Paul M; Carter, Kristie

    2002-01-01

    Limited information exists on the best way to organise stroke rehabilitation after hospital discharge and the relative costs of such services. To review the evidence of the cost effectiveness of services that accelerate hospital discharge and provide home-based rehabilitation for patients with acute stroke. A systematic review with economic analysis of published randomised clinical trials (available to March 2001) comparing early hospital discharge and domiciliary rehabilitation with usual care in patients with stroke was conducted. From included studies, data were extracted on study quality; major clinical outcomes including hospital stay, death, institutionalisation, disability, and readmission rates; and resource use associated with hospital stay, rehabilitation, and community services. The resources were priced using Australian dollars ($A) healthcare costs. The outcomes and costs of the new intervention were compared with standard care. Seven published trials involving 1277 patients (54% men; mean age 73 years) were identified. The pooled data showed that overall, a policy of early hospital discharge and domiciliary rehabilitation reduced total length of stay by 13 days [95% confidence interval (CI): -19 to -7 days]. There was no significant effect on mortality (odds ratio = 0.95; 95% CI: 0.65 to 1.38) or other clinical outcomes making a cost minimisation analysis for the economic analysis appropriate. The overall mean costs were approximately 15% lower for the early discharge intervention [$A16 016 ($US9941) versus $A18 350] ($US11 390)] compared with standard care. A policy of early hospital discharge and home-based rehabilitation for patients with stroke may reduce the use of hospital beds without compromising clinical outcomes. Our analysis shows this service to be a cost saving alternative to conventional in-hospital stroke rehabilitation for an important subgroup of patients with stroke-related disability.

  17. Manufacturing Process for OLED Integrated Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Cheng-Hung; McCamy, James; Ashtosh, Ganjoo

    2017-01-27

    The primary objective of this project is to demonstrate manufacturing processes for technologies that will enable commercialization of a large-area and low-cost “integrated substrate” product for rigid OLED SSL lighting. The integrated substrate product will consist of a low cost, float glass substrate combined with a transparent conductive anode film layer, and light out-coupling (internal and external extraction layers) structures. In combination, these design elements will enable an integrated substrate meeting or exceeding 2015 performance targets for cost ($60/m2), extraction efficiency (50%) and sheet resistance (<10 ohm/sq).

  18. Innovative Approaches to Space-Based Manufacturing and Rapid Prototyping of Composite Materials

    NASA Technical Reports Server (NTRS)

    Hill, Charles S.

    2012-01-01

    The ability to deploy large habitable structures, construct, and service exploration vehicles in low earth orbit will be an enabling capability for continued human exploration of the solar system. It is evident that advanced manufacturing methods to fabricate replacement parts and re-utilize launch vehicle structural mass by converting it to different uses will be necessary to minimize costs and allow flexibility to remote crews engaged in space travel. Recent conceptual developments and the combination of inter-related approaches to low-cost manufacturing of composite materials and structures are described in context leading to the possibility of on-orbit and space-based manufacturing.

  19. On the Path to SunShot. Emerging Opportunities and Challenges in U.S. Solar Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Donald; Horowitz, Kelsey; Kurup, Parthiv

    This report provides insights into photovoltaic (PV) and concentrating solar power (CSP) manufacturing in the context of the U.S. Department of Energy's SunShot Initiative. Although global PV price reductions and deployment have been strong recently, PV manufacturing faces challenges. Slowing rates of manufacturing cost reductions, combined with the relatively low price of incumbent electricity generating sources in most large global PV markets, may constrain profit opportunities for firms and poses a potential challenge to the sustainable operation and growth of the global PV manufacturing base. In the United States, manufacturers also face a factors-of-production cost disadvantage compared with competing nations.more » However, the United States is one of the world's most competitive and innovative countries as well as one of the best locations for PV manufacturing. In conjunction with strong projected PV demand in the United States and across the Americas, these advantages could increase the share of PV technologies produced by U.S. manufacturers as the importance of innovation-driven PV cost reductions increases. Compared with PV, CSP systems are much more complex and require a much larger minimum effective scale, resulting in much higher total CAPEX requirements for system construction, lengthier development cycles, and ultimately higher costs of energy produced. The global lack of consistent CSP project development creates challenges for companies that manufacture specialty CSP components, and the potential lack of a near-term U.S. market could hinder domestic CSP manufacturers. However, global and U.S. CSP deployment is expected to expand beyond 2020, and U.S. CSP manufacturers could benefit from U.S. innovation advantages similar to those associated with PV. Expansion of PV and CSP manufacturing also presents U.S. job-growth opportunities.« less

  20. Using 3D Printing (Additive Manufacturing) to Produce Low-Cost Simulation Models for Medical Training.

    PubMed

    Lichtenberger, John P; Tatum, Peter S; Gada, Satyen; Wyn, Mark; Ho, Vincent B; Liacouras, Peter

    2018-03-01

    This work describes customized, task-specific simulation models derived from 3D printing in clinical settings and medical professional training programs. Simulation models/task trainers have an array of purposes and desired achievements for the trainee, defining that these are the first step in the production process. After this purpose is defined, computer-aided design and 3D printing (additive manufacturing) are used to create a customized anatomical model. Simulation models then undergo initial in-house testing by medical specialists followed by a larger scale beta testing. Feedback is acquired, via surveys, to validate effectiveness and to guide or determine if any future modifications and/or improvements are necessary. Numerous custom simulation models have been successfully completed with resulting task trainers designed for procedures, including removal of ocular foreign bodies, ultrasound-guided joint injections, nerve block injections, and various suturing and reconstruction procedures. These task trainers have been frequently utilized in the delivery of simulation-based training with increasing demand. 3D printing has been integral to the production of limited-quantity, low-cost simulation models across a variety of medical specialties. In general, production cost is a small fraction of a commercial, generic simulation model, if available. These simulation and training models are customized to the educational need and serve an integral role in the education of our military health professionals.

  1. Technical manual for manufacturing autologous fibrin tissue adhesive.

    PubMed

    Park, J J; Cintron, J R; Siedentop, K H; Orsay, C P; Pearl, R K; Nelson, R L; Abcarian, H

    1999-10-01

    The aim of this article is to provide a concise and simple technical manual for manufacturing autologous fibrin tissue adhesive derived from the precipitation of fibrinogen using a combination of ethanol and freezing for surgery. All materials and equipment needed to manufacture ethanol-based autologous fibrin tissue adhesive are listed. In addition, step-by-step instructions are provided to allow for easy and rapid fibrin adhesive production. Ethanol-based autologous fibrin tissue adhesive can be manufactured in under 60 minutes. Furthermore, at our institution the startup cost for manufacturing ethanol-based autologous fibrin tissue adhesive was under $2,500.00. Ethanol-based autologous fibrin tissue adhesive is a safe, reliable, and easily manufactured autologous fibrin tissue adhesive that can be made by a trained technician in any blood bank, pharmacy, or surgical laboratory.

  2. Quality cell therapy manufacturing by design.

    PubMed

    Lipsitz, Yonatan Y; Timmins, Nicholas E; Zandstra, Peter W

    2016-04-01

    Transplantation of live cells as therapeutic agents is poised to offer new treatment options for a wide range of acute and chronic diseases. However, the biological complexity of cells has hampered the translation of laboratory-scale experiments into industrial processes for reliable, cost-effective manufacturing of cell-based therapies. We argue here that a solution to this challenge is to design cell manufacturing processes according to quality-by-design (QbD) principles. QbD integrates scientific knowledge and risk analysis into manufacturing process development and is already being adopted by the biopharmaceutical industry. Many opportunities to incorporate QbD into cell therapy manufacturing exist, although further technology development is required for full implementation. Linking measurable molecular and cellular characteristics of a cell population to final product quality through QbD is a crucial step in realizing the potential for cell therapies to transform healthcare.

  3. Accelerating Improvements in the Energy Efficiency of Room Air Conditioners (RACs) in India: Potential, Cost-Benefit, and Policies (Interim Assessment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhyankar, Nikit; Shah, Nihar; Park, Won Young

    Falling AC prices, increasing incomes, increasing urbanization, and high cooling requirements due to hot climate are all driving increasing uptake of Room Air Conditioners (RACs) in the Indian market. Air conditioning already comprises 40-60% of summer peak load in large metropolitan Indian cities such as Delhi and is likely to contribute 150 GW to the peak demand in 2030. Standards and labeling policies have contributed to improving the efficiency of RACs in India by about 2.5% in the last 10 years (2.5% per year) while inflation adjusted RAC prices have continued to decline. In this paper, we assess the technicalmore » feasibility, cost-benefit, and required policy enhancements by further accelerating the efficiency improvement of RACs in India. We find that there are examples of significantly more accelerated improvements such as those in Japan and Korea where AC efficiency improved by more than 7% per year resulting in almost a doubling of energy efficiency in 7 to 10 years while inflation adjusted AC prices continued to decline. We find that the most efficient RAC sold on the Indian market is almost twice as efficient as the typical AC sold on the market and hence see no technology constraints in a similar acceleration of improvement of efficiency. If starting 2018, AC efficiency improves at a rate of 6% instead of 3%, 40-60 GW of peak load (equivalent to connected load of 5-6 billion LED bulbs), and over 75 TWh/yr (equivalent to 60 million consumers consuming 100 kWh/month) will be saved by 2030; total peak load reduction would be as high as 50 GW. The net present value (NPV) of the consumer benefit between 2018-2030 will range from Rs 18,000 Cr in the most conservative case (in which prices don’t continue to decline and increase based estimates of today’s cost of efficiency improvement) to 140,000 Cr in a more realistic case (in which prices are not affected by accelerated efficiency improvement as shown by historical experience). This benefit is

  4. Electron Beam Freeform Fabrication (EBF3) for Cost Effective Near-Net Shape Manufacturing

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.

    2006-01-01

    Manufacturing of structural metal parts directly from computer aided design (CAD) data has been investigated by numerous researchers over the past decade. Researchers at NASA Langley Research Center are developing a new solid freeform fabrication process, electron beam freeform fabrication (EBF3), as a rapid metal deposition process that works efficiently with a variety of weldable alloys. EBF3 deposits of 2219 aluminium and Ti-6Al-4V have exhibited a range of grain morphologies depending upon the deposition parameters. These materials have exhibited excellent tensile properties comparable to typical handbook data for wrought plate product after post-processing heat treatments. The EBF3 process is capable of bulk metal deposition at deposition rates in excess of 2500 cubic centimeters per hour (150 in3/hr) or finer detail at lower deposition rates, depending upon the desired application. This process offers the potential for rapidly adding structural details to simpler cast or forged structures rather than the conventional approach of machining large volumes of chips to produce a monolithic metallic structure. Selective addition of metal onto simpler blanks of material can have a significant effect on lead time reduction and lower material and machining costs.

  5. High Power RF Testing of A 3-Cell Superconducting Traveling Wave Accelerating Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanareykin, Alex; Kostin, Romna; Avrakhov, Pavel

    Euclid Techlabs has completed the Phase II SBIR project, entitled “High Power RF Testing of a 3-Cell Superconducting Traveling Wave Accelerating Structure” under Grant #DE-SC0006300. In this final technical report, we summarize the major achievements of Phase I of the project and review the details of Phase II of the project. The accelerating gradient in a superconducting structure is limited mainly by quenching, i.e., by the maximum surface RF magnetic field. Various techniques have been developed to increase the gradient. A traveling wave accelerating SC structure with a feedback waveguide was suggested to allow an increased transit time factor andmore » ultimately, a maximum gradient that is 22%-24% higher than in the best of the time standing wave SRF cavity solution. The proposed structure has an additional benefit in that it can be fabricated much longer than the standing wave ones that are limited by the field flatness factor. Taken together, all of these factors will result in a significant overall length and, correspondingly cost reduction of the SRF based linear collider ILC or SRF technology based FELs. In Phase I of this project, a 3-cell L-band SC traveling wave cavity was designed. Cavity shape, surface field ratios, inter-cell coupling coefficients, accelerating field flatness have been reviewed with the analysis of tuning issues. Moreover, the technological aspects of SC traveling wave accelerating structure fabrication have been studied. As the next step in the project, the Phase II experimental program included engineering design, manufacturing, surface processing and high gradient testing. Euclid Techlabs, LLC contracted AES, Inc. to manufacture two niobium cavities. Euclid Techlabs cold tested traveling wave regime in the cavity, and the results showed very good agreement with mathematical model specially developed for superconducting traveling wave cavity performance analysis. Traveling wave regime was adjusted by amplitude and phase

  6. Manufacturing Competitiveness and Supply Chain Analyses for Hydrogen Refueling Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayyas, Ahmad T; Garland, Nancy

    This slide deck was presented in the monthly FCTO webinar series (May 2017). The goal of this presentation was to share our latest results and remarks on the manufacturing competitiveness analysis of the hydrogen refueling stations (HRS). Manufacturing cost models were developed for major systems in the HRS such as compressors, storage tanks, chillers, heat exchangers, and dispensers. In addition to the cost models, we also discussed important remarks from our analysis for the international trade flows and global supply chain for the hydrogen refueling stations. The last part of the presentation also highlights effect of economies of scale andmore » high production volumes on lowering the cost of the hydrogen at the pump.« less

  7. Integration of Machining and Inspection in Aerospace Manufacturing

    NASA Astrophysics Data System (ADS)

    Simpson, Bart; Dicken, Peter J.

    2011-12-01

    The main challenge for aerospace manufacturers today is to develop the ability to produce high-quality products on a consistent basis as quickly as possible and at the lowest-possible cost. At the same time, rising material prices are making the cost of scrap higher than ever so making it more important to minimise waste. Proper inspection and quality control methods are no longer a luxury; they are an essential part of every manufacturing operation that wants to grow and be successful. However, simply bolting on some quality control procedures to the existing manufacturing processes is not enough. Inspection must be fully-integrated with manufacturing for the investment to really produce significant improvements. The traditional relationship between manufacturing and inspection is that machining is completed first on the company's machine tools and the components are then transferred to dedicated inspection equipment to be approved or rejected. However, as machining techniques become more sophisticated, and as components become larger and more complex, there are a growing number of cases where closer integration is required to give the highest productivity and the biggest reductions in wastage. Instead of a simple linear progression from CAD to CAM to machining to inspection, a more complicated series of steps is needed, with extra data needed to fill any gaps in the information available at the various stages. These new processes can be grouped under the heading of "adaptive machining". The programming of most machining operations is based around knowing three things: the position of the workpiece on the machine, the starting shape of the material to be machined, and the final shape that needs to be achieved at the end of the operation. Adaptive machining techniques allow successful machining when at least one of those elements is unknown, by using in-process measurement to close the information gaps in the process chain. It also allows any errors to be spotted

  8. Benchmarking Naval Shipbuilding With 3D Laser Scanning, Additive Manufacturing, and Collaborative Product Lifecycle Management

    DTIC Science & Technology

    2016-04-30

    manufacturing is also commonly referred to as 3D printing . AM differs radically from the currently dominant manufacturing methodologies. Most current...referred to as 3D printing . In the automotive industry, Ford Motor Co. uses 3D printing in several areas, including the tooling used to create production...four months and cost $500,000 to build, while a 3D - printed manifold prototype costs $3,000 to build over four days. Additive Manufacturing in the

  9. Development of low cost custom hybrid microcircuit technology

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1981-01-01

    Selected potentially low cost, alternate packaging and interconnection techniques were developed and implemented in the manufacture of specific NASA/MSFC hardware, and the actual cost savings achieved by their use. The hardware chosen as the test bed for this evaluation ws the hybrids and modules manufactured by Rockwell International fo the MSFC Flight Accelerometer Safety Cut-Off System (FASCOS). Three potentially low cost packaging and interconnection alternates were selected for evaluation. This study was performed in three phases: hardware fabrication and testing, cost comparison, and reliability evaluation.

  10. Development of a wireless displacement measurement system using acceleration responses.

    PubMed

    Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F

    2013-07-01

    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system.

  11. Development of a Wireless Displacement Measurement System Using Acceleration Responses

    PubMed Central

    Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F.

    2013-01-01

    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system. PMID:23881123

  12. Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.« less

  13. An Innovative Manufacturing of CCC Ion Thruster Grids by North Carolina A&T's RTM Carbon/Carbon Process

    NASA Technical Reports Server (NTRS)

    Haag, Thomas W. (Technical Monitor); Shivakumar, Kunigal N.

    2003-01-01

    Electric ion thrusters are the preferred engines for deep space missions, because of very high specific impulse. The ion engine consists of screen and accelerator grids containing thousands of concentric very small holes. The xenon gas accelerates between the two grids, thus developing the impulse force. The dominant life-limiting mechanism in the state-of-the-art molybdenum thrusters is the xenon ion sputter erosion of the accelerator grid. Carbon/carbon composites (CCC) have shown to be have less than 1/7 the erosion rates than the molybdenum, thus for interplanetary missions CCC engines are inevitable. Early effort to develop CCC composite thrusters had a limited success because of limitations of the drilling technology and the damage caused by drilling. The proposed is an in-situ manufacturing of holes while the CCC is made. Special low CTE molds will be used along with the NC A&T s patented resin transfer molding (RTM) technology to manufacture the CCC grids. First, a manufacture process for 10-cm diameter thruster grids will be developed and verified. Quality of holes, density, CTE, tension, flexure, transverse fatigue and sputter yield properties will be measured. After establishing the acceptable quality and properties, the process will be scaled to manufacture 30-cm diameter grids. The properties of the two grid sizes are compared with each other.

  14. Integrated manufacturing approach to attain benchmark team performance

    NASA Astrophysics Data System (ADS)

    Chen, Shau-Ron; Nguyen, Andrew; Naguib, Hussein

    1994-09-01

    A Self-Directed Work Team (SDWT) was developed to transfer a polyimide process module from the research laboratory to our wafer fab facility for applications in IC specialty devices. The SDWT implemented processes and tools based on the integration of five manufacturing strategies for continuous improvement. These were: Leadership Through Quality (LTQ), Total Productive Maintenance (TMP), Cycle Time Management (CTM), Activity-Based Costing (ABC), and Total Employee Involvement (TEI). Utilizing these management techniques simultaneously, the team achieved six sigma control of all critical parameters, increased Overall Equipment Effectiveness (OEE) from 20% to 90%, reduced cycle time by 95%, cut polyimide manufacturing cost by 70%, and improved its overall team member skill level by 33%.

  15. Computers in manufacturing

    NASA Astrophysics Data System (ADS)

    Hudson, C. A.

    1982-02-01

    CAD/CAM advances and applications for enhancing productivity in industry are explored. Wide-spread use of CAD/CAM devices are projected to occur by the time period 1992-1997, resulting in a higher percentage of technicians in the manufacturing process, while the cost of computers and software will continue to fall and become more widely available. Computer aided design is becoming a commercially viable system for design and geometric modeling, engineering analysis, kinematics, and drafting, and efforts to bridge the gap between CAD and CAM are indicated, with particular attention given to layering, wherein individual monitoring of different parts of the manufacturing process can be effected without crossover of unnecessary information. The potentials and barriers to the use of robotics are described, with the added optimism that displaced workers to date have moved up to jobs of higher skill and interest.

  16. Fostering Innovation in the Manufacturing Sector through R&D Consortia

    NASA Astrophysics Data System (ADS)

    McKittrick, M.

    2017-12-01

    In the U.S. Department of Energy, the Advanced Manufacturing Office (AMO) has the mission to catalyze research, development and adoption of energy-related advanced manufacturing technologies and practices to drive U.S. economic competitiveness and energy productivity. Within strategic areas of manufacturing, AMO brings together manufacturers, suppliers, institutes of higher education, national laboratories, and state and local governments in public-private R&D consortia to accelerate technology innovation. One such R&D Consortia is the Critical Materials Institute (CMI), established in 2013 and led by Ames Laboratory. CMI is a sustained, multidisciplinary effort to develop solutions across the materials lifecycle of materials essential to clean energy technologies and manufacturing, as well as reduce the impact of supply chain disruptions associated with these valuable resources. By bringing together scientists and engineers from diverse disciplines, CMI is addressing challenges in critical materials, including mineral processing, manufacture, substitution, efficient use, and end-of-life recycling; integrating scientific research, engineering innovation, manufacturing and process improvements; and developing a holistic solution to the materials challenges facing the nation. It includes expertise from four national laboratories, seven universities, and ten industry partners to minimize materials criticality as an impediment to the commercialization of clean energy technologies.

  17. SU-F-T-171: Manufacturing Cost Effective Heterogeneous Phantoms for Use in Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruett, J; Chen, Y; Ahmad, S

    Purpose: To study the feasibility of 3D printing cost effective heterogeneous phantoms for use in proton therapy treatment planning quality assurance. Methods: A desktop 3D printer was utilized to create a series of 2 cm × 2 cm × 4 cm PLA plastic blocks of varying fill materials and hexagonal fill pattern. The blocks were than tested when filled with air, polyurethane foam, paraffin, silicone, and caulk of calcium carbonate – acrylic polymer blend. The blocks were evaluated with a “GE Lightspeed” 16 slice CT scanner and average CT# of the materials’ centers evaluated. Blocks were then placed into amore » custom aperture fitted to a Mevion Proton system to determine the relative stopping power of each. Scans were performed in water tank with Marcus type parallel plate chamber under a beam with a range of 15 cm and modulation of 2 cm. Shifts in range occurring relative to the 80% distal edge of the open SOBP were evaluated. Results: The CT#s of the blocks were plotted against their measured relative stopping power. This curve was compared to that which is in clinical use. While the trend agrees generally, specific differences between the relative stopping powers were as great as 10%. Conclusion: We have demonstrated that it is possible to utilize different cost effective materials in the manufacturing of phantoms for use in proton therapy. While different materials may provide better agreement to established calibration curves, a custom curve specific to the materials used may be utilized to accurately predict proton treatment dose distributions.« less

  18. Novel Structured Metal Bipolar Plates for Low Cost Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Conghua

    Bipolar plates are an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume, and 20% of the stack cost. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is to protect metal plate from corrosion at low cost for the broad commercial applications. While most of today’s PEM fuel cell metallic bipolar plate technologies use some precious metal, the focus of this SBIR project is to develop a low cost, novel nano-structured metal bipolar plate coating technology without using anymore » precious metal. The technology must meet the performance and cost requirements for automobile applications.« less

  19. A Framework for Automating Cost Estimates in Assembly Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calton, T.L.; Peters, R.R.

    1998-12-09

    When a product concept emerges, the manufacturing engineer is asked to sketch out a production strategy and estimate its cost. The engineer is given an initial product design, along with a schedule of expected production volumes. The engineer then determines the best approach to manufacturing the product, comparing a variey of alternative production strategies. The engineer must consider capital cost, operating cost, lead-time, and other issues in an attempt to maximize pro$ts. After making these basic choices and sketching the design of overall production, the engineer produces estimates of the required capital, operating costs, and production capacity. 177is process maymore » iterate as the product design is refined in order to improve its pe~ormance or manufacturability. The focus of this paper is on the development of computer tools to aid manufacturing engineers in their decision-making processes. This computer sof~are tool provides aj?amework in which accurate cost estimates can be seamlessly derivedfiom design requirements at the start of any engineering project. Z+e result is faster cycle times through first-pass success; lower ll~e cycie cost due to requirements-driven design and accurate cost estimates derived early in the process.« less

  20. Carbon Emission Reduction with Capital Constraint under Greening Financing and Cost Sharing Contract.

    PubMed

    Qin, Juanjuan; Zhao, Yuhui; Xia, Liangjie

    2018-04-13

    Motivated by the industrial practices, this work explores the carbon emission reductions for the manufacturer, while taking into account the capital constraint and the cap-and-trade regulation. To alleviate the capital constraint, two contracts are analyzed: greening financing and cost sharing. We use the Stackelberg game to model four cases as follows: (1) in Case A1, the manufacturer has no greening financing and no cost sharing; (2) in Case A2, the manufacturer has greening financing, but no cost sharing; (3) in Case B1, the manufacturer has no greening financing but has cost sharing; and, (4) in Case B2, the manufacturer has greening financing and cost sharing. Then, using the backward induction method, we derive and compare the equilibrium decisions and profits of the participants in the four cases. We find that the interest rate of green finance does not always negatively affect the carbon emission reduction of the manufacturer. Meanwhile, the cost sharing from the retailer does not always positively affect the carbon emission reduction of the manufacturer. When the cost sharing is low, both of the participants' profits in Case B1 (under no greening finance) are not less than that in Case B2 (under greening finance). When the cost sharing is high, both of the participants' profits in Case B1 (under no greening finance) are less than that in Case B2 (under greening finance).

  1. Carbon Emission Reduction with Capital Constraint under Greening Financing and Cost Sharing Contract

    PubMed Central

    Qin, Juanjuan; Zhao, Yuhui; Xia, Liangjie

    2018-01-01

    Motivated by the industrial practices, this work explores the carbon emission reductions for the manufacturer, while taking into account the capital constraint and the cap-and-trade regulation. To alleviate the capital constraint, two contracts are analyzed: greening financing and cost sharing. We use the Stackelberg game to model four cases as follows: (1) in Case A1, the manufacturer has no greening financing and no cost sharing; (2) in Case A2, the manufacturer has greening financing, but no cost sharing; (3) in Case B1, the manufacturer has no greening financing but has cost sharing; and, (4) in Case B2, the manufacturer has greening financing and cost sharing. Then, using the backward induction method, we derive and compare the equilibrium decisions and profits of the participants in the four cases. We find that the interest rate of green finance does not always negatively affect the carbon emission reduction of the manufacturer. Meanwhile, the cost sharing from the retailer does not always positively affect the carbon emission reduction of the manufacturer. When the cost sharing is low, both of the participants’ profits in Case B1 (under no greening finance) are not less than that in Case B2 (under greening finance). When the cost sharing is high, both of the participants’ profits in Case B1 (under no greening finance) are less than that in Case B2 (under greening finance). PMID:29652859

  2. Manufacturing of Wearable Sensors for Human Health and Performance Monitoring

    NASA Astrophysics Data System (ADS)

    Alizadeh, Azar

    2015-03-01

    Continuous monitoring of physiological and biological parameters is expected to improve performance and medical outcomes by assessing overall health status and alerting for life-saving interventions. Continuous monitoring of these parameters requires wearable devices with an appropriate form factor (lightweight, comfortable, low energy consuming and even single-use) to avoid disrupting daily activities thus ensuring operation relevance and user acceptance. Many previous efforts to implement remote and wearable sensors have suffered from high cost and poor performance, as well as low clinical and end-use acceptance. New manufacturing and system level design approaches are needed to make the performance and clinical benefits of these sensors possible while satisfying challenging economic, regulatory, clinical, and user-acceptance criteria. In this talk we will review several recent design and manufacturing efforts aimed at designing and building prototype wearable sensors. We will discuss unique opportunities and challenges provided by additive manufacturing, including 3D printing, to drive innovation through new designs, faster prototyping and manufacturing, distributed networks, and new ecosystems. We will also show alternative hybrid self-assembly based integration techniques for low cost large scale manufacturing of single use wearable devices. Coauthors: Prabhjot Singh and Jeffrey Ashe.

  3. Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.

    2017-04-01

    Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.

  4. Scanning the horizon for high value-add manufacturing science: Accelerating manufacturing readiness for the next generation of disruptive, high-value curative cell therapeutics.

    PubMed

    Hourd, Paul; Williams, David J

    2018-05-01

    Since the regenerative medicine sector entered the second phase of its development (RegenMed 2.0) more than a decade ago, there is increasing recognition that current technology innovation trajectories will drive the next translational phase toward the production of disruptive, high-value curative cell and gene-based regenerative medicines. To identify the manufacturing science problems that must be addressed to permit translation of these next generation therapeutics. In this short report, a long lens look within the pluripotent stem cell therapeutic space, both embryonic and induced, is used to gain early insights on where critical technology and manufacturing challenges may emerge. This report offers a future perspective on the development and innovation that will be needed within manufacturing science to add value in the production and commercialization of the next generation of advanced cell therapies and precision medicines. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Capacity, production, and manufacturing of woodbased panels in North America

    Treesearch

    Henry Spelter

    1994-01-01

    This report is an informational report about four wood-based panel industries: particleboard, oriented strandboard, medium density fiberboard, and Southern Pine plywood. Items highlighted are trends in manufacturing and new plant costs, industry manufacturing capacity, and location. Recent data show the greatest amount of growth taking place in the oriented strandboard...

  6. Life‐cycle and cost of goods assessment of fed‐batch and perfusion‐based manufacturing processes for mAbs

    PubMed Central

    Bunnak, Phumthep; Allmendinger, Richard; Ramasamy, Sri V.; Lettieri, Paola

    2016-01-01

    Life‐cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost‐efficient, robust and environmentally‐friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale‐up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed‐batch (FB) and perfusion‐based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO2 than the FB process. Water consumption was the most important impact category, especially when scaling‐up the processes, as energy was required to produce process water and water‐for‐injection, while CO2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally‐friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324–1335, 2016 PMID:27390260

  7. The Crucial Role of Additive Manufacturing at NASA

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2016-01-01

    At NASA, the first steps of the Journey to Mars are well underway with the development of NASA's next generation launch system and investments in research and technologies that should increase the affordability, capability, and safety of exploration activities. Additive Manufacturing presents a disruptive opportunity for NASA to design and manufacture hardware with new materials at dramatically reduced cost and schedule. Opportunities to incorporate additive manufacturing align very well with NASA missions and with most NASA programs related to space, science, and aeronautics. The Agency also relies on many partnerships with other government agencies, industry and academia.

  8. 1366 Project Automate: Enabling Automation for <$0.10/W High-Efficiency Kerfless Wafers Manufactured in the US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, Adam

    For photovoltaic (PV) manufacturing to thrive in the U.S., there must be an innovative core to the technology. Project Automate builds on 1366’s proprietary Direct Wafer® kerfless wafer technology and aims to unlock the cost and efficiency advantages of thin kerfless wafers. Direct Wafer is an innovative, U.S.-friendly (efficient, low-labor content) manufacturing process that addresses the main cost barrier limiting silicon PV cost-reductions – the 35-year-old grand challenge of manufacturing quality wafers (40% of the cost of modules) without the cost and waste of sawing. This simple, scalable process will allow 1366 to manufacture “drop-in” replacement wafers for the $10more » billion silicon PV wafer market at 50% of the cost, 60% of the capital, and 30% of the electricity of conventional casting and sawing manufacturing processes. This SolarMat project developed the Direct Wafer processes’ unique capability to tailor the shape of wafers to simultaneously make thinner AND stronger wafers (with lower silicon usage) that enable high-efficiency cell architectures. By producing wafers with a unique target geometry including a thick border (which determines handling characteristics) and thin interior regions (which control light capture and electron transport and therefore determine efficiency), 1366 can simultaneously improve quality and lower cost (using less silicon).« less

  9. Cybermaterials: materials by design and accelerated insertion of materials

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Olson, Gregory B.

    2016-02-01

    Cybermaterials innovation entails an integration of Materials by Design and accelerated insertion of materials (AIM), which transfers studio ideation into industrial manufacturing. By assembling a hierarchical architecture of integrated computational materials design (ICMD) based on materials genomic fundamental databases, the ICMD mechanistic design models accelerate innovation. We here review progress in the development of linkage models of the process-structure-property-performance paradigm, as well as related design accelerating tools. Extending the materials development capability based on phase-level structural control requires more fundamental investment at the level of the Materials Genome, with focus on improving applicable parametric design models and constructing high-quality databases. Future opportunities in materials genomic research serving both Materials by Design and AIM are addressed.

  10. Modular Hydropower Engineering and Pilot Scale Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesser, Phillip C.

    Emrgy has developed, prototyped and tested a modular hydropower system for renewable energy generation. ORNL worked with Emrgy to demonstrate the use of additive manufacturing in the production of the hydrofoils and spokes for the hydrokinetic system. Specifically, during Phase 1 of this effort, ORNL printed and finished machined patterns for both the hydrofoils and spokes that were subsequently used in a sand casting manufacturing process. Emrgy utilized the sand castings for a pilot installation in Denver, CO, where the parts represented an 80% cost savings from the previous prototype build that was manufactured using subtractive manufacturing. In addition, themore » castings were completed with ORNL’s newly developed AlCeMg alloy that will be tested for performance improvements including higher corrosion resistance in a water application than the 6160 alloy used previously« less

  11. Paths to future growth in photovoltaics manufacturing

    DOE PAGES

    Basore, Paul A.

    2016-03-01

    The past decade has seen rapid growth in the photovoltaics industry, followed in the past few years by a period of much slower growth. A simple model that is consistent with this historical record can be used to predict the future evolution of the industry. Two key parameters are identified that determine the outcome. One is the annual global investment in manufacturing capacity normalized to the manufacturing capacity for the previous year (capacity-normalized capital investment rate, CapIR, units dollar/W). The other is how much capital investment is required for each watt of annual manufacturing capacity, normalized to the service lifemore » of the assets (capacity-normalized capital demand rate, CapDR, units dollar/W). If these two parameters remain unchanged from the values they have held for the past few years, global manufacturing capacity will peak in the next few years and then decline. However, it only takes a modest improvement in CapIR to ensure future growth in photovoltaics. Here, several approaches are presented that can enable the required improvement in CapIR. If, in addition, there is an accompanying improvement in CapDR, the rate of growth can be substantially accelerated.« less

  12. Accelerating vaccine development and deployment: report of a Royal Society satellite meeting

    PubMed Central

    Bregu, Migena; Draper, Simon J.; Hill, Adrian V. S.; Greenwood, Brian M.

    2011-01-01

    The Royal Society convened a meeting on the 17th and 18th November 2010 to review the current ways in which vaccines are developed and deployed, and to make recommendations as to how each of these processes might be accelerated. The meeting brought together academics, industry representatives, research sponsors, regulators, government advisors and representatives of international public health agencies from a broad geographical background. Discussions were held under Chatham House rules. High-throughput screening of new vaccine antigens and candidates was seen as a driving force for vaccine discovery. Multi-stakeholder, small-scale manufacturing facilities capable of rapid production of clinical grade vaccines are currently too few and need to be expanded. In both the human and veterinary areas, there is a need for tiered regulatory standards, differentially tailored for experimental and commercial vaccines, to allow accelerated vaccine efficacy testing. Improved cross-fertilization of knowledge between industry and academia, and between human and veterinary vaccine developers, could lead to more rapid application of promising approaches and technologies to new product development. Identification of best-practices and development of checklists for product development plans and implementation programmes were seen as low-cost opportunities to shorten the timeline for vaccine progression from the laboratory bench to the people who need it. PMID:21893549

  13. Accelerated stress testing of terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.

    1982-01-01

    The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.

  14. Accelerated Recovery Within Standardized Recovery Pathways After Esophagectomy: A Prospective Cohort Study Assessing the Effects of Early Discharge on Outcomes, Readmissions, Patient Satisfaction, and Costs.

    PubMed

    Schmidt, Henner M; El Lakis, Mustapha A; Markar, Sheraz R; Hubka, Michal; Low, Donald E

    2016-09-01

    After esophagectomy, some patients exceed targeted discharge goal within enhanced recovery after surgery programs. This study reviews the demographics, outcomes, cost, readmission rates, and patient satisfaction for the accelerated recovery (AR) group. Between 2010 and 2013, 137 consecutive esophagectomy patients were compared according to the length of hospital stay: AR 5 to 6 days, targeted recovery (TR) 7 to 8 days, and delayed recovery (DR) 9 days or more. The AR patients increased from 3% to 46% during the study period. The AR patients were younger, but all groups were comparable regarding comorbidities (Charlson, American Society of Anesthesiologists, and Eastern Cooperative Oncology Group score), cancer stage, and treatment approach. The AR patients were more likely to have neoadjuvant therapy, shorter operations, and less blood loss. The DR patients were more likely to have complications (40% AR versus 45% TR versus 90% DR, p < 0.001). Inhospital and 90-day mortality was 1.5%. All AR patients were discharged home (100% AR versus 87% TR versus 63% DR, p < 0.001), and 30-day readmission rates were comparable between groups (14% AR versus 19% TR versus 5% DR, p = 0.122). Overall mean costs ($38,385 AR versus $41,607 TR versus $61,199 DR, p < 0.001) as well as readmission costs ($7,470 AR versus $27,695 TR versus $33,398 DR, p = 0.202) were lower in the AR group. Patient satisfaction scores were comparable between groups. Accelerated recovery is achievable in a significant proportion of patients undergoing esophagectomy. Accelerated recovery is associated with decreased treatment costs but does not lead to increased readmissions or decreased patient satisfaction. Enhanced recovery after surgery programs should be designed to accommodate patients appropriate for AR. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  16. Estimating two indirect logging costs caused by accelerated erosion.

    Treesearch

    Glen O. Klock

    1976-01-01

    In forest areas where high soil erosion potential exists, a comparative yarding cost estimate, including the indirect costs determined by methods proposed here, shows that the total cost of using "advanced" logging methods may be less than that of "traditional" systems.

  17. Polymer multimode waveguide optical and electronic PCB manufacturing

    NASA Astrophysics Data System (ADS)

    Selviah, David R.

    2009-02-01

    The paper describes the research in the Â#1.3 million IeMRC Integrated Optical and Electronic Interconnect PCB Manufacturing (OPCB) Flagship Project in which 8 companies and 3 universities carry out collaborative research and which was formed and is technically led by the author. The consortium's research is aimed at investigating a range of fabrication techniques, some established and some novel, for fabricating polymer multimode waveguides from several polymers, some formulations of which are being developed within the project. The challenge is to develop low cost waveguide manufacturing techniques compatible with commercial PCB manufacturing and to reduce their alignment cost. The project aims to take the first steps in making this hybrid optical waveguide and electrical copper track printed circuit board disruptive technology widely available by establishing and incorporating waveguide design rules into commercial PCB layout software and transferring the technology for fabricating such boards to a commercial PCB manufacturer. To focus the research the project is designing an optical waveguide backplane to tight realistic constraints, using commercial layout software with the new optical design rules, for a demonstrator into which 4 daughter cards are plugged, each carrying an aggregate of 80 Gb/s data so that each waveguide carries 10 Gb/s.

  18. [Relating costs to activities in hospitals. Use of internal cost accounting].

    PubMed

    Stavem, K

    1995-01-10

    During the last few years hospital cost accounting has become widespread in many countries, in parallel with increasing cost pressure, greater competition and new financing schemes. Cost accounting has been used in the manufacturing industry for many years. Costs can be related to activities and production, e.g. by the costing of procedures, episodes of care and other internally defined cost objectives. Norwegian hospitals have lagged behind in the adoption of cost accounting. They ought to act quickly if they want to be prepared for possible changes in health care financing. The benefits can be considerable to a hospital operating in a rapidly changing health care environment.

  19. Progress toward Topology Optimization (TO) for Additive Manufacturing (AM) and Fatigue

    DTIC Science & Technology

    2017-06-15

    traditional manufacturing processes due to cost, tool-path constraints, or operator limitations. While AM significantly widens the design space for TO... manufacturing constraints and limitations remain1 and should be addressed in the design process. An objective of this work is to consider manufacturing ...account for AM limitations within the design . The limitations of interest in this work are the production of support material and enclosed pores. Both

  20. Designing a mathematical model for integrating dynamic cellular manufacturing into supply chain system

    NASA Astrophysics Data System (ADS)

    Aalaei, Amin; Davoudpour, Hamid

    2012-11-01

    This article presents designing a new mathematical model for integrating dynamic cellular manufacturing into supply chain system with an extensive coverage of important manufacturing features consideration of multiple plants location, multi-markets allocation, multi-period planning horizons with demand and part mix variation, machine capacity, and the main constraints are demand of markets satisfaction in each period, machine availability, machine time-capacity, worker assignment, available time of worker, production volume for each plant and the amounts allocated to each market. The aim of the proposed model is to minimize holding and outsourcing costs, inter-cell material handling cost, external transportation cost, procurement & maintenance and overhead cost of machines, setup cost, reconfiguration cost of machines installation and removal, hiring, firing and salary worker costs. Aimed to prove the potential benefits of such a design, presented an example is shown using a proposed model.

  1. Manufacturing process of nanofluidics using afm probe

    NASA Astrophysics Data System (ADS)

    Karingula, Varun Kumar

    A new process for fabricating a nano fluidic device that can be used in medical application is developed and demonstrated. Nano channels are fabricated using a nano tip in indentation mode on AFM (Atomic Force Microscopy). The nano channels are integrated between the micro channels and act as a filter to separate biomolecules. Nano channels of 4 to7 m in length, 80nm in width, and at varying depths from 100nm to 850 nm allow the resulting device to separate selected groups of lysosomes and other viruses. Sharply developed vertical micro channels are produced from a deep reaction ion etching followed by deposition of different materials, such as gold and polymers, on the top surface, allowing the study of alternative ways of manufacturing a nanofluidic device. PDMS (Polydimethylsiloxane) bonding is performed to close the top surface of the device. An experimental setup is used to test and validate the device by pouring fluid through the channels. A detailed cost evaluation is conducted to compare the economical merits of the proposed process. It is shown that there is a 47:7% manufacturing time savings and a 60:6% manufacturing cost savings.

  2. Identifying new technologies that save energy and reduce costs to the Federal sector: The New Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, W.D.M.; Conover, D.R.; Stockmeyer, M.K.

    1995-11-01

    In 1990 the New Technology Demonstration Program (formerly the Test Bed Demonstration Program) was initiated by the US Department of Energy`s Office (DOE`s) of Federal Energy Management Programs with the purpose of accelerating the introduction of new technologies into the Federal sector. The program has since expanded into a multi-laboratory collaborative effort that evaluates new technologies and shares the results with the Federal design and procurement communities. These evaluations are performed on a collaborative basis which typically includes technology manufacturers, Federal facilities, utilities, trade associations, research institutes, and other in partnership with DOE. The end result is a range ofmore » effective technology transfer tools that provide operations and performance data on new technologies to Federal designers, building managers, and procurement officials. These tools assist in accelerating a technology`s Federal application and realizing reductions in energy consumption and costs.« less

  3. Economics of Future Growth in Photovoltaics Manufacturing; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basore, Paul; Chung, Donald; Buonassisi, Tonio

    2015-06-14

    The past decade’s record of growth in the photovoltaic manufacturing industry indicates that global investment in manufacturing capacity for photovoltaic modules tends to increase in proportion to the size of the industry. The slope of this proportionality determines how fast the industry will grow in the future. Two key parameters determine this slope. One is the annual global investment in manufacturing capacity normalized to the manufacturing capacity for the previous year (capacity-normalized capital investment rate, CapIR, units $/W). The other is how much capital investment is required for each watt of annual manufacturing capacity, normalized to the service life ofmore » the assets (capacity-normalized capital demand rate, CapDR, units $/W). If these two parameters remain unchanged from the values they have held for the past few years, global manufacturing capacity will peak in the next few years and then decline. However, it only takes a small improvement in CapIR to ensure future growth in photovoltaics. Any accompanying improvement in CapDR will accelerate that growth.« less

  4. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  5. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  6. Learning/cost-improvement curves

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1976-01-01

    Review guide is an aid to manager or engineer who must determine production costs for components, systems, or services. Methods are described by which manufacturers may use historical data, task characteristics, and current cost data to estimate unit prices as function of number of units to be produced.

  7. Cost-efficient manufacturing process of switchable glazing based on twisted nematic LC cells

    NASA Astrophysics Data System (ADS)

    Kurz, Eberhard; Rau, Lothar; Frühauf, Norbert; Haase, Walter; Prskalo, Marijo; Sobek, Werner

    2011-10-01

    Large-area glass facades are widely spread in contemporary architecture. They meet demands for natural light illumination of rooms and satisfy esthetic requirements of modern architecture. However, larger glass facades increase transfer of energy into the building. Since this has to be compensated by the intense use of air conditioning, modulation of the energy passing through the glazing is essential. The authors have been developing a corresponding system. It consists of a modified twisted nematic (TN) liquid crystal (LC) cell which is embedded in a double glazing. Since a conventional outside film polarizer is susceptible to heat, the authors substituted this component for an inside coatable polarizer. Long term outdoor weathering tests demonstrated that the concept is viable. Part of the current research is the integration of the TN LC cell into double-glazing. A further demand for such a system is a cost-efficient manufacturing process. It has been investigated to use the coatable polarizer at the same time as an alignment layer for the liquid crystal. Aluminum zinc oxide (AZO) is to be used for the electrode material substituting conventionally used indium tin oxide (ITO) which is expensive. Currently the authors are looking into the coating process for the inside polarizer.

  8. 77 FR 26509 - Request for Information on Proposed New Program: National Network for Manufacturing Innovation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ...): Refining standards, materials, and equipment for additive manufacturing to enable low- cost, low-volume...-01] Request for Information on Proposed New Program: National Network for Manufacturing Innovation...: Request for information. SUMMARY: The NIST-hosted Advanced Manufacturing National Program Office (AMNPO...

  9. Mechanical and Chemical Properties of Harvested Hypalon Cable Jacket Subjected to Accelerated Thermal Aging

    DOE PAGES

    Duckworth, Robert C.; Kidder, Michelle K.; Aytug, Tolga; ...

    2018-02-27

    We report that for nuclear power plants (NPPs) considering second license renewal for operation beyond 60 years, knowledge of long-term operation, condition monitoring, and viability for the reactor components including reactor pressure vessel, concrete structures, and cable systems is essential. Such knowledge will provide NPP owners/operators with a basis for predicting performance and estimating the costs associated with monitoring or replacement programs for the affected systems. For cable systems that encompass a wide variety of materials, manufacturers, and in-plant locations, accelerated aging of harvested cable jacket and insulation can provide insight into a remaining useful life and methods for monitoring.more » Accelerated thermal aging in air at temperatures between 80°C and 120°C was conducted on a multiconductor control rod drive mechanism cable manufactured by Boston Insulated Wire (BIW). The cable, which had been in service for over 30 years, was jacketed with Hypalon and insulated with ethylene propylene rubber. From elongation at break (EAB) measurements and supporting Arrhenius analysis of the jacket material, an activation energy of 97.84 kJ/mol was estimated, and the time to degradation, as represented by 50% EAB at the expected maximum operating temperature of 45°C, was estimated to be 80 years. These values were slightly below previous measurements on similar BIW Hypalon cable jacket and could be attributed to either in-service degradation or variations in material properties from production variations. Lastly, results from indenter modulus measurements and Fourier transform infrared spectroscopy suggest possible markers that could be beneficial in monitoring cable conditions.« less

  10. Mechanical and Chemical Properties of Harvested Hypalon Cable Jacket Subjected to Accelerated Thermal Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C.; Kidder, Michelle K.; Aytug, Tolga

    We report that for nuclear power plants (NPPs) considering second license renewal for operation beyond 60 years, knowledge of long-term operation, condition monitoring, and viability for the reactor components including reactor pressure vessel, concrete structures, and cable systems is essential. Such knowledge will provide NPP owners/operators with a basis for predicting performance and estimating the costs associated with monitoring or replacement programs for the affected systems. For cable systems that encompass a wide variety of materials, manufacturers, and in-plant locations, accelerated aging of harvested cable jacket and insulation can provide insight into a remaining useful life and methods for monitoring.more » Accelerated thermal aging in air at temperatures between 80°C and 120°C was conducted on a multiconductor control rod drive mechanism cable manufactured by Boston Insulated Wire (BIW). The cable, which had been in service for over 30 years, was jacketed with Hypalon and insulated with ethylene propylene rubber. From elongation at break (EAB) measurements and supporting Arrhenius analysis of the jacket material, an activation energy of 97.84 kJ/mol was estimated, and the time to degradation, as represented by 50% EAB at the expected maximum operating temperature of 45°C, was estimated to be 80 years. These values were slightly below previous measurements on similar BIW Hypalon cable jacket and could be attributed to either in-service degradation or variations in material properties from production variations. Lastly, results from indenter modulus measurements and Fourier transform infrared spectroscopy suggest possible markers that could be beneficial in monitoring cable conditions.« less

  11. Unitized Stiffened Composite Textile Panels: Manufacturing, Characterization, Experiments, and Analysis

    NASA Astrophysics Data System (ADS)

    Kosztowny, Cyrus Joseph Robert

    Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and

  12. Recent developments in the economic modeling of photovoltaic module manufacturing

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    Recent developments in the solar array manufacturing industry costing standards (SAMICS) are described. Consideration is given to the added capability to handle arbitrary operating schedules and the revised procedure for calculation of one-time costs. The results of an extensive validation study are summarized.

  13. Software for integrated manufacturing systems, part 2

    NASA Technical Reports Server (NTRS)

    Volz, R. A.; Naylor, A. W.

    1987-01-01

    Part 1 presented an overview of the unified approach to manufacturing software. The specific characteristics of the approach that allow it to realize the goals of reduced cost, increased reliability and increased flexibility are considered. Why the blending of a components view, distributed languages, generics and formal models is important, why each individual part of this approach is essential, and why each component will typically have each of these parts are examined. An example of a specification for a real material handling system is presented using the approach and compared with the standard interface specification given by the manufacturer. Use of the component in a distributed manufacturing system is then compared with use of the traditional specification with a more traditional approach to designing the system. An overview is also provided of the underlying mechanisms used for implementing distributed manufacturing systems using the unified software/hardware component approach.

  14. MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control

    NASA Astrophysics Data System (ADS)

    Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming

    2017-09-01

    Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.

  15. Manufacturing issues which affect coating erosion performance in wind turbine blades

    NASA Astrophysics Data System (ADS)

    Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.

    2017-10-01

    Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).

  16. NASA Game Changing Development Program Manufacturing Innovation Project

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  17. The principles of quality-associated costing: derivation from clinical transfusion practice.

    PubMed

    Trenchard, P M; Dixon, R

    1997-01-01

    As clinical transfusion practice works towards achieving cost-effectiveness, prescribers of blood and its derivatives must be certain that the prices of such products are based on real manufacturing costs and not market forces. Using clinical cost-benefit analysis as the context for the costing and pricing of blood products, this article identifies the following two principles: (1) the product price must equal the product cost (the "price = cost" rule) and (2) the product cost must equal the real cost of product manufacture. In addition, the article describes a new method of blood product costing, quality-associated costing (QAC), that will enable valid cost-benefit analysis of blood products.

  18. Progress in manufacturing large primary aircraft structures using the stitching/RTM process

    NASA Technical Reports Server (NTRS)

    Markus, Alan; Thrash, Patrick; Rohwer, Kim

    1993-01-01

    The Douglas Aircraft/NASA Act contract has been focused over the past three years at developing a materials, manufacturing, and cost base for stitched/Resin Transfer Molded (RTM) composites. The goal of the program is to develop RTM and stitching technology to provide enabling technology for application of these materials in primary aircraft structure with a high degree of confidence. Presented in this paper will be the progress to date in the area of manufacturing and associated cost values of stitched/RTM composites.

  19. Lean Manufacturing Auto Cluster at Chennai

    NASA Astrophysics Data System (ADS)

    Bhaskaran, E.

    2012-10-01

    Due the presence of lot of automotive Industry, Chennai is known as Detroit of India, that producing over 40 % of the Indian vehicle and components. Lean manufacturing concepts have been widely recognized as an important tool in improving the competitiveness of industries. This is a continuous process involving everyone, starting from management to the shop floor. Automotive Component Industries (ACIs) in Ambattur Industrial Estate, Chennai has formed special purpose vehicle (SPV) society namely Ambattur Industrial Estate Manufacturers Association (AIEMA) Technology Centre (ATC) lean manufacturing cluster (ATC-LMC) during July 2010 under lean manufacturing competitiveness scheme, that comes under National Manufacturing Competitiveness Programme of Government of India. The Tripartite Agreement is taken place between National Productivity Council, consultants and cluster (ATC-LMC). The objective is to conduct diagnostic study, study on training and application of various lean manufacturing techniques and auditing in ten ACIs. The methodology adopted is collection of primary data/details from ten ACIs. In the first phase, diagnostic study is done and the areas for improvement in each of the cluster member companies are identified. In the second phase, training programs and implementation is done on 5S and other areas. In the third phase auditing is done and found that the lean manufacturing techniques implementation in ATC-LMC is sustainable and successful in every cluster companies, which will not only enhance competitiveness but also decrease cost, time and increase productivity. The technical efficiency of LMC companies also increases significantly.

  20. The costs and benefits of getting the ISO 9000 certification in the manufacturing sector in Saudi Arabia.

    PubMed

    Mezher, T; Ramadan, H

    1998-01-01

    Many Saudi companies, in their journey to improve quality, efficiency and competitiveness, are pursuing and obtaining the ISO 9000 certificate. Many studies have evaluated how to implement ISO 9000 in different sectors, but none have analyzed the effectiveness of ISO 9000 certification (costs and benefits) on improving the overall quality and on meeting expectations. This study addressed these issues by investigating manufacturing organizations in Saudi Arabia that have the ISO 9000 certification. A survey questionnaire was distributed to firms throughout the kingdom. Thirty-two firms participated in the study. Results indicate that increased consistency of operations, improved service, and product quality are among the top motivators for pursuing the ISO certificate. The benefits most often experienced were improved awareness of procedural problems, better management control, keeping existing customers, increased customer satisfaction, and improved customer service. Difficulties experienced during the certification process involved time and cost, but these were not considered to be major problems. A high volume of paperwork was the main problem experienced following initial certification. Respondents in general said that the ISO 9000 certification met their expectations and that their level of satisfaction regarding the impact of ISO 9000 was high. Most recommended that other organizations pursue the certificate.

  1. Comparative study of manufacturing condyle implant using rapid prototyping and CNC machining

    NASA Astrophysics Data System (ADS)

    Bojanampati, S.; Karthikeyan, R.; Islam, MD; Venugopal, S.

    2018-04-01

    Injuries to the cranio-maxillofacial area caused by road traffic accidents (RTAs), fall from heights, birth defects, metabolic disorders and tumors affect a rising number of patients in the United Arab Emirates (UAE), and require maxillofacial surgery. Mandibular reconstruction poses a specific challenge in both functionality and aesthetics, and involves replacement of the damaged bone by a custom made implant. Due to material, design cycle time and manufacturing process time, such implants are in many instances not affordable to patients. In this paper, the feasibility of designing and manufacturing low-cost, custom made condyle implant is assessed using two different approaches, consisting of rapid prototyping and three-axis computer numerically controlled (CNC) machining. Two candidate rapid prototyping techniques are considered, namely fused deposition modeling (FDM) and three-dimensional printing followed by sand casting The feasibility of the proposed manufacturing processes is evaluated based on manufacturing time, cost, quality, and reliability.

  2. Environmental Cracking and Irradiation Resistant Stainless Steels by Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebak, Raul B.; Lou, Xiaoyuan

    Metal additive manufacturing (AM), or metal 3D printing is an emergent advanced manufacturing method that can create near net shape geometries directly from computer models. This technology can provide the capability to rapidly fabricate complex parts that may be required to enhance the integrity of reactor internals components. Such opportunities may be observed during a plant refueling outage and AM parts can be rapidly custom designed, manufactured and deployed within the outage interval. Additive manufacturing of stainless steel (SS) components can add business benefits on fast delivery on repair hardware, installation tooling, new design prototypes tests, etc. For the nuclearmore » industry, the supply chain is always an issue for reactor service. AM can provide through-life supply chain (40-60 years) for high-value low-volume components. In the meantime, the capability of generating complex geometries and functional gradient materials will improve the performance, reduce the overall component cost, plant asset management cost and increase the plant reliability by the improvement in materials performance in nuclear environments. While extensive work has been conducted regarding additively manufacturing of austenitic SS parts, most efforts focused only on basic attributes such as porosity, residual stress, basic tensile properties, along with components yield and process monitoring. Little work has been done to define and evaluate the material requirements for nuclear applications. Technical gaps exist, which limit this technology adoption in the nuclear industry, which includes high manufacturing cost, unknown risks, limited nuclear related data, lack of specification and qualification methods, and no prior business experience. The main objective of this program was to generate research data to address all these technical gaps and establish a commercial practice to use AM technology in the nuclear power industry. The detailed objectives are listed as follows

  3. Innovative Manufacturing of Launch Vehicle Structures - Integrally Stiffened Cylinder Process

    NASA Technical Reports Server (NTRS)

    Wagner, John; Domack, Marcia; Tayon, Wesley; Bird, Richard K.

    2017-01-01

    Reducing launch costs is essential to ensuring the success of NASA's visions for planetary exploration and earth science, economical support of the International Space Station, and competitiveness of the U.S. commercial launch industry. Reducing launch vehicle manufacturing cost supports NASA's budget and technology development priorities.

  4. Examining the production costs of antiretroviral drugs.

    PubMed

    Pinheiro, Eloan; Vasan, Ashwin; Kim, Jim Yong; Lee, Evan; Guimier, Jean Marc; Perriens, Joseph

    2006-08-22

    To present direct manufacturing costs and price calculations of individual antiretroviral drugs, enabling those responsible for their procurement to have a better understanding of the cost structure of their production, and to indicate the prices at which these antiretroviral drugs could be offered in developing country markets. Direct manufacturing costs and factory prices for selected first and second-line antiretroviral drugs were calculated based on cost structure data from a state-owned company in Brazil. Prices for the active pharmaceutical ingredients (API) were taken from a recent survey by the World Health Organization (WHO). The calculated prices for antiretroviral drugs are compared with quoted prices offered by privately-owned, for-profit manufacturers. The API represents the largest component of direct manufacturing costs (55-99%), while other inputs, such as salaries, equipment costs, and scale of production, have a minimal impact. The calculated prices for most of the antiretroviral drugs studied fall within the lower quartile of the range of quoted prices in developing country markets. The exceptions are those drugs, primarily for second-line therapy, for which the API is either under patent, in short supply, or in limited use in developing countries (e.g. abacavir, lopinavir/ritonavir, nelfinavir, saquinavir). The availability of data on the cost of antiretroviral drug production and calculation of factory prices under a sustainable business model provide benchmarks that bulk purchasers of antiretroviral drugs could use to negotiate lower prices. While truly significant price decreases for antiretroviral drugs will depend largely on the future evolution of API prices, the present study demonstrates that for several antiretroviral drugs price reduction is currently possible. Whether or not these reductions materialize will depend on the magnitude of indirect cost and profit added by each supplier over the direct production costs. The ability to

  5. Materials Testing and Cost Modeling for Composite Parts Through Additive Manufacturing

    DTIC Science & Technology

    2016-04-30

    FDM include plastic jet printing (PJP), fused filament modeling ( FFM ), and fused filament fabrication (FFF). FFF was coined by the RepRap project to...additive manufacturing processes? • Fused deposition modeling (FDM) trademarked by Stratasys • Fused filament modeling ( FFM ) and fused filament

  6. Flat conductor cable design, manufacture, and installation

    NASA Technical Reports Server (NTRS)

    Angele, W.; Hankins, J. D.

    1973-01-01

    Pertinent information for hardware selection, design, manufacture, and quality control necessary for flat conductor cable interconnecting harness application is presented. Comparisons are made between round wire cable and flat conductor cable. The flat conductor cable interconnecting harness systems show major cost, weight, and space savings, plus increased system performance and reliability. The design application section includes electrical characteristics, harness design and development, and a full treatise on EMC considerations. Manufacturing and quality control sections pertain primarily to the developed conductor-contact connector system and special flat conductor cable to round wire cable transitions.

  7. Summary Report for the Technical Interchange Meeting on Development of Baseline Material Properties and Design Guidelines for In-Space Manufacturing Activities

    NASA Technical Reports Server (NTRS)

    Prater, T. J.; Bean, Q. A.; Werkheiser, N. J.; Johnston, M. M.; Ordonez, E. A.; Ledbetter, F. E.; Risdon, D. L.; Stockman, T. J.; Sandridge, S. K. R.; Nelson, G. M.

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) and the Agency as a whole are currently engaged in a number of in-space manufacturing (ISM) activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long-duration spaceflight. The recent 3D Printing in Zero-G experiment conducted on board the International Space Station (ISS) demonstrated that parts of acrylonitrile butadiene styrene (ABS) plastic can be manufactured in microgravity using fused deposition modeling (FDM). This project represents the beginning of the development of a capability that is critical to future NASA missions. Current and future ISM activities will require the development of baseline material properties to facilitate design, analysis, and certification of materials manufactured using in-space techniques. The purpose of this technical interchange meeting (TIM) was to bring together MSFC practitioners and experts in materials characterization and development of baseline material properties for emerging technologies to advise the ISM team as we progress toward the development of material design values, standards, and acceptance criteria for materials manufactured in space. The overall objective of the TIM was to leverage MSFC's shared experiences and collective knowledge in advanced manufacturing and materials development to construct a path forward for the establishment of baseline material properties, standards development, and certification activities related to ISM. Participants were asked to help identify research and development activities that will (1) accelerate acceptance and adoption of ISM techniques among the aerospace design community; (2) benefit future NASA programs, commercial technology developments, and national needs; and (3) provide opportunities and avenues for further collaboration.

  8. Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator

    PubMed Central

    Odero, DO; Shimm, DS

    2009-01-01

    Radiation therapy requires precision to avoid unintended irradiation of normal organs. Electronic Portal Imaging Devices (EPIDs), can help with precise patient positioning for accurate treatment. EPIDs are now bundled with new linear accelerators, or they can be purchased from the Linac manufacturer for retrofit. Retrofitting a third party EPID to a linear accelerator can pose challenges. The authors describe a relatively inexpensive third party CCD camera-based EPID manufactured by TheraView (Cablon Medical B.V.), installed onto a Siemens Primus linear accelerator, and integrated with a Lantis record and verify system, an Oldelft simulator with Digital Therapy Imaging (DTI) unit, and a Philips ADAC Pinnacle treatment planning system (TPS). This system integrates well with existing equipment and its software can process DICOM images from other sources. The system provides a complete imaging system that eliminates the need for separate software for portal image viewing, interpretation, analysis, archiving, image guided radiation therapy and other image management applications. It can also be accessed remotely via safe VPN tunnels. TheraView EPID retrofit therefore presents an example of a less expensive alternative to linear accelerator manufacturers’ proprietary EPIDs suitable for implementation in third world countries radiation therapy departments which are often faced with limited financial resources. PMID:21611056

  9. Cost-efficient manufacturing of composite structures

    NASA Technical Reports Server (NTRS)

    Freeman, W. Tom; Davis, John G.; Johnston, Norman J.

    1991-01-01

    The Advanced Composites Technology (ACT) program is seeking research breakthroughs that will allow structures made of graphite epoxy materials to replace metals in the wings and fuselages of future aircrafts. NASA's goals are to reduce acquisition cost by 20 to 25 percent, structural weight for a resized aircraft by 40 to 50 percent, and the number of parts by half compared to current production aluminum aircraft. The innovative structural concepts, materials, and fabrication techniques emerging from the ACT program are described, and the relationship between aerospace developments and industrial, commercial, and sporting goods applications are discussed.

  10. Local Structure Fixation in the Composite Manufacturing Chain

    NASA Astrophysics Data System (ADS)

    Girdauskaite, Lina; Krzywinski, Sybille; Rödel, Hartmut; Wildasin-Werner, Andrea; Böhme, Ralf; Jansen, Irene

    2010-12-01

    Compared to metal materials, textile reinforced composites show interesting features, but also higher production costs because of low automation rate in the manufacturing chain at this time. Their applicability is also limited due to quality problems, which restrict the production of complex shaped dry textile preforms. New technologies, design concepts, and cost-effective manufacturing methods are needed in order to establish further fields of application. This paper deals with possible ways to improve the textile deformation process by locally applying a fixative to the structure parallel to the cut. This hinders unwanted deformation in the textile stock during the subsequent stacking and formation steps. It is found that suitable thermoplastic binders, applied in the appropriate manner do not restrict formation of the textile and have no negative influence on the mechanical properties of the composite.

  11. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  12. An automation of design and modelling tasks in NX Siemens environment with original software - cost module

    NASA Astrophysics Data System (ADS)

    Zbiciak, R.; Grabowik, C.; Janik, W.

    2015-11-01

    The design-constructional process is a creation activity which strives to fulfil, as well as it possible at the certain moment of time, all demands and needs formulated by a user taking into account social, technical and technological advances. Engineer knowledge and skills and their inborn abilities have the greatest influence on the final product quality and cost. They have also deciding influence on product technical and economic value. Taking into account above it seems to be advisable to make software tools that support an engineer in the process of manufacturing cost estimation. The Cost module is built with analytical procedures which are used for relative manufacturing cost estimation. As in the case of the Generator module the Cost module was written in object programming language C# in Visual Studio environment. During the research the following eight factors, that have the greatest influence on overall manufacturing cost, were distinguished and defined: (i) a gear wheel teeth type it is straight or helicoidal, (ii) a gear wheel design shape A, B with or without wheel hub, (iii) a gear tooth module, (iv) teeth number, (v) gear rim width, (vi) gear wheel material, (vii) heat treatment or thermochemical treatment, (viii) accuracy class. Knowledge of parameters (i) to (v) is indispensable for proper modelling of 3D gear wheels models in CAD system environment. These parameters are also processed in the Cost module. The last three parameters it is (vi) to (viii) are exclusively used in the Cost module. The estimation of manufacturing relative cost is based on indexes calculated for each particular parameter. Estimated in this way the manufacturing relative cost gives an overview of design parameters influence on the final gear wheel manufacturing cost. This relative manufacturing cost takes values from 0.00 to 1,00 range. The bigger index value the higher relative manufacturing cost is. Verification whether the proposed algorithm of relative manufacturing

  13. Measurement of Coriolis Acceleration with a Smartphone

    NASA Astrophysics Data System (ADS)

    Shakur, Asif; Kraft, Jakob

    2016-05-01

    Undergraduate physics laboratories seldom have experiments that measure the Coriolis acceleration. This has traditionally been the case owing to the inherent complexities of making such measurements. Articles on the experimental determination of the Coriolis acceleration are few and far between in the physics literature. However, because modern smartphones come with a raft of built-in sensors, we have a unique opportunity to experimentally determine the Coriolis acceleration conveniently in a pedagogically enlightening environment at modest cost by using student-owned smartphones. Here we employ the gyroscope and accelerometer in a smartphone to verify the dependence of Coriolis acceleration on the angular velocity of a rotatingtrack and the speed of the sliding smartphone.

  14. Innovative care models for high-cost Medicare beneficiaries: delivery system and payment reform to accelerate adoption.

    PubMed

    Davis, Karen; Buttorff, Christine; Leff, Bruce; Samus, Quincy M; Szanton, Sarah; Wolff, Jennifer L; Bandeali, Farhan

    2015-05-01

    About a third of Medicare beneficiaries are covered by Medicare Advantage (MA) plans or accountable care organizations (ACOs). As a result of assuming financial risk for Medicare services and/or being eligible for shared savings, these organizations have an incentive to adopt models of delivering care that contribute to better care, improved health outcomes, and lower cost. This paper identifies innovative care models across the care continuum for high-cost Medicare beneficiaries that MA plans and ACOs could adopt to improve care while potentially achieving savings. It suggests policy changes that would accelerate testing and spread of promising care delivery model innovations. Targeted review of the literature to identify care delivery models focused on high-cost or high-risk Medicare beneficiaries. This paper presents select delivery models for high-risk Medicare beneficiaries across the care continuum that show promise of yielding better care at lower cost that could be considered for adoption by MA plans and ACOs. Common to these models are elements of the Wagner Chronic Care Model, including practice redesign to incorporate a team approach to care, the inclusion of nonmedical personnel, efforts to promote patient engagement, supporting provider education on innovations,and information systems allowing feedback of information to providers. The goal of these models is to slow the progression to long-term care, reduce health risks, and minimize adverse health impacts, all while achieving savings.These models attempt to maintain the ability of high-risk individuals to live in the home or a community-based setting, thereby avoiding costly institutional care. Identifying and implementing promising care delivery models will become increasingly important in launching successful population health initiatives. MA plans and ACOs stand to benefit financially from adopting care delivery models for high-risk Medicare beneficiaries that reduce hospitalization. Spreading

  15. Low Cost Upper Stage-Class Propulsion (LCUSP)

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    NASA is making space exploration more affordable and viable by developing and utilizing innovative manufacturing technologies. Technology development efforts at NASA in propulsion are committed to continuous innovation of design and manufacturing technologies for rocket engines in order to reduce the cost of NASA's journey to Mars. The Low Cost Upper Stage-Class Propulsion (LCUSP) effort will develop and utilize emerging Additive Manufacturing (AM) to significantly reduce the development time and cost for complex rocket propulsion hardware. Benefit of Additive Manufacturing (3-D Printing) Current rocket propulsion manufacturing techniques are costly and have lengthy development times. In order to fabricate rocket engines, numerous complex parts made of different materials are assembled in a way that allow the propellant to collect heat at the right places to drive the turbopump and simultaneously keep the thrust chamber from melting. The heat conditioned fuel and oxidizer come together and burn inside the combustion chamber to provide thrust. The efforts to make multiple parts precisely fit together and not leak after experiencing cryogenic temperatures on one-side and combustion temperatures on the other is quite challenging. Additive manufacturing has the potential to significantly reduce the time and cost of making rocket parts like the copper liner and Nickel-alloy jackets found in rocket combustion chambers where super-cold cryogenic propellants are heated and mixed to the extreme temperatures needed to propel rockets in space. The Selective Laser Melting (SLM) machine fuses 8,255 layers of copper powder to make a section of the chamber in 10 days. Machining an equivalent part and assembling it with welding and brazing techniques could take months to accomplish with potential failures or leaks that could require fixes. The design process is also enhanced since it does not require the 3D model to be converted to 2-D drawings. The design and fabrication process

  16. Cost of ownership for inspection equipment

    NASA Astrophysics Data System (ADS)

    Dance, Daren L.; Bryson, Phil

    1993-08-01

    Cost of Ownership (CoO) models are increasingly a part of the semiconductor equipment evaluation and selection process. These models enable semiconductor manufacturers and equipment suppliers to quantify a system in terms of dollars per wafer. Because of the complex nature of the semiconductor manufacturing process, there are several key attributes that must be considered in order to accurately reflect the true 'cost of ownership'. While most CoO work to date has been applied to production equipment, the need to understand cost of ownership for inspection and metrology equipment presents unique challenges. Critical parameters such as detection sensitivity as a function of size and type of defect are not included in current CoO models yet are, without question, major factors in the technical evaluation process and life-cycle cost. This paper illustrates the relationship between these parameters, as components of the alpha and beta risk, and cost of ownership.

  17. Additive and Photochemical Manufacturing of Copper

    PubMed Central

    Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-01-01

    In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics. PMID:28000733

  18. Additive and Photochemical Manufacturing of Copper

    NASA Astrophysics Data System (ADS)

    Yung, Winco K. C.; Sun, Bo; Meng, Zhengong; Huang, Junfeng; Jin, Yingdi; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-12-01

    In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.

  19. EIDOSCOPE: particle acceleration at plasma boundaries

    NASA Astrophysics Data System (ADS)

    Vaivads, A.; Andersson, G.; Bale, S. D.; Cully, C. M.; De Keyser, J.; Fujimoto, M.; Grahn, S.; Haaland, S.; Ji, H.; Khotyaintsev, Yu. V.; Lazarian, A.; Lavraud, B.; Mann, I. R.; Nakamura, R.; Nakamura, T. K. M.; Narita, Y.; Retinò, A.; Sahraoui, F.; Schekochihin, A.; Schwartz, S. J.; Shinohara, I.; Sorriso-Valvo, L.

    2012-04-01

    We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely

  20. Advances in solid dosage form manufacturing technology.

    PubMed

    Andrews, Gavin P

    2007-12-15

    Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation.

  1. LCX: Proposal for a low-cost commercial transport

    NASA Technical Reports Server (NTRS)

    Hartman, Troy; Hayatdavoudi, Maziar; Hettinga, Joel; Hooper, Matt; Nguyen, Phong

    1994-01-01

    The LCX has been developed in response to a request for proposal for an aircraft with 153 passenger capacity and a range of 3000 nautical miles. The goals of the LCX are to provide an aircraft which will achieve the stated mission requirements at the lowest cost possible, both for the manufacturer and the operator. Low cost in this request is defined as short and long term profitability. To achieve this objective, modern technologies attributing to low-cost operation without greatly increasing the cost of manufacturing were employed. These technologies include hybrid laminar flow control and the use of developing new manufacturing processes and philosophies. The LCX will provide a competitive alternative to the use of the Airbus A319/320/321 and the Boeing 737 series of aircraft. The LCX has a maximum weight of 150,000 lb. carried by a wing of 1140 ft(exp 2) and an aspect ratio of 10. The selling price of the LCX is 31 million in 1994 US dollars.

  2. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.

    PubMed

    Sidambe, Alfred T

    2014-12-19

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  3. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    PubMed Central

    Sidambe, Alfred T.

    2014-01-01

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy. PMID:28788296

  4. The prevalence and workplace costs of adult attention deficit hyperactivity disorder in a large manufacturing firm.

    PubMed

    Kessler, R C; Lane, M; Stang, P E; Van Brunt, D L

    2009-01-01

    Little is known about the effects of adult attention deficit hyperactivity disorder (ADHD) on work performance or accidents-injuries.MethodA survey was administered in 2005 and 2006 to employees of a large manufacturing firm to assess the prevalence and correlates of adult ADHD. Respondents (4,140 in 2005, 4,423 in 2006, including 2,656 in both surveys) represented 35-38% of the workforce. ADHD was assessed with the World Health Organization (WHO) Adult ADHD Self-Report Scale (ASRS), a validated screening scale for DSM-IV adult ADHD. Sickness absence, work performance and workplace accidents-injuries were assessed with the WHO Health and Work Performance Questionnaire (HPQ). The estimated current prevalence (standard error) of DSM-IV ADHD was 1.9% (0.4). ADHD was associated with a 4-5% reduction in work performance (chi12=9.1, p=0.001), a 2.1 relative-odds of sickness absence (chi12=6.2, p=0.013), and a 2.0 relative-odds of workplace accidents-injuries (chi12=5.1, p=0.024). The human capital value (standard error) of the lost work performance associated with ADHD totaled USD 4,336 (676) per worker with ADHD in the year before interview. No data were available to monetize other workplace costs of accidents-injuries (e.g. destruction of equipment). Only a small minority of workers with ADHD were in treatment. Adult ADHD is a significantly impairing condition among workers. Given the low rate of treatment and high human capital costs, in conjunction with evidence from controlled trials that treatment can reduce ADHD-related impairments, ADHD would seem to be a good candidate for workplace trials that evaluate treatment cost-effectiveness from the employer's perspective.

  5. Current and future industrial energy service characterizations. Volume III. Energy data on 15 selected states' manufacturing subsector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawiec, F.; Thomas, T.; Jackson, F.

    1980-11-01

    An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchasedmore » by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)« less

  6. The practice of quality-associated costing: application to transfusion manufacturing processes.

    PubMed

    Trenchard, P M; Dixon, R

    1997-01-01

    This article applies the new method of quality-associated costing (QAC) to the mixture of processes that create red cell and plasma products from whole blood donations. The article compares QAC with two commonly encountered but arbitrary models and illustrates the invalidity of clinical cost-benefit analysis based on these models. The first, an "isolated" cost model, seeks to allocate each whole process cost to only one product class. The other is a "shared" cost model, and it seeks to allocate an approximately equal share of all process costs to all associated products.

  7. Fuel cycle cost, reactor physics and fuel manufacturing considerations for Erbia-bearing PWR fuel with > 5 wt% U-235 content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franceschini, F.; Lahoda, E. J.; Kucukboyaci, V. N.

    2012-07-01

    The efforts to reduce fuel cycle cost have driven LWR fuel close to the licensed limit in fuel fissile content, 5.0 wt% U-235 enrichment, and the acceptable duty on current Zr-based cladding. An increase in the fuel enrichment beyond the 5 wt% limit, while certainly possible, entails costly investment in infrastructure and licensing. As a possible way to offset some of these costs, the addition of small amounts of Erbia to the UO{sub 2} powder with >5 wt% U-235 has been proposed, so that its initial reactivity is reduced to that of licensed fuel and most modifications to the existingmore » facilities and equipment could be avoided. This paper discusses the potentialities of such a fuel on the US market from a vendor's perspective. An analysis of the in-core behavior and fuel cycle performance of a typical 4-loop PWR with 18 and 24-month operating cycles has been conducted, with the aim of quantifying the potential economic advantage and other operational benefits of this concept. Subsequently, the implications on fuel manufacturing and storage are discussed. While this concept has certainly good potential, a compelling case for its short-term introduction as PWR fuel for the US market could not be determined. (authors)« less

  8. Manufacturing Process Selection of Composite Bicycle’s Crank Arm using Analytical Hierarchy Process (AHP)

    NASA Astrophysics Data System (ADS)

    Luqman, M.; Rosli, M. U.; Khor, C. Y.; Zambree, Shayfull; Jahidi, H.

    2018-03-01

    Crank arm is one of the important parts in a bicycle that is an expensive product due to the high cost of material and production process. This research is aimed to investigate the potential type of manufacturing process to fabricate composite bicycle crank arm and to describe an approach based on analytical hierarchy process (AHP) that assists decision makers or manufacturing engineers in determining the most suitable process to be employed in manufacturing of composite bicycle crank arm at the early stage of the product development process to reduce the production cost. There are four types of processes were considered, namely resin transfer molding (RTM), compression molding (CM), vacuum bag molding and filament winding (FW). The analysis ranks these four types of process for its suitability in the manufacturing of bicycle crank arm based on five main selection factors and 10 sub factors. Determining the right manufacturing process was performed based on AHP process steps. Consistency test was performed to make sure the judgements are consistent during the comparison. The results indicated that the compression molding was the most appropriate manufacturing process because it has the highest value (33.6%) among the other manufacturing processes.

  9. Utilization of curve offsets in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Haseltalab, Vahid; Yaman, Ulas; Dolen, Melik

    2018-05-01

    Curve offsets are utilized in different fields of engineering and science. Additive manufacturing, which lately becomes an explicit requirement in manufacturing industry, utilizes curve offsets widely. One of the necessities of offsetting is for scaling which is required if there is shrinkage after the fabrication or if the surface quality of the resulting part is unacceptable. Therefore, some post-processing is indispensable. But the major application of curve offsets in additive manufacturing processes is for generating head trajectories. In a point-wise AM process, a correct tool-path in each layer can reduce lots of costs and increase the surface quality of the fabricated parts. In this study, different curve offset generation algorithms are analyzed to show their capabilities and disadvantages through some test cases and improvements on their drawbacks are suggested.

  10. Market power and state costs of HIV/AIDS drugs.

    PubMed

    Leibowitz, Arleen A; Sood, Neeraj

    2007-03-01

    We examine whether U.S. states can use their market power to reduce the costs of supplying prescription drugs to uninsured and underinsured persons with HIV through a public program, the AIDS Drug Assistance Program (ADAP). Among states that purchase drugs from manufacturers and distribute them directly to clients, those that purchase a greater volume pay lower average costs per prescription. Among states depending on retail pharmacies to distribute drugs and then claiming rebates from manufacturers, those that contract with smaller numbers of pharmacy networks have lower average costs. Average costs per prescription do not differ between the two purchase methods.

  11. Process-based Cost Estimation for Ramjet/Scramjet Engines

    NASA Technical Reports Server (NTRS)

    Singh, Brijendra; Torres, Felix; Nesman, Miles; Reynolds, John

    2003-01-01

    Process-based cost estimation plays a key role in effecting cultural change that integrates distributed science, technology and engineering teams to rapidly create innovative and affordable products. Working together, NASA Glenn Research Center and Boeing Canoga Park have developed a methodology of process-based cost estimation bridging the methodologies of high-level parametric models and detailed bottoms-up estimation. The NASA GRC/Boeing CP process-based cost model provides a probabilistic structure of layered cost drivers. High-level inputs characterize mission requirements, system performance, and relevant economic factors. Design alternatives are extracted from a standard, product-specific work breakdown structure to pre-load lower-level cost driver inputs and generate the cost-risk analysis. As product design progresses and matures the lower level more detailed cost drivers can be re-accessed and the projected variation of input values narrowed, thereby generating a progressively more accurate estimate of cost-risk. Incorporated into the process-based cost model are techniques for decision analysis, specifically, the analytic hierarchy process (AHP) and functional utility analysis. Design alternatives may then be evaluated not just on cost-risk, but also user defined performance and schedule criteria. This implementation of full-trade study support contributes significantly to the realization of the integrated development environment. The process-based cost estimation model generates development and manufacturing cost estimates. The development team plans to expand the manufacturing process base from approximately 80 manufacturing processes to over 250 processes. Operation and support cost modeling is also envisioned. Process-based estimation considers the materials, resources, and processes in establishing cost-risk and rather depending on weight as an input, actually estimates weight along with cost and schedule.

  12. The relationship between National Heart, Lung, and Blood Institute Weight Guidelines and concurrent medical costs in a manufacturing population.

    PubMed

    Wang, Feifei; Schultz, Alyssa B; Musich, Shirley; McDonald, Tim; Hirschland, David; Edington, Dee W

    2003-01-01

    To explore the relationship between the 1998 National Heart, Lung, and Blood Institute (NHLBI) weight guidelines and concurrent medical costs. Cross-sectional study. In a nationwide manufacturing corporation (General Motors Corporation). A total of 177,971 employees, retirees, and their adult dependents who were enrolled in Indemnity/PPO health insurance plan during the years 1996 and 1997 and completed one health risk appraisal (HRA) in the same period. The participants were categorized into six weight groups according to the NHLBI 1998 guidelines (body mass index [BMI] < 18.5, 18.5-24.9, 25-29.9, 30-34.9, 35-39.9, > or = 40 kg/m2). The height and weight data were collected by self-reported values on an HRA or biometric screening completed during 1996 to 1997. To represent the typical medical costs in a given group, the median, instead of mean, medical charges were used in this article. The annual median medical charges (including drug charges) for years 1996 and 1997 were compared among the six weight groups by using Wilcoxon rank sum tests. The differences in median charges were also tested between the normal weight group and the other five groups for each of the 10 gender-age subgroups (five age groups: 19-44, 45-54, 55-64, 65-74, 75+). Overall median medical costs were consistent with the NHLBI weight guidelines. The normal-weight group costs the least and both underweight and overweight-obesity groups cost more. The median medical costs of the six weight groups were $3184, $2225, $2388, $2801, $3182, and $3753, respectively, with statistical differences existing between any two groups of the last five categories. The underweight groups, especially in females, were not consistent with the guidelines in the two young groups (ages 19-44 and 45-54). An inconsistent relationship between medical costs and BMI groups was seen in the oldest males (age 75+). The six weight groups defined by the 1998 NHLBI guidelines are consistent with concurrent medical costs. Except

  13. Need low-cost networking? Consider DeviceNet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, W.H.

    1996-11-01

    The drive to reduce production costs and optimize system performance in manufacturing facilities causes many end users to invest in network solutions. Because of distinct differences between the way tasks are performed and the way data are handled for various applications, it is clear than more than one network will be needed in most facilities. What is not clear is which network is most appropriate for a given application. The information layer is the link between automation and information environments via management information systems (MISs) and manufacturing execution systems (MESs) and manufacturing execution systems (MESs). Here the market has chosenmore » a de facto standard in Ethernet, primarily transmission control protocol/internet protocol (TCP/IP) and secondarily manufacturing messaging system (MMS). There is no single standard at the device layer. However, the DeviceNet communication standard has made strides to reach this goal. This protocol eliminates expensive hardwiring and provides improved communication between devices and important device-level diagnostics not easily accessible or available through hardwired I/O interfaces. DeviceNet is a low-cost communications link connecting industrial devices to a network. Many original equipment manufacturers and end users have chosen the DeviceNet platform for several reasons, but most frequently because of four key features: interchangeability; low cost; advanced diagnostics; insert devices under power.« less

  14. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.

    PubMed

    Yu, Xiaowei; Shou, Wan; Mahajan, Bikram K; Huang, Xian; Pan, Heng

    2018-05-07

    Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Spacesuit glove manufacturing enhancements through the use of advanced technologies

    NASA Astrophysics Data System (ADS)

    Cadogan, David; Bradley, David; Kosmo, Joseph

    The sucess of astronauts performing extravehicular activity (EVA) on orbit is highly dependent upon the performance of their spacesuit gloves.A study has recently been conducted to advance the development and manufacture of spacesuit gloves. The process replaces the manual techniques of spacesuit glove manufacture by utilizing emerging technologies such as laser scanning, Computer Aided Design (CAD), computer generated two-dimensional patterns from three-dimensionl surfaces, rapid prototyping technology, and laser cutting of materials, to manufacture the new gloves. Results of the program indicate that the baseline process will not increase the cost of the gloves as compared to the existing styles, and in production, may reduce the cost of the gloves. perhaps the most important outcome of the Laserscan process is that greater accuracy and design control can be realized. Greater accuracy was achieved in the baseline anthropometric measurement and CAD data measurement which subsequently improved the design feature. This effectively enhances glove performance through better fit and comfort.

  16. Economic feasibility of manufacturing COM-PLY floor joists

    Treesearch

    Gerald A. Koenigshof

    1983-01-01

    Investments, production costs, and probable returns for manufacture of COM-PLY floor joists are presented. The report shows that it is possible to obtain a 25 percent or greater after-tax internal rate of return on the investment

  17. The impact of manufacturing complexity drivers on performance-a preliminary study

    NASA Astrophysics Data System (ADS)

    Huah Leang, Suh; Mahmood, Wan Hasrulnizzam Wan; Rahman, Muhamad Arfauz A.

    2018-03-01

    Manufacturing systems, in pursuit of cost, time and flexibility optimisation are becoming more and more complex, exhibiting a dynamic and nonlinear behaviour. Unpredictability is a distinct characteristic of such behaviour and effects production planning significantly. Therefore, this study was undertaken to investigate the priority level and current achievement of manufacturing performance in Malaysia’s manufacturing industry and the complexity drivers on manufacturing productivity performance. The results showed that Malaysia’s manufacturing industry prioritised product quality and they managed to achieve a good on time delivery performance. However, for other manufacturing performance, there was a difference where the current achievement of manufacturing performances in Malaysia’s manufacturing industry is slightly lower than the priority given to them. The strong correlation of significant value for priority status was observed between efficient production levelling (finished goods) and finish product management while the strong correlation of significant value for current achievement was minimised the number of workstation and factory transportation system. This indicates that complexity drivers have an impact towards manufacturing performance. Consequently, it is necessary to identify complexity drivers to achieve well manufacturing performance.

  18. Near Net Shape Rapid Manufacture & Repair by LENS(registered trademark)

    DTIC Science & Technology

    2006-05-01

    J. Vlcek, “Property Investigation of Laser Cladded , Laser Sintered and Electron Beam Sintered Ti 6Al 4V”, AVT-139 Specialists Meeting on Cost...manufactured from advanced materials such as titanium alloys, superalloys or special steels are critical to the performance of the armed forces...10 years, CAD driven, additive manufacturing technologies have been developed. The leading technology for defence applications is Laser Engineered

  19. 19 CFR 10.178 - Direct costs of processing operations performed in the beneficiary developing country.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., production, manufacture, or assembly of the specific merchandise under consideration. Such costs include, but are not limited to: (1) All actual labor costs involved in the growth, production, manufacture, or... specific merchandise or are not related to the growth, production, manufacture, or assembly of the...

  20. Cost analysis in support of minimum energy standards for clothes washers and dryers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-02-02

    The results of the cost analysis of energy conservation design options for laundry products are presented. The analysis was conducted using two approaches. The first, is directed toward the development of industrial engineering cost estimates of each energy conservation option. This approach results in the estimation of manufacturers costs. The second approach is directed toward determining the market price differential of energy conservation features. The results of this approach are shown. The market cost represents the cost to the consumer. It is the final cost, and therefore includes distribution costs as well as manufacturing costs.

  1. Manufacturing and Security Challenges in 3D Printing

    NASA Astrophysics Data System (ADS)

    Zeltmann, Steven Eric; Gupta, Nikhil; Tsoutsos, Nektarios Georgios; Maniatakos, Michail; Rajendran, Jeyavijayan; Karri, Ramesh

    2016-07-01

    As the manufacturing time, quality, and cost associated with additive manufacturing (AM) continue to improve, more and more businesses and consumers are adopting this technology. Some of the key benefits of AM include customizing products, localizing production and reducing logistics. Due to these and numerous other benefits, AM is enabling a globally distributed manufacturing process and supply chain spanning multiple parties, and hence raises concerns about the reliability of the manufactured product. In this work, we first present a brief overview of the potential risks that exist in the cyber-physical environment of additive manufacturing. We then evaluate the risks posed by two different classes of modifications to the AM process which are representative of the challenges that are unique to AM. The risks posed are examined through mechanical testing of objects with altered printing orientation and fine internal defects. Finite element analysis and ultrasonic inspection are also used to demonstrate the potential for decreased performance and for evading detection. The results highlight several scenarios, intentional or unintentional, that can affect the product quality and pose security challenges for the additive manufacturing supply chain.

  2. Method for Monitoring of Neutron Fields near High-Energy Accelerators

    NASA Astrophysics Data System (ADS)

    Beskrovnaia, L. G.; Guseva, S. V.; Timoshenko, G. N.

    2018-05-01

    The monitoring of neutron radiation from high-energy accelerators cannot fully rely on the standard dosimeters and radiometers manufactured in Russia, since these are sensitive only to neutrons with energies below some 10 MeV. This is because neutrons of higher energies can significantly contribute to the personnel doses both close to the accelerator shield and in the neutron multiscattered field around the shield. In this paper, we propose to measure the ambient neutron dose in energy range 10-2 MeV to 1 GeV with a device consisting of two polyethylene balls with diameters of 3 and 10 in. housing slow-neutron detectors. The larger ball also comprises a lead converter (10'' + Pb). This device can be implemented in zonal radiation monitoring in the near-accelerator area.

  3. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    NASA Astrophysics Data System (ADS)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  4. Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Robynne; Snowberg, David R; Berry, Derek S

    Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-lifemore » blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.« less

  5. Artificial Immune Algorithm for Subtask Industrial Robot Scheduling in Cloud Manufacturing

    NASA Astrophysics Data System (ADS)

    Suma, T.; Murugesan, R.

    2018-04-01

    The current generation of manufacturing industry requires an intelligent scheduling model to achieve an effective utilization of distributed manufacturing resources, which motivated us to work on an Artificial Immune Algorithm for subtask robot scheduling in cloud manufacturing. This scheduling model enables a collaborative work between the industrial robots in different manufacturing centers. This paper discussed two optimizing objectives which includes minimizing the cost and load balance of industrial robots through scheduling. To solve these scheduling problems, we used the algorithm based on Artificial Immune system. The parameters are simulated with MATLAB and the results compared with the existing algorithms. The result shows better performance than existing.

  6. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, Michael

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S.more » Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.« less

  7. Maintaining Moore's law: enabling cost-friendly dimensional scaling

    NASA Astrophysics Data System (ADS)

    Mallik, Arindam; Ryckaert, Julien; Mercha, Abdelkarim; Verkest, Diederik; Ronse, Kurt; Thean, Aaron

    2015-03-01

    Moore's Law (Moore's Observation) has been driving the progress in semiconductor technology for the past 50 years. The semiconductor industry is at a juncture where significant increase in manufacturing cost is foreseen to sustain the past trend of dimensional scaling. At N10 and N7 technology nodes, the industry is struggling to find a cost-friendly solution. At a device level, technologists have come up with novel devices (finFET, Gate-All-Around), material innovations (SiGe, Ge) to boost performance and reduce power consumption. On the other hand, from the patterning side, the relative slow ramp-up of alternative lithography technologies like EUVL and DSA pushes the industry to adopt a severely multi-patterning-based solution. Both of these technological transformations have a big impact on die yield and eventually die cost. This paper is aimed to analyze the impact on manufacturing cost to keep the Moore's law alive. We have proposed and analyzed various patterning schemes that can enable cost-friendly scaling. We evaluated the impact of EUVL introduction on tackling the high cost of manufacturing. The primary objective of this paper is to maintain Moore's scaling from a patterning perspective and analyzing EUV lithography introduction at a die level.

  8. Modeling of Powder Bed Manufacturing Defects

    NASA Astrophysics Data System (ADS)

    Mindt, H.-W.; Desmaison, O.; Megahed, M.; Peralta, A.; Neumann, J.

    2018-01-01

    Powder bed additive manufacturing offers unmatched capabilities. The deposition resolution achieved is extremely high enabling the production of innovative functional products and materials. Achieving the desired final quality is, however, hampered by many potential defects that have to be managed in due course of the manufacturing process. Defects observed in products manufactured via powder bed fusion have been studied experimentally. In this effort we have relied on experiments reported in the literature and—when experimental data were not sufficient—we have performed additional experiments providing an extended foundation for defect analysis. There is large interest in reducing the effort and cost of additive manufacturing process qualification and certification using integrated computational material engineering. A prerequisite is, however, that numerical methods can indeed capture defects. A multiscale multiphysics platform is developed and applied to predict and explain the origin of several defects that have been observed experimentally during laser-based powder bed fusion processes. The models utilized are briefly introduced. The ability of the models to capture the observed defects is verified. The root cause of the defects is explained by analyzing the numerical results thus confirming the ability of numerical methods to provide a foundation for rapid process qualification.

  9. RAPID MANUFACTURING SYSTEM OF ORTHOPEDIC IMPLANTS

    PubMed Central

    Relvas, Carlos; Reis, Joana; Potes, José Alberto Caeiro; Fonseca, Fernando Manuel Ferreira; Simões, José Antonio Oliveira

    2015-01-01

    This study, aimed the development of a methodology for rapid manufacture of orthopedic implants simultaneously with the surgical intervention, considering two potential applications in the fields of orthopedics: the manufacture of anatomically adapted implants and implants for bone loss replacement. This work innovation consists on the capitation of the in situ geometry of the implant by direct capture of the shape using an elastomeric material (polyvinylsiloxane) which allows fine detail and great accuracy of the geometry. After scanning the elastomeric specimen, the implant is obtained by machining using a CNC milling machine programmed with a dedicated CAD/CAM system. After sterilization, the implant is able to be placed on the patient. The concept was developed using low cost technology and commercially available. The system has been tested in an in vivo hip arthroplasty performed on a sheep. The time increase of surgery was 80 minutes being 40 minutes the time of implant manufacturing. The system developed has been tested and the goals defined of the study achieved enabling the rapid manufacture of an implant in a time period compatible with the surgery time. PMID:27004181

  10. A normative price for a manufactured product: The SAMICS methodology. Volume 2: Analysis

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.

    1979-01-01

    The Solar Array Manufacturing Industry Costing Standards provide standard formats, data, assumptions, and procedures for determining the price a hypothetical solar array manufacturer would have to be able to obtain in the market to realize a specified after-tax rate of return on equity for a specified level of production. The methodology and its theoretical background are presented. The model is sufficiently general to be used in any production-line manufacturing environment. Implementation of this methodology by the Solar Array Manufacturing Industry Simultation computer program is discussed.

  11. Desperately seeking cancer drugs: explaining the emergence and outcomes of accelerated pharmaceutical regulation.

    PubMed

    Davis, Courtney; Abraham, John

    2011-07-01

    Government regulators have increasingly accelerated new cancer drugs on to the market by granting them approval based on less clinical data supporting drug efficacy than permitted under standard regulations. With more lenient regulatory standards, pharmaceutical companies have keenly sought to develop cancer drugs. Focusing on the US, this article examines how the emergence and implementation of such accelerated approvals should be understood, particularly in relation to corporate bias and disease-politics theories. Drawing on longitudinal and case study data analysis, it is argued that the emergence of accelerated approval regulations for cancer drugs should be regarded primarily as part of a deregulatory regime driven by the interests of the pharmaceutical industry in partnership with all major aspects of the state, rather than as a response to patient activism in the aftermath of AIDS. Furthermore, even in cases when some patients successfully demand accelerated marketing approval of cancer drugs, such approval by regulators, while in manufacturers' interests, may not be in the interests of patients' health because the political culture of the regulatory agency is reluctant to uphold its own techno-regulatory standards of public-health protection when that would challenge the agenda-setting influence of manufacturers, including industry collaborations with patients and the medical profession. © 2011 The Authors. Sociology of Health & Illness © 2011 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.

  12. Low-Cost Composite Materials and Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  13. A system approach for reducing the environmental impact of manufacturing and sustainability improvement of nano-scale manufacturing

    NASA Astrophysics Data System (ADS)

    Yuan, Yingchun

    This dissertation develops an effective and economical system approach to reduce the environmental impact of manufacturing. The system approach is developed by using a process-based holistic method for upstream analysis and source reduction of the environmental impact of manufacturing. The system approach developed consists of three components of a manufacturing system: technology, energy and material, and is useful for sustainable manufacturing as it establishes a clear link between manufacturing system components and its overall sustainability performance, and provides a framework for environmental impact reductions. In this dissertation, the system approach developed is applied for environmental impact reduction of a semiconductor nano-scale manufacturing system, with three case scenarios analyzed in depth on manufacturing process improvement, clean energy supply, and toxic chemical material selection. The analysis on manufacturing process improvement is conducted on Atomic Layer Deposition of Al2O3 dielectric gate on semiconductor microelectronics devices. Sustainability performance and scale-up impact of the ALD technology in terms of environmental emissions, energy consumption, nano-waste generation and manufacturing productivity are systematically investigated and the ways to improve the sustainability of the ALD technology are successfully developed. The clean energy supply is studied using solar photovoltaic, wind, and fuel cells systems for electricity generation. Environmental savings from each clean energy supply over grid power are quantitatively analyzed, and costs for greenhouse gas reductions on each clean energy supply are comparatively studied. For toxic chemical material selection, an innovative schematic method is developed as a visual decision tool for characterizing and benchmarking the human health impact of toxic chemicals, with a case study conducted on six chemicals commonly used as solvents in semiconductor manufacturing. Reliability of

  14. PARVCOST : a particleboard variable cost program

    Treesearch

    Peter J. Ince; George B. Harpole

    1977-01-01

    PARVCOST, a FORTRAN program, was designed to develop economic and financial analyses of systems for manufacturing particleboard. In the program, costs and requirements of wood are calculated as are chemicals and energy per unit of finished board products. Estimates are made of sensitivity of the finished product costs to changes in unit costs of energy and raw...

  15. Additive manufacturing for steels: a review

    NASA Astrophysics Data System (ADS)

    Zadi-Maad, A.; Rohib, R.; Irawan, A.

    2018-01-01

    Additive manufacturing (AM) of steels involves the layer by layer consolidation of powder or wire feedstock using a heating beam to form near net shape products. For the past decades, the AM technique reaches the maturation of both research grade and commercial production due to significant research work from academic, government and industrial research organization worldwide. AM process has been implemented to replace the conventional process of steel fabrication due to its potentially lower cost and flexibility manufacturing. This paper provides a review of previous research related to the AM methods followed by current challenges issues. The relationship between microstructure, mechanical properties, and process parameters will be discussed. Future trends and recommendation for further works are also provided.

  16. Low Life Cycle Cost Paratransit Vehicle Design Study

    DOT National Transportation Integrated Search

    1978-08-01

    A preliminary design and cost study was performed for a low life cycle cost paratransit vehicle. The manufacturing technique and cost analysis were based on limited production of 5000 units per year for a ten year period. The vehicle configuration re...

  17. Manufacturing interior furniture parts: a new look at an old problem

    Treesearch

    Edwin L. Lucas; Philip A. Araman

    1975-01-01

    The yields of interior furniture parts from four manufacturing sequences were compared. In three of the sequences, gang-ripping was the first step; in the fourth, the lumber was crosscut first. Though the grade of lumber used affects the percentage yield of parts, the manufacturing sequence used does not - but it will affect the cost per part. The selection of the best...

  18. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. Themore » IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.« less

  19. Northwest Energy Efficient Manufactured Housing Program Specification Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewes, Tom; Peeks, Brady

    2013-02-01

    The DOE research team Building America Partnership for Improved Residential Construction (BA-PIRC), Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Home Program (NEEM) program administrator, collaborated to research a new specification that would reduce the energy requirements of a NEEM home.This research identified and developed combinations of cost-effective high performance building assemblies and mechanical systems that can readily can be deployed in the manufacturing setting that reduce energy used for space conditioning, water heating and lighting by 50% over the present NEEM specifications.

  20. Manufacturing’s Contribution to Pakistan’s Economic Expansion: Commodity - or Service-Led Growth

    DTIC Science & Technology

    1994-12-01

    private sector from regulation and artificial price distortions. In addition, a complementary privatisation programme was launched with the aim of reducing the role of the public sector in manufacturing and services. As a side benefit, the programme was seen as alleviating the government’s financial and administrative burden and creating new opportunities for the private sector . While growth in large-scale manufacturing output has not accelerated in recent years (nor has its overall contribution to GDP growth increased), there is hope

  1. Optimisation of the manufacturing process of tritide and deuteride targets used for neutron production

    NASA Astrophysics Data System (ADS)

    Monnin, Carole; Bach, Pierre; Tulle, Pierre Alain; van Rompay, Marc; Ballanger, Anne

    2002-03-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium targets on copper substrates, and going to more sophisticated devices. The range of possible uses is wide, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets or large size rotating targets for higher lifetimes. The activity of the targets ranges from 3.7×10 10 to 3.7×10 13 Bq (1-1000 Ci), the diameter being up to 30 cm. Sodern and the CEA/Valduc centre have developed different technologies for tritium target manufacture, allowing the selection of the best configuration for each kind of use. In order to optimize the production of high energy neutrons, the performance of tritide and deuteride titanium targets made by different processes has been studied experimentally by bombardment with 120 and 350 kV deuterons provided by electrostatic accelerators. It is then possible to optimize either neutron output or lifetime and stability or thermal behaviour. The importance of the deposit evaporation conditions on the efficiency of neutron emission is clearly demonstrated, as well as the thermomechanical stability of the Ti thin film under deuteron bombardment. The main parameters involved in the target performance are discussed from a thermodynamical approach.

  2. Kickbacks, courtesies or cost-effectiveness?: Application of the Medicare antikickback Law to the marketing and promotional practices of drug and medical device manufacturers.

    PubMed

    Bulleit, T N; Krause, J H

    1999-01-01

    This article summarizes the purposes and history of the antikickback law and describes its evolution into a potent weapon against the corruption of medical decision making in the procurement of prescription drugs and medical devices. The article also details a variety of strategies for reducing risks under the law in several key areas of importance to manufacturers. While the purposes of the law are laudable, its current broad interpretation may impede not only corruption, but also benign forms of customer relations and innovative approaches to cost-effective medical care.

  3. Large-area copper indium diselenide (CIS) process, control and manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillespie, T.J.; Lanning, B.R.; Marshall, C.H.

    1997-12-31

    Lockheed Martin Astronautics (LMA) has developed a large-area (30x30cm) sequential CIS manufacturing approach amenable to low-cost photovoltaics (PV) production. A prototype CIS manufacturing system has been designed and built with compositional uniformity (Cu/In ratio) verified within {+-}4 atomic percent over the 30x30cm area. CIS device efficiencies have been measured by the National Renewable Energy Laboratory (NREL) at 7% on a flexible non-sodium-containing substrate and 10% on a soda-lime-silica (SLS) glass substrate. Critical elements of the manufacturing capability include the CIS sequential process selection, uniform large-area material deposition, and in-situ process control. Details of the process and large-area manufacturing approach aremore » discussed and results presented.« less

  4. Structural Mass Saving Potential of a 5-MW Direct-Drive Generator Designed for Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Fingersh, Lee J; Dykes, Katherine L

    As wind turbine blade diameters and tower height increase to capture more energy in the wind, higher structural loads results in more structural support material increasing the cost of scaling. Weight reductions in the generator transfer to overall cost savings of the system. Additive manufacturing facilitates a design-for-functionality approach, thereby removing traditional manufacturing constraints and labor costs. The most feasible additive manufacturing technology identified for large, direct-drive generators in this study is powder-binder jetting of a sand cast mold. A parametric finite element analysis optimization study is performed, optimizing for mass and deformation. Also, topology optimization is employed for eachmore » parameter-optimized design.The optimized U-beam spoked web design results in a 24 percent reduction in structural mass of the rotor and 60 percent reduction in radial deflection.« less

  5. Food equipment manufacturer takes a slice out of its scrap rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, D.; Hannahs, J.; Carter, M.

    1996-09-01

    The PMI Food Equipment Group began manufacturing circular slicer knives for its commercial Hobart line of slicers in the early 1930s. The company manufacturers the only cast knife in the food industry. The cast knives offer superior edge retention and overall corrosion resistance. The slicer knives are cast in PMI`s foundry. The casting process sometimes produces shrinkage voids or gas bubbles in the knife blank. Surface discontinuities often do not appear until rough cutting or final machining, i.e., after several hours of value-added manufacturing. Knife blanks with these discontinuities were scrapped and sent back to the foundry for remelting. Tomore » scrap the knives at that point meant the cost for casting plus the value-added machining added up to a considerable amount. Weld repair allows the recovery of casting and machining expenses equal to a significant percentage of the total manufacturing cost of slicer knives. Repair costs include welding, grinding, shipping, surface finishing and material handling. Other good applications for this GMAW-P process include repair of jet engine components, rotating process industry equipment, and hardfacing of cutting tools and dies. In addition, dissimilar metals and any material that is heat treated to develop its properties such as precision investment castings are excellent applications. The low resultant distortion, elimination of postweld heat treatment and non-line-of-site welding capability solves thin wall, limited access and precision machined component repair challenges.« less

  6. Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator.

    PubMed

    Laschinsky, Lydia; Baumann, Michael; Beyreuther, Elke; Enghardt, Wolfgang; Kaluza, Malte; Karsch, Leonhard; Lessmann, Elisabeth; Naumburger, Doreen; Nicolai, Maria; Richter, Christian; Sauerbrey, Roland; Schlenvoigt, Hans-Peter; Pawelke, Jörg

    2012-01-01

    The notable progress in laser particle acceleration technology promises potential medical application in cancer therapy through compact and cost effective laser devices that are suitable for already existing clinics. Previously, consequences on the radiobiological response by laser driven particle beams characterised by an ultra high peak dose rate have to be investigated. Therefore, tumour and non-malignant cells were irradiated with pulsed laser accelerated electrons at the JETI facility for the comparison with continuous electrons of a conventional therapy LINAC. Dose response curves were measured for the biological endpoints clonogenic survival and residual DNA double strand breaks. The overall results show no significant differences in radiobiological response for in vitro cell experiments between laser accelerated pulsed and clinical used electron beams. These first systematic in vitro cell response studies with precise dosimetry to laser driven electron beams represent a first step toward the long term aim of the application of laser accelerated particles in radiotherapy.

  7. On the Path to SunShot - Emerging Opportunities and Challenges in U.S. Solar Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Donald; Horowitz, Kelsey; Kurup, Parthiv

    Innovation-driven cost and performance improvements, along with strong projected solar demand in the United States and across the Americas, could increase the attractiveness of U.S.-based solar manufacturing (see Chung et al. 2016). Although improvements to standard PV modules have produced deep cost reductions over the past 5 years, the returns on such incremental improvements appear to be diminishing, and more dramatic innovations in module design and manufacturing are required to continue along the path of rapid progress. At the same time, major opportunities exist for innovation to unlock the potential of CSP technologies. This need for innovation could benefit U.S.more » PV and CSP manufacturers. The United States has been rated one of the world’s most competitive and innovative countries as well as one of the best locations for PV manufacturing. It is a global leader in PV and CSP R&D and patent production, and U.S. PV manufacturers are already pursuing highly differentiated innovations.« less

  8. Cost Accounting, Business Education: 7709.41.

    ERIC Educational Resources Information Center

    Carino, Mariano G.

    Cost accounting principles and procedures provide students with sufficient background to apply cost accounting factors to service and manufacturing businesses. Overhead, materials, goods in process, and finished goods are emphasized. Students complete a practice set in the course, which has guidelines, performance objectives, learning activities…

  9. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  10. Engineering and manufacturing of ITER first mirror mock-ups.

    PubMed

    Joanny, M; Travère, J M; Salasca, S; Corre, Y; Marot, L; Thellier, C; Gallay, G; Cammarata, C; Passier, B; Fermé, J J

    2010-10-01

    Most of the ITER optical diagnostics aiming at viewing and monitoring plasma facing components will use in-vessel metallic mirrors. These mirrors will be exposed to a severe plasma environment and lead to an important tradeoff on their design and manufacturing. As a consequence, investigations are carried out on diagnostic mirrors toward the development of optimal and reliable solutions. The goals are to assess the manufacturing feasibility of the mirror coatings, evaluate the manufacturing capability and associated performances for the mirrors cooling and polishing, and finally determine the costs and delivery time of the first prototypes with a diameter of 200 and 500 mm. Three kinds of ITER candidate mock-ups are being designed and manufactured: rhodium films on stainless steel substrate, molybdenum on TZM substrate, and silver films on stainless steel substrate. The status of the project is presented in this paper.

  11. Lean manufacturing: A better way for enhancement in productivity

    NASA Astrophysics Data System (ADS)

    Kumar Ahir, Pankaj; Kumar Yadav, Lalit; Singh Chandrawat, Saurabh

    2012-03-01

    Productivity is the impact of peoples working together. Machines are merely an extended way of collective imagination and energy. Lean Manufacturing is the most used method for continues improvement of business. Organization management philosophy focusing on the reduction of wastage to improve overall customer value. "Lean" operating principles began in manufacturing environments and are known by a variety of synonyms; Lean Manufacturing, Lean Production, Toyota Production System, etc. It is commonly believed that Lean started in Japan "The notable activities in keeping the price of Ford products low is the steady restriction of the production cycle. The longer an article is in the process of manufacture and the more it is moved about, the greater is its ultimate cost." "A systematic approach to identifying and eliminating waste through continuous improvement, flowing the product at the pull of the customer in pursuit of perfection."

  12. Modelling of Robotized Manufacturing Systems Using MultiAgent Formalism

    NASA Astrophysics Data System (ADS)

    Foit, K.; Gwiazda, A.; Banaś, W.

    2016-08-01

    The evolution of manufacturing systems has greatly accelerated due to development of sophisticated control systems. On top of determined, one way production flow the need of decision making has arisen as a result of growing product range that are manufactured simultaneously, using the same resources. On the other hand, the intelligent flow control could address the “bottleneck” problem caused by the machine failure. This sort of manufacturing systems uses advanced control algorithms that are introduced by the use of logic controllers. The complex algorithms used in the control systems requires to employ appropriate methods during the modelling process, like the agent-based one, which is the subject of this paper. The concept of an agent is derived from the object-based methodology of modelling, so it meets the requirements of representing the physical properties of the machines as well as the logical form of control systems. Each agent has a high level of autonomy and could be considered separately. The multi-agent system consists of minimum two agents that can interact and modify the environment, where they act. This may lead to the creation of self-organizing structure, what could be interesting feature during design and test of manufacturing system.

  13. The cost of multiple sclerosis drugs in the US and the pharmaceutical industry

    PubMed Central

    Bourdette, Dennis N.; Ahmed, Sharia M.; Whitham, Ruth H.

    2015-01-01

    Objective: To examine the pricing trajectories in the United States of disease-modifying therapies (DMT) for multiple sclerosis (MS) over the last 20 years and assess the influences on rising prices. Methods: We estimated the trend in annual drug costs for 9 DMTs using published drug pricing data from 1993 to 2013. We compared changes in DMT costs to general and prescription drug inflation during the same period. We also compared the cost trajectories for first-generation MS DMTs interferon (IFN)–β-1b, IFN-β-1a IM, and glatiramer acetate with contemporaneously approved biologic tumor necrosis factor (TNF) inhibitors. Results: First-generation DMTs, originally costing $8,000 to $11,000, now cost about $60,000 per year. Costs for these agents have increased annually at rates 5 to 7 times higher than prescription drug inflation. Newer DMTs commonly entered the market with a cost 25%–60% higher than existing DMTs. Significant increases in the cost trajectory of the first-generation DMTs occurred following the Food and Drug Administration approvals of IFN-β-1a SC (2002) and natalizumab (reintroduced 2006) and remained high following introduction of fingolimod (2010). Similar changes did not occur with TNF inhibitor biologics during these time intervals. DMT costs in the United States currently are 2 to 3 times higher than in other comparable countries. Conclusions: MS DMT costs have accelerated at rates well beyond inflation and substantially above rates observed for drugs in a similar biologic class. There is an urgent need for clinicians, payers, and manufacturers in the United States to confront the soaring costs of DMTs. PMID:25911108

  14. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2015-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute, represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies to fabricate polymer matrix composite and ceramic matrix composite turbine engine components. The benefits include: 50 weight reduction compared to metallic parts, reduced manufacturing costs, reduced part count and rapid design iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature polymer filaments. The CMC effort uses a binder jet process to fabricate silicon carbide test coupons and demonstration articles. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The research project includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  15. Turbine Manufacture

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The machinery pictured is a set of Turbodyne steam turbines which power a sugar mill at Bell Glade, Florida. A NASA-developed computer program called NASTRAN aided development of these and other turbines manufactured by Turbodyne Corporation's Steam Turbine Division, Wellsville, New York. An acronym for NASA Structural Analysis Program, NASTRAN is a predictive tool which advises development teams how a structural design will perform under service use conditions. Turbodyne uses NASTRAN to analyze the dynamic behavior of steam turbine components, achieving substantial savings in development costs. One of the most widely used spinoffs, NASTRAN is made available to private industry through NASA's Computer Software Management Information Center (COSMIC) at the University of Georgia.

  16. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production

    DOE PAGES

    Mo, Jingke; Zhang, Feng -Yuan; Dehoff, Ryan R.; ...

    2016-01-14

    The electron beam melting (EBM) additive manufacturing technology was used to fabricate titanium liquid/gas diffusion media with high-corrosion resistances and well-controllable multifunctional parameters, including two-phase transport and excellent electric/thermal conductivities, has been first demonstrated. Their applications in proton exchange membrane eletrolyzer cells have been explored in-situ in a cell and characterized ex-situ with SEM and XRD. Compared with the conventional woven liquid/gas diffusion layers (LGDLs), much better performance with EBM fabricated LGDLs is obtained due to their significant reduction of ohmic loss. The EBM technology components exhibited several distinguished advantages in fabricating gas diffusion layer: well-controllable pore morphology and structure,more » rapid prototyping, fast manufacturing, highly customizing and economic. In addition, by taking advantage of additive manufacturing, it possible to fabricate complicated three-dimensional designs of virtually any shape from a digital model into one single solid object faster, cheaper and easier, especially for titanium. More importantly, this development will provide LGDLs with control of pore size, pore shape, pore distribution, and therefore porosity and permeability, which will be very valuable to develop modeling and to validate simulations of electrolyzers with optimal and repeatable performance. Further, it will lead to a manufacturing solution to greatly simplify the PEMEC/fuel cell components and to couple the LGDLs with other parts, since they can be easily integrated together with this advanced manufacturing process« less

  17. Low-Cost Nanocellulose-Reinforced High-Temperature Polymer Composites for Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Soydan; Tekinalp, Halil L.; Love, Lonnie J.

    2016-07-13

    ORNL worked with American Process Inc. to demonstrate the potential use of bio-based BioPlus ® lignin-coated cellulose nanofibrils (L-CNF) as a reinforcing agent in the development of polymer feedstock suitable for additive manufacturing. L-CNF-reinforced polylactic acid (PLA) testing coupons were prepared and up to 69% increase in tensile strength and 133% increase in elastic modulus were demonstrated.

  18. Environmental and Economic Implications of Distributed Additive Manufacturing: The Case of Injection Mold Tooling: Environmental Implications of Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Runze; Riddle, Matthew E.; Graziano, Diane

    Additive manufacturing (AM) holds great potentials in enabling superior engineering functionality, streamlining supply chains, and reducing life cycle impacts compared to conventional manufacturing (CM). This study estimates the net changes in supply-chain lead time, life cycle primary energy consumption, greenhouse gas (GHG) emissions, and life cycle costs (LCC) associated with AM technologies for the case of injection molding, to shed light on the environmental and economic advantages of a shift from international or onshore CM to AM in the United States. A systems modeling framework is developed, with integrations of lead-time analysis, life cycle inventory analysis, LCC model, and scenariosmore » considering design differences, supply-chain options, productions, maintenance, and AM technological developments. AM yields a reduction potential of 3% to 5% primary energy, 4% to 7% GHG emissions, 12% to 60% lead time, and 15% to 35% cost over 1 million cycles of the injection molding production depending on the AM technology advancement in future. The economic advantages indicate the significant role of AM technology in raising global manufacturing competitiveness of local producers, while the relatively small environmental benefits highlight the necessity of considering trade-offs and balance techniques between environmental and economic performances when AM is adopted in the tooling industry. The results also help pinpoint the technological innovations in AM that could lead to broader benefits in future.« less

  19. Environmental and Economic Implications of Distributed Additive Manufacturing: The Case of Injection Mold Tooling: Environmental Implications of Additive Manufacturing

    DOE PAGES

    Huang, Runze; Riddle, Matthew E.; Graziano, Diane; ...

    2017-08-26

    Additive manufacturing (AM) holds great potentials in enabling superior engineering functionality, streamlining supply chains, and reducing life cycle impacts compared to conventional manufacturing (CM). This study estimates the net changes in supply-chain lead time, life cycle primary energy consumption, greenhouse gas (GHG) emissions, and life cycle costs (LCC) associated with AM technologies for the case of injection molding, to shed light on the environmental and economic advantages of a shift from international or onshore CM to AM in the United States. A systems modeling framework is developed, with integrations of lead-time analysis, life cycle inventory analysis, LCC model, and scenariosmore » considering design differences, supply-chain options, productions, maintenance, and AM technological developments. AM yields a reduction potential of 3% to 5% primary energy, 4% to 7% GHG emissions, 12% to 60% lead time, and 15% to 35% cost over 1 million cycles of the injection molding production depending on the AM technology advancement in future. The economic advantages indicate the significant role of AM technology in raising global manufacturing competitiveness of local producers, while the relatively small environmental benefits highlight the necessity of considering trade-offs and balance techniques between environmental and economic performances when AM is adopted in the tooling industry. The results also help pinpoint the technological innovations in AM that could lead to broader benefits in future.« less

  20. Advances in High Temperature Materials for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  1. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  2. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  3. Additive Manufacturing of Cranial Simulants for Blast Induced Traumatic Brain Injury

    DTIC Science & Technology

    2017-08-28

    REPORT TYPE 08/28/2017 Poster 4. TITLE AND SUBTITLE Additive Manufacturing of Cranial Sin1ulants for Blast Induced Traumatic Brain Injut’y 6... manufacturing techniques: Fused deposition modeling: ca sling molds Casting: white and gray matter Polymerization of injected solution...Sandia National Laboratories Conclusion MICHIGAN STAT[ l- I’ll I \\ I R <, I r \\ Additive manufacturrng provrdes a cost effective fabrration

  4. Manufacturing the Future: Federal Priorities for Manufacturing Research and Development. Report of the Interagency Working Group on Manufacturing R&D, Committee on Technology, National Science and Technology Council

    DTIC Science & Technology

    2008-03-01

    and virtual elimination of vehicular emissions of pollutants and greenhouse gases. Low- cost, high-volume manufacturing processes and development...intended to help achieve energy security and virtually eliminate vehicular emissions of pollutants and greenhouse gases. This goal is being pursued...the coolant system, for example, and the humidification system must be integrated with the air blower. Construction of the power plant is usually

  5. Space manufacturing in the construction of solar power satellites

    NASA Astrophysics Data System (ADS)

    Ruth, J.; Westphal, W.

    This paper deals with ongoing research work concerning energy budget and cost of the solar Satellite Power System (SPS). The fundamental model of such a total system including ground and space facilities, transportation vehicles, power satellites and rectennas is presented. The main purpose of this model is to examine the applicability of different construction scenarios to allow comparison under nearly identical constraints. Using this model in a first attempt the blankets—meaning the main part of the space segment by weight, energy investment needs and cost—are chosen representatively for the energy and cost comparison of two construction alternatives of the same SPS concept. These construction alternatives are defined just by ground and space based manufacturing of the solar blankets, while all other subsystems, operations and the transportation profiles are considered to be kept the same. It can be shown that the energy "payback" time does not only depend on the SPS concept selected but also very much on the construction and implementation scenario. The cost comparison of these alternative approaches presents not very significant differences but advantages for the space manufacturing option with potential higher differences for a less conservative approach which may apply benefits of space manufacturing meaning, for example, considerable mass savings in space. Some preliminary results are discussed and an outlook is given over the next steps to be investigated, comprising the extension of the fundamental model to include use of lunar raw materials.

  6. Cost Savings for Manufacturing Lithium Batteries in a Flexible Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Paul A.; Ahmed, Shabbir; Gallagher, Kevin G.

    2015-06-01

    The flexible plant postulated in this study would produces types of batteries for electric-drive vehicles of the types hybrid (HEV), 10-mile range and 40-mile range plug-in hybrids (PHEV) and a 150-mile range battery-electric (EV). The annual production rate of the plant is 235,000 per year (30,000 EV batteries and 100,000 HEV batteries). The unit cost savings as calculated with the Argonne BatPaC model for this flex plant vs. dedicated plants range from 8% for the EV battery packs to 23% for the HEV packs including the battery management systems (BMS). The investment cost savings are even larger, ranging from 21%more » for EVs to 43% for HEVs. The costs of the 1.0-kWh HEV batteries are projected to approach $710 per unit and that of the EV batteries $228 per kWh with the most favorable cell chemistries and including the BMS. The best single indicator of the cost of producing lithium-manganate spinel/graphite batteries in a flex plant is the total cell area of the battery. For the four batteries studied, the price range is $20-24 per m2 of cell area including the cost of the BMS, averaging $21 per m2 for the entire flex plant.« less

  7. Cost Effective Prototyping

    NASA Technical Reports Server (NTRS)

    Wickman, Jerry L.; Kundu, Nikhil K.

    1996-01-01

    This laboratory exercise seeks to develop a cost effective prototype development. The exercise has the potential of linking part design, CAD, mold development, quality control, metrology, mold flow, materials testing, fixture design, automation, limited parts production and other issues as related to plastics manufacturing.

  8. 78 FR 44095 - Request for Information on Pilots To Inform the Creation of Potential New Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Technology (NIST), United States Department of Commerce. ACTION: Notice; extension of comment deadline. SUMMARY: NIST is extending the deadline for submitting comments regarding NIST's planning for a Federal Funding Opportunity (FFO) for new manufacturing technology acceleration centers (M-TACs). NIST anticipates...

  9. Fuel Cell Manufacturing Research and Development | Hydrogen and Fuel Cells

    Science.gov Websites

    methods to meet volume and cost targets for transportation and other applications. Fortunately, much can set Develop predictive models to help industry design better manufacturing processes and methods

  10. The impact of fit manufacturing on green manufacturing: A review

    NASA Astrophysics Data System (ADS)

    Qi, Ang Nian; Sin, Tan Chan; Fathullah, M.; Lee, C. C.

    2017-09-01

    Fit manufacturing and Green manufacturing are a new trend principle and concept. They are getting popular in industrial. This paper is identifying the impact between Fit manufacturing and Green manufacturing. Besides Fit manufacturing, Lean manufacturing, Agile manufacturing and Sustainable manufacturing gives big impacts to Green Manufacturing. On top of that, this paper also discuss the benefits of applying Fit manufacturing and Green manufacturing in industrial as well as environment. Hence, applications of Fit manufacturing and Green Manufacturing are increasing year by year.

  11. 3D printing of gas jet nozzles for laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Döpp, A.; Guillaume, E.; Thaury, C.

    2016-07-15

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we havemore » used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the SALLE JAUNE terawatt laser at Laboratoire d’Optique Appliquée.« less

  12. Knowledge-Based Manufacturing and Structural Design for a High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Marx, William J.; Mavris, Dimitri N.; Schrage, Daniel P.

    1994-01-01

    The aerospace industry is currently addressing the problem of integrating manufacturing and design. To address the difficulties associated with using many conventional procedural techniques and algorithms, one feasible way to integrate the two concepts is with the development of an appropriate Knowledge-Based System (KBS). The authors present their reasons for selecting a KBS to integrate design and manufacturing. A methodology for an aircraft producibility assessment is proposed, utilizing a KBS for manufacturing process selection, that addresses both procedural and heuristic aspects of designing and manufacturing of a High Speed Civil Transport (HSCT) wing. A cost model is discussed that would allow system level trades utilizing information describing the material characteristics as well as the manufacturing process selections. Statements of future work conclude the paper.

  13. Silicon materials task of the low-cost solar array project. Phase 4: Effects of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Hanes, M. H.; Davis, J. R.; Rohatgi, A.; Raichoudhury, P.; Mollenkopf, H. C.

    1981-01-01

    The results of the study form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost-benefit relationships for the use of less pure, less costly solar grade silicon. Cr is highly mobile in silicon even at temperatures as low as 600 C. Contrasting with earlier data for Mo, Ti, and V, Cr concentrations vary from place to place in polycrystalline silicon wafers and the electrically-active Cr concentration in the polysilicon is more than an order of magnitude smaller than would be projected from single crystal impurity data. We hypothesize that Cr diffuses during ingot cooldown after growth, preferentially segregates to grain and becomes electrically deactivated. Accelerated aging data from Ni-contaminated silicon imply that no significant impurity-induced cell performance reduction should be expected over a twenty year device lifetime.

  14. Lithographic manufacturing of adaptive optics components

    NASA Astrophysics Data System (ADS)

    Scott, R. Phillip; Jean, Madison; Johnson, Lee; Gatlin, Ridley; Bronson, Ryan; Milster, Tom; Hart, Michael

    2017-09-01

    Adaptive optics systems and their laboratory test environments call for a number of unusual optical components. Examples include lenslet arrays, pyramids, and Kolmogorov phase screens. Because of their specialized application, the availability of these parts is generally limited, with high cost and long lead time, which can also significantly drive optical system design. These concerns can be alleviated by a fast and inexpensive method of optical fabrication. To that end, we are exploring direct-write lithographic techniques to manufacture three different custom elements. We report results from a number of prototype devices including 1, 2, and 3 wave Multiple Order Diffractive (MOD) lenslet arrays with 0.75 mm pitch and phase screens with near Kolmogorov structure functions with a Fried length r0 around 1 mm. We also discuss plans to expand our research to include a diffractive pyramid that is smaller, lighter, and more easily manufactured than glass versions presently used in pyramid wavefront sensors. We describe how these components can be produced within the limited dynamic range of the lithographic process, and with a rapid prototyping and manufacturing cycle. We discuss exploratory manufacturing methods, including replication, and potential observing techniques enabled by the ready availability of custom components.

  15. The future of automation for high-volume wafer fabrication and ASIC manufacturing

    NASA Astrophysics Data System (ADS)

    Hughes, Randall A.; Shott, John D.

    1986-12-01

    A framework is given to analyze the future trends in semiconductor manufacturing automation systems, focusing specifically on the needs of ASIC (application-specific integrated circuit) or custom integrated circuit manufacturing. Advances in technologies such as gate arrays and standard cells now make it significantly easier to obtain system cost and performance advantages by integrating nonstandard functions on silicon. ASICs are attractive to U.S. manufacturers because they place a premium on sophisticated design tools, familiarity with customer needs and applications, and fast turn-around fabrication. These are areas where U.S. manufacturers believe they have an advantage and, consequently, will not suffer from the severe price/manufacturing competition encountered in conventional high-volume semiconductor products. Previously, automation was often considered viable only for high-volume manufacturing, but automation becomes a necessity in the new ASIC environment.

  16. Paradigm Shift Additive Manufacturing and the New Way of War

    DTIC Science & Technology

    2016-12-01

    keep costs low: Simple parts are easier to make. Once a product design has been selected and tooling has been obtained, a change in design becomes...adversary’s OODA loop through rapid design and manufacturing . We need to do this; enable this capabil- ity now before our adversaries do, as they might not...35 Defense AT&L: November-December 2016 Paradigm Shift Additive Manufacturing and the New Way of War Brett P. Conner Conner is an associate

  17. LOW-COST COMPOSITES IN VEHICLE MANUFACTURE - Natural-fiber-reinforced polymer composites in automotive applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holbery, Jim; Houston, Dan

    In the last decade, natural fiber composites have experienced rapid growth in the European automotive market, and this trend appears to be global in scale, provided the cost and performance is justified against competing technologies. However, mass reduction, recyclability, and performance requirements can be met today by competing systems such as injection-molded unreinforced thermoplastics; natural fiber composites will continue to expand their role in automotive applications only if such technical challenges as moisture stability, fiber-polymer interface compatibility, and consistent, repeatable fiber sources are available to supply automotive manufacturers. Efforts underway by Tier I and II automotive suppliers to explore hybridmore » glass-natural fiber systems, as well as applications that exploit such capabilities as natural fiber sound dampening characteristics, could very well have far-reaching effects. In addition, the current development underway of bio-based resins such as Polyhydroxyalkanoate (PHA) biodegradable polyesters and bio-based polyols could provide fully bio-based composite options to future automotive designers. In short, the development of the natural fiber composite market would make a positive impact on farmers and small business owners on a global scale, reduce US reliance on foreign oil, improve environmental quality through the development of a sustainable resource supply chain, and achieve a better CO2 balance over the vehicle?s lifetime with near-zero net greenhouse gas emissions.« less

  18. Development of cost estimation tools for total occupational safety and health activities and occupational health services: cost estimation from a corporate perspective.

    PubMed

    Nagata, Tomohisa; Mori, Koji; Aratake, Yutaka; Ide, Hiroshi; Ishida, Hiromi; Nobori, Junichiro; Kojima, Reiko; Odagami, Kiminori; Kato, Anna; Tsutsumi, Akizumi; Matsuda, Shinya

    2014-01-01

    The aim of the present study was to develop standardized cost estimation tools that provide information to employers about occupational safety and health (OSH) activities for effective and efficient decision making in Japanese companies. We interviewed OSH staff members including full-time professional occupational physicians to list all OSH activities. Using activity-based costing, cost data were obtained from retrospective analyses of occupational safety and health costs over a 1-year period in three manufacturing workplaces and were obtained from retrospective analyses of occupational health services costs in four manufacturing workplaces. We verified the tools additionally in four workplaces including service businesses. We created the OSH and occupational health standardized cost estimation tools. OSH costs consisted of personnel costs, expenses, outsourcing costs and investments for 15 OSH activities. The tools provided accurate, relevant information on OSH activities and occupational health services. The standardized information obtained from our OSH and occupational health cost estimation tools can be used to manage OSH costs, make comparisons of OSH costs between companies and organizations and help occupational health physicians and employers to determine the best course of action.

  19. Effect of processing method on accelerated weathering of wood-flour/HDPE composites

    Treesearch

    Nicole M. Stark; Laurent M. Matuana; Craig M. Clemons

    2003-01-01

    Wood-plastic lumber is promoted as a low maintenance high-durability product. When exposed to accelerated weathering, however, wood-plastic composites may experience a color change and/or loss in mechanical properties. Different methods of manufacturing wood-plastic composites lead to different surface characteristics, which can influence weathering, In this study, 50...

  20. "I got it on Ebay!": cost-effective approach to surgical skills laboratories.

    PubMed

    Schneider, Ethan; Schenarts, Paul J; Shostrom, Valerie; Schenarts, Kimberly D; Evans, Charity H

    2017-01-01

    Surgical education is witnessing a surge in the use of simulation. However, implementation of simulation is often cost-prohibitive. Online shopping offers a low budget alternative. The aim of this study was to implement cost-effective skills laboratories and analyze online versus manufacturers' prices to evaluate for savings. Four skills laboratories were designed for the surgery clerkship from July 2014 to June 2015. Skills laboratories were implemented using hand-built simulation and instruments purchased online. Trademarked simulation was priced online and instruments priced from a manufacturer. Costs were compiled, and a descriptive cost analysis of online and manufacturers' prices was performed. Learners rated their level of satisfaction for all educational activities, and levels of satisfaction were compared. A total of 119 third-year medical students participated. Supply lists and costs were compiled for each laboratory. A descriptive cost analysis of online and manufacturers' prices showed online prices were substantially lower than manufacturers, with a per laboratory savings of: $1779.26 (suturing), $1752.52 (chest tube), $2448.52 (anastomosis), and $1891.64 (laparoscopic), resulting in a year 1 savings of $47,285. Mean student satisfaction scores for the skills laboratories were 4.32, with statistical significance compared to live lectures at 2.96 (P < 0.05) and small group activities at 3.67 (P < 0.05). A cost-effective approach for implementation of skills laboratories showed substantial savings. By using hand-built simulation boxes and online resources to purchase surgical equipment, surgical educators overcome financial obstacles limiting the use of simulation and provide learning opportunities that medical students perceive as beneficial. Copyright © 2016 Elsevier Inc. All rights reserved.