Sample records for accelerate technology transfer

  1. Accelerated technology transfer: the UK quantum initiative

    NASA Astrophysics Data System (ADS)

    Bennett, Simon D.

    2016-10-01

    A new generation of quantum technology based systems, exploiting effects such as superposition and entanglement, will enable widespread, highly disruptive applications which are expected to be of great economic significance. However, the technology is only just emerging from the physics laboratory and generally remains at low TRLs. The question is: where, and when, will this impact be first manifest? The UK, with substantial Government backing, has embarked on an ambitious national program to accelerate the process of technology transfer with the objective of seizing a significant and sustainable share of the future economic benefit for the UK. Many challenges and uncertainties remain but the combined and co-ordinated efforts of Government, Industry and Academia are making great progress. The level of collaboration is unusually high and the goal of embedding a "QT Ecosystem" in the UK looks to be attainable. This paper describes the UK national programme, its key players, and their respective roles. It will illustrate some of the likely first commercial applications and provide a status update. Some of the challenges that might prevent realisation of the goal will be highlighted.

  2. A proton medical accelerator by the SBIR route — an example of technology transfer

    NASA Astrophysics Data System (ADS)

    Martin, R. L.

    1989-04-01

    Medical facilities for radiation treatment of cancer with protons have been established in many laboratories throughout the world. Essentially all of these have been designed as physics facilities, however, because of the requirement for protons up to 250 MeV. Most of the experience in this branch of accelerator technology lies in the national laboratories and a few large universities. A major issue is the transfer of this technology to the commercial sector to provide hospitals with simple, reliable and relatively inexpensive accelerators for this application. The author has chosen the SBIR route to accomplish this goal. ACCTEK Associates has received grants from the National Cancer Institute for development of the medical accelerator and beam delivery systems. Considerable encouragement and help has been received from Argonne National Laboratory and the Department of Energy. The experiences to date and the pros and cons on this approach to commercializing medical accelerators are described.

  3. Industrialization of Superconducting RF Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  4. NASA partnership with industry: Enhancing technology transfer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Recognizing the need to accelerate and expand the application of NASA-derived technology for other civil uses in the United States, potential opportunities were assessed; the range of benefits to NASA, industry and the nations were explored; public policy implications were assessed; and this new range of opportunities were related to current technology transfer programs of NASA.

  5. Technology Transfer Issues and a New Technology Transfer Model

    ERIC Educational Resources Information Center

    Choi, Hee Jun

    2009-01-01

    The following are major issues that should be considered for efficient and effective technology transfer: conceptions of technology, technological activity and transfer, communication channels, factors affecting transfer, and models of transfer. In particular, a well-developed model of technology transfer could be used as a framework for…

  6. NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Technology Transfer Center (TTC) facilitates partnerships between the NIH research laboratories and external partners. With specialized teams, TTC guides the interactions of our partners from the point of discovery to patenting, from invention development to licensing. We play a key role in helping to accelerate development of cutting-edge research by connecting our partners to NIH’s world-class researchers, facilities, and knowledge.

  7. Technology transfer

    NASA Technical Reports Server (NTRS)

    Handley, Thomas

    1992-01-01

    The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.

  8. Blending addiction research and practice: strategies for technology transfer.

    PubMed

    Condon, Timothy P; Miner, Lucinda L; Balmer, Curtis W; Pintello, Denise

    2008-09-01

    Consistent with traditional conceptions of technology transfer, efforts to translate substance abuse and addiction research into treatment practice have typically relied on the passive dissemination of research findings. The large gap between addiction research and practice, however, indicates that there are many barriers to successful technology transfer and that dissemination alone is not sufficient to produce lasting changes in addiction treatment. To accelerate the translation of research into practice, the National Institute on Drug Abuse launched the Blending Initiative in 2001. In part a collaboration with the Substance Abuse and Mental Health Services Administration/Center for Substance Abuse Treatment's Addiction Technology Transfer Center program, this initiative aims to improve the development, effectiveness, and usability of evidence-based practices and reduce the obstacles to their timely adoption and implementation.

  9. Technology transfer

    NASA Technical Reports Server (NTRS)

    Penaranda, Frank E.

    1992-01-01

    The topics are presented in viewgraph form and include the following: international comparison of R&D expenditures in 1989; NASA Technology Transfer Program; NASA Technology Utilization Program thrusts for FY 1992 and FY 1993; National Technology Transfer Network; and NTTC roles.

  10. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  11. Future orbital transfer vehicle technology study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Davis, E. E.

    1982-01-01

    Missions for future orbit transfer vehicles (1995-2010) are identified and the technology, operations and vehicle concepts that satisfy the transportation requirements are defined. Comparison of reusable space and ground based LO2/LH2 OTV's was made. Both vehicles used advanced space engines and aero assist capability. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. Comparison of an all LO2/LH2 OTV fleet with a fleet of LO2/LH2 OTVs and electric OTV's was also made. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. This provided a 23% advantage in total transportation cost. The impact of accelerated technology was considered in terms of improvements in performance and cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on-orbit propellant storage and transfer and on-orbit maintenance capability.

  12. Fermilab | Tevatron | Accelerator

    Science.gov Websites

    Leading accelerator technology Accelerator complex Illinois Accelerator Research Center Fermilab temperature. They were used to transfer particles from one part of the Fermilab accelerator complex to another center ring of Fermilab's accelerator complex. Before the Tevatron shut down, it had three primary

  13. Technology Transfer: Marketing Tomorrow's Technology

    NASA Technical Reports Server (NTRS)

    Tcheng, Erene

    1995-01-01

    The globalization of the economy and the end of the Cold War have triggered many changes in the traditional practices of U.S. industry. To effectively apply the resources available to the United States, the federal government has firmly advocated a policy of technology transfer between private industry and government labs, in this case the National Aeronautics and Space Administration (NASA). NASA Administrator Daniel Goldin is a strong proponent of this policy and has organized technology transfer or commercialization programs at each of the NASA field centers. Here at Langley Research Center, the Technology Applications Group (TAG) is responsible for facilitating the transfer of Langley developed research and technology to U.S. industry. Entering the program, I had many objectives for my summer research with TAG. Certainly, I wanted to gain a more thorough understanding of the concept of technology transfer and Langley's implementation of a system to promote it to both the Langley community and the community at large. Also, I hoped to become more familiar with Langley's research capabilities and technology inventory available to the public. More specifically, I wanted to learn about the technology transfer process at Langley. Because my mentor is a member of Materials and Manufacturing marketing sector of the Technology Transfer Team, another overriding objective for my research was to take advantage of his work and experience in materials research to learn about the Advanced Materials Research agency wide and help market these developments to private industry. Through the various projects I have been assigned to work on in TAG, I have successfully satisfied the majority of these objectives. Work on the Problem Statement Process for TAG as well as the development of the Advanced Materials Research Brochure have provided me with the opportunity to learn about the technology transfer process from the outside looking in and the inside looking out. Because TAG covers

  14. Accelerator Technology Division annual report, FY 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  15. Robotic technology evolution and transfer

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.

    1992-01-01

    A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.

  16. Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.

    PubMed

    Hu, Yujing; Gao, Yang; An, Bo

    2015-07-01

    An important approach in multiagent reinforcement learning (MARL) is equilibrium-based MARL, which adopts equilibrium solution concepts in game theory and requires agents to play equilibrium strategies at each state. However, most existing equilibrium-based MARL algorithms cannot scale due to a large number of computationally expensive equilibrium computations (e.g., computing Nash equilibria is PPAD-hard) during learning. For the first time, this paper finds that during the learning process of equilibrium-based MARL, the one-shot games corresponding to each state's successive visits often have the same or similar equilibria (for some states more than 90% of games corresponding to successive visits have similar equilibria). Inspired by this observation, this paper proposes to use equilibrium transfer to accelerate equilibrium-based MARL. The key idea of equilibrium transfer is to reuse previously computed equilibria when each agent has a small incentive to deviate. By introducing transfer loss and transfer condition, a novel framework called equilibrium transfer-based MARL is proposed. We prove that although equilibrium transfer brings transfer loss, equilibrium-based MARL algorithms can still converge to an equilibrium policy under certain assumptions. Experimental results in widely used benchmarks (e.g., grid world game, soccer game, and wall game) show that the proposed framework: 1) not only significantly accelerates equilibrium-based MARL (up to 96.7% reduction in learning time), but also achieves higher average rewards than algorithms without equilibrium transfer and 2) scales significantly better than algorithms without equilibrium transfer when the state/action space grows and the number of agents increases.

  17. Does technology acceleration equate to mask cost acceleration?

    NASA Astrophysics Data System (ADS)

    Trybula, Walter J.; Grenon, Brian J.

    2003-06-01

    The technology acceleration of the ITRS Roadmap has many implications on both the semiconductor sup-plier community and the manufacturers. INTERNATIONAL SEMATECH has revaluated the projected cost of advanced technology masks. Building on the methodology developed in 1996 for mask costs, this work provided a critical review of mask yields and factors relating to the manufacture of photolithography masks. The impact of the yields provided insight into the learning curve for leading edge mask manufac-turing. The projected mask set cost was surprising, and the ability to provide first and second year cost estimates provided additional information on technology introduction. From this information, the impact of technology acceleration can be added to the projected yields to evaluate the impact on mask costs.

  18. Technology transfer and the NASA Technology Utilization Program - An overview

    NASA Technical Reports Server (NTRS)

    Clarks, Henry J.; Rose, James T.; Mangum, Stephen D.

    1989-01-01

    The goal of the NASA Technology Utilization (TU) Program is to broaden and accelerate the transfer of aerospace technology and to develop new commercial products and processes that represent additional return on the national investment in the U.S. space programs. The mechanisms established by the TU Program includes TU offices, publications, the information retrieval, software dissemination, and the NASA Applications Engineering Program. These mechanisms are implemented through a nationwide NASA TU Network, working closely with industry and public sector organizations to encourage and facilitate their access and utilization of the results of the U.S space programs. Examples of TU are described, including a method for the reduction of metal fatigue in textile equipment and a method for the management of wandering behavior in Alzheimer's patients.

  19. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Christensen, Carissa Bryce

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The suggested subtopics for the panel were as follows: (1) transfer from non-NASA U.S. government technology developers to NASA space missions/programs; and (2) transfer from NASA to other U.S. government civil space mission programs. Two presentations were made to the panel: Roles/Value of Early Strategic Planning Within the Space Exploration Initiative (SEI) to Facilitate Later Technology Transfer To and From Industry; and NOAA Satellite Programs and Technology Requirements. The panel discussion addresses the following major issues: DOD/NASA cooperation; alternative mechanisms for interagency communication and interactions; current technology transfer relationships among federal research agencies, and strategies for improving this transfer; technology transfer mechanisms appropriate to intragovernment transfer; the importance of industry as a technology transfer conduit; and measures of merit.

  20. Accelerated construction

    DOT National Transportation Integrated Search

    2004-01-01

    Accelerated Construction Technology Transfer (ACTT) is a strategic process that uses various innovative techniques, strategies, and technologies to minimize actual construction time, while enhancing quality and safety on today's large, complex multip...

  1. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can

  2. The flight telerobotic servicer and technology transfer

    NASA Technical Reports Server (NTRS)

    Andary, James F.; Bradford, Kayland Z.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability in the early phases of the SSF program and will be employed for assembly, maintenance, and inspection applications. The current state of space technology and the general nature of the FTS tasks dictate that the FTS be designed with sophisticated teleoperational capabilities for its internal primary operating mode. However, technologies such as advanced computer vision and autonomous planning techniques would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Another objective of the FTS program is to accelerate technology transfer from research to U.S. industry.

  3. Technology transfer for adaptation

    NASA Astrophysics Data System (ADS)

    Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia

    2014-09-01

    Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.

  4. Technology transfer of remote sensing technology

    NASA Technical Reports Server (NTRS)

    Smith, A. D.

    1980-01-01

    The basic philosophy and some current activities of MSFC Technology Transfer with regard to remote sensing technology are briefly reviewed. Among the problems that may be alleviated through such technology transfer are the scarcity of energy and mineral resources, the alteration of the environment by man, unpredictable natural disasters, and the effect of unanticipated climatic change on agricultural productivity.

  5. Using bibliographic databases in technology transfer

    NASA Technical Reports Server (NTRS)

    Huffman, G. David

    1987-01-01

    When technology developed for a specific purpose is used in another application, the process is called technology transfer--the application of an existing technology to a new use or user for purposes other than those for which the technology was originally intended. Using Bibliographical Databases in Technology Transfer deals with demand-pull transfer, technology transfer that arises from need recognition, and is a guide for conducting demand-pull technology transfer studies. It can be used by a researcher as a self-teaching manual or by an instructor as a classroom text. A major problem of technology transfer is finding applicable technology to transfer. Described in detail is the solution to this problem, the use of computerized, bibliographic databases, which currently contain virtually all documented technology of the past 15 years. A general framework for locating technology is described. NASA technology organizations and private technology transfer firms are listed for consultation.

  6. Acceleration technologies for charged particles: an introduction

    NASA Astrophysics Data System (ADS)

    Carter, Richard G.

    2011-01-01

    Particle accelerators have many important uses in scientific experiments, in industry and in medicine. This paper reviews the variety of technologies which are used to accelerate charged particles to high energies. It aims to show how the capabilities and limitations of these technologies are related to underlying physical principles. The paper emphasises the way in which different technologies are used together to convey energy from the electrical supply to the accelerated particles.

  7. Technology transfer methodology

    NASA Technical Reports Server (NTRS)

    Labotz, Rich

    1991-01-01

    Information on technology transfer methodology is given in viewgraph form. Topics covered include problems in economics, technology drivers, inhibitors to using improved technology in development, technology application opportunities, and co-sponsorship of technology.

  8. Ion Acceleration by Flux Transfer Events in the Terrestrial Magnetosheath

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.; Vainio, R.; Palmroth, M.; Juusola, L.; Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Turc, L.; von Alfthan, S.

    2018-02-01

    We report ion acceleration by flux transfer events in the terrestrial magnetosheath in a global two-dimensional hybrid-Vlasov polar plane simulation of Earth's solar wind interaction. In the model we find that propagating flux transfer events created in magnetic reconnection at the dayside magnetopause drive fast-mode bow waves in the magnetosheath, which accelerate ions in the shocked solar wind flow. The acceleration at the bow waves is caused by a shock drift-like acceleration process under stationary solar wind and interplanetary magnetic field upstream conditions. Thus, the energization is not externally driven but results from plasma dynamics within the magnetosheath. Energetic proton populations reach the energy of 30 keV, and their velocity distributions resemble time-energy dispersive ion injections observed by the Cluster spacecraft in the magnetosheath.

  9. National Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Rivers, Lee W.

    1992-01-01

    Viewgraphs on the National Technology Transfer Center (NTTC) are provided. The NTTC mission is to serve as a hub for the nationwide technology-transfer network to expedite the movement of federally developed technology into the stream of commerce. A description of the Center is provided.

  10. NASA Technology Transfer System

    NASA Technical Reports Server (NTRS)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  11. Technology Transfer Network and Affiliations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The NASA Technology Transfer Partnership program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.

  12. Technology Transfer and Technology Transfer Intermediaries

    ERIC Educational Resources Information Center

    Bauer, Stephen M.; Flagg, Jennifer L.

    2010-01-01

    A standard and comprehensive model is needed to evaluate and compare technology transfer systems and the stakeholders within these systems. The principle systems considered include federal laboratories, U.S. universities, the rehabilitation engineering research centers (RERCs), and large small business innovation research programs. An earlier…

  13. Evaluating Technology Transfer and Diffusion.

    ERIC Educational Resources Information Center

    Bozeman, Barry; And Others

    1988-01-01

    Four articles discuss the evaluation of technology transfer and diffusion: (1) "Technology Transfer at the U.S. National Laboratories: A Framework for Evaluation"; (2) "Application of Social Psychological and Evaluation Research: Lessons from Energy Information Programs"; (3) "Technology and Knowledge Transfer in Energy R and D Laboratories: An…

  14. Brookhaven National Laboratory technology transfer report, fiscal year 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The Brookhaven Office of Research and Technology Applications (ORTA) inaugurated two major initiatives. The effort by our ORTA in collaboration with the National Synchrotron Light Source (NSLS) has succeeded in alerting American industry to the potential of using a synchrotron x-ray source for high resolution lithography. We are undertaking a preconstruction study for the construction of a prototype commercial synchrotron and development of an advanced commercial cryogenic synchrotron (XLS). ORTA sponsored a technology transfer workshop where industry expressed its views on how to transfer accelerator technology during the construction of the prototype commercial machine. The Northeast Regional utility Initiative broughtmore » 14 utilities to a workshop at the Laboratory in November. One recommendation of this workshop was to create a Center at the Laboratory for research support on issues of interest to utilities in the region where BNL has unique capability. The ORTA has initiated discussions with the New York State Science and Technology Commission, Cornell University's world renowned Nannofabrication Center and the computer aided design capabilities at SUNY at Stony Brook to create, centered around the NSLS and the XLS, the leading edge semiconductor process technology development center when the XLS becomes operational in two and a half years. 1 fig.« less

  15. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The Com

  16. Transferring new technologies within the federal sector: The New Technology Demonstration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, D.R.; Hunt, D.M.

    1994-08-01

    The federal sector is the largest consumer of products in the United States and annually purchases almost 1.5 quads of energy measured at the building site at a cost of almost $10 billion (U.S. Department of Energy 1991). A review of design, construction, and procurement practices in the federal sector, as well as discussions with manufacturers and vendors, indicated that new technologies are not utilized in as timely a manner as possible. As a consequence of this technology transfer lag, the federal sector loses valuable energy and environmental benefits that can be derived through the application of new technologies. Inmore » addition, opportunities are lost to reduce federal energy expenditures and spur U.S. economic growth through the procurement of such technologies. In 1990, under the direction of the U.S. Department of Energy (DOE) Federal Energy Management Program, the Pacific Northwest Laboratory began the design of a program to accelerate the introduction of new U.S. technologies into the federal sector. Designated first as the Test Bed Demonstration Program and more recently the New Technology Demonstration Program, it sought to shorten the acceptance period of new technologies within the federal sector. By installing and evaluating various new technologies at federal facilities, the Program attempts to increase the acceptance of those new technologies through the results of {open_quotes}real-world{close_quotes} federal installations. Since that time, the Program has conducted new technology demonstrations and evaluations, evolved to address the need for more timely information transfer, and explored collaborative opportunities with other DOE offices and laboratories. This paper explains the processes by which a new technology demonstration project is implemented and presents a general description of the Program results to date.« less

  17. Technology transfer within the government

    NASA Technical Reports Server (NTRS)

    Russell, John

    1992-01-01

    The report of a workshop panel concerned with technology transfer within the government is presented. The presentation is made in vugraph form. The assigned subtopic for this panel are as follows: (1) transfer from non-NASA US government technology developers to NASA space missions/programs; and (2) transfer from NASA to other US government space mission programs. A specific area of inquiry was Technology Maturation Milestones. Three areas were investigated: technology development; advanced development; and flight hardware development.

  18. Technology transfer initiatives

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Ziemke, M. Carl

    1994-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer activities with the Marshall Space Flight Center (MSFC) for the period of April 1993 through December 1993. Early in 1993, the MSFC/TUO and UAH conceived of the concept of developing stand-alone, integrated data packages on MSFC technology that would serve industrial needs previously determined to be critical. Furthermore, after reviewing over 500 problem statements received by MSFC, it became obvious that many of these requests could be satisfied by a standard type of response. As a result, UAH has developed two critical area response (CAR) packages: CFC (chlorofluorocarbon) replacements and modular manufacturing and simulation. Publicity included news releases, seminars, articles and conference papers. The Huntsville Chamber of Commerce established the Technology Transfer Subcommittee with the charge to identify approaches for the Chamber to assist its members, as well as non-members, access to the technologies at the federal laboratories in North Alabama. The Birmingham Chamber of Commerce has expressed interest in establishing a similar technology transfer program. This report concludes with a section containing a tabulation of the problem statements, including CAR packages, submitted to MSFC from January 1992 through December 1993.

  19. Search Technologies | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  20. Available Technologies | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  1. Accelerator science and technology in Europe 2008-2017

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    European Framework Research Projects have recently added a lot of meaning to the building process of the ERA - the European Research Area. Inside this, the accelerator technology plays an essential role. Accelerator technology includes large infrastructure and intelligent, modern instrumentation embracing mechatronics, electronics, photonics and ICT. During the realization of the European research and infrastructure project FP6 CARE 2004-2008 (Coordinated Accelerator Research in Europe), concerning the development of large accelerator infrastructure in Europe, it was decided that a scientific editorial series of peer-reviewed monographs from this research area will be published in close relation with the projects. It was a completely new and quite brave idea to combine a kind of a strictly research publisher with a transient project, lasting only four or five years. Till then nobody did something like that. The idea turned out to be a real success. The publications now known and valued in the accelerator world, as the (CERN-WUT) Editorial Series on Accelerator Science and Technology, is successfully continued in already the third European project EuCARD2 and has logistic guarantees, for the moment, till the 2017, when it will mature to its first decade. During the realization of the European projects EuCARD (European Coordination for Accelerator R&D 2009-2013 and TIARA (Test Infrastructure of Accelerator Research Area in Europe) there were published 18 volumes in this series. The ambitious plans for the nearest years is to publish, hopefully, a few tens of new volumes. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, published in the monographs of the European Framework Projects (FP) on accelerator technology. The succession of CARE, Eu

  2. Low-G fluid transfer technology study

    NASA Technical Reports Server (NTRS)

    Stark, J. A.

    1976-01-01

    Technology gaps and system characteristics critical to cryogenic and noncryogenic in-orbit fluid transfer were identified. Four different supply systems were conceptually designed as space shuttle payloads. These were; (1) space tug supply - LH2, LO2, N2H4, He - linear acceleration for liquid acquisition with supply module and tug separated from shuttle, (2) tug supply using orbiter drag, (3) orbiter supply - N2O4,MMH,He, H2,O2 - surface tension screens, (4) multiple receivers supply 0 solar electric propulsion stage, Hg, diaphragm - HEAO B, HEe, paddle fluid rotation-satellite control section, N2H4, screens. It was found that screens had the best overall potential for low weight and simplicity, however, thermal problems with cryogenics still need final resolution.

  3. Transferring Technology to Industry

    NASA Technical Reports Server (NTRS)

    Wolfenbarger, J. Ken

    2006-01-01

    This slide presentation reviews the technology transfer processes in which JPL has been involved to assist in transferring the technology derived from aerospace research and development to industry. California Institute of Technology (CalTech), the organization that runs JPL, is the leading institute in patents for all U.S. universities. There are several mechanisms that are available to JPL to inform industry of these technological advances: (1) a dedicated organization at JPL, National Space Technology Applications (NSTA), (2) Tech Brief Magazine, (3) Spinoff magazine, and (4) JPL publications. There have also been many start-up organizations and businesses from CalTech.

  4. Research to practice in addiction treatment: key terms and a field-driven model of technology transfer.

    PubMed

    2011-09-01

    The transfer of new technologies (e.g., evidence-based practices) into substance abuse treatment organizations often occurs long after they have been developed and shown to be effective. Transfer is slowed, in part, due to a lack of clear understanding about all that is needed to achieve full implementation of these technologies. Such misunderstanding is exacerbated by inconsistent terminology and overlapping models of an innovation, including its development and validation, dissemination to the public, and implementation or use in the field. For this reason, a workgroup of the Addiction Technology Transfer Center (ATTC) Network developed a field-driven conceptual model of the innovation process that more precisely defines relevant terms and concepts and integrates them into a comprehensive taxonomy. The proposed definitions and conceptual framework will allow for improved understanding and consensus regarding the distinct meaning and conceptual relationships between dimensions of the technology transfer process and accelerate the use of evidence-based practices. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Technology Transfer Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  6. Software engineering technology transfer: Understanding the process

    NASA Technical Reports Server (NTRS)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  7. Innovative technology transfer of nondestructive evaluation research

    Treesearch

    Brian Brashaw; Robert J. Ross; Xiping Wang

    2008-01-01

    Technology transfer is often an afterthought for many nondestructive evaluation (NDE) researchers. Effective technology transfer should be considered during the planning and execution of research projects. This paper outlines strategies for using technology transfer in NDE research and presents a wide variety of technology transfer methods used by a cooperative...

  8. Federal Technology Transfer Act Success Stories

    EPA Pesticide Factsheets

    Successful Federal Technology Transfer Act (FTTA) partnerships demonstrate the many advantages of technology transfer and collaboration. EPA and partner organizations create valuable and applicable technologies for the marketplace.

  9. Future orbital transfer vehicle technology study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Davis, E. E.

    1982-01-01

    Reusable space and ground based LO2/LH2 OTV's, both advanced space engines and aero assist capability were compared. The SB OTV provided advantages in life cycle cost, performance and potential for improvement. An all LO2/LH2 OTV fleet was also compared with a fleet of LO2/.H2 OTV's and electric OTV's. The normal growth technology electric OTV used silicon cells with heavy shielding and argon ion thrusters. In this case, the LO2/LH2 OTV fleet provided a 23% advantage in total transportation cost. An accelerated technology LF2/LH2 OTV provided improvements in performance relative to LO2/.H2 OTV but has higher DDT&E cost which negated its cost effectiveness. The accelerated technology electric vehicle used GaAs cells and annealing but still did not result in the mixed fleet being any cheaper than an all LO2/LH2 OTV fleet. It is concluded that reusable LO2/LH2 OTV's can serve all general purpose cargo roles between LEO and GEO for the forseeable future. The most significant technology for the second generation vehicle would be space debris protection, on orbit propellant storage and transfer and on orbit maintenance capability.

  10. Technology CAD for integrated circuit fabrication technology development and technology transfer

    NASA Astrophysics Data System (ADS)

    Saha, Samar

    2003-07-01

    In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.

  11. ICAT and the NASA technology transfer process

    NASA Technical Reports Server (NTRS)

    Rifkin, Noah; Tencate, Hans; Watkins, Alison

    1993-01-01

    This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.

  12. What Is Technology Transfer? | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  13. The human element in technology transfer

    NASA Technical Reports Server (NTRS)

    Peake, H. J.

    1978-01-01

    A transfer model composed of three roles and their linkages was considered. This model and a growing body of experience was analyzed to provide guidance in the human elements of technology transfer. For example, criteria for selection of technology transfer agents was described, and some needed working climate factors were known. These concepts were successfully applied to transfer activities.

  14. Risk Management in Biologics Technology Transfer.

    PubMed

    Toso, Robert; Tsang, Jonathan; Xie, Jasmina; Hohwald, Stephen; Bain, David; Willison-Parry, Derek

    Technology transfer of biological products is a complex process that is important for product commercialization. To achieve a successful technology transfer, the risks that arise from changes throughout the project must be managed. Iterative risk analysis and mitigation tools can be used to both evaluate and reduce risk. The technology transfer stage gate model is used as an example tool to help manage risks derived from both designed process change and unplanned changes that arise due to unforeseen circumstances. The strategy of risk assessment for a change can be tailored to the type of change. In addition, a cross-functional team and centralized documentation helps maximize risk management efficiency to achieve a successful technology transfer. © PDA, Inc. 2016.

  15. Strategic Planning of Technology Transfer.

    ERIC Educational Resources Information Center

    Groff, Warren H.

    Using the Ohio Technology Transfer Organization (OTTO) as its primary example, this paper offers a strategic planning perspective on technology transfer and human resources development. First, a brief overview is provided of the maturation of mission priorities and planning processes in higher education in the United States, followed by a…

  16. Technology Transfer and Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  17. Technology Transfer: A Selected Bibliography.

    ERIC Educational Resources Information Center

    Sovel, M. Terry

    This bibliography of 428 items, a product of the NASA-sponsored Project for the Analysis of Technology Transfer (PATT) at the University of Denver's Research Institute (DRI), is the initial attempt at compiling a comprehensive listing on the subject of technology transfer. The bibliography is further concerned with information which leads to a…

  18. Toward equality of biodiversity knowledge through technology transfer.

    PubMed

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a

  19. Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) Technology Transfer Model Report.

    ERIC Educational Resources Information Center

    Sandia National Labs., Albuquerque, NM.

    The Environmentally Conscious Manufacturing Technology Transfer and Training Initiative (ECMT3I) is a cooperative effort among education and research institutions in New Mexico to analyze problems in transferring environmental technologies from Department of Energy laboratories to small and medium enterprises (SME's). The goal of the ECMT3I is to…

  20. Better Particle Accelerators with SRF Technology

    ScienceCinema

    Padamsee, Hasan; Martinello, Martina; Ross, Marc; Peskin, Michael; Yamamoto, Akira

    2018-01-16

    The use of superconducting radio frequency (SRF) technology is a driving force in the development of particle accelerators. Scientists from around the globe are working together to develop the newest materials and techniques to improve the quality and efficiency of the SRF cavities that are essential for this technology.

  1. Better Particle Accelerators with SRF Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padamsee, Hasan; Martinello, Martina; Ross, Marc

    2017-02-20

    The use of superconducting radio frequency (SRF) technology is a driving force in the development of particle accelerators. Scientists from around the globe are working together to develop the newest materials and techniques to improve the quality and efficiency of the SRF cavities that are essential for this technology.

  2. NASP technology transfer

    NASA Technical Reports Server (NTRS)

    Morris, Charles

    1992-01-01

    It is the stated goal of this program, the National AeroSpace Plane (NASP) program, to develop and then demonstrate the technologies for single-stage-to-orbit flight and hypersonic cruise with airbreathing primary propulsion and horizontal takeoff and landing. This presentation is concerned with technology transfer in the context of the NASP program.

  3. Ultra-Compact Accelerator Technologies for Application in Nuclear Techniques

    NASA Astrophysics Data System (ADS)

    Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Carazo, V.; Falabella, S.; Guethlein, G.; Guse, S.; Harris, J. R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Paul, A. C.; Pearson, D.; Poole, B.; Schmidt, R.; Sanders, D.; Selenes, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.

    2009-12-01

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve ˜10 MV/m gradients for 10 s of nanoseconds pulses and ˜100 MV/m gradients for ˜1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  4. Technological inductive power transfer systems

    NASA Astrophysics Data System (ADS)

    Madzharov, Nikolay D.; Nemkov, Valentin S.

    2017-05-01

    Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs

  5. Technology transfer to a developing nation, Korea

    NASA Technical Reports Server (NTRS)

    Stone, C. A.; Uccetta, S. J.

    1973-01-01

    An experimental project is reported which was undertaken. to determine if selected types of technology developed for the aerospace program during the past decade are relevant to specific industrial problems of a developing nation and to test whether a structured program could facilitate the transfer of relevant technologies. The Korea Institute of Science and Technology and the IIT Research Institute were selected as the active transfer agents to participate in the program. The pilot project was based upon the approach to the transfer of domestic technology developed by the NASA Technology Utilization Division and utilized the extensive data and technical resources available through the Space Agency and its contractors. This pilot project has helped to clarify some aspects of the international technology transfer process and to upgrade Korean technological capabilities.

  6. Ames Lab 101: Technology Transfer

    ScienceCinema

    Covey, Debra

    2017-12-13

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  7. Strategic directions and mechanisms in technology transfer

    NASA Technical Reports Server (NTRS)

    Mackin, Robert

    1992-01-01

    An outline summarizing the Working Panel discussion related to strategic directions for technology transfer is presented. Specific topics addressed include measuring success, management of technology, innovation and experimentation in the tech transfer process, integration of tech transfer into R&D planning, institutionalization of tech transfer, and policy/legislative resources.

  8. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  9. Accelerating Technologies: Consequences for the Future Wellbeing of Students

    ERIC Educational Resources Information Center

    Saltinski, Ronald

    2015-01-01

    Today's students, K-12 and beyond, will face an ominous future unless educators quickly invest in preparing student perspectives for the accelerating technologies that will have global implications for the wellbeing of all humanity. Accelerating technologies are quietly, almost insidiously, transforming the world with little fanfare and certainly…

  10. Communication and Cultural Change in University Technology Transfer

    ERIC Educational Resources Information Center

    Wright, David

    2013-01-01

    Faculty culture and communication networks are pivotal components of technology transfer on university campuses. Universities are focused upon diffusing technology to external clients and upon building structure and support systems to enhance technology transfer. However, engaging faculty members in technology transfer requires an internal…

  11. Biomedical technology transfer applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The identification and solution of research and clinical problems in cardiovascular medicine which were investigated by means of biomedical data transfer are reported. The following are sample areas that were focused upon by the Stanford University Biomedical Technology Transfer Team: electrodes for hemiplegia research; vectorcardiogram computer analysis; respiration and phonation electrodes; radiotelemetry of intracranial pressure; and audiotransformation of the electrocardiographic signal. It is concluded that this biomedical technology transfer is significantly aiding present research in cardiovascular medicine.

  12. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    ERIC Educational Resources Information Center

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  13. Urban development applications project. Urban technology transfer study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.

  14. A Study of the Factors Associated with Successful Technology Transfer and their Applicability to Air Force Technology Transfers.

    DTIC Science & Technology

    1995-09-01

    transfer project. (D) 8a Organization has a technology transfer organization. (D,A) 10a Marketing and advertising of technologies targeted to relevant...Entrepreneurial (D) Developer: 10A: Marketing and advertising of technologies targeted to relevant industries. Most developers indicate that they marketed...regard to marketing and advertising . 10B: Technology maturation supported by internal units or by contracting out. Technology maturation is the

  15. Project for the analysis of technology transfer

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Staskin, E. R.

    1971-01-01

    The special task of preparing technology transfer profiles during the first six months of 1971 produced two major results: refining a new method for identifying and describing technology transfer activities, and generating practical insights into a number of issues associated with transfer programs.

  16. Technology transfer to the broader economy

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon; Clark, Robert

    1992-01-01

    Approaches to the transfer of government-funded civil space technology to the broader commercial economy were addressed by Working Panel no. 4. Some of the problems related to current strategies for technology transfer and recommendations for new approaches are described in outline form.

  17. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  18. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  19. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  20. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  1. 48 CFR 970.2770 - Technology Transfer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology Transfer. 970.2770 Section 970.2770 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Patents, Data, and Copyrights 970.2770 Technology Transfer. ...

  2. Technology transfer: the key to fusion commercialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, S.C.

    1981-01-01

    The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer.

  3. AAC technology transfer: an AAC-RERC report.

    PubMed

    Higginbotham, D Jeffery; Beukelman, David; Blackstone, Sarah; Bryen, Diane; Caves, Kevin; Deruyter, Frank; Jakobs, Thomas; Light, Janice; McNaughton, David; Moulton, Bryan; Shane, Howard; Williams, Michael B

    2009-03-01

    Transferring innovative technologies from the university to the manufacturing sector can often be an elusive and problematic process. The Rehabilitation and Engineering Research Center on Communication Enhancement (AAC-RERC) has worked with the manufacturing community for the last 10 years. The purpose of this article is to discuss barriers to technology transfer, to outline some technology transfer strategies, and to illustrate these strategies with AAC-RERC related activities.

  4. NASA's southeast technology transfer alliance: A cooperative technology assistance initiative

    NASA Astrophysics Data System (ADS)

    Craft, Harry G.; Sheehan, William; Johnson, Anne

    1996-03-01

    Since 1958, NASA has been charged with actively assisting in the transfer of technologies derived from the United States space program into the industrial sector of the U.S. economy. This has historically been accomplished through technology transfer offices working independently at each NASA field center. NASA recently restructured the program to provide regional coordination, maximize efficiencies, eliminate redundancies, and capitalize on each center's fundamental technology strengths. The nation is divided into six NASA technology transfer geographical regions with each region containing one or more NASA field centers and a regional technology transfer center. The southeast region includes the states of Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, and Tennessee. The NASA field centers in this region are: the Marshall Space Flight Center in Huntsville, Alabama; the Kennedy Space Center in Florida; and the Stennis Space Center in Bay St. Louis, Mississippi. The centers have teamed to focus primarily on regional industries and businesses, to provide a wide range of resources for U.S. industries, including access to unique government facilities, regional workshops, and technical problem solving. Hundreds of American businesses have benefited from this new regional initiative, as evidenced by reports of over 10,500 added or saved jobs and over 988 million worth of economic impacts as a result of their technology transfer activities.

  5. Accelerating the commercialization of university technologies for military healthcare applications: the role of the proof of concept process

    NASA Astrophysics Data System (ADS)

    Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli

    2011-06-01

    The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the

  6. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Panagiotis; /Fermilab; Cary, John

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less

  7. EPA Reports to Congress on Technology Transfer

    EPA Pesticide Factsheets

    Agencies are required to report to the Congress annually on their technology transfer activities. These reports summarize technology transfer activities of the EPA’s federal laboratories, by fiscal year.

  8. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  9. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  10. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  11. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  12. TTC Fellowship Program | NCI Technology Transfer Center | TTC

    Cancer.gov

    The TTC has fellowship opportunities available to qualified candidates in the field of technology transfer. This Fellowship starts with your science, legal, and/or business background to create a new competency in technology transfer, preparing you for technology transfer positions within academia, industry, or the federal government.

  13. The Change Book: A Blueprint for Technology Transfer.

    ERIC Educational Resources Information Center

    Addiction Technology Transfer Centers.

    This document was developed by the Addiction Technology Transfer Center (ATTC) National Network to improve understanding about how valuable effective technology transfer is to the fields of substance abuse treatment and prevention. Technology transfer involves creating a mechanism by which a desired change is accepted, incorporated, and reinforced…

  14. 48 CFR 970.5227-3 - Technology transfer mission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer... for Management and Operating Contracts 970.5227-3 Technology transfer mission. As prescribed in 48 CFR 970.2770-4(a), insert the following clause: Technology Transfer Mission (AUG 2002) This clause has as...

  15. Technology transfer and Rockwell International

    NASA Technical Reports Server (NTRS)

    Gernand, Joseph

    1992-01-01

    Two technology partnership models are presented for consideration. The first model posits a government buyer of technology, and the second model posits that the customer is the consumer of the technology. These two models are concerned with methods of and impediments to technology transfer and information dissemination in government/contractor relationships.

  16. Optimizing Outcome in the University-Industry Technology Transfer Projects

    NASA Astrophysics Data System (ADS)

    Alavi, Hamed; Hąbek, Patrycja

    2016-06-01

    Transferring inventions of academic scientists to private enterprises for the purpose of commercialization is long known as University-Industry (firm) Technology Transfer While the importance of this phenomenon is simultaneously raising in public and private sector, only a part of patented academic inventions succeed in passing the process of commercialization. Despite the fact that formal Technology Transfer process and licencing of patented innovations to third party is the main legal tool for safeguarding rights of academic inventors in commercialization of their inventions, it is not sufficient for transmitting tacit knowledge which is necessary in exploitation of transferred technology. Existence of reciprocal and complementary relations between formal and informal technology transfer process has resulted in formation of different models for university-industry organizational collaboration or even integration where licensee firms keep contact with academic inventors after gaining legal right for commercialization of their patented invention. Current paper argues that despite necessity for patents to legally pass the right of commercialization of an invention, they are not sufficient for complete knowledge transmission in the process of technology transfer. Lack of efficiency of formal mechanism to end the Technology Transfer loop makes an opportunity to create innovative interpersonal and organizational connections among patentee and licensee company. With emphasize on need for further elaboration of informal mechanisms as critical and underappreciated aspect of technology transfer process, article will try to answer the questions of how to optimize knowledge transmission process in the framework of University-Industry Technology Transfer Projects? What is the theoretical basis for university-industry technology transfer process? What are organization collaborative models which can enhance overall performance by improving transmission of knowledge in

  17. Applications of aerospace technology in industry. A technology transfer profile: Cryogenics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Cryogenics is especially interesting when viewed from the perspective of technology transfer. Its recent rapid growth has been due to demands of both industry and aerospace. This environment provides an unusual opportunity to identify some of the forces active during a period of broad technological change and at the same time further the understanding of the technology transfer process. That process is specifically defined here as the ways in which technology, generated in NASA programs, contributes to technological change. In addition to presenting a brief overview of the cryogenics field and describing certain representative examples of the transfer of NASA-generated technology to the private sector, this presentation explores a singular relationship between NASA and another federal agency, the National Bureau of Standards. The relationship has operated both to generate and disseminate information fundamental to the broad growth of the cryogenics field.

  18. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  19. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  20. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  1. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  2. 48 CFR 970.2770-3 - Technology transfer and patent rights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Technology transfer and....2770-3 Technology transfer and patent rights. The National Competitiveness Technology Transfer Act of 1989 (NCTTA) established technology transfer as a mission for Government-owned, contractor-operated...

  3. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  4. Federal Technology Transfer Act (FTTA)

    EPA Pesticide Factsheets

    EPA's Federal Technology Transfer Act (FTTA) is a mechanism with which EPA can patent its inventions and license them to companies, through which innovative technologies can enter the marketplace to improve the environment and human health.

  5. Applications of aerospace technology in industry: A technology transfer profile, nondestructive testing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of nondestructive testing procedures by NASA and the transfer of nondestructive testing to technology to civilian industry are discussed. The subjects presented are: (1) an overview of the nondestructive testing field, (2) NASA contributions to the field of nondestructive testing, (3) dissemination of NASA contributions, and (4) a transfer profile. Attachments are included which provide a brief description of common nondestructive testing methods and summarize the technology transfer reports involving NASA generated nondestructive testing technology.

  6. FY 2004 Technology Transfer Network and Affiliations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The NASA Innovative Partnerships Program sponsors a number of organizations around the country that are designed to assist U.S. businesses in accessing, utilizing, and commercializing NASA-funded research and technology. These organizations work closely with the Technology Transfer Offices, located at each of the 10 NASA field centers, providing a full range of technology transfer and commercialization services and assistance.

  7. GPU-accelerated computation of electron transfer.

    PubMed

    Höfinger, Siegfried; Acocella, Angela; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Beu, Titus; Zerbetto, Francesco

    2012-11-05

    Electron transfer is a fundamental process that can be studied with the help of computer simulation. The underlying quantum mechanical description renders the problem a computationally intensive application. In this study, we probe the graphics processing unit (GPU) for suitability to this type of problem. Time-critical components are identified via profiling of an existing implementation and several different variants are tested involving the GPU at increasing levels of abstraction. A publicly available library supporting basic linear algebra operations on the GPU turns out to accelerate the computation approximately 50-fold with minor dependence on actual problem size. The performance gain does not compromise numerical accuracy and is of significant value for practical purposes. Copyright © 2012 Wiley Periodicals, Inc.

  8. Targeted Technology Transfer to US Independents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program.more » Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.« less

  9. Technology Transfer: A Contact Sport

    NASA Technical Reports Server (NTRS)

    Paynter, Nina P.

    1995-01-01

    Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.

  10. A case history of technology transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.

  11. Societal and economic valuation of technology-transfer deals

    NASA Astrophysics Data System (ADS)

    Holmes, Joseph S., Jr.

    2009-09-01

    The industrial adoption of concepts such as open innovation brings new legitimacy to activities technology-transfer professionals have conducted for over 20 years. This movement highlights the need for an increased understanding of the valuation of intellectual property (IP) and technology-transfer deals. Valuation, though a centerpiece of corporate finance, is more challenging when applied to the inherent uncertainty surrounding innovation. Technology-transfer professionals are often overwhelmed by the complexity and data requirements of valuation techniques and skeptical of their applicability to and utility for technology transfer. The market longs for an approach which bridges the gap between valuation fundamentals and technology-transfer realities. This paper presents the foundations of a simple, flexible, precise/accurate, and useful framework for considering the valuation of technology-transfer deals. The approach is predicated on a 12-factor model—a 3×4 value matrix predicated on categories of economic, societal, and strategic value. Each of these three categories consists of three core subcategories followed by a fourth "other" category to facilitate inevitable special considerations. This 12-factor value matrix provides a framework for harvesting data during deals and for the application of best-of-breed valuation techniques which can be employed on a per-factor basis. Future work will include framework implementation within a database platform.

  12. Partnering Events | NCI Technology Transfer Center | TTC

    Cancer.gov

    Our team of technology transfer specialists has specialized training in invention reporting, patenting, patent strategy, executing technology transfer agreements and marketing. TTC is comprised of professionals with diverse legal, scientific, and business/marketing expertise. Most of our staff hold doctorate-level technical and/or legal training.

  13. Technology transfer from the viewpoint of a NASA prime contractor

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon

    1992-01-01

    Viewgraphs on technology transfer from the viewpoint of a NASA prime contractor are provided. Technology Transfer Program for Manned Space Systems and the Technology Transfer Program status are addressed.

  14. NASA'S Changing Role in Technology Development and Transfer

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.; Craft, Harry G., Jr.

    1997-01-01

    National Aeronautics and Space Administration NASA has historically had to develop new technology to meet its mission objectives. The newly developed technologies have then been transferred to the private sector to assist US industry's worldwide competitiveness and thereby spur the US economy. The renewed emphasis by the US Government on a proactive technology transfer approach has produced a number of contractual vehicles that assist technology transfer to industrial, aerospace and research firms. NASA's focus has also been on leveraging the shrinking space budget to accomplish "more with less." NASA's cooperative agreements and resource sharing agreements are measures taken to achieve this goal, and typify the changing role of government technology development and transfer with industry. Large commercial partnerships with aerospace firms, as typified by the X-33 and X-34 Programs, are evolving. A new emphasis on commercialization in the Small Business Innovative Research and Dual Use programs paves the way for more rapid commercial application of new technologies developed for NASA.

  15. Accelerator science and technology in Europe: EuCARD 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the third annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution.

  16. 1985 Particle Accelerator Conference: Accelerator Engineering and Technology, 11th, Vancouver, Canada, May 13-16, 1985, Proceedings

    NASA Astrophysics Data System (ADS)

    Strathdee, A.

    1985-10-01

    The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.

  17. The accelerated site technology deployment program presents the segmented gate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PATTESON,RAYMOND; MAYNOR,DOUG; CALLAN,CONNIE

    2000-02-24

    The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. The papermore » uses the example of the Segmented Gate System (SGS) to illustrate how the ASTD program works. The SGS was used to cost effectively separate clean and contaminated soil for four different radionuclides: plutonium, uranium, thorium, and cesium. Based on those results, it has been proposed to use the SGS at seven other DOE sites across the country.« less

  18. Ethical Considerations in Technology Transfer.

    ERIC Educational Resources Information Center

    Froehlich, Thomas J.

    1991-01-01

    Examines ethical considerations involved in the transfer of appropriate information technology to less developed countries. Approaches to technology are considered; two philosophical frameworks for studying ethical considerations are discussed, i.e., the Kantian approach and the utilitarian perspective by John Stuart Mill; and integration of the…

  19. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  20. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Bullock, Kimberly R.

    1995-01-01

    The development and application of new technologies in the United States has always been important to the economic well being of the country. The National Aeronautics and Space Administration (NASA) has been an important source of these new technologies for almost four decades. Recently, increasing global competition has emphasized the importance of fully utilizing federally funded technologies. Today NASA must meet its mission goals while at the same time, conduct research and development that contributes to securing US economic growth. NASA technologies must be quickly and effectively transferred into commercial products. In order to accomplish this task, NASA has formulated a new way of doing business with the private sector. Emphasis is placed on forming mutually beneficial partnerships between NASA and US industry. New standards have been set in response to the process that increase effectiveness, efficiency, and timely customer response. This summer I have identified potential markets for two NASA inventions: including the Radially Focused Eddy Current Sensor for Characterization of Flaws in Metallic Tubing and the Radiographic Moire. I have also worked to establish a cooperative program with TAG, private industry, and a university known as the TAG/Industry/Academia Program.

  1. Transferability of economic evaluations of medical technologies: a new technology for orthopedic surgery.

    PubMed

    Steuten, Lotte; Vallejo-Torres, Laura; Young, Terry; Buxton, Martin

    2008-05-01

    Transferring results of economic evaluations across countries or jurisdictions can potentially save scarce evaluation resources while helping to make market access and reimbursement decisions in a timely fashion. This article points out why transferring results of economic evaluations is particularly important in the field of medical technologies. It then provides an overview of factors that are previously identified in the literature as affecting transferability of economic evaluations, as well as methods for transferring results in a scientifically sound way. As the current literature almost exclusively relates to transferability of pharmacoeconomic evaluations, this article highlights those factors and methodologies that are of particular relevance to transferring medical technology assessments. Considering the state-of-the-art literature and a worked, real life, example of transferring an economic evaluation of a product used in orthopedic surgery, we provide recommendations for future work in this important area of medical technology assessment.

  2. Mississippi Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Mississippi Technology Transfer Center at the John C. Stennis Space Center in Hancock County, Miss., was officially dedicated in 1987. The center is home to several state agencies as well as the Center For Higher Learning.

  3. Auto-disable syringes for immunization: issues in technology transfer.

    PubMed Central

    Lloyd, J. S.; Milstien, J. B.

    1999-01-01

    WHO and its partners recommend the use of auto-disable syringes, "bundled" with the supply of vaccines when donor dollars are used, in all mass immunization campaigns, and also strongly advocate their use in routine immunization programmes. Because of the relatively high price of auto-disable syringes, WHO's Technical Network for Logistics in Health recommends that activities be initiated to encourage the transfer of production technology for these syringes as a means of promoting their use and enhancing access to the technology. The present article examines factors influencing technology transfer, including feasibility, corporate interest, cost, quality assurance, intellectual property considerations, and probable time frames for implementation. Technology transfer activities are likely to be complex and difficult, and may not result in lower prices for syringes. Guidelines are offered on technology transfer initiatives for auto-disable syringes to ensure the quality of the product, the reliability of the supply, and the feasibility of the technology transfer activity itself. PMID:10680248

  4. A continuing program for technology transfer to the apparel industry

    NASA Technical Reports Server (NTRS)

    Clingman, W. H.

    1971-01-01

    A six month program has been carried out to investigate various mechanisms for transferring technology to industry. This program has focused on transfer to the apparel industry through the Apparel Research Foundation. The procedure was to analyze the problem, obtain potentially relevant aerospace technology, and then transfer this technology to the industry organization. This was done in a specific case. Technology was identified relevant to stitchless joining, and this technology was transferred to the Apparel Research Foundation. The feasibility and ground rules for carrying out such activities on a broader scale were established. A specific objective was to transfer new technology from the industry organization to the industry itself. This required the establishment of an application engineering program. Another transfer mechanism tested was publication of solutions to industry problems in a format familiar to the industry. This is to be distinguished from circulating descriptions of new technology. Focus is on the industry problem and the manager is given a formula for solving it that he can follow. It was concluded that this mechanism can complement the problem statement approach to technology transfer. It is useful in achieving transfer when a large amount of application engineering is not necessary. A wide audience is immediately exposed to the technology. On the other hand, the major manufacturing problems which require a sophisticated technical solution integrating many innovations are less likely to be helped.

  5. Argonne National Laboratory technology transfer report, FY 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-11-01

    In 1985 Argonne established the Technology Transfer Center (TTC). As of the end of FY 1987, the TTC has a staff equivalent to four full-time professionals, two secretaries, and two student aides; FY 1987 ORTA funding was $220K. A network of technology transfer representatives provides windows into and out of Argonne's technical divisions on technology transfer matters. The TTC works very closely with the ARCH Develoment Corporation, a not-for-profit corporation set up to commercialize selected Argonne and University of Chicago patents. The goal of the Technology Transfer Center at Argonne is to transfer technology developed at Argonne to the domesticmore » private sector by whatever means is most effective. The strategies by which this is accomplished are numerous and the TTC is, in effect, conducting a number of experiments to determine the most effective strategies. These include cooperative RandD agreements, work-for-others contracts, subcontracting to industry, formation of joint ventures via ARCH, residencies by industry staff at Argonne and vice versa, patent licensing and, of course, conferences, workshops and visits by industry and to industry.« less

  6. Transfer and utilization of government technology assets to the private sector in the fields of health care and information technologies

    NASA Astrophysics Data System (ADS)

    Kun, Luis G.

    1995-10-01

    During the first Health Care Technology Policy conference last year, during health care reform, four major issues were brought up in regards to the efforts underway to develop a computer based patient record (CBPR), the National Information Infrastructure (NII) as part of the high performance computers and communications (HPCC), and the so-called 'patient card.' More specifically it was explained how a national information system will greatly affect the way health care delivery is provided to the United States public and reduce its costs. These four issues were: (1) Constructing a national information infrastructure (NII); (2) Building a computer based patient record system; (3) Bringing the collective resources of our national laboratories to bear in developing and implementing the NII and CBPR, as well as a security system with which to safeguard the privacy rights of patients and the physician-patient privilege; (4) Utilizing government (e.g., DOD, DOE) capabilities (technology and human resources) to maximize resource utilization, create new jobs, and accelerate technology transfer to address health care issues. This year a section of this conference entitled: 'Health Care Technology Assets of the Federal Government' addresses benefits of the technology transfer which should occur for maximizing already developed resources. This section entitled: 'Transfer and Utilization of Government Technology Assets to the Private Sector,' will look at both health care and non-health care related technologies since many areas such as information technologies (i.e. imaging, communications, archival/retrieval, systems integration, information display, multimedia, heterogeneous data bases, etc.) already exist and are part of our national labs and/or other federal agencies, i.e., ARPA. These technologies although they are not labeled under health care programs they could provide enormous value to address technical needs. An additional issue deals with both the technical

  7. Food irradiation: Technology transfer in Asia, practical experiences

    NASA Astrophysics Data System (ADS)

    Kunstadt, Peter; Eng, P.

    1993-10-01

    Nordion International Inc., in cooperation with the Thai Office of Atomic Energy for Peace (OAEP) and the Canadian International Development Agency (CIDA) recently completed a unique food irradiation technology transfer project in Thailand. This complete food irradiation technology transfer project included the design and construction of an automatic multipurpose irradiation facility as well as the services of construction and installation management and experts in facility operation, maintenance and training. This paper provides an insight into the many events that led to the succesful conclusion of the world's first complete food irradiation technology transfer project.

  8. Formal methods technology transfer: Some lessons learned

    NASA Technical Reports Server (NTRS)

    Hamilton, David

    1992-01-01

    IBM has a long history in the application of formal methods to software development and verification. There have been many successes in the development of methods, tools and training to support formal methods. And formal methods have been very successful on several projects. However, the use of formal methods has not been as widespread as hoped. This presentation summarizes several approaches that have been taken to encourage more widespread use of formal methods, and discusses the results so far. The basic problem is one of technology transfer, which is a very difficult problem. It is even more difficult for formal methods. General problems of technology transfer, especially the transfer of formal methods technology, are also discussed. Finally, some prospects for the future are mentioned.

  9. Technology transfer 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefitsmore » include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.« less

  10. Successful Technology Transfer in Colorado: A Portfolio of Technology Transfer "Success Stories."

    ERIC Educational Resources Information Center

    Colorado Advanced Tech. Inst., Denver.

    The examples in this portfolio demonstrate how technology transfer among universities, businesses, and federal laboratories solve real-world problems, and create new goods and services. They reveal how, through strengthening the infrastructure joining private and public sectors, Colorado can better compete in the global marketplace. All of the…

  11. Development of Technology Transfer Economic Growth Metrics

    NASA Technical Reports Server (NTRS)

    Mastrangelo, Christina M.

    1998-01-01

    The primary objective of this project is to determine the feasibility of producing technology transfer metrics that answer the question: Do NASA/MSFC technical assistance activities impact economic growth? The data for this project resides in a 7800-record database maintained by Tec-Masters, Incorporated. The technology assistance data results from survey responses from companies and individuals who have interacted with NASA via a Technology Transfer Agreement, or TTA. The goal of this project was to determine if the existing data could provide indications of increased wealth. This work demonstrates that there is evidence that companies that used NASA technology transfer have a higher job growth rate than the rest of the economy. It also shows that the jobs being supported are jobs in higher wage SIC codes, and this indicates improvements in personal wealth. Finally, this work suggests that with correct data, the wealth issue may be addressed.

  12. Technology transfer for women entrepreneurs: issues for consideration.

    PubMed

    Everts, S I

    1998-01-01

    This article discusses the effectiveness of technology transfers to women entrepreneurs in developing countries. Most women's enterprises share common characteristics: very small businesses, employment of women owners and maybe some family members, limited working capital, low profit margins, and flexible or part-time work. Many enterprises do not plan for growth. Women tend to diversify and use risk-avoidance strategies. Support for women's enterprises ignores the characteristics of women's enterprises. Support mechanisms could be offered that would perfect risk-spreading strategies and dynamic enterprise management through other means than growth. Many initiatives, since the 1970s, have transferred technologies to women. Technologies were applied to only a few domains and were viewed as appropriate based on their small size, low level of complexity, low cost, and environmental friendliness. Technology transfers may not be viewed by beneficiaries as the appropriate answer to needs. The bottleneck in transfers to women is not in the development of prototypes, but in the dissemination of technology that is sustainable, appropriate, and accessible. Key features for determining appropriateness include baseline studies, consumer linkages, and a repetitive process. Institutional factors may limit appropriateness. There is a need for long-term outputs, better links with users, training in use of the technology, grouping of women into larger units, and technology availability in quantities large enough to meet demand. Guidelines need to be developed that include appropriate content and training that ensures transfer of knowledge to practice.

  13. On transferring the grid technology to the biomedical community.

    PubMed

    Mohammed, Yassene; Sax, Ulrich; Dickmann, Frank; Lippert, Joerg; Solodenko, Juri; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which resulted in the Grid. The inter domain transfer process of this technology has been an intuitive process. Some difficulties facing the life science community can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies that have achieved certain stability. Grid and Cloud solutions are technologies that are still in flux. We illustrate how Grid computing creates new difficulties for the technology transfer process that are not considered in Bozeman's model. We show why the success of health Grids should be measured by the qualified scientific human capital and opportunities created, and not primarily by the market impact. With two examples we show how the Grid technology transfer theory corresponds to the reality. We conclude with recommendations that can help improve the adoption of Grid solutions into the biomedical community. These results give a more concise explanation of the difficulties most life science IT projects are facing in the late funding periods, and show some leveraging steps which can help to overcome the "vale of tears".

  14. Technology transfer program: Perspective

    NASA Technical Reports Server (NTRS)

    Toyshov, A. J.

    1981-01-01

    Most of NASA's technology transfer activities are in the area of land use (development, suitability, and planning); forestry (including wildlife and range and vegetation inventories) agriculture related activities; and water resources. The technology dissemination function is exercised through three regional applications centers which are involved in 91 applications projects within 22 states. In addition there are approximately eight application system verification transfer (ASVT) projects, 21 university applications branches, institutionalized liason activities with public interest groups, and user requirements activities. As the result of budget cuts, the ASVT and user requirements and awareness programs are to be phased out at the end of FY81. The university applications programs are to be phased down and terminated by 1985. NASA will continue to work with the user more in an R & D and an applications development capacity, and not in a national scale or administrative way.

  15. KSC Tech Transfer News, Volume 5, No. 1

    NASA Technical Reports Server (NTRS)

    Buckingham, Bruce (Editor)

    2012-01-01

    In October 2011, the White House released a presidential memorandum titled "Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses." It emphasized the importance of technology transfer as a driver of successful innovation to fuel economic growth, create jobs, and make U.S. industries more competitive in a global market. In response to this memorandum, NASA developed a 5-year plan for accelerating its own technology transfer activities. This plan outlines key objectives for enhancing NASA's ability to increase the rate, volume, and quality of technology transfers to industry, academia, and other Government agencies. By doing so, we are increasing the economic impact and public benefit of Federal technology investments. In addition, NASA established technology transfer as a key element of one of its Agency High Priority Performance Goals: "Enable bold new missions and make new technologies available to Government agencies and U.S. industry."What does this mean to you? In the broadest sense, NASA defines technology transfer as the utilization of NASA's technological assets- technologies, innovations, unique facilities and equipment, and technical expertise- by public and private sectors to benefit the Nation. So, if your job involves developing new technologies, writing new software, creating innovative ways to do business, performing research, or developing new technical capabilities, you could be contributing to Kennedy Space Center's (KSC) technology transfer activities by creating the technological assets that may one day be used by external partners. Furthermore, anytime you provide technical expertise to external partners, you're participating in technology transfer. The single most important step you can take to support the technology transfer process is to report new technologies and innovations ro the Technology Transfer Office. This is the critical first step in fueling the technology transfer pipeline

  16. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  17. Transfer of radiation technology to developing countries

    NASA Astrophysics Data System (ADS)

    Markovic, Vitomir; Ridwan, Mohammad

    1993-10-01

    Transfer of technology is a complex process with many facets, options and constraints. While the concept is an important step in bringing industrialization process to agricultural based countries, it is clear, however, that a country will only benefit from a new technology if it addresses a real need, and if it can be absorbed and adapted to suit the existing cultural and technological base. International Atomic Energy Agency, as UN body, has a mandate to promote nuclear applicationsand assist Member States in transfer of technology for peaceful applications. This mandate has been pursued by many different mechanisms developed in the past years: technical assistance, coordinated research programmes, scientific and technical meetings, publications, etc. In all these activities the Agency is the organizer and initiator, but main contributions come from expert services from developed countries and, increasingly, from developing countries themselves. The technical cooperation among developing coutries more and more becomes part of different programmes. In particular, regional cooperation has been demonstrated as an effective instrument for transfer of technology from developed and among developing countries. Some examples of actual programmes are given.

  18. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  19. History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Nassiri, A.; Chase, B.; Craievich, P.; Fabris, A.; Frischholz, H.; Jacob, J.; Jensen, E.; Jensen, M.; Kustom, R.; Pasquinelli, R.

    2016-04-01

    This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideröe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators.

  20. The R/D of high power proton accelerator technology in China

    NASA Astrophysics Data System (ADS)

    Xialing, Guan

    2002-12-01

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

  1. Tech Transfer News. Volume 6, No. 1

    NASA Technical Reports Server (NTRS)

    Victor, Megan E.

    2014-01-01

    On October 28, 2011, the White House released a Presidential Memorandum entitled: Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses. With this memo, the President challenged all federal agencies conducting R&D to accelerate technology transfer and commercialization of federally developed technology to help stimulate the national economy. The NASA Technology Transfer Program responded by asking the center technology transfer offices to reach out to - and work more closely with - their regional economic development organizations to promote the transfer of NASA technologies to the local private sector for use in the marketplace. Toward that effort, the KSC Technology Transfer Office teamed with the Florida Space Coast Economic Development Commission (EDC) to host a technology transfer forum designed to increase our business community's awareness of available KSC technologies for transfer. In addition, the forum provided opportunities for commercial businesses to collaborate with KSC in technology development. (see article on page 12) The forum, held on September 12, 2013, focused on KSC technology transfer and partnership opportunities within the Robotics, Sustainability, Information Technology and Environmental Remediation technology areas. The event was well attended with over 120 business leaders from the community. KSC Center Director Robert Cabana and the Center Chief Technologist Karen Thompson provided remarks, and several KSC lead researchers presented technical information and answered questions, which were not in short supply. Florida Today and the Orlando Sentinel ran news stories on the forum and both NASA TV and Channel 6 News filmed portions of the event. Given the reaction by the media and local business to the forum, it is evident the community is recognizing the opportunities that NASA-developed technologies can provide to aspiring entrepreneurs and existing companies to bring new

  2. Dual Space Technology Transfer

    NASA Astrophysics Data System (ADS)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  3. Technology Transfer through Training: Emerging Roles for the University.

    ERIC Educational Resources Information Center

    Bergsma, Harold M.

    The importance of training in the technology transfer process is discussed, with special consideration to conditions in developing countries. Also considered is the role universities can play in training to promote technology transfer. Advisors on training and curriculum development are needed to introduce a new technology. Training farmers to…

  4. Technology Transfer: Creating the Right Environment.

    ERIC Educational Resources Information Center

    McCullough, John M.

    2003-01-01

    Small and medium-sized enterprises are considered to be the backbone of many European economies and a catalyst for economic growth. Universities are key players in encouraging and supporting economic growth through technology and knowledge-related transfer. The right environment to foster transfer is a proactive culture. (Contains 22 references.)…

  5. NREL Solar Cell Wins Federal Technology Transfer Prize | News | NREL

    Science.gov Websites

    Solar Cell Wins Federal Technology Transfer Prize News Release: NREL Solar Cell Wins Federal ) Solar Cell was named a winner of the 2009 Award for Excellence in Technology Transfer by the Federal Laboratory Consortium for Technology Transfer. The original IMM cell was invented by Mark Wanlass of NREL's

  6. Terascale Computing in Accelerator Science and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Kwok

    2002-08-21

    We have entered the age of ''terascale'' scientific computing. Processors and system architecture both continue to evolve; hundred-teraFLOP computers are expected in the next few years, and petaFLOP computers toward the end of this decade are conceivable. This ever-increasing power to solve previously intractable numerical problems benefits almost every field of science and engineering and is revolutionizing some of them, notably including accelerator physics and technology. At existing accelerators, it will help us optimize performance, expand operational parameter envelopes, and increase reliability. Design decisions for next-generation machines will be informed by unprecedented comprehensive and accurate modeling, as well as computer-aidedmore » engineering; all this will increase the likelihood that even their most advanced subsystems can be commissioned on time, within budget, and up to specifications. Advanced computing is also vital to developing new means of acceleration and exploring the behavior of beams under extreme conditions. With continued progress it will someday become reasonable to speak of a complete numerical model of all phenomena important to a particular accelerator.« less

  7. Technology transfer needs and experiences: The NASA Research Center perspective

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.

    1992-01-01

    Viewgraphs on technology transfer needs and experiences - the NASA Research Center perspective are provided. Topics covered include: functions of NASA, incentives and benefits, technology transfer mechanisms, economics of technology commercialization, examples, and conclusions.

  8. Technology Transfer: A Third World Perspective.

    ERIC Educational Resources Information Center

    Akubue, Anthony I.

    2002-01-01

    Technology transfer models are based on assumptions that do not reflect Third-World realities. Obstacles to building indigenous technology capacity include multinational corporations' control of innovations, strings attached to foreign aid, and indigenous reluctance to undertake research. Four areas of development include foreign direct…

  9. How technology transfer issues are managed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sink, C.H.; Easley, K.R.

    1991-12-31

    In 1989, Secretary of Energy James Watkins made a commitment to accelerate DOE compliance with all applicable laws and standards aimed at protecting human health and the environment. At a minimum, this pledge requires the remediation of the 1989 inventory of chemical, radioactive, and mixed wastes at DOE production sites by 2019. The 1989 Complex inventory consisted of more than 3,700 sites, encompassing more than 26,000 acres contaminated with radioactive, hazardous, and mixed wastes. In addition, over 500 surplus sites are awaiting decontamination and decommissioning (D and D), and approximately 5,000 peripheral properties have contaminated soils (e.g., uranium tailings). Moreover,more » these problems exist at both inactive sites, where the primary focus is on environmental restoration, and at active sites, where the major emphasis is on improved waste management techniques. Although some of DOE`s problems are considered unique due to radioactivity, most forms of contamination resident in the Complex are not; rather, contaminants such as waste chemicals (e.g., inorganics), organics (e.g., fuels and solvents), halogenated organics (e.g., PCBs) and heavy metals commonly result in conventional industrial processes. Although certain other forms of contamination are more unique to DOE operations (e.g., radioactive materials, explosives, and pyrophorics), they are not exclusive to DOE. As DOE develops innovative solutions to these and related waste problems, it is imperative that technology systems and lessons learned be transferred from DOE sites and its R and D laboratories to private industry to maximize the nation`s return on environmental management technology investments.« less

  10. Maximizing profits in international technology transfer

    NASA Technical Reports Server (NTRS)

    Straube, W.

    1974-01-01

    Maximum profit can be introduced into international technology transfer by observing the following: (1) ethical and open dealing between the parties; (2) maximum knowledge of all facts concerning the technology, the use of the technology, the market, competition, prices, and alternatives; (3) ability to coordinate exports, service, support activities, licensing and cross licensing; and (4) knowledgeable people which put these factors together.

  11. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  12. Technology transfer and evaluation for Space Station telerobotics

    NASA Technical Reports Server (NTRS)

    Price, Charles R.; Stokes, Lebarian; Diftler, Myron A.

    1994-01-01

    The international space station (SS) must take advantage of advanced telerobotics in order to maximize productivity and safety and to reduce maintenance costs. The Automation and Robotics Division at the NASA Lyndon B. Johnson Space Center (JSC) has designed, developed, and constructed the Automated Robotics Maintenance of Space Station (ARMSS) facility for the purpose of transferring and evaluating robotic technology that will reduce SS operation costs. Additionally, JSC had developed a process for expediting the transfer of technology from NASA research centers and evaluating these technologies in SS applications. Software and hardware system developed at the research centers and NASA sponsored universities are currently being transferred to JSC and integrated into the ARMSS for flight crew personnel testing. These technologies will be assessed relative to the SS baseline, and, after refinements, those technologies that provide significant performance improvements will be recommended as upgrades to the SS. Proximity sensors, vision algorithms, and manipulator controllers are among the systems scheduled for evaluation.

  13. License Agreements | NCI Technology Transfer Center | TTC

    Cancer.gov

    NCI Technology Transfer Center (TTC) licenses the discoveries of NCI and nine other NIH Institutes so new technologies can be developed and commercialized, to convert them into public health benefits.

  14. Technology Transfer: Technocultures, Power and Communication--The Australian Experience.

    ERIC Educational Resources Information Center

    More, Elizabeth; Irwin, Harry

    1995-01-01

    Discusses issues of communication and power in the organizational dimensions of international technology transfer, including technoculture differences and strategic political alliances. Theoretical discussion is supplemented by analysis of international technology transfer activities involving Australian participation in the aerospace and…

  15. Applications of aerospace technology in industry, a technology transfer profile: Lubrication

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    Technology transfer in the lubrication field is discussed in terms of the movement of NASA-generated lubrication technology into the private sector as affected by evolving industrial requirements. An overview of the field is presented, and NASA technical contributions to lubrication technology are described. Specific examples in which these technologies have been used in the private sector are summarized.

  16. Transferring technology to the public sector.

    NASA Technical Reports Server (NTRS)

    Alper, M. E.

    1972-01-01

    Approximately four years ago the Jet Propulsion Laboratory, under NASA sponsorship, began to devote some of its resources to examining ways to transfer space technology to the civil sector. As experience accumulated under this program, certain principles basic to success in technology transfer became apparent. An adequate definition of each problem must be developed before any substantial effort is expended on a solution. In most instances, a source of funds other than the potential user is required to support the problem definition phase of the work. Sensitivity to the user's concerns and effective interpersonal communications between the user and technical personnel are essential to success.

  17. Sub-Committee on Advanced Technology and Technology Transfer

    DTIC Science & Technology

    1984-11-01

    TECHNOLOGY AND TECHNOLOGY TRANSFER Mr. Lohar IBRLJGGER (Fed. Rep. of Germany ) Rapporteur In aauwdmnce uWWIA t&ic 3G4 fanzgph 3, ’of Ath Rules O’Prw... Germany , SPO) Members : Mr. Joao Ferraz de Abreu (Portugal, PS) Mr. Robert Aumont (France, PS) Mr. Ton van Deemelen (Netherlands, VVD) Mr. Jos van...Rep,. of, Germany , CU Mr. Jorgen Sonstebo (Norway, Christian People’s Party) International Secretariat I’...’ Mr. David Hobbs, Director, Scientific

  18. Welcome to Ames Research Center (1987 forum on Federal technology transfer)

    NASA Technical Reports Server (NTRS)

    Ballhaus, William F., Jr.

    1988-01-01

    NASA Ames Research Center has a long and distinguished history of technology development and transfer. Recently, in a welcoming speech to the Forum on Federal Technology Transfer, Director Ballhouse of Ames described significant technologies which have been transferred from Ames to the private sector and identifies future opportunities.

  19. Technology Transfer Annual Report Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Wendy Lee

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partnersmore » for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to

  20. An Analysis of NASA Technology Transfer. Degree awarded by Pennsylvania State Univ.

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.

    1996-01-01

    A review of previous technology transfer metrics, recommendations, and measurements is presented within the paper. A quantitative and qualitative analysis of NASA's technology transfer efforts is performed. As a relative indicator, NASA's intellectual property performance is benchmarked against a database of over 100 universities. Successful technology transfer (commercial sales, production savings, etc.) cases were tracked backwards through their history to identify the key critical elements that lead to success. Results of this research indicate that although NASA's performance is not measured well by quantitative values (intellectual property stream data), it has a net positive impact on the private sector economy. Policy recommendations are made regarding technology transfer within the context of the documented technology transfer policies since the framing of the Constitution. In the second thrust of this study, researchers at NASA Langley Research Center were surveyed to determine their awareness of, attitude toward, and perception about technology transfer. Results indicate that although researchers believe technology transfer to be a mission of the Agency, they should not be held accountable or responsible for its performance. In addition, the researchers are not well educated about the mechanisms to perform, or policies regarding, technology transfer.

  1. Transfer of space technology to industry

    NASA Technical Reports Server (NTRS)

    Hamilton, J. T.

    1974-01-01

    Some of the most significant applications of the NASA aerospace technology transfer to industry and other government agencies are briefly outlined. The technology utilization program encompasses computer programs for structural problems, life support systems, fuel cell development, and rechargeable cardiac pacemakers as well as reliability and quality research for oil recovery operations and pollution control.

  2. Double-layered cell transfer technology for bone regeneration

    PubMed Central

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  3. Benchmarking the Economic Impact and Effectiveness of University Technology Transfer in Maryland.

    ERIC Educational Resources Information Center

    Clinch, Richard

    This study examined university technology transfer in Maryland in terms of three issues: (1) the economic impact of university technology transfer; (2) a comparison of the technology transfer effort of University of Maryland System (UMS) institutions with other regional and "best practice" institutions; and (3) the technology transfer…

  4. University Technology Transfer Information Processing from the Attention Based View

    ERIC Educational Resources Information Center

    Hamilton, Clovia

    2015-01-01

    Between 2005 and 2011, there was no substantial growth in licenses executed by university technology transfer offices. Since the passage of the Bayh Dole Act of 1980, universities have owned technological inventions afforded by federal research funding. There are still university technology transfer offices that struggle with increasing their…

  5. (abstract) Formal Inspection Technology Transfer Program

    NASA Technical Reports Server (NTRS)

    Welz, Linda A.; Kelly, John C.

    1993-01-01

    A Formal Inspection Technology Transfer Program, based on the inspection process developed by Michael Fagan at IBM, has been developed at JPL. The goal of this program is to support organizations wishing to use Formal Inspections to improve the quality of software and system level engineering products. The Technology Transfer Program provides start-up materials and assistance to help organizations establish their own Formal Inspection program. The course materials and certified instructors associated with the Technology Transfer Program have proven to be effective in classes taught at other NASA centers as well as at JPL. Formal Inspections (NASA tailored Fagan Inspections) are a set of technical reviews whose objective is to increase quality and reduce the cost of software development by detecting and correcting errors early. A primary feature of inspections is the removal of engineering errors before they amplify into larger and more costly problems downstream in the development process. Note that the word 'inspection' is used differently in software than in a manufacturing context. A Formal Inspection is a front-end quality enhancement technique, rather than a task conducted just prior to product shipment for the purpose of sorting defective systems (manufacturing usage). Formal Inspections are supporting and in agreement with the 'total quality' approach being adopted by many NASA centers.

  6. Work with Us | Geothermal Technologies | NREL

    Science.gov Websites

    work with us and leverage our geothermal research, facilities, and expertise. Contact Us Photo of develop, test, and evaluate geothermal technologies. Commercialize Your Technology Accelerate the transfer

  7. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Rights in data-technology... for Management and Operating Contracts 970.5227-2 Rights in data-technology transfer. As prescribed in 48 CFR 970.2704-3(b), insert the following clause: Rights in Data—Technology Transfer (DEC 2000) (a...

  8. The process for technology transfer in Baltimore

    NASA Technical Reports Server (NTRS)

    Golden, T. S.

    1978-01-01

    Ingredients essential for a successful decision process relative to proper technological choices for a large city were determined during four years of experience in the NASA/Baltimore Applications Project. The general approach, rationale, and process of technology transfer are discussed.

  9. A southern region conference on technology transfer and extension

    Treesearch

    Sarah F. Ashton; William G. Hubbard; H. Michael Rauscher

    2009-01-01

    Forest landowners and managers have different education and technology transfer needs and preferences. To be effective it is important to use a multi-faceted science delivery/technology transfer program to reach them. Multi-faceted science delivery programs can provide similar content over a wide range of mechanisms including printed publications, face-to-face...

  10. Stimulating Innovation and Accelerating the Development of Complex and Slowly Maturing Technologies Through Advanced Technology Prize Competitions

    DTIC Science & Technology

    2007-06-15

    technology prize competitions have been used since the 18th century to spur innovation and advance the development of complex and slowly maturing disruptive ... technologies The Defense Advanced Research Projects Agency (DARPA) has used advanced technology competitions in 2004 and 2005 to rapidly accelerate the

  11. Development of advanced technological systems for accelerator transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batskikh, G.I.; Bondarev, B.I.; Durkin, A.P.

    1995-10-01

    A development concept of the accelerator nuclear energy reactors is considered for energy generation and nuclear power plant waste conversion into short-lived nuclides along with the requirements imposed on the technological systems necessary for implementation of such projects. The state of art in the field is discussed.

  12. A hypertext-based Internet-assessable database for the MSFC Technology Transfer Office

    NASA Technical Reports Server (NTRS)

    Jackson, Jeff

    1994-01-01

    There exists a continuing need to disseminate technical information and facilities capabilities from NASA field centers in an effort to promote the successful transfer of technologies developed with public funds to the private sector. As technology transfer is a stated NASA mission, there exists a critical need for NASA centers to document technology capabilities and disseminate this information on as wide a basis as possible. Certainly local and regional dissemination is critical, but global dissemination of scientific and engineering facilities and capabilities gives NASA centers the ability to contribute to technology transfer on a much broader scale. Additionally, information should be disseminated in a complete and rapidly available form. To accomplish this information dissemination, the unique capabilities of the Internet are being exploited. The Internet allows widescale information distribution in a rapid fashion to aid in the accomplishment of technology transfer goals established by the NASA/MSFC Technology Transfer Office. Rapid information retrieval coupled with appropriate electronic feedback, allows the scientific and technical capabilities of Marshall Space Flight Center, often unique in the world, to be explored by a large number of potential benefactors of NASA (or NASA-derived) technologies. Electronic feedback, coupled with personal contact with the MSFC Technology Transfer Office personnel, allows rapid responses to technical requests from industry and academic personnel as well as private citizens. The remainder of this report gives a brief overview of the Mosaic software and a discussion of technology transfer office and laboratory facilities data that have been made available on the Internet to promote technology transfer.

  13. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    ERIC Educational Resources Information Center

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  14. Standard Modular Hydropower Technology Acceleration Workshop: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Brennan T.; DeNeale, Scott T.; Witt, Adam M.

    In support of the Department of Energy (DOE) funded Standard Modular Hydropower (SMH) Technology Acceleration project, Oak Ridge National Laboratory (ORNL) staff convened with five small hydropower technology entrepreneurs on June 14 and 15, 2017 to discuss gaps, challenges, and opportunities for small modular hydropower development. The workshop was designed to walk through SMH concepts, discuss the SMH research vision, assess how each participant’s technology aligns with SMH concepts and research, and identify future pathways for mutually beneficial collaboration that leverages ORNL expertise and entrepreneurial industry experience. The goal coming out of the workshop is to advance standardized, scalable, modularmore » hydropower technologies and development approaches with sustained and open dialogue among diverse stakeholder groups.« less

  15. EPA's Technology Transfer: Now Geared to Industry

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1973

    1973-01-01

    Through capsule reports, seminars, and design manuals, Environmental Protection Agency has activated its industrial technology transfer program for marketing the products of federal research, development, and demonstration activities. Its purpose is to disseminate information to industry on available technology for control and treatment of air,…

  16. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  17. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  18. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  19. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Transfer operations provisions-reference control technology. 63.126 Section 63.126 Protection of Environment ENVIRONMENTAL PROTECTION... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1...

  20. Distance technology transfer course content development.

    DOT National Transportation Integrated Search

    2013-06-01

    The Illinois Department of Transportation (IDOT) offers multiple technology transfer courses for engineering, : project design, and safety training for state and local agency personnel. These courses are often essential to the : agency mission. Becau...

  1. Space spin-offs: is technology transfer worth it?

    NASA Astrophysics Data System (ADS)

    Bush, Lance B.

    Dual-uses, spin-offs, and technology transfer have all become part of the space lexicon, creating a cultural attitude toward space activity justification. From the very beginning of space activities in the late 1950's, this idea of secondary benefits became a major part of the space culture and its beliefs system. Technology transfer has played a central role in public and political debates of funding for space activities. Over the years, several studies of the benefits of space activities have been performed, with some estimates reaching as high as a 60:1 return to the economy for each dollar spent in space activities. Though many of these models claiming high returns have been roundly criticized. More recent studies of technology transfer from federal laboratories to private sector are showing a return on investment of 2.8:1, with little evidence of jobs increases. Yet, a purely quantitative analysis is not sufficient as there exist cultural and social benefits attainable only through case studies. Space projects tend to have a long life cycle, making it difficult to track metrics on their secondary benefits. Recent studies have begun to make inroads towards a better understanding of the benefits and drawbacks of investing in technology transfer activities related to space, but there remains significant analyses to be performed which must include a combination of quantitative and qualitative analyses.

  2. Applications of aerospace technology in industry, a technology transfer profile: Contamination control

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The strong influence NASA-sponsored research has had on the development of solutions to difficult contamination problems is considered. The contamination control field is comprised of an industrial base, supplying the tools of control; a user base, adopting control techniques; and a technical base, expanding the concepts of control. Both formal and informal mechanisms used by NASA to communicate a variety of technical advances are reviewed and certain examples of the expansion of the user base through technology transfer are given. Issues related to transfer of NASA-generated contamination control technology are emphasized.

  3. Preclinical evaluation of a Haemophilus influenzae type b conjugate vaccine process intended for technology transfer.

    PubMed

    Hamidi, Ahd; Verdijk, Pauline; Kreeftenberg, Hans

    2014-01-01

    Introduction of Haemophilus influenzae type b (Hib) vaccine in low- and middle-income countries has been limited by cost and availability of Hib conjugate vaccines for a long time. It was previously recognized by the Institute for Translational Vaccinology (Intravacc, originating from the former Vaccinology Unit of the National Institute of Public Health [RIVM] and the Netherlands Vaccine Institute [NVI]) that local production of a Hib conjugate vaccine would increase the affordability and sustainability of the vaccine and thereby help to speed up Hib introduction in these countries. A new affordable and a non-infringing production process for a Hib conjugate vaccine was developed, including relevant quality control tests, and the technology was transferred to a number of vaccine manufacturers in India, Indonesia, and China. As part of the Hib technology transfer project managed by Intravacc, a preclinical toxicity study was conducted in the Netherlands to test the safety and immunogenicity of this new Hib conjugate vaccine. The data generated by this study were used by the technology transfer partners to accelerate the clinical development of the new Hib conjugate vaccine. A repeated dose toxicity and local tolerance study in rats was performed to assess the reactogenicity and immunogenicity of a new Hib conjugate vaccine compared to a licensed vaccine. The results showed that the vaccine was well tolerated and immunogenic in rats, no major differences in both safety and immunogenicity in rats were found between the vaccine produced according to the production process developed by Intravacc and the licensed one. Rats may be useful to verify the immunogenicity of Hib conjugate vaccines and for preclinical evaluation. In general, nonclinical evaluation of the new Hib conjugate vaccine, including this proof of concept (safety and immunogenicity study in rats), made it possible for technology transfer partners, having implemented the original process with no changes

  4. Welding technology. [technology transfer of NASA developments to commercial organizations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Welding processes which have been developed during NASA space program activities are discussed. The subjects considered are: (1) welding with an electron gun, (2) technology of welding special alloys, and (3) welding shop techniques and equipment. The material presented is part of the combined efforts of NASA and the Small Business Administration to provide technology transfer of space-related developments to the benefit of commercial organizations.

  5. Technology Transfer Program (TTP). Quality Assurance System. Volume 2. Appendices

    DTIC Science & Technology

    1980-03-03

    LSCo Report No. - 2X23-5.1-4-I TECHNOLOGY TRANSFER PROGRAM (TTP) FINAL REPORT QUALITY ASSURANCE SYSTEM Appendix A Accuracy Control System QUALITY...4-1 TECHNOLOGY TRANSFER PROGRAM (TTP) FINAL REPORT QUALITY ASSURANCE SYSTEM Appendix A Accuracy Control System QUALITY ASSURANCE VOLUME 2 APPENDICES...prepared by: Livingston Shipbuilding Company Orange, Texas March 3, 1980 APPENDIX A ACCURACY CONTROL SYSTEM . IIII MARINE TECHNOLOGY. INC. HP-121

  6. Software Technology Transfer and Export Control.

    DTIC Science & Technology

    1981-01-01

    development projects of their own. By analogy, a Soviet team might be able to repeat the learning experience of the ADEPT-50 junior staff...recommendations concerning product form and further study . The posture of this group has been to consider software technology and its transfer as a process...and views of the Software Subgroup of Technical Working Group 7 (Computers) of the Critical Technologies Project . The work reported

  7. Results of Measurements of Accelerations of Technological Devices onboard the FotonSpacecraft

    NASA Astrophysics Data System (ADS)

    Barmin, I. V.; Volkov, M. V.; Egorov, A. V.; Reut, E. F.; Senchenkov, A. S.

    2001-07-01

    This paper generalizes the results of measuring the residual accelerations arising when investigations in space materials science are carried out onboard the unmanned Fotonspacecraft. The levels of vibroaccelerations are analyzed in the frequency band of 1 500 Hz for the technological devices UZ01, UZ04, and POLIZON, developed by the Federal Unitary State Enterprise “Barmin Design Bureau of General Machine Building” (V.P. Barmin KBOM). The levels of accelerations are estimated in the frequency band of 0 1 Hz in the zone of technological operations of these facilities. The basic sources of vibroaccelerations acting upon the frames of devices are determined in the capsule zone, where technological processes of producing new materials take place. In the frequency band of 1 500 Hz the vibroaccelerations are shown to be generated by the operation of Fotonspacecraft units and a drive of capsule translation during the technological process. On the capsule frame they reach the values of (1 3) × 10 3 g. The level of linear accelerations in the infralow-frequency band is determined by rotational motions of the Fotonspacecraft. It depends on the device location with respect to the spacecraft center of mass and does not exceed (1 7) × 10 6 gin the steady-state regime in the zone of technological activity.

  8. Technology transfer of NASA microwave remote sensing system

    NASA Technical Reports Server (NTRS)

    Akey, N. D.

    1981-01-01

    Viable techniques for effecting the transfer from NASA to a user agency of state-of-the-art airborne microwave remote sensing technology for oceanographic applications were studied. A detailed analysis of potential users, their needs and priorities; platform options; airborne microwave instrument candidates; ancillary instrumentation; and other, less obvious factors that must be considered were studied. Conclusions and recommendations for the development of an orderly and effective technology transfer of an airborne microwave system that could meet the specific needs of the selected user agencies are reported.

  9. Transient Hypermutagenesis Accelerates the Evolution of Legume Endosymbionts following Horizontal Gene Transfer

    PubMed Central

    Remigi, Philippe; Capela, Delphine; Clerissi, Camille; Tasse, Léna; Torchet, Rachel; Bouchez, Olivier; Batut, Jacques; Cruveiller, Stéphane; Rocha, Eduardo P. C.; Masson-Boivin, Catherine

    2014-01-01

    Horizontal gene transfer (HGT) is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and β-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT. PMID:25181317

  10. Southern California Regional Technology Acceleration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochoa, Rosibel; Rasochova, Lada

    2014-09-30

    UC San Diego and San Diego State University are partnering to address these deficiencies in the renewable energy space in the greater San Diego region, accelerating the movement of clean energy innovation from the university laboratory into the marketplace, building on the proven model of the William J. von Liebig Center’s (vLC’s) Proof of Concept (POC) program and virtualizing the effort to enable a more inclusive environment for energy innovation and expansion of the number of clean energy start-ups and/or technology licenses in greater California.

  11. Technology Transfer Educational Curriculum Plan for the State of Colorado.

    ERIC Educational Resources Information Center

    Dakin, Karl J.

    A recommended plan for an educational curriculum on the topic of technology transfer is outlined. A survey was conducted to determine the current levels of ability and knowledge of technology users and of transfer intermediaries. Information was collected from three sources: individuals and organizations currently presenting educational programs…

  12. Computers and terminals as an aid to international technology transfer

    NASA Technical Reports Server (NTRS)

    Sweeney, W. T.

    1974-01-01

    As technology transfer becomes more popular and proves to be an economical method for companies of all sizes to take advantage of a tremendous amount of new and available technology from sources all over the world, the introduction of computers and terminals into the international technology transfer process is proving to be a successful method for companies to take part in this beneficial approach to new business opportunities.

  13. NASA programs in technology transfer and their relation to remote sensing education

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1980-01-01

    Technology transfer to users is a central feature of NASA programs. In each major area of responsibility, a variety of mechanisms was established to provide for this transfer of operational capability to the proper end user, be it a Federal agency, industry, or other public sector users. In addition, the Technology Utilization program was established to cut across all program areas and to make available a wealth of 'spinoff' technology (i.e., secondary applications of space technology to ground-based use). The transfer of remote sensing technology, particularly to state and local users, presents some real challenges in application and education for NASA and the university community. The agency's approach to the transfer of remote sensing technology and the current and potential role of universities in the process are considered.

  14. Key Findings and Recommendations for Technology Transfer at the ITS JPO

    DOT National Transportation Integrated Search

    2011-03-18

    This report provides key findings and recommendations for technology transfer at the Intelligent Transportation Systems Joint Program Office (ITS JPO) based upon an assessment of best practices in technology transfer in other industries, such as nati...

  15. MHD technology transfer, integration, and review committee

    NASA Astrophysics Data System (ADS)

    1990-05-01

    As part of Task 8 of the magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The TTIRC consists of an Executive Committee (EC) which acts as the governing body, and a General Committee (GC), also referred to as the main or full committee, consisting of representatives from the various POC contractors, participating universities and national laboratories, utilities, equipment suppliers, and other potential MHD users or investors. The purpose of the TTIRC is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the U.S. MHD Program. There are seven sections: introduction; Executive Committee and General Committee activity; Committee activities related to technology transfer; ongoing POC integration activities being performed under the auspices of the Executive Committee; recommendations passed on to the DOE by the Executive Committee; Planned activities for the next six months.

  16. Accelerating innovation in information and communication technology for health.

    PubMed

    Crean, Kevin W

    2010-02-01

    Around the world, inventors are creating novel information and communication technology applications and systems that can improve health for people in disparate settings. However, it is very difficult to find investment funding needed to create business models to expand and develop the prototype technologies. A comprehensive, long-term investment strategy for e-health and m-health is needed. The field of social entrepreneurship offers an integrated approach to develop needed investment models, so that innovations can reach more patients, more effectively. Specialized financing techniques and sustained support from investors can spur the expansion of mature technologies to larger markets, accelerating global health impacts.

  17. Three CCR accomplishments receive Excellence in Technology Transfer Awards | Center for Cancer Research

    Cancer.gov

    The Federal Laboratory Consortium for Technology Transfer has recognized three CCR accomplishments with Excellence in Technology Transfer Awards. This award category honors employees of FLC member laboratories and non-laboratory staff who have accomplished outstanding work in the process of transferring federally developed technology. Read more…

  18. Australian University Technology Transfer Managers: Backgrounds, Work Roles, Specialist Skills and Perceptions

    ERIC Educational Resources Information Center

    Harman, Grant; Stone, Christopher

    2006-01-01

    Technology transfer managers are a new group of specialist professionals engaged in facilitating transfer of university research discoveries and inventions to business firms and other research users. With relatively high academic qualifications and enjoying higher salaries than many other comparable university staff, technology transfer managers…

  19. An Investigation to Advance the Technology Readiness Level of the Centaur Derived On-orbit Propellant Storage and Transfer System

    NASA Astrophysics Data System (ADS)

    Silvernail, Nathan L.

    This research was carried out in collaboration with the United Launch Alliance (ULA), to advance an innovative Centaur-based on-orbit propellant storage and transfer system that takes advantage of rotational settling to simplify Fluid Management (FM), specifically enabling settled fluid transfer between two tanks and settled pressure control. This research consists of two specific objectives: (1) technique and process validation and (2) computational model development. In order to raise the Technology Readiness Level (TRL) of this technology, the corresponding FM techniques and processes must be validated in a series of experimental tests, including: laboratory/ground testing, microgravity flight testing, suborbital flight testing, and orbital testing. Researchers from Embry-Riddle Aeronautical University (ERAU) have joined with the Massachusetts Institute of Technology (MIT) Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) team to develop a prototype FM system for operations aboard the International Space Station (ISS). Testing of the integrated system in a representative environment will raise the FM system to TRL 6. The tests will demonstrate the FM system and provide unique data pertaining to the vehicle's rotational dynamics while undergoing fluid transfer operations. These data sets provide insight into the behavior and physical tendencies of the on-orbit refueling system. Furthermore, they provide a baseline for comparison against the data produced by various computational models; thus verifying the accuracy of the models output and validating the modeling approach. Once these preliminary models have been validated, the parameters defined by them will provide the basis of development for accurate simulations of full scale, on-orbit systems. The completion of this project and the models being developed will accelerate the commercialization of on-orbit propellant storage and transfer technologies as well as all in

  20. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  1. Information to Change the World--Fulfilling the Information Needs of Technology Transfer.

    ERIC Educational Resources Information Center

    Duberman, Josh; Zeller, Martin

    1996-01-01

    Provides an introduction to fulfilling the information needs of technology transfer. Highlights include a definition of technology transfer; government and university involvement; industry's role; publishers; an annotated list of information sources and contacts; technology assessment, including patent searching, competitive intelligence, and…

  2. Investigation of advanced propulsion technologies: The RAM accelerator and the flowing gas radiation heater

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Mattick, A. T.; Hertzberg, A.

    1992-01-01

    The two principal areas of advanced propulsion investigated are the ram accelerator and the flowing gas radiation heater. The concept of the ram accelerator is presented as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerothermodynamics research. The ram accelerator is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled in a stationary tube filled with a tailored combustible gas mixture. Combustion on and behind the projectile generates thrust which accelerates it to very high velocities. The acceleration can be tailored for the 'soft launch' of instrumented models. The distinctive reacting flow phenomena that have been observed in the ram accelerator are relevant to the aerothermodynamic processes in airbreathing hypersonic propulsion systems and are useful for validating sophisticated CFD codes. The recently demonstrated scalability of the device and the ability to control the rate of acceleration offer unique opportunities for the use of the ram accelerator as a large-scale hypersonic ground test facility. The flowing gas radiation receiver is a novel concept for using solar energy to heat a working fluid for space power or propulsion. Focused solar radiation is absorbed directly in a working gas, rather than by heat transfer through a solid surface. Previous theoretical analysis had demonstrated that radiation trapping reduces energy loss compared to that of blackbody receivers, and enables higher efficiencies and higher peak temperatures. An experiment was carried out to measure the temperature profile of an infrared-active gas and demonstrate the effect of radiation trapping. The success of this effort validates analytical models of heat transfer in this receiver, and confirms the potential of this approach for achieving high efficiency space power and propulsion.

  3. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science, technology, and industry, and to better align the science and laboratory goals with the licensing and patenting process.

  4. Summary of the National Technology Transfer and Advancement Act

    EPA Pesticide Factsheets

    Provides a summary of the National Technology Transfer and Advancement Act which pomote economic, environmental, and social well-being by bringing technology and industrial innovation to the marketplace

  5. Technology Transfer Center to Assume Patenting and Licensing Responsibilities | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) is undergoing a reorganization that will bring patenting and licensing responsibilities to the Shady Grove and Frederick offices by October 2015. The reorganization is a result of an effort begun in 2014 by NIH to improve the organizational structure of technology transfer at NIH to meet the rapid rate of change within science,

  6. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  7. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  8. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  9. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  10. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  11. 48 CFR 970.3102-05-30-70 - Patent costs and technology transfer costs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... technology transfer costs. 970.3102-05-30-70 Section 970.3102-05-30-70 Federal Acquisition Regulations System... Principles and Procedures 970.3102-05-30-70 Patent costs and technology transfer costs. (a) For management and operating contracts that do not include the clause at 970.5227-3, Technology Transfer Mission, the...

  12. Proceedings: international conference on transfer of forest science knowledge and technology.

    Treesearch

    Cynthia Miner; Ruth Jacobs; Dennis Dykstra; Becky Bittner

    2007-01-01

    This proceedings compiles papers presented by extensionists, natural resource specialists, scientists, technology transfer specialists, and others at an international conference that examined knowledge and technology transfer theories, methods, and case studies. Theory topics included adult education, applied science, extension, diffusion of innovations, social...

  13. Technology transfer from NASA to targeted industries, volume 1

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This report summarizes the University of Alabama in Huntsville (UAH) technology transfer to three target industries with focus on the apparel manufacturing industry in Alabama. Also included in this report are an analysis of the 1992 problem statements submitted by Alabama firms, the results of the survey of 1987-88 NASA Tech Brief requests, the results of the followup to Alabama submitted problem statements, and the development of the model describing the MSFC technology transfer process.

  14. Technology Transfer and the Civil Space Program. Volume 2: Workshop proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objectives were to (1) provide a top-level review of the Integrated Technology Plan (ITP) and current civil space technology plans, including planning processes and technologies; (2) discuss and assess technology transfer (TT) experiences across a wide range of participants; (3) identify alternate categories/strategies for TT and define the objectives of transfer processes in each case; (4) identify the roles of various government 'stakeholders', aerospace industry, industries at large, and universities in civil space technology research, development, demonstration, and transfer; (5) identify potential barriers and/or opportunities to successful civil space TT; (6) identify specific needs for innovations in policy, programs, and/or procedures to facilitate TT; and (7) develop a plan of attack for the development of a workshop report. Papers from the workshop are presented.

  15. A Wafer Transfer Technology for MEMS Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean V.

    2001-01-01

    Adaptive optics systems require the combination of several advanced technologies such as precision optics, wavefront sensors, deformable mirrors, and lasers with high-speed control systems. The deformable mirror with a continuous membrane is a key component of these systems. This paper describes a new technique for transferring an entire wafer-level silicon membrane from one substrate to another. This technology is developed for the fabrication of a compact deformable mirror with a continuous facet. A 1 (mu)m thick silicon membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers (i.e. wax, epoxy, or photoresist). Smaller or larger diameter membranes can also be transferred using this technique. The fabricated actuator membrane with an electrode gap of 1.5 (mu)m shows a vertical deflection of 0.37 (mu)m at 55 V.

  16. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER.

    PubMed

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F; Sanberg, Paul R

    2014-11-01

    Academic technology transfer in its current form began with the passage of the Bayh-Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh-Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1.

  17. MORE THAN MONEY: THE EXPONENTIAL IMPACT OF ACADEMIC TECHNOLOGY TRANSFER

    PubMed Central

    McDevitt, Valerie Landrio; Mendez-Hinds, Joelle; Winwood, David; Nijhawan, Vinit; Sherer, Todd; Ritter, John F.; Sanberg, Paul R.

    2014-01-01

    Academic technology transfer in its current form began with the passage of the Bayh–Dole Act in 1980, which allowed universities to retain ownership of federally funded intellectual property. Since that time, a profession has evolved that has transformed how inventions arising in universities are treated, resulting in significant impact to US society. While there have been a number of articles highlighting benefits of technology transfer, now, more than at any other time since the Bayh–Dole Act was passed, the profession and the impacts of this groundbreaking legislation have come under intense scrutiny. This article serves as an examination of the many positive benefits and evolution, both financial and intrinsic, provided by academic invention and technology transfer, summarized in Table 1. PMID:25061505

  18. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    PubMed

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  19. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    NASA Technical Reports Server (NTRS)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  20. Night vision and electro-optics technology transfer, 1972 - 1981

    NASA Astrophysics Data System (ADS)

    Fulton, R. W.; Mason, G. F.

    1981-09-01

    The purpose of this special report, 'Night Vision and Electro-Optics Technology Transfer 1972-1981,' is threefold: To illustrate, through actual case histories, the potential for exploiting a highly developed and available military technology for solving non-military problems. To provide, in a layman's language, the principles behind night vision and electro-optical devices in order that an awareness may be developed relative to the potential for adopting this technology for non-military applications. To obtain maximum dollar return from research and development investments by applying this technology to secondary applications. This includes, but is not limited to, applications by other Government agencies, state and local governments, colleges and universities, and medical organizations. It is desired that this summary of Technology Transfer activities within Night Vision and Electro-Optics Laboratory (NV/EOL) will benefit those who desire to explore one of the vast technological resources available within the Defense Department and the Federal Government.

  1. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    NASA Technical Reports Server (NTRS)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  2. The challenge of technology transfer: Buying in without selling out

    PubMed Central

    Pennypacker, H. S.

    1986-01-01

    Highly effective technologies flowing from the discipline of behavior analysis have not been widely adopted, thus threatening the survival of the discipline itself. An analysis of the contingencies underlying successful technology transfer suggests the need for direct, empirical involvement in the marketplace in order to insure that the maximum demonstrable benefits reach the ultimate users. A successful example of this strategy of technology transfer is provided. Three areas of intense national concern—urban violence, illiteracy, and declining industrial productivity—provide immediate opportunities for the technologies of behavior analysis to secure the place of the discipline in the intellectual mosaic of the 21st century. PMID:22478656

  3. Technology transfer in the NASA Ames Advanced Life Support Division

    NASA Technical Reports Server (NTRS)

    Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul

    1992-01-01

    This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.

  4. Assessment of research and technology transfer needs for wood-frame housing

    Treesearch

    Kevin Powell; David Tilotta; Karen Martinson

    2008-01-01

    Improvements to housing will require both research and the transfer of that research to homebuilders, homebuyers, and others in need of technology. This report summarizes results of a national survey on research and technology transfer needs for housing and prioritizes those needs. Survey participants included academicians, builders, code officials, government...

  5. US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, S.T.; Atwood, T.; Qiu Daxiong

    1997-12-31

    Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, andmore » the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.« less

  6. Support and Technology Transfer: Results and Accomplishments

    DTIC Science & Technology

    2009-07-01

    Advanced Food Technology School of Enviromental and Biological Sciences New Brunswick, NJ 08903 FTR 213 Defense Logistics Agency 8725 John J. Kingsman Rd...Environmental and Biological Science Rutgers, The State University of New Jersey New Brunswick, New Jersey 08903 Principal Investigator: Henderikus B...Technology Transfer SP0103-02-D-0024 / 0002 STP # 2001 A003 Mr. Henderikus B. Bruins Rutgers, The State University of New Jersey The Center for

  7. Technology Transfer: A Case Study of Programs and Practices at NASA, DOD, DOC, and Academia

    ERIC Educational Resources Information Center

    Blood, John R.

    2009-01-01

    Technology transfer is vital to humanity. It spurs innovation, promotes commerce, and provides technology-based goods and services. Technology transfer is also highly complex and interdependent in nature. This interdependence is exemplified principally by the various technology transfer interactions between government, industry, and academia. …

  8. Accelerated Return to Sport After Osteochondral Autograft Plug Transfer

    PubMed Central

    Werner, Brian C.; Cosgrove, Chris T.; Gilmore, C. Jan; Lyons, Matthew L.; Miller, Mark D.; Brockmeier, Stephen F.; Diduch, David R.

    2017-01-01

    Background: Previous studies have reported varying return-to-sport protocols after knee cartilage restoration procedures. Purpose: To (1) evaluate the time for return to sport in athletes with an isolated chondral injury who underwent an accelerated return-to-sport protocol after osteochondral autograft plug transfer (OAT) and (2) evaluate clinical outcomes to assess for any consequences from the accelerated return to sport. Study Design: Case series; Level of evidence, 4. Methods: An institutional cohort of 152 OAT procedures was reviewed, of which 20 competitive athletes met inclusion and exclusion criteria. All patients underwent a physician-directed accelerated rehabilitation program after their procedure. Return to sport was determined for all athletes. Clinical outcomes were assessed using International Knee Documentation Committee (IKDC) and Tegner scores as well as assessment of level of participation on return to sport. Results: Return-to-sport data were available for all 20 athletes; 13 of 20 athletes (65%) were available for clinical evaluation at a mean 4.4-year follow-up. The mean time for return to sport for all 20 athletes was 82.9 ± 25 days (range, 38-134 days). All athletes were able to return to sport at their previous level and reported that they were satisfied or very satisfied with their surgical outcome and ability to return to sport. The mean postoperative IKDC score was 84.5 ± 9.5. The mean Tegner score prior to injury was 8.9 ± 1.7; it was 7.7 ± 1.9 at final follow-up. Conclusion: Competitive athletes with traumatic chondral defects treated with OAT managed using this protocol had reduced time to preinjury activity levels compared with what is currently reported, with excellent clinical outcomes and no serious long-term sequelae. PMID:28451623

  9. Bio-recognition and functional lipidomics by glycosphingolipid transfer technology

    PubMed Central

    TAKI, Takao

    2013-01-01

    Through glycosphingolipid biochemical research, we developed two types of transcription technologies. One is a biochemical transfer of glycosphingolipids to peptides. The other is a physicochemical transfer of glycosphingolipids in silica gel to the surface of a plastic membrane. Using the first technology, we could prepare peptides which mimic the shapes of glycosphingolipid molecules by biopanning with a phage-displayed peptide library and anti-glycosphingolipid antibodies as templates. The peptides thus obtained showed biological properties and functions similar to those of the original glycosphingolipids, such as lectin binding, glycosidase modulation, inhibition of tumor metastasis and immune response against the original antigen glycosphingolipid, and we named them glyco-replica peptides. The results showed that the newly prepared peptides could be used effectively as a bio-recognition system and suggest that the glyco-replica peptides can be widely applied to therapeutic fields. Using the second technology, we could establish a functional lipidomics with a thin-layer chromatography-blot/matrix-assisted laser desorption ionization-time of flight mass spectrometry (TLC-Blot/MALDI-TOF MS) system. By transferring glycosphingolipids on a plastic membrane surface from a TLC plate, innovative biochemical approaches such as simple purification of individual glycosphingolipids, binding studies, and enzyme reactions could be developed. The combinations of these biochemical approaches and MALDI-TOF MS on the plastic membrane could provide new strategies for glycosphingolipid science and the field of lipidomics. In this review, typical applications of these two transfer technologies are introduced. PMID:23883610

  10. Space technology transfer to developing countries: opportunities and difficulties

    NASA Astrophysics Data System (ADS)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  11. Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector

    DTIC Science & Technology

    1985-01-01

    TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR CISIRIBUTIOtl STATEMENT A Approved for Public Release...NAVAL FACILITIES ENGINEERING COMMAND TECHNOLOGY TRANSFER: A THINK TANK APPROACH TO MANAGING INNOVATION IN THE PUBLIC SECTOR Edited by J. W. Creighton...Publication of this book, Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector, was in part supported by funds from the U.S

  12. Social issues and implications of remote sensing applications: Paradigms of technology transfer

    NASA Technical Reports Server (NTRS)

    Hoos, I. R.

    1980-01-01

    The transfer of technology from one federal agency to another was observed in the case of the move of LANDSAT to NOAA. An array of unanticipated consequences was found that have important impacts on both the process and outcome of the transfer. When the process was studied from viewpoint of the ultimate recipient, a set of expectations and perceptions were found that figure more in a final assessment than do the attributes of the technology being transfered. The question of how to link a technology with a community of potential users was studed in detail.

  13. Technology transfer personnel exchange at the Boeing Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense & Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R&D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL`s ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less

  14. Technology transfer personnel exchange at the Boeing Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL's ACFC heat pipe technology and other, related research capabilities to private industrial application.more » The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.« less

  15. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  16. Non-LTE radiative transfer with lambda-acceleration - Convergence properties using exact full and diagonal lambda-operators

    NASA Technical Reports Server (NTRS)

    Macfarlane, J. J.

    1992-01-01

    We investigate the convergence properties of Lambda-acceleration methods for non-LTE radiative transfer problems in planar and spherical geometry. Matrix elements of the 'exact' A-operator are used to accelerate convergence to a solution in which both the radiative transfer and atomic rate equations are simultaneously satisfied. Convergence properties of two-level and multilevel atomic systems are investigated for methods using: (1) the complete Lambda-operator, and (2) the diagonal of the Lambda-operator. We find that the convergence properties for the method utilizing the complete Lambda-operator are significantly better than those of the diagonal Lambda-operator method, often reducing the number of iterations needed for convergence by a factor of between two and seven. However, the overall computational time required for large scale calculations - that is, those with many atomic levels and spatial zones - is typically a factor of a few larger for the complete Lambda-operator method, suggesting that the approach should be best applied to problems in which convergence is especially difficult.

  17. The Diffusion of Military Technologies to Foreign Nations: Arms Transfers Can Preserve the Defense Technological and Industrial Base

    DTIC Science & Technology

    1995-06-01

    required, the Defense Technology Security Administration ( DTSA ) will make a determination on whether or not advanced technologies are being risked by the...sale or transfer of that product. DTSA has this role whether it is a commercial or government-to-government transfer. The Joint Chiefs of Staff also...Office of Defense Relations Security Assistance DSAA Defense Security Assistance Agency DTIB Defense Technological and Industrial Base DTSA Defense

  18. A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor

    NASA Astrophysics Data System (ADS)

    Ji, Xiangfeng; Zhou, Xuemei; Ran, Bin

    2013-04-01

    Pedestrian speed in a transfer station corridor is faster than usual and sometimes running can be found among some of them. In this paper, pedestrians are divided into two categories. The first one is aggressive, and the other is conservative. Aggressive pedestrians weaving their way through crowd in the corridor are the study object of this paper. During recent decades, much attention has been paid to the pedestrians' behavior, such as overtaking (also deceleration) and collision avoidance, and that continues in this paper. After sufficiently analyzing the characteristics of pedestrian flow in transfer station corridor, a cell-based model is presented in this paper, including the acceleration (also deceleration) and overtaking analysis. Acceleration (also deceleration) in a corridor is fixed according to Newton's Law and then speed calculated with a kinematic formula is discretized into cells based on the fuzzy logic. After the speed is updated, overtaking is analyzed based on updated speed and force explicitly, compared to rule-based models, which herein we call implicit ones. During the analysis of overtaking, a threshold value to determine the overtaking direction is introduced. Actually, model in this paper is a two-step one. The first step is to update speed, which is the cells the pedestrian can move in one time interval and the other is to analyze the overtaking. Finally, a comparison between the rule-based cellular automata, the model in this paper and data in HCM 2000 is made to demonstrate our model can be used to achieve reasonable simulation of acceleration (also deceleration) and overtaking among pedestrians.

  19. System analysis for technology transfer readiness assessment of horticultural postharvest

    NASA Astrophysics Data System (ADS)

    Hayuningtyas, M.; Djatna, T.

    2018-04-01

    Availability of postharvest technology is becoming abundant, but only a few technologies are applicable and useful to a wider community purposes. Based on this problem it requires a significant readiness level of transfer technology approach. This system is reliable to access readiness a technology with level, from 1-9 and to minimize time of transfer technology in every level, time required technology from the selection process can be minimum. Problem was solved by using Relief method to determine ranking by weighting feasible criteria on postharvest technology in each level and PERT (Program Evaluation Review Technique) to schedule. The results from ranking process of post-harvest technology in the field of horticulture is able to pass level 7. That, technology can be developed to increase into pilot scale and minimize time required for technological readiness on PERT with optimistic time of 7,9 years. Readiness level 9 shows that technology has been tested on the actual conditions also tied with estimated production price compared to competitors. This system can be used to determine readiness of technology innovation that is derived from agricultural raw materials and passes certain stages.

  20. The name-locator guide: A new resource for technology transfer

    NASA Technical Reports Server (NTRS)

    Clingman, W. H.

    1974-01-01

    A new transfer mechanism to facilitate technology transfer between aerospace technology and nonaerospace industries, was proposed with the following sequence of steps. First, the key technical problems in a given industry would be analyzed. The analysis will define the characteristics which relevant technology will have. Second, a limited list of subject terms will be developed using words familiar to those working in the industry. It is these which will be applied in subsequent steps to the NASA technology and used to locate technology relevant to a specific problem in the industry. Third, for each Required Technology Program, terms applicable to that program would be chosen from this list. Fourth, a name-locator guide would be provided to the Regional Dissemination Centers. This guide would be analogous to an index. The key words would be chosen from the special subject term list for the given industry.

  1. Applications of aerospace technology in industry, a technology transfer profile: Plastics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    New plastics technology bred out of the space program has moved steadily into the U.S. economy in a variety of organized and deliberate ways. Examples are presented of the transfer of plastics know-how into the plants and eventually the products of American business.

  2. Technology transfer: federal legislation that helps businesses and universities

    NASA Astrophysics Data System (ADS)

    Oaks, Bill G.

    1992-05-01

    In 1980, Congress enacted the Stevenson-Wydler Technology Innovation Act to encourage federal laboratories to `spin off' their technology to industry, universities, and state and local governments. The law reflected Congressional concern for the economic well-being of the nation and the need for the United States to maintain its technological superiority. Almost half the nation's research is conducted in federal laboratories. Other legislation, the Small Business Innovation Development Act of 1982 and the National Cooperative Research Act of 1984, was followed by the Technology Transfer Act of 1986 that strengthened and consolidated policy concerning the technology transfer responsibilities of the federal labs. The law allows the labs to directly license their patents and permits the issuance of exclusive licenses. It allows the labs to enter into cooperative research and development agreements with industry, universities, and state and local governments. It institutionalized the Federal Laboratory consortium which, to that point in time, had been a formal but largely unrecognized body. Under the provisions of the law, the United States Air Force Rome Laboratory located in Rome, New York, as the Air Force lead laboratory in photonics research entered into an agreement with the Governor of the State of New York to collaborate in photonics research and development. Subsequent to that agreement, the state established the not-for-profit New York State Photonics Development Corporation in Rome to facilitate business access to Rome Laboratory's photonics research facilities and technologies. Rome Laboratory's photonics research and development program is described in this paper. The Technology Transfer Act of 1986 is summarized, and the roles and missions of the New York State Photonics Development Corporation is explained.

  3. The Role of Empirical Evidence for Transferring a New Technology to Industry

    NASA Astrophysics Data System (ADS)

    Baldassarre, Maria Teresa; Bruno, Giovanni; Caivano, Danilo; Visaggio, Giuseppe

    Technology transfer and innovation diffusion are key success factors for an enterprise. The shift to a new software technology involves, on one hand, inevitable changes to ingrained and familiar processes and, on the other, requires training, changes in practices and commitment on behalf of technical staff and management. Nevertheless, industry is often reluctant to innovation due to the changes it determines. The process of innovation diffusion is easier if the new technology is supported by empirical evidence. In this sense our conjecture is that Empirical Software Engineering (ESE) serves as means for validating and transferring a new technology within production processes. In this paper, the authors report their experience of a method, Multiview Framework, defined in the SERLAB research laboratory as support for designing and managing a goal oriented measurement program that has been validated through various empirical studies before being transferred to an Italian SME. Our discussion points out the important role of empirical evidence for obtaining management commitment and buy-in on behalf of technical staff, and for making technological transfer possible.

  4. TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald F. Duttlinger; E. Lance Cole

    2005-01-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised ofmore » American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04

  5. Task-Technology Fit Assessment of an Expertise Transfer System

    DTIC Science & Technology

    2009-03-01

    Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Information Resource Management...Transfer Forum (ETF) developed by the Oklahoma State University for the Defense Ammunition Center’s quality assurance personnel. The preliminary findings...Technology-to-Performance Chain (TPC) ....................................................................13 Expertise Transfer Forum (ETF

  6. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  7. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  8. NASA technology transfer network communications and information system: TUNS user survey

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Applied Expertise surveyed the users of the deployed Technology Utilization Network System (TUNS) and surveyed prospective new users in order to gather background information for developing the Concept Document of the system that will upgrade and replace TUNS. Survey participants broadly agree that automated mechanisms for acquiring, managing, and disseminating new technology and spinoff benefits information can and should play an important role in meeting NASA technology utilization goals. However, TUNS does not meet this need for most users. The survey describes a number of systematic improvements that will make it easier to use the technology transfer mechanism, and thus expedite the collection and dissemination of technology information. The survey identified 26 suggestions for enhancing the technology transfer system and related processes.

  9. Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube

    DTIC Science & Technology

    2017-06-01

    other documentation. TITLE: Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube REPORT DOCUMENTATION...TITLE AND SUBTITLE Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube 5a. CONTRACT NUMBER W81XWH-09-2...Technical Abstract: Further Development and Technology Transfer of the Syncro BLUETUBE™ (Gabriel) Magnetically Guided Feeding Tube. New Primary

  10. 76 FR 71562 - Emergint Technologies, Inc.; Transfer of Data

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2011-0038: FRL-9326-9] Emergint Technologies, Inc... Cosmetic Act (FFDCA), including information that may have been claimed as Confidential Business Information (CBI) by the submitter, will be transferred to Emergint Technologies, Inc. in accordance with 40 CFR 2...

  11. University Technology Transfer Factors as Predictors of Entrepreneurial Orientation

    ERIC Educational Resources Information Center

    Kirkman, Dorothy M.

    2011-01-01

    University technology transfer is a collaborative effort between academia and industry involving knowledge sharing and learning. Working closely with their university partners affords biotechnology firms the opportunity to successfully develop licensed inventions and gain access to novel scientific and technological discoveries. These factors may…

  12. Exemplar Practices for Department of Defense Technology Transfer

    DTIC Science & Technology

    2013-01-01

    2):176–183. Ruegg, R. 2000. “Delivering Public Benefits with Private-Sector Efficiency.” In Advanced Technology Program : Assessing Outcomes, edited ...The literature identified the following critical factors for a successful technology transfer program : an effective ORTA, engaged researchers, well...experts, and stakeholders. These interviews were held between June and September 2012. Programs and processes identified during the discussions

  13. A New Strategic Approach to Technology Transfer

    USDA-ARS?s Scientific Manuscript database

    The principal goal of Federal research and development (R&D) is to solve problems for public benefit. Technology transfer, innovation, entrepreneurship: words and concepts that once belonged exclusively in the domain of private research enterprises, have quickly become part of everyday lexicon in Fe...

  14. University-Industry Technology Transfer in Hong Kong

    ERIC Educational Resources Information Center

    Poon, Patrick S.; Chan, Kan S.

    2007-01-01

    In the modern knowledge economy, higher educational institutions are being required to deal with commercialising the results of their research, spinning out knowledge-based enterprises and facilitating technology transfer between their research centres and industrial firms. The universities are undergoing changes in institutional and…

  15. Using Contact Forces and Robot Arm Accelerations to Automatically Rate Surgeon Skill at Peg Transfer.

    PubMed

    Brown, Jeremy D; O Brien, Conor E; Leung, Sarah C; Dumon, Kristoffel R; Lee, David I; Kuchenbecker, Katherine J

    2017-09-01

    Most trainees begin learning robotic minimally invasive surgery by performing inanimate practice tasks with clinical robots such as the Intuitive Surgical da Vinci. Expert surgeons are commonly asked to evaluate these performances using standardized five-point rating scales, but doing such ratings is time consuming, tedious, and somewhat subjective. This paper presents an automatic skill evaluation system that analyzes only the contact force with the task materials, the broad-bandwidth accelerations of the robotic instruments and camera, and the task completion time. We recruited N = 38 participants of varying skill in robotic surgery to perform three trials of peg transfer with a da Vinci Standard robot instrumented with our Smart Task Board. After calibration, three individuals rated these trials on five domains of the Global Evaluative Assessment of Robotic Skill (GEARS) structured assessment tool, providing ground-truth labels for regression and classification machine learning algorithms that predict GEARS scores based on the recorded force, acceleration, and time signals. Both machine learning approaches produced scores on the reserved testing sets that were in good to excellent agreement with the human raters, even when the force information was not considered. Furthermore, regression predicted GEARS scores more accurately and efficiently than classification. A surgeon's skill at robotic peg transfer can be reliably rated via regression using features gathered from force, acceleration, and time sensors external to the robot. We expect improved trainee learning as a result of providing these automatic skill ratings during inanimate task practice on a surgical robot.

  16. EDITORIAL: Metrological Aspects of Accelerator Technology and High Energy Physics Experiments

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.; Pozniak, Krzysztof T.

    2007-08-01

    The subject of this special feature in Measurement Science and Technology concerns measurement methods, devices and subsystems, both hardware and software aspects, applied in large experiments of high energy physics (HEP) and superconducting RF accelerator technology (SRF). These experiments concern mainly the physics of elementary particles or the building of new machines and detectors. The papers present practical examples of applied solutions in large, contemporary, international research projects such as HERA, LHC, FLASH, XFEL, ILC and others. These machines are unique in their global scale and consist of extremely dedicated apparatus. The apparatus is characterized by very large dimensions, a considerable use of resources and a high level of overall technical complexity. They possess a large number of measurement channels (ranging from thousands to over 100 million), are characterized by fast of processing of measured data and high measurement accuracies, and work in quite adverse environments. The measurement channels cooperate with a large number of different sensors of momenta, energies, trajectories of elementary particles, electron, proton and photon beam profiles, accelerating fields in resonant cavities, and many others. The provision of high quality measurement systems requires the designers to use only the most up-to-date technical solutions, measurement technologies, components and devices. Research work in these demanding fields is a natural birthplace of new measurement methods, new data processing and acquisition algorithms, complex, networked measurement system diagnostics and monitoring. These developments are taking place in both hardware and software layers. The chief intention of this special feature is that the papers represent equally some of the most current metrology research problems in HEP and SRF. The accepted papers have been divided into four topical groups: superconducting cavities (4 papers), low level RF systems (8 papers

  17. Techno-Nationalism and the Construction of University Technology Transfer

    ERIC Educational Resources Information Center

    Sá, Creso; Kretz, Andrew; Sigurdson, Kristjan

    2013-01-01

    Our historical study of Canada's main research university illuminates the overlooked influence of national identities and interests as forces shaping the institutionalization of technology transfer. Through the use of archival sources we trace the rise and influence of Canadian technological nationalism--a response to Canada's perceived dependency…

  18. Development of a Technology Transfer Score for Evaluating Research Proposals: Case Study of Demand Response Technologies in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Estep, Judith

    Investment in Research and Development (R&D) is necessary for innovation, allowing an organization to maintain a competitive edge. The U.S. Federal Government invests billions of dollars, primarily in basic research technologies to help fill the pipeline for other organizations to take the technology into commercialization. However, it is not about just investing in innovation, it is about converting that research into application. A cursory review of the research proposal evaluation criteria suggests that there is little to no emphasis placed on the transfer of research results. This effort is motivated by a need to move research into application. One segment that is facing technology challenges is the energy sector. Historically, the electric grid has been stable and predictable; therefore, there were no immediate drivers to innovate. However, an aging infrastructure, integration of renewable energy, and aggressive energy efficiency targets are motivating the need for research and to put promising results into application. Many technologies exist or are in development but the rate at which they are being adopted is slow. The goal of this research is to develop a decision model that can be used to identify the technology transfer potential of a research proposal. An organization can use the model to select the proposals whose research outcomes are more likely to move into application. The model begins to close the chasm between research and application--otherwise known as the "valley of death". A comprehensive literature review was conducted to understand when the idea of technology application or transfer should begin. Next, the attributes that are necessary for successful technology transfer were identified. The emphasis of successful technology transfer occurs when there is a productive relationship between the researchers and the technology recipient. A hierarchical decision model, along with desirability curves, was used to understand the complexities of the

  19. Applications of aerospace technology in industry, a technology transfer profile: Fire safety

    NASA Technical Reports Server (NTRS)

    Kottenstette, J. P.; Freeman, J. E.; Heins, C. R.; Hildred, W. M.; Johnson, F. D.; Staskin, E. R.

    1971-01-01

    The fire safety field is considered as being composed of three parts: an industry, a technology base, and a user base. An overview of the field is presented, including a perspective on the magnitude of the national fire safety problem. Selected NASA contributions to the technology of fire safety are considered. Communication mechanisms, particularly conferences and publications, used by NASA to alert the community to new developments in the fire safety field, are reviewed. Several examples of nonaerospace applications of NASA-generated fire safety technology are also presented. Issues associated with attempts to transfer this technology from the space program to other sectors of the American economy are outlined.

  20. NASA's Technology Transfer Program for the Early Detection of Breast Cancer

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory; Frey, Mary Anne; Vernikos, Joan; Winfield, Daniel; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    The National Aeronautics and Space Administration (NASA) has led the development of advanced imaging sensors and image processing technologies for space science and Earth science missions. NASA considers the transfer and commercialization of such technologies a fundamental mission of the agency. Over the last two years, efforts have been focused on the application of aerospace imaging and computing to the field of diagnostic imaging, specifically to breast cancer imaging. These technology transfer efforts offer significant promise in helping in the national public health priority of the early detection of breast cancer.

  1. Muscle Forces and Their Contributions to Vertical and Horizontal Acceleration of the Center of Mass During Sit-to-Stand Transfer in Young, Healthy Adults.

    PubMed

    Caruthers, Elena J; Thompson, Julie A; Chaudhari, Ajit M W; Schmitt, Laura C; Best, Thomas M; Saul, Katherine R; Siston, Robert A

    2016-10-01

    Sit-to-stand transfer is a common task that is challenging for older adults and others with musculoskeletal impairments. Associated joint torques and muscle activations have been analyzed two-dimensionally, neglecting possible three-dimensional (3D) compensatory movements in those who struggle with sit-to-stand transfer. Furthermore, how muscles accelerate an individual up and off the chair remains unclear; such knowledge could inform rehabilitation strategies. We examined muscle forces, muscleinduced accelerations, and interlimb muscle force differences during sit-to-stand transfer in young, healthy adults. Dynamic simulations were created using a custom 3D musculoskeletal model; static optimization and induced acceleration analysis were used to determine muscle forces and their induced accelerations, respectively. The gluteus maximus generated the largest force (2009.07 ± 277.31 N) and was a main contributor to forward acceleration of the center of mass (COM) (0.62 ± 0.18 m/s(2)), while the quadriceps opposed it. The soleus was a main contributor to upward (2.56 ± 0.74 m/s(2)) and forward acceleration of the COM (0.62 ± 0.33 m/s(2)). Interlimb muscle force differences were observed, demonstrating lower limb symmetry cannot be assumed during this task, even in healthy adults. These findings establish a baseline from which deficits and compensatory strategies in relevant populations (eg, elderly, osteoarthritis) can be identified.

  2. Tropical medicine: Telecommunications and technology transfer

    NASA Technical Reports Server (NTRS)

    Legters, Llewellyn J.

    1991-01-01

    The potential for global outbreaks of tropical infectious diseases, and our ability to identify and respond to such outbreaks is a major concern. Rapid, efficient telecommunications is viewed as part of the solution to this set of problems - the means to link a network of epidemiological field stations via satellite with U.S. academic institutions and government agencies, for purposes of research, training in tropical medicine, and observation of and response to epidemic emergencies. At a workshop, telecommunications and technology transfer were addressed and applications of telecommunications technology in long-distance consultation, teaching and disaster relief were demonstrated. Applications in teaching and consultation in tropical infectious diseases is discussed.

  3. Technology transfer from biomedical research to clinical practice: measuring innovation performance.

    PubMed

    Balas, E Andrew; Elkin, Peter L

    2013-12-01

    Studies documented 17 years of transfer time from clinical trials to practice of care. Launched in 2002, the National Institutes of Health (NIH) translational research initiative needs to develop metrics for impact assessment. A recent White House report highlighted that research and development productivity is declining as a result of increased research spending while the new drugs output is flat. The goal of this study was to develop an expanded model of research-based innovation and performance thresholds of transfer from research to practice. Models for transfer of research to practice have been collected and reviewed. Subsequently, innovation pathways have been specified based on common characteristics. An integrated, intellectual property transfer model is described. The central but often disregarded role of research innovation disclosure is highlighted. Measures of research transfer and milestones of progress have been identified based on the Association of University Technology Managers 2012 performance reports. Numeric milestones of technology transfer are recommended at threshold (top 50%), target (top 25%), and stretch goal (top 10%) performance levels. Transfer measures and corresponding target levels include research spending to disclosure (<$1.88 million), disclosure to patents (>0.81), patents to start-up (>0.1), patents to licenses (>2.25), and average per license income (>$48,000). Several limitations of measurement are described. Academic institutions should take strategic steps to bring innovation to the center of scholarly discussions. Research on research, particularly on pathways to disclosures, is needed to improve R&D productivity. Researchers should be informed about the technology transfer performance of their institution and regulations should better support innovators.

  4. Thermal Transfer Compared To The Fourteen Other Imaging Technologies

    NASA Astrophysics Data System (ADS)

    O'Leary, John W.

    1989-07-01

    A quiet revolution in the world of imaging has been underway for the past few years. The older technologies of dot matrix, daisy wheel, thermal paper and pen plotters have been increasingly displaced by laser, ink jet and thermal transfer. The net result of this revolution is improved technologies that afford superior imaging, quiet operation, plain paper usage, instant operation, and solid state components. Thermal transfer is one of the processes that incorporates these benefits. Among the imaging application for thermal transfer are: 1. Bar code labeling and scanning. 2. New systems for airline ticketing, boarding passes, reservations, etc. 3. Color computer graphics and imaging. 4. Copying machines that copy in color. 5. Fast growing communications media such as facsimile. 6. Low cost word processors and computer printers. 7. New devices that print pictures from video cameras or television sets. 8. Cameras utilizing computer chips in place of film.

  5. 75 FR 80830 - Proposed Collection; Comment Request; Technology Transfer Center External Customer Satisfaction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Request; Technology Transfer Center External Customer Satisfaction Survey (NCI) SUMMARY: In compliance...: Technology Transfer Center External Customer Satisfaction Survey (NCI). Type of Information Collection...: Obtain information on the satisfaction of TTC's external customers with TTC customer services; collect...

  6. Transfer of technology for production of rabies vaccine: Memorandum from a WHO Meeting*

    PubMed Central

    1985-01-01

    The important challenge of prevention and control of rabies in the world will require international efforts to increase the availability and use of high quality cell-culture rabies vaccines for use in man and animals. An important aspect of activities to ensure such availability is transfer of technologies to developing countries for production of these vaccines. This article, which is based on the report of a WHO Consultation, outlines the technical options for vaccine production. The principles and economic aspects of technology transfer are considered, and a WHO assistance programme is outlined. It is concluded that technology transfer should be mediated through a framework of national institutes, expert panels, WHO collaborating centres, production and control laboratories, and other relevant institutions. On this basis, recommendations are made concerning the mechanisms of technology transfer for production of cell-culture rabies vaccines. PMID:3878738

  7. Commercial non-aerospace technology transfer program for the 2000s: Strategic analysis and implementation

    NASA Technical Reports Server (NTRS)

    Horsham, Gary A. P.

    1992-01-01

    This report presents a strategic analysis and implementation plan for NASA's Office of Commercial Programs (OCP), Technology Transfer Division's (TTD), Technology Transfer Program. The main objectives of this study are to: (1) characterize the NASA TTD's environment and past organizational structure; (2) clearly identify current and prospective programmatic efforts; (3) determine an evolutionary view of an organizational structure which could lead to the accomplishment of NASA's future technology transfer aims; and (4) formulate a strategy and plan to improve NASA's (and other federal agencies) ability to transfer technology to the non-aerospace sectors of the U.S. economy. The planning horizon for this study extends through the remainder of the 1990s to the year 2000.

  8. The Technology Transfer of the ICT Curriculum in Taiwan

    ERIC Educational Resources Information Center

    Huang, Teng

    2015-01-01

    Focusing on the process of "technology transfer", this paper aims to critically examine the production and usage of the information and communication technology (ICT) curriculum, and discusses its possibilities. It is found that the goals in both of the two stages of the ICT curriculum in Taiwan were rather "rhetorical". Three…

  9. Technology transfer: Half-way houses. No. 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidel, R.W.

    1995-05-01

    In the fall of 1993, 1 was asked by the Center for National Security Studies (CNSS) of the Los Alamos National Laboratory (LANL) to study the ways in which technology transfer and defense conversion had been accomplished at General Atomics (GA) and Science Applications International Corporation (SAIC) by interviewing Harold Agnew, who had served as director of Los Alamos before becoming president of General Atomics in 1979, and J. Robert Beyster, who had been a staff member at Los Alamos and at General Atomics before founding SAIC in 1969. Harold Agnew readily complied with my request for an interview andmore » also suggested that I talk to Douglas Fouquet, who is in charge of public relations at General Atomics and is their unofficial historian. Robert Beyster was not available for an interview, but, through the courtesy of John C. Hopkins, a former director of CNSS, I was able to interview SAIC`s executive vice president, Donald M. Kerr, who is also a former director at Los Alamos, and Steven Rockwood, a sector vice president at SAIC who was formerly a staff member at the Laboratory Because Agnew, Kerr, and Rockwood are all familiar with LANL, as well as with their respective companies, the interviews becam exercises In comparative analyses of technology transfer. In what follows, I have tried to summarize both the interviews and some of the research which attended them. It is the historian`s hope that by use of comparative institutional analyses, Laboratory administrators may learn something of value in directing their efforts toward the transfer of technology to private industry and other government agencies.« less

  10. Ground Test of the Urine Processing Assembly for Accelerations and Transfer Functions

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Almond, Deborah F. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the ground test of the urine processing assembly for accelerations and transfer functions. Details are given on the test setup, test data, data analysis, analytical results, and microgravity assessment. The conclusions of the tests include the following: (1) the single input/multiple output method is useful if the data is acquired by tri-axial accelerometers and inputs can be considered uncorrelated; (2) tying coherence with the matrix yields higher confidence in results; (3) the WRS#2 rack ORUs need to be isolated; (4) and future work includes a plan for characterizing performance of isolation materials.

  11. Targeted Technology Transfer to US Independents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Lance Cole

    2009-09-30

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energymore » Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the period was

  12. Technology transfer for DOE's office of buildings and community systems: assessment and strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M.A.; Jones, D.W.; Kolb, J.O.

    1986-07-01

    The uninterrupted availability of oil supplies over the past several years and the moderation of energy price increases has sent signals to consumers and decision-makers in the buildings industry that the ''energy crisis'' is over. As a result, efforts to promote energy-conserving technologies must emphasize benefits other than BTU savings. The improved ambience of daylit spaces and the lower first costs associated with installing down-sized HVAC systems in ''tight'' buildings are examples of benefits which are likely to more influential than estimates of energy saved. Successful technology transfer requires that an R and D product have intrinsic value and thatmore » these values be effectively communicated to potential users. Active technology transfer programs are more effective than passive ones. Transfer activities should involve more than simply making information available to those who seek it. Information should be tailored to meet the needs of specific user groups and disseminated through those channels which users normally employ. In addition to information dissemination, successful technology transfer involves the management of intellectual property, including patented inventions, copyrights, technical data, and rights to future inventions. When the public can best benefit from an invention through commercialization of a new product, the exclusivity necessary to protect the investment from copiers should be provided. Most federal technology transfer programs concentrate on information exchange and largely avoid intellectual property transfers.« less

  13. NASA Langley Research and Technology-Transfer Program in Formal Methods

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Caldwell, James L.; Carreno, Victor A.; Holloway, C. Michael; Miner, Paul S.; DiVito, Ben L.

    1995-01-01

    This paper presents an overview of NASA Langley research program in formal methods. The major goals of this work are to make formal methods practical for use on life critical systems, and to orchestrate the transfer of this technology to U.S. industry through use of carefully designed demonstration projects. Several direct technology transfer efforts have been initiated that apply formal methods to critical subsystems of real aerospace computer systems. The research team consists of five NASA civil servants and contractors from Odyssey Research Associates, SRI International, and VIGYAN Inc.

  14. 76 FR 71048 - Sixth Annual Philip S. Chen, Jr. Distinguished Lecture on Innovation and Technology Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ..., Jr. Distinguished Lecture on Innovation and Technology Transfer AGENCY: National Institutes of Health... sixth annual Philip S. Chen, Jr., Ph.D. Distinguished Lecture on Innovation and Technology Transfer... present ``Treatment of Cancer with Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr...

  15. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Gustafson, N. B.; Harmon, T. J.

    1993-01-01

    An advanced near term (1990's) space-based Orbit Transfer Vehicle Engine (OTVE) system was designed, and the technologies applicable to its construction, maintenance, and operations were developed under Tasks A through F of the Orbit Transfer Rocket Engine Technology Program. Task A was a reporting task. In Task B, promising OTV turbomachinery technologies were explored: two stage partial admission turbines, high velocity ratio diffusing crossovers, soft wear ring seals, advanced bearing concepts, and a rotordynamic analysis. In Task C, a ribbed combustor design was developed. Possible rib and channel geometries were chosen analytically. Rib candidates were hot air tested and laser velocimeter boundary layer analyses were conducted. A channel geometry was also chosen on the basis of laser velocimeter data. To verify the predicted heat enhancement effects, a ribbed calorimeter spool was hot fire tested. Under Task D, the optimum expander cycle engine thrust, performance and envelope were established for a set of OTV missions. Optimal nozzle contours and quick disconnects for modularity were developed. Failure Modes and Effects Analyses, maintenance and reliability studies and component study results were incorporated into the engine system. Parametric trades on engine thrust, mixture ratio, and area ratio were also generated. A control system and the health monitoring and maintenance operations necessary for a space-based engine were outlined in Task E. In addition, combustor wall thickness measuring devices and a fiberoptic shaft monitor were developed. These monitoring devices were incorporated into preflight engine readiness checkout procedures. In Task F, the Integrated Component Evaluator (I.C.E.) was used to demonstrate performance and operational characteristics of an advanced expander cycle engine system and its component technologies. Sub-system checkouts and a system blowdown were performed. Short transitions were then made into main combustor ignition and

  16. 40 CFR 63.126 - Transfer operations provisions-reference control technology.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Wastewater § 63.126 Transfer operations provisions—reference control technology. (a) For each Group 1... control device. (1) Each vapor collection system shall be designed and operated to collect the organic... process, fuel gas system, or control device shall be operating. (b) For each Group 1 transfer rack the...

  17. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2018-02-07

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  18. Breakthrough: Fermilab Accelerator Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-04-23

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  19. Orbit transfer rocket engine technology program enhanced heat transfer combustor technology

    NASA Technical Reports Server (NTRS)

    Brown, William S.

    1991-01-01

    In order to increase the performance of a high performance, advanced expander-cycle engine combustor, higher chamber pressures are required. In order to increase chamber pressure, more heat energy is required to be transferred to the combustor coolant circuit fluid which drives the turbomachinery. This requirement was fulfilled by increasing the area exposed to the hot-gas by using combustor ribs. A previous technology task conducted 2-d hot air and cold flow tests to determine an optimum rib height and configuration. In task C.5 a combustor calorimeter was fabricated with the optimum rib configuration, 0.040 in. high ribs, in order to determine their enhancing capability. A secondary objective was to determine the effects of mixture ratio changers on the enhancement during hot-fire testing. The program used the Rocketdyne Integrated Component Evaluator (ICE) reconfigured into a thrust chamber only mode. The test results were extrapolated to give a projected enhancement from the ribs for a 16 in. long cylindrical combustor at 15 Klb nominal thrust level. The hot-gas wall ribs resulted in a 58 percent increase in heat transfer. When projected to a full size 15K combustor, it becomes a 46 percent increase. The results of those tests, a comparison with previous 2-d results, the effects of mixture ratio and combustion gas flow on the ribs and the potential ramifications for expander cycle combustors are detailed.

  20. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less

  1. The uncounted benefits: Federal efforts in domestic technology transfer

    NASA Technical Reports Server (NTRS)

    Chapman, R. L.; Hirst, K.

    1986-01-01

    Organized technology transfer activities conducted by the agencies of the U.S. government are described. The focus is upon agency or departmental level activity rather than the laboratory level. None of the programs on which information was collected has been assessed or evaluated individually. However, the aggregate programs of the government have been judged in terms of obvious gaps and opportunities for future improvement. An overview, descriptions of the various agency or department programs of technology transfer, a list of persons interviewed or consulted during the survey, and a bibliography of publications, reports and other material made available to the study staff are given. An extensive appendix of illustrative material collected from the various programs is also given.

  2. Summary Report on Federal Laboratory Technology Transfer: FY 2003 Activity Metrics and Outcomes. 2004 Report to the President and the Congress under the Technology Transfer and Commercialization Act

    DTIC Science & Technology

    2004-12-01

    Agency, FY 1999-2003 Table 1.1 – Overview of the Types of Information on Federal lab Technology Transfer Collected in the...invention disclosure, patenting, and licensing. Table 1.1 – Overview of the Types of Information on Federal Lab Technology Transfer Collected in...results. In addition, ARS hosts a Textile Manufacturing Symposium and a Cotton Ginning Symposium at gin and textile labs to benefit county extension

  3. TECHNOLOGY TRANSFER ENVIRONMENTAL REGULATIONS AND TECHNOLOGY : CONTROL OF PATHOGENS IN MUNICIPAL WASTEWATER SLUDGE

    EPA Science Inventory

    This 71 - page Technology Transfer Environmental Regulations and echnology publication describes the Federal requirements promulgated in 1979 for reducing pathogens n wastewater sludge and provides guidance in determining whether individual sludge treatment andated or particular ...

  4. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  5. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  6. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  7. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  8. 23 CFR 420.205 - What is the FHWA's policy for research, development, and technology transfer funding?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... technology transfer funding? 420.205 Section 420.205 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF... Technology Transfer Program Management § 420.205 What is the FHWA's policy for research, development, and technology transfer funding? (a) It is the FHWA's policy to administer the RD&T program activities utilizing...

  9. Evaluating disparities in the U.S. technology transfer ecosystem to improve bench to business translation.

    PubMed

    Weis, James; Bashyam, Ashvin; Ekchian, Gregory J; Paisner, Kathryn; Vanderford, Nathan L

    2018-01-01

    Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer

  10. Evaluating disparities in the U.S. technology transfer ecosystem to improve bench to business translation

    PubMed Central

    Paisner, Kathryn; Vanderford, Nathan L.

    2018-01-01

    Background: A large number of highly impactful technologies originated from academic research, and the transfer of inventions from academic institutions to private industry is a major driver of economic growth, and a catalyst for further discovery. However, there are significant inefficiencies in academic technology transfer. In this work, we conducted a data-driven assessment of translational activity across United States (U.S.) institutions to better understand how effective universities are in facilitating the transfer of new technologies into the marketplace. From this analysis, we provide recommendations to guide technology transfer policy making at both the university and national level. Methods: Using data from the Association of University Technology Managers U.S. Licensing Activity Survey, we defined a commercialization pipeline that reflects the typical path intellectual property takes; from initial research funding to startup formation and gross income. We use this pipeline to quantify the performance of academic institutions at each step of the process, as well as overall, and identify the top performing institutions via mean reciprocal rank. The corresponding distributions were visualized and disparities quantified using the Gini coefficient. Results: We found significant discrepancies in commercialization activity between institutions; a small number of institutions contribute to the vast majority of total commercialization activity. By examining select top performing institutions, we suggest improvements universities and technology transfer offices could implement to emulate the environment at these high-performing institutions. Conclusion: Significant disparities in technology transfer performance exist in which a select set of institutions produce a majority share of the total technology transfer activity. This disparity points to missed commercialization opportunities, and thus, further investigation into the distribution of technology transfer

  11. FY05 Targeted Technology Transfer to US Independents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald F. Duttlinger; E. Lance Cole

    2005-11-01

    Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within amore » National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions, the PTTC from the start has captured and reported data that document the myriad ways its

  12. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present

  13. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2013-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present

  14. Imagining value, imagining users: academic technology transfer for health innovation.

    PubMed

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  15. Applications of aerospace technology in biomedicine. A technology transfer profile: Patient monitoring

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    NASA contributions to cardiovascular monitoring are described along with innovations in intracardiac blood pressure monitoring. A brief overview of the process of NASA technology transfer in patient monitoring is presented and a list of bioinstrumentation tech briefs and the number of requests for technical support is included.

  16. NASA Northeast Regional Technology Transfer Center

    NASA Technical Reports Server (NTRS)

    Dunn, James P.

    2001-01-01

    This report is a summary of the primary activities and metrics for the NASA Northeast Regional Technology Transfer Center, operated by the Center for Technology Commercialization, Inc. (CTC). This report covers the contract period January 1, 2000 - March 31, 2001. This report includes a summary of the overall CTC Metrics, a summary of the Major Outreach Events, an overview of the NASA Business Outreach Program, a summary of the Activities and Results of the Technology into the Zone program, and a Summary of the Major Activities and Initiatives performed by CTC in supporting this contract. Between January 1, 2000 and March 31, 2001, CTC has facilitated 10 license agreements, established 35 partnerships, provided assistance 517 times to companies, and performed 593 outreach activities including participation in 57 outreach events. CTC also assisted Goddard in executing a successful 'Technology into the Zone' program.' CTC is pleased to have performed this contract, and looks forward to continue providing their specialized services in support of the new 5 year RTTC Contract for the Northeast region.

  17. 77 FR 46909 - Small Business Innovation Research (SBIR) Program and Small Business Technology Transfer (STTR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-06

    ... Technology Transfer (STTR) Program Policy Directives AGENCY: U.S. Small Business Administration. ACTION...) and Small Business Technology Transfer Program (STTR) Policy Directives. These amendments implement... to Edsel Brown, Assistant Director, Office of Technology, U.S. Small Business Administrator, 409...

  18. Computational screening of organic polymer dielectrics for novel accelerator technologies

    DOE PAGES

    Pilania, Ghanshyam; Weis, Eric; Walker, Ethan M.; ...

    2018-06-18

    The use of infrared lasers to power accelerating dielectric structures is a developing area of research. Within this technology, the choice of the dielectric material forming the accelerating structures, such as the photonic band gap (PBG) structures, is dictated by a range of interrelated factors including their dielectric and optical properties, amenability to photo-polymerization, thermochemical stability and other target performance metrics of the particle accelerator. In this direction, electronic structure theory aided computational screening and design of dielectric materials can play a key role in identifying potential candidate materials with the targeted functionalities to guide experimental synthetic efforts. In anmore » attempt to systematically understand the role of chemistry in controlling the electronic structure and dielectric properties of organic polymeric materials, here we employ empirical screening and density functional theory (DFT) computations, as a part of our multi-step hierarchal screening strategy. Our DFT based analysis focused on the bandgap, dielectric permittivity, and frequency-dependent dielectric losses due to lattice absorption as key properties to down-select promising polymer motifs. In addition to the specific application of dielectric laser acceleration, the general methodology presented here is deemed to be valuable in the design of new insulators with an attractive combination of dielectric properties.« less

  19. Illinois Accelerator Research Center

    DOE PAGES

    Kroc, Thomas K.; Cooper, Charlie A.

    2017-10-26

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  20. Illinois Accelerator Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 heavy assembly building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, whichmore » contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. Finally, at IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.« less

  1. Illinois Accelerator Research Center

    NASA Astrophysics Data System (ADS)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  2. Identifying new technologies that save energy and reduce costs to the Federal sector: The New Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, W.D.M.; Conover, D.R.; Stockmeyer, M.K.

    1995-11-01

    In 1990 the New Technology Demonstration Program (formerly the Test Bed Demonstration Program) was initiated by the US Department of Energy`s Office (DOE`s) of Federal Energy Management Programs with the purpose of accelerating the introduction of new technologies into the Federal sector. The program has since expanded into a multi-laboratory collaborative effort that evaluates new technologies and shares the results with the Federal design and procurement communities. These evaluations are performed on a collaborative basis which typically includes technology manufacturers, Federal facilities, utilities, trade associations, research institutes, and other in partnership with DOE. The end result is a range ofmore » effective technology transfer tools that provide operations and performance data on new technologies to Federal designers, building managers, and procurement officials. These tools assist in accelerating a technology`s Federal application and realizing reductions in energy consumption and costs.« less

  3. Incorporating the Delphi Technique to investigate renewable energy technology transfer in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Otaibi, Nasir K.

    Saudi Arabia is a major oil-producing nation facing a rapidly-growing population, high unemployment, climate change, and the depletion of its natural resources, potentially including its oil supply. Technology transfer is regarded as a means to diversify countries' economies beyond their natural resources. This dissertation examined the opportunities and barriers to utilizing technology transfer successfully to build renewable energy resources in Saudi Arabia to diversify the economy beyond oil production. Examples of other developing countries that have successfully used technology transfer to transform their economies are explored, including Japan, Malayasia, and the United Arab Emirates. Brazil is presented as a detailed case study to illustrate its transition to an economy based to a much greater degree than before on renewable energy. Following a pilot study, the Delphi Method was used in this research to gather the opinions of a panel of technology transfer experts consisting of 10 heterogeneous members of different institutions in the Kingdom of Saudi Arabia, including aviation, telecommunication, oil industry, education, health systems, and military and governmental organizations. In three rounds of questioning, the experts identified Education, Dependence on Oil, and Manpower as the 3 most significant factors influencing the potential for success of renewable energy technology transfer for Saudi Arabia. Political factors were also rated toward the "Very Important" end of a Likert scale and were discussed as they impact Education, Oil Dependence, and Manpower. The experts' opinions are presented and interpreted. They form the basis for recommended future research and discussion of how in light of its political system and its dependence on oil, Saudi Arabia can realistically move forward on renewable energy technology transfer and secure its economic future.

  4. NASA technology utilization applications. [transfer of medical sciences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.

  5. Mission & Role | NCI Technology Transfer Center | TTC

    Cancer.gov

    The NCI TTC serves as the focal point for implementing the Federal Technology Transfer Act to utilize patents as incentive for commercial development of technologies and to establish research collaborations and licensing among academia, federal laboratories, non-profit organizations, and industry. The TTC supports technology development activities for the National Cancer Institute and nine other NIH Institutes and Centers. TTC staff negotiate co-development agreements and licenses with universities, non-profit organizations, and pharmaceutical and biotechnology companies to ensure compliance with Federal statutes, regulations and the policies of the National Institutes of Health. TTC also reviews employee invention reports and makes recommendations concerning filing of domestic and foreign patent applications. | [google6f4cd5334ac394ab.html

  6. Remote sensing education in NASA's technology transfer program

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1981-01-01

    Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.

  7. U.S. EPA Federal Technology Transfer Program Fact Sheet

    EPA Pesticide Factsheets

    The Federal Technology Transfer Act (FTTA), enacted by Congress in 1986 and building on previous legislation, improves access to federal laboratories by non-federal organizations for research and development opportunities.

  8. Collaborating with EPA through the Federal Technology Transfer Act

    EPA Pesticide Factsheets

    Under the Federal Technology Transfer Act (FTTA), EPA can collaborate with external parties on research projects, and share research materials. Learn more about the types of partnerships the EPA offers.

  9. 76 FR 8371 - Notice Correction; Generic Submission of Technology Transfer Center (TTC) External Customer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... Submission of Technology Transfer Center (TTC) External Customer Satisfaction Surveys (NCI) The Federal... project titled, ``Technology Transfer Center (TTC) External Customer Satisfaction Survey (NCI)'' was... will include multiple customer satisfaction surveys over the course of three years. At this time, only...

  10. Education in a rapidly advancing technology: Accelerators and beams

    NASA Astrophysics Data System (ADS)

    Month, Mel

    2000-06-01

    The field of accelerators and beams (A&B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A&B is described and addressed. The solution proposed, a type of "distance" education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A&B, primarily but not exclusively the national laboratories. The field of A&B is briefly summarized. The need for education outside the university framework, the raison d'être for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities.

  11. Superconducting accelerator magnet technology in the 21st century: A new paradigm on the horizon?

    NASA Astrophysics Data System (ADS)

    Gourlay, S. A.

    2018-06-01

    Superconducting magnets for accelerators were first suggested in the mid-60's and have since become one of the major components of modern particle colliders. Technological progress has been slow but steady for the last half-century, based primarily on Nb-Ti superconductor. That technology has reached its peak with the Large Hadron Collider (LHC). Despite the superior electromagnetic properties of Nb3Sn and adoption by early magnet pioneers, it is just now coming into use in accelerators though it has not yet reliably achieved fields close to the theoretical limit. The discovery of the High Temperature Superconductors (HTS) in the late '80's created tremendous excitement, but these materials, with tantalizing performance at high fields and temperatures, have not yet been successfully developed into accelerator magnet configurations. Thanks to relatively recent developments in both Bi-2212 and REBCO, and a more focused international effort on magnet development, the situation has changed dramatically. Early optimism has been replaced with a reality that could create a new paradigm in superconducting magnet technology. Using selected examples of magnet technology from the previous century to define the context, this paper will describe the possible innovations using HTS materials as the basis for a new paradigm.

  12. Technology transfer from NASA to targeted industries, volume 2

    NASA Technical Reports Server (NTRS)

    Mccain, Wayne; Schroer, Bernard J.; Souder, William E.; Spann, Mary S.; Watters, Harry; Ziemke, M. Carl

    1993-01-01

    This volume contains the following materials to support Volume 1: (1) Survey of Metal Fabrication Industry in Alabama; (2) Survey of Electronics Manufacturing/Assembly Industry in Alabama; (3) Apparel Modular Manufacturing Simulators; (4) Synopsis of a Stereolithography Project; (5) Transferring Modular Manufacturing Technology to an Apparel Firm; (6) Letters of Support; (7) Fact Sheets; (8) Publications; and (9) One Stop Access to NASA Technology Brochure.

  13. Technology Transfer: Use of Federally Funded Research and Development

    DTIC Science & Technology

    2007-07-19

    technology to the private sector and to state and local governments. Despite this, use of federal R&D results has remained restrained, although there has...been a significant increase in private sector interest and activities over the past several years. Critics argue that working with the agencies and...technology transfer, or if the responsibility to use the available resources now rests with the private sector .

  14. Research in space commercialization, technology transfer, and communications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  15. Ethics and technology transfer: patients, patents, and public trust.

    PubMed

    Zucker, Deborah

    2011-06-01

    Universities and academic medical centers have been increasing their focus on technology transfer and research commercialization. With this shift in focus, academic-industry ties have become prevalent. These relationships can benefit academic researchers and help then to transform their research into tangible societal benefits. However, there also are concerns that these ties and the greater academic focus on commercialization might lead to conflicts of interest, especially financial conflicts of interest. This paper briefly explores some of these conflicts of interest, particularly relating to research and training. This paper also discusses some of the policies that have been, and are being, developed to try to mitigate and manage these conflicts so that academic involvement in technology transfer and commercialization can continue without jeopardizing academic work or the public's trust in them.

  16. Targeted Technology Transfer to US Independents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schatzinger, Viola; Chapman, Kathy; Lovendahl, Kristi

    The Petroleum Technology Transfer Council (PTTC) is a unique not-for-profit network that focuses on transferring Exploration and Production (E&P) technology to the domestic oil and natural gas producing industry. PTTC connects producers, technology providers and innovators, academia, research and development (R&D) consortiums and governments. Local affordable workshops delivered by Regional Lead Organizations (RLOs), which are typically a university or geological survey, are a primary tool. PTTC also maintains a website network, issues a national newsletter, provides a column in a major trade publication, and exhibits at major industry events. It also encourages industry to ask technology-related questions, striving to findmore » relevant answers that will save questioners significant time. Working since late 1993, the PTTC network has a proven track record of providing industry with technology insights they can apply. Volunteers at the regional and national level provide key guidance regarding where to focus technical effort and help connect PTTC with industry. At historical funding levels, PTTC had been able to hold well more than 100 workshops per year, drawing 6,000+ attendees. As funding decreased in the early 2000s, the level of activity decreased and PTTC sought a merger with the American Association of Petroleum Geologists (AAPG), becoming an AAPG-managed organization at the start of FY08. This relationship with AAPG was terminated by mutual consent in May 2011 and PTTC once again operates independently. Chris Hall, California continued to serve as Chairman of the Board of Directors until December 2013. At the time PTTC reorganized into a RLO led organization with Mary Carr and Jeremy Viscomi as co-Executive Directors. Jerry Anderson became the Chairman of the PTTC Board of Directors and Chris Hall continues to serve on the Board. Workshop activity stabilized at 55-65 workshops per year averaging 3,100 attendees. FY14 represented the fifth year in a multi

  17. Repetitive nanosecond electron accelerators type URT-1 for radiation technology

    NASA Astrophysics Data System (ADS)

    Sokovnin, S. Yu.; Balezin, M. E.

    2018-03-01

    The electron accelerator URT-1М-300 for mobile installation was created for radiation disinfecting to correct drawbacks that were found the URT-1M electron accelerator operation (the accelerating voltage up to 1 МV, repetition rate up to 300 pps, electron beam size 400 × 100 mm, the pulse width about 100 ns). Accelerator configuration was changed that allowed to reduce significantly by 20% tank volume with oil where is placed the system of formation high-voltage pulses, thus the average power of the accelerator is increased by 6 times at the expense of increase in pulses repetition rate. Was created the system of the computerized monitoring parameters (output parameters and thermal mode) and remote control of the accelerator (charge voltage, pulse repetition rate), its elements and auxiliary systems (heat of the thyratron, vacuum system), the remote control panel is connected to the installation by the fiber-optical channel, what lightens the work for service personnel. For generating an electron beam up to 400 mm wide there are used metal- ceramic] and metal-dielectric cold cathodes of several emission elements (plates) with a non-uniform distribution of the electron beam current density on the output foil ± 15%. It was found that emission drop of both type of cathodes, during the operation at the high repetition rate (100 pps) is substantial at the beginning of the process, and then proceeds rather slowly that allows for continuous operation up to 40 h. Experiments showed that linear dependence of the voltage and a signal from the pin-diode remains within the range of the charge voltage 45-65 kV. Thus, voltage increases from 690 to 950 kV, and the signal from the pin-diode - from (2,8-4,6)*104 Gy/s. It allows to select electron energy quite precisely with consideration of the radiation technology requirements.

  18. Extraordinary tools for extraordinary science: the impact of SciDAC on accelerator science and technology

    NASA Astrophysics Data System (ADS)

    Ryne, Robert D.

    2006-09-01

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  19. Influenza vaccine production for Brazil: a classic example of successful North-South bilateral technology transfer.

    PubMed

    Miyaki, Cosue; Meros, Mauricio; Precioso, Alexander R; Raw, Isaias

    2011-07-01

    Technology transfer is a promising approach to increase vaccine production at an affordable price in developing countries. In the case of influenza, it is imperative that developing countries acquire the technology to produce pandemic vaccines through the transfer of know-how, as this will be the only way for the majority of these countries to face the huge demand for vaccine created by influenza pandemics. Access to domestically produced influenza vaccine in such health crises is thus an important national defence strategy. However, technology transfer is not a simple undertaking. It requires a committed provider who is willing to transfer a complete production process, and not just the formulation and fill-finish parts of the process. It requires a recipient with established experience in vaccine production for human use and the ability to conduct research into new developments. In addition, the country of the recipient should preferably have sufficient financial resources to support the undertaking, and an internal market for the new vaccine. Technology transfer should create a solid partnership that results in the joint development of new competency, improvements to the product, and to further innovation. The Instituto Butantan-sanofi pasteur partnership can be seen as a model for successful technology transfer and has led to the technological independence of the Instituto Butantan in the use a strategic public health tool. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to the Enterprise

    DTIC Science & Technology

    2010-04-29

    Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to

  1. Using the MCPLXS Generator for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Moore, Arlene A.; Dean, Edwin B.

    1987-01-01

    The objective of this paper is to acquaint you with some of the approaches we are taking at Langley to incorporate escalations (or de-escalations) of technology when modeling futuristic systems. Since we have a short turnaround between the time we receive enough descriptive information to start estimating the project and when the estimate is needed (the "we-want-it-yesterday syndrome"), creativity is often necessary. There is not much time available for tool development. It is expedient to use existing tools in an adaptive manner to model the situation at hand. Specifically, this paper describes the use of the RCA PRICE MCPLXS Generator to incorporate technology transfer and technology escalation in estimates for advanced space systems such as Shuttle II and NASA advanced technology vehicles. It is assumed that the reader is familiar with the RCA PRICE family of models as well as the RCA PRICE utility programs such as SCPLX, PARAM, PARASYN, and the MCPLXS Generator.

  2. Users speak out on technology deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Mark; Prochaska, Marty; Cromer, Paul

    2001-02-25

    This report summarizes user feedback data collected during a recent Accelerated Site Technology Deployment (ASTD) project: the Fluor Fernald ASTD Technology Deployment Project from May, 1999 through September, 2000. The main goal of the ASTD project was to use the ''Fernald approach'' to expedite the deployment of new or innovative technologies with superior safety, cost, and/or productivity benefits to Department of Energy (DOE) facilities. The Fernald approach targets technology end-users and their managers and directly involves them with hands-on demonstrations of new or innovative technologies during technology transfer sessions. The two technologies deployed through this project were the Personal Icemore » Cooling System (PICS) and the oxy-gasoline torch. Participants of technology transfer sessions were requested to complete feedback surveys. Surveys evaluated the effectiveness of the Fernald approach to technology deployment and assessed the responsiveness of employees to new technologies. This report presents the results of those surveys.« less

  3. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    NASA Astrophysics Data System (ADS)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply.

  4. Introduction of Parallel GPGPU Acceleration Algorithms for the Solution of Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Godoy, William F.; Liu, Xu

    2011-01-01

    General-purpose computing on graphics processing units (GPGPU) is a recent technique that allows the parallel graphics processing unit (GPU) to accelerate calculations performed sequentially by the central processing unit (CPU). To introduce GPGPU to radiative transfer, the Gauss-Seidel solution of the well-known expressions for 1-D and 3-D homogeneous, isotropic media is selected as a test case. Different algorithms are introduced to balance memory and GPU-CPU communication, critical aspects of GPGPU. Results show that speed-ups of one to two orders of magnitude are obtained when compared to sequential solutions. The underlying value of GPGPU is its potential extension in radiative solvers (e.g., Monte Carlo, discrete ordinates) at a minimal learning curve.

  5. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    PubMed

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  6. Accelerating Technology Development through Integrated Computation and Experimentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekhawat, Dushyant; Srivastava, Rameshwar D.; Ciferno, Jared

    2013-08-15

    This special section of Energy & Fuels comprises a selection of papers presented at the topical conference “Accelerating Technology Development through Integrated Computation and Experimentation”, sponsored and organized by the United States Department of Energy’s National Energy Technology Laboratory (NETL) as part of the 2012 American Institute of Chemical Engineers (AIChE) Annual Meeting held in Pittsburgh, PA, Oct 28-Nov 2, 2012. That topical conference focused on the latest research and development efforts in five main areas related to fossil energy, with each area focusing on the utilization of both experimental and computational approaches: (1) gas separations (membranes, sorbents, and solventsmore » for CO{sub 2}, H{sub 2}, and O{sub 2} production), (2) CO{sub 2} utilization (enhanced oil recovery, chemical production, mineralization, etc.), (3) carbon sequestration (flow in natural systems), (4) advanced power cycles (oxy-combustion, chemical looping, gasification, etc.), and (5) fuel processing (H{sub 2} production for fuel cells).« less

  7. Research Tools and Materials | NCI Technology Transfer Center | TTC

    Cancer.gov

    Research Tools can be found in TTC's Available Technologies and in scientific publications. They are freely available to non-profits and universities through a Material Transfer Agreement (or other appropriate mechanism), and available via licensing to companies.

  8. Direct longitudinal laser acceleration of electrons in free space

    NASA Astrophysics Data System (ADS)

    Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.

    2016-02-01

    Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser

  9. Using New Technologies: A Technology Transfer Guidebook. Version 02.00. 08

    DTIC Science & Technology

    1993-12-01

    Barton (1990) and Pressman (1992), depend on the concept that improving your overall technology transfer process decreases the amount of time it takes to...Evolutionary Spiral Process Any enactment of the evolutionary spiral model (ESP) which is an adaptation of the basic spiral model pro- posed by Barry Boehm...Innovations in Organizations, 1989 CMU/SEI-89-TR-17, (also NTIS ADA211573). Pittsburgh, Pennsylvania: Software Engineering Institute. Boehm, Barry A

  10. Rail accelerator technology and applications

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.

    1985-01-01

    Rail accelerators offer a viable means of launching ton-size payloads from the Earth's surface to space. The results of two mission studies which indicate that an Earth-to-Space Rail Launcher (ESRL) system is not only technically feasible but also economically beneficial, particularly when large amounts of bulk cago are to be delivered to space are given. An in-house experimental program at the Lewis Research Center (LeRC) was conducted in parallel with the mission studies with the objective of examining technical feasibility issues. A 1 m long - 12.5 by 12.5 mm bore rail accelerator as designed with clear polycarbonate sidewalls to visually observe the plasma armature acceleration. The general character of plasma/projectile dynamics is described for a typical test firing.

  11. Strategies for Maximizing Successful Drug Substance Technology Transfer Using Engineering, Shake-Down, and Wet Test Runs.

    PubMed

    Abraham, Sushil; Bain, David; Bowers, John; Larivee, Victor; Leira, Francisco; Xie, Jasmina

    2015-01-01

    The technology transfer of biological products is a complex process requiring control of multiple unit operations and parameters to ensure product quality and process performance. To achieve product commercialization, the technology transfer sending unit must successfully transfer knowledge about both the product and the process to the receiving unit. A key strategy for maximizing successful scale-up and transfer efforts is the effective use of engineering and shake-down runs to confirm operational performance and product quality prior to embarking on good manufacturing practice runs such as process performance qualification runs. We consider key factors to consider in making the decision to perform shake-down or engineering runs. We also present industry benchmarking results of how engineering runs are used in drug substance technology transfers alongside the main themes and best practices that have emerged. Our goal is to provide companies with a framework for ensuring the "right first time" technology transfers with effective deployment of resources within increasingly aggressive timeline constraints. © PDA, Inc. 2015.

  12. Education in a rapidly advancing technology: Accelerators and beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Month, Mel

    2000-06-01

    The field of accelerators and beams (A and B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A and B is described and addressed. The solution proposed, a type of ''distance'' education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving themore » education needs of the institutions using A and B, primarily but not exclusively the national laboratories. The field of A and B is briefly summarized. The need for education outside the university framework, the raison d'etre for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities. (c) 2000 American Association of Physics Teachers.« less

  13. Accelerating the deployment of energy efficient and renewable energy technologies in South Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shickman, Kurt

    Purpose of the project was to accelerate the deployment of energy efficient and renewable energy technologies in South Africa. Activities were undertaken to reduce barriers to deployment by improving product awareness for the South African market; market and policy intelligence for U.S. manufacturers; product/service availability; local technical capacity at the workforce, policymaker and expert levels; and ease of conducting business for these technologies/services in the South African market.

  14. Technology Transfer as an Entrepreneurial Practice in Higher Education. CELCEE Digest No. 98-9.

    ERIC Educational Resources Information Center

    Faris, Shannon K.

    This digest examines some of the literature on technology transfer in the context of higher education, noting that the practice of capitalizing on academic research for commercial purposes has the potential to generate financial resources for the participating institutions of higher education. Several examples of technology transfer are cited,…

  15. Secondary electron emission from plasma processed accelerating cavity grade niobium

    NASA Astrophysics Data System (ADS)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  16. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for highermore » energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were

  17. Implications of Technology Transfers for the USSR

    DTIC Science & Technology

    1977-01-01

    process is primarily a people-process. Technology is best transferred from firm to firm and from country to country by people (managers, engineers, sales ... sales engineers, etc.) rather than by publications (including blueprints) or products themselves. In the postwar period, the Soviets have concentrated on...determined as the residual category of end-use, and Soviet gold sales and imports of grain from the Developed West are exogenous rather than determined

  18. NASA Intellectual Property Negotiation Practices and their Relationship to Quantitative Measures of Technology Transfer

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.

    1997-01-01

    In the current political climate NASA must be able to show reliable measures demonstrating successful technology transfer. The currently available quantitative data of intellectual property technology transfer efforts portray a less than successful performance. In this paper, the use of only quantitative values for measurement of technology transfer is shown to undervalue the effort. In addition, NASA's current policy in negotiating intellectual property rights results in undervalued royalty rates. NASA has maintained that it's position of providing public good precludes it from negotiating fair market value for its technology and instead has negotiated for reasonable cost in order to recover processing fees. This measurement issue is examined and recommendations made which include a new policy regarding the intellectual property rights negotiation, and two measures to supplement the intellectual property measures.

  19. Institutionalization of Technology Transfer Organizations in Chinese Universities

    ERIC Educational Resources Information Center

    Cai, Yuzhuo; Zhang, Han; Pinheiro, Rómulo

    2015-01-01

    There is a lack of in-depth studies on how technology transfer organizations (TTOs) are organized and developed. This paper examines the evolution/institutionalization of TTOs in Tsinghua University (TU), as a microcosm of the development of TTOs in Chinese universities. It explores two issues in particular: what kinds of TTOs have been developed…

  20. Cell-printing and transfer technology applications for bone defects in mice.

    PubMed

    Tsugawa, Junichi; Komaki, Motohiro; Yoshida, Tomoko; Nakahama, Ken-ichi; Amagasa, Teruo; Morita, Ikuo

    2011-10-01

    Bone regeneration therapy based on the delivery of osteogenic factors and/or cells has received a lot of attention in recent years since the discovery of pluripotent stem cells. We reported previously that the implantation of capillary networks engineered ex vivo by the use of cell-printing technology could improve blood perfusion. Here, we developed a new substrate prepared by coating glass with polyethylene glycol (PEG) to create a non-adhesive surface and subsequent photo-lithography to finely tune the adhesive property for efficient cell transfer. We examined the cell-transfer efficiency onto amniotic membrane and bone regenerative efficiency in murine calvarial bone defect. Cell transfer of KUSA-A1 cells (murine osteoblasts) to amniotic membrane was performed for 1 h using the substrates. Cell transfer using the substrate facilitated cell engraftment onto the amniotic membrane compared to that by direct cell inoculation. KUSA-A1 cells transferred onto the amniotic membrane were applied to critical-sized calvarial bone defects in mice. Micro-computed tomography (micro-CT) analysis showed rapid and effective bone formation by the cell-equipped amniotic membrane. These results indicate that the cell-printing and transfer technology used to create the cell-equipped amniotic membrane was beneficial for the cell delivery system. Our findings support the development of a biologically stable and effective bone regeneration therapy. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Space Biosensor Systems: Implications for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)

    1997-01-01

    To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.

  2. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  3. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemann, R.H.; /SLAC

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  4. Microwave Radiometer Technology Acceleration Mission (MiRaTA): Advancing Weather Remote Sensing with Nanosatellites

    NASA Astrophysics Data System (ADS)

    Cahoy, K.; Blackwell, W. J.; Bishop, R. L.; Erickson, N.; Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.; Bardeen, J.; Dave, P.; Marinan, A.; Marlow, W.; Kingsbury, R.; Kennedy, A.; Byrne, J. M.; Peters, E.; Allen, G.; Burianek, D.; Busse, F.; Elliott, D.; Galbraith, C.; Leslie, V. V.; Osaretin, I.; Shields, M.; Thompson, E.; Toher, D.; DiLiberto, M.

    2014-12-01

    The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). Microwave radiometer measurements and GPS radio occultation (GPSRO) measurements of all-weather temperature and humidity provide key contributions toward improved weather forecasting. The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, and (2) new GPS receiver and patch antenna array technology for GPS radio occultation retrieval of both temperature-pressure profiles in the atmosphere and electron density profiles in the ionosphere. In addition, MiRaTA will test (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. The radiometer measurement quality can be substantially improved relative to present systems through the use of proximal GPSRO measurements as a calibration standard for radiometric observations, reducing and perhaps eliminating the need for costly and complex internal calibration targets. MiRaTA will execute occasional pitch-up maneuvers so that the radiometer and GPSRO observations sound overlapping volumes of atmosphere through the Earth's limb. To validate system performance, observations from both microwave radiometer (MWR) and GPSRO instruments will be compared to radiosondes, global high-resolution analysis fields, other satellite observations, and to each other using radiative transfer models. Both the radiometer and GPSRO payloads, currently at TRL5 but to be advanced to TRL7 at mission conclusion, can be accommodated in a single 3U CubeSat. The current plan is to launch from an International Space Station (ISS) orbit at ~400 km altitude and 52° inclination for low-cost validation over a ~90-day mission to fly in 2016. MiRaTA will demonstrate high fidelity, well-calibrated radiometric

  5. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Research and Development Agreement (CRADA) information in accordance with Technology Transfer actions under... descriptive of the data and is suitable for dissemination purposes, (B) The program under which it was funded...

  6. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Research and Development Agreement (CRADA) information in accordance with Technology Transfer actions under... descriptive of the data and is suitable for dissemination purposes, (B) The program under which it was funded...

  7. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Research and Development Agreement (CRADA) information in accordance with Technology Transfer actions under... descriptive of the data and is suitable for dissemination purposes, (B) The program under which it was funded...

  8. 48 CFR 970.5227-2 - Rights in data-technology transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Research and Development Agreement (CRADA) information in accordance with Technology Transfer actions under... descriptive of the data and is suitable for dissemination purposes, (B) The program under which it was funded...

  9. 14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... technology to foreign firms or institutions. 1274.915 Section 1274.915 Aeronautics and Space NATIONAL... Conditions § 1274.915 Restrictions on sale or transfer of technology to foreign firms or institutions. Restrictions on Sale or Transfer of Technology to Foreign Firms or Institutions July 2002 (a) The parties agree...

  10. Charge-Transfer Processes in Warm Dense Matter: Selective Spectral Filtering for Laser-Accelerated Ion Beams

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Barriga-Carrasco, M. D.; Morales, R.; Schnürer, M.

    2018-05-01

    We investigate, both experimentally and theoretically, how the spectral distribution of laser accelerated carbon ions can be filtered by charge exchange processes in a double foil target setup. Carbon ions at multiple charge states with an initially wide kinetic energy spectrum, from 0.1 to 18 MeV, were detected with a remarkably narrow spectral bandwidth after they had passed through an ultrathin and partially ionized foil. With our theoretical calculations, we demonstrate that this process is a consequence of the evolution of the carbon ion charge states in the second foil. We calculated the resulting spectral distribution separately for each ion species by solving the rate equations for electron loss and capture processes within a collisional radiative model. We determine how the efficiency of charge transfer processes can be manipulated by controlling the ionization degree of the transfer matter.

  11. Study of Federal technology transfer activities in areas of interest to NASA Office of Space and Terrestrial Applications

    NASA Technical Reports Server (NTRS)

    Madigan, J. A.; Earhart, R. W.

    1978-01-01

    Forty-three ongoing technology transfer programs in Federal agencies other than NASA were selected from over 200 current Federal technology transfer activities. Selection was made and specific technology transfer mechanisms utilized. Detailed information was obtained on the selected programs by reviewing published literature, and conducting telephone interviews with each program manager. Specific information collected on each program includes technology areas; user groups, mechanisms employed, duration of program, and level of effort. Twenty-four distinct mechanisms are currently employed in Federal technology transfer activities totaling $260 million per year. Typical applications of each mechanism were reviewed, and caveats on evaluating program effectiveness were discussed. A review of recent federally funded research in technology transfer to state and local governments was made utilizing the Smithsonian Science Information Exchange, and abstracts of interest to NASA were selected for further reference.

  12. Transfer of aerospace technology to selected public sector areas of concern

    NASA Technical Reports Server (NTRS)

    Berke, J. G.

    1972-01-01

    The activities of the NASA Technology Applications Team at Stanford Research Institute, California are discussed. The specific activities in the fields of criminalistics and transportation are reported. The overall objectives of the program are stated on the basis of successful technology transfer and providing appropriate visibility for program activities.

  13. Cryogenic Propellant Storage and Transfer Technology Demonstration: Advancing Technologies for Future Mission Architectures Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.

  14. Thin-Film Thermocouple Technology Demonstrated for Reliable Heat Transfer Measurements

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exploratory work is in progress to apply thin-film thermocouples to localized heat transfer measurements on turbine engine vanes and blades. The emerging thin-film thermocouple technology shows great potential to improve the accuracy of local heat transfer measurements. To verify and master the experimental methodology of thin-film thermocouples, the NASA Lewis Research Center conducted a proof-of-concept experiment in a controlled environment before applying the thin-film sensors to turbine tests.

  15. Technology transfer between the government and the aerospace industry

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert; Dunbar, Dennis

    1992-01-01

    The object of this working group panel was to review questions and issues pertaining to technology transfer between the government and the aerospace industry for use on both government and commercial space customer applications. The results of this review are presented in vugraph form.

  16. Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Proceedings of the workshop are presented. The mission of the conference was to transfer advanced technologies developed by the Federal government, its contractors, and other high-tech organizations to U.S. industries for their use in developing new or improved products and processes. Volume two presents papers on the following topics: materials science, robotics, test and measurement, advanced manufacturing, artificial intelligence, biotechnology, electronics, and software engineering.

  17. Harnessing collaborative technology to accelerate achievement of chronic disease management objectives for Canada.

    PubMed

    Thompson, Leslee J; Healey, Lindsay; Falk, Will

    2007-01-01

    Morgan and colleagues put forth a call to action for the transformation of the Canadian healthcare system through the adoption of a national chronic disease prevention and management (CDPM) strategy. They offer examples of best practices and national solutions including investment in clinical information technologies to help support improved care and outcomes. Although we acknowledge that the authors propose CDPM solutions that are headed in the right direction, more rapid deployment of solutions that harness the potential of advanced collaborative technologies is required. We provide examples of how technologies that exist today can help to accelerate the achievement of some key CDPM objectives.

  18. Venture Creation Programs: Bridging Entrepreneurship Education and Technology Transfer

    ERIC Educational Resources Information Center

    Lackéus, Martin; Williams Middleton, Karen

    2015-01-01

    Purpose: The purpose of this paper is to explore how university-based entrepreneurship programs, incorporating real-life venture creation into educational design and delivery, can bridge the gap between entrepreneurship education and technology transfer within the university environment. Design/methodology/approach: Based on a literature review…

  19. Measuring the Impact of University Technology Transfer: A Guide to Methodologies, Data Needs, and Sources

    ERIC Educational Resources Information Center

    Lowe, Robert A.; Quick, Suzanne K.

    2005-01-01

    This paper discusses measures that capture the impact of university technology transfer activities on a university?s local and regional economies (economic impact). Such assessments are of increasing interest to policy makers, researchers and technology transfer professionals, yet there have been few published discussions of the merits of various…

  20. A New Technology Transfer Paradigm: How State Universities Can Collaborate with Industry in the USA

    ERIC Educational Resources Information Center

    Renault, Catherine S.; Cope, Jeff; Dix, Molly; Hersey, Karen

    2008-01-01

    In some US states, policy makers, pressed by local and regional industrial interests, are debating how to "reform" technology transfer at public universities. "Reform" in this context is generally understood to mean redirecting university technology transfer activities to increase the benefits of state-funded research to local industries.…

  1. Love and Hate in University Technology Transfer: Examining Faculty and Staff Conflicts and Ethical Issues

    ERIC Educational Resources Information Center

    Hamilton, Clovia; Schumann, David

    2016-01-01

    With respect to university technology transfer, the purpose of this paper is to examine the literature focused on the relationship between university research faculty and technology transfer office staff. We attempt to provide greater understanding of how research faculty's personal values and research universities' organization values may differ…

  2. A Program Office Guide to Technology Transfer

    DTIC Science & Technology

    1988-11-01

    Requirements 2-4 2.4.1 Equipment Complexity 2-5 2.4.2 Industrial Capabilities 2-5 2.4.3 Logistics Requirements/Configuration Control 2-5 2.4.4 Schedule...accomplishment of these milestones re- with the leverage of the FSD and production pro- sults in second source full production capability , grams. For more...MANUFACTURING PROCESSES BUILD UP COMPETITIVE PRODUCTION RATE CAPABILITY DURING LOT III Table 1.2-1 AMRAAM Technology Transfer The leader-follower approach is

  3. NDE activities and technology transfer at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Shurtleff, W. W.

    1993-11-01

    The NDE, Photometrics, and Optical Data Reduction Department at Sandia National Laboratories in New Mexico provides nondestructive evaluation (NDE) support for all phases of research and development at Sandia. Present facilities and personnel provide radiography, acoustic monitoring, ultrasonic scanning, computed tomography, shearography/ESPI, infrared imaging, high speed and ultra-high speed photometrics, and image processing. Although the department includes photometrics and optical data reduction as well as NDE, I will refer to the NDE department from now on for simplicity. The NDE department has worked on technology transfer to organizations inside and outside the weapons complex. This work has been performed in all the Sandia business sectors: defense programs, energy and environment, and work for others. The technology transfer has been in the form of testing for product improvement such as validation of aircraft inspection equipment, consultation such as detecting lathe bearing slip for a major machine tool manufacturer, and products such as an acoustic sand detector for the oil and gas industry.

  4. Facilitation of University Technology Transfer Through a Cooperative Service-University-Industry Program.

    DTIC Science & Technology

    1997-02-01

    through technology transfer centers for applied engineering training and consulting, and second, in assisting and expanding university technology...both the services and industry with an applied engineering program and the training for new engineers and researchers, (2) serve as an information

  5. Heat transfer deterioration in tubes caused by bulk flow acceleration due to thermal and frictional influences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J. D.

    2012-07-01

    Severe deterioration of forced convection heat transfer can be encountered with compressible fluids flowing through strongly heated tubes of relatively small bore as the flow accelerates and turbulence is reduced because of the fluid density falling (as the temperature rises and the pressure falls due to thermal and frictional influence). The model presented here throws new light on how the dependence of density on both temperature and pressure can affect turbulence and heat transfer and it explains why the empirical equations currently available for calculating effectiveness of forced convection heat transfer under conditions of strong non-uniformity of fluid properties sometimesmore » fail to reproduce observed behaviour. It provides a criterion for establishing the conditions under which such deterioration of heat transfer might be encountered and enables heat transfer coefficients to be determined when such deterioration occurs. The analysis presented here is for a gaseous fluid at normal pressure subjected strong non-uniformity of fluid properties by the application of large temperature differences. Thus the model leads to equations which describe deterioration of heat transfer in terms of familiar parameters such as Mach number, Reynolds number and Prandtl number. It is applicable to thermal power plant systems such as rocket engines, gas turbines and high temperature gas-cooled nuclear reactors. However, the ideas involved apply equally well to fluids at supercritical pressure. Impairment of heat transfer under such conditions has become a matter of growing interest with the active consideration now being given to advanced water-cooled nuclear reactors designed to operate at pressures above the critical value. (authors)« less

  6. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    1998-10-31

    In pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions, the Petroleum Technology Transfer Council (PTTC) functions as a cohesive national organization that implements industry's directives through active regional programs. The role of the national headquarters (HQ) organization includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. PTTC relies on 10 Regional Lead Organizations (RLOs) as its main program delivery mechanism to industry. Through its regions, PTTC connects with independent oil and gas producers--through technology workshops, resources centers, websites, newsletters, and other outreach efforts.more » The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY98, and its strategy for achieving further growth in the future.« less

  7. 48 CFR 970.5227-11 - Patent rights-management and operating contracts, for-profit contractor, non-technology transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and operating contracts, for-profit contractor, non-technology transfer. 970.5227-11 Section 970.5227...-technology transfer. Insert the following clause in solicitations and contracts in accordance with 970.2703-1(b)(4): Patent Rights—Management and Operating Contracts, for-Profit Contractor, Non-Technology...

  8. Teacher Linguistic, Cultural, and Technological Awareness Development and Transfer

    ERIC Educational Resources Information Center

    Wang, Congcong

    2012-01-01

    This dissertation includes two studies: a pilot study on native-English-speaking preservice teachers' perceptions of learning a foreign language online and a follow-up study on inservice teachers' perceptions of transferring teacher linguistic, cultural and technological awareness into teaching practice. Conducted in 2010, the pilot…

  9. Information Systems and Networks for Technology Transfer. Final Report.

    ERIC Educational Resources Information Center

    Page, John; Szentivanyi, Tibor

    Results of a survey of the information resources available in industrialized countries which might be used in a United Nations technology transfer program for developing countries are presented. Information systems and networks, organized information collections of a scientific and technical character, and the machinery used to disseminate this…

  10. Facilitation of University Technology Transfer through a Cooperative Army-University-Industry Program,

    DTIC Science & Technology

    1995-01-01

    through Army technology transfer centers for applied engineering training and consulting, and second in assisting and expanding university technology...industry with an applied engineering program and the training for new engineers and researchers, serve as an information resource for both the Army and

  11. Strategic factors in the development of the National Technology Transfer Network

    NASA Technical Reports Server (NTRS)

    Root, Jonathan F.; Stone, Barbara A.

    1993-01-01

    Broad consensus among industry and government leaders has developed over the last decade on the importance of applying the U.S. leadership in research and development (R&D) to strengthen competitiveness in the global marketplace, and thus enhance national prosperity. This consensus has emerged against the backdrop of increasing economic competition, and the dramatic reduction of military threats to national security with the end of the Cold War. This paper reviews the key factors and considerations that shaped - and continue to influence - the development of the Regional Technoloty Transfer Centers (RTTC) and the National Technology Transfer Center (NTTC). Also, the future role of the national network in support of emerging technology policy initiatives will be explored.

  12. Universality of accelerating change

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Shlesinger, Michael F.

    2018-03-01

    On large time scales the progress of human technology follows an exponential growth trend that is termed accelerating change. The exponential growth trend is commonly considered to be the amalgamated effect of consecutive technology revolutions - where the progress carried in by each technology revolution follows an S-curve, and where the aging of each technology revolution drives humanity to push for the next technology revolution. Thus, as a collective, mankind is the 'intelligent designer' of accelerating change. In this paper we establish that the exponential growth trend - and only this trend - emerges universally, on large time scales, from systems that combine together two elements: randomness and amalgamation. Hence, the universal generation of accelerating change can be attained by systems with no 'intelligent designer'.

  13. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare

    PubMed Central

    Mamoshina, Polina; Ojomoko, Lucy; Yanovich, Yury; Ostrovski, Alex; Botezatu, Alex; Prikhodko, Pavel; Izumchenko, Eugene; Aliper, Alexander; Romantsov, Konstantin; Zhebrak, Alexander; Ogu, Iraneus Obioma; Zhavoronkov, Alex

    2018-01-01

    The increased availability of data and recent advancements in artificial intelligence present the unprecedented opportunities in healthcare and major challenges for the patients, developers, providers and regulators. The novel deep learning and transfer learning techniques are turning any data about the person into medical data transforming simple facial pictures and videos into powerful sources of data for predictive analytics. Presently, the patients do not have control over the access privileges to their medical records and remain unaware of the true value of the data they have. In this paper, we provide an overview of the next-generation artificial intelligence and blockchain technologies and present innovative solutions that may be used to accelerate the biomedical research and enable patients with new tools to control and profit from their personal data as well with the incentives to undergo constant health monitoring. We introduce new concepts to appraise and evaluate personal records, including the combination-, time- and relationship-value of the data. We also present a roadmap for a blockchain-enabled decentralized personal health data ecosystem to enable novel approaches for drug discovery, biomarker development, and preventative healthcare. A secure and transparent distributed personal data marketplace utilizing blockchain and deep learning technologies may be able to resolve the challenges faced by the regulators and return the control over personal data including medical records back to the individuals. PMID:29464026

  14. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare.

    PubMed

    Mamoshina, Polina; Ojomoko, Lucy; Yanovich, Yury; Ostrovski, Alex; Botezatu, Alex; Prikhodko, Pavel; Izumchenko, Eugene; Aliper, Alexander; Romantsov, Konstantin; Zhebrak, Alexander; Ogu, Iraneus Obioma; Zhavoronkov, Alex

    2018-01-19

    The increased availability of data and recent advancements in artificial intelligence present the unprecedented opportunities in healthcare and major challenges for the patients, developers, providers and regulators. The novel deep learning and transfer learning techniques are turning any data about the person into medical data transforming simple facial pictures and videos into powerful sources of data for predictive analytics. Presently, the patients do not have control over the access privileges to their medical records and remain unaware of the true value of the data they have. In this paper, we provide an overview of the next-generation artificial intelligence and blockchain technologies and present innovative solutions that may be used to accelerate the biomedical research and enable patients with new tools to control and profit from their personal data as well with the incentives to undergo constant health monitoring. We introduce new concepts to appraise and evaluate personal records, including the combination-, time- and relationship-value of the data. We also present a roadmap for a blockchain-enabled decentralized personal health data ecosystem to enable novel approaches for drug discovery, biomarker development, and preventative healthcare. A secure and transparent distributed personal data marketplace utilizing blockchain and deep learning technologies may be able to resolve the challenges faced by the regulators and return the control over personal data including medical records back to the individuals.

  15. Midcourse Space Experiment Data Certification and Technology Transfer. Supplement 1

    NASA Technical Reports Server (NTRS)

    Pollock, David B.

    1998-01-01

    The University of Alabama in Huntsville contributes to the Technical Management of the Midcourse Space Experiment Program, to the Certification of the Level 2 data produced by the Midcourse Space Experiment's suite of in-orbit imaging radiometers, imaging spectro-radiometers and an interferometer and to the Transfer of the Midcourse Space Experiment Technology to other Government Programs. The Technical Management of the Midcourse Space Experiment Program is expected to continue through out the spacecraft's useful life time. The Transfer of Midcourse Space Experiment Technology to other government elements is expected to be on a demand basis by the United States Government and other organizations. The University, of Alabama Huntsville' contribution specifically supports the Principal Investigator's Executive Committee, the Deputy Principal Investigator for Data Certification and Technology Transfer team, the nine Ultraviolet Visible Imagers and Spectrographic Imagers (UVISI) and the Pointing and Alignment of all eleven of the science instruments. The science instruments effectively cover the 0.1 to 28 micron spectral region. The Midcourse Space Experiment spacecraft, launched April 24, 1996, is expected to have a 5 year useful lifetime. The cryogenically cooled IR sensor, SPIRIT III, performed through February, 1997 when its cryogen expired. A pre-launch, ground based calibration of the instruments provided a basis for the pre-launch certification of the Level 2 data base these instruments produce. With the spacecraft in-orbit the certification of the instrument's Level 2 data base was extended to the in-orbit environment.

  16. Shock-wave proton acceleration from a hydrogen gas jet

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  17. Of Science and Virtue: University Research and Technology Transfer.

    ERIC Educational Resources Information Center

    Chafin, Scott

    1988-01-01

    Suggestions of how a university should go about the task of technology transfer are presented. Two important lessons to relate include: the imperative of a decision-making infrastructure and maintaining perspective. Experiences at the University of Houston when a professor made some discoveries in high-temperature semiconductivity are described.…

  18. Cost benefit assessment of NASA remote sensing technology transferred to the State of Georgia

    NASA Technical Reports Server (NTRS)

    Kelly, D. L.; Zimmer, R. P.; Wilkins, R. D.

    1978-01-01

    The benefits involved in the transfer of NASA remote sensing technology to eight Georgia state agencies are identified in quantifiable and qualitative terms, and a value for these benefits is computed by means of an effectiveness analysis. The benefits of the transfer are evaluated by contrasting a baseline scenario without Landsat and an alternative scenario with Landsat. The net present value of the Landsat technology being transferred is estimated at 9.5 million dollars. The estimated value of the transfer is most sensitive to discount rate, the cost of photo acquisition, and the cost of data digitalization. It is estimated that, if the budget is constrained, Landsat could provide data products roughly seven times more frequently than would otherwise be possible.

  19. Optical Microfiber Technology for Current, Temperature, Acceleration, Acoustic, Humidity and Ultraviolet Light Sensing

    PubMed Central

    Lancaster, David G.; Monro, Tanya M.

    2017-01-01

    Optical microfibers possess excellent optical and mechanical properties that have been exploited for sensing. We highlight the authors’ recent work in the areas of current, temperature, acceleration, acoustic, humidity and ultraviolet-light sensing based on this exquisite technology, and the advantages and challenges of using optical microfibers are discussed. PMID:29283414

  20. Technology and Knowledge Transfer in the Graz Region Ten Years of Experience

    ERIC Educational Resources Information Center

    Hofer, Franz; Adametz, Christoph; Holzer, Franz

    2004-01-01

    Technology and knowledge transfer from universities to small and medium-sized enterprises (SMEs) is seen as one way to strengthen a region's innovation capability. But what if SMEs do not want to play along? Looking back at some 10 years' experience of supporting SMEs, the authors describe in detail the 'Active Knowledge Transfer' programme, which…

  1. An overview of remote sensing technology transfer in Canada and the United States

    NASA Technical Reports Server (NTRS)

    Strome, W. M.; Lauer, D. T.

    1977-01-01

    To realize the maximum potential benefits of remote sensing, the technology must be applied by personnel responsible for the management of natural resources and the environment. In Canada and the United States, these managers are often in local offices and are not those responsible for the development of systems to acquire, preprocess, and disseminate remotely sensed data, nor those leading the research and development of techniques for analysis of the data. However, the latter organizations have recognized that the technology they develop must be transferred to the management agencies if the technology is to be useful to society. Problems of motivation and communication associated with the technology transfer process, and some of the methods employed by Federal, State, Provincial, and local agencies, academic institutions, and private organizations to overcome these problems are explored.

  2. Strategic Evaluation of University Knowledge and Technology Transfer Effectiveness

    ERIC Educational Resources Information Center

    Tran, Thien Anh

    2013-01-01

    Academic knowledge and technology transfer has been growing in importance both in academic research and practice. A critical question in managing this activity is how to evaluate its effectiveness. The literature shows an increasing number of studies done to address this question; however, it also reveals important gaps that need more research.…

  3. DEVELOPMENT OF TECHNOLOGY TRANSFER PRODUCTS FOR THE EPA EMPACT PROGRAM

    EPA Science Inventory

    A presentation was given for a National Satellite Broadcast on the development of technology transfer handbooks for the EMPACT program. These handbooks help spread the knowledge and experience developed from the EMPACT projects. Handbooks are being prepared for every fully implem...

  4. Technology Transfer in Integrated Forest Pest Management in the South

    Treesearch

    Gerard D. Hertel; Susan J. Branham; Kenneth M. Swain; [Editors

    1985-01-01

    A synopsis of the technology transfer activities of the Forest Service's Integrated Pest Management Research, Development and Applications Program for Bark Beetles of Southern Pines, and the Southern Region, 1980-85, with emphasis on State demonstration projects and user involvement.

  5. A partnership in upstream HSE technology transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszewski, R.E. Wahjosoedibjo, A.S.; Hunley, M.; Peargin, J.C.

    1996-11-01

    The oil and gas industry was for nearly two decades the dominant force in the Indonesian economy and the single largest contributor to the nation`s development. Because of the success of Indonesia`s long-term development and diversification program, this once-dominant sector today occupies a more equal but still vital position in a better-balanced economy. The Indonesian government understands the danger to the environment posed by rapid industrial expansion and has enacted laws and regulations to ensure the sustainable development of its resources while protecting its rain forest environment. In 1992, the government oil company approached Chevron and Texaco for assistance inmore » training its Health, Safety, and Environment (HSE) professionals. The upstream environment, health and safety training program was developed to transfer HSE knowledge and technology to PERTAMINA, PT Caltex Pacific Indonesia, a C&T affiliate, and indirectly, to the entire Indonesian oil and gas industry and government ministries. The four companies have demonstrated the effectiveness of a partnership approach in developing and carrying out HSE training. During 1994 and 1995, four groups, each consisting of about twenty representatives from PERTAMINA, the Directorate of Oil and Gas (MIGAS), the Indonesian Environmental Impact Management Agency (BAPEDAL), CPI, and Chevron and Texaco worldwide subsidiaries, traveled to the United States for an intensive four-month program of study in HSE best practices and technology conducted by Chevron and Texaco experts. This paper describes the development and realization of The PERTAMINA/CPI Health, Safety and Environment Training Program, outlines subjects covered and explains the methodology used to ensure the effective transfer of HSE knowledge and technology. The paper also offers an evaluation of the sessions and presents the plans developed by participant-teams for follow up on their return to Indonesia.« less

  6. Energy from Biomass Research and Technology Transfer Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Dorin

    The purpose of CPBR is to foster and facilitate research that will lead to commercial applications. The goals of CPBR’s Energy from Biomass Research and Technology Transfer Program are to bring together industry, academe, and federal resources to conduct research in plant biotechnology and other bio-based technologies and to facilitate the commercialization of the research results to: (1) improve the utilization of plants as energy sources; (2) reduce the cost of renewable energy production; (3) facilitate the replacement of petroleum by plant-based materials; (4) create an energy supply that is safer in its effect on the environment, and (5) contributemore » to U.S. energy independence.« less

  7. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  8. Report of a Planning Conference for Solar Technology Information Transfer. Austin, Texas, 12-13 June 1979).

    ERIC Educational Resources Information Center

    Southwestern Library Association, Stillwater, OK.

    Charged with the responsibility of determining the best way to plan for solar technology information transfer within the state of Texas, participants in the Planning Conference for Solar Technology Information Transfer met to discuss the many ongoing activities related to energy information dissemination, to analyze the resources available in…

  9. Theoretical and technological building blocks for an innovation accelerator

    NASA Astrophysics Data System (ADS)

    van Harmelen, F.; Kampis, G.; Börner, K.; van den Besselaar, P.; Schultes, E.; Goble, C.; Groth, P.; Mons, B.; Anderson, S.; Decker, S.; Hayes, C.; Buecheler, T.; Helbing, D.

    2012-11-01

    Modern science is a main driver of technological innovation. The efficiency of the scientific system is of key importance to ensure the competitiveness of a nation or region. However, the scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. The resulting scientific process is hence slow and sloppy. Building on the Innovation Accelerator paper by Helbing and Balietti [1], this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate

  10. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  11. Testing Done for Lorentz Force Accelerators and Electrodeless Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Gilland, James H.; Arrington, Lynn A.; Kamhawi, Hani

    2004-01-01

    The NASA Glenn Research Center is developing Lorentz force accelerators and electrodeless plasma propulsion for a wide variety of space applications. These applications range from precision control of formation-flying spacecraft to primary propulsion for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters, magnetoplasmadynamic thrusters, and helicon-electron cyclotron resonance acceleration thrusters. The pulsed plasma thruster mounted on the Earth Observing-1 spacecraft was operated successfully in orbit in 2002. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. Recent on-orbit operations have focused on extended operations to add flight operation time to the total accumulated thruster life. The results of the experiments pave the way for electric propulsion applications on future Earth-imaging satellites.

  12. IPAD: A unique approach to government/industry cooperation for technology development and transfer

    NASA Technical Reports Server (NTRS)

    Fulton, Robert E.; Salley, George C.

    1985-01-01

    A key element to improved industry productivity is effective management of Computer Aided Design / Computer Aided Manufacturing (CAD/CAM) information. To stimulate advancement, a unique joint government/industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) was carried out from 1971 to 1984. The goal was to raise aerospace industry productivity through advancement of computer based technology to integrate and manage information involved in the design and manufacturing process. IPAD research was guided by an Industry Technical Advisory Board (ITAB) composed of over 100 representatives from aerospace and computer companies. The project complemented traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer Aided Manufacturing (ICAM) program to advance CAM technology. IPAD had unprecedented industry support and involvement and served as a unique approach to government industry cooperation in the development and transfer of advanced technology. The IPAD project background, approach, accomplishments, industry involvement, technology transfer mechanisms and lessons learned are summarized.

  13. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2013-04-01 2013-04-01 false What are the requirements for research, development, and...

  14. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2010-04-01 2010-04-01 false What are the requirements for research, development, and...

  15. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2014-04-01 2014-04-01 false What are the requirements for research, development, and...

  16. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2012-04-01 2012-04-01 false What are the requirements for research, development, and...

  17. 23 CFR 420.207 - What are the requirements for research, development, and technology transfer work programs?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., Development and Technology Transfer Program Management § 420.207 What are the requirements for research, development, and technology transfer work programs? (a) The State DOT's RD&T work program must, as a minimum... 23 Highways 1 2011-04-01 2011-04-01 false What are the requirements for research, development, and...

  18. Aerospace technology transfer to the public sector; Proceedings of the Conference, Crystal City, Va., November 9-11, 1977

    NASA Technical Reports Server (NTRS)

    Grey, J. (Editor); Newman, M.

    1978-01-01

    The dynamics of aerospace technology transfer is discussed with reference to the agencies which facilitate the transfer to both the public and private sectors. Attention is given to NASA's Technology Utilization Program, and to specific applications of aerospace technology spinoff in the daily life of Americans.

  19. University-Industry Entrepreneurship: The Organization and Management of American University Technology Transfer Units.

    ERIC Educational Resources Information Center

    Dill, David D.

    1995-01-01

    A survey of 289 university technology transfer units investigated their organization, management, and perceived performance effectiveness. Unit types studied included licensing and patent offices, small business development centers, research and technology centers, business facility incubators, and entrepreneurial investment/endowment offices.…

  20. The Monitoring of Technology Transfer to the USSR.

    DTIC Science & Technology

    1982-08-01

    nizational options for improving the present system for monitor- ing technology transfer. (Cont. on reverse side) DO ,FN 1473 EDITION OF INOV SS...imposition of military control in Poland , a further curtailment of the exchange activi- ties followed. In particular, three agreements (in existence in 1981...its own, P. Poland is also in a separate Country Group W. North Korea, Vietnam, Cambodia, and Cuba are in Country Group Z. Department of Commerce

  1. Technology Transfer Activities of NASA/MSFC: Enhancing the Southeast Region's Production Capabilities

    NASA Technical Reports Server (NTRS)

    Trivoli, George W.

    1998-01-01

    The researcher was charged with the task of developing a simplified model to illustrate the impact of how NASA/MSFC technology transfer activities contribute to shifting outward the Southeast region's and the nation's productive capacity. The report is a background of the impact of technological growth on the nation's production possibility frontier (ppf).

  2. Reaching for the cloud: on the lessons learned from grid computing technology transfer process to the biomedical community.

    PubMed

    Mohammed, Yassene; Dickmann, Frank; Sax, Ulrich; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which led to the creation of the Grid. The inter domain transfer process of this technology has hitherto been an intuitive process without in depth analysis. Some difficulties facing the life science community in this transfer can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies which have achieved certain stability. Grid and Cloud solutions are technologies, which are still in flux. We show how Grid computing creates new difficulties in the transfer process that are not considered in Bozeman's model. We show why the success of healthgrids should be measured by the qualified scientific human capital and the opportunities created, and not primarily by the market impact. We conclude with recommendations that can help improve the adoption of Grid and Cloud solutions into the biomedical community. These results give a more concise explanation of the difficulties many life science IT projects are facing in the late funding periods, and show leveraging steps that can help overcoming the "vale of tears".

  3. How You Can Partner with NIH | NCI Technology Transfer Center | TTC

    Cancer.gov

    NCI Technology Transfer Center (TTC) provides an array of agreements to support the National Cancer Institute's partnering. Deciding which type of agreement to use can be a challenge: CRADA, MTA, collaboration, agreement, CTA, Materials-CRADA

  4. NIH Employee Invention Report (EIR) | NCI Technology Transfer Center | TTC

    Cancer.gov

    NIH researchers must immediately contact their Laboratory or Branch Chief and inform him or her of a possible invention, and then consult with your NCI TTC Technology Transfer Manager about submitting an Employee Invention Report (EIR) Form. | [google6f4cd5334ac394ab.html

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION COATINGS AND COATING EQUIPMENT PROGRAM (ETV CCEP) HIGH TRANSFER EFFICIENCE SPRAY EQUIPMENT--GENERIC VERIFICATION PROTOCOL

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program has been established to verify the performance characteristics of innovative environmental technologies and report this objective information, thus, accelerating the entrance of these new technologies into the marketplace. V...

  6. Linear Accelerator (LINAC)

    MedlinePlus

    ... equipment? How is safety ensured? What is this equipment used for? A linear accelerator (LINAC) is the ... Therapy (SBRT) . top of page How does the equipment work? The linear accelerator uses microwave technology (similar ...

  7. Assessing the Suitability of Process and Information Technology in Supporting Tacit Knowledge Transfer

    ERIC Educational Resources Information Center

    Wu, Chien-Hsing; Kao, Shu-Chen; Shih, Lan-Hsin

    2010-01-01

    The transfer of tacit knowledge, one of the most important issues in the knowledge sharing context, needs a multi-dimensional perception in its process. Information technology's (IT) supporting role has already been addressed in the process of tacit knowledge transfer. However, IT has its own characteristics, and in turn, may have dissimilar…

  8. Technology transfer: The key to successful space engineering education

    NASA Astrophysics Data System (ADS)

    Fletcher, L. S.; Page, R. H.

    The 1990s are the threshold of the space revolution for the next century. This space revolution was initiated by space pioneers like Tsiolkovsky, Goddard, and Oberth, who contributed a great deal to the evolution of space exploration, and more importantly, to space education. Recently, space engineering education programs for all ages have been advocated around the world, especially in Asia and Europe, as well as the U.S.A. and the Soviet Union. And yet, although space related technologies are developing rapidly, these technologies are not being incorporated successfully into space education programs. Timely technology transfer is essential to assure the continued education of professionals. This paper reviews the evolution of space engineering education and identifies a number of initiatives which could strengthen space engineering education for the next century.

  9. Small Business Innovation Research and Small Business Technology Transfer Programs

    NASA Technical Reports Server (NTRS)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  10. Building Technology Transfer Capacity in Turkish Universities: A Critical Analysis

    ERIC Educational Resources Information Center

    Ranga, Marina; Temel, Serdal; Ar, Ilker Murat; Yesilay, Rustem Baris; Sukan, Fazilet Vardar

    2016-01-01

    University technology transfer has been receiving significant government funding since 2012. Results of this major investment are now expected by the Turkish government and society, not only in terms of better teaching and research performance, but also of new jobs, new products and services, enhanced regional development and contribution to…

  11. Acceleration profile of an acrobatic act during training and shows using wearable technology.

    PubMed

    Barker, Leland; Burnstein, Bryan; Mercer, John

    2018-05-24

    The purpose of this study was to describe the mechanical characteristics of a trampoline circus act and its individual tracks performed in training and shows using a tri-axial accelerometer. A track is an artist's specific role within a choreographed act. Seven male acrobats performed their trampoline act during training and shows while wearing a triaxial accelerometer and reported ratings of perceived exertion (RPE) after each trial. Average acceleration (AVG), root mean square (RMS), root mean to the fourth (RM4), time spent in specific acceleration ranges and RPE were measured/recorded from training and show acts. Paired t-tests compared dependent variables between training and show. Acceleration AVG, RMS and RM4 were significantly higher (p < 0.05) in training than show. RPE was significantly higher (p < 0.05) in show than training. No significant differences existed in time spent in any of the acceleration ranges between training and show. GPS devices have been used to manage workloads in field sports but are inoperable in theatres. But, inertial measurements may be an effective alternative to describe mechanical demands in theatre or arena environments. Wearable technology may be useful to coaches to improve understanding of track demands to manage artist workloads.

  12. Midcourse Space Experiment Data Certification and Technology Transfer

    NASA Technical Reports Server (NTRS)

    Pollock, David B.

    1997-01-01

    The University of Alabama in Huntsville contributes to the Technical Management of the Midcourse Space Experiment Program, to the Certification of the Level 2 data produced by the Midcourse Space Experiment's suite of in-orbit imaging radiometers, imaging spectra-radiometers and an interferometer and to the Transfer of the Midcourse Space Experiment Technology to other Government Programs. The Technical Management of the Midcourse Space Experiment Program is expected to continue through out the spacecraft's useful life time, 5 years after its 1996 launch. The Transfer of Midcourse Space Experiment Technology to other government elements is expected to be on a demand basis by the United States Government and other organizations. The University of Alabama Huntsville' contribution specifically supports the nine Ultraviolet Visible Imagers and Spectrographic Imagers (UVISI) and the Pointing and Alignment of all eleven of the science instruments. The science instruments effectively cover the 0.1 to 28 micron spectral region. The Midcourse Space Experiment spacecraft, launched April 24, 1996, is expected to have a 5 year useful lifetime with a 12 month lifetime for the cryogenically cooled IR sensor. A pre-launch, ground based calibration of the instruments provided a basis for the pre-launch certification of the Level 2 data base these instruments produce. With the spacecraft in-orbit the certification of the instruments' Level 2 data base is being extended to the in-orbit environment.

  13. Overview of Accelerator Applications in Energy

    NASA Astrophysics Data System (ADS)

    Garnett, Robert W.; Sheffield, Richard L.

    An overview of the application of accelerators and accelerator technology in energy is presented. Applications span a broad range of cost, size, and complexity and include large-scale systems requiring high-power or high-energy accelerators to drive subcritical reactors for energy production or waste transmutation, as well as small-scale industrial systems used to improve oil and gas exploration and production. The enabling accelerator technologies will also be reviewed and future directions discussed.

  14. Petrol and diesel exhaust particles accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes.

    PubMed

    Zhang, Ye; Gu, April Z; Cen, Tianyu; Li, Xiangyang; Li, Dan; Chen, Jianmin

    2018-05-01

    Particles exhausted from petrol and diesel consumptions are major components of urban air pollution that can be exposed to human via direct inhalation or other routes due to atmospheric deposition into water and soil. Antimicrobial resistance is one of the most serious threats to modern health care. However, how the petrol and diesel exhaust particles affect the development and spread of antimicrobial resistance genes (ARGs) in various environments remain largely unknown. This study investigated the effects and potential mechanisms of four representative petrol and diesel exhaust particles, namely 97 octane petrol, 93 octane petrol, light diesel oil, and marine heavy diesel oil, on the horizontal transfer of ARGs between two opportunistic Escherichia coli (E. coli) strains, E. coli S17-1 (donor) and E. coli K12 (recipient). The results demonstrated that these four representative types of nano-scale particles induced concentration-dependent increases in conjugative transfer rates compared with the controls. The underlying mechanisms involved in the accelerated transfer of ARGs were also identified, including the generation of intracellular reactive oxygen species (ROS) and the consequent induction of oxidative stress, SOS response, changes in cell morphology, and the altered mRNA expression of membrane protein genes and those involved in the promotion of conjugative transfer. The findings provide new evidences and mechanistic insights into the antimicrobial resistance risks posed by petrol and diesel exhaust particles, and highlight the implications and need for stringent strategies on alternative fuels to mitigate air pollution and health risks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. FERMILAB ACCELERATOR R&D PROGRAM TOWARDS INTENSITY FRONTIER ACCELERATORS : STATUS AND PROGRESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-11-15

    The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program at Fermilab. Operation, upgrade and development of the accelerators for the near- term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators and present its status and progress. INTENSITY FRONTIER ACCELERATORS

  16. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.

    PubMed

    Jia, Ru; Yang, Dongqing; Xu, Dake; Gu, Tingyue

    2017-12-01

    Electron transfer is a rate-limiting step in microbiologically influenced corrosion (MIC) caused by microbes that utilize extracellular electrons. Cross-cell wall electron transfer is necessary to transport the electrons released from extracellular iron oxidation into the cytoplasm of cells. Electron transfer mediators were found to accelerate the MIC caused by sulfate reducing bacteria. However, there is no publication in the literature showing the effect of electron transfer mediators on MIC caused by nitrate reducing bacteria (NRB). This work demonstrated that the corrosion of anaerobic Pseudomonas aeruginosa (PAO1) grown as a nitrate reducing bacterium biofilm on C1018 carbon steel was enhanced by two electron transfer mediators, riboflavin and flavin adenine dinucleotide (FAD) separately during a 7-day incubation period. The addition of either 10ppm (w/w) (26.6μM) riboflavin or 10ppm (12.7μM) FAD did not increase planktonic cell counts, but they increased the maximum pit depth on carbon steel coupons considerably from 17.5μm to 24.4μm and 25.0μm, respectively. Riboflavin and FAD also increased the specific weight loss of carbon steel from 2.06mg/cm 2 to 2.34mg/cm 2 and 2.61mg/cm 2 , respectively. Linear polarization resistance, electrochemical impedance spectroscopy and potentiodynamic polarization curves all corroborated the pitting and weight loss data. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Space benefits: The secondary application of aerospace technology in other sectors of the economy. [(information dissemination and technology transfer from NASA programs)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Space Benefits is a publication that has been prepared for the NASA Technology Utilization Office by the Denver Research Institute's Program for Transfer Research and Impact Studies, to provide the Agency with accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The technological innovations derived from NASA space programs and their current applications in the following areas are considered: (1) manufacturing consumer products, (2) manufacturing capital goods, (3) new consumer products and retailing, (4) electric utilities, (5) environmental quality, (6) food production and processing, (7) government, (8) petroleum and gas, (9) construction, (10) law enforcement, and (11) highway transportation.

  18. Accelerator physics and technology challenges of very high energy hadron colliders

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  19. Accelerator physics and technology challenges of very high energy hadron colliders

    DOE PAGES

    Shiltsev, Vladimir D.

    2015-08-20

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton–proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This article briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  20. 12th European Conference on Accelerators in Applied Research and Technology

    NASA Astrophysics Data System (ADS)

    Sajavaara, Timo; Tarvainen, Olli; Javanainen, Arto; Räisänen, Jyrki

    2017-09-01

    The 12th European Conference on Accelerators in Applied Research and Technology was organized by Department of Physics on the 3rd -8th July 2016 in the Agora building of the University of Jyväskylä in Finland. This was the first time ECAART was held in Nordic countries. There were in total 141 participants from 31 countries and six industrial exhibitors. The largest foreign delegation was from Japan with 25 participants. The scientific programme included 13 invited lectures, 29 oral and 112 poster presentations. There were altogether 14 exhibitors and sponsors.

  1. The Air Force Manufacturing Technology (MANTECH): Technology transfer methodology as exemplified by the radar transmit/receive module program

    NASA Technical Reports Server (NTRS)

    Houpt, Tracy; Ridgely, Margaret

    1991-01-01

    The Air Force Manufacturing Technology program is involved with the improvement of radar transmit/receive modules for use in active phased array radars for advanced fighter aircraft. Improvements in all areas of manufacture and test of these modules resulting in order of magnitude improvements in the cost of and the rate of production are addressed, as well as the ongoing transfer of this technology to the Navy.

  2. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  3. Advanced Accelerators for Medical Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter "linac"); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laserbased acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  4. The COLD-SAT Experiment for Cryogenic Fluid Management Technology

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Wachter, J. P.; Vento, D. M.

    1990-01-01

    Future national space transportation missions will depend on the use of cryogenic fluid management technology development needs for these missions. In-space testing will be conducted in order to show low gravity cryogenic fluid management concepts and to acquire a technical data base. Liquid H2 is the preferred test fluid due to its propellant use. The design of COLD-SAT (Cryogenic On-orbit Liquid Depot Storage, Acquisition, and Transfer Satellite), an Expendable Launch Vehicle (ELV) launched orbital spacecraft that will perform subcritical liquid H2 storage and transfer experiments under low gravity conditions is studied. An Atlas launch vehicle will place COLD-SAT into a circular orbit, and the 3-axis controlled spacecraft bus will provide electric power, experiment control, and data management, attitude control, and propulsive accelerations for the experiments. Low levels of acceleration will provide data on the effects that low gravity might have on the heat and mass transfer processes used. The experiment module will contain 3 liquid H2 tanks; fluid transfer, pressurization and venting equipment; and instrumentation.

  5. Development of Gravity Acceleration Measurement Using Simple Harmonic Motion Pendulum Method Based on Digital Technology and Photogate Sensor

    NASA Astrophysics Data System (ADS)

    Yulkifli; Afandi, Zurian; Yohandri

    2018-04-01

    Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.

  6. 14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...

  7. 14 CFR 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...

  8. Technology transfer in human vaccinology: a retrospective review on public sector contributions in a privatizing science field.

    PubMed

    Hendriks, Jan

    2012-09-28

    As health intervention, vaccination has had a tremendous impact on reducing mortality and morbidity caused by infectious diseases. Traditionally vaccines were developed and made in the western, industrialised world and from there on gradually and with considerable delay became available for developing countries. Today that is beginning to change. Most vaccine doses are now produced in emerging economies, although industrialised countries still have a lead in vaccine development and in manufacturing innovative vaccines. Technology transfer has been an important mechanism for this increase in production capacity in emerging economies. This review looks back on various technology transfer initiatives and outlines the role of WHO and other public and private partners. It goes into a more detailed description of the role of the National Institute of Public Health and the Environment (RIVM) in Bilthoven, the Netherlands. For many decades RIVM has been providing access to vaccine technology by capacity building and technology transfer initiatives not only through multilateral frameworks, but also on a bilateral basis including a major project in China in the 90 s of the previous century. Looking forward it is expected that, in a globalizing world, the ambition of BRICS countries to play a role in global health will lead to an increase of south-south technology transfers. Further, it is argued that push approaches including technology transfer from the public domain, connecting innovative enabling platforms with competent developing country vaccine manufacturers (DCVM), will be critical to ensure a sustainable supply of affordable and quality vaccines to national immunization programmes in developing countries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. NASA Orbit Transfer Rocket Engine Technology Program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The advanced expander cycle engine with a 15,000 lb thrust level and a 6:1 mixture ratio and optimized performance was used as the baseline for a design study of the hydrogen/oxgyen propulsion system for the orbit transfer vehicle. The critical components of this engine are the thrust chamber, the turbomachinery, the extendible nozzle system, and the engine throttling system. Turbomachinery technology is examined for gears, bearing, seals, and rapid solidification rate turbopump shafts. Continuous throttling concepts are discussed. Components of the OTV engine described include the thrust chamber/nozzle assembly design, nozzles, the hydrogen regenerator, the gaseous oxygen heat exchanger, turbopumps, and the engine control valves.

  10. Technical assistance and the transfer of remote sensing technology. [for economic development

    NASA Technical Reports Server (NTRS)

    Chipman, R.

    1977-01-01

    The transfer of technology from industrialized countries to the third world is a very complicated process and one that requires a great deal of research and development. The political and social obstacles to this transfer are generally greater than the technical obstacles, but technical assistance programs have neither the competence nor the inclination to deal with these factors adequately. Funding for technical assistance in remote sensing is now expanding rapidly, and there is a growing need for institutions to study and promote the effective use of this technology for economic development. The United Nations, the Food and Agriculture Organization, the World Bank, the United States Agency for International Development and the Canadian technical assistance agencies take different approaches to the problem and deal with the political pressures in different ways.

  11. The transferability of information and communication technology skills from university to the workplace: a qualitative descriptive study.

    PubMed

    Bembridge, Elizabeth; Levett-Jones, Tracy; Jeong, Sarah Yeun-Sim

    2011-04-01

    This paper presents the findings from a study that explored whether the information and communication technology (ICT) skills nurses acquired at university are relevant and transferable to contemporary practice environments. Whilst universities have attempted to integrate information and communication technology into nursing curricula it is not known whether the skills developed for educational purposes are relevant or transferable to clinical contexts. A qualitative descriptive study was used to explore the perspectives of a small group of new graduate nurses working in a regional/semi-metropolitan healthcare facility in New South Wales, Australia. Semi-structured interviews were used and the data thematically analysed. The themes that emerged from the study are presented in accordance with the conceptual framework and structured under the three headings of pre-transfer, transition and post-transfer. The transferability of information and communication technology skills from university to the workplace is impacted by a range of educational, individual, organisational and contextual factors. Access to adequate ICT and the necessary training opportunities influences new graduates' work satisfaction and their future employment decisions. The ability to effectively use information and communication technology was viewed as essential to the provision of quality patient care. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. [Development and technological transfer of functional pastas extended with legumes].

    PubMed

    Granito, Marisela; Ascanio, Vanesa

    2009-03-01

    Development and technological transfer of functional pastas extended with legumes. Semolina pasta is a highly consumed foodstuff, the biological value of which is low because its protein is deficient in lysine. However, if the semolina is extended with legumes rich in this essential aminoacid, not only and aminoacid supplementation is produced, but also the dietary fibre and minerals are increased. In this work, pastas extended in 10% with a white variety of Phaseolus vulgaris and with Cajanus cajan were produced on a pilot plant scale, and this technology was transferred to a cooperative producing artisanal pastas. The cooking qualities and the physical, chemical, and nutritional characteristics of the pastas were evaluated, as well as the sensorial acceptability in institutionalized elderly people. The extension of the pastas with legume flours increased the optimum cooking time (15 to 20%), the weight (20% and 25%), and the loss of solids by cooking. Similarly, the functional value of the pastas increased by increasing the contents of minerals and dietary fibre. The protein content, as well as the protein digestibility in vitro also increased; however, the parameters of colour L, a and b, and the total starch content of the pastas decreased. At consumer level, the pastas extended with legumes had a good acceptability, for what it was concluded that the extension of the semolina with legume flours in the manufacture of pastas is technologically feasible.

  13. USPAS | U.S. Particle Accelerator School

    Science.gov Websites

    U.S. Particle Accelerator School U.S. Particle Accelerator School U.S. Particle Accelerator School U.S. Particle Accelerator School Education in Beam Physics and Accelerator Technology Home About About University Credits Joint International Accelerator School University-Style Programs Symposium-Style Programs

  14. Technology transfer and other public policy implications of multi-national arrangements for the production of commercial airframes

    NASA Technical Reports Server (NTRS)

    Gellman, A. J.; Price, J. P.

    1978-01-01

    A study to examine the question of technology transfer through international arrangements for production of commercial transport aircraft is presented. The likelihood of such transfer under various representative conditions was determined and an understanding of the economic motivations for, effects of, joint venture arrangements was developed. Relevant public policy implications were also assessed. Multinational consortia with U.S. participation were focused upon because they generate the full range of pertinent public issues (including especially technology transfer), and also because of recognized trends toward such arrangements. An extensive search and analysis of existing literature to identify the key issues, and in-person interviews with executives of U.S. and European commercial airframe producers was reviewed. Distinctions were drawn among product-embodied, process, and management technologies in terms of their relative possibilities of transfer and the significance of such transfer. Also included are observations on related issues such as the implications of U.S. antitrust policy with respect to the formation of consortia and the competitive viability of the U.S. aircraft manufacturing industry.

  15. Technology Transfer: A Think Tank Approach to Managing Innovation in the Public Sector.

    ERIC Educational Resources Information Center

    Creighton, J. W., Ed.; And Others

    This report reviews a joint attempt of the United States Forest Service and the Naval Service to enhance the utilization of research results and the new technologies through improved effectiveness of technology transfer efforts. It consists of an introduction by J. W. Creighton and seven papers: (1) "Management for Change" by P. A.…

  16. From a social marketing perspective: a proposed customer relationship management technology transfer model

    Treesearch

    Delton Alderman; Kent Nakamoto; David Briberg

    2007-01-01

    Technology and knowledge transfer (TKT) is practiced for a plethora of causes, ranging from AIDS prevention to manufacturing competitiveness. The number of government, university, and association TKT efforts is exhausting and fraught with problems; we know anecdotally that the adoption of technology or knowledge is minimal across all contexts. There are a myriad of...

  17. Improving global access to new vaccines: intellectual property, technology transfer, and regulatory pathways.

    PubMed

    Crager, Sara Eve

    2014-11-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers.

  18. [Improving global access to new vaccines: intellectual property, technology transfer, and regulatory pathways].

    PubMed

    Crager, Sara Eve

    2015-01-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers.

  19. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operatorsmore » and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.« less

  20. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  1. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  2. Cast Metals Coalition Technology Transfer and Program Management Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. Thismore » closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without

  3. Food irradiation: Technology transfer to developing countries

    NASA Astrophysics Data System (ADS)

    Kunstadt, Peter

    This paper discusses Nordion's experiences to-date with the Food Irradiation Project in Thailand (1987-1990). This project will enable the Government of Thailand and the Thai food industry to benefit from established Canadian technology in food irradiation. It includes the design and the construction in Thailand of a multipurpose irradiation facility, similar to the Canadian Irradiation Centre. In addition Canada provides the services, for extended periods of time, of construction and installation management and experts in facility operation, maintenance and training. The Technology Transfer component is a major part of the overall Thai Food Irradiation Project. Its purpose is to familiarize Thai government and industry personnel with Canadian requirements in food regulations and distribution and to conduct market and consumer tests of selected Thai irradiated food products in Canada, once the products have Canadian regulatory approval. On completion of this project, Thailand will have the necessary facility, equipment and training to continue to provide leadership in food irradiation research, as well as scientific and technical support to food industries not only in Thailand by also in the ASEAN region.

  4. Accelerators for America's Future

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  5. Cancer Immunotherapy Using Virus-like Particles | NCI Technology Transfer Center | TTC

    Cancer.gov

    A considerable effort has been devoted to identifying and targeting specific extracellular cancer markers using antibody based therapies. However, diminished access to new cancer cell surface markers has limited the development of corresponding antibodies. NCI Technology Transfer Center is seeking to license cancer immunotherapy using virus-like particles.

  6. Lessons learned during the development and transfer of technology related to a new Hib conjugate vaccine to emerging vaccine manufacturers.

    PubMed

    Hamidi, A; Boog, C; Jadhav, S; Kreeftenberg, H

    2014-07-16

    The incidence of Haemophilus Influenzae type b (Hib) disease in developed countries has decreased since the introduction of Hib conjugate vaccines in their National Immunization Programs (NIP). In countries where Hib vaccination is not applied routinely, due to limited availability and high cost of the vaccines, invasive Hib disease is still a cause of mortality. Through the development of a production process for a Hib conjugate vaccine and related quality control tests and the transfer of this technology to emerging vaccine manufacturers in developing countries, a substantial contribution was made to the availability and affordability of Hib conjugate vaccines in these countries. Technology transfer is considered to be one of the fastest ways to get access to the technology needed for the production of vaccines. The first Hib conjugate vaccine based on the transferred technology was licensed in 2007, since then more Hib vaccines based on this technology were licensed. This paper describes the successful development and transfer of Hib conjugate vaccine technology to vaccine manufacturers in India, China and Indonesia. By describing the lessons learned in this process, it is hoped that other technology transfer projects can benefit from the knowledge and experience gained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Shortcuts to adiabaticity for accelerated quantum state transfer

    NASA Astrophysics Data System (ADS)

    Baksic, Alexandre; Ribeiro, Hugo; Clerk, Aashish A.

    Adiabatic transfer protocols are among the most powerful and interesting approaches to move quantum states between two different systems. While having many advantages, those schemes are necessarily slow, and hence can suffer from dissipation and noise in the target and/or source system. In this talk, we present an approach that allows to operate a state transfer much faster, without suffering from non-adiabatic errors. The key idea is to work with a basis of dressed states whose very definition incorporates the matrix elements which give rise to non-adiabatic transitions. By introducing additional control fields, we can ensure that the system ``rides'' these new dressed states during the protocol, thus allowing for a fast high fidelity state transfer. We discuss a recent experimental implementation of these ideas in an NV-center Λ-system, as well as extensions to state transfer problems involving propagating states.

  8. Accelerating Cancer Systems Biology Research through Semantic Web Technology

    PubMed Central

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S.

    2012-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute’s caBIG®, so users can not only interact with the DMR through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers’ intellectual property. PMID:23188758

  9. Accelerating cancer systems biology research through Semantic Web technology.

    PubMed

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S

    2013-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute's caBIG, so users can interact with the DMR not only through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers' intellectual property. Copyright © 2012 Wiley Periodicals, Inc.

  10. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Seryi, Andrei

    2017-12-22

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  11. Technology transfer. Determining industry needs: A guide for communities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Guide was developed in accordance with the Memorandum of Understanding between the NASA George C. Marshall Space Flight Center and the following States: Alabama, Georgia, Louisiana, Mississippi, Tennessee, West Virginia. The economic welfare of individual communities is currently a matter of considerable interest. Concern for the position of US industry in the competitive world marketplace is a matter of growing concern as well. This 'guide' describes a process whereby communities may seize the opportunity to improve their own economic destiny. The method described involves linking the technology needs of existing industries to the technologies which are available from Federal Laboratories. Community technology transfer is an 'action possibility' which allows individual citizen groups to do something tangible to improve the economic climate of the places where they live and work. The George C. Marshall Space Flight Center in Huntsville, Alabama is pledged to promote and encourage such efforts, and stands ready to help communities both large and small in that regard.

  12. Improving Global Access to New Vaccines: Intellectual Property, Technology Transfer, and Regulatory Pathways

    PubMed Central

    2014-01-01

    The 2012 World Health Assembly Global Vaccine Action Plan called for global access to new vaccines within 5 years of licensure. Current approaches have proven insufficient to achieve sustainable vaccine pricing within such a timeline. Paralleling the successful strategy of generic competition to bring down drug prices, a clear consensus is emerging that market entry of multiple suppliers is a critical factor in expeditiously bringing down prices of new vaccines. In this context, key target objectives for improving access to new vaccines include overcoming intellectual property obstacles, streamlining regulatory pathways for biosimilar vaccines, and reducing market entry timelines for developing-country vaccine manufacturers by transfer of technology and know-how. I propose an intellectual property, technology, and know-how bank as a new approach to facilitate widespread access to new vaccines in low- and middle-income countries by efficient transfer of patented vaccine technologies to multiple developing-country vaccine manufacturers. PMID:25211753

  13. International Technology Transfer the Rope to Hang the West

    DTIC Science & Technology

    1989-03-28

    order to provide awareness and appreciation of its importance to the security of the United States. DO R 1473 EOfTION OF V NOV 65 I.; OBSOLETE E - 7I... e Data Eme’e, USAWC MILITARY STUDIES PROGRAM PAPER INTERNATIONAL TECHNOLOGY TRANSFER The Rope To Hang The West AN INDIVIDUAL STUDY PROJECT Intended...notably the Departments of State, Commerce and Defense), and other friendly nations at odds with each other over competing demands and parochial interests

  14. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operatorsmore » and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization efficiently

  15. Stress Measurements on Blair High School Gymnasium: A Demonstration of Space Technology Transfer

    NASA Technical Reports Server (NTRS)

    Kastel, Dean

    1966-01-01

    This Report describes an actual demonstration of transfer to non-space use of technologies developed for space programs applications. Techniques used in assessing static and dynamic characteristics of the Blair High School gymnasium involved data acquisition by continuous scanning of strain gauge data acquired over a time of wide-temperature range, and analysis by a computer routine developed by Jet Propulsion Laboratory five years ago. The advantage of this method over conventional structural testing of uniquely designed structures was proved. More importantly, the process of demonstration was shown to be of great assistance to, and extension of, normal methods of disseminating information of new technologies. It is felt that significant benefit will derive from this improved mode oi concept transfer.

  16. WHO influenza vaccine technology transfer initiative: role and activities of the Technical Advisory Group.

    PubMed

    Francis, Donald P; Grohmann, Gary

    2011-07-01

    In May 2006, the WHO published a Global Pandemic Influenza Action Plan. A significant part of that plan involves the transfer of technology necessary to build production capacity in developing countries. The WHO influenza technology transfer initiative has been successful. Clearly the relatively small WHO investments made in these companies to develop their own influenza vaccine production facilities have had quite dramatic results. A few companies are already producing large amounts of influenza vaccine. Others will soon follow. Whether they are developing egg-based or planning non-egg based influenza vaccine production, all companies are optimistic that their efforts will come to fruition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The World Wide Web and Technology Transfer at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L.; Bianco, David J.

    1994-01-01

    NASA Langley Research Center (LaRC) began using the World Wide Web (WWW) in the summer of 1993, becoming the first NASA installation to provide a Center-wide home page. This coincided with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non-aerospace industry. Use of the WWW and NCSA Mosaic not only provides automated information dissemination, but also allows for the implementation, evolution and integration of many technology transfer applications. This paper describes several of these innovative applications, including the on-line presentation of the entire Technology Opportunities Showcase (TOPS), an industrial partnering showcase that exists on the Web long after the actual 3-day event ended. During its first year on the Web, LaRC also developed several WWW-based information repositories. The Langley Technical Report Server (LTRS), a technical paper delivery system with integrated searching and retrieval, has proved to be quite popular. The NASA Technical Report Server (NTRS), an outgrowth of LTRS, provides uniform access to many logically similar, yet physically distributed NASA report servers. WWW is also the foundation of the Langley Software Server (LSS), an experimental software distribution system which will distribute LaRC-developed software with the possible phase-out of NASA's COSMIC program. In addition to the more formal technology distribution projects, WWW has been successful in connecting people with technologies and people with other people. With the completion of the LaRC reorganization, the Technology Applications Group, charged with interfacing with non-aerospace companies, opened for business with a popular home page.

  18. The 1973 GSFC battery workshop, second day. [technology transfer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technological progress in the development, testing, and manufacturing of nickel-cadmium battery cells as well as hydrogen cells is presented. The following major topics were discussed: (1) carbonate analysis; (2) nickel-cadmium memory effect; (3) use of batteries in an automatic acquisition and control system; (4) accelerated testing; (5) formulation of a mathematical odel for a nickel-cadmium cell; (6) development of a light weight nickel-cadmium battery capable of delivering 20 watt hours per pound; (7) magnetic testing of nickel-cadmium cells; (8) design and performance characteristics of nickel-hydrogen and silver-hydrogen cells; and (9) development of a semiprismatic cell design. For Vol. 1, see N75-15152.

  19. Analysis and measurement of the transfer matrix of a 9-cell, 1.3-GHz superconducting cavity

    DOE PAGES

    Halavanau, A.; Eddy, N.; Edstrom, D.; ...

    2017-04-13

    Superconducting linacs are capable of producing intense, stable, high-quality electron beams that have found widespread applications in science and industry. Here, the 9-cell, 1.3-GHz superconducting standing-wave accelerating rf cavity originally developed for e +/e - linear-collider applications has been broadly employed in various superconducting-linac designs. In this paper we discuss the transfer matrix of such a cavity and present its measurement performed at the Fermilab Accelerator Science and Technology (FAST) facility. Finally, the experimental results are found to be in agreement with analytical calculations and numerical simulations.

  20. Optimal orbit transfer suitable for large flexible structures

    NASA Technical Reports Server (NTRS)

    Chatterjee, Alok K.

    1989-01-01

    The problem of continuous low-thrust planar orbit transfer of large flexible structures is formulated as an optimal control problem with terminal state constraints. The dynamics of the spacecraft motion are treated as a point-mass central force field problem; the thrust-acceleration magnitude is treated as an additional state variable; and the rate of change of thrust-acceleration is treated as a control variable. To ensure smooth transfer, essential for flexible structures, an additional quadratic term is appended to the time cost functional. This term penalizes any abrupt change in acceleration. Numerical results are presented for the special case of a planar transfer.

  1. 14 CFR § 1274.915 - Restrictions on sale or transfer of technology to foreign firms or institutions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... licensing of the technology. Transfers include: (1) Sales of products or components, (2) Licenses of software or documentation related to sales of products or components, or (3) Transfers to foreign...

  2. 76 FR 11498 - Submission for OMB Review; Comment Request; Generic Submission of Technology Transfer Center (TTC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ...; Comment Request; Generic Submission of Technology Transfer Center (TTC) External Customer Satisfaction... Transfer Center (TTC) External Customer Satisfaction Surveys (NCI). Type of Information Collection Request... information on the satisfaction of TTC's external customers with TTC customer services; collect information of...

  3. Technology Transfer: Use of Federally Funded Research and Development

    DTIC Science & Technology

    2007-03-19

    private sector ; the government’s requirements for products and processes to operate effectively and efficiently; and the demand for increased goods and services at the state and local level. Congress has established a system to facilitate the transfer of technology to the private sector and to state and local governments. Despite this, use of federal R&D results has remained restrained, although there has been a significant increase in private sector interest and activities over the past several years. Critics argue that

  4. Federal Laboratory Consortium Recognizes Unituxin Collaborators with Excellence in Technology Transfer Awards | Poster

    Cancer.gov

    The Federal Laboratory Consortium (FLC) presented an Excellence in Technology Transfer award to the group that collaborated to bring Unituxin (dinutuximab, also known as ch14.18), an immunotherapy for neuroblastoma, to licensure.

  5. Systematic technology transfer from biology to engineering.

    PubMed

    Vincent, Julian F V; Mann, Darrell L

    2002-02-15

    Solutions to problems move only very slowly between different disciplines. Transfer can be greatly speeded up with suitable abstraction and classification of problems. Russian researchers working on the TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch) method for inventive problem solving have identified systematic means of transferring knowledge between different scientific and engineering disciplines. With over 1500 person years of effort behind it, TRIZ represents the biggest study of human creativity ever conducted, whose aim has been to establish a system into which all known solutions can be placed, classified in terms of function. At present, the functional classification structure covers nearly 3 000 000 of the world's successful patents and large proportions of the known physical, chemical and mathematical knowledge-base. Additional tools are the identification of factors which prevent the attainment of new technology, leading directly to a system of inventive principles which will resolve the impasse, a series of evolutionary trends of development, and to a system of methods for effecting change in a system (Su-fields). As yet, the database contains little biological knowledge despite early recognition by the instigator of TRIZ (Genrich Altshuller) that one day it should. This is illustrated by natural systems evolved for thermal stability and the maintenance of cleanliness.

  6. Overview of NASA Glenn Research Center Programs in Aero-Heat Transfer and Future Needs

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    2002-01-01

    This presentation concentrates on an overview of the NASA Glenn Research Center and the projects that are supporting Turbine Aero-Heat Transfer Research. The principal areas include the Ultra Efficient Engine Technology (UEET) Project, the Advanced Space Transportation Program (ASTP) Revolutionary Turbine Accelerator (RTA) Turbine Based Combined Cycle (TBCC) project, and the Propulsion & Power Base R&T - Smart Efficient Components (SEC), and Revolutionary Aeropropulsion Concepts (RAC) Projects. In addition, highlights are presented of the turbine aero-heat transfer work currently underway at NASA Glenn, focusing on the use of the Glenn-HT Navier- Stokes code as the vehicle for research in turbulence & transition modeling, grid topology generation, unsteady effects, and conjugate heat transfer.

  7. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juwen; /SLAC; Lewandowski, James

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control,more » tuning and RF characterization will be discussed.« less

  8. Describing an Environment for a Self-Sustaining Technology Transfer Service in a Small Research Budget University: A Case Study

    ERIC Educational Resources Information Center

    Nieb, Sharon Lynn

    2014-01-01

    This single-site qualitative study sought to identify the characteristics that contribute to the self sustainability of technology transfer services at universities with small research budgets through a case study analysis of a small research budget university that has been operating a financially self-sustainable technology transfer service for…

  9. Conceptual and empirical themes regarding the design of technology transfer programs : a review of wood utilization research in the United States

    Treesearch

    Paul V. Ellefson; Michael A. Kilgore; Kenneth E. Skog; Christopher D. Risbrudt

    2011-01-01

    Transfer of technologies produced by research is critical to innovation within all organizations. The intent of this paper is to take stock of the conceptual underpinnings of technology transfer processes as they relate to wood utilization research and to identify conditions that promote the successful transfer of research results. Conceptually, research utilization...

  10. Training Technology Transfer Act of 1984. Hearing before the Subcommittee on Education, Arts and Humanities of the Committee on Labor and Human Resources, United States Senate, Ninety-Eighth Congress, Second Session on S. 2561. Entitled the "Training Technology Transfer Act of 1984."

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.

    This is a congressional hearing on the Training Technology Transfer Act of 1984, which would establish a mechanism for transferring the Federal Government's investment in computer programming for training systems to those organizations and groups that can use such technology in training the civilian work force. Focus is on refining this bill,…

  11. Multi-beam linear accelerator EVT

    NASA Astrophysics Data System (ADS)

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  12. Multi-beam linear accelerator EVT

    DOE PAGES

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-03-29

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initialmore » specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. Furthermore, a relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.« less

  13. Technology transfer at NASA - A librarian's view

    NASA Technical Reports Server (NTRS)

    Buchan, Ronald L.

    1991-01-01

    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  14. Accelerator Science: Why RF?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    Particle accelerators can fire beams of subatomic particles at near the speed of light. The accelerating force is generated using radio frequency technology and a whole lot of interesting features. In this video, Fermilab’s Dr. Don Lincoln explains how it all works.

  15. Report of the 4th Workshop for Technology Transfer for Intelligent Compaction Consortium.

    DOT National Transportation Integrated Search

    2016-03-01

    On October 2728, 2015, the Kentucky Transportation Cabinet (KYTC) hosted the 4th workshop for : the Technology Transfer for Intelligent Compaction Consortium (TTICC), a Transportation Pooled Fund : (TPF5(233)) initiative designed to identify, s...

  16. EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, John M; Rakouth, Heri; Suh, In-Soo

    This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University.more » The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program

  17. Technology transfer potential of an automated water monitoring system. [market research

    NASA Technical Reports Server (NTRS)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  18. MABE multibeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasti, D.E.; Ramirez, J.J.; Coleman, P.D.

    1985-01-01

    The Megamp Accelerator and Beam Experiment (MABE) was the technology development testbed for the multiple beam, linear induction accelerator approach for Hermes III, a new 20 MeV, 0.8 MA, 40 ns accelerator being developed at Sandia for gamma-ray simulation. Experimental studies of a high-current, single-beam accelerator (8 MeV, 80 kA), and a nine-beam injector (1.4 MeV, 25 kA/beam) have been completed, and experiments on a nine-beam linear induction accelerator are in progress. A two-beam linear induction accelerator is designed and will be built as a gamma-ray simulator to be used in parallel with Hermes III. The MABE pulsed power systemmore » and accelerator for the multiple beam experiments is described. Results from these experiments and the two-beam design are discussed. 11 refs., 6 figs.« less

  19. "Kaizen" and Technology Transfer Instructors as Work-based Learning Facilitators in Overseas Transplants: A Case Study.

    ERIC Educational Resources Information Center

    Elsey, Barry; Fujiwara, Asahi

    2000-01-01

    A study of 240 instructors of kaizen (continuous quality improvement) and technology transfer in overseas assignments for Toyota found that commitment to work and corporate cultural values were significant. Instructors recognized the responsibility and challenges of communicating and transferring their know-how across cultures. (SK)

  20. 78 FR 48537 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... SMALL BUSINESS ADMINISTRATION [Docket Number: 2013-0008] Small Business Innovation Research and Small Business Technology Transfer Programs Commercialization Benchmark AGENCY: Small Business Administration. ACTION: Notice. SUMMARY: The Small Business Administration (SBA) is publishing the Small Business...

  1. 78 FR 59410 - Small Business Innovation Research and Small Business Technology Transfer Programs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... SMALL BUSINESS ADMINISTRATION [Docket Number: 2013-0008] Small Business Innovation Research and Small Business Technology Transfer Programs Commercialization Benchmark AGENCY: Small Business... Business Administration (SBA) is reopening the comment period for the Small Business Innovation Research...

  2. [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Delaporte, Philippe; Alloncle, Anne-Patricia

    2016-04-01

    Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.

  3. Research Universities, Technology Transfer, and Job Creation: What Infrastructure, For What Training?

    ERIC Educational Resources Information Center

    Brodhag, Christian

    2013-01-01

    Technology transfer and innovation are considered major drivers of sustainable development; they place knowledge and its dissemination in society at the heart of the development process. This article considers the role of research universities, and how they can interact with key actors and institutions involved in "innovation…

  4. Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Vishnoi, U.; Noll, T. G.

    2012-09-01

    The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit

  5. Upper limit for the acceleration gradient in the collinear wake field accelerator as a function of the transformer ratio

    DOE PAGES

    Baturin, Stanislav; Zholents, A.

    2017-06-19

    Here, the interrelation between the accelerating gradient and the transformer ratio in the collinear wake field accelerator has been analyzed. It has been shown that the high transformer ratio and the high efficiency of the energy transfer from the drive bunch to the witness bunch can only be achieved at the expense of the accelerating gradient. Rigorous proof is given that in best cases of meticulously shaped charge density distributions in the drive bunch, the maximum accelerating gradient falls proportionally to the gain in the transformer ratio. Conclusions are verified using several representative examples.

  6. Upper limit for the acceleration gradient in the collinear wake field accelerator as a function of the transformer ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baturin, Stanislav; Zholents, A.

    Here, the interrelation between the accelerating gradient and the transformer ratio in the collinear wake field accelerator has been analyzed. It has been shown that the high transformer ratio and the high efficiency of the energy transfer from the drive bunch to the witness bunch can only be achieved at the expense of the accelerating gradient. Rigorous proof is given that in best cases of meticulously shaped charge density distributions in the drive bunch, the maximum accelerating gradient falls proportionally to the gain in the transformer ratio. Conclusions are verified using several representative examples.

  7. [Application of risk-based approach for determination of critical factors in technology transfer of production of medicinal products].

    PubMed

    Beregovykh, V V; Spitskiy, O R

    2014-01-01

    Risk-based approach is used for examination of impact of different factors on quality of medicinal products in technology transfer. A general diagram is offered for risk analysis execution in technology transfer from pharmaceutical development to production. When transferring technology to full- scale commercial production it is necessary to investigate and simulate production process application beforehand in new real conditions. The manufacturing process is the core factorfor risk analysis having the most impact on quality attributes of a medicinal product. Further importantfactors are linked to materials and products to be handled and manufacturing environmental conditions such as premises, equipment and personnel. Usage of risk-based approach in designing of multipurpose production facility of medicinal products is shown where quantitative risk analysis tool RAMM (Risk Analysis and Mitigation Matrix) was applied.

  8. Investigations into dual-grating THz-driven accelerators

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Ischebeck, R.; Dehler, M.; Ferrari, E.; Hiller, N.; Jamison, S.; Xia, G.; Hanahoe, K.; Li, Y.; Smith, J. D. A.; Welsch, C. P.

    2018-01-01

    Advanced acceleration technologies are receiving considerable interest in order to miniaturize future particle accelerators. One such technology is the dual-grating dielectric structures, which can support accelerating fields one to two orders of magnitude higher than the metal RF cavities in conventional accelerators. This opens up the possibility of enabling high accelerating gradients of up to several GV/m. This paper investigates numerically a quartz dual-grating structure which is driven by THz pulses to accelerate electrons. Geometry optimizations are carried out to achieve the trade-offs between accelerating gradient and vacuum channel gap. A realistic electron bunch available from the future Compact Linear Accelerator for Research and Applications (CLARA) is loaded into an optimized 100-period dual-grating structure for a detailed wakefield study. A THz pulse is then employed to interact with this CLARA bunch in the optimized structure. The computed beam quality is analyzed in terms of emittance, energy spread and loaded accelerating gradient. The simulations show that an accelerating gradient of 348 ± 12 MV/m with an emittance growth of 3.0% can be obtained.

  9. Innovation and technology transfer in the health sciences: a cross-sectional perspective.

    PubMed

    Blanch, L; Guerra, L; Lanuza, A; Palomar, G

    2014-11-01

    This article is based on the strategic reflection and discussion that took place on occasion of the first conference on innovation and technology transfer in the health sciences organized by the REGIC-ENS-FENIN-SEMICYUC and held in Madrid in the Instituto de Salud Carlos III on May 7th, 2013, with the aim of promoting the transfer of technological innovation in medicine and health care beyond the European program "Horizon 2020". The presentations dealt with key issues such as evaluation of the use of new technologies, the need to impregnate the decisions related to adoption and innovation with the concepts of value and sustainability, and the implication of knowledge networks in the need to strengthen their influence upon the creation of a "culture of innovation" among health professionals. But above all, emphasis was placed on the latent innovation potential of hospitals, and the fact that these, being the large companies that they are, should seriously consider that much of their future sustainability may depend on proper management of their ability to generate innovation, which is not only the generation of ideas but also their transformation into products or processes that create value and economic returns. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  10. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, M.; Edwards, H.; Harms, E.

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the

  11. Technology Transfer and Innovation Initiatives in Strategic Management: Generating an Alternative Perspective

    ERIC Educational Resources Information Center

    Major, E.

    2003-01-01

    This paper taps the strategic management discipline to inform our understanding of technology transfer and innovation (TTI) initiatives. With special focus on the UK Foresight programme it considers the impacts that the resource-based and core competence approaches to strategy can have on understanding the nature and effectiveness of TTI…

  12. Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Travish, G.

    2013-03-01

    Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.

  13. Development and technology transfer of Haemophilus influenzae type b conjugate vaccines for developing countries.

    PubMed

    Beurret, Michel; Hamidi, Ahd; Kreeftenberg, Hans

    2012-07-13

    This paper describes the development of a Haemophilus influenzae type b (Hib) conjugate vaccine at the National Institute for Public Health and the Environment/Netherlands Vaccine Institute (RIVM/NVI, Bilthoven, The Netherlands), and the subsequent transfer of its production process to manufacturers in developing countries. In 1998, at the outset of the project, the majority of the world's children were not immunized against Hib because of the high price and limited supply of the conjugate vaccines, due partly to the fact that local manufacturers in developing countries did not master the Hib conjugate production technology. To address this problem, the RIVM/NVI has developed a robust Hib conjugate vaccine production process based on a proven model, and transferred this technology to several partners in India, Indonesia, Korea and China. As a result, emerging manufacturers in developing countries acquired modern technologies previously unavailable to them. This has in turn facilitated their approach to producing other conjugate vaccines. As an additional spin-off from the project, a World Health Organization (WHO) Hib quality control (QC) course was designed and conducted at the RIVM/NVI, resulting in an increased regulatory capacity for conjugate vaccines in developing countries at the National Regulatory Authority (NRA) level. For the local populations, this has translated into an increased and sustainable supply of affordable Hib conjugate-containing combination vaccines. During the course of this project, developing countries have demonstrated their ability to produce large quantities of high-quality modern vaccines after a successful transfer of the technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Tools, courses, and learning pathways offered by the National Interagency Fuels, Fire, and Vegetation Technology Transfer

    Treesearch

    Eva K. Strand; Kathy H. Schon; Jeff Jones

    2010-01-01

    Technological advances in the area of fuel and wildland fire management have created a need for effective decision support tools and technology training. The National Interagency Fuels Committee and LANDFIRE have chartered a team to develop science-based learning tools for assessment of fire and fuels and to provide online training and technology transfer to help...

  15. Indexing NASA programs for technology transfer methods development and feasibility

    NASA Technical Reports Server (NTRS)

    Clingman, W. H.

    1972-01-01

    This project was undertaken to evaluate the application of a previously developed indexing methodology to ongoing NASA programs. These programs are comprehended by the NASA Program Approval Documents (PADS). Each PAD contains a technical plan for the area it covers. It was proposed that these could be used to generate an index to the complete NASA program. To test this hypothesis two PADS were selected by the NASA Technology Utilization Office for trial indexing. Twenty-five individuals indexed the two PADS using NASA Thesaurus terms. The results demonstrated the feasibility of indexing ongoing NASA programs using PADS as the source of information. The same indexing methodology could be applied to other documents containing a brief description of the technical plan. Results of this project showed that over 85% of the concepts in the technology should be covered by the indexing. Also over 85% of the descriptors chosen would be accurate. This completeness and accuracy for the indexing is considered satisfactory for application in technology transfer.

  16. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  17. Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcuse, W.

    1987-01-01

    This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

  18. Cryogenic gear technology for an orbital transfer vehicle engine and tester design

    NASA Technical Reports Server (NTRS)

    Calandra, M.; Duncan, G.

    1986-01-01

    Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.

  19. EERE-SBIR technology transfer opportunity. H2 Safety Sensors for H2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Mariann R.

    2015-12-01

    The Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technologies Office (FCTO) works in partnership with industry (including small businesses), academia, and DOE's national laboratories to establish fuel cell and hydrogen energy technologies as economically competitive contributors to U.S. transportation needs. The work that is envisioned between the SBIR/STTR grantee and Los Alamos National Laboratory would involve Technical Transfer of Los Alamos Intellectual Property (IP) on Thin-film Mixed Potential Sensor (U.S. Patent 7,264,700) and associated know-how for H2 sensor manufacturing and packaging.

  20. Airspace Technology Demonstration 3 (ATD-3): Dynamic Weather Routes (DWR) Technology Transfer Document Summary Version 1.0

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; Wang, Easter Mayan Chan

    2016-01-01

    Airspace Technology Demonstration #3 (ATD-3) is part of NASA's Airspace Operations and Safety Program (AOSP) - specifically, its Airspace Technology Demonstrations (ATD) Project. ATD-3 is a multiyear research and development effort which proposes to develop and demonstrate automation technologies and operating concepts that enable air navigation service providers and airspace users to continuously assess weather, winds, traffic, and other information to identify, evaluate, and implement workable opportunities for flight plan route corrections that can result in significant flight time and fuel savings in en route airspace. In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders. This summary document and accompanying technology artifacts satisfy the first of three Research Transition Products (RTPs) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASA's legacy Dynamic Weather Routes (DWR) work for efficient routing for en-route weather avoidance. DWR is a ground-based trajectory automation system that continuously and automatically analyzes active airborne aircraft in en route airspace to identify opportunities for simple corrections to flight plan routes that can save significant flying time, at least five minutes wind-corrected, while avoiding weather and considering traffic conflicts, airspace sector congestion, special use airspace, and FAA routing restrictions. The key benefit of the DWR concept is to let automation continuously and automatically analyze active flights to find those where simple route corrections can save significant time and fuel. Operators are busy during weather events. It is more effective to let automation find the opportunities for high-value route corrections.