Sample records for accelerated aging process

  1. Menopause accelerates biological aging

    PubMed Central

    Levine, Morgan E.; Lu, Ake T.; Chen, Brian H.; Hernandez, Dena G.; Singleton, Andrew B.; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E.; Quach, Austin; Kusters, Cynthia D. J.; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E.; Widschwendter, Martin; Ritz, Beate R.; Absher, Devin; Assimes, Themistocles L.; Horvath, Steve

    2016-01-01

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the “epigenetic clock”), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  2. Epigenetic Age Acceleration Assessed with Human White-Matter Images.

    PubMed

    Hodgson, Karen; Carless, Melanie A; Kulkarni, Hemant; Curran, Joanne E; Sprooten, Emma; Knowles, Emma E; Mathias, Samuel; Göring, Harald H H; Yao, Nailin; Olvera, Rene L; Fox, Peter T; Almasy, Laura; Duggirala, Ravi; Blangero, John; Glahn, David C

    2017-05-03

    The accurate estimation of age using methylation data has proved a useful and heritable biomarker, with acceleration in epigenetic age predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are also heritable and highly sensitive to both normal and pathological aging processes across adulthood. We consider the phenotypic and genetic interrelationships between epigenetic age acceleration and white matter integrity in humans. Our goal was to investigate processes that underlie interindividual variability in age-related changes in the brain. Using blood taken from a Mexican-American extended pedigree sample ( n = 628; age = 23.28-93.11 years), epigenetic age was estimated using the method developed by Horvath (2013). For n = 376 individuals, diffusion tensor imaging scans were also available. The interrelationship between epigenetic age acceleration and global white matter integrity was investigated with variance decomposition methods. To test for neuroanatomical specificity, 16 specific tracts were additionally considered. We observed negative phenotypic correlations between epigenetic age acceleration and global white matter tract integrity (ρ pheno = -0.119, p = 0.028), with evidence of shared genetic (ρ gene = -0.463, p = 0.013) but not environmental influences. Negative phenotypic and genetic correlations with age acceleration were also seen for a number of specific white matter tracts, along with additional negative phenotypic correlations between granulocyte abundance and white matter integrity. These findings (i.e., increased acceleration in epigenetic age in peripheral blood correlates with reduced white matter integrity in the brain and shares common genetic influences) provide a window into the neurobiology of aging processes within the brain and a potential biomarker of normal and pathological brain aging. SIGNIFICANCE STATEMENT Epigenetic measures can be used to predict age with a high degree of accuracy and so

  3. Accelerated and accentuated neurocognitive aging in HIV infection.

    PubMed

    Sheppard, David P; Iudicello, Jennifer E; Morgan, Erin E; Kamat, Rujvi; Clark, Lindsay R; Avci, Gunes; Bondi, Mark W; Woods, Steven Paul

    2017-06-01

    There is debate as to whether the neurocognitive changes associated with HIV infection represent an acceleration of the typical aging process or more simply reflect a greater accentuated risk for age-related declines. We aimed to determine whether accelerated neurocognitive aging is observable in a sample of older HIV-infected individuals compared to age-matched seronegatives and older old (i.e., aged ≥65) seronegative adults. Participants in a cross-sectional design included 48 HIV-seronegative (O-) and 40 HIV-positive (O+) participants between the ages of 50-65 (mean ages = 55 and 56, respectively) and 40 HIV-seronegative participants aged ≥65 (OO-; mean age = 74) who were comparable for other demographics. All participants were administered a brief neurocognitive battery of attention, episodic memory, speeded executive functions, and confrontation naming (i.e., Boston Naming Test). The O+ group performed more poorly than the O- group (i.e., accentuated aging), but not differently from the OO- on digit span and initial recall of a supraspan word list, consistent with an accelerating aging profile. However, the O+ group's performance was comparable to the O- group on all other neurocognitive tests (ps > 0.05). These data partially support a model of accelerated neurocognitive aging in HIV infection, which was observed in the domain of auditory verbal attention, but not in the areas of memory, language, or speeded executive functions. Future studies should examine whether HIV-infected adults over 65 evidence accelerated aging in downstream neurocognitive domains and subsequent everyday functioning outcomes.

  4. Perinatally acquired HIV infection accelerates epigenetic aging in South African adolescents.

    PubMed

    Horvath, Steve; Phillips, Nicole; Heany, Sarah J; Kobor, Michael S; Lin, David Ts; Myer, Landon; Zar, Heather J; Stein, Dan J; Levine, Andrew J; Hoare, Jacqueline

    2018-05-08

    Recent studies demonstrate that infection with the Human Immunodeficiency Virus-1 (HIV) is associated with accelerated aging effects in adults according to a highly accurate epigenetic biomarker of aging known as epigenetic clock. However, it not yet known whether epigenetic age acceleration occurs as early as adolescence in perinatally HIV-infected (PHIV+) youth. Observational study of PHIV and HIV-uninfected adolescents enrolled in the Cape Town Adolescent Antiretroviral Cohort (CTAAC) Study. The Illumina EPIC array was used to generate blood DNA methylation data from 204 PHIV and 44 age-matched, uninfected (HIV-) adolescents aged 9 to 12 years old. The epigenetic clock software and method was used to estimate two measures of epigenetic age acceleration. Each participant completed a comprehensive neuropsychological test battery upon enrolment to CTAAC. HIV is associated with biologically older blood in PHIV+ adolescents according to both measures of epigenetic age acceleration. One of the measures, extrinsic epigenetic age acceleration, is negatively correlated with measures of cognitive functioning (executive functioning, working memory, processing speed). Overall, our results indicate that epigenetic age acceleration in blood can be observed in PHIV+ adolescents and that these epigenetic changes accompany poorer cognitive functioning.

  5. [The use of biological age on mental work capacity model in accelerated aging assessment of professional lorry-drivers].

    PubMed

    Bashkireva, A S

    2012-01-01

    The studies of biological age, aging rate, mental work capacity in professional drivers were conducted. The examination revealed peculiarities of system organization of functions determining the mental work capacity levels. Dynamics of the aging process of professional driver's organism in relation with calendar age and driving experience were shown using the biological age model. The results point at the premature decrease of the mental work capacity in professional drivers. It was proved, that premature age-related changes of physiologic and psychophysiologic indices in drivers are just "risk indicators", while long driving experience is a real risk factor, accelerating the aging process. The "risk group" with manifestations of accelerating aging was observed in 40-49-year old drivers with 15-19 years of professional experience. The expediency of using the following methods for the age rate estimation according to biologic age indices and necessity of prophylactic measures for premature and accelerated aging prevention among working population was demonstrated.

  6. Challenges of accelerated aging techniques for elastomer lifetime predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen, Kenneth T.; Bernstein, R.; Celina, M.

    Elastomers are often degraded when exposed to air or high humidity for extended times (years to decades). Lifetime estimates normally involve extrapolating accelerated aging results made at higher than ambient environments. Several potential problems associated with such studies are reviewed, and experimental and theoretical methods to address them are provided. The importance of verifying time–temperature superposition of degradation data is emphasized as evidence that the overall nature of the degradation process remains unchanged versus acceleration temperature. The confounding effects that occur when diffusion-limited oxidation (DLO) contributes under accelerated conditions are described, and it is shown that the DLO magnitude canmore » be modeled by measurements or estimates of the oxygen permeability coefficient (P Ox) and oxygen consumption rate (Φ). P Ox and Φ measurements can be influenced by DLO, and it is demonstrated how confident values can be derived. In addition, several experimental profiling techniques that screen for DLO effects are discussed. Values of Φ taken from high temperature to temperatures approaching ambient can be used to more confidently extrapolate accelerated aging results for air-aged materials, and many studies now show that Arrhenius extrapolations bend to lower activation energies as aging temperatures are lowered. Furthermore, best approaches for accelerated aging extrapolations of humidity-exposed materials are also offered.« less

  7. Challenges of accelerated aging techniques for elastomer lifetime predictions

    DOE PAGES

    Gillen, Kenneth T.; Bernstein, R.; Celina, M.

    2015-03-01

    Elastomers are often degraded when exposed to air or high humidity for extended times (years to decades). Lifetime estimates normally involve extrapolating accelerated aging results made at higher than ambient environments. Several potential problems associated with such studies are reviewed, and experimental and theoretical methods to address them are provided. The importance of verifying time–temperature superposition of degradation data is emphasized as evidence that the overall nature of the degradation process remains unchanged versus acceleration temperature. The confounding effects that occur when diffusion-limited oxidation (DLO) contributes under accelerated conditions are described, and it is shown that the DLO magnitude canmore » be modeled by measurements or estimates of the oxygen permeability coefficient (P Ox) and oxygen consumption rate (Φ). P Ox and Φ measurements can be influenced by DLO, and it is demonstrated how confident values can be derived. In addition, several experimental profiling techniques that screen for DLO effects are discussed. Values of Φ taken from high temperature to temperatures approaching ambient can be used to more confidently extrapolate accelerated aging results for air-aged materials, and many studies now show that Arrhenius extrapolations bend to lower activation energies as aging temperatures are lowered. Furthermore, best approaches for accelerated aging extrapolations of humidity-exposed materials are also offered.« less

  8. Is biological aging accelerated in drug addiction?

    PubMed

    Bachi, Keren; Sierra, Salvador; Volkow, Nora D; Goldstein, Rita Z; Alia-Klein, Nelly

    2017-02-01

    Drug-addiction may trigger early onset of age-related disease, due to drug-induced multi-system toxicity and perilous lifestyle, which remains mostly undetected and untreated. We present the literature on pathophysiological processes that may hasten aging and its relevance to addiction, including: oxidative stress and cellular aging, inflammation in periphery and brain, decline in brain volume and function, and early onset of cardiac, cerebrovascular, kidney, and liver disease. Timely detection of accelerated aging in addiction is crucial for the prevention of premature morbidity and mortality.

  9. Accelerated Aging with Electrical Overstress and Prognostics for Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Saha, Sankalita; Celaya, Jose Ramon; Vashchenko, Vladislav; Mahiuddin, Shompa; Goebel, Kai F.

    2011-01-01

    Power electronics play an increasingly important role in energy applications as part of their power converter circuits. Understanding the behavior of these devices, especially their failure modes as they age with nominal usage or sudden fault development is critical in ensuring efficiency. In this paper, a prognostics based health management of power MOSFETs undergoing accelerated aging through electrical overstress at the gate area is presented. Details of the accelerated aging methodology, modeling of the degradation process of the device and prognostics algorithm for prediction of the future state of health of the device are presented. Experiments with multiple devices demonstrate the performance of the model and the prognostics algorithm as well as the scope of application. Index Terms Power MOSFET, accelerated aging, prognostics

  10. Are Anxiety Disorders Associated with Accelerated Aging? A Focus on Neuroprogression

    PubMed Central

    Perna, Giampaolo; Iannone, Giuseppe; Alciati, Alessandra; Caldirola, Daniela

    2016-01-01

    Anxiety disorders (AnxDs) are highly prevalent throughout the lifespan, with detrimental effects on daily-life functioning, somatic health, and quality of life. An emerging perspective suggested that AnxDs may be associated with accelerated aging. In this paper, we explored the association between AnxDs and hallmarks of accelerated aging, with a specific focus on neuroprogression. We reviewed animal and human findings that suggest an overlap between processes of impaired neurogenesis, neurodegeneration, structural, functional, molecular, and cellular modifications in AnxDs, and aging. Although this research is at an early stage, our review suggests a link between anxiety and accelerated aging across multiple processes involved in neuroprogression. Brain structural and functional changes that accompany normal aging were more pronounced in subjects with AnxDs than in coevals without AnxDs, including reduced grey matter density, white matter alterations, impaired functional connectivity of large-scale brain networks, and poorer cognitive performance. Similarly, molecular correlates of brain aging, including telomere shortening, Aβ accumulation, and immune-inflammatory and oxidative/nitrosative stress, were overrepresented in anxious subjects. No conclusions about causality or directionality between anxiety and accelerated aging can be drawn. Potential mechanisms of this association, limitations of the current research, and implications for treatments and future studies are discussed. PMID:26881136

  11. Accelerated Brain Aging in Schizophrenia: A Longitudinal Pattern Recognition Study.

    PubMed

    Schnack, Hugo G; van Haren, Neeltje E M; Nieuwenhuis, Mireille; Hulshoff Pol, Hilleke E; Cahn, Wiepke; Kahn, René S

    2016-06-01

    Despite the multitude of longitudinal neuroimaging studies that have been published, a basic question on the progressive brain loss in schizophrenia remains unaddressed: Does it reflect accelerated aging of the brain, or is it caused by a fundamentally different process? The authors used support vector regression, a supervised machine learning technique, to address this question. In a longitudinal sample of 341 schizophrenia patients and 386 healthy subjects with one or more structural MRI scans (1,197 in total), machine learning algorithms were used to build models to predict the age of the brain and the presence of schizophrenia ("schizophrenia score"), based on the gray matter density maps. Age at baseline ranged from 16 to 67 years, and follow-up scans were acquired between 1 and 13 years after the baseline scan. Differences between brain age and chronological age ("brain age gap") and between schizophrenia score and healthy reference score ("schizophrenia gap") were calculated. Accelerated brain aging was calculated from changes in brain age gap between two consecutive measurements. The age prediction model was validated in an independent sample. In schizophrenia patients, brain age was significantly greater than chronological age at baseline (+3.36 years) and progressively increased during follow-up (+1.24 years in addition to the baseline gap). The acceleration of brain aging was not constant: it decreased from 2.5 years/year just after illness onset to about the normal rate (1 year/year) approximately 5 years after illness onset. The schizophrenia gap also increased during follow-up, but more pronounced variability in brain abnormalities at follow-up rendered this increase nonsignificant. The progressive brain loss in schizophrenia appears to reflect two different processes: one relatively homogeneous, reflecting accelerated aging of the brain and related to various measures of outcome, and a more variable one, possibly reflecting individual variation and

  12. Accelerated epigenetic aging in Werner syndrome.

    PubMed

    Maierhofer, Anna; Flunkert, Julia; Oshima, Junko; Martin, George M; Haaf, Thomas; Horvath, Steve

    2017-04-01

    Individuals suffering from Werner syndrome (WS) exhibit many clinical signs of accelerated aging. While the underlying constitutional mutation leads to accelerated rates of DNA damage, it is not yet known whether WS is also associated with an increased epigenetic age according to a DNA methylation based biomarker of aging (the "Epigenetic Clock"). Using whole blood methylation data from 18 WS cases and 18 age matched controls, we find that WS is associated with increased extrinsic epigenetic age acceleration (p=0.0072) and intrinsic epigenetic age acceleration (p=0.04), the latter of which is independent of age-related changes in the composition of peripheral blood cells. A multivariate model analysis reveals that WS is associated with an increase in DNA methylation age (on average 6.4 years, p=0.011) even after adjusting for chronological age, gender, and blood cell counts. Further, WS might be associated with a reduction in naïve CD8+ T cells (p=0.025) according to imputed measures of blood cell counts. Overall, this study shows that WS is associated with an increased epigenetic age of blood cells which is independent of changes in blood cell composition. The extent to which this alteration is a cause or effect of WS disease phenotypes remains unknown.

  13. Accelerated aging test results for aerospace wire insulation constructions

    NASA Technical Reports Server (NTRS)

    Dunbar, William G.

    1995-01-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  14. Accelerated aging test results for aerospace wire insulation constructions

    NASA Astrophysics Data System (ADS)

    Dunbar, William G.

    1995-11-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  15. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging

    PubMed Central

    Ohnishi, Mutsuko; Razzaque, M. Shawkat

    2010-01-01

    Identifying factors that accelerate the aging process can provide important therapeutic targets for slowing down this process. Misregulation of phosphate homeostasis has been noted in various skeletal, cardiac, and renal diseases, but the exact role of phosphate toxicity in mammalian aging is not clearly defined. Phosphate is widely distributed in the body and is involved in cell signaling, energy metabolism, nucleic acid synthesis, and the maintenance of acid-base balance by urinary buffering. In this study, we used an in vivo genetic approach to determine the role of phosphate toxicity in mammalian aging. Klotho-knockout mice (klotho−/−) have a short life span and show numerous physical, biochemical, and morphological features consistent with premature aging, including kyphosis, uncoordinated movement, hypogonadism, infertility, severe skeletal muscle wasting, emphysema, and osteopenia, as well as generalized atrophy of the skin, intestine, thymus, and spleen. Molecular and biochemical analyses suggest that increased renal activity of sodium-phosphate cotransporters (NaPi2a) leads to severe hyperphosphatemia in klotho−/− mice. Genetically reducing serum phosphate levels in klotho−/− mice by generating a NaPi2a and klotho double-knockout (NaPi2a−/−/klotho−/−) strain resulted in amelioration of premature aging-like features. The NaPi2a−/−/klotho−/− double-knockout mice regained reproductive ability, recovered their body weight, reduced their organ atrophy, and suppressed ectopic calcifications, with the resulting effect being prolonged survival. More important, when hyperphosphatemia was induced in NaPi2a−/−/klotho−/− mice by feeding with a high-phosphate diet, premature aging-like features reappeared, clearly suggesting that phosphate toxicity is the main cause of premature aging in klotho−/− mice. The results of our dietary and genetic manipulation studies provide in vivo evidence for phosphate toxicity accelerating the

  16. The influences of accelerated aging on mechanical properties of veneering ceramics used for zirconia restorations.

    PubMed

    Luo, Huinan; Tang, Xuehua; Dong, Zhen; Tang, Hui; Nakamura, Takashi; Yatani, Hirofumi

    2016-01-01

    This study evaluated the influences of accelerated aging on the mechanical properties of veneering ceramics used for zirconia frameworks. Five different veneering ceramics for zirconia frameworks were used. Twenty specimens were fabricated for each veneering ceramic. All specimens were divided into two groups. One was subjected to accelerated aging and the other was used as a control. Accelerated aging was performed in distilled water for 5 h at 200ºC and 2 atm. The density, open porosity, surface roughness, three-point flexural strength, and Vickers hardness were measured. The results showed that the density, open porosity, and surface roughness of all examined veneering ceramics were changed by the accelerated aging process. Accelerated aging was also found to have a positive effect on strength and a negative effect on the hardness.

  17. Evaluation of effect of laser etching on shear bond strength between maxillofacial silicone and acrylic resin subjected to accelerated aging process.

    PubMed

    Rhea, Antonette; Ahila, S C; Kumar, B Muthu

    2017-01-01

    Maxillofacial prosthesis are supported by implants, require a retentive matrix to retain the suprastructure. The retentive matrix is made up of acrylic resin to which the silicone prostheses are anchored by micro-mechanical bond. The delamination of silicone away from the retentive matrix is a persisting problem in implant-supported maxillofacial prosthesis. This study aimed to evaluate the effect of laser etching on the shear bond strength (BS) between acrylic resin and maxillofacial silicone, after 24 h of fabrication and after 200 h of accelerated aging. The samples were prepared according to ISO/TR 11405:1994 in maxillofacial silicone and polymethyl methacrylate resin. The untreated samples were Group A (control), Group B (silicon carbide [SiC] paper abrasion 80 grit size), and Group C (erbium-doped yttrium aluminum garnet laser etching). Then, the samples were coated with primer and bonded to maxillofacial silicone. The samples were subjected to shear BS test in an universal testing machine after 24 h of fabrication and after 200 h of accelerated aging. The results were statistically analyzed using one-way ANOVA and Tukey's HSD post hoc test. The shear BS test after 24 h of fabrication showed better BS in SiC paper abrasion. The shear BS test after 200 h of accelerated aging showed better BS in laser etching compared to SiC abrasion. Laser etching produced better shear BS compared to conventional SiC paper abrasion after 200 h of accelerated aging process.

  18. Accelerated Aging in Electrolytic Capacitors for Prognostics

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan; Saha, Sankalita; Biswas, Gautam; Goebel, Kai Frank

    2012-01-01

    The focus of this work is the analysis of different degradation phenomena based on thermal overstress and electrical overstress accelerated aging systems and the use of accelerated aging techniques for prognostics algorithm development. Results on thermal overstress and electrical overstress experiments are presented. In addition, preliminary results toward the development of physics-based degradation models are presented focusing on the electrolyte evaporation failure mechanism. An empirical degradation model based on percentage capacitance loss under electrical overstress is presented and used in: (i) a Bayesian-based implementation of model-based prognostics using a discrete Kalman filter for health state estimation, and (ii) a dynamic system representation of the degradation model for forecasting and remaining useful life (RUL) estimation. A leave-one-out validation methodology is used to assess the validity of the methodology under the small sample size constrain. The results observed on the RUL estimation are consistent through the validation tests comparing relative accuracy and prediction error. It has been observed that the inaccuracy of the model to represent the change in degradation behavior observed at the end of the test data is consistent throughout the validation tests, indicating the need of a more detailed degradation model or the use of an algorithm that could estimate model parameters on-line. Based on the observed degradation process under different stress intensity with rest periods, the need for more sophisticated degradation models is further supported. The current degradation model does not represent the capacitance recovery over rest periods following an accelerated aging stress period.

  19. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  20. [PSYCHO PHYSIOLOGICAL MARKERS OF ACCELERATED AGING AMONG THOSE WORKING WITH OCCUPATIONAL HAZARDS].

    PubMed

    Bashkireva, A S; Kachan, Ye Yu; Kulapina, M E

    2015-01-01

    Using comparative analysis of two occupational groups we assessed the significance of psycho physiological markers of short-term memory accelerated aging in order to reveal how the age-related changes and working process affect mental work capacity. We revealed peculiarities of systemic structure of functions which determine mental work capacity depending on the age and length of service in lorry drivers. It was proved that age and long driving experience affect mnestic functions which show up quantitative and qualitative changes such as reduced volume of memorized information, longer time needed to memorize it, and tendency to diminished accuracy of memorization. We also proved that premature age-related changes of psycho physiological indices in drivers are the "risk indicators", while long driving experience is a real risk factor contributing to the acceleration of aging.

  1. Brain-Derived Neurotrophic Factor Expression in Individuals With Schizophrenia and Healthy Aging: Testing the Accelerated Aging Hypothesis of Schizophrenia.

    PubMed

    Islam, Farhana; Mulsant, Benoit H; Voineskos, Aristotle N; Rajji, Tarek K

    2017-07-01

    Schizophrenia has been hypothesized to be a syndrome of accelerated aging. Brain plasticity is vulnerable to the normal aging process and affected in schizophrenia: brain-derived neurotrophic factor (BDNF) is an important neuroplasticity molecule. The present review explores the accelerated aging hypothesis of schizophrenia by comparing changes in BDNF expression in schizophrenia with aging-associated changes. Individuals with schizophrenia show patterns of increased overall mortality, metabolic abnormalities, and cognitive decline normally observed later in life in the healthy population. An overall decrease is observed in BDNF expression in schizophrenia compared to healthy controls and in older individuals compared to a younger cohort. There is a marked decrease in BDNF levels in the frontal regions and in the periphery among older individuals and those with schizophrenia; however, data for BDNF expression in the occipital, parietal, and temporal cortices and the hippocampus is inconclusive. Accelerated aging hypothesis is supported based on frontal regions and peripheral studies; however, further studies are needed in other brain regions.

  2. The effect of accelerated aging on the wear of UHMWPE.

    PubMed

    Sakoda, H; Fisher, J; Lu, S; Buchanan, F

    2001-01-01

    Oxidative degradation of UHMWPE has been found to be a cause of elevated wear rate of the polymer in total joint replacement leading to failure of these devices. In order to evaluate long term stability of polymers, various accelerated aging methods have been developed. In this study, wear rates of shelf aged UHMWPE and "accelerated aged" UHMWPE were compared using a multi-directional pin-on-plate wear test machine in order to evaluate the effect of the accelerated aging on wear. Wear factors of the aged materials were found to depend on their density, which is a measure of oxidation level. Finally, accelerated aging was calibrated against shelf aging in terms of wear rate. Copyright 2001 Kluwer Academic Publishers

  3. THE ACCELERATION OF THE AGING PROCESS OF ALCOHOLIC BEVERAGES BY $gamma$- IRRADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumiki, Y.

    Using gamma irradiation, the aging of alcoholic beverages can be accelerated. Plain Japanese sake can be aged within l hr with a Co/sup 60/ source of 270 c (total dose l0,000 r). The taste and flavor of fresh sake can be improved with a few thousand r irr-adiation. The unpleasant flavor of poor grade sake and the yeast taste of new sake can be eliminated by irradiation. For natur-ally aged sake and compound sake, the change was very little for a dosage of l0,000 r, and beyond this limit the irradiated sakes were over-aged. For both aged sake and newmore » sake, undesirable tastes were detected for an irradiation dosage greater than 20,000 r. When the dosage approached l00,000 r, the typical irradiation odor'' was detected. Therefore, the ideal dosage range is from several thousand r to l04 r. At an irradiation dosage of l0,000 r, whisky and brandy were aged r-apidly. However, the color was somewhat faded. Distilled Japanese sakes were improved by ir-radiation, but excess irradiation caused undesirable aldehyde odors. (OID)« less

  4. [PSYCHO PHYSIOLOGICAL MARKERS OF ACCELERATED AGING AMONG THOSE WORKING WITH OCCUPATIONAL HAZARDS].

    PubMed

    Bashkireva, A S; Kachan, Ye Yu; Kulapina, M E

    2015-01-01

    We assessed the significance of psycho physiological markers of accelerated aging of the function of attention using comparative analysis of two occupational groups in order to reveal how the working process affects mental work capacity. We revealed peculiarities of systemic structure of functions which determine mental work capacity depending on the age and length of service in lorry drivers. It was proved that decrease in the mnestic functions of lorry-drivers takes place 10-15 years earlier compared to the control group. Psycho physiological indices, reflecting the functioning of attention, decreased not only with aging but also with longer driving experience. Our results show that it is necessary to conduct further studies of psycho physiological markers of age-related decrease in short-term memory depending on the activities at work in order to prevent accelerated aging and achieve professional longevity.

  5. Towards Accelerated Aging Methodologies and Health Management of Power MOSFETs (Technical Brief)

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Patil, Nishad; Saha, Sankalita; Wysocki, Phil; Goebel, Kai

    2009-01-01

    Understanding aging mechanisms of electronic components is of extreme importance in the aerospace domain where they are part of numerous critical subsystems including avionics. In particular, power MOSFETs are of special interest as they are involved in high voltage switching circuits such as drivers for electrical motors. With increased use of electronics in aircraft control, it becomes more important to understand the degradation of these components in aircraft specific environments. In this paper, we present an accelerated aging methodology for power MOSFETs that subject the devices to indirect thermal overstress during high voltage switching. During this accelerated aging process, two major modes of failure were observed - latch-up and die attach degradation. In this paper we present the details of our aging methodology along with details of experiments and analysis of the results.

  6. Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging?

    PubMed

    Shalev, Idan; Belsky, Jay

    2016-05-01

    Two seemingly independent bodies of research suggest a two-hit model of accelerated aging, one highlighting early-life stress and the other reproduction. The first, informed by developmental models of early-life stress, highlights reduced longevity effects of early adversity on telomere erosion, whereas the second, informed by evolutionary theories of aging, highlights such effects with regard to reproductive cost (in females). The fact that both early-life adversity and reproductive effort are associated with shorter telomeres and increased oxidative stress raises the prospect, consistent with life-history theory, that these two theoretical frameworks currently informing much research are tapping into the same evolutionary-developmental process of increased senescence and reduced longevity. Here we propose a mechanistic view of a two-hit model of accelerated aging in human females through (a) early-life adversity and (b) early reproduction, via a process of telomere erosion, while highlighting mediating biological embedding mechanisms that might link these two developmental aging processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Accelerated DNA Methylation Age: Associations with PTSD and Neural Integrity

    PubMed Central

    Wolf, Erika J.; Logue, Mark W.; Hayes, Jasmeet P.; Sadeh, Naomi; Schichman, Steven A.; Stone, Annjanette; Salat, David H.; Milberg, William; McGlinchey, Regina; Miller, Mark W.

    2015-01-01

    Background Accumulating evidence suggests that post traumatic stress disorder (PTSD) may accelerate cellular aging and lead to premature morbidity and neurocognitive decline. Methods This study evaluated associations between PTSD and DNA methylation (DNAm) age using recently developed algorithms of cellular age by Horvath (2013) and Hannum et al. (2013). These estimates reflect accelerated aging when they exceed chronological age. We also examined if accelerated cellular age manifested in degraded neural integrity, indexed via diffusion tensor imaging. Results Among 281 male and female veterans of the conflicts in Iraq and Afghanistan, DNAm age was strongly related to chronological age (rs ~.88). Lifetime PTSD severity was associated with Hannum DNAm age estimates residualized for chronological age (β = .13, p= .032). Advanced DNAm age was associated with reduced integrity in the genu of the corpus callosum (β = −.17, p= .009) and indirectly linked to poorer working memory performance via this region (indirect β = − .05, p= .029). Horvath DNAm age estimates were not associated with PTSD or neural integrity. Conclusions Results provide novel support for PTSD-related accelerated aging in DNAm and extend the evidence base of known DNAm age correlates to the domains of neural integrity and cognition. PMID:26447678

  8. Traumatic stress and accelerated DNA methylation age: A meta-analysis.

    PubMed

    Wolf, Erika J; Maniates, Hannah; Nugent, Nicole; Maihofer, Adam X; Armstrong, Don; Ratanatharathorn, Andrew; Ashley-Koch, Allison E; Garrett, Melanie; Kimbrel, Nathan A; Lori, Adriana; Va Mid-Atlantic Mirecc Workgroup; Aiello, Allison E; Baker, Dewleen G; Beckham, Jean C; Boks, Marco P; Galea, Sandro; Geuze, Elbert; Hauser, Michael A; Kessler, Ronald C; Koenen, Karestan C; Miller, Mark W; Ressler, Kerry J; Risbrough, Victoria; Rutten, Bart P F; Stein, Murray B; Ursano, Robert J; Vermetten, Eric; Vinkers, Christiaan H; Uddin, Monica; Smith, Alicia K; Nievergelt, Caroline M; Logue, Mark W

    2018-06-01

    Recent studies examining the association between posttraumatic stress disorder (PTSD) and accelerated aging, as defined by DNA methylation-based estimates of cellular age that exceed chronological age, have yielded mixed results. We conducted a meta-analysis of trauma exposure and PTSD diagnosis and symptom severity in association with accelerated DNA methylation age using data from 9 cohorts contributing to the Psychiatric Genomics Consortium PTSD Epigenetics Workgroup (combined N = 2186). Associations between demographic and cellular variables and accelerated DNA methylation age were also examined, as was the moderating influence of demographic variables. Meta-analysis of regression coefficients from contributing cohorts revealed that childhood trauma exposure (when measured with the Childhood Trauma Questionnaire) and lifetime PTSD severity evidenced significant, albeit small, meta-analytic associations with accelerated DNA methylation age (ps = 0.028 and 0.016, respectively). Sex, CD4T cell proportions, and natural killer cell proportions were also significantly associated with accelerated DNA methylation age (all ps < 0.02). PTSD diagnosis and lifetime trauma exposure were not associated with advanced DNA methylation age. There was no evidence of moderation of the trauma or PTSD variables by demographic factors. Results suggest that traumatic stress is associated with advanced epigenetic age and raise the possibility that cells integral to immune system maintenance and responsivity play a role in this. This study highlights the need for additional research into the biological mechanisms linking traumatic stress to accelerated DNA methylation age and the importance of furthering our understanding of the neurobiological and health consequences of PTSD. Published by Elsevier Ltd.

  9. Accelerated optical polymer aging studies for LED luminaire applications

    NASA Astrophysics Data System (ADS)

    Estupiñán, Edgar; Wendling, Peter; Kostrun, Marijan; Garner, Richard

    2013-09-01

    There is a need in the lighting industry to design and implement accelerated aging methods that accurately simulate the aging process of LED luminaire components. In response to this need, we have built a flexible and reliable system to study the aging characteristics of optical polymer materials, and we have employed it to study a commercially available LED luminaire diffuser made of PMMA. The experimental system consists of a "Blue LED Emitter" and a working surface. Both the temperatures of the samples and the optical powers of the LEDs are appropriately characterized in the system. Several accelerated aging experiments are carried out at different temperatures and optical powers over a 90 hour period and the measured transmission values are used as inputs to a degradation model derived using plausibility arguments. This model seems capable of predicting the behavior of the material as a function of time, temperature and optical power. The model satisfactorily predicts the measured transmission values of diffusers aged in luminaires at two different times and thus can be used to make application recommendations for this material. Specifically, at 35000 hours (the manufacturer's stated life of the luminaire) and at the typical operational temperature of the diffuser, the model predicts a transmission loss of only a few percent over the original transmission of the material at 450 nm, which renders this material suitable for this application.

  10. Accelerated epigenetic aging in Down syndrome

    PubMed Central

    Horvath, Steve; Garagnani, Paolo; Bacalini, Maria Giulia; Pirazzini, Chiara; Salvioli, Stefano; Gentilini, Davide; Di Blasio, Anna Maria; Giuliani, Cristina; Tung, Spencer; Vinters, Harry V; Franceschi, Claudio

    2015-01-01

    Down Syndrome (DS) entails an increased risk of many chronic diseases that are typically associated with older age. The clinical manifestations of accelerated aging suggest that trisomy 21 increases the biological age of tissues, but molecular evidence for this hypothesis has been sparse. Here, we utilize a quantitative molecular marker of aging (known as the epigenetic clock) to demonstrate that trisomy 21 significantly increases the age of blood and brain tissue (on average by 6.6 years, P = 7.0 × 10−14). PMID:25678027

  11. Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated aging

    NASA Astrophysics Data System (ADS)

    Vilar, G.; Fernández-Rosas, E.; Puntes, V.; Jamier, V.; Aubouy, L.; Vázquez-Campos, S.

    2013-04-01

    The incorporation of small amounts of nanoadditives in polymeric compounds can introduce new mechanical, physical, electrical, magnetic, thermal and/or optical properties. The properties of these advanced materials have enabled new applications in several industrial sectors (electronics, automotive, textile...). In particular, for the nanomaterials (NM) described in this work, multi-walled carbon nanotubes (MWCNT) and silicon dioxide nanoparticles (SiO2 NP), the following properties have been described: MWCNT act as nucleating agents in thermoplastics, and change viscosity, affecting dispersion, orientation, and therefore mechanical, thermal, and electrical properties; and SiO2 NP act as flame retardant and display improved electrical and mechanical properties. The work described here is focused on the evaluation of the migration and transformation of NM included in polymer nanocomposites (NC) during accelerated climatic ageing. To this aim, we generated polyamide 6 (PA6) NC with different degree of compatibility between the NM and the polymeric matrix. These NC were submitted to accelerated aging conditions to simulate outdoor conditions (simulation of the use phase of the polymeric NC). The NC contain as nanofillers MWCNT and SiO2 NP with different surface properties to influence the compatibility with the polymeric matrix. The generated NC were evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) with Energy-dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and differential scanning calorimetry (DSC) before and after the aging process, to monitor the compatibility of the NM with the matrix: dispersion within the matrix, migration during aging, and modification of the polymer properties. The dispersion of SiO2 NP in the NC depended on their compatibility with the matrix. However, independently of their compatibility with the matrix, SiO2 NP were aggregated at the end of the accelerated aging process. In addition

  12. BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder.

    PubMed

    Nenadić, Igor; Dietzek, Maren; Langbein, Kerstin; Sauer, Heinrich; Gaser, Christian

    2017-08-30

    BrainAGE (brain age gap estimation) is a novel morphometric parameter providing a univariate score derived from multivariate voxel-wise analyses. It uses a machine learning approach and can be used to analyse deviation from physiological developmental or aging-related trajectories. Using structural MRI data and BrainAGE quantification of acceleration or deceleration of in individual aging, we analysed data from 45 schizophrenia patients, 22 bipolar I disorder patients (mostly with previous psychotic symptoms / episodes), and 70 healthy controls. We found significantly higher BrainAGE scores in schizophrenia, but not bipolar disorder patients. Our findings indicate significantly accelerated brain structural aging in schizophrenia. This suggests, that despite the conceptualisation of schizophrenia as a neurodevelopmental disorder, there might be an additional progressive pathogenic component. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Accelerated aging: prediction of chemical stability of pharmaceuticals.

    PubMed

    Waterman, Kenneth C; Adami, Roger C

    2005-04-11

    Methods of rapidly and accurately assessing the chemical stability of pharmaceutical dosage forms are reviewed with respect to the major degradation mechanisms generally observed in pharmaceutical development. Methods are discussed, with the appropriate caveats, for accelerated aging of liquid and solid dosage forms, including small and large molecule active pharmaceutical ingredients. In particular, this review covers general thermal methods, as well as accelerated aging methods appropriate to oxidation, hydrolysis, reaction with reactive excipient impurities, photolysis and protein denaturation.

  14. Accelerated cognitive aging following severe traumatic brain injury: A review.

    PubMed

    Wood, Rodger Ll

    2017-01-01

    The primary objective of this review was to examine relevant clinical and experimental literatures for information on the long-term cognitive impact of serious traumatic brain injury (TBI) with regard to the process of cognitive aging. Online journal databases were queried for studies pertaining to cognitive aging in neurologically healthy populations, as well as the late cognitive effects of serious TBI. Additional studies were identified through searching bibliographies of related publications and using Google search engine. Problems of cognition exhibited by young adults after TBI resemble many cognitive weaknesses of attention deficit and poor working memory that are usually seen in an elderly population who have no neurological history. The current state of the literature provides support for the argument that TBI can result in diminished cognitive reserve which may accelerate the normal process of cognitive decline, leading to premature aging, potentially increasing the risk of dementia.

  15. Jupiter's Auroras Acceleration Processes

    NASA Image and Video Library

    2017-09-06

    This image, created with data from Juno's Ultraviolet Imaging Spectrometer (UVS), marks the path of Juno's readings of Jupiter's auroras, highlighting the electron measurements that show the discovery of the so-called discrete auroral acceleration processes indicated by the "inverted Vs" in the lower panel (Figure 1). This signature points to powerful magnetic-field-aligned electric potentials that accelerate electrons toward the atmosphere to energies that are far greater than what drive the most intense aurora at Earth. Scientists are looking into why the same processes are not the main factor in Jupiter's most powerful auroras. https://photojournal.jpl.nasa.gov/catalog/PIA21937

  16. Idh2 deficiency accelerates renal dysfunction in aged mice.

    PubMed

    Lee, Su Jeong; Cha, Hanvit; Lee, Seoyoon; Kim, Hyunjin; Ku, Hyeong Jun; Kim, Sung Hwan; Park, Jung Hyun; Lee, Jin Hyup; Park, Kwon Moo; Park, Jeen-Woo

    2017-11-04

    The free radical or oxidative stress theory of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species (ROS) that are produced as by-products of normal metabolic processes in mitochondria. The oxidative stress may arise as a result of either increased ROS production or decreased ability to detoxify ROS. The availability of the mitochondrial NADPH pool is critical for the maintenance of the mitochondrial antioxidant system. The major enzyme responsible for generating mitochondrial NADPH is mitochondrial NADP + -dependent isocitrate dehydrogenase (IDH2). Depletion of IDH2 in mice (idh2 -/- ) shortens life span and accelerates the degeneration of multiple age-sensitive traits, such as hair grayness, skin pathology, and eye pathology. Among the various internal organs tested in this study, IDH2 depletion-induced acceleration of senescence was uniquely observed in the kidney. Renal function and structure were greatly deteriorated in 24-month-old idh2 -/- mice compared with wild-type. In addition, disruption of redox status, which promotes oxidative damage and apoptosis, was more pronounced in idh2 -/- mice. These data support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice, and thus support the oxidative stress theory of aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.

    PubMed

    Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M

    2012-03-01

    Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants

    PubMed Central

    Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S.; Wentzell, Jill S.; Kretzschmar, Doris; Giebultowicz, Jadwiga M.

    2012-01-01

    Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per01) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni1), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni1 mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per01 sni1 flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per01 mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws1), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. PMID:22227001

  19. Modulation of the phenolic composition and colour of red wines subjected to accelerated ageing by controlling process variables.

    PubMed

    González-Sáiz, J M; Esteban-Díez, I; Rodríguez-Tecedor, S; Pérez-Del-Notario, N; Arenzana-Rámila, I; Pizarro, C

    2014-12-15

    The aim of the present work was to evaluate the effect of the main factors conditioning accelerated ageing processes (oxygen dose, chip dose, wood origin, toasting degree and maceration time) on the phenolic and chromatic profiles of red wines by using a multivariate strategy based on experimental design methodology. The results obtained revealed that the concentrations of monomeric anthocyanins and flavan-3-ols could be modified through the application of particular experimental conditions. This fact was particularly remarkable since changes in phenolic profile were closely linked to changes observed in chromatic parameters. The main strength of this study lies in the possibility of using its conclusions as a basis to make wines with specific colour properties based on quality criteria. To our knowledge, the influence of such a large number of alternative ageing parameters on wine phenolic composition and chromatic attributes has not been studied previously using a comprehensive experimental design methodology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Confocal Raman study of aging process in diabetes mellitus human voluntaries

    NASA Astrophysics Data System (ADS)

    Pereira, Liliane; Téllez Soto, Claudio Alberto; dos Santos, Laurita; Ali, Syed Mohammed; Fávero, Priscila Pereira; Martin, Airton A.

    2015-06-01

    Accumulation of AGEs [Advanced Glycation End - products] occurs slowly during the human aging process. However, its formation is accelerated in the presence of diabetes mellitus. In this paper, we perform a noninvasive analysis of glycation effect on human skin by in vivo confocal Raman spectroscopy. This technique uses a laser of 785 nm as excitation source and, by the inelastic scattering of light, it is possible to obtain information about the biochemical composition of the skin. Our aim in this work was to characterize the aging process resulting from the glycation process in a group of 10 Health Elderly Women (HEW) and 10 Diabetic Elderly Women (DEW). The Raman data were collected from the dermis at a depth of 70-130 microns. Through the theory of functional density (DFT) the bands positions of hydroxyproline, proline and AGEs (pentosidine and glucosepane) were calculated by using Gaussian 0.9 software. A molecular interpretation of changes in type I collagen was performed by the changes in the vibrational modes of the proline (P) and hydroxyproline (HP). The data analysis shows that the aging effects caused by glycation of proteins degrades type I collagen differently and leads to accelerated aging process.

  1. Acceleration of the aging process by oxygen

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Lunderen, P. R.; Bensch, K. G.

    1975-01-01

    Tissue changes induced by hyperoxia have been compared with those of normal aging. Results of investigations using male flies prompt conclusion that normal aging, radiation syndrome, and hyperoxic injury share at least one common feature--lipid peroxidation damage to all mambranes resulting in accumulation of age pigment.

  2. Accelerated aging, natural aging, and small punch testing of gamma-air sterilized polycarbonate urethane acetabular components.

    PubMed

    Kurtz, S M; Siskey, R; Reitman, M

    2010-05-01

    The objectives of this study were three-fold: (1) to determine the applicability of the small punch test to characterize Bionate 80A polycarbonate urethane (PCU) acetabular implants; (2) to evaluate the susceptibility of PCU acetabular implants to exhibit degradation of mechanical behavior following gamma irradiation in air and accelerated aging; and (3) to compare the oxidation of gamma-air sterilized PCU following accelerated aging and 5 years of natural shelf aging. In addition to attenuated total reflectance-Fourier transform infrared spectroscopy, we also adapted a miniature specimen mechanical test, the small punch test, for the deformable PCU cups. Accelerated aging was performed using ASTM F2003, a standard test that represents a severe oxidative challenge. The results of this study suggest that the small punch test is sufficiently sensitive and reproducible to discriminate slight differences in the large-deformation mechanical behavior of Bionate 80A following accelerated aging. The gamma-air sterilized PCU had a reduction of 9% in ultimate load after aging. Five years of shelf aging had little effect on the mechanical properties of the PCU. Overall, our findings suggest that the Bionate 80A material has greater oxidative stability than ultra-high molecular weight polyethylene following gamma irradiation in air and exposure to a severe oxidative challenge. (c) 2010 Wiley Periodicals, Inc.

  3. Sod2 haploinsufficiency does not accelerate aging of telomere dysfunctional mice

    PubMed Central

    Guachalla, Luis Miguel; Ju, Zhenyu; Koziel, Rafal; von Figura, Guido; Song, Zhangfa; Fusser, Markus; Epe, Bernd; Jansen-Dűrr, Pidder; Rudolph, K. Lenhard

    2009-01-01

    Telomere shortening represents a causal factor of cellular senescence. At the same time, several lines of evidence indicate a pivotal role of oxidative DNA damage for the aging process in vivo. A causal connection between the two observations was suggested by experiments showing accelerated telomere shorting under conditions of oxidative stress in cultured cells, but has never been studied in vivo. We therefore have analysed whether an increase in mitochondrial derived oxidative stress in response to heterozygous deletion of superoxide dismutase (Sod2+/-) would exacerbate aging phenotypes in telomere dysfunctional (mTerc-/-) mice. Heterozygous deletion of Sod2 resulted in reduced SOD2 protein levels and increased oxidative stress in aging telomere dysfunctional mice, but this did not lead to an increase in basal levels of oxidative nuclear DNA damage, an accumulation of nuclear DNA breaks, or an increased rate of telomere shortening in the mice. Moreover, heterozygous deletion of Sod2 did not accelerate the depletion of stem cells and the impairment in organ maintenance in aging mTerc-/- mice. In agreement with these observations, Sod2 haploinsufficiency did not lead to a further reduction in lifespan of mTerc-/- mice. Together, these results indicate that a decrease in SOD2-dependent antioxidant defence does not exacerbate aging in the context of telomere dysfunction. PMID:20195488

  4. Accelerated aging of concrete : a literature review

    DOT National Transportation Integrated Search

    2002-02-01

    This report provides a review of the literature on accelerated aging of concrete. It was undertaken, as part of a research project : on predicting the long-term environmental performance of Portland cement concrete (PCC) pavements containing coal fly...

  5. Accelerated aging of phenolic-bonded flakeboards

    Treesearch

    Andrew J. Baker; Robert H. Gillespie

    1978-01-01

    Specimens of phenolic-bonded flakeboard, vertical-grain southern pine and Douglas-fir, and marine-grade Douglas-fir plywood were exposed to four accelerated aging situations. These consisted of: 1) Multiple cycles of boiling and elevated-temperature drying, 2) multiple cycles of vacuum- pressure soaking and intermediate-temperature drying, 3) the six-cycle ASTM D-1037...

  6. Accelerated Post-Weld Natural Ageing in Ultrasonic Welding Aluminium 6111-T4 Automotive Sheet

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chun; Prangnell, Phil

    In contrast to previously published reports, it is shown that there is an observable HAZ when ultrasonic spot welding (USW) automotive alloys, like AA6111-T4, the severity of which depends on the welding energy. Immediately after welding, softening is seen relative to the T4 condition, but this is rapidly recovered by natural ageing, which masks the presence of a HAZ, and the weld strength eventually exceeds that of the parent material. This behaviour is caused by dissolution of the solute clusters/GPZs in the T4 sheet, due to the high weld temperatures (> 400 °C), combined with accelerated post-weld natural ageing to a more advanced state than in the parent material. Modelling has demonstrated that this accelerated natural ageing behaviour can be attributed to an excess vacancy concentration generated by the USW process.

  7. HIV-associated cellular senescence: A contributor to accelerated aging.

    PubMed

    Cohen, Justin; Torres, Claudio

    2017-07-01

    Due to the advent of antiretroviral therapy HIV is no longer a terminal disease and the HIV infected patients are becoming increasingly older. While this is a major success, with increasing age comes an increased risk for disease. The age-related comorbidities that HIV infected patients experience suggest that they suffer from accelerated aging. One possible contributor to this accelerated aging is cellular senescence, an age-associated response that can occur prematurely in response to stress, and that is emerging as a contributor to disease and aging. HIV patients experience several stressors such as the virus itself, antiretroviral drugs and to a lesser extent, substance abuse that can induce cellular senescence. This review summarizes the current knowledge of senescence induction in response to these stressors and their relation to the comorbidities in HIV patients. Cellular senescence may be a possible therapeutic target for these comorbidities. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice.

    PubMed

    Zhang, Yiqiang; Fischer, Kathleen E; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B

    2015-06-15

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality, leading some to suggest this condition represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers of function and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal, functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. Published by Elsevier Inc.

  9. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice

    PubMed Central

    Zhang, Yiqiang; Fischer, Kathleen E.; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B.

    2015-01-01

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality leading some to suggest this represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased in high fat-fed mice as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. PMID:25558793

  10. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  11. Surface degradation of polymer insulators under accelerated climatic aging in weather-ometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G.; McGrath, P.B.; Burns, C.W.

    1996-12-31

    Climatic aging experiments were conducted on two types of outdoor polymer insulators by using a programmable weather-ometer. The housing materials for the insulators were silicone rubber (SR) and ethylene propylene diene monomer (EPDM). The accelerated aging stresses were comprised of ultraviolet radiation, elevated temperature, temperature cycling, thermal shock and high humidity. Their effects on the insulator surface conditions and electrical performance wee examined through visual inspection and SEM studies, contact angle measurements, thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) analysis, and 50% impulse flashover voltage tests. The results showed a significant damage on the insulator surface caused by some ofmore » the imposed aging stresses. The EDS analysis suggested a photooxidation process that happened on the insulator surface during the aging period.« less

  12. Accelerated Aging of Lead-Free Propellant

    NASA Technical Reports Server (NTRS)

    Furrow, Keith W.; Jervey, David D.

    2000-01-01

    Following higher than expected 2-NDPA depletion rates in a lead-free doublebase formulation (RPD-422), an accelerated aging study was conducted to verify the depletion rates. A test plan was prepared to compare the aging characteristics of lead-free propellant and NOSIH-AA2. The study was also designed to determine which lead-free ballistic modifiers accelerated 2-NDPA depletion. The increased depletion rate occurred in propellants containing monobasic copper salicylate. Four lead-free propellants were then formulated to improved aging characteristics over previous lead-free propellant formulations. The new formulations reduced or replaced the monobasic copper salicylate. The new formulations had improved aging characteristics. Their burn rates, however, were unacceptable for use in a 2.75 inch rocket. To compare aging characteristics, stabilizer depletion rates of RPD-422, AA2, M28, and RLC 470/6A were measured or taken from the literature. The data were fit to a kinetic model. The model contained first and zero order terms which allowed the stabilizer concentration to go to zero. In the model, only the concentration of the primary stabilizer was considered. Derivatives beyond the first nitrated or nitroso derivative of 2-NPDA were not considered. The rate constants were fit to the Arrhenius equation and extrapolated to lower temperatures. The time to complete stabilizer depletion was estimated using the kinetic model. The four propellants were compared and the RPD-422 depleted faster at 45 C than both A22 and M28. These types of predictions depend on the validity of the model and on confidence in the Arrhenius relationship holding at lower temperatures. At 45 C, the zero order portion of the model dominates the depletion rate.

  13. Reproducing ten years of road ageing--accelerated carbonation and leaching of EAF steel slag.

    PubMed

    Suer, Pascal; Lindqvist, Jan-Erik; Arm, Maria; Frogner-Kockum, Paul

    2009-09-01

    Reuse of industrial aggregates is still hindered by concern for their long-term properties. This paper proposes a laboratory method for accelerated ageing of steel slag, to predict environmental and technical properties, starting from fresh slag. Ageing processes in a 10-year old asphalt road with steel slag of electric arc furnace (EAF) type in the subbase were identified by scanning electron microscopy (SEM) and leaching tests. Samples from the road centre and the pavement edge were compared with each other and with samples of fresh slag. It was found that slag from the pavement edge showed traces of carbonation and leaching processes, whereas the road centre material was nearly identical to fresh slag, in spite of an accessible particle structure. Batches of moisturized road centre material exposed to oxygen, nitrogen or carbon dioxide (CO2) were used for accelerated ageing. Time (7-14 days), temperature (20-40 degrees C) and initial slag moisture content (8-20%) were varied to achieve the carbonation (decrease in pH) and leaching that was observed in the pavement edge material. After ageing, water was added to assess leaching of metals and macroelements. 12% moisture, CO2 and seven days at 40 degrees C gave the lowest pH value. This also reproduced the observed ageing effect for Ca, Cu, Ba, Fe, Mn, Pb, Ca (decreased leaching) and for V, Si, and Al (increased leaching). However, ageing effects on SO4, DOC and Cr were not reproduced.

  14. Accelerated aging studies of UHMWPE. I. Effect of resin, processing, and radiation environment on resistance to mechanical degradation.

    PubMed

    Edidin, A A; Herr, M P; Villarraga, M L; Muth, J; Yau, S S; Kurtz, S M

    2002-08-01

    The resin and processing route have been identified as potential variables influencing the mechanical behavior, and hence the clinical performance, of ultra-high molecular weight polyethylene (UHMWPE) orthopedic components. Researchers have reported that components fabricated from 1900 resin may oxidize to a lesser extent than components fabricated from GUR resin during shelf aging after gamma sterilization in air. Conflicting reports on the oxidation resistance for 1900 raise the question of whether resin or manufacturing method, or an interaction between resin and manufacturing method, influences the mechanical behavior of UHMWPE. We conducted a series of accelerated aging studies (no aging, aging in oxygen or in nitrogen) to systematically examine the influence of resin (GUR or 1900), manufacturing method (bulk compression molding or extrusion), and sterilization method (none, in air, or in nitrogen) on the mechanical behavior of UHMWPE. The small punch testing technique was used to evaluate the mechanical behavior of the materials, and Fourier transform infrared spectroscopy was used to characterize the oxidation in selected samples. Our study showed that the sterilization environment, aging condition, and specimen location (surface or subsurface) significantly affected the mechanical behavior of UHMWPE. Each of the three polyethylenes evaluated seem to degrade according to a similar pathway after artificial aging in oxygen and gamma irradiation in air. The initial ability of the materials to exhibit post-yield strain hardening was significantly compromised by degradation. In general, there were only minor differences in the aging behavior of molded and extruded GUR 1050, whereas the molded 1900 material seemed to degrade slightly faster than either of the 1050 materials. Copyright 2002 Wiley Periodicals, Inc.

  15. Family-centered prevention ameliorates the longitudinal association between risky family processes and epigenetic aging.

    PubMed

    Brody, Gene H; Yu, Tianyi; Chen, Edith; Beach, Steven R H; Miller, Gregory E

    2016-05-01

    Research has suggested that 'risky' family processes have unforeseen negative consequences for health later in life. The purpose of this study was to further understanding of risky family environments and development of health vulnerabilities by (a) examining the likelihood that elevated levels of parental depressive symptoms when children are age 11 forecast accelerated epigenetic aging 9 years later at age 20; (b) determining whether participation in an efficacious family-centered prevention program focused on enhancing supportive parenting and strengthening family relationships will ameliorate this association; and (c) testing a moderation-mediation hypothesis that prevention-induced reductions in harsh parenting across adolescence will account for prevention effects in reducing accelerated epigenetic aging. In the rural southeastern United States, parents and 11-year-old children from 399 families participated in the Strong African American Families (SAAF) program or a control condition. Parents reported their own depressive symptoms when their children were 11, and both youths and parents reported youth exposure to harsh parenting at ages 11 and 16. Blood was drawn from youths at age 20 to measure accelerated epigenetic aging using a marker derived from the DNA methylation of cells. Elevated parental depressive symptoms forecast accelerated epigenetic aging among youths in the control condition, but not among SAAF participants. Moderated-mediation analyses confirmed that reductions in harsh parenting accounted for SAAF's protective effects on epigenetic aging. Subsequent exploratory analyses indicated that accelerated epigenetic aging forecast emotional distress among young adults in the control condition but not among those who participated in SAAF. This study is unique in using a randomized prevention trial to test hypotheses about the ways risky family processes contribute to accelerated epigenetic aging. The results suggest that developmentally

  16. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels.

    PubMed

    Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F; Eszes, Marika; Faull, Richard L M; Curtis, Maurice A; Waldvogel, Henry J; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V; Coppola, Giovanni; Yang, X William

    2016-07-01

    Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=-0.41, p=5.5×10-8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels.

  17. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels

    PubMed Central

    Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F.; Eszes, Marika; Faull, Richard L.M.; Curtis, Maurice A.; Waldvogel, Henry J.; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V.; Coppola, Giovanni; Yang, X. William

    2016-01-01

    Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=−0.41, p=5.5×10−8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels. PMID:27479945

  18. Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response.

    PubMed

    Osorio, Fernando G; Bárcena, Clea; Soria-Valles, Clara; Ramsay, Andrew J; de Carlos, Félix; Cobo, Juan; Fueyo, Antonio; Freije, José M P; López-Otín, Carlos

    2012-10-15

    Alterations in the architecture and dynamics of the nuclear lamina have a causal role in normal and accelerated aging through both cell-autonomous and systemic mechanisms. However, the precise nature of the molecular cues involved in this process remains incompletely defined. Here we report that the accumulation of prelamin A isoforms at the nuclear lamina triggers an ATM- and NEMO-dependent signaling pathway that leads to NF-κB activation and secretion of high levels of proinflammatory cytokines in two different mouse models of accelerated aging (Zmpste24(-/-) and Lmna(G609G/G609G) mice). Causal involvement of NF-κB in accelerated aging was demonstrated by the fact that both genetic and pharmacological inhibition of NF-κB signaling prevents age-associated features in these animal models, significantly extending their longevity. Our findings provide in vivo proof of principle for the feasibility of pharmacological modulation of the NF-κB pathway to slow down the progression of physiological and pathological aging.

  19. Bio-Spectroscopic Imaging Provides Evidence of Hippocampal Zn Deficiency and Decreased Lipid Unsaturation in an Accelerated Ageing Mouse Model.

    PubMed

    Fimognari, Nicholas; Hollings, Ashley; Lam, Virginie; Tidy, Rebecca J; Kewish, Cameron M; Albrecht, Matthew A; Takechi, Ryu; Mamo, John C L; Hackett, Mark J

    2018-06-14

    Western society is facing a health epidemic due to the increasing incidence of dementia in ageing populations, and there are still few effective diagnostic methods, minimal treatment options, and no cure. Ageing is the greatest risk factor for memory loss that occurs during the natural ageing process, as well as being the greatest risk factor for neurodegenerative disease such as Alzheimer's disease. Therefore, greater understanding of the biochemical pathways that drive a healthy ageing brain towards dementia (pathological ageing or Alzheimer's disease), is required to accelerate the development of improved diagnostics and therapies. Unfortunately, many animal models of dementia model chronic amyloid precursor protein over-expression, which although highly relevant to mechanisms of amyloidosis and familial Alzheimer's disease, does not model well dementia during the natural ageing process. A promising animal model reported to model mechanisms of accelerated natural ageing and memory impairments, is the senescence accelerated murine prone strain 8 (SAMP8), which has been adopted by many research group to study the biochemical transitions that occur during brain ageing. A limitation to traditional methods of biochemical characterisation is that many important biochemical and elemental markers (lipid saturation, lactate, transition metals) cannot be imaged at meso- or micro-spatial resolution. Therefore, in this investigation we report the first multi-modal biospectroscopic characterisation of the SAMP8 model, and have identified important biochemical and elemental alterations, and co-localisations, between 4 month old SAMP8 mice and the relevant control (SAMR1) mice. Specifically, we demonstrate direct evidence of altered metabolism and disturbed lipid homeostasis within corpus callosum white matter, in addition to localised hippocampal metal deficiencies, in the accelerated ageing phenotype. Such findings have important implication for future research aimed at

  20. Accelerated aging and stabilization of radiation-vulcanized EPDM rubber

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Abdel-Aziz, M. M.; Mofti, S.

    2000-03-01

    The effect of different antioxidants and their mixtures on the thermal aging and accelerated weathering of γ-radiation vulcanized EPDM rubber in presence of crosslinking coagent, was investigated. The compounds used were either a synergistic blend of phenolic and phosphite antioxidants, i.e. 1:4 Irganox 1076: Irgafos 168 or a blend of arylamine and quinoline type antioxidants, i.e. 1:1 IPPD: TMQ, at fixed concentration. Tinuvin 622 LD hindered amine light stabilized (HALS) was also used. The response was evaluated by the tensile strength and elongation at break for irradiated samples after thermal aging at 100°C for 28 days and accelerated weathering (Xenon test) up to 200 h.

  1. Is HIV a model of accelerated or accentuated aging?

    PubMed

    Pathai, Sophia; Bajillan, Hendren; Landay, Alan L; High, Kevin P

    2014-07-01

    Antiretroviral therapy has reduced the incidence of adverse events and early mortality in HIV-infected persons. Despite these benefits, important comorbidities that increase with age (eg, diabetes, cardiovascular disease, cancer, liver disease, and neurocognitive impairment) are more prevalent in HIV-infected persons than in HIV-uninfected persons at every age, and geriatric syndromes such as falls and frailty occur earlier in HIV-infected persons. This raises a critical research question: Does HIV accelerate aging through pathways and mechanisms common to the aging process or is HIV simply an additional risk factor for a wide number of chronic conditions, thus accentuating aging? Extensive literature review. The purpose of this review is to briefly outline the evidence that age-related clinical syndromes are exacerbated by HIV, examine the ways in which HIV is similar, and dissimilar from natural aging, and assess the validity of HIV as a model of premature aging. Specific biomarkers of aging are limited in HIV-infected hosts and impacted by antiretroviral therapy, and a high rate of modifiable life style confounders (eg, smoking, substance abuse, alcohol) and coinfections (eg, hepatitis) in HIV-infected participants. There is a need for validated biomarkers of aging in the context of HIV. Despite these differences, welldesigned studies of HIV-infected participants are likely to provide new opportunities to better understand the mechanisms that lead to aging and age-related diseases. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Effect of accelerated ageing and surface sealing on the permanent deformation of auto-polymerising soft linings.

    PubMed

    da Silva, Joaquim; Takahashi, Jessica; Nuňez, Juliana; Consani, Rafael; Mesquita, Marcelo

    2012-09-01

    To compare the effects of different ageing methods on the permanent deformation of two permanent soft liners. The materials selected were auto-polymerising acrylic resin and silicone-based reliners. Sealer coating was also evaluated. Sixty specimens of each reliner were manufactured (12.7 mm diameter and 19 mm length). Specimens were randomly distributed into 12 groups (n = 10) and submitted to one of the accelerated ageing processes. Permanent deformation tests were conducted with a mechanical device described within the American Dental Association specification number 18 with a compressive load of 750 gf applied for 30 s. All data were submitted for statistical analysis. Mann-Whitney test compared the effect of the surface sealer on each material and the permanent deformation of the materials in the same ageing group (p = 0.05). Kruskal-Wallis and Dunn tests compared all ageing groups of each material (p = 0.05). The silicone-based reliner presented a lower permanent deformation than the acrylic resin-based reliner, regardless of the ageing procedure. The surface sealer coating was effective only for the thermocycled silicone group and the accelerated ageing processes affected only the permanent deformation of the acrylic resin-based material. The silicone-based reliner presented superior elastic properties and the thermocycling was more effective in ageing the materials. © 2010 The Gerodontology Society and John Wiley & Sons A/S.

  3. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    DTIC Science & Technology

    2011-09-01

    possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to...possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to...suffer from two damage types: matrix micro-cracks and inter- laminar delamination. When subject to fatigue loading matrix micro-cracks develop in the

  4. Effect of accelerated aging on the viscoelastic properties of a medical grade silicone.

    PubMed

    Mahomed, Aziza; Hukins, David W L; Kukureka, Stephen N

    2015-01-01

    The viscoelastic properties of cylinders (diameter 5 mm, height 2.2 ± 0.2 mm) of Nagor silicone elastomer of medium hardness, were investigated before and after the specimens had undergone accelerated aging in saline solution at 70°C for 38, 76 and 114 days (to simulate aging at 37°C, for 1, 2 and 3 years, respectively). All sets of specimens were immersed in physiological saline solution at 37°C during testing and the properties were measured using dynamic mechanical analysis (DMA). A sinusoidal cyclic compression of 40 N ± 5 N was applied over a frequency range, f, of 0.02-25 Hz. Values of the storage, E', and loss, E″, moduli were found to depend on f; the dependence of E' or E″ on the logarithm (base 10) of f was represented by a second-order polynomial. After accelerated aging, the E' and E″ values did not increase significantly (p<0.05). Furthermore, scanning electron microscopy (SEM) showed that accelerated aging did not affect the surface morphology of silicone. Attenuated total reflectance Fourier transform infra-red spectroscopy (ATR-FTIR) showed that accelerated aging had a negligible effect on the surface chemical structures of the material. Differential scanning calorimetry (DSC) showed no changes to the bulk properties of silicone, following accelerated aging.

  5. Effect of accelerated aging on the cross-link density of medical grade silicones.

    PubMed

    Mahomed, Aziza; Pormehr, Negin Bagheri

    2016-11-25

    Four specimens of Nagor silicone of different hardness (soft, medium and hard) were swollen, until they reached equilibrium (i.e. constant mass) in five liquids at 25°C, before and after accelerated aging. For the specimens swollen before accelerated aging, the greatest swelling was obtained in methyl cyclohexane, while for the specimens swollen after accelerated aging, the greatest swelling was obtained in cyclohexane. The cross-link density, υ, was also calculated from the swelling measurements for all the specimens, before and after accelerated aging, using the Flory-Rehner equation. The softer silicones, which swelled the most, had lower υ values than harder silicones. The amount of swelling (measured in terms of ϕ) and υ varied significantly (p<0.05) in some cases, between the different silicone hardness and between different liquids. Furthermore, the cross-link density, υ, significantly (p<0.05) increased after accelerated aging in most liquids.Note: ϕ is defined as the volume fraction of polymer in its equilibrium swollen state. A probability value of statistical significance of 0.05 or 5% was selected, hence if a p value of less than 0.05 was obtained, the null hypothesis was rejected (i.e. significant if p<0.05).

  6. Accelerated White Matter Aging in Schizophrenia: Role of White Matter Blood Perfusion

    PubMed Central

    Chiappelli, Joshua; McMahon, Robert; Muellerklein, Florian; Wijtenburg, S. Andrea; White, Michael G.; Rowland, Laura M.; Hong, L. Elliot

    2014-01-01

    Elevated rate of age-related decline in white matter integrity, indexed by fractional anisotropy (FA) from diffusion tensor imaging, was reported in patients with schizophrenia. Its etiology is unknown. We hypothesized that a decline of blood perfusion to the white matter may underlie the accelerated age-related reduction in FA in schizophrenia. Resting white matter perfusion and FA were collected using pseudo-continuous arterial spin labeling and high-angular-resolution diffusion tensor imaging, respectively, in 50 schizophrenia patients and 70 controls (age=18-63 years). Main outcome measures were the diagnosis-by-age interaction on whole-brain white matter perfusion, and FA. Significant age-related decline in brain white matter perfusion and FA were present in both groups. Age-by-diagnosis interaction was significant for FA (p<0.001) but not white matter perfusion. Age-by-diagnosis interaction for FA values remained significant even after accounting for age-related decline in perfusion. Therefore, we replicated the finding of an increased rate of age-related white matter FA decline in schizophrenia, and observed a significant age-related decline in white matter blood perfusion, although the latter did not contribute to the accelerated age-related decline in FA. The results suggest that factors other than reduced perfusion account for the accelerated age-related decline in white matter integrity in schizophrenia. PMID:24680326

  7. Insights into accelerated aging of SSL luminaires

    NASA Astrophysics Data System (ADS)

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; Shepherd, Sarah; Yaga, Robert; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy

    2013-09-01

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6" downlights in environments of 85°C and 85% relative humidity (RH) and 75°C and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.

  8. Digital Signal Processing and Generation for a DC Current Transformer for Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorzetti, Silvia

    2013-01-01

    The thesis topic, digital signal processing and generation for a DC current transformer, focuses on the most fundamental beam diagnostics in the field of particle accelerators, the measurement of the beam intensity, or beam current. The technology of a DC current transformer (DCCT) is well known, and used in many areas, including particle accelerator beam instrumentation, as non-invasive (shunt-free) method to monitor the DC current in a conducting wire, or in our case, the current of charged particles travelling inside an evacuated metal pipe. So far, custom and commercial DCCTs are entirely based on analog technologies and signal processing, whichmore » makes them inflexible, sensitive to component aging, and difficult to maintain and calibrate.« less

  9. The potential of artificial aging for modelling of natural aging processes of ballpoint ink.

    PubMed

    Weyermann, Céline; Spengler, Bernhard

    2008-08-25

    Artificial aging has been used to reproduce natural aging processes in an accelerated pace. Questioned documents were exposed to light or high temperature in a well-defined manner in order to simulate an increased age. This may be used to study the aging processes or to date documents by reproducing their aging curve. Ink was studied especially because it is deposited on the paper when a document, such as a contract, is produced. Once on the paper, aging processes start through degradation of dyes, solvents drying and resins polymerisation. Modelling of dye's and solvent's aging was attempted. These processes, however, follow complex pathways, influenced by many factors which can be classified as three major groups: ink composition, paper type and storage conditions. The influence of these factors is such that different aging states can be obtained for an identical point in time. Storage conditions in particular are difficult to simulate, as they are dependent on environmental conditions (e.g. intensity and dose of light, temperature, air flow, humidity) and cannot be controlled in the natural aging of questioned documents. The problem therefore lies more in the variety of different conditions a questioned document might be exposed to during its natural aging, rather than in the simulation of such conditions in the laboratory. Nevertheless, a precise modelling of natural aging curves based on artificial aging curves is obtained when performed on the same paper and ink. A standard model for aging processes of ink on paper is therefore presented that is based on a fit of aging curves to a power law of solvent concentrations as a function of time. A mathematical transformation of artificial aging curves into modelled natural aging curves results in excellent overlap with data from real natural aging processes.

  10. Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression.

    PubMed

    Kochunov, Peter; Glahn, David C; Rowland, Laura M; Olvera, Rene L; Winkler, Anderson; Yang, Yi-Hong; Sampath, Hemalatha; Carpenter, Will T; Duggirala, Ravindranath; Curran, Joanne; Blangero, John; Hong, L Elliot

    2013-03-01

    Elevated rate of aging-related biological and functional decline, termed "accelerated aging," is reported in patients with schizophrenia (SCZ) and major depressive disorder (MDD). We used diffusion tensor imaging derived fractional anisotropy (FA) as a biomarker of aging-related decline in white matter (WM) integrity to test the hypotheses of accelerated aging in SCZ and MDD. The SCZ cohort comprised 58 SCZ patients and 60 controls (aged 20-60 years). The MDD cohort comprised 136 MDD patients and 351 controls (aged 20-79 years). The main outcome measures were the diagnosis-by-age interaction on whole-brain-averaged WM FA values and FA values from 12 major WM tracts. Diagnosis-by-age interaction for the whole-brain average FA was significant for the SCZ (p = .04) but not the MDD (p = .80) cohort. Diagnosis-by-age interaction was nominally significant (p<.05) for five WM tracts for SCZ and for none of the tracts in the MDD cohort. Tract-specific heterochronicity of the onset of age-related decline in SCZ demonstrated strong negative correlations with the age-of-peak myelination and the rates of age-related decline obtained from normative sample (r =-.61 and-.80, p<.05, respectively). No such trends existed for MDD cohort. Cerebral WM showed accelerated aging in SCZ but not in MDD, suggesting some difference in the pathophysiology underlying their WM aging changes. Tract-specific heterochronicity of WM development modulated presentation of accelerated aging in SCZ: WM tracts that matured later in life appeared more sensitive to the pathophysiology of SCZ and demonstrated more susceptibility to disorder-related accelerated decline in FA values with age. This trend was not observed in MDD cohort. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression

    PubMed Central

    Kochunov, P.; Glahn, D.C.; Rowland, L.M.; Olvera, R.L.; Winkler, A; Yang, Y.H.; Sampath, H.; Carpenter, W.T.; Dugarrila, R.; Curran, J.; Blangero, J.; Hong, L.E.

    2012-01-01

    Introduction Elevated rate of aging-related biological and functional decline, termed accelerated aging, is reported in patients with schizophrenia (SCZ) and major depressive disorder (MDD). We used diffusion tensor imaging (DTI) derived fractional anisotropy (FA) as biomarkers of aging-related decline in white matter (WM) integrity to test the hypotheses of accelerated aging in SCZ and MDD. Methods The SCZ cohort was composed of 58/60 SCZ patients/controls (age=20–60years). MDD cohort was composed of 136/351 MDD patients/controls (age=20–79years). Main outcome measures were the diagnosis-by-age interaction on whole-brain-averaged WM FA values and FA values from twelve major WM tracts. Results Diagnosis-by-age interaction for the whole-brain average FA was significant for the SCZ (p=0.04) but not in MDD cohort (p=0.80). Diagnosis-by-age interaction was nominally significant (p<0.05) for five WM tracts for SCZ and for none of the tracts in the MDD cohort. Tract-specific heterochronicity of the onset of age-related decline in SCZ demonstrated strong negative correlations with the age-of- peak myelination and the rates of age-related decline obtained from normative sample (r=−0.61 and −0.80, p<0.05, respectively). No such trends existed for MDD cohort. Conclusion Cerebral WM showed accelerated aging in SCZ but not in MDD, suggesting some difference in the pathophysiology underlying their WM aging changes. Tract-specific heterochronicity of WM development modulated presentation of accelerated aging in SCZ: white matter tracts that matured later in life appeared more sensitive to the pathophysiology of SCZ and demonstrated more susceptibility to disorder-related accelerated decline in FA values with age. This trend was not observed in MDD cohort. PMID:23200529

  12. Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response

    PubMed Central

    Osorio, Fernando G.; Bárcena, Clea; Soria-Valles, Clara; Ramsay, Andrew J.; de Carlos, Félix; Cobo, Juan; Fueyo, Antonio; Freije, José M.P.; López-Otín, Carlos

    2012-01-01

    Alterations in the architecture and dynamics of the nuclear lamina have a causal role in normal and accelerated aging through both cell-autonomous and systemic mechanisms. However, the precise nature of the molecular cues involved in this process remains incompletely defined. Here we report that the accumulation of prelamin A isoforms at the nuclear lamina triggers an ATM- and NEMO-dependent signaling pathway that leads to NF-κB activation and secretion of high levels of proinflammatory cytokines in two different mouse models of accelerated aging (Zmpste24−/− and LmnaG609G/G609G mice). Causal involvement of NF-κB in accelerated aging was demonstrated by the fact that both genetic and pharmacological inhibition of NF-κB signaling prevents age-associated features in these animal models, significantly extending their longevity. Our findings provide in vivo proof of principle for the feasibility of pharmacological modulation of the NF-κB pathway to slow down the progression of physiological and pathological aging. PMID:23019125

  13. Accelerated ageing and renal dysfunction links lower socioeconomic status and dietary phosphate intake.

    PubMed

    McClelland, Ruth; Christensen, Kelly; Mohammed, Suhaib; McGuinness, Dagmara; Cooney, Josephine; Bakshi, Andisheh; Demou, Evangelia; MacDonald, Ewan; Caslake, Muriel; Stenvinkel, Peter; Shiels, Paul G

    2016-05-01

    We have sought to explore the impact of dietary Pi intake on human age related health in the pSoBid cohort (n=666) to explain the disparity between health and deprivation status in this cohort. As hyperphosphataemia is a driver of accelerated ageing in rodent models of progeria we tested whether variation in Pi levels in man associate with measures of biological ageing and health. We observed significant relationships between serum Pi levels and markers of biological age (telomere length (p=0.040) and DNA methylation content (p=0.028), gender and chronological age (p=0.032). When analyses were adjusted for socio-economic status and nutritional factors, associations were observed between accelerated biological ageing (telomere length, genomic methylation content) and dietary derived Pi levels among the most deprived males, directly related to the frequency of red meat consumption. Accelerated ageing is associated with high serum Pi levels and frequency of red meat consumption. Our data provide evidence for a mechanistic link between high intake of Pi and age-related morbidities tied to socio-economic status.

  14. Evidence of accelerated aging among African Americans and its implications for mortality.

    PubMed

    Levine, M E; Crimmins, E M

    2014-10-01

    Blacks experience morbidity and mortality earlier in the life course compared to whites. Such premature declines in health may be indicative of an acceleration of the aging process. The current study uses data on 7644 black and white participants, ages 30 and above, from the third National Health and Nutrition Examination Survey, to compare the biological ages of blacks and whites as indicated from a combination of ten biomarkers and to determine if such differences in biological age relative to chronological age account for racial disparities in mortality. At a specified chronological age, blacks are approximately 3 years older biologically than whites. Differences in biological age between blacks and whites appear to increase up until ages 60-65 and then decline, presumably due to mortality selection. Finally, differences in biological age were found to completely account for higher levels of all-cause, cardiovascular and cancer mortality among blacks. Overall, these results suggest that being black is associated with significantly higher biological age at a given chronological age and that this is a pathway to early death both overall and from the major age-related diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Is Chronic Obstructive Pulmonary Disease an Accelerated Aging Disease?

    PubMed

    MacNee, William

    2016-12-01

    Aging is one of the most important risk factors for most chronic diseases. The worldwide increase in life expectancy has been accompanied by an increase in the prevalence of age-related diseases that result in significant morbidity and mortality and place an enormous burden on healthcare and resources. Aging is a progressive degeneration of the tissues that has a negative impact on the structure and function of vital organs. The lung ages, resulting in decreased function and reduced capacity to respond to environmental stresses and injury. Many of the changes that occur in the lungs with normal aging, such as decline in lung function, increased gas trapping, loss of lung elastic recoil, and enlargement of the distal air spaces, also are present in chronic obstructive pulmonary disease (COPD). The prevalence of COPD is two to three times higher in people over the age of 60 years than in younger age groups. Indeed, COPD has been considered a condition of accelerated lung aging. Several mechanisms associated with aging are present in the lungs of patients with COPD. Cell senescence is present in emphysematous lungs and is associated with shortened telomeres and decreased antiaging molecules, suggesting accelerated aging in the lungs of patients with COPD. Increasing age leads to elevated basal levels of inflammation and oxidative stress (inflammaging) and to increased immunosenescence associated with changes in both the innate and adaptive immune responses. These changes are similar to those that occur in COPD and may enhance the activity of the disease as well as increase susceptibility to exacerbations in patients with COPD. Understanding the mechanism of age-related changes in COPD may identify novel therapies for this condition.

  16. Insights into accelerated aging of SSL luminaires

    DOE PAGES

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; ...

    2013-09-30

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6” downlights in environments of 85oC and 85% relative humiditymore » (RH) and 75oC and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.« less

  17. Body Acceleration as Indicator for Walking Economy in an Ageing Population.

    PubMed

    Valenti, Giulio; Bonomi, Alberto G; Westerterp, Klaas R

    2015-01-01

    In adults, walking economy declines with increasing age and negatively influences walking speed. This study aims at detecting determinants of walking economy from body acceleration during walking in an ageing population. 35 healthy elderly (18 males, age 51 to 83 y, BMI 25.5±2.4 kg/m2) walked on a treadmill. Energy expenditure was measured with indirect calorimetry while body acceleration was sampled at 60Hz with a tri-axial accelerometer (GT3X+, ActiGraph), positioned on the lower back. Walking economy was measured as lowest energy needed to displace one kilogram of body mass for one meter while walking (WCostmin, J/m/kg). Gait features were extracted from the acceleration signal and included in a model to predict WCostmin. On average WCostmin was 2.43±0.42 J/m/kg and correlated significantly with gait rate (r2 = 0.21, p<0.01) and regularity along the frontal (anteroposterior) and lateral (mediolateral) axes (r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively). Together, the three variables explained 46% of the inter-subject variance (p<0.001) with a standard error of estimate of 0.30 J/m/kg. WCostmin and regularity along the frontal and lateral axes were related to age (WCostmin: r2 = 0.44, p<0.001; regularity: r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively frontal and lateral). The age associated decline in walking economy is induced by the adoption of an increased gait rate and by irregular body acceleration in the horizontal plane.

  18. Accelerated aging-related transcriptome changes in the female prefrontal cortex

    PubMed Central

    Yuan, Yuan; Chen, Yi-Ping Phoebe; Boyd-Kirkup, Jerome; Khaitovich, Philipp; Somel, Mehmet

    2012-01-01

    Human female life expectancy is higher than that of males. Intriguingly, it has been reported that women display faster rates of age-related cognitive decline and a higher prevalence of Alzheimer’s disease (AD). To assess the molecular bases of these contradictory trends, we analyzed differences in expression changes with age between adult males and females, in four brain regions. In the superior frontal gyrus (SFG), a part of the prefrontal cortex, we observed manifest differences between the two sexes in the timing of age-related changes, that is, sexual heterochrony. Intriguingly, age-related expression changes predominantly occurred earlier, or at a faster pace, in females compared to men. These changes included decreased energy production and neural function and up-regulation of the immune response, all major features of brain aging. Furthermore, we found that accelerated expression changes in the female SFG correlated with expression changes observed in AD, as well as stress effects in the frontal cortex. Accelerated aging-related changes in the female SFG transcriptome may provide a link between a higher stress exposure or sensitivity in women and the higher prevalence of AD. PMID:22783978

  19. Transient aerodynamic characteristics of vans during the accelerated overtaking process

    NASA Astrophysics Data System (ADS)

    Liu, Li-ning; Wang, Xing-shen; Du, Guang-sheng; Liu, Zheng-gang; Lei, Li

    2018-04-01

    This paper studies the influence of the accelerated overtaking process on the vehicles' transient aerodynamic characteristics, through 3-D numerical simulations with dynamic meshes and sliding interface technique. Numerical accuracy is verified by experimental results. The aerodynamic characteristics of vehicles in the uniform overtaking process and the accelerated overtaking process are compared. It is shown that the speed variation of the overtaking van would influence the aerodynamic characteristics of the two vans, with greater influence on the overtaken van than on the overtaking van. The simulations of three different accelerated overtaking processes show that the greater the acceleration of the overtaking van, the larger the aerodynamic coefficients of the overtaken van. When the acceleration of the overtaking van increases by 1 m/s2, the maximum drag force, side force and yawing moment coefficients of the overtaken van all increase by more than 6%, to seriously affect the power performance and the stability of the vehicles. The analysis of the pressure fields under different accelerated conditions reveals the cause of variations of the aerodynamic characteristics of vehicles.

  20. DNA methylation age is not accelerated in brain or blood of subjects with schizophrenia.

    PubMed

    McKinney, Brandon C; Lin, Huang; Ding, Ying; Lewis, David A; Sweet, Robert A

    2017-10-05

    Individuals with schizophrenia (SZ) exhibit multiple premature age-related phenotypes and die ~20years prematurely. The accelerated aging hypothesis of SZ has been advanced to explain these observations, it posits that SZ-associated factors accelerate the progressive biological changes associated with normal aging. Testing the hypothesis has been limited by the absence of robust, meaningful, and multi-tissue measures of biological age. Recently, a method was described in which DNA methylation (DNAm) levels at 353 genomic sites are used to produce "DNAm age", an estimate of biological age with advantages over existing measures. We used this method and 3 publicly-available DNAm datasets, 1 from brain and 2 from blood, to test the hypothesis. The brain dataset was composed of data from the dorsolateral prefrontal cortex of 232 non-psychiatric control (NPC) and 195 SZ subjects. Blood dataset #1 was composed of data from whole blood of 304 NPC and 332 SZ subjects, and blood dataset #2 was composed of data from whole blood of 405 NPC and 260 SZ subjects. DNAm age and chronological age correlated strongly (r=0.92-0.95, p<0.0001) in both NPC and SZ subjects in all 3 datasets. DNAm age acceleration did not differ between NPC and SZ subjects in the brain dataset (t=0.52, p=0.60), blood dataset #1 (t=1.51, p=0.13), or blood dataset #2 (t=0.93, p=0.35). Consistent with our previous findings from a smaller study of postmortem brains, our findings suggest there is no acceleration of brain or blood aging in SZ and, thus, do not support the accelerated aging hypothesis of SZ. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. In vitro cytotoxicity of maxillofacial silicone elastomers: effect of accelerated aging.

    PubMed

    Bal, Bilge Turhan; Yilmaz, Handan; Aydin, Cemal; Karakoca, Seçil; Yilmaz, Sükran

    2009-04-01

    The purpose of this in vitro study was to evaluate the cytotoxicity of three maxillofacial silicone elastomers at 24, 48, and 72 h on L-929 cells and to determine the effect of accelerated aging on the cytotoxicity of these silicone elastomers. Disc-shaped test samples of maxillofacial silicone elastomers (Cosmesil, Episil, Multisil) were fabricated according to manufacturers' instructions under aseptic conditions. Samples were then divided into three groups: (1) not aged; (2) aged for 150 h with an accelerated weathering tester; and (3) aged for 300 h. Then the samples were placed in Dulbecco's Modified Eagle Medium/Ham's F12 (DMEM/F12) for 24, 48, and 72 h. After the incubation periods, cytotoxicity of the extracts to cultured fibroblasts (L-929) was measured by MTT assay. The degree of cytotoxicity of each sample was determined according to the reference value represented by the cells with a control (culture without sample). Statistical significance was determined by repeated measurement ANOVA (p < 0.01) followed by Duncan's test (p < 0.05). All test materials in each group demonstrated high survival rates in MTT assay (Episil; 93.84%, Multisil; 88.30%, Cosmesil; 87.50%, respectively); however, in all groups, Episil material demonstrated significantly higher cell survival rate after each of the experimental incubation periods (p < 0.05). Accelerated aging for 150 and 300 h had no significant effect on the biocompatibility of maxillofacial silicone elastomers tested (p > 0.05).

  2. Accelerated aging effects on surface hardness and roughness of lingual retainer adhesives.

    PubMed

    Ramoglu, Sabri Ilhan; Usumez, Serdar; Buyukyilmaz, Tamer

    2008-01-01

    To test the null hypothesis that accelerated aging has no effect on the surface microhardness and roughness of two light-cured lingual retainer adhesives. Ten samples of light-cured materials, Transbond Lingual Retainer (3M Unitek) and Light Cure Retainer (Reliance) were cured with a halogen light for 40 seconds. Vickers hardness and surface roughness were measured before and after accelerated aging of 300 hours in a weathering tester. Differences between mean values were analyzed for statistical significance using a t-test. The level of statistical significance was set at P < .05. The mean Vickers hardness of Transbond Lingual Retainer was 62.8 +/- 3.5 and 79.6 +/- 4.9 before and after aging, respectively. The mean Vickers hardness of Light Cure Retainer was 40.3 +/- 2.6 and 58.3 +/- 4.3 before and after aging, respectively. Differences in both groups were statistically significant (P < .001). Following aging, mean surface roughness was changed from 0.039 microm to 0.121 microm and from 0.021 microm to 0.031 microm for Transbond Lingual Retainer and Light Cure Retainer, respectively. The roughening of Transbond Lingual Retainer with aging was statistically significant (P < .05), while the change in the surface roughness of Light Cure Retainer was not (P > .05). Accelerated aging significantly increased the surface microhardness of both light-cured retainer adhesives tested. It also significantly increased the surface roughness of the Transbond Lingual Retainer.

  3. Solder joint aging characteristics from the MC2918 firing set of a B61 accelerated aging unit (AAU)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianco, P.T.; Rejent, J.A.

    1997-10-01

    The B61 accelerated aging unit (AAU) provided a unique opportunity to document the effects of a controlled, long-term thermal cycling environment on the aging of materials used in the device. This experiment was of particular interest to solder technologists because thermal cycling environments are a predominant source of solder joint failures in electronic assemblies. Observations of through hole solder joints in the MC2918 Firing Set from the B61 AAU did not reveal signs of catastrophic failure. Quantitative analyses of the microstructural metrics of intermetallic compound layer thickness and Pb-rich phase particle distributions indicated solder joint aging that was commensurate withmore » the accelerated aging environment. The effects of stress-enhanced coarsening of the Pb-rich phase were also documented.« less

  4. Accelerated aging of EPDM and butyl elastomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, M.H.

    1996-06-01

    This study was composed of three parts: a post cure study to optimize final properties of an ethylene-propylene-diene (EPDM) formulation, an accelerated aging study to compare the stress relaxation behavior of a butyl and an EPDM elastomer under compression, and a cursory evaluation of a new 70 Shore A EPDM. The optimum postcure for the EPDM was found to be 2 to 4 hours at 182{degrees}C in a vacuum. The EPDM was also shown to have superior aging characteristics compared to the butyl and is recommended for use instead of the butyl material. The physical properties for new 70 Shoremore » A EPDM are satisfactory, and the stress relaxation behavior was only slightly inferior to the other EPDM.« less

  5. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats

    PubMed Central

    Fernandez-Twinn, Denise S.; Chen, Jian Hua; Hargreaves, Iain P.; Neergheen, Viruna; Aiken, Catherine E.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT ‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’) in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by

  6. Volatile profile of Madeira wines submitted to traditional accelerated ageing.

    PubMed

    Pereira, Vanda; Cacho, Juan; Marques, José C

    2014-11-01

    The evolution of monovarietal fortified Madeira wines forced-aged by traditional thermal processing (estufagem) were studied in terms of volatiles. SPE extracts were analysed by GC-MS before and after heating at 45 °C for 3 months (standard) and at 70 °C for 1 month (overheating). One hundred and ninety volatile compounds were identified, 53 of which were only encountered in baked wines. Most chemical families increased after standard heating, especially furans and esters, up to 61 and 3-fold, respectively. On the contrary, alcohols, acetates and fatty acids decreased after heating. Varietal aromas, such as Malvasia's monoterpenic alcohols were not detected after baking. The accelerated ageing favoured the development of some volatiles previously reported as typical aromas of finest Madeira wines, particularly phenylacetaldeyde, β-damascenone and 5-ethoxymethylfurfural. Additionally, ethyl butyrate, ethyl 2-methylbutyrate, ethyl caproate, ethyl isovalerate, guaiacol, 5-hydroxymethylfurfural and γ-decalactone were also found as potential contributors to the global aroma of baked wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Accelerated Aging Test for Plastic Scintillator Gamma Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouzes, Richard T.

    Polyvinyl toluene (PVT) and polystyrene (PS), collectively referred to as “plastic scintillator,” are synthetic polymer materials used to detect gamma radiation, and are commonly used in instrumentation. Recent studies have revealed that plastic scintillator undergoes an environmentally related material degradation that adversely affects performance under certain conditions and histories. A significant decrease in gamma ray sensitivity has been seen in some detectors in systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no agingmore » effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. It has been demonstrated that exposure of plastic scintillator in an environmental chamber to 30 days of high temperature and humidity (90% relative humidity and 55°C) followed by a single cycle to cold temperature (-30°C) will produce severe fogging in all PVT samples. This thermal cycle will be referred to as the “Accelerated Aging Test.” This document describes the procedure for performing this Accelerated Aging Test.« less

  8. Evaluation of hardness and colour change of soft liners after accelerated ageing.

    PubMed

    Mancuso, Daniela Nardi; Goiato, Marcelo Coelho; Zuccolotti, Bruna Carolina Rossatti; Moreno, Amália; dos Santos, Daniela Micheline

    2009-07-01

    Soft liners have been developed to offer comfort to denture wearers. However, this comfort is compromised when there is a change in the properties of the material, causing colour change, solubility, absorption and hardening. These characteristics can compromise the longevity of soft liners. The aim of this in vitro study was to investigate the effect of ageing on both the hardness and colour change of two soft liners following accelerated ageing. Two denture liners, one resin based (Trusoft, Bosworth, Illinois, USA) and one silicone based (Ufi Gel P, Voco GMBH, Cuxhaven, Germany), were tested in this study for both hardness (using the Shore A scale) and colour change (using the CIE L*a*b* colour scale), initially and after 1008 hours (6 weeks) of accelerated ageing. Statistical analysis was performed using the unpaired t-test with the Welch correction. These indicated that both materials increased in hardness and underwent colour change after accelerated ageing. The initial hardness of Trusoft was far lower than that of Ufi Gel P (18.2 Shore A units vs 34.8 Shore A units). However, for Trusoft the changes for both hardness (from 18.2 to 52.1 Shore A units) and colour change (16.85 on the CIE L*a*b* colour scale) were greater than those for Ufi Gel P, for which hardness changed from 34.8 to 36.5 Shore A units and the colour change was 5.19 on the CIE L*a*b* colour scale. Ufi Gel P underwent less hardness and colour change after accelerated ageing than Trusoft. On the other hand, the use of Trusoft may be preferable in cases where initial softness is a major consideration, such as when relining an immediate denture after implant surgery.

  9. Age-related cognitive decline coincides with accelerated volume loss of the dorsal but not ventral hippocampus in mice.

    PubMed

    Reichel, J M; Bedenk, B T; Czisch, M; Wotjak, C T

    2017-01-01

    Even in the absence of neurodegenerative diseases, progressing age often coincides with cognitive decline and morphological changes. However, longitudinal studies that directly link these two processes are missing. In this proof-of-concept study we therefore performed repeated within-subject testing of healthy male R26R mice in a spatial learning task in combination with manganese-enhanced volumetric MRI analyses at the ages of 8, 16, and 24 months. We grouped the mice into good and poor performers (n = 6, each), based on their spatial learning abilities at the age of 24 months. Using this stratification, we failed to detect a priori volume differences, but observed a significant decrease in total hippocampal volume over time for both groups. Interestingly, this volume decrease was specific for the dorsal hippocampus and significantly accelerated in poor performers between 16 and 24 months of age. This is the first time that individual changes in hippocampal volume were traced alongside cognitive performance within the same subjects over 1½ years. Our study points to a causal link between volume loss of the dorsal hippocampus and cognitive impairments. In addition, it suggests accelerated degenerative processes rather than a priori volume differences as determining trajectories of age-related cognitive decline. Despite the relatively small sample sizes, the strong behavioral and moderate morphological alterations demonstrate the general feasibility of longitudinal studies of age-related decline in cognition and hippocampus integrity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Parasite infection accelerates age polyethism in young honey bees

    PubMed Central

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C.

    2016-01-01

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens. PMID:26912310

  11. Parasite infection accelerates age polyethism in young honey bees.

    PubMed

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-02-25

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.

  12. Accelerated Gray and White Matter Deterioration With Age in Schizophrenia.

    PubMed

    Cropley, Vanessa L; Klauser, Paul; Lenroot, Rhoshel K; Bruggemann, Jason; Sundram, Suresh; Bousman, Chad; Pereira, Avril; Di Biase, Maria A; Weickert, Thomas W; Weickert, Cynthia Shannon; Pantelis, Christos; Zalesky, Andrew

    2017-03-01

    Although brain changes in schizophrenia have been proposed to mirror those found with advancing age, the trajectory of gray matter and white matter changes during the disease course remains unclear. The authors sought to measure whether these changes in individuals with schizophrenia remain stable, are accelerated, or are diminished with age. Gray matter volume and fractional anisotropy were mapped in 326 individuals diagnosed with schizophrenia or schizoaffective disorder and in 197 healthy comparison subjects aged 20-65 years. Polynomial regression was used to model the influence of age on gray matter volume and fractional anisotropy at a whole-brain and voxel level. Between-group differences in gray matter volume and fractional anisotropy were regionally localized across the lifespan using permutation testing and cluster-based inference. Significant loss of gray matter volume was evident in schizophrenia, progressively worsening with age to a maximal loss of 8% in the seventh decade of life. The inferred rate of gray matter volume loss was significantly accelerated in schizophrenia up to middle age and plateaued thereafter. In contrast, significant reductions in fractional anisotropy emerged in schizophrenia only after age 35, and the rate of fractional anisotropy deterioration with age was constant and best modeled with a straight line. The slope of this line was 60% steeper in schizophrenia relative to comparison subjects, indicating a significantly faster rate of white matter deterioration with age. The rates of reduction of gray matter volume and fractional anisotropy were significantly faster in males than in females, but an interaction between sex and diagnosis was not evident. The findings suggest that schizophrenia is characterized by an initial, rapid rate of gray matter loss that slows in middle life, followed by the emergence of a deficit in white matter that progressively worsens with age at a constant rate.

  13. Detection of a novel, integrative aging process suggests complex physiological integration.

    PubMed

    Cohen, Alan A; Milot, Emmanuel; Li, Qing; Bergeron, Patrick; Poirier, Roxane; Dusseault-Bélanger, Francis; Fülöp, Tamàs; Leroux, Maxime; Legault, Véronique; Metter, E Jeffrey; Fried, Linda P; Ferrucci, Luigi

    2015-01-01

    Many studies of aging examine biomarkers one at a time, but complex systems theory and network theory suggest that interpretations of individual markers may be context-dependent. Here, we attempted to detect underlying processes governing the levels of many biomarkers simultaneously by applying principal components analysis to 43 common clinical biomarkers measured longitudinally in 3694 humans from three longitudinal cohort studies on two continents (Women's Health and Aging I & II, InCHIANTI, and the Baltimore Longitudinal Study on Aging). The first axis was associated with anemia, inflammation, and low levels of calcium and albumin. The axis structure was precisely reproduced in all three populations and in all demographic sub-populations (by sex, race, etc.); we call the process represented by the axis "integrated albunemia." Integrated albunemia increases and accelerates with age in all populations, and predicts mortality and frailty--but not chronic disease--even after controlling for age. This suggests a role in the aging process, though causality is not yet clear. Integrated albunemia behaves more stably across populations than its component biomarkers, and thus appears to represent a higher-order physiological process emerging from the structure of underlying regulatory networks. If this is correct, detection of this process has substantial implications for physiological organization more generally.

  14. A Model-based Prognostics Methodology for Electrolytic Capacitors Based on Electrical Overstress Accelerated Aging

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Kulkarni, Chetan; Biswas, Gautam; Saha, Sankalita; Goebel, Kai

    2011-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  15. Accelerated aging in schizophrenia patients: the potential role of oxidative stress.

    PubMed

    Okusaga, Olaoluwa O

    2014-08-01

    Several lines of evidence suggest that schizophrenia, a severe mental illness characterized by delusions, hallucinations and thought disorder is associated with accelerated aging. The free radical (oxidative stress) theory of aging assumes that aging occurs as a result of damage to cell constituents and connective tissues by free radicals arising from oxygen-associated reactions. Schizophrenia has been associated with oxidative stress and chronic inflammation, both of which also appear to reciprocally induce each other in a positive feedback manner. The buildup of damaged macromolecules due to increased oxidative stress and failure of protein repair and maintenance systems is an indicator of aging both at the cellular and organismal level. When compared with age-matched healthy controls, schizophrenia patients have higher levels of markers of oxidative cellular damage such as protein carbonyls, products of lipid peroxidation and DNA hydroxylation. Potential confounders such as antipsychotic medication, smoking, socio-economic status and unhealthy lifestyle make it impossible to solely attribute the earlier onset of aging-related changes or oxidative stress to having a diagnosis of schizophrenia. Regardless of whether oxidative stress can be attributed solely to a diagnosis of schizophrenia or whether it is due to other factors associated with schizophrenia, the available evidence is in support of increased oxidative stress-induced cellular damage of macromolecules which may play a role in the phenomenon of accelerated aging presumed to be associated with schizophrenia.

  16. Graphics Processing Unit Acceleration of Gyrokinetic Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Hause, Benjamin; Parker, Scott

    2012-10-01

    We find a substantial increase in on-node performance using Graphics Processing Unit (GPU) acceleration in gyrokinetic delta-f particle-in-cell simulation. Optimization is performed on a two-dimensional slab gyrokinetic particle simulation using the Portland Group Fortran compiler with the GPU accelerator compiler directives. We have implemented the GPU acceleration on a Core I7 gaming PC with a NVIDIA GTX 580 GPU. We find comparable, or better, acceleration relative to the NERSC DIRAC cluster with the NVIDIA Tesla C2050 computing processor. The Tesla C 2050 is about 2.6 times more expensive than the GTX 580 gaming GPU. Optimization strategies and comparisons between DIRAC and the gaming PC will be presented. We will also discuss progress on optimizing the comprehensive three dimensional general geometry GEM code.

  17. Correlation between mechanical and chemical degradation after outdoor and accelerated laboratory aging for multilayer photovoltaic backsheets

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Chi; Lyu, Yadong; Yu, Li-Chieh; Gu, Xiaohong

    2016-09-01

    Channel cracking fragmentation testing and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were utilized to study mechanical and chemical degradation of a multilayered backsheet after outdoor and accelerated laboratory aging. A model sample of commercial PPE backsheet, namely polyethylene terephthalate/polyethylene terephthalate/ethylene vinyl acetate (PET/PET/EVA) was investigated. Outdoor aging was performed in Gaithersburg, Maryland, USA for up to 510 days, and complementary accelerated laboratory aging was conducted on the NIST (National Institute of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure). Fracture energy, mode I stress intensity factor and film strength were analyzed using an analytical model based on channel cracking fragmentation testing results. The correlation between mechanical and chemical degradation was discussed for both outdoor and accelerated laboratory aging. The results of this work provide preliminary understanding on failure mechanism of backsheets after weathering, laying the groundwork for linking outdoor and indoor accelerated laboratory testing for multilayer photovoltaic backsheets.

  18. US Particle Accelerators at Age 50.

    ERIC Educational Resources Information Center

    Wilson, R. R.

    1981-01-01

    Reviews the development of accelerators over the past 50 years. Topics include: types of accelerators, including cyclotrons; sociology of accelerators (motivation, financing, construction, and use); impact of war; national laboratories; funding; applications; future projects; foreign projects; and international collaborations. (JN)

  19. A General Accelerated Degradation Model Based on the Wiener Process.

    PubMed

    Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning

    2016-12-06

    Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses.

  20. A General Accelerated Degradation Model Based on the Wiener Process

    PubMed Central

    Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning

    2016-01-01

    Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses. PMID:28774107

  1. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling.

    PubMed

    Zannas, Anthony S; Arloth, Janine; Carrillo-Roa, Tania; Iurato, Stella; Röh, Simone; Ressler, Kerry J; Nemeroff, Charles B; Smith, Alicia K; Bradley, Bekh; Heim, Christine; Menke, Andreas; Lange, Jennifer F; Brückl, Tanja; Ising, Marcus; Wray, Naomi R; Erhardt, Angelika; Binder, Elisabeth B; Mehta, Divya

    2015-12-17

    Chronic psychological stress is associated with accelerated aging and increased risk for aging-related diseases, but the underlying molecular mechanisms are unclear. We examined the effect of lifetime stressors on a DNA methylation-based age predictor, epigenetic clock. After controlling for blood cell-type composition and lifestyle parameters, cumulative lifetime stress, but not childhood maltreatment or current stress alone, predicted accelerated epigenetic aging in an urban, African American cohort (n = 392). This effect was primarily driven by personal life stressors, was more pronounced with advancing age, and was blunted in individuals with higher childhood abuse exposure. Hypothesizing that these epigenetic effects could be mediated by glucocorticoid signaling, we found that a high number (n = 85) of epigenetic clock CpG sites were located within glucocorticoid response elements. We further examined the functional effects of glucocorticoids on epigenetic clock CpGs in an independent sample with genome-wide DNA methylation (n = 124) and gene expression data (n = 297) before and after exposure to the glucocorticoid receptor agonist dexamethasone. Dexamethasone induced dynamic changes in methylation in 31.2 % (110/353) of these CpGs and transcription in 81.7 % (139/170) of genes neighboring epigenetic clock CpGs. Disease enrichment analysis of these dexamethasone-regulated genes showed enriched association for aging-related diseases, including coronary artery disease, arteriosclerosis, and leukemias. Cumulative lifetime stress may accelerate epigenetic aging, an effect that could be driven by glucocorticoid-induced epigenetic changes. These findings contribute to our understanding of mechanisms linking chronic stress with accelerated aging and heightened disease risk.

  2. Application of ultrasound to improve lees ageing processes in red wines.

    PubMed

    Del Fresno, Juan Manuel; Loira, Iris; Morata, Antonio; González, Carmen; Suárez-Lepe, Jose Antonio; Cuerda, Rafael

    2018-09-30

    Ageing on lees (AOL) is a technique that increases volatile compounds, promotes colour stability, improves mouthfeel and reduces astringency in red wines. The main drawback is that it is a slow process. Several months are necessary to obtain perceptible effects in wines. Different authors have studied the application of new techniques to accelerate the AOL process. Ultrasound (US) has been used to improve different food industry processes; it could be interesting to accelerate the yeast autolysis during AOL. This work evaluates the use of the US technique together with AOL and oak chips for this purpose studying the effects of different oenological parameters of red wines. The results obtained indicate an increase of polysaccharides content when US is applied in wine AOL. In addition, total polyphenol index (TPI) and volatile acidity were not affected. However, this treatment increases the dissolved oxygen affecting the volatile compounds and total anthocyanins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The acceleration of spoken-word processing in children's native-language acquisition: an ERP cohort study.

    PubMed

    Ojima, Shiro; Matsuba-Kurita, Hiroko; Nakamura, Naoko; Hagiwara, Hiroko

    2011-04-01

    Healthy adults can identify spoken words at a remarkable speed, by incrementally analyzing word-onset information. It is currently unknown how this adult-level speed of spoken-word processing emerges during children's native-language acquisition. In a picture-word mismatch paradigm, we manipulated the semantic congruency between picture contexts and spoken words, and recorded event-related potential (ERP) responses to the words. Previous similar studies focused on the N400 response, but we focused instead on the onsets of semantic congruency effects (N200 or Phonological Mismatch Negativity), which contain critical information for incremental spoken-word processing. We analyzed ERPs obtained longitudinally from two age cohorts of 40 primary-school children (total n=80) in a 3-year period. Children first tested at 7 years of age showed earlier onsets of congruency effects (by approximately 70ms) when tested 2 years later (i.e., at age 9). Children first tested at 9 years of age did not show such shortening of onset latencies 2 years later (i.e., at age 11). Overall, children's onset latencies at age 9 appeared similar to those of adults. These data challenge the previous hypothesis that word processing is well established at age 7. Instead they support the view that the acceleration of spoken-word processing continues beyond age 7. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Aging accelerates memory extinction and impairs memory restoration in Drosophila.

    PubMed

    Chen, Nannan; Guo, Aike; Li, Yan

    2015-05-15

    Age-related memory impairment (AMI) is a phenomenon observed from invertebrates to human. Memory extinction is proposed to be an active inhibitory modification of memory, however, whether extinction is affected in aging animals remains to be elucidated. Employing a modified paradigm for studying memory extinction in fruit flies, we found that only the stable, but not the labile memory component was suppressed by extinction, thus effectively resulting in higher memory loss in aging flies. Strikingly, young flies were able to fully restore the stable memory component 3 h post extinction, while aging flies failed to do so. In conclusion, our findings reveal that both accelerated extinction and impaired restoration contribute to memory impairment in aging animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. GPU-Accelerated Molecular Modeling Coming Of Age

    PubMed Central

    Stone, John E.; Hardy, David J.; Ufimtsev, Ivan S.

    2010-01-01

    Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for visualization of molecular structures and animation of trajectories resulting from molecular dynamics simulations. Modern GPUs have evolved into fully programmable, massively parallel co-processors that can now be exploited to accelerate many scientific computations, typically providing about one order of magnitude speedup over CPU code and in special cases providing speedups of two orders of magnitude. This paper surveys the development of molecular modeling algorithms that leverage GPU computing, the advances already made and remaining issues to be resolved, and the continuing evolution of GPU technology that promises to become even more useful to molecular modeling. Hardware acceleration with commodity GPUs is expected to benefit the overall computational biology community by bringing teraflops performance to desktop workstations and in some cases potentially changing what were formerly batch-mode computational jobs into interactive tasks. PMID:20675161

  6. Chromatic stability of acrylic resins of artificial eyes submitted to accelerated aging and polishing.

    PubMed

    Goiato, Marcelo Coelho; Santos, Daniela Micheline dos; Souza, Josiene Firmino; Moreno, Amália; Pesqueira, Aldiéris Alves

    2010-12-01

    Esthetics and durability of materials used to fabricate artificial eyes has been an important issue since artificial eyes are essential to restore esthetics and function, protect the remaining tissues and help with patients' psychological therapy. However, these materials are submitted to degrading effects of environmental agents on the physical properties of the acrylic resin. This study assessed the color stability of acrylic resins used to fabricate sclera in three basic shades (N1, N2 and N3) when subjected to accelerated aging, mechanical and chemical polishing. Specimens of each resin were fabricated and submitted to mechanical and chemical polishing. Chromatic analysis was performed before and after accelerated aging through ultraviolet reflection spectrophotometry. All specimens revealed color alteration following polishing and accelerated aging. The resins presented statistically significant chromatic alteration (p<0.01) between the periods of 252 and 1008 h. Both polishing methods presented no significant difference between the values of color derivatives of resins.

  7. Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide

    PubMed Central

    Rocha, Magda; Mansur, Alexandra; Mansur, Herman

    2009-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important mechanical properties to extend the longevity of knee prostheses. Though accelerated in vitro protocols have been developed to test the relative oxidation resistance of various types of UHMWPE, its mechanism is not accurately understood yet. Thus, in the present study an accelerated ageing of UHMWPE in hydrogen peroxide solution was performed and relative oxidation was extensively characterized by Fourier Transformed Infrared Spectroscopy (FTIR) spectroscopy and the morphological changes were analyzed by Scanning Electron Microscopy (SEM). Different chemical groups of UHMWPE associated with the degradation reaction were monitored for over 120 days in order to evaluate the possible oxidation mechanism(s) which may have occurred. The results have provided strong evidence that the oxidation mechanism is rather complex, and two stages with their own particular first-order kinetics reaction patterns have been clearly identified. Furthermore, hydrogen peroxide has proven to be an efficient oxidative medium to accelerate ageing of UHMWPE.

  8. In-Storage Embedded Accelerator for Sparse Pattern Processing

    DTIC Science & Technology

    2016-08-13

    performance of RAM disk. Since this configuration offloads most of processing onto the FPGA, the host software consists of only two threads for...more. Fig. 13. Document Processed vs CPU Threads Note that BlueDBM efficiency comes from our in-store processing paradigm that uses the FPGA...In-Storage Embedded Accelerator for Sparse Pattern Processing Sang-Woo Jun*, Huy T. Nguyen#, Vijay Gadepally#*, and Arvind* #MIT Lincoln Laboratory

  9. Susceptibility of materials processing experiments to low-level accelerations

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1981-01-01

    The types of material processing experiments being considered for shuttle can be grouped into four categories: (1) contained solidification experiment; (2) quasicontainerless experiments; (3) containerless experiments; and (4) fluids experiments. Low level steady acceleration, compensated and uncompensated transient accelerations, and rotation induced flow factors that must be considered in the acceleration environment of a space vehicle whose importance depends on the type of experiment being performed. Some control of these factors may be exercised by the location and orientation of the experiment relative to shuttle and by the orbit vehicle attitude chosen for mission. The effects of the various residual accelerations can have serious consequence to the control of the experiment and must be factored into the design and operation of the apparatus.

  10. GPU-accelerated molecular modeling coming of age.

    PubMed

    Stone, John E; Hardy, David J; Ufimtsev, Ivan S; Schulten, Klaus

    2010-09-01

    Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for visualization of molecular structures and animation of trajectories resulting from molecular dynamics simulations. Modern GPUs have evolved into fully programmable, massively parallel co-processors that can now be exploited to accelerate many scientific computations, typically providing about one order of magnitude speedup over CPU code and in special cases providing speedups of two orders of magnitude. This paper surveys the development of molecular modeling algorithms that leverage GPU computing, the advances already made and remaining issues to be resolved, and the continuing evolution of GPU technology that promises to become even more useful to molecular modeling. Hardware acceleration with commodity GPUs is expected to benefit the overall computational biology community by bringing teraflops performance to desktop workstations and in some cases potentially changing what were formerly batch-mode computational jobs into interactive tasks. (c) 2010 Elsevier Inc. All rights reserved.

  11. Colour stability of temporary restorations with different thicknesses submitted to artificial accelerated aging.

    PubMed

    Silame, F D J; Tonani, R; Alandia-Roman, C C; Chinelatti, M; Panzeri, H; Pires-de-Souza, F C P

    2013-12-01

    This study evaluated the colour stability of temporary prosthetic restorations with different thicknesses submitted to artificial accelerated aging. The occlusal surfaces of 40 molars were grinded to obtain flat enamel surfaces. Twenty acrylic resin specimens [Polymethyl methacrylate (Duralay) and Bis-methyl acrylate (Luxatemp)] were made with two different thicknesses, 0.5 mm and 1.0 mm. Temporary restorations were fixed on enamel and CIE L*a*b* colour parameters of each specimen were assessed before and after artificial accelerated aging. All groups showed colour alterations above the clinically acceptable limit. Luxatemp showed the lowest colour alteration regardless its thickness and Duralay showed the greatest alteration with 0.5 mm.

  12. Radiative processes of uniformly accelerated entangled atoms

    NASA Astrophysics Data System (ADS)

    Menezes, G.; Svaiter, N. F.

    2016-05-01

    We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms traveling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that one of the maximally entangled antisymmetric Bell state is a decoherence-free state.

  13. Color change of composite resins subjected to accelerated artificial aging.

    PubMed

    Tornavoi, Denise Cremonezzi; Agnelli, José Augusto Marcondes; Panzeri, Heitor; Dos Reis, Andréa Cândido

    2013-01-01

    The aim of this study was to evaluate the influence of accelerated artificial aging (AAA) on the color change of composite resins used in dentistry. Three composite resins were evaluated: Two microhybrids and one hybrid of higher viscosity, with different amounts and sizes of filler particles, shades C2 and B2. A total of 54 specimens were obtained (18 for each composite resin), made of a Teflon matrix (15 mm in diameter and 2 mm in height). The color measurements were obtained with a Spectrophotometer, (PCB 6807 BYK Gardner) before and after AAA. Data were submitted to the Kolmogorov-Smirnov test (α >0.05), ANOVA and Tukey test (α <0.05). After statistical analysis, the color difference among composite resins with the same shades was analyzed. All composite resins showed unacceptable color changes after AAA (ΔE > 3). Considering the variable ∆E, it was observed that the color tone C2 was already statistically different for the microhybrid composite resin prior to AAA (P < 0.05) and in shade B2 for hybrid of higher viscosity and microhybrid with barium glass fluoride aluminum and silica dioxide (P < 0.01). After this process, a statistically significant difference was observed only for shade B2 between microhybrid composite resins (P < 0.01) and for hybrid of higher viscosity and microhybrid with barium glass fluoride aluminum and silica dioxide (P < 0.05). Regarding the color difference within a same composite resin group, before aging the composite resin hybrid of higher viscosity B2 showed the highest color variation rate and microhybrid with zirconium/silica C2 showed the lowest. All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2) and after (B2). It was also observed color difference within a group of the same composite resin and same hue.

  14. [Characteristics of the sympathoadrenal system response to psychoemotional stress under hypoxic conditions in aged people with physiological and accelerated aging of the respiratory system].

    PubMed

    Asanov, E O; Os'mak, Ie D; Kuz'mins'ka, L A

    2013-01-01

    The peculiarities of the response of the sympathoadrenal system to psychoemotional and hypoxic stress in healthy young people and in aged people with physiological and accelerated aging of respiratory system were studied. It was shown that in aging a more pronounced response of the sympathoadrenal system to psychoemotional stress. At the same time, elderly people with different types of aging of the respiratory system did not demonstrate a difference in the response of the sympathoadrenal system to psychoemotional stress. Unlike in young people, in aged people, combination of psychoemotional and hypoxic stresses resulted in further activation of the sympathoadrenal system. The reaction of the sympathoadrenal system was more expressed in elderly people with accelerated ageing of the respiratory system.

  15. Color Stability of CAD/CAM Fabricated Inlays after Accelerated Artificial Aging.

    PubMed

    Karaokutan, Isil; Yilmaz Savas, Tuba; Aykent, Filiz; Ozdere, Eda

    2016-08-01

    To investigate the influence of accelerated artificial aging on the color stability of three different inlay restorations produced with a CAD/CAM system. Thirty non-carious human mandibular molar teeth were used. The teeth were embedded in autopolymerizing acrylic resin blocks. Standard Class I inlay cavities were prepared, and the teeth were randomly divided into three groups (n = 10) to fabricate inlay restorations: (1) a feldspathic-ceramic group, (2) a resin nano-ceramic group, and (3) a leucite glass-ceramic group. Optical impressions were made with CEREC software, and the restorations were designed and then milled. The inlays were adhesively cemented with a dual-polymerizing resin cement and left in distilled water at room temperature for 1 week. Color measurements were performed with a spectrophotometer before and after accelerated aging in a weathering machine with a total energy of 150 kJ/m(2) . Changes in color (∆E, ∆L, ∆a, ∆b, ∆C) were determined using the CIE L*a*b* system. The results were assessed using a one-way ANOVA and Tukey's HSD test (p = 0.05). The color changes of the materials ranged from 2.1 to 9.29. The highest color change was seen in the resin nano-ceramic material. This change was not clinically acceptable (∆E > 5.5). No significant differences were found in the ∆L and ∆a values of the test groups. Color changes were observed in each evaluated material after accelerated aging. All CAD/CAM inlays became darker in appearance, more saturated, a little reddish, and more yellow. © 2015 by the American College of Prosthodontists.

  16. Emitting electron spectra and acceleration processes in the jet of PKS 0447-439

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Yan, Dahai; Dai, Benzhong; Zhang, Li

    2014-02-01

    We investigate the electron energy distributions (EEDs) and the corresponding acceleration processes in the jet of PKS 0447-439, and estimate its redshift through modeling its observed spectral energy distribution (SED) in the frame of a one-zone synchrotron-self Compton (SSC) model. Three EEDs formed in different acceleration scenarios are assumed: the power-law with exponential cut-off (PLC) EED (shock-acceleration scenario or the case of the EED approaching equilibrium in the stochastic-acceleration scenario), the log-parabolic (LP) EED (stochastic-acceleration scenario and the acceleration dominating), and the broken power-law (BPL) EED (no acceleration scenario). The corresponding fluxes of both synchrotron and SSC are then calculated. The model is applied to PKS 0447-439, and modeled SEDs are compared to the observed SED of this object by using the Markov Chain Monte Carlo method. The results show that the PLC model fails to fit the observed SED well, while the LP and BPL models give comparably good fits for the observed SED. The results indicate that it is possible that a stochastic acceleration process acts in the emitting region of PKS 0447-439 and the EED is far from equilibrium (acceleration dominating) or no acceleration process works (in the emitting region). The redshift of PKS 0447-439 is also estimated in our fitting: z = 0.16 ± 0.05 for the LP case and z = 0.17 ± 0.04 for BPL case.

  17. Accelerated aging of preservative-treated structural plywood

    Treesearch

    C. Adam Senalik; Robert J. Ross; Samuel L. Zelinka; Stan T. Lebow; Zhiyong Cai

    2017-01-01

    In this study, the changes in physical properties and preservative retention of high-grade plywood when subjected to artificial aging processes were examined. The plywood was 15/32-in.-thick panels manufactured from southern yellow pine A and C grades of veneer. The artificial aging processes consisted of three primary mechanisms of degradation: thermal degradation,...

  18. Secondary electron emission from plasma processed accelerating cavity grade niobium

    NASA Astrophysics Data System (ADS)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  19. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for highermore » energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were

  20. Mechanical properties experimental investigation of HTPB propellant after thermal accelerated aging

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohong; Sun, Chaoxiang; Zhang, Junfa; Xu, Jinsheng; Tan, Bingdong

    2017-04-01

    To get accurate aging mechanical properties of aged HTPB propellant, the thermal accelerated aging experiment method is utilized and the uniaxial tensile experiments were conducted to obtain the mechanical data of aged HTPB propellants, and the maximum tensile strength, σm, maximum tensile strain, ɛm, and the fracture tensile strain, ɛb, of HTPB propellant with different aging time and various aging temperatures,were obtained, using universal material testing machine. The experimental results show that the σm of HTPB propellant initially increases, subsequently decreases and finally increases with aging time. The ɛm and ɛb generally decrease with increasing aging time, what's more, the decrease rate of both ɛm and ɛb reduce with the aging time. What's more, the postcure effect and oxidation reaction occurred inside HTPB matrix, including the chain degradation reaction and oxidation-induced crosslinking, were discussed to explain the mechanical aging rule of HTPB propellant.

  1. How accelerated biological aging can affect solar reflective polymeric based building materials

    NASA Astrophysics Data System (ADS)

    Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.

    2017-11-01

    Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.

  2. Does cyclic stress and accelerated ageing influence the wear behavior of highly crosslinked polyethylene?

    PubMed

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-06-01

    First-generation (irradiated and remelted or annealed) and second-generation (irradiated and vitamin E blended or doped) highly crosslinked polyethylenes were introduced in the last decade to solve the problems of wear and osteolysis. In this study, the influence of the Vitamin-E addition on crosslinked polyethylene (XLPE_VE) was evaluated by comparing the in vitro wear behavior of crosslinked polyethylene (XLPE) versus Vitamin-E blended polyethylene XLPE and conventional ultra-high molecular weight polyethylene (STD_PE) acetabular cups, after accelerated ageing according to ASTM F2003-02 (70.0±0.1°C, pure oxygen at 5bar for 14 days). The test was performed using a hip joint simulator run for two millions cycles, under bovine calf serum as lubricant. Mass loss was found to decrease along the series XLPE_VE>STD_PE>XLPE, although no statistically significant differences were found between the mass losses of the three sets of cups. Micro-Raman spectroscopy was used to investigate at a molecular level the morphology changes induced by wear. The spectroscopic analyses showed that the accelerated ageing determined different wear mechanisms and molecular rearrangements during testing with regards to the changes in both the chain orientation and the distribution of the all-trans sequences within the orthorhombic, amorphous and third phases. The results of the present study showed that the addition of vitamin E was not effective to improve the gravimetric wear of PE after accelerated ageing. However, from a molecular point of view, the XLPE_VE acetabular cups tested after accelerated ageing appeared definitely less damaged than the STD_PE ones and comparable to XLPE samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Particle Acceleration and Heating Processes at the Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Lapenta, G.; Richard, R. L.; El-Alaoui, M.; Walker, R. J.; Schriver, D.

    2017-12-01

    It is well established that electrons and ions are accelerated and heated during magnetic reconnection at the dayside magnetopause. However, a detailed description of the actual physical mechanisms driving these processes and where they are operating is still incomplete. Many basic mechanisms are known to accelerate particles, including resonant wave-particle interactions as well as stochastic, Fermi, and betatron acceleration. In addition, acceleration and heating processes can occur over different scales. We have carried out kinetic simulations to investigate the mechanisms by which electrons and ions are accelerated and heated at the dayside magnetopause. The simulation model uses the results of global magnetohydrodynamic (MHD) simulations to set the initial state and the evolving boundary conditions of fully kinetic implicit particle-in-cell (iPic3D) simulations for different solar wind and interplanetary magnetic field conditions. This approach allows us to include large domains both in space and energy. In particular, some of these regional simulations include both the magnetopause and bow shock in the kinetic domain, encompassing range of particle energies from a few eV in the solar wind to keV in the magnetospheric boundary layer. We analyze the results of the iPic3D simulations by discussing wave spectra and particle velocity distribution functions observed in the different regions of the simulation domain, as well as using large-scale kinetic (LSK) computations to follow particles' time histories. We discuss the relevance of our results by comparing them with local observations by the MMS spacecraft.

  4. A novel approach on accelerated ageing towards reliability optimization of high concentration photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Tsanakas, John A.; Jaffre, Damien; Sicre, Mathieu; Elouamari, Rachid; Vossier, Alexis; de Salins, Jean-Edouard; Bechou, Laurent; Levrier, Bruno; Perona, Arnaud; Dollet, Alain

    2014-09-01

    This paper presents a preliminary study upon a novel approach proposed for highly accelerated ageing and reliability optimization of high concentrating photovoltaic (HCPV) cells and assemblies. The intended approach aims to overcome several limitations of some current accelerated ageing tests (AAT) adopted up today, proposing the use of an alternative experimental set-up for performing faster and more realistic thermal cycles, under real sun, without the involvement of environmental chamber. The study also includes specific characterization techniques, before and after each AAT sequence, which respectively provide the initial and final diagnosis on the condition of the tested sample. The acquired data from these diagnostic/characterization methods are then used as indices to determine both quantitatively and qualitatively the severity of degradation and, thus, the ageing level for each tested HCPV assembly or cell sample. Ultimate goal of such "initial diagnosis - AAT - final diagnosis" sequences is to provide the basis for a future work on the reliability analysis of the main degradation mechanisms and confident prediction of failure propagation in HCPV cells, by means of acceleration factor (AF) and mean-time-to-failure (MTTF) estimations.

  5. Molecular-level insights into aging processes of skin elastin.

    PubMed

    Mora Huertas, Angela C; Schmelzer, Christian E H; Hoehenwarter, Wolfgang; Heyroth, Frank; Heinz, Andrea

    2016-01-01

    Skin aging is characterized by different features including wrinkling, atrophy of the dermis and loss of elasticity associated with damage to the extracellular matrix protein elastin. The aim of this study was to investigate the aging process of skin elastin at the molecular level by evaluating the influence of intrinsic (chronological aging) and extrinsic factors (sun exposure) on the morphology and susceptibility of elastin towards enzymatic degradation. Elastin was isolated from biopsies derived from sun-protected or sun-exposed skin of differently aged individuals. The morphology of the elastin fibers was characterized by scanning electron microscopy. Mass spectrometric analysis and label-free quantification allowed identifying differences in the cleavage patterns of the elastin samples after enzymatic digestion. Principal component analysis and hierarchical cluster analysis were used to visualize differences between the samples and to determine the contribution of extrinsic and intrinsic aging to the proteolytic susceptibility of elastin. Moreover, the release of potentially bioactive peptides was studied. Skin aging is associated with the decomposition of elastin fibers, which is more pronounced in sun-exposed tissue. Marker peptides were identified, which showed an age-related increase or decrease in their abundances and provide insights into the progression of the aging process of elastin fibers. Strong age-related cleavage occurs in hydrophobic tropoelastin domains 18, 20, 24 and 26. Photoaging makes the N-terminal and central parts of the tropoelastin molecules more susceptible towards enzymatic cleavage and, hence, accelerates the age-related degradation of elastin. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. Deficiency in DNA damage response of enterocytes accelerates intestinal stem cell aging in Drosophila.

    PubMed

    Park, Joung-Sun; Jeon, Ho-Jun; Pyo, Jung-Hoon; Kim, Young-Shin; Yoo, Mi-Ae

    2018-03-07

    Stem cell dysfunction is closely linked to tissue and organismal aging and age-related diseases, and heavily influenced by the niche cells' environment. The DNA damage response (DDR) is a key pathway for tissue degeneration and organismal aging; however, the precise protective role of DDR in stem cell/niche aging is unclear. The Drosophila midgut is an excellent model to study the biology of stem cell/niche aging because of its easy genetic manipulation and its short lifespan. Here, we showed that deficiency of DDR in Drosophila enterocytes (ECs) accelerates intestinal stem cell (ISC) aging. We generated flies with knockdown of Mre11 , Rad50 , Nbs1 , ATM , ATR , Chk1 , and Chk2 , which decrease the DDR system in ECs. EC-specific DDR depletion induced EC death, accelerated the aging of ISCs, as evidenced by ISC hyperproliferation, DNA damage accumulation, and increased centrosome amplification, and affected the adult fly's survival. Our data indicated a distinct effect of DDR depletion in stem or niche cells on tissue-resident stem cell proliferation. Our findings provide evidence of the essential role of DDR in protecting EC against ISC aging, thus providing a better understanding of the molecular mechanisms of stem cell/niche aging.

  7. Assessment of surface hardness of acrylic resins submitted to accelerated artificial aging.

    PubMed

    Tornavoi, D C; Agnelli, J A M; Lepri, C P; Mazzetto, M O; Botelho, A L; Soares, R G; Dos Reis, A C

    2012-06-01

    The aim of this study was to assess the influence of accelerated artificial aging (AAA) on the surface hardness of acrylic resins. The following three commercial brands of acrylic resins were tested: Vipi Flash (autopolymerized resin), Vipi Wave (microwave heat-polymerized resin) and Vipi Cril (conventional heat-polymerized resin). To perform the tests, 21 test specimens (65x10x3 mm) were made, 7 for each resin. Three surface hardness readings were performed for each test specimen, before and after AAA, and the means were submitted to the following tests: Kolmogorov-Smirnov (P>0.05), Levene Statistic, Two-way ANOVA, Tukey Post Hoc (P<0.05) with the SPSS Statistical Software 17.0. The analysis of the factors showed significant differences in the hardness values (P<0.05). Before aging, the autopolymerized acrylic resin Vipi Flash showed lower hardness values when compared with the heat-polymerized resin Vipi Cril (P=0.001). After aging, the 3 materials showed similar performance when compared among them. The Vipi Cril was the only one affected by AAA and showed lower hardness values after this procedure (Pp=0.003). It may be concluded that accelerated artificial aging influenced surface hardness of heat-polymerized acrylic resin Vipi Cril.

  8. Macrophage Response to UHMWPE Submitted to Accelerated Ageing in Hydrogen Peroxide

    PubMed Central

    Rocha, Magda F.G.; Mansur, Alexandra A.P.; Martins, Camila P.S.; Barbosa-Stancioli, Edel F.; Mansur, Herman S.

    2010-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important properties to extend the longevity of knee prostheses. The present study investigated the accelerated ageing of UHMWPE in hydrogen peroxide highly oxidative chemical environment. The sliced samples of UHMWPE were oxidized in a hydrogen peroxide solution for 120 days with their total level of oxidation (Iox) characterized by Fourier Transformed Infrared Spectroscopy (FTIR). The potential inflammatory response, cell viability and biocompatibility of such oxidized UHMWPE systems were assessed by a novel biological in vitro assay based on the secretion of nitric oxide (NO) by activated murine macrophages with gamma interferon (IFN-γ) cytokine and lipopolysaccharide (LPS). Furthermore, macrophage morphologies in contact with UHMWPE oxidized surfaces were analyzed by cell spreading-adhesion procedure using scanning electron microscopy (SEM). The results have given significant evidence that the longer the period of accelerated aging of UHMWPE the higher was the macrophage inflammatory equivalent response based on NO secretion analysis. PMID:20721321

  9. Cardiac and Carotid Markers Link With Accelerated Brain Atrophy: The AGES-Reykjavik Study (Age, Gene/Environment Susceptibility-Reykjavik).

    PubMed

    Sabayan, Behnam; van Buchem, Mark A; Sigurdsson, Sigurdur; Zhang, Qian; Meirelles, Osorio; Harris, Tamara B; Gudnason, Vilmundur; Arai, Andrew E; Launer, Lenore J

    2016-11-01

    Pathologies in the heart-brain axis might, independently or in combination, accelerate the process of brain parenchymal loss. We aimed to investigate the association of serum N-terminal brain natriuretic peptide (NT-proBNP), as a marker of cardiac dysfunction, and carotid intima media thickness (CIMT), as a marker of carotid atherosclerosis burden, with structural brain changes. In the longitudinal population-based AGES-Reykjavik study (Age, Gene/Environment Susceptibility-Reykjavik), we included 2430 subjects (mean age, 74.6 years; 41.4% men) with baseline data on NT-proBNP and CITM (assessed by ultrasound imaging). Participants underwent a high-resolution brain magnetic resonance imaging at baseline and 5 years later to assess total brain (TBV), gray matter, and white matter volumes. Each unit higher log-transformed NT-proBNP was associated with 3.6 mL (95% confidence interval [CI], -6.0 to -1.1) decline in TBV and 3.5 mL (95% CI, -5.7 to -1.3) decline in gray matter volume. Likewise, each millimeter higher CIMT was associated with 10.8 mL (95% CI, -17.3 to -4.2) decline in TBV and 8.6 mL (95% CI, -14.4 to -2.8) decline in gray matter volume. There was no association between NT-proBNP and CIMT and changes in white matter volume. Compared with participants with low NT-proBNP and CIMT, participants with both high NT-proBNP and CIMT had 3.8 mL (95% CI, -6.0 to -1.6) greater decline in their TBV and 4 mL (95% CI, -6.0 to -2.0) greater decline in GMW. These associations were independent of sociodemographic and cardiovascular factors. Older subjects with both cardiac dysfunction and carotid atherosclerosis are at an increased risk for brain parenchymal loss. Accumulated pathologies in the heart-brain axis might accelerate brain atrophy. © 2016 American Heart Association, Inc.

  10. The senescence accelerated mouse prone 8 (SAMP8): A novel murine model for cardiac aging.

    PubMed

    Karuppagounder, Vengadeshprabhu; Arumugam, Somasundaram; Babu, Sahana Suresh; Palaniyandi, Suresh S; Watanabe, Kenichi; Cooke, John P; Thandavarayan, Rajarajan A

    2017-05-01

    Because cardiovascular disease remains the major cause of mortality and morbidity world-wide, there remains a compelling need for new insights and novel therapeutic avenues. In this regard, the senescence-accelerated mouse prone 8 (SAMP8) line is a particularly good model for studying the effects of aging on cardiovascular health. Accumulating evidence suggests that this model may shed light on age-associated cardiac and vascular dysfunction and disease. These animals manifest evidence of inflammation, oxidative stress and adverse cardiac remodeling that may recapitulate processes involved in human disease. Early alterations in oxidative damage promote endoplasmic reticulum stress to trigger apoptosis and cytokine production in this genetically susceptible mouse strain. Conversely, pharmacological treatments that reduce inflammation and oxidative stress improve cardiac function in these animals. Therefore, the SAMP8 mouse model provides an exciting opportunity to expand our knowledge of aging in cardiovascular disease and the potential identification of novel targets of treatment. Herein, we review the previous studies performed in SAMP8 mice that provide insight into age-related cardiovascular alterations. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Dysregulated physiological stress systems and accelerated cellular aging.

    PubMed

    Révész, Dóra; Verhoeven, Josine E; Milaneschi, Yuri; de Geus, Eco J C N; Wolkowitz, Owen M; Penninx, Brenda W J H

    2014-06-01

    Exposure to chronic stressors is associated with accelerated biological aging as indicated by reduced leukocyte telomere length (LTL). This impact could be because of chronic overactivation of the body's physiological stress systems. This study examined the associations between LTL and the immune system, hypothalamic-pituitary-adrenal axis and autonomic nervous system. LTL was assessed in 2936 adults from the Netherlands Study of Depression and Anxiety. Inflammation markers (interleukin-6, c-reactive protein, tumor necrosis factor-alpha), hypothalamic-pituitary-adrenal-axis indicators (salivary cortisol awakening curve [area under the curve indicators, with respect to the ground and increase], evening levels, 0.5 mg dexamethasone cortisol suppression ratio), and autonomic nervous system measures (heart rate, respiratory sinus arrhythmia, pre-ejection period) were determined. Linear regression analyses were performed and adjusted for sociodemographic, lifestyle and clinical factors. Shorter LTL was significantly associated with higher c-reactive protein, interleukin-6, area under the curve with respect to increase, and heart rate. A cumulative index score was calculated based on the number of highest tertiles of these 4 stress markers. LTL demonstrated a significant gradient within subjects ranging from having zero (5528 base pairs) to having 4 elevated stress markers (5371 base pairs, p for trend = 0.002), corresponding to a difference of 10 years of accelerated biological aging. Contrary to the expectations, shorter LTL was also associated with longer pre-ejection period, indicating lower sympathetic tone. This large-scale study showed that inflammation, high awakening cortisol response, and increased heart rate are associated with shorter LTL, especially when they are dysregulated cumulatively. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Avoidance of accelerated aging in schizophrenia?: Clinical and biological characterization of an exceptionally high functioning individual.

    PubMed

    Palmer, Barton W; Moore, Raeanne C; Eyler, Lisa T; Pinto, Luz L; Saks, Elyn R; Jeste, Dilip V

    2018-06-01

    To determine the clinical and biological characteristics of an exceptionally high functioning index person (IP) with schizophrenia in her mid-50s, which may represent compensatory mechanisms, and potentially, avoidance of the accelerated aging typically associated with schizophrenia. IP, 11 other women with schizophrenia, and 11 non-psychiatric comparison (NC) women were assessed with standard ratings of psychopathology, neurocognitive function, decisional capacity, and functional brain imaging. IP was also compared to a sample of demographically similar NCs (N=45) and persons with schizophrenia (N=42) on a set of blood-based biomarkers of aging related to metabolic function, oxidative stress, and inflammation. IP's scores on working memory, and levels of brain activation during an affective face matching task in the left fusiform, right lingual, and left precentral gyri, exceeded NCs. IP was similar to NCs in severity of negative symptoms, most neurocognitive functions, decisional capacity, and brain activation in the left inferior occipital gyrus during a selective stopping task. IP's levels on 11 of 14 metabolic and inflammatory biomarkers of aging were better than NCs and the schizophrenia group. Although speculative, results suggest a possible model in which superior working memory permits a person to be aware of the potentially psychotic nature of a thought or perception, and adjust response accordingly. Compensatory overactivity of brain regions during affective processing may also reflect heightened meta-awareness in emotional situations. Biomarker levels raise the possibility that IP partially avoided the accelerated biological aging associated with schizophrenia. Published by Elsevier B.V.

  13. Accelerated Changes in Cortical Thickness Measurements with Age in Military Service Members with Traumatic Brain Injury.

    PubMed

    Savjani, Ricky R; Taylor, Brian A; Acion, Laura; Wilde, Elisabeth A; Jorge, Ricardo E

    2017-11-15

    Finding objective and quantifiable imaging markers of mild traumatic brain injury (TBI) has proven challenging, especially in the military population. Changes in cortical thickness after injury have been reported in animals and in humans, but it is unclear how these alterations manifest in the chronic phase, and it is difficult to characterize accurately with imaging. We used cortical thickness measures derived from Advanced Normalization Tools (ANTs) to predict a continuous demographic variable: age. We trained four different regression models (linear regression, support vector regression, Gaussian process regression, and random forests) to predict age from healthy control brains from publicly available datasets (n = 762). We then used these models to predict brain age in military Service Members with TBI (n = 92) and military Service Members without TBI (n = 34). Our results show that all four models overpredicted age in Service Members with TBI, and the predicted age difference was significantly greater compared with military controls. These data extend previous civilian findings and show that cortical thickness measures may reveal an association of accelerated changes over time with military TBI.

  14. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Arzner, K.; Benz, A. O.; Browning, P.; Dauphin, C.; Emslie, A. G.; Fletcher, L.; Kontar, E. P.; Mann, G.; Onofri, M.; Petrosian, V.; Turkmani, R.; Vilmer, N.; Vlahos, L.

    2011-09-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  15. Do US Black Women Experience Stress-Related Accelerated Biological Aging?

    PubMed Central

    Hicken, Margaret T.; Pearson, Jay A.; Seashols, Sarah J.; Brown, Kelly L.; Cruz, Tracey Dawson

    2010-01-01

    We hypothesize that black women experience accelerated biological aging in response to repeated or prolonged adaptation to subjective and objective stressors. Drawing on stress physiology and ethnographic, social science, and public health literature, we lay out the rationale for this hypothesis. We also perform a first population-based test of its plausibility, focusing on telomere length, a biomeasure of aging that may be shortened by stressors. Analyzing data from the Study of Women's Health Across the Nation (SWAN), we estimate that at ages 49–55, black women are 7.5 years biologically “older” than white women. Indicators of perceived stress and poverty account for 27% of this difference. Data limitations preclude assessing objective stressors and also result in imprecise estimates, limiting our ability to draw firm inferences. Further investigation of black-white differences in telomere length using large-population-based samples of broad age range and with detailed measures of environmental stressors is merited. PMID:20436780

  16. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations.

  17. Acceleration of Age-Associated Methylation Patterns in HIV-1-Infected Adults

    PubMed Central

    Sehl, Mary; Sinsheimer, Janet S.; Hultin, Patricia M.; Hultin, Lance E.; Quach, Austin; Martínez-Maza, Otoniel; Horvath, Steve; Vilain, Eric; Jamieson, Beth D.

    2015-01-01

    Patients with treated HIV-1-infection experience earlier occurrence of aging-associated diseases, raising speculation that HIV-1-infection, or antiretroviral treatment, may accelerate aging. We recently described an age-related co-methylation module comprised of hundreds of CpGs; however, it is unknown whether aging and HIV-1-infection exert negative health effects through similar, or disparate, mechanisms. We investigated whether HIV-1-infection would induce age-associated methylation changes. We evaluated DNA methylation levels at >450,000 CpG sites in peripheral blood mononuclear cells (PBMC) of young (20-35) and older (36-56) adults in two separate groups of participants. Each age group for each data set consisted of 12 HIV-1-infected and 12 age-matched HIV-1-uninfected samples for a total of 96 samples. The effects of age and HIV-1 infection on methylation at each CpG revealed a strong correlation of 0.49, p<1 x10-200 and 0.47, p<1x10-200. Weighted gene correlation network analysis (WGCNA) identified 17 co-methylation modules; module 3 (ME3) was significantly correlated with age (cor=0.70) and HIV-1 status (cor=0.31). Older HIV-1+ individuals had a greater number of hypermethylated CpGs across ME3 (p=0.015). In a multivariate model, ME3 was significantly associated with age and HIV status (Data set 1: βage= 0.007088, p=2.08 x 10-9; βHIV= 0.099574, p=0.0011; Data set 2: βage= 0.008762, p=1.27x 10-5; βHIV= 0.128649, p= 0.0001). Using this model, we estimate that HIV-1 infection accelerates age-related methylation by approximately 13.7 years in data set 1 and 14.7 years in data set 2. The genes related to CpGs in ME3 are enriched for polycomb group target genes known to be involved in cell renewal and aging. The overlap between ME3 and an aging methylation module found in solid tissues is also highly significant (Fisher-exact p=5.6 x 10-6, odds ratio=1.91). These data demonstrate that HIV-1 infection is associated with methylation patterns that are similar to

  18. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    PubMed Central

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  19. 175.4 The Relationship of Aging and Inflammatory Biomarkers to Gray Matter Volume and Episodic Memory Performance in Schizophrenia: Evidence of Pathological Accelerated Aging

    PubMed Central

    Gama, Clarissa

    2017-01-01

    Abstract Background: Schizophrenia (SZ) is associated with increased somatic morbidity and mortality, in addition to cognitive impairments similar to those seen in normal aging, which may suggest that pathological accelerated aging occurs in SZ. Therefore, we aim to evaluate the relationships of age, telomere length (TL) and CCL11 (aging and inflammatory biomarkers), and gray matter volumes (GM) to episodic memory performance in individuals with SZ compared to healthy controls (HC). Methods: 112 participants (48 SZ and 64 HC) underwent clinical and memory assessments, structural MRI, and had their peripheral blood drawn for biomarkers analysis. Comparisons of group means and correlations were performed. Results: Participants with SZ had decreased TL and GM residual volume, increased CCL11, and worse memory performance compared to HC. In SZ, shorter TL was related to increased CCL11, and they were both related to reduced GM residual volume, all of which were related to worse memory performance. Older age was only associated with reduced GM, but longer duration of illness was related with all the aforementioned variables. Younger age of disease onset was related with increased CCL11 levels and worse memory performance. In HC, there were no significant correlations except for between memory and GM. Conclusion: Our results are consistent with accelerated aging in SZ. These results may indicate that it is not age itself, but the impact of the disease associated with a pathological accelerated aging that leads to impaired outcomes in SZ. Akira Sawa, johns Hopkins University, Johns Hopkins Hospital and Medical Institutions

  20. FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk

    PubMed Central

    Nikolova, Yuliya S.; Iruku, Swetha P.; Lin, Chien-Wei; Conley, Emily Drabant; Puralewski, Rachel; French, Beverly; Hariri, Ahmad R.; Sibille, Etienne

    2015-01-01

    The A allele of the FRAS1-related extracellular matrix protein 3 (FREM3) rs7676614 single nucleotide polymorphism (SNP) was linked to major depressive disorder (MDD) in an early genome-wide association study (GWAS), and to symptoms of psychomotor retardation in a follow-up investigation. In line with significant overlap between age- and depression-related molecular pathways, parallel work has shown that FREM3 expression in postmortem human brain decreases with age. Here, we probe the effect of rs7676614 on amygdala reactivity and perceptual processing speed, both of which are altered in depression and aging. Amygdala reactivity was assessed using a face-matching BOLD fMRI paradigm in 365 Caucasian participants in the Duke Neurogenetics Study (DNS) (192 women, mean age 19.7 ± 1.2). Perceptual processing speed was indexed by reaction times in the same task and the Trail Making Test (TMT). The effect of rs7676614 on FREM3 mRNA brain expression levels was probed in a postmortem cohort of 169 Caucasian individuals (44 women, mean age 50.8 ± 14.9). The A allele of rs7676614 was associated with blunted amygdala reactivity to faces, slower reaction times in the face-matching condition (p < 0.04), as well as marginally slower performance on TMT Part B (p = 0.056). In the postmortem cohort, the T allele of rs6537170 (proxy for the rs7676614 A allele), was associated with trend-level reductions in gene expression in Brodmann areas 11 and 47 (p = 0.066), reminiscent of patterns characteristic of older age. The low-expressing allele of another FREM3 SNP (rs1391187) was similarly associated with reduced amygdala reactivity and slower TMT Part B speed, in addition to reduced BA47 activity and extraversion (p < 0.05). Together, these results suggest common genetic variation associated with reduced FREM3 expression may confer risk for a subtype of depression characterized by reduced reactivity to environmental stimuli and slower perceptual processing speed, possibly suggestive of

  1. The aging process of optical couplers by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Bednarek, Lukas; Marcinka, Ondrej; Perecar, Frantisek; Papes, Martin; Hajek, Lukas; Nedoma, Jan; Vasinek, Vladimir

    2015-08-01

    Scientists have recently discovered that the ageing process of optical elements is faster than it was originally anticipated. It is mostly due to the multiple increases of the optical power in optical components, the introduction of wavelength division multiplexers and, overall, the increased flow of traffic in optical communications. This article examines the ageing process of optical couplers and it focuses on their performance parameters. It describes the measurement procedure followed by the evaluation of the measurement results. To accelerate the ageing process, gamma irradiation from 60Co was used. The results of the measurements of the optical coupler with one input and eight outputs (1:8) were summarized. The results gained by measuring of the optical coupler with one input and four outputs (1:4) as well as of the optical couplers with one input and two outputs (1:2) with different split ratios were also processed. The optical powers were measured on the input and the outputs of each branch of each optical coupler at the wavelengths of 1310 nm and 1550 nm. The parameters of the optical couplers were subsequently calculated according to the appropriate formulas. These parameters were the insertion loss of the individual branches, split ratio, total losses, homogeneity of the losses and directionalities alias cross-talk between the individual output branches. The gathered data were summarized before and after the first irradiation when the configuration of the couplers was 1:8 and 1:4. The data were summarized after the third irradiation when the configuration of the couplers was 1:2.

  2. The influence of the accelerated ageing on the black screen element of the Electroink prints

    NASA Astrophysics Data System (ADS)

    Majnaric, I.; Bolanca, Z.; Bolanca Mirkovic, I.

    2010-06-01

    Printing material and prints undergo changes during ageing which can be recognized in deterioration in the physical, chemical and optical properties. The aim of this work is to determine the optical changes of the prints caused by ageing of the printing material and of the prints obtained by the application of the indirect electrophotography. The change of the screen elements in lighter halftone areas, which was obtained by the usage of the microscopic image analysis, has been discussed in the article. For the preparation of samples the following papers were used: fine art paper, recycled paper and offset paper as well as black Electroink. Three sample series were observed: prints on nonaged paper and ElectroInk, prints on aged paper and ElectroInk and prints on aged paper and nonaged ElectroInk. The investigation results show that by ageing of the uncoated printing substrates the decrease of the dots on prints can be expected, while the printing on the aged paper results in the increased reproduction of the halftone dots. The obtained results are the contribution to the explanation of the influence of the accelerated ageing process of papers which are used for printing and the aged prints on the halftone dot changes. Except the mentioned determined scientific contribution the results are applicable in the area of the printing product quality as well as in the forensic science.

  3. Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits.

    PubMed

    Mehla, Jogender; Chauhan, Balwantsinh C; Chauhan, Neelima B

    2014-01-01

    Alzheimer's disease (AD) is an age-dependent neurodegenerative disease constituting ~95% of late-onset non-familial/sporadic AD, and only ~5% accounting for early-onset familial AD. Availability of a pertinent model representing sporadic AD is essential for testing candidate therapies. Emerging evidence indicates a causal link between diabetes and AD. People with diabetes are >1.5-fold more likely to develop AD. Senescence-accelerated mouse model (SAMP8) of accelerated aging displays many features occurring early in AD. Given the role played by diabetes in the pre-disposition of AD, and the utility of SAMP8 non-transgenic mouse model of accelerated aging, we examined if high fat diet-induced experimental type 2 diabetes in SAMP8 mice will trigger pathological aging of the brain. Results showed that compared to non-diabetic SAMP8 mice, diabetic SAMP8 mice exhibited increased cerebral amyloid-β, dysregulated tau-phosphorylating glycogen synthase kinase 3β, reduced synaptophysin immunoreactivity, and displayed memory deficits, indicating Alzheimer-like changes. High fat diet-induced type 2 diabetic SAMP8 mice may represent the metabolic model of AD.

  4. Accelerated Aging System for Prognostics of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Vashchenko, Vladislav; Wysocki, Philip; Saha, Sankalita

    2010-01-01

    Prognostics is an engineering discipline that focuses on estimation of the health state of a component and the prediction of its remaining useful life (RUL) before failure. Health state estimation is based on actual conditions and it is fundamental for the prediction of RUL under anticipated future usage. Failure of electronic devices is of great concern as future aircraft will see an increase of electronics to drive and control safety-critical equipment throughout the aircraft. Therefore, development of prognostics solutions for electronics is of key importance. This paper presents an accelerated aging system for gate-controlled power transistors. This system allows for the understanding of the effects of failure mechanisms, and the identification of leading indicators of failure which are essential in the development of physics-based degradation models and RUL prediction. In particular, this system isolates electrical overstress from thermal overstress. Also, this system allows for a precise control of internal temperatures, enabling the exploration of intrinsic failure mechanisms not related to the device packaging. By controlling the temperature within safe operation levels of the device, accelerated aging is induced by electrical overstress only, avoiding the generation of thermal cycles. The temperature is controlled by active thermal-electric units. Several electrical and thermal signals are measured in-situ and recorded for further analysis in the identification of leading indicators of failures. This system, therefore, provides a unique capability in the exploration of different failure mechanisms and the identification of precursors of failure that can be used to provide a health management solution for electronic devices.

  5. Acrylamide induces accelerated endothelial aging in a human cell model.

    PubMed

    Sellier, Cyril; Boulanger, Eric; Maladry, François; Tessier, Frédéric J; Lorenzi, Rodrigo; Nevière, Rémi; Desreumaux, Pierre; Beuscart, Jean-Baptiste; Puisieux, François; Grossin, Nicolas

    2015-09-01

    Acrylamide (AAM) has been recently discovered in food as a Maillard reaction product. AAM and glycidamide (GA), its metabolite, have been described as probably carcinogenic to humans. It is widely established that senescence and carcinogenicity are closely related. In vitro, endothelial aging is characterized by replicative senescence in which primary cells in culture lose their ability to divide. Our objective was to assess the effects of AAM and GA on human endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as model. HUVECs were cultured over 3 months with AAM or GA (1, 10 or 100 μM) until growth arrest. To analyze senescence, β-galactosidase activity and telomere length of HUVECs were measured by cytometry and semi-quantitative PCR, respectively. At all tested concentrations, AAM or GA reduced cell population doubling compared to the control condition (p < 0.001). β-galactosidase activity in endothelial cells was increased when exposed to AAM (≥10 μM) or GA (≥1 μM) (p < 0.05). AAM (≥10 μM) or GA (100 μM) accelerated telomere shortening in HUVECs (p < 0.05). In conclusion, in vitro chronic exposure to AAM or GA at low concentrations induces accelerated senescence. This result suggests that an exposure to AAM might contribute to endothelial aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Accelerated aging tests on ENEA-ASE solar coating for receiver tube suitable to operate up to 550 °C

    NASA Astrophysics Data System (ADS)

    Antonaia, A.; D'Angelo, A.; Esposito, S.; Addonizio, M. L.; Castaldo, A.; Ferrara, M.; Guglielmo, A.; Maccari, A.

    2016-05-01

    A patented solar coating for evacuated receiver, based on innovative graded WN-AlN cermet layer, has been optically designed and optimized to operate at high temperature with high performance and high thermal stability. This solar coating, being designed to operate in solar field with molten salt as heat transfer fluid, has to be thermally stable up to the maximum temperature of 550 °C. With the aim of determining degradation behaviour and lifetime prediction of the solar coating, we chose to monitor the variation of the solar absorptance αs after each thermal annealing cycle carried out at accelerated temperatures under vacuum. This prediction method was coupled with a preliminary Differential Thermal Analysis (DTA) in order to give evidence for any chemical-physical coating modification in the temperature range of interest before performing accelerated aging tests. In the accelerated aging tests we assumed that the temperature dependence of the degradation processes could be described by Arrhenius behaviour and we hypothesized that a linear correlation occurs between optical parameter variation rate (specifically, Δαs/Δt) and degradation process rate. Starting from Δαs/Δt values evaluated at 650 and 690 °C, Arrhenius plot gave an activation energy of 325 kJ mol-1 for the degradation phenomenon, where the prediction on the coating degradation gave a solar absorptance decrease of only 1.65 % after 25 years at 550 °C. This very low αs decrease gave evidence for an excellent stability of our solar coating, also when employed at the maximum temperature (550 °C) of a solar field operating with molten salt as heat transfer fluid.

  7. Towards A Model-Based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan S.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  8. Service Lifetime Estimation of EPDM Rubber Based on Accelerated Aging Tests

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Li, Xiangbo; Xu, Likun; He, Tao

    2017-04-01

    Service lifetime of ethylene propylene diene monomer (EPDM) rubber at room temperature (25 °C) was estimated based on accelerated aging tests. The study followed sealing stress loss on compressed cylinder samples by compression stress relaxation methods. The results showed that the cylinder samples of EPDM can quickly reach the physical relaxation equilibrium by using the over-compression method. The non-Arrhenius behavior occurred at the lowest aging temperature. A significant linear relationship was observed between compression set values and normalized stress decay results, and the relationship was not related to the ambient temperature of aging. It was estimated that the sealing stress loss in view of practical application would occur after around 86.8 years at 25 °C. The estimations at 25 °C based on the non-Arrhenius behavior were in agreement with compression set data from storage aging tests in natural environment.

  9. A physical process of the radial acceleration of disc galaxies

    NASA Astrophysics Data System (ADS)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2018-03-01

    An impact model of gravity designed to emulate Newton's law of gravitation is applied to the radial acceleration of disc galaxies. Based on this model (Wilhelm et al. 2013), the rotation velocity curves can be understood without the need to postulate any dark matter contribution. The increased acceleration in the plane of the disc is a consequence of multiple interactions of gravitons (called `quadrupoles' in the original paper) and the subsequent propagation in this plane and not in three-dimensional space. The concept provides a physical process that relates the fit parameter of the acceleration scale defined by McGaugh et al. (2016) to the mean free path length of gravitons in the discs of galaxies. It may also explain the gravitational interaction at low acceleration levels in MOdification of the Newtonian Dynamics (MOND, Milgrom 1983, 1994, 2015, 2016). Three examples are discussed in some detail: the spiral galaxies NGC 7814, NGC 6503 and M 33.

  10. Accelerated aging of adhesive-mediated fiber post-resin composite bonds: A modeling approach.

    PubMed

    Radovic, Ivana; Monticelli, Francesca; Papacchini, Federica; Magni, Elisa; Cury, Alvaro Hafiz; Vulicevic, Zoran R; Ferrari, Marco

    2007-08-01

    Although fiber posts luted in root canals are not directly exposed to oral fluids, water storage is considered as in vitro accelerated aging test for bonded interfaces. The aim of the study was to evaluate the influence of accelerated water aging on fiber post-resin composite adhesion. Forty fiber posts (DT Light Post, RTD) were randomly divided into two main groups, according to the surface treatment performed. Group I: XPBond adhesive (Dentsply Caulk); Group II: sandblasting (Rocatec-Pre, 3M ESPE) and XPBond. Dual-cured resin cement (Calibra, Dentsply Caulk) and flowable composite (X-Flow, Dentsply Caulk) were applied on the posts to produce cylindrical specimens. The bond strength at the interface between post and cement/composite was measured with the microtensile test according to the non-trimming technique. Half of the sticks were tested immediately for bond strength, while in the other half testing was performed after 1 month of water storage at 37 degrees C. Post-cement/composite interfaces were evaluated under SEM prior and after water aging. Statistical analysis was performed using the Kruskal-Wallis ANOVA followed by Dunn's multiple range test (p<0.05). Immediate bond strength was higher on sandblasted posts. After water aging the two post surface treatments resulted comparable in bond strength. Resin cement achieved higher bond strength to fiber posts than flowable composite. Water aging significantly reduced bond strength. Sandblasting followed by adhesive coating may improve immediate post-resin bond strength in comparison to adhesive alone. However, fiber post-resin bond strength mediated by hydrophilic adhesive tends to decrease after water aging.

  11. Graphics Processing Unit Acceleration of Gyrokinetic Turbulence Simulations

    NASA Astrophysics Data System (ADS)

    Hause, Benjamin; Parker, Scott; Chen, Yang

    2013-10-01

    We find a substantial increase in on-node performance using Graphics Processing Unit (GPU) acceleration in gyrokinetic delta-f particle-in-cell simulation. Optimization is performed on a two-dimensional slab gyrokinetic particle simulation using the Portland Group Fortran compiler with the OpenACC compiler directives and Fortran CUDA. Mixed implementation of both Open-ACC and CUDA is demonstrated. CUDA is required for optimizing the particle deposition algorithm. We have implemented the GPU acceleration on a third generation Core I7 gaming PC with two NVIDIA GTX 680 GPUs. We find comparable, or better, acceleration relative to the NERSC DIRAC cluster with the NVIDIA Tesla C2050 computing processor. The Tesla C 2050 is about 2.6 times more expensive than the GTX 580 gaming GPU. We also see enormous speedups (10 or more) on the Titan supercomputer at Oak Ridge with Kepler K20 GPUs. Results show speed-ups comparable or better than that of OpenMP models utilizing multiple cores. The use of hybrid OpenACC, CUDA Fortran, and MPI models across many nodes will also be discussed. Optimization strategies will be presented. We will discuss progress on optimizing the comprehensive three dimensional general geometry GEM code.

  12. Influence of artificial accelerated aging on the color stability and opacity of composites of different shades.

    PubMed

    Mundim, F M; Da Fonseca Roberti Garcia, L; Silva Sousa, A B; Cruvinel, D R; De Carvalho Panzeri Pires-De-Souza, F

    2010-10-01

    The aim of this study was to evaluate the influence of artificial accelerated aging on the color stability and opacity of composites of different shades. Four composites for direct use (Heliomolar, 4 Seasons, Tetric EvoCeram; QuiXfil) and one for indirect use (SR Adoro) in two shades were used: light (A2) and dark (C3 for direct, and D4 for indirect composite). QuiXfil was obtained in Universal shade. A Teflon matrix (12 X 2 mm) was used to obtain 54 specimens (N=6), which were submitted to color and opacity analysis (Spectrophotometer PCB 6807, Byk Gardner) before and after artificial accelerated aging for 384 hours. After the statistical analysis (2-way ANOVA - Bonferroni - P<0.05), significant color alteration was observed in the light and dark composites studied (P<0.05), with the exception of QuiXfil. Composite 4 Seasons/C3 showed less color alteration (ΔE=0.91). The opacity alteration (ΔOP) was higher for light composites. Artificial accelerated aging interfered in the optical properties assessed; however, the alterations seemed to be more related to the composites composition than to their shade.

  13. Hyper telomere recombination accelerates replicative senescence and may promote premature aging

    PubMed Central

    Hagelstrom, R. Tanner; Blagoev, Krastan B.; Niedernhofer, Laura J.; Goodwin, Edwin H.; Bailey, Susan M.

    2010-01-01

    Werner syndrome and Bloom syndrome result from defects in the RecQ helicases Werner (WRN) and Bloom (BLM), respectively, and display premature aging phenotypes. Similarly, XFE progeroid syndrome results from defects in the ERCC1-XPF DNA repair endonuclease. To gain insight into the origin of cellular senescence and human aging, we analyzed the dependence of sister chromatid exchange (SCE) frequencies on location [i.e., genomic (G-SCE) vs. telomeric (T-SCE) DNA] in primary human fibroblasts deficient in WRN, BLM, or ERCC1-XPF. Consistent with our other studies, we found evidence of elevated T-SCE in telomerase-negative but not telomerase-positive backgrounds. In telomerase-negative WRN-deficient cells, T-SCE—but not G-SCE—frequencies were significantly increased compared with controls. In contrast, SCE frequencies were significantly elevated in BLM-deficient cells irrespective of genome location. In ERCC1-XPF-deficient cells, neither T- nor G-SCE frequencies differed from controls. A theoretical model was developed that allowed an in silico investigation into the cellular consequences of increased T-SCE frequency. The model predicts that in cells with increased T-SCE, the onset of replicative senescence is dramatically accelerated even though the average rate of telomere loss has not changed. Premature cellular senescence may act as a powerful tumor-suppressor mechanism in telomerase-deficient cells with mutations that cause T-SCE levels to rise. Furthermore, T-SCE-driven premature cellular senescence may be a factor contributing to accelerated aging in Werner and Bloom syndromes, but not XFE progeroid syndrome. PMID:20798040

  14. Frameworks for Proof-of-Concept Clinical Trials of Interventions That Target Fundamental Aging Processes

    PubMed Central

    Justice, Jamie; Miller, Jordan D.; Newman, John C.; Hashmi, Shahrukh K.; Halter, Jeffrey; Austad, Steve N.; Barzilai, Nir

    2016-01-01

    Therapies targeted at fundamental processes of aging may hold great promise for enhancing the health of a wide population by delaying or preventing a range of age-related diseases and conditions—a concept dubbed the “geroscience hypothesis.” Early, proof-of-concept clinical trials will be a key step in the translation of therapies emerging from model organism and preclinical studies into clinical practice. This article summarizes the outcomes of an international meeting partly funded through the NIH R24 Geroscience Network, whose purpose was to generate concepts and frameworks for early, proof-of-concept clinical trials for therapeutic interventions that target fundamental processes of aging. The goals of proof-of-concept trials include generating preliminary signals of efficacy in an aging-related disease or outcome that will reduce the risk of conducting larger trials, contributing data and biological samples to support larger-scale research by strategic networks, and furthering a dialogue with regulatory agencies on appropriate registration indications. We describe three frameworks for proof-of-concept trials that target age-related chronic diseases, geriatric syndromes, or resilience to stressors. We propose strategic infrastructure and shared resources that could accelerate development of therapies that target fundamental aging processes. PMID:27535966

  15. The effect of copper, MDA, and accelerated aging on jet fuel thermal stability as measured by the gravimetric JFTOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pande, S.G.; Hardy, D.R.

    1995-05-01

    Thermally unstable jet fuels pose operational problems. In order to adequately identify such fuels, factors that realistically impact on thermal stability were examined. Evaluation was based on a quantitative method of measuring thermal stability, viz., NRL`s recently developed gravimetric JFTOT. This method gives a quantitative measurement of both the strip deposit and filterables formed. The pertinent factors examined, included the individual and interactive effects of: soluble copper, MDA (metal deactivator), and aging. The latter was accelerated to simulate field conditions of approximately six months aging at ambient temperature and pressure. The results indicate that the individual and interactive effects ofmore » copper, MDA, and accelerated aging appear to be fuel dependent. Based on the results, the three test fuels examined (one JP-8 and two JP-5s) were categorized as exhibiting very good, typical, and poor thermal stabilities, respectively. For both the very good and poor thermal stability fuels, the effect of copper in conjunction with accelerated aging did not significantly increase the total thermal deposits of the neat fuels. In contrast, for the typical thermal stability fuel, the combined effects of copper and accelerated aging, did. Furthermore, the addition of MDA prior to aging of the copper-doped, typical stability fuel significantly counteracted the adverse effect of copper and aging. A similar beneficial effect of MDA was not observed for the poor stability fuel. These results focus on the compositional differences among fuels and the need to elucidate these differences (physical and chemical) for a better understanding and prediction of their performance.« less

  16. Natural ageing process accelerates the release of Ag from functional textile in various exposure scenarios

    PubMed Central

    Ding, Dahu; Chen, Lulu; Dong, Shaowei; Cai, Hao; Chen, Jifei; Jiang, Canlan; Cai, Tianming

    2016-01-01

    Natural ageing process occurs throughout the life cycle of textile products, which may possess influences on the release behavior of additives such as silver nanoparticles (Ag NPs). In this study, we assessed the releasability of Ag NPs from a Ag NPs functionalized textile in five different exposure scenarios (i.e. tap water (TW), pond water (PW), rain water (RW), artificial sweat (AS), and detergent solution (DS) along with deionized water (DW) as reference), which were very likely to occur throughout the life cycle of the textile. For the pristine textile, although the most remarkable release was found in DW (6–15 μg Ag/g textile), the highest release rate was found in RW (around 7 μg Ag/(g textile·h)). After ageing treatment, the total released Ag could be increased by 75.7~386.0% in DW, AS and DS. Morphological analysis clearly showed that the Ag NPs were isolated from the surface of the textile fibre due to the ageing treatment. This study provides useful information for risk assessment of nano-enhanced textile products. PMID:27869136

  17. Natural ageing process accelerates the release of Ag from functional textile in various exposure scenarios

    NASA Astrophysics Data System (ADS)

    Ding, Dahu; Chen, Lulu; Dong, Shaowei; Cai, Hao; Chen, Jifei; Jiang, Canlan; Cai, Tianming

    2016-11-01

    Natural ageing process occurs throughout the life cycle of textile products, which may possess influences on the release behavior of additives such as silver nanoparticles (Ag NPs). In this study, we assessed the releasability of Ag NPs from a Ag NPs functionalized textile in five different exposure scenarios (i.e. tap water (TW), pond water (PW), rain water (RW), artificial sweat (AS), and detergent solution (DS) along with deionized water (DW) as reference), which were very likely to occur throughout the life cycle of the textile. For the pristine textile, although the most remarkable release was found in DW (6-15 μg Ag/g textile), the highest release rate was found in RW (around 7 μg Ag/(g textile·h)). After ageing treatment, the total released Ag could be increased by 75.7~386.0% in DW, AS and DS. Morphological analysis clearly showed that the Ag NPs were isolated from the surface of the textile fibre due to the ageing treatment. This study provides useful information for risk assessment of nano-enhanced textile products.

  18. The effect of accelerated ageing on colour stability of visible light-cured (VLC) chairside denture liners.

    PubMed

    Kostoulas, Ioannis; Polyzois, Gregory; Mitsoudis, Anastasios; Kavoura, Victoria; Frangou, Maria

    2012-06-01

    The purpose of this study was to assess the colour stability of seven visible light-cured (VLC) hard and soft denture liners by an in vitro accelerated ageing test and compare them with two autopolymerised hard and soft liners. Ten specimens of each material were fabricated. The initial colour was measured with a tri-stimulus colorimeter. One set of five specimens was placed in distilled water at 37°C in the dark for 15 days, while the remaining were subjected to UV/visible light-accelerated ageing initially for 24 h and then for 144 h. Colour change (ΔΕ) was calculated. Data were statistically analysed by anova, Tukey and t-tests at α = 0.05. All the liners showed clinically acceptable colour change (ΔΕ ≤ 6.8) in distilled water. The colour changes after ageing for Triad DuaLine, Lightdon U, Ufi Gel H and Light Liner Hard were clinically unacceptable (ΔΕ ≥ 6.8), whereas LightLiner Soft, Astron LC Soft, Triad Resiline and Flexacryl Soft presented slighter and clinically acceptable colour change (ΔΕ ≤ 6.8). Accelerated ageing affected significantly the colour stability of all denture liners tested except Astron LC Soft. Soft VLC denture liners were more colour-stable than hard VLC liners. © 2011 The Gerodontology Society and John Wiley & Sons A/S.

  19. Parkin absence accelerates microtubule aging in dopaminergic neurons.

    PubMed

    Cartelli, Daniele; Amadeo, Alida; Calogero, Alessandra Maria; Casagrande, Francesca Vittoria Marialuisa; De Gregorio, Carmelita; Gioria, Mariarosa; Kuzumaki, Naoko; Costa, Ilaria; Sassone, Jenny; Ciammola, Andrea; Hattori, Nobutaka; Okano, Hideyuki; Goldwurm, Stefano; Roybon, Laurent; Pezzoli, Gianni; Cappelletti, Graziella

    2018-01-01

    Loss-of-function caused by mutations in the parkin gene (PARK2) lead to early-onset familial Parkinson's disease. Recently, mechanistic studies proved the ability of parkin in regulating mitochondria homeostasis and microtubule (MT) stability. Looking at these systems during aging of PARK2 knockout mice, we found that loss of parkin induced an accelerated (over)acetylation of MT system both in dopaminergic neuron cell bodies and fibers, localized in the substantia nigra and corpus striatum, respectively. Interestingly, in PARK2 knockout mice, changes of MT stability preceded the alteration of mitochondria transport. Moreover, in-cell experiments confirmed that loss of parkin affects mitochondria mobility and showed that this defect depends on MT system as it is rescued by paclitaxel, a well-known MT-targeted agent. Furthermore, both in PC12 neuronal cells and in patients' induced pluripotent stem cell-derived midbrain neurons, we observed that parkin deficiencies cause the fragmentation of stable MTs. Therefore, we suggest that parkin acts as a regulator of MT system during neuronal aging, and we endorse the hypothesis that MT dysfunction may be crucial in the pathogenesis of Parkinson's disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice.

    PubMed

    Reis, Felipe C G; Branquinho, Jéssica L O; Brandão, Bruna B; Guerra, Beatriz A; Silva, Ismael D; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C Ronald; Festuccia, William T; Kowaltowski, Alicia J; Mori, Marcelo A

    2016-06-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance.

  1. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  2. Circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats

    PubMed Central

    Vinogradova, Irina A.; Anisimov, Vladimir N.; Bukalev, Andrey V.; Semenchenko, Anna V.; Zabezhinski, Mark A.

    2009-01-01

    We evaluated the effect of various light/dark regimens on the survival, life span and tumorigenesis in rats. Two hundred eight male and 203 females LIO rats were subdivided into 4 groups and kept at various light/dark regimens: standard 12:12 light/dark (LD); natural lighting of the North-West of Russia (NL); constant light (LL), and constant darkness (DD) since the age of 25 days until natural death. We found that exposure to NL and LL regimens accelerated development of metabolic syndrome and spontaneous tumorigenesis, shortened life span both in male and females rats as compared to the standard LD regimen. We conclude that circadian disruption induced by light-at-night accelerates aging and promotes tumorigenesis in rats. This observation supports the conclusion of the International Agency Research on Cancer that shift-work that involves circadian disruption is probably carcinogenic to humans. PMID:20157558

  3. Aging-related renal injury and inflammation are associated with downregulation of Klotho and induction of RIG-I/NF-κB signaling pathway in senescence-accelerated mice.

    PubMed

    Zeng, Yi; Wang, Ping-Han; Zhang, Mao; Du, Jun-Rong

    2016-02-01

    The predominant distribution of the antiaging Klotho protein in both the kidneys and brain may point to its essential role in protecting against dysfunction of the kidney-brain axis during the aging process. Our previous study showed that the downregulation of Klotho was involved in aging-related cognitive impairment in aged senescence-accelerated mouse prone-8 (SAMP8) mice. The present study investigated the potential role of Klotho in aging-associated inflammation and renal injury. Age- and gender-matched groups of SAMP8 mice and their corresponding normal control senescence-accelerated mouse resistant-1 (SAMR1) were used to investigate the potential role of Klotho in aging-associated inflammation and renal injury. Compared with aged SAMR1 controls, early-stage chronic kidney disease (CKD), which is associated with an increase in the urinary albumin-to-creatinine ratio, inflammatory cell infiltration, glomerulosclerosis, and tubulointerstitial fibrosis, was observed in aged SAMP8 mice. Furthermore, the aging-related loss of Klotho-induced activation of the retinoic acid-inducible gene 1/nuclear factor-κB (RIG-I/NF-κB) signaling pathway and subsequent production of the proinflammatory mediators tumor necrosis factor α, interleukin-6, and inducible nitric oxide synthase in the kidneys of aged SAMP8 mice compared with SAMR1 controls. The present results suggest that aging-related inflammation and the development of early-stage CKD are likely associated with the downregulation of Klotho and induction of the RIG-I/NF-κB signaling pathway in 12-month-old SAMP8 mice. Moreover, aged SAMP8 mice with cognitive deficits and renal damage may be a potential mouse model for investigating the kidney-brain axis in the aging process.

  4. Accelerated Age-Dependent Hippocampal Volume Loss in Parkinson Disease With Mild Cognitive Impairment.

    PubMed

    Schneider, Christine B; Donix, Markus; Linse, Katharina; Werner, Annett; Fauser, Mareike; Klingelhoefer, Lisa; Löhle, Matthias; von Kummer, Rüdiger; Reichmann, Heinz; Storch, Alexander

    2017-09-01

    Patients with Parkinson disease are at high risk of developing dementia. During the course of the disease, a substantial number of patients will experience a cognitive decline, indicating the dynamics of the underlying neuropathology. Magnetic resonance imaging (MRI) has become increasingly useful for identifying structural characteristics in radiological brain anatomy existing prior to clinical symptoms. Whether these changes reflect pathology, whether they are aging related, or both often remains unclear. We hypothesized that aging-associated brain structural changes would be more pronounced in the hippocampal region among patients with Parkinson disease having mild cognitive deficits relative to cognitively unimpaired patients. Using MRI, we investigated 30 cognitively healthy patients with Parkinson disease and 33 patients with nondemented Parkinson disease having mild cognitive impairment. All participants underwent structural MRI scanning and extensive clinical and neuropsychological assessments. Irrespective of the study participants' cognitive status, older age was associated with reduced cortical thickness in various neocortical regions. Having mild cognitive impairment was not associated with an increased rate of cortical thinning or volume loss in these regions, except in the hippocampus bilaterally. Patients with Parkinson disease having mild cognitive impairment show an accelerated age-dependent hippocampal volume loss when compared with cognitively healthy patients with Parkinson disease. This may indicate pathological processes in a key region for memory functioning in patients with Parkinson disease at risk of developing dementia. Structural MRI of the hippocampal region could potentially contribute to identifying patients who should receive early treatment aimed at delaying the clinical onset of dementia.

  5. Toward Successful Implementation of Prefabricated Deck Panels to Accelerate the Bridge Construction Process

    DOT National Transportation Integrated Search

    2016-08-01

    The development of accelerated bridge construction (ABC) techniques and connection details has become a national research focus. With the aging of the interstate system and many bridges on key routes requiring extensive rehabilitation or replacement,...

  6. Priming of microglia in a DNA-repair deficient model of accelerated aging.

    PubMed

    Raj, Divya D A; Jaarsma, Dick; Holtman, Inge R; Olah, Marta; Ferreira, Filipa M; Schaafsma, Wandert; Brouwer, Nieske; Meijer, Michel M; de Waard, Monique C; van der Pluijm, Ingrid; Brandt, Renata; Kreft, Karim L; Laman, Jon D; de Haan, Gerald; Biber, Knut P H; Hoeijmakers, Jan H J; Eggen, Bart J L; Boddeke, Hendrikus W G M

    2014-09-01

    Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred to as priming. It is unclear if priming is due to intrinsic microglia ageing or induced by the ageing neural environment. We have studied this in Ercc1 mutant mice, a DNA repair-deficient mouse model that displays features of accelerated aging in multiple tissues including the CNS. In Ercc1 mutant mice, microglia showed hallmark features of priming such as an exaggerated response to peripheral lipopolysaccharide exposure in terms of cytokine expression and phagocytosis. Specific targeting of the Ercc1 deletion to forebrain neurons resulted in a progressive priming response in microglia exemplified by phenotypic alterations. Summarizing, these data show that neuronal genotoxic stress is sufficient to switch microglia from a resting to a primed state. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Resin composite characterizations following a simplified protocol of accelerated aging as a function of the expiration date.

    PubMed

    D'Alpino, Paulo Henrique Perlatti; Vismara, Marcus Vinícius Gonçalves; Mello, Luciano Marcelo de Medeiros; Di Hipólito, Vinicius; González, Alejandra Hortencia Miranda; Graeff, Carlos Frederico de Oliveira

    2014-07-01

    This study evaluated the mechanical, thermal, and morphological characteristics of different classifications of dental composites as a function of the material condition (new, aged and expired). Specimens were obtained according to these factors: Composites: Filtek P60, Filtek Z250, Filtek Z350XT, and Filtek Silorane; and Material conditions: new, aged, and expired. The syringe composites underwent an accelerated aging protocol (Arrhenius model). The flexural strength (FS) and flexural modulus (E) were obtained. The thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were also performed and the glass transition temperature (Tg) and the weight loss calculated. Topographic analysis of the composites was performed under SEM. The material conditions influenced the mechanical properties of the composites. The silorane composite exhibited a characteristic thermal behavior different from that of the methacrylates. In general, the Tg increased after the accelerated aging protocol and decreased for expired ones, compared to the new composites. A significant increase in FS of Filtek Z350XT after aging was accompanied by an increase in the Tg. The filler packings were in accordance with the manufacture׳s information. The topographic aspects of the composites were modified as a function of the material condition. The mechanical properties of the composites following a simplified protocol of accelerated aging varied as a function of the expiration date. The silorane composite presented a characteristic thermal behavior. Although the dental manufacturers may not be able to control variables as storage temperature and transportation conditions, these effects on the composite clinical performance can be minimized if properly considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Goebel, Kai Frank; Larrosa, Cecilia C.; Janapati, Vishnuvardhan; Roy, Surajit; Chang, Fu-Kuo

    2011-01-01

    Composite structures are gaining importance for use in the aerospace industry. Compared to metallic structures their behavior is less well understood. This lack of understanding may pose constraints on their use. One possible way to deal with some of the risks associated with potential failure is to perform in-situ monitoring to detect precursors of failures. Prognostic algorithms can be used to predict impending failures. They require large amounts of training data to build and tune damage model for making useful predictions. One of the key aspects is to get confirmatory feedback from data as damage progresses. These kinds of data are rarely available from actual systems. The next possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to stress carbon-carbon composite coupons with various layups. Piezoelectric disc sensors were used to periodically interrogate the system. Analysis showed distinct differences in the signatures of growing failures between data collected at conditions. Periodic X-radiographs were taken to assess the damage ground truth. Results after signal processing showed clear trends of damage growth that were correlated to damage assessed from the X-ray images.

  9. Chemical vs. Physical Acceleration of Cement Hydration

    PubMed Central

    Bentz, Dale P.; Zunino, Franco; Lootens, Didier

    2016-01-01

    Cold weather concreting often requires the use of chemical accelerators to speed up the hydration reactions of the cement, so that setting and early-age strength development will occur in a timely manner. While calcium chloride (dihydrate – CaCl2·2H2O) is the most commonly used chemical accelerator, recent research using fine limestone powders has indicated their high proficiency for physically accelerating early-age hydration and reducing setting times. This paper presents a comparative study of the efficiency of these two approaches in accelerating hydration (as assessed via isothermal calorimetry), reducing setting times (Vicat needle), and increasing early-age mortar cube strength (1 d and 7 d). Both the CaCl2 and the fine limestone powder are used to replace a portion of the finest sand in the mortar mixtures, while keeping both the water-to-cement ratio and volume fractions of water and cement constant. Studies are conducted at 73.4 °F (23°C) and 50 °F (10 °C), so that activation energies can be estimated for the hydration and setting processes. Because the mechanisms of acceleration of the CaCl2 and limestone powder are different, a hybrid mixture with 1 % CaCl2 and 20 % limestone powder (by mass of cement) is also investigated. Both technologies are found to be viable options for reducing setting times and increasing early-age strengths, and it is hoped that concrete producers and contractors will consider the addition of fine limestone powder to their toolbox of techniques for assuring performance in cold weather and other concreting conditions where acceleration may be needed. PMID:28077884

  10. A drug-induced accelerated senescence (DIAS) is a possibility to study aging in time lapse.

    PubMed

    Alili, Lirija; Diekmann, Johanna; Giesen, Melanie; Holtkötter, Olaf; Brenneisen, Peter

    2014-06-01

    Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. Accordingly, a stress-induced senescence-like phenotype of human dermal fibroblasts can be induced in vitro by the exposure of human diploid fibroblasts to subcytotoxic concentrations of hydrogen peroxide. However, several biomarkers of replicative senescence e.g. cell cycle arrest and enlarged morphology are abrogated 14 days after treatment, indicating that reactive oxygen species (ROS) rather acts as a trigger for short-term senescence (1-3 days) than being responsible for the maintenance of the senescence-like phenotype. Further, DNA-damaging factors are discussed resulting in a permanent senescent cell type. To induce long-term premature senescence and to understand the molecular alterations occurring during the aging process, we analyzed mitomycin C (MMC) as an alkylating DNA-damaging agent and ROS producer. Human dermal fibroblasts (HDF), used as model for skin aging, were exposed to non-cytotoxic concentrations of MMC and analyzed for potential markers of cellular aging, for example enlarged morphology, activity of senescence-associated-ß-galactosidase, cell cycle arrest, increased ROS production and MMP1-activity, which are well-documented for HDF in replicative senescence. Our data show that mitomycin C treatment results in a drug-induced accelerated senescence (DIAS) with long-term expression of senescence markers, demonstrating that a combination of different susceptibility factors, here ROS and DNA alkylation, are necessary to induce a permanent senescent cell type.

  11. 'Accelerated aging': a primrose path to insight?

    PubMed

    Miller, Richard A

    2004-04-01

    Organism envy afflicts most researchers who work on aging in mice; how frustrating it is to see the worm and fly biologists nail down milestone after milestone, citation after citation! Surely genetic trickery can produce mice that age in a comparable jiffy? Alas, our near-total ignorance of what times the aging process makes it hard to guess what genes to tweak, if indeed aging can be mimicked a presto. Building a case that a given short-lived mutant ages quickly is a steep and thorny path, requiring more than just plucking a symptom here and there from a list of things that sometimes go wrong in old people or old mice. The hallmark of aging is that a lot goes wrong more or less at the same time, in 2-year-old mice, 10-year-old dogs and 70-year-old people. Finding ways to damage one or two systems in a 6-week or 6-month-old mouse is not too hard to do, but the implications of such studies for improved understanding of aging per se are at best indirect and at worst imaginary and distracting.

  12. Presence of Old Individuals in a Population Accelerates and Optimizes the Process of Selection: in silico Experiments.

    PubMed

    Chistyakov, V A; Denisenko, Y V; Bren, A B

    2018-02-01

    One of the important components of the concept of aging-phenoptosis (programmed aging) is the notion of aging as an accelerator of evolution having the rank of subconcept. For many reasons, the main being the problematic experimental testing of evolutionary hypotheses, verification of the above-mentioned subconcept can be based primarily on analysis of the internal inconsistency of heuristic models and their correspondence to undisputedly observed facts. To illustrate the acceleration mechanism, and most importantly to structure the evolutionary process in communities that include naturally weakened individuals, V. P. Skulachev offered in 2003 a conceptual model that he later called a "fable about hares". Despite its simplicity, this model has undoubted internal logic. The natural trend in the development of conceptual models is their translation into the language of mathematics. The purpose of the present work was to create a variation of the known multi-agent model "predator-prey" that would allow us to "see" how the presence in the prey population of naturally weakened (old) members stimulates the selection of individuals with traits whose adaptive potential is not devaluated with age. The model (http://homebear.ru/PD) was developed on the Java platform, version 6, NetBeans development environment 8.2. Statistical analysis and preparation of illustrative materials were carried out using environment R, version 3.4.1. The results of numerical experiments set using our model correspond in principle to the provisions of the heuristic model of Skulachev and, consequently, confirm the absence in it of logical contradictions.

  13. The spinning disc: studying radial acceleration and its damping process with smartphone acceleration sensors

    NASA Astrophysics Data System (ADS)

    Hochberg, K.; Gröber, S.; Kuhn, J.; Müller, A.

    2014-03-01

    Here, we show the possibility of analysing circular motion and acceleration using the acceleration sensors of smartphones. For instance, the known linear dependence of the radial acceleration on the distance to the centre (a constant angular frequency) can be shown using multiple smartphones attached to a revolving disc. As a second example, the decrease of the radial acceleration and the rotation frequency due to friction can be measured and fitted with a quadratic function, in accordance with theory. Finally, because the disc is not set up exactly horizontal, each smartphone measures a component of the gravitational acceleration that adds to the radial acceleration during one half of the period and subtracts from the radial acceleration during the other half. Hence, every graph shows a small modulation, which can be used to determine the rotation frequency, thus converting a ‘nuisance effect’ into a source of useful information, making additional measurements with stopwatches or the like unnecessary.

  14. Probing SEP Acceleration Processes With Near-relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Haggerty, Dennis K.; Roelof, Edmond C.

    2009-11-01

    Processes in the solar corona are prodigious accelerators of near-relativistic electrons. Only a small fraction of these electrons escape the low corona, yet they are by far the most abundant species observed in Solar Energetic Particle events. These beam-like energetic electron events are sometimes time-associated with coronal mass ejections from the western solar hemisphere. However, a significant number of events are observed without any apparent association with a transient event. The relationship between solar energetic particle events, coronal mass ejections, and near-relativistic electron events are better ordered when we classify the intensity time profiles during the duration of the beam-like anisotropies into three broad categories: 1) Spikes (rapid and equal rise and decay) 2) Pulses (rapid rise, slower decay) and 3) Ramps (rapid rise followed by a plateau). We report on the results of a study that is based on our catalog (covering nearly the complete Solar Cycle 23) of 216 near-relativistic electron events and their association with: solar electromagnetic emissions, shocks driven by coronal mass ejections, models of the coronal magnetic fields and energetic protons. We conclude that electron events with time-intensity profiles of Spikes and Pulses are associated with explosive events in the low corona while events with time-intensity profiles of Ramps are associated with the injection/acceleration process of the CME driven shock.

  15. Early age strength increase of fly ash blended cement by a ternary hardening accelerating admixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Kien; Justnes, Harald; SINTEF Building and Infrastructure

    The applicability of a combination of sodium thiocyanate (NaSCN), diethanolamine (DEA) and glycerol (Gly) with small dosages as a ternary hardening accelerating admixture for fly ash blended cement (OPC-FA) was studied. The ternary admixture induced higher early and later age mortar strength at both low (5 °C) and normal (20 °C) temperature. Despite used in lower dosage the ternary admixture led to higher strength of the investigated OPC-FA system than other chemicals (e.g. sodium sulfate). Results obtained from isothermal calorimetry, thermogravimetric analysis (TGA) and X-ray diffraction (XRD) showed that the ternary admixture accelerated the cement hydration and increased the amountmore » of AFm (notably calcium hemicarboaluminate hydrate) in the hydration products. A synergistic effect between the three components of the accelerator on the hydration of OPC-FA system was observed.« less

  16. Influence of surface sealing on color stability and roughness of composite submitted to ultraviolet-accelerated aging.

    PubMed

    Catelan, Anderson; Suzuki, Thaís Yumi Umeda; Becker, Francisco; Briso, André Luiz Fraga; Dos Santos, Paulo Henrique

    2017-05-01

    In the present study, we evaluated the influence of surface sealing on color stability and surface roughness of a composite resin after accelerated artificial aging. Thirty-two specimens of a composite were prepared. After 24 h, the specimens were polished and divided into four groups (n = 8), according to the surface sealant used, including the control, which had no sealant application. Baseline color was measured according to the CIELab system using a reflection spectrophotometer. Surface roughness was determined using a profilometer with a cut-off of 0.25 mm. After these tests, specimens were aged for 252 h in an ultraviolet (UV)-accelerated aging chamber. Color stability was determined by difference between coordinates obtained before and after the aging procedure. Data of color change and roughness were evaluated by anova and Fisher's exact test (α = 0.05). The results showed that the unsealed group had the highest color change compared to other groups (P = 0.0289), and there was no significant difference between groups sealed with surface sealant (P > 0.05). The artificial aging caused an increase in roughness values independent of the experimental group studied (P = 0.0015). The sealed composites showed lower color change after UV aging, but all groups showed clinically-acceptable color change, and only liquid polish decreased roughness. © 2016 John Wiley & Sons Australia, Ltd.

  17. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon,more » humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.« less

  18. Validation of accelerated ageing of Thales rotary Stirling cryocoolers for the estimation of MTTF

    NASA Astrophysics Data System (ADS)

    Seguineau, C.,; Cauquil, J.-M.; Martin, J.-Y.; Benschop, T.

    2016-05-01

    The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. The current market needs tend to reliability figures higher than 15,000hrs in "standard conditions". Field returns are hardly useable mostly because of the uncertain environmental conditions of use, or the differences in user profiles. A previous paper explains how Thales Cryogenics has developed an approach based on accelerated ageing and statistical analysis [1]. The aim of the current paper is to compare results obtained on accelerated ageing on one side, and on the other side, specific field returns where the conditions of use are well known. The comparison between prediction and effective failure rate is discussed. Moreover, a specific focus is done on how some new applications of cryocoolers (continuous operation at a specific temperature) can increase the MTTF. Some assumptions are also exposed on how the failure modes, effects and criticality analysis evolves for continuous operation at a specific temperature and compared to experimental data.

  19. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester.

    PubMed

    Menapace, Ilaria; Masad, Eyad

    2016-09-01

    This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  20. Acceleration of leukocytes' epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer.

    PubMed

    Durso, Danielle Fernandes; Bacalini, Maria Giulia; Sala, Claudia; Pirazzini, Chiara; Marasco, Elena; Bonafé, Massimiliano; do Valle, Ítalo Faria; Gentilini, Davide; Castellani, Gastone; Faria, Ana Maria Caetano; Franceschi, Claudio; Garagnani, Paolo; Nardini, Christine

    2017-04-04

    Changes in blood epigenetic age have been associated with several pathological conditions and have recently been described to anticipate cancer development. In this work, we analyze a publicly available leukocytes methylation dataset to evaluate the relation between DNA methylation age and the prospective development of specific types of cancer. We calculated DNA methylation age acceleration using five state-of-the-art estimators (three multi-site: Horvath, Hannum, Weidner; and two CpG specific: ELOV2 and FHL2) in a cohort including 845 subjects from the EPIC-Italy project and we compared 424 samples that remained cancer-free over the approximately ten years of follow-up with 235 and 166 subjects who developed breast and colorectal cancer, respectively. We show that the epigenetic age estimated from blood DNA methylation data is statistically significantly associated to future breast and male colorectal cancer development. These results are corroborated by survival analysis that shows significant association between age acceleration and cancer incidence suggesting that the chance of developing age-related diseases may be predicted by circulating epigenetic markers, with a dependence upon tumor type, sex and age estimator. These are encouraging results towards the non-invasive and perspective usage of epigenetic biomarkers.

  1. ACCELERATED FAILURE TIME MODELS PROVIDE A USEFUL STATISTICAL FRAMEWORK FOR AGING RESEARCH

    PubMed Central

    Swindell, William R.

    2009-01-01

    Survivorship experiments play a central role in aging research and are performed to evaluate whether interventions alter the rate of aging and increase lifespan. The accelerated failure time (AFT) model is seldom used to analyze survivorship data, but offers a potentially useful statistical approach that is based upon the survival curve rather than the hazard function. In this study, AFT models were used to analyze data from 16 survivorship experiments that evaluated the effects of one or more genetic manipulations on mouse lifespan. Most genetic manipulations were found to have a multiplicative effect on survivorship that is independent of age and well-characterized by the AFT model “deceleration factor”. AFT model deceleration factors also provided a more intuitive measure of treatment effect than the hazard ratio, and were robust to departures from modeling assumptions. Age-dependent treatment effects, when present, were investigated using quantile regression modeling. These results provide an informative and quantitative summary of survivorship data associated with currently known long-lived mouse models. In addition, from the standpoint of aging research, these statistical approaches have appealing properties and provide valuable tools for the analysis of survivorship data. PMID:19007875

  2. Accelerated failure time models provide a useful statistical framework for aging research.

    PubMed

    Swindell, William R

    2009-03-01

    Survivorship experiments play a central role in aging research and are performed to evaluate whether interventions alter the rate of aging and increase lifespan. The accelerated failure time (AFT) model is seldom used to analyze survivorship data, but offers a potentially useful statistical approach that is based upon the survival curve rather than the hazard function. In this study, AFT models were used to analyze data from 16 survivorship experiments that evaluated the effects of one or more genetic manipulations on mouse lifespan. Most genetic manipulations were found to have a multiplicative effect on survivorship that is independent of age and well-characterized by the AFT model "deceleration factor". AFT model deceleration factors also provided a more intuitive measure of treatment effect than the hazard ratio, and were robust to departures from modeling assumptions. Age-dependent treatment effects, when present, were investigated using quantile regression modeling. These results provide an informative and quantitative summary of survivorship data associated with currently known long-lived mouse models. In addition, from the standpoint of aging research, these statistical approaches have appealing properties and provide valuable tools for the analysis of survivorship data.

  3. Acceleration processes in the quasi-steady magnetoplasmadynamic discharge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Boyle, M. J.

    1974-01-01

    The flow field characteristics within the discharge chamber and exhaust of a quasi-steady magnetoplasmadynamic (MPD) arcjet were examined to clarify the nature of the plasma acceleration process. The observation of discharge characteristics unperturbed by insulator ablation and terminal voltage fluctuations, first requires the satisfaction of three criteria: the use of refractory insulator materials; a mass injection geometry tailored to provide propellant to both electrode regions of the discharge; and a cathode of sufficient surface area to permit nominal MPD arcjet operation for given combinations of arc current and total mass flow. The axial velocity profile and electromagnetic discharge structure were measured for an arcjet configuration which functions nominally at 15.3 kA and 6 g/sec argon mass flow. An empirical two-flow plasma acceleration model is advanced which delineates inner and outer flow regions and accounts for the observed velocity profile and calculated thrust of the accelerator.

  4. Particle Acceleration via Reconnection Processes in the Supersonic Solar Wind

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-12-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = -(3 + MA )/2, where MA is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index -3(1 + τ c /(8τdiff)), where τ c /τdiff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τdiff/τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c -5 (c particle speed) spectra observed by Fisk & Gloeckler and Mewaldt et

  5. Visual evaluation of color stability after accelerated aging of pigmented and nonpigmented silicones to be used in facial prostheses.

    PubMed

    Mancuso, Daniela Nardi; Goiato, Marcelo Coelho; Dekon, Stefan Fiuza de Carvalho; Gennari-Filho, Humberto

    2009-01-01

    The objective of this study was to evaluate by a visual method of comparison the color stability of nonpigmented and pigmented facial silicones after accelerated aging. Two kinds of silicones were used in this study; one specifically formulated for facial prostheses and the other an acetic silicone for industrial use. Twenty-four trial bodies were made for each silicone. These were divided into colorless and intrinsically pigmented groups: ceramic, make-up, and iron oxide. The groups were submitted to accelerated aging for nonmetallic materials. An initial reading and subsequent readings were made at 163, 351, 692, and 1000 hours using a visual method of comparison. The values were annotated in a spreadsheet by two observers, according to scores elaborated for this study. All groups presented color stability in the visual method. According to the results obtained and analyzed in this study, we can conclude that both silicones, Silastic 732 RTV and Silastic MDX 4-4210, behaved similarly, they can therefore be indicated for use in maxillofacial prosthesis. The time factor of aging influenced negatively, independently of the pigmentation, or lack of it, and of silicones and no group had visually noticeable alterations in any of the accelerated aging time, independently of the addition or not of pigments.

  6. Influence of artificial accelerated aging on dimensional stability of acrylic resins submitted to different storage protocols.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Roselino, Lourenço de Moraes Rego; Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Consani, Simonides

    2010-08-01

    The aim of this study was to evaluate the influence of artificial accelerated aging on dimensional stability of two types of acrylic resins (thermally and chemically activated) submitted to different protocols of storage. One hundred specimens were made using a Teflon matrix (1.5 cm x 0.5 mm) with four imprint marks, following the lost-wax casting method. The specimens were divided into ten groups, according to the type of acrylic resin, aging procedure, and storage protocol (30 days). GI: acrylic resins thermally activated, aging, storage in artificial saliva for 16 hours, distilled water for 8 hours; GII: thermal, aging, artificial saliva for 16 hours, dry for 8 hours; GIII: thermal, no aging, artificial saliva for 16 hours, distilled water for 8 hours, GIV: thermal, no aging, artificial saliva for 16 hours, dry for 8 hours; GV: acrylic resins chemically activated, aging, artificial saliva for 16 hours, distilled water for 8 hours; GVI: chemical, aging, artificial saliva for 16 hours, dry for 8 hours; GVII: chemical, no aging, artificial saliva for 16 hours, distilled water for 8 hours; GVIII: chemical, no aging, artificial saliva for 16 hours, dry for 8 hours GIX: thermal, dry for 24 hours; and GX: chemical, dry for 24 hours. All specimens were photographed before and after treatment, and the images were evaluated by software (UTHSCSA - Image Tool) that made distance measurements between the marks in the specimens (mm), calculating the dimensional stability. Data were submitted to statistical analysis (two-way ANOVA, Tukey test, p= 0.05). Statistical analysis showed that the specimens submitted to storage in water presented the largest distance between both axes (major and minor), statistically different (p < 0.05) from control groups. All acrylic resins presented dimensional changes, and the artificial accelerated aging and storage period influenced these alterations.

  7. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.

    PubMed

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-09-15

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1 ∆/- ) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg -/- (also known as Ercc5 -/- ) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1 ∆/- mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1 ∆/- mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1 ∆/- mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.

  8. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  9. Colour stability of denture teeth submitted to different cleaning protocols and accelerated artificial aging.

    PubMed

    Freire, T S; Aguilar, F G; Garcia, L da Fonseca Roberti; Pires-de-Souza, F de Carvalho Panzeri

    2014-03-01

    Acrylic resin is widely used for artificial teeth manufacturing due to several important characteristics; however, this material do not present acceptable colour stability over the course of time. This study evaluated the effect of different cleaning protocols and accelerated artificial aging on colour stability of denture teeth made of acrylic resin. Sixty denture teeth in dark and light shades were used, and separated according to the treatment to which they were submitted. Results demonstrated that colour stability of artificial teeth is influenced by the cleaning solution and artificial aging, being dark teeth more susceptible to colour alteration than lighter ones.

  10. Age and Visual Information Processing.

    ERIC Educational Resources Information Center

    Gummerman, Kent; And Others

    This paper reports on three studies concerned with aspects of human visual information processing. Study I was an effort to measure the duration of iconic storage using a partial report method in children ranging in age from 6 to 13 years. Study II was designed to detect age related changes in the rate of processing (perceptually encoding) letters…

  11. Age Effects in Information Processing.

    ERIC Educational Resources Information Center

    Furukawa, James M.; And Others

    Attempts to modify or ameliorate the effects of declining cognitive abilities of the elderly have met with limited success. To focus on the effects of age in cognitive processing capacity (CPC), Furukawa's (1977) CPC test was administered individually to 3 age groups (16-30, 31-45, and 45-60) of 15 subjects each. Speed of processing old and new…

  12. Shear banding leads to accelerated aging dynamics in a metallic glass

    NASA Astrophysics Data System (ADS)

    Küchemann, Stefan; Liu, Chaoyang; Dufresne, Eric M.; Shin, Jeremy; Maaß, Robert

    2018-01-01

    Traditionally, strain localization in metallic glasses is related to the thickness of the shear defect, which is confined to the nanometer scale. Using site-specific x-ray photon correlation spectroscopy, we reveal significantly accelerated relaxation dynamics around a shear band in a metallic glass at a length scale that is orders of magnitude larger than the defect itself. The relaxation time in the shear-band vicinity is up to ten times smaller compared to the as-cast matrix, and the relaxation dynamics occurs in a characteristic three-stage aging response that manifests itself in the temperature-dependent shape parameter known from classical stretched exponential relaxation dynamics of disordered materials. We demonstrate that the time-dependent correlation functions describing the aging at different temperatures can be captured and collapsed using simple scaling functions. These insights highlight how a ubiquitous nanoscale strain-localization mechanism in metallic glasses leads to a fundamental change of the relaxation dynamics at the mesoscale.

  13. Effects of different surface treatments and accelerated artificial aging on the bond strength of composite resin repairs.

    PubMed

    Melo, Marco Aurélio Veiga de; Moysés, Marcos Ribeiro; Santos, Saulo Galvão dos; Alcântara, Carlos Eduardo Pinto; Ribeiro, José Carlos Rabelo

    2011-01-01

    The purpose of the present study was to assess the bond strength of composite resin repairs subjected to different surface treatments and accelerated artificial aging. 192 cylindrical samples (CSs) were prepared and divided into 24 groups (n = 8). Half of the CSs were stored in water for 24 h, and the other half were subjected to C-UV accelerated aging for non-metallic specimens. The treatments were phosphoric acid + silane + adhesive (PSA); phosphoric acid + adhesive (PA); diamond bur + phosphoric acid + silane + adhesive (DPSA); diamond bur + phosphoric acid + adhesive (DPA); air abrasion + phosphoric acid + silane + adhesive (APSA); and air abrasion + phosphoric acid + adhesive (APA). The repair was performed and the specimens were again aged as described above. A control group (n = 8) was established and did not receive any type of aging or surface treatment. The specimens were loaded to failure in shear mode with a crosshead speed of 0.5 mm/min until fracture. Data were analyzed by one-way ANOVA/Tukey's test (p < 0.05). No statistically significant differences were found among DPSA, DPA, APSA, APA, and the control group. The aged PSA and PA achieved low bonding values and were statistically different from the control group, whereas the non-aged PSA and PA presented no statistically significant difference from the control group. Repairs with the proposed surface treatments were viable on both recent and aged restorations; however, phosphoric acid + adhesive alone were effective only on recent restorations.

  14. Accelerated ageing of blended OPC cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quillin, K.C.; Duerden, S.L.; Majumdar, A.J.

    1994-12-31

    An accelerated experimental technique using high water:cement ratios has been developed to study the long term hydration of blended cements that may be used in a repository for the disposal of radioactive waste. This technique has been used to investigate the hydration reactions of Ordinary Portland Cement (OPC) blended with ground granulated blastfurnace slag (ggbs) or pulverised fuel ash (pfa). The effects of high sulphate-bearing and high carbonate-bearing ground waters on the compounds formed on hydration were investigated. Solid/solution compositional data were collected during the course of the hydration process for periods up to 2 years. Thomsonite, thaumasite, afwillite andmore » a tobermorite-like phase were found in addition to the expected cement hydration products. The pH of the aqueous solution in contact with 60 pfa:40 OPC blends hydrated at 90{degrees}C fell to below 8. This is lower than the value required to inhibit the corrosion of steel canisters in a repository. The pH of the aqueous solution in contact with OPC and 75 ggbs:25 OPC blends remained above 11, although if the ground waters in contact with the OPC/ggbs blends were periodically replaced the pH eventually fell below 10.« less

  15. Colour stability and opacity of resin cements and flowable composites for ceramic veneer luting after accelerated ageing.

    PubMed

    Archegas, Lucí Regina Panka; Freire, Andrea; Vieira, Sergio; Caldas, Danilo Biazzetto de Menezes; Souza, Evelise Machado

    2011-11-01

    Colour changes of the luting material can become clinically visible affecting the aesthetic appearance of thin ceramic laminates. The aim of this in vitro study was to evaluate the colour stability and opacity of light- and dual-cured resin cements and flowable composites after accelerated ageing. The luting agents were bonded (0.2 mm thick) to ceramic disks (0.75 mm thick) built with the pressed-ceramic IPS Aesthetic Empress (n=7). Colour measurements were determined using a FTIR spectrophotometer before and after accelerated ageing in a weathering machine with a total energy of 150 kJ. Changes in colour (ΔE) and opacity (ΔO) were obtained using the CIE L*a*b* system. The results were submitted to one-way ANOVA, Tukey HSD test and Student's t test (α=5%). All the materials showed significant changes in colour and opacity. The ΔE of the materials ranged from 0.41 to 2.40. The highest colour changes were attributed to RelyX ARC and AllCem, whilst lower changes were found in Variolink Veneer, Tetric Flow and Filtek Z350 Flow. The opacity of the materials ranged from -0.01 to 1.16 and its variation was not significant only for Opallis Flow and RelyX ARC. The accelerated ageing led to colour changes in all the evaluated materials, although they were considered clinically acceptable (ΔE<3). Amongst the dual-cured resin cements, Variolink II demonstrated the highest colour stability. All the flowable composites showed proper colour stability for the luting of ceramic veneers. After ageing, an increase in opacity was observed for most of the materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Panagiotis; /Fermilab; Cary, John

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less

  17. Smoking, health and ageing.

    PubMed

    Nicita-Mauro, Vittorio; Basile, Giorgio; Maltese, Giuseppe; Nicita-Mauro, Claudio; Gangemi, Sebastiano; Caruso, Calogero

    2008-09-16

    On March 19, 2008 a Symposium on Pathophysiology of Ageing and Age-Related diseases was held in Palermo, Italy. Here, the lecture of V. Nicita-Mauro on Smoking, health and ageing is summarized. Smoking represents an important ageing accelerator, both directly by triggering an inflammatory responses, and indirectly by favoring the occurrence of several diseases where smoking is a recognized risk factor. Hence, non-smokers can delay the appearance of diseases and of ageing process, so attaining longevity.

  18. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis

    PubMed Central

    van der Heijden, Roel A.; Bijzet, Johan; Meijers, Wouter C.; Yakala, Gopala K.; Kleemann, Robert; Nguyen, Tri Q.; de Boer, Rudolf A.; Schalkwijk, Casper G.; Hazenberg, Bouke P. C.; Tietge, Uwe J. F.; Heeringa, Peter

    2015-01-01

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process. PMID:26563579

  19. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis.

    PubMed

    van der Heijden, Roel A; Bijzet, Johan; Meijers, Wouter C; Yakala, Gopala K; Kleemann, Robert; Nguyen, Tri Q; de Boer, Rudolf A; Schalkwijk, Casper G; Hazenberg, Bouke P C; Tietge, Uwe J F; Heeringa, Peter

    2015-11-13

    Obesity-induced inflammation presumably accelerates the development of chronic kidney diseases. However, little is known about the sequence of these inflammatory events and their contribution to renal pathology. We investigated the effects of obesity on the evolution of age-dependent renal complications in mice in conjunction with the development of renal and systemic low-grade inflammation (LGI). C57BL/6J mice susceptible to develop age-dependent sclerotic pathologies with amyloid features in the kidney, were fed low (10% lard) or high-fat diets (45% lard) for 24, 40 and 52 weeks. HFD-feeding induced overt adiposity, altered lipid and insulin homeostasis, increased systemic LGI and adipokine release. HFD-feeding also caused renal upregulation of pro-inflammatory genes, infiltrating macrophages, collagen I protein, increased urinary albumin and NGAL levels. HFD-feeding severely aggravated age-dependent structural changes in the kidney. Remarkably, enhanced amyloid deposition rather than sclerosis was observed. The degree of amyloidosis correlated significantly with body weight. Amyloid deposits stained positive for serum amyloid A (SAA) whose plasma levels were chronically elevated in HFD mice. Our data indicate obesity-induced chronic inflammation as a risk factor for the acceleration of age-dependent renal amyloidosis and functional impairment in mice, and suggest that obesity-enhanced chronic secretion of SAA may be the driving factor behind this process.

  20. Effect of accelerated environmental aging on tensile properties of oil palm/jute hybrid composites

    NASA Astrophysics Data System (ADS)

    Jawaid, M.; Saba, N.; Alothman, O.; Paridah, M. T.

    2016-11-01

    Recently natural fibre based hybrid composites are receiving growing consideration due to environmental and biodegradability properties. In order to look behaviour of hybrid composites in outdoor applications, its environmental degradation properties such as UV accelerated weathering properties need to analyze. In this study oil palm empty fruit bunch (EFB) and jute fibres reinforced hybrid composites, pure EFB, pure jute and epoxy composites were fabricated through hand lay-up techniques. Hybrid composites with different layering pattern (EFB/jute/EFB and Jute/EFB/jute) while maintaining 40 wt. % total fibre loading were fabricates to compared with EFB and jute composites. Effect of UV accelerated environmental aging on tensile properties of epoxy, pure EFB, pure jute, and hybrid composites were assessed and evaluate under UV exposure. Tensile samples of all composites were subjected to accelerated weathering for 100h, at temperature (75°C), relative humidity (35%), Light (125 W/m2), and water spray off. Obtained results indicated that there is reduction in tensile strength, modulus and elongation at break values of hybrid and pure composites due to degradation of lignin and fibre-matrix interfacial bonding.

  1. Visual processing speed in old age.

    PubMed

    Habekost, Thomas; Vogel, Asmus; Rostrup, Egill; Bundesen, Claus; Kyllingsbaek, Søren; Garde, Ellen; Ryberg, Charlotte; Waldemar, Gunhild

    2013-04-01

    Mental speed is a common concept in theories of cognitive aging, but it is difficult to get measures of the speed of a particular psychological process that are not confounded by the speed of other processes. We used Bundesen's (1990) Theory of Visual Attention (TVA) to obtain specific estimates of processing speed in the visual system controlled for the influence of response latency and individual variations of the perception threshold. A total of 33 non-demented old people (69-87 years) were tested for the ability to recognize briefly presented letters. Performance was analyzed by the TVA model. Visual processing speed decreased approximately linearly with age and was on average halved from 70 to 85 years. Less dramatic aging effects were found for the perception threshold and the visual apprehension span. In the visual domain, cognitive aging seems to be most clearly related to reductions in processing speed. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.

  2. On the Use of Accelerated Aging Methods for Screening High Temperature Polymeric Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Grayson, Michael A.

    1999-01-01

    A rational approach to the problem of accelerated testing of high temperature polymeric composites is discussed. The methods provided are considered tools useful in the screening of new materials systems for long-term application to extreme environments that include elevated temperature, moisture, oxygen, and mechanical load. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for specific aging mechanisms.

  3. Prognostics of Power Mosfets Under Thermal Stress Accelerated Aging Using Data-Driven and Model-Based Methodologies

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Saxena, Abhinav; Saha, Sankalita; Goebel, Kai F.

    2011-01-01

    An approach for predicting remaining useful life of power MOSFETs (metal oxide field effect transistor) devices has been developed. Power MOSFETs are semiconductor switching devices that are instrumental in electronics equipment such as those used in operation and control of modern aircraft and spacecraft. The MOSFETs examined here were aged under thermal overstress in a controlled experiment and continuous performance degradation data were collected from the accelerated aging experiment. Dieattach degradation was determined to be the primary failure mode. The collected run-to-failure data were analyzed and it was revealed that ON-state resistance increased as die-attach degraded under high thermal stresses. Results from finite element simulation analysis support the observations from the experimental data. Data-driven and model based prognostics algorithms were investigated where ON-state resistance was used as the primary precursor of failure feature. A Gaussian process regression algorithm was explored as an example for a data-driven technique and an extended Kalman filter and a particle filter were used as examples for model-based techniques. Both methods were able to provide valid results. Prognostic performance metrics were employed to evaluate and compare the algorithms.

  4. Particle acceleration via reconnection processes in the supersonic solar wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced bymore » quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M{sub A} )/2, where M{sub A} is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ {sub c}/(8τ{sub diff})), where τ {sub c}/τ{sub diff} is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ{sub diff}/τ {sub c}. Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c {sup –5} (c

  5. First muon acceleration using a radio-frequency accelerator

    NASA Astrophysics Data System (ADS)

    Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.

    2018-05-01

    Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  6. Neural correlates of accelerated auditory processing in children engaged in music training.

    PubMed

    Habibi, Assal; Cahn, B Rael; Damasio, Antonio; Damasio, Hanna

    2016-10-01

    Several studies comparing adult musicians and non-musicians have shown that music training is associated with brain differences. It is unknown, however, whether these differences result from lengthy musical training, from pre-existing biological traits, or from social factors favoring musicality. As part of an ongoing 5-year longitudinal study, we investigated the effects of a music training program on the auditory development of children, over the course of two years, beginning at age 6-7. The training was group-based and inspired by El-Sistema. We compared the children in the music group with two comparison groups of children of the same socio-economic background, one involved in sports training, another not involved in any systematic training. Prior to participating, children who began training in music did not differ from those in the comparison groups in any of the assessed measures. After two years, we now observe that children in the music group, but not in the two comparison groups, show an enhanced ability to detect changes in tonal environment and an accelerated maturity of auditory processing as measured by cortical auditory evoked potentials to musical notes. Our results suggest that music training may result in stimulus specific brain changes in school aged children. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Time Recovery for a Complex Process Using Accelerated Dynamics.

    PubMed

    Paz, S Alexis; Leiva, Ezequiel P M

    2015-04-14

    The hyperdynamics method (HD) developed by Voter (J. Chem. Phys. 1996, 106, 4665) sets the theoretical basis to construct an accelerated simulation scheme that holds the time scale information. Since HD is based on transition state theory, pseudoequilibrium conditions (PEC) must be satisfied before any system in a trapped state may be accelerated. As the system evolves, many trapped states may appear, and the PEC must be assumed in each one to accelerate the escape. However, since the system evolution is a priori unknown, the PEC cannot be permanently assumed to be true. Furthermore, the different parameters of the bias function used may need drastic recalibration during this evolution. To overcome these problems, we present a general scheme to switch between HD and conventional molecular dynamics (MD) in an automatic fashion during the simulation. To decide when HD should start and finish, criteria based on the energetic properties of the system are introduced. On the other hand, a very simple bias function is proposed, leading to a straightforward on-the-fly set up of the required parameters. A way to measure the quality of the simulation is suggested. The efficiency of the present hybrid HD-MD method is tested for a two-dimensional model potential and for the coalescence process of two nanoparticles. In spite of the important complexity of the latter system (165 degrees of freedoms), some relevant mechanistic properties were recovered within the present method.

  8. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.

    PubMed

    Li, Jian; Bloch, Pavel; Xu, Jing; Sarunic, Marinko V; Shannon, Lesley

    2011-05-01

    Fourier domain optical coherence tomography (FD-OCT) provides faster line rates, better resolution, and higher sensitivity for noninvasive, in vivo biomedical imaging compared to traditional time domain OCT (TD-OCT). However, because the signal processing for FD-OCT is computationally intensive, real-time FD-OCT applications demand powerful computing platforms to deliver acceptable performance. Graphics processing units (GPUs) have been used as coprocessors to accelerate FD-OCT by leveraging their relatively simple programming model to exploit thread-level parallelism. Unfortunately, GPUs do not "share" memory with their host processors, requiring additional data transfers between the GPU and CPU. In this paper, we implement a complete FD-OCT accelerator on a consumer grade GPU/CPU platform. Our data acquisition system uses spectrometer-based detection and a dual-arm interferometer topology with numerical dispersion compensation for retinal imaging. We demonstrate that the maximum line rate is dictated by the memory transfer time and not the processing time due to the GPU platform's memory model. Finally, we discuss how the performance trends of GPU-based accelerators compare to the expected future requirements of FD-OCT data rates.

  9. Smoking, health and ageing

    PubMed Central

    Nicita-Mauro, Vittorio; Basile, Giorgio; Maltese, Giuseppe; Nicita-Mauro, Claudio; Gangemi, Sebastiano; Caruso, Calogero

    2008-01-01

    On March 19, 2008 a Symposium on Pathophysiology of Ageing and Age-Related diseases was held in Palermo, Italy. Here, the lecture of V. Nicita-Mauro on Smoking, health and ageing is summarized. Smoking represents an important ageing accelerator, both directly by triggering an inflammatory responses, and indirectly by favoring the occurrence of several diseases where smoking is a recognized risk factor. Hence, non-smokers can delay the appearance of diseases and of ageing process, so attaining longevity. PMID:18796145

  10. Ozonation of oil sands process-affected water accelerates microbial bioremediation.

    PubMed

    Martin, Jonathan W; Barri, Thaer; Han, Xiumei; Fedorak, Phillip M; El-Din, Mohamed Gamal; Perez, Leonidas; Scott, Angela C; Jiang, Jason Tiange

    2010-11-01

    Ozonation can degrade toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW), but even after extensive treatment a residual NA fraction remains. Here we hypothesized that mild ozonation would selectively oxidize the most biopersistent NA fraction, thereby accelerating subsequent NA biodegradation and toxicity removal by indigenous microbes. OSPW was ozonated to achieve approximately 50% and 75% NA degradation, and the major ozonation byproducts included oxidized NAs (i.e., hydroxy- or keto-NAs). However, oxidized NAs are already present in untreated OSPW and were shown to be formed during the microbial biodegradation of NAs. Ozonation alone did not affect OSPW toxicity, based on Microtox; however, there was a significant acceleration of toxicity removal in ozonated OSPW following inoculation with native microbes. Furthermore, all residual NAs biodegraded significantly faster in ozonated OSPW. The opposite trend was found for ozonated commercial NAs, which are known to contain no significant biopersistent fraction. Thus, we suggest that ozonation preferentially degraded the most biopersistent OSPW NA fraction, and that ozonation is complementary to the biodegradation capacity of microbial populations in OSPW. The toxicity of ozonated OSPW to higher organisms needs to be assessed, but there is promise that this technique could be applied to accelerate the bioremediation of large volumes of OSPW in Northern Alberta, Canada.

  11. Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests

    NASA Astrophysics Data System (ADS)

    Kötz, R.; Ruch, P. W.; Cericola, D.

    Electrochemical double layer capacitors of the BCAP0350 type (Maxwell Technologies) were tested under constant load conditions at different voltages and temperatures. The aging of the capacitors was monitored during the test in terms of capacitance, internal resistance and leakage current. Aging was significantly accelerated by elevated temperature or increased voltage. Only for extreme conditions at voltages of 3.5 V or temperatures above 70 °C the capacitors failed due to internal pressure build-up. No other failure events such as open circuit or short circuit were detected. Impedance measurements after the tests showed increased high frequency resistance, an increased distributed resistance and most likely an increase in contact resistance between electrode and current collector together with a loss of capacitance. Capacitors aged at elevated voltages (3.3 V) exhibited a tilting of the low frequency component, which implies an increase in the heterogeneity of the electrode surface. This feature was not observed upon aging at elevated temperatures (70 °C).

  12. Assessment of HER2 status in breast cancer biopsies is not affected by accelerated tissue processing.

    PubMed

    Bulte, Joris P; Halilovic, Altuna; Kalkman, Shona; van Cleef, Patricia H J; van Diest, Paul J; Strobbe, Luc J A; de Wilt, Johannes H W; Bult, Peter

    2018-03-01

    To establish whether core needle biopsy (CNB) specimens processed with an accelerated processing method with short fixation time can be used to determine accurately the human epidermal growth factor receptor 2 (HER2) status of breast cancer. A consecutive case-series from two high-volume breast clinics was created. We compared routine HER2 immunohistochemistry (IHC) assessment between accelerated processing CNB specimens and routinely processed postoperative excision specimens. Additional amplification-based testing was performed in cases with equivocal results. The formalin fixation time was less than 2 h and between 6 and 72 h, respectively. Fluorescence in-situ hybridisation and multiplex ligation-dependent probe amplification were used for amplification testing. One hundred and forty-four cases were included, 15 of which were HER2-positive on the routinely processed excision specimens. On the CNB specimens, 44 were equivocal on IHC and required an amplification-based test. Correlation between the CNB specimens and the corresponding excision specimens was high for final HER2 status, with an accuracy of 97% and a kappa of 0.85. HER2 status can be determined reliably on CNB specimens with accelerated processing time using standard clinical testing methods. Using this accelerated technology the minimum 6 h of formalin fixation, which current guidelines consider necessary, can be decreased safely. This allows for a complete and expedited histology-based diagnosis of breast lesions in the setting of a one-stop-shop, same-day breast clinic. © 2018 The Authors. Histopathology Published by John Wiley & Sons Ltd.

  13. BENCHMARK ACCELERATED AGING OF HARVESTED HYPALON/EPR AND CSPE/XLPE POWER AND I&C CABLE IN NUCLEAR POWER PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C; Fifield, Dr Leonard S

    As part of the Light Water Reactor and Sustainability (LWRS) program in the U.S. Department of Energy (DOE) Office of Nuclear Energy, material aging and degradation research is currently geared to support the long-term operation of existing nuclear power plants (NPPs) as they move beyond their initial 40 year licenses. The goal of this research is to provide information so that NPPs can develop aging management programs (AMPs) to address replacement and monitoring needs as they look to operate for 20 years, and in some cases 40 years, beyond their initial operating lifetimes. For cable insulation and jacket materials thatmore » support instrument, control, and safety systems, accelerated aging data are needed to determine priorities in cable aging management programs. Before accelerated thermal and radiation aging of harvested, representative cable insulation and jacket materials, the benchmark performance of a new test capability at Oak Ridge National Laboratory (ORNL) was evaluated for temperatures between 70 and 135 C, dose rates between 100 and 500 Gy/h, and accumulated doses up to 20 kGy, Samples that were characterized and are representative of current materials in use were harvested from the Callaway NPP near Fulton, Missouri, and the San Onofre NPP north of San Diego, California. From the Callaway NPP, a multiconductor control rod cable manufactured by Boston Insulated Wire (BIW), with a Hypalon/ chorolosulfonated polyethylene (CSPE) jacket and ethylene-propylene rubber (EPR) insulation, was harvested from the auxiliary space during a planned outage in 2013. This cable was placed into service when the plant was started in 1984. From the San Onofre NPP, a Rockbestos Firewall III (FRIII) cable with a Hypalon/ CSPE jacket with cross-linked polyethylene (XLPE) insulation was harvested from an on-site, climate-controlled storage area. This conductor, which was never placed into service, was procured around 2007 in anticipation of future operation that did not

  14. Shear banding leads to accelerated aging dynamics in a metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchemann, Stefan; Liu, Chaoyang; Dufresne, Eric M.

    Traditionally, strain localization in metallic glasses is related to the thickness of the shear defect, which is confined to the nanometer scale. In this study, using site-specific x-ray photon correlation spectroscopy (XPCS), we reveal significantly accelerated relaxation dynamics around a shear band in a metallic glass at a length scale that is orders of magnitude larger than the defect itself. The relaxation time in the shear-band vicinity is up to ten-times smaller compared to the as-cast matrix, and the relaxation dynamics occurs in a characteristic three-stage aging response that manifests itself in the temperature-dependent shape parameter known from classical stretchedmore » exponential relaxation dynamics of disordered materials. We demonstrate that the time-dependent correlation functions describing the aging at different temperatures can be captured and collapsed using simple scaling functions. Finally, these insights highlight how an ubiquitous nano-scale strain-localization mechanism in metallic glasses leads to a fundamental change of the relaxation dynamics at the mesoscale.« less

  15. Shear banding leads to accelerated aging dynamics in a metallic glass

    DOE PAGES

    Küchemann, Stefan; Liu, Chaoyang; Dufresne, Eric M.; ...

    2018-01-11

    Traditionally, strain localization in metallic glasses is related to the thickness of the shear defect, which is confined to the nanometer scale. In this study, using site-specific x-ray photon correlation spectroscopy (XPCS), we reveal significantly accelerated relaxation dynamics around a shear band in a metallic glass at a length scale that is orders of magnitude larger than the defect itself. The relaxation time in the shear-band vicinity is up to ten-times smaller compared to the as-cast matrix, and the relaxation dynamics occurs in a characteristic three-stage aging response that manifests itself in the temperature-dependent shape parameter known from classical stretchedmore » exponential relaxation dynamics of disordered materials. We demonstrate that the time-dependent correlation functions describing the aging at different temperatures can be captured and collapsed using simple scaling functions. Finally, these insights highlight how an ubiquitous nano-scale strain-localization mechanism in metallic glasses leads to a fundamental change of the relaxation dynamics at the mesoscale.« less

  16. Effect of mouthwash and accelerated aging on the color stability of esthetic restorative materials.

    PubMed

    Lee, Y K; El Zawahry, M; Noaman, K M; Powers, J M

    2000-06-01

    To evaluate the color stability of esthetic restorative materials after immersion in mouthwashes and accelerated aging. Compomers and resin-based composites (RBC) were measured at baseline and repeatedly after immersion in three kinds of mouthwash (Listerine, Peridex, Rembrandt Age Defying) for 24 hrs and 7 days, and after aging for 150 kJ/m2. Color was measured according to CIE L*a*b* color scale on a reflection spectrophotometer. After immersion for 7 days, the mouthwash groups did not produce significantly higher color changes than the distilled water group, except with some mouthwashes used with Tetric-Ceram. After immersion for 7 days and aging for 150 kJ/m2, the mouthwash groups did not produce significantly higher color changes than the distilled water group. Aging in weathering chamber produced color change (deltaE*) of 1.1-3.9, which was mainly influenced by the material. With some exceptions, the color changes from immersion of the RBCs and compomers in mouthwashes were not perceptible (deltaE*<3.3).

  17. Are microRNAs true sensors of ageing and cellular senescence?

    PubMed

    Williams, Justin; Smith, Flint; Kumar, Subodh; Vijayan, Murali; Reddy, P Hemachandra

    2017-05-01

    All living beings are programmed to death due to aging and age-related processes. Aging is a normal process of every living species. While all cells are inevitably progressing towards death, many disease processes accelerate the aging process, leading to senescence. Pathologies such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, cardiovascular disease, cancer, and skin diseases have been associated with deregulated aging. Healthy aging can delay onset of all age-related diseases. Genetics and epigenetics are reported to play large roles in accelerating and/or delaying the onset of age-related diseases. Cellular mechanisms of aging and age-related diseases are not completely understood. However, recent molecular biology discoveries have revealed that microRNAs (miRNAs) are potential sensors of aging and cellular senescence. Due to miRNAs capability to bind to the 3' untranslated region (UTR) of mRNA of specific genes, miRNAs can prevent the translation of specific genes. The purpose of our article is to highlight recent advancements in miRNAs and their involvement in cellular changes in aging and senescence. Our article discusses the current understanding of cellular senescence, its interplay with miRNAs regulation, and how they both contribute to disease processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effects of accelerated ageing on viability, leachate exudation, and fatty acid content of Dalbergia sissoo Roxb

    Treesearch

    R.C. Thapliyal; K.F. Connor

    1997-01-01

    Accelerated ageing of seeds of Dalbergia sissoo Roxb., a multi-purpose tropical legume tree, was effective as a vigour test only at temperatures in excess of 43 deg C for 72 h. Increased leakage of solutes accompanied the decrease in viability, but there was no relationship between seed size and conductivity. Analyses of D. sissoo...

  19. Analysis of the microstructure and mechanical performance of composite resins after accelerated artificial aging.

    PubMed

    De Oliveira Daltoé, M; Lepri, C Penazzo; Wiezel, J Guilherme G; Tornavoi, D Cremonezzi; Agnelli, J A Marcondes; Reis, A Cândido Dos

    2013-03-01

    Researches that assess the behavior of dental materials are important for scientific and industrial development especially when they are tested under conditions that simulate the oral environment, so this work analyzed the compressive strength and microstructure of three composite resins subjected to accelerated artificial aging (AAA). Three composites resins of 3M (P90, P60 and Z100) were analyzed and were obtained 16 specimens for each type (N.=48). Half of each type were subjected to UV-C system AAA and then were analyzed the surfaces of three aged specimens and three not aged of each type through the scanning electron microscope (SEM). After, eight specimens of each resin, aged and not aged, were subjected to compression test. After statistical analysis of compressive strength values, it was found that there was difference between groups (α <0.05). The resin specimens aged P60 presented lower values of compressive strength statistically significant when compared to the not subject to the AAA. For the other composite resins, there was no difference, regardless of aging, a fact confirmed by SEM. The results showed that the AAA influenced the compressive strength of the resin aged P60; confirmed by surface analysis by SEM, which showed greater structural disarrangement on surface material.

  20. Nutrition as a Modulator of the Aging Process.

    ERIC Educational Resources Information Center

    Masoro, Edward J.

    1984-01-01

    Reviews research on the relationship of nutrition to the aging process. Extension of life-span, retardation of age-related physiological deterioration, retardation of age-related disease processes, and the four major hypotheses dominating thought about the mechanisms by which food restriction slows the aging process are discussed. (JN)

  1. Drosophila mitochondrial topoisomerase III alpha affects the aging process via maintenance of mitochondrial function and genome integrity.

    PubMed

    Tsai, Han-Zen; Lin, Ren-Kuo; Hsieh, Tao-Shih

    2016-04-12

    Mitochondria play important roles in providing metabolic energy and key metabolites for synthesis of cellular building blocks. Mitochondria have additional functions in other cellular processes, including programmed cell death and aging. A previous study revealed Drosophila mitochondrial topoisomerase III alpha (Top3α) contributes to the maintenance of the mitochondrial genome and male germ-line stem cells. However, the involvement of mitochondrial Top3α in the mitochondrion-mediated aging process remains unclear. In this study, the M1L flies, in which Top3α protein lacks the mitochondrial import sequence and is thus present in cell nuclei but not in mitochondria, is used as a model system to examine the role of mitochondrial Top3α in the aging of fruit flies. Here, we reported that M1L flies exhibit mitochondrial defects which affect the aging process. First, we observed that M1L flies have a shorter life span, which was correlated with a significant reduction in the mitochondrial DNA copy number, the mitochondrial membrane potential, and ATP content compared with those of both wildtype and transgene-rescued flies of the same age. Second, we performed a mobility assay and electron microscopic analysis to demonstrate that the locomotion defect and mitophagy of M1L flies were enhanced with age, as compared with the controls. Finally, we showed that the correlation between the mtDNA deletion level and aging in M1L flies resembles what was reported in mammalian systems. The results reported here demonstrate that mitochondrial Top3α ablation results in mitochondrial genome instability and its dysfunction, thereby accelerating the aging process.

  2. Aging and the rate of visual information processing.

    PubMed

    Guest, Duncan; Howard, Christina J; Brown, Louise A; Gleeson, Harriet

    2015-01-01

    Multiple methods exist for measuring how age influences the rate of visual information processing. The most advanced methods model the processing dynamics in a task in order to estimate processing rates independently of other factors that might be influenced by age, such as overall performance level and the time at which processing onsets. However, such modeling techniques have produced mixed evidence for age effects. Using a time-accuracy function (TAF) analysis, Kliegl, Mayr, and Krampe (1994) showed clear evidence for age effects on processing rate. In contrast, using the diffusion model to examine the dynamics of decision processes, Ratcliff and colleagues (e.g., Ratcliff, Thapar, & McKoon, 2006) found no evidence for age effects on processing rate across a range of tasks. Examination of these studies suggests that the number of display stimuli might account for the different findings. In three experiments we measured the precision of younger and older adults' representations of target stimuli after different amounts of stimulus exposure. A TAF analysis found little evidence for age differences in processing rate when a single stimulus was presented (Experiment 1). However, adding three nontargets to the display resulted in age-related slowing of processing (Experiment 2). Similar slowing was observed when simply presenting two stimuli and using a post-cue to indicate the target (Experiment 3). Although there was some interference from distracting objects and from previous responses, these age-related effects on processing rate seem to reflect an age-related difficulty in processing multiple objects, particularly when encoding them into visual working memory.

  3. Plasma inverse transition acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ming

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood,more » and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.« less

  4. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.

    PubMed

    Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom

    2013-10-15

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most

  5. Life stress, glucocorticoid signaling, and the aging epigenome: Implications for aging-related diseases.

    PubMed

    Gassen, Nils C; Chrousos, George P; Binder, Elisabeth B; Zannas, Anthony S

    2017-03-01

    Life stress has been associated with accelerated cellular aging and increased risk for developing aging-related diseases; however, the underlying molecular mechanisms remain elusive. A highly relevant process that may underlie this association is epigenetic regulation. In this review, we build upon existing evidence to propose a model whereby exposure to life stress, in part via its effects on the hypothalamic-pituitary axis and the glucocorticoid signaling system, may alter the epigenetic landscape across the lifespan and, consequently, influence genomic regulation and function in ways that are conducive to the development of aging-related diseases. This model is supported by recent studies showing that life stressors and stress-related phenotypes can accelerate epigenetic aging, a measure that is based on DNA methylation prediction of chronological age and has been associated with several aging-related disease phenotypes. We discuss the implications of this model for the prevention and treatment of aging-related diseases, as well as the challenges and limitations of this line of research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Michael R.

    2006-11-16

    Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

  7. 77 FR 21991 - Federal Housing Administration (FHA): Multifamily Accelerated Processing (MAP)-Lender and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... Administration (FHA): Multifamily Accelerated Processing (MAP)--Lender and Underwriter Eligibility Criteria and....gov . FOR FURTHER INFORMATION CONTACT: Terry W. Clark, Office of Multifamily Development, Office of... qualifications could underwrite loans involving more complex multifamily housing programs and transactions. II...

  8. Public health impact of accelerated immunization against rotavirus infection among children aged less than 6 months in the United States

    PubMed Central

    Weycker, Derek; Atwood, Mark Andrew; Standaert, Baudouin; Krishnarajah, Girishanthy

    2014-01-01

    We developed a cohort model to evaluate the expected public health impact of accelerated regimens for immunization against rotavirus gastroenteritis (RVGE). Alternative strategies for vaccination with the pentavalent human-bovine reassortant vaccine, Rotateq® (RV5, Merck) and the oral live attenuated human rotavirus vaccine, Rotarix® (RV1, GlaxoSmithKline Vaccines) were considered, including acceleration of the 1st dose only (by 2 weeks) as well as acceleration of the 1st (by 2 weeks) and subsequent doses (by up to 10 weeks). Assuming vaccine coverage levels consistent with current US clinical practice, accelerated regimens would be expected to reduce annual numbers of RVGE-related hospitalizations by 300–400, emergency department visits by 3000–4000, and outpatient visits by 3000–4000 (i.e., by 9–14%) among US children aged <6 months. Accordingly, accelerating the immunization of children against RVGE may yield substantive reductions in the number of RV-related encounters in US clinical practice. PMID:25424813

  9. Benchmark Accelerated Aging of Harvested Hypalon/Epr and Cspe/Xlpe Power and I&C Cable in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C.; Frame, Emily; Fifield, Leonard S.

    As part of the Light Water Reactor and Sustainability (LWRS) program in the U.S. Department of Energy (DOE) Office of Nuclear Energy, material aging and degradation research is currently geared to support the long-term operation of existing nuclear power plants (NPPs) as they move beyond their initial 40 year licenses. The goal of this research is to provide information so that NPPs can develop aging management programs (AMPs) to address replacement and monitoring needs as they look to operate for 20 years, and in some cases 40 years, beyond their initial operating lifetimes. For cable insulation and jacket materials thatmore » support instrument, control, and safety systems, accelerated aging data are needed to determine priorities in cable aging management programs. Before accelerated thermal and radiation aging of harvested, representative cable insulation and jacket materials, the benchmark performance of a new test capability at Oak Ridge National Laboratory (ORNL) was evaluated for temperatures between 70 and 135°C, dose rates between 100 and 500 Gy/h, and accumulated doses up to 20 kGy, Samples that were characterized and are representative of current materials in use were harvested from the Callaway NPP near Fulton, Missouri, and the San Onofre NPP north of San Diego, California. From the Callaway NPP, a multiconductor control rod cable manufactured by Boston Insulated Wire (BIW), with a Hypalon/ chorolosulfonated polyethylene (CSPE) jacket and ethylene-propylene rubber (EPR) insulation, was harvested from the auxiliary space during a planned outage in 2013. This cable was placed into service when the plant was started in 1984. From the San Onofre NPP, a Rockbestos Firewall III (FRIII) cable with a Hypalon/ CSPE jacket with cross-linked polyethylene (XLPE) insulation was harvested from an on-site, climate-controlled storage area. This conductor, which was never placed into service, was procured around 2007 in anticipation of future operation that did not

  10. Shifts in Audiovisual Processing in Healthy Aging.

    PubMed

    Baum, Sarah H; Stevenson, Ryan

    2017-09-01

    The integration of information across sensory modalities into unified percepts is a fundamental sensory process upon which a multitude of cognitive processes are based. We review the body of literature exploring aging-related changes in audiovisual integration published over the last five years. Specifically, we review the impact of changes in temporal processing, the influence of the effectiveness of sensory inputs, the role of working memory, and the newer studies of intra-individual variability during these processes. Work in the last five years on bottom-up influences of sensory perception has garnered significant attention. Temporal processing, a driving factors of multisensory integration, has now been shown to decouple with multisensory integration in aging, despite their co-decline with aging. The impact of stimulus effectiveness also changes with age, where older adults show maximal benefit from multisensory gain at high signal-to-noise ratios. Following sensory decline, high working memory capacities have now been shown to be somewhat of a protective factor against age-related declines in audiovisual speech perception, particularly in noise. Finally, newer research is emerging focusing on the general intra-individual variability observed with aging. Overall, the studies of the past five years have replicated and expanded on previous work that highlights the role of bottom-up sensory changes with aging and their influence on audiovisual integration, as well as the top-down influence of working memory.

  11. Colour-stability and gloss-retention of silorane and dimethacrylate composites with accelerated aging.

    PubMed

    Furuse, Adilson Y; Gordon, Kathryn; Rodrigues, Flávia P; Silikas, Nick; Watts, David C

    2008-11-01

    To evaluate the colour-stability and gloss-retention of silorane versus dimethacrylate composites exposed to accelerated aging from daylight radiation. Five disc-shaped specimens of photo-cured resin-composites were prepared and manually polished for each material (Filtek Silorane, Herculite XRV, Tetric Evoceram and QuiXfil). Colour and gloss were evaluated before and after periods (baseline, 24, 72, 120 and 192 h) of accelerated photo-aging in xenon light following ISO 7491:2000. Colour measurements were performed with a colourimeter according to the CIE-Lab colour-space. The colour change (DeltaE) for each time was calculated. The surface gloss was measured using a glossmeter. Results were evaluated using one-way ANOVA and Tukey tests (alpha=0.05). Correlations between logtime, DeltaE and gloss were evaluated using Pearson's correlation (alpha=0.05). Materials generally decreased in L and a and increased in b. The strong exception was Filtek Silorane which maintained a and b. DeltaE was found to be a positive linear function of logtime for all materials. Materials varied in the magnitude and rate of increase of DeltaE with logtime: QuiXfil>Tetric EvoCeram>(Filtek Silorane>or=Herculite XRV). DeltaE remained<3.3 for Filtek Silorane and Herculite XRV. Gloss was found to be a negative linear function of logtime. Gloss was maximal in the sequence: Filtek Silorane approximately Tetric EvoCeram>Herculite XRV>QuiXfil. Silorane gave the best overall performance in stability over time, compared to a set of representative dimethacrylate composites.

  12. Graphics Processing Unit-Accelerated Nonrigid Registration of MR Images to CT Images During CT-Guided Percutaneous Liver Tumor Ablations.

    PubMed

    Tokuda, Junichi; Plishker, William; Torabi, Meysam; Olubiyi, Olutayo I; Zaki, George; Tatli, Servet; Silverman, Stuart G; Shekher, Raj; Hata, Nobuhiko

    2015-06-01

    Accuracy and speed are essential for the intraprocedural nonrigid magnetic resonance (MR) to computed tomography (CT) image registration in the assessment of tumor margins during CT-guided liver tumor ablations. Although both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique on the basis of volume subdivision with hardware acceleration using a graphics processing unit (GPU). We compared the registration accuracy and processing time of GPU-accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid B-spline registration technique. Fourteen image data sets of preprocedural MR and intraprocedural CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images was registered using the GPU-accelerated volume subdivision technique and the B-spline technique. Manual contouring of ROI was used only for the B-spline technique. Registration accuracies (Dice similarity coefficient [DSC] and 95% Hausdorff distance [HD]) and total processing time including contouring of ROIs and computation were compared using a paired Student t test. Accuracies of the GPU-accelerated registrations and B-spline registrations, respectively, were 88.3 ± 3.7% versus 89.3 ± 4.9% (P = .41) for DSC and 13.1 ± 5.2 versus 11.4 ± 6.3 mm (P = .15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration techniques was 88 ± 14 versus 557 ± 116 seconds (P < .000000002), respectively; there was no significant difference in computation time despite the difference in the complexity of the algorithms (P = .71). The GPU-accelerated volume subdivision technique was as accurate as the B-spline technique and required significantly less processing time. The GPU-accelerated

  13. Microstructural modifications induced by accelerated aging and lipid absorption in remelted and annealed UHMWPEs for total hip arthroplasty

    PubMed Central

    Puppulin, Leonardo; Zhu, Wenliang; Sugano, Nobuhiko

    2014-01-01

    Three types of commercially available ultra-high molecular weight polyethylene (UHMWPE) acetabular cups currently used in total hip arthroplasty have been studied by means of Raman micro-spectroscopy to unfold the microstructural modification induced by the oxidative degradation after accelerated aging with and without lipid absorption. The three investigated materials were produced by three different manufacturing procedures, as follows: irradiation followed by remelting, one-step irradiation followed by annealing, 3-step irradiation and annealing. Clear microstructural differences were observed in terms of phase contents (i.e. amorphous, crystalline and intermediate phase fraction). The three-step annealed material showed the highest crystallinity fraction in the bulk, while the remelted polyethylene is clearly characterized by the lowest content of crystalline phase and the highest content of amorphous phase. After accelerated aging either with or without lipids, the amount of amorphous phase decreased in all the samples as a consequence of the oxidation-induced recrystallization. The most remarkable variations of phase contents were detected in the remelted and in the single-step annealed materials. The presence of lipids triggered oxidative degradation especially in the remelted polyethylene. Such experimental evidence might be explained by the highest amount of amorphous phase in which lipids can be absorbed prior to accelerated aging. The results of these spectroscopic characterizations help to rationalize the complex effect of different irradiation and post-irradiation treatments on the UHMWPE microstructure and gives useful information on how significantly any single step of the manufacturing procedures might affect the oxidative degradation of the polymer. PMID:25179830

  14. Aroma profile and sensory characteristics of a sulfur dioxide-free mulberry (Morus nigra) wine subjected to non-thermal accelerating aging techniques.

    PubMed

    Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Tahir, Haroon Elrasheid

    2017-10-01

    The present study was undertaken to assess accelerating aging effects of high pressure, ultrasound and manosonication on the aromatic profile and sensorial attributes of aged mulberry wines (AMW). A total of 166 volatile compounds were found amongst the AMW. The outcomes of the investigation were presented by means of geometric mean (GM), cluster analysis (CA), principal component analysis (PCA), partial least squares regressions (PLSR) and principal component regression (PCR). GM highlighted 24 organoleptic attributes responsible for the sensorial profile of the AMW. Moreover, CA revealed that the volatile composition of the non-thermal accelerated aged wines differs from that of the conventional aged wines. Besides, PCA discriminated the AMW on the basis of their main sensorial characteristics. Furthermore, PLSR identified 75 aroma compounds which were mainly responsible for the olfactory notes of the AMW. Finally, the overall quality of the AMW was noted to be better predicted by PLSR than PCR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda's legacy and future directions.

    PubMed

    Akiguchi, Ichiro; Pallàs, Mercè; Budka, Herbert; Akiyama, Haruhiko; Ueno, Masaki; Han, Jingxian; Yagi, Hideo; Nishikawa, Tomohumi; Chiba, Yoichi; Sugiyama, Hiroshi; Takahashi, Ryoya; Unno, Keiko; Higuchi, Keiichi; Hosokawa, Masanori

    2017-08-01

    Senescence accelerated mice P8 (SAMP8) show significant age-related deteriorations in memory and learning ability in accordance with early onset and rapid advancement of senescence. Brains of SAMP8 mice reveal an age-associated increase of PAS-positive granular structures in the hippocampal formation and astrogliosis in the brain stem and hippocampus. A spongy degeneration in the brain stem appears at 1 month of age and reaches a maximum at 4-8 months. In addition, clusters of activated microglia also appear around the vacuoles in the brain stem. β/A4(Aβ) protein-like immunoreactive granular structures are observed in various regions and increase in number markedly with age. Other age-associated histological changes include cortical atrophy, neuronal cell loss in locus coeruleus and lateral tegmental nuclei, intraneuronal accumulation of lipopigments in Purkinje cells and eosinophilic inclusion bodies in thalamic neurons. A blood-brain barrier dysfunction and astrogliosis are also prominent with advancing age in the hippocampus. These changes are generally similar to the pathomorphology of aging human brains and characterized by their association with some specific glioneuronal reactions. As for the hallmarks of Alzheimer brains, tau morphology has not yet been confirmed regardless of the age-related increase in phosphorylated tau in SAMP8 mice brains, but early age-related Aβ deposition in the hippocampus has recently been published. SAMP8 mice are, therefore, not only a senescence-accelerated model but also a promising model for Alzheimer's disease and other cognitive disorders. © 2017 Japanese Society of Neuropathology.

  16. Analyzing collision processes with the smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2014-02-01

    It has been illustrated several times how the built-in acceleration sensors of smartphones can be used gainfully for quantitative experiments in school and university settings (see the overview in Ref. 1). The physical issues in that case are manifold and apply, for example, to free fall,2 radial acceleration,3 several pendula, or the exploitation of everyday contexts.6 This paper supplements these applications and presents an experiment to study elastic and inelastic collisions. In addition to the masses of the two impact partners, their velocities before and after the collision are of importance, and these velocities can be determined by numerical integration of the measured acceleration profile.

  17. Age differences in decision making: a process methodology for examining strategic information processing.

    PubMed

    Johnson, M M

    1990-03-01

    This study explored the use of process tracing techniques in examining the decision-making processes of older and younger adults. Thirty-six college-age and thirty-six retirement-age participants decided which one of six cars they would purchase on the basis of computer-accessed data. They provided information search protocols. Results indicate that total time to reach a decision did not differ according to age. However, retirement-age participants used less information, spent more time viewing, and re-viewed fewer bits of information than college-age participants. Information search patterns differed markedly between age groups. Patterns of retirement-age adults indicated their use of noncompensatory decision rules which, according to decision-making literature (Payne, 1976), reduce cognitive processing demands. The patterns of the college-age adults indicated their use of compensatory decision rules, which have higher processing demands.

  18. Catalyst Stability Benchmarking for the Oxygen Evolution Reaction: The Importance of Backing Electrode Material and Dissolution in Accelerated Aging Studies.

    PubMed

    Geiger, Simon; Kasian, Olga; Mingers, Andrea M; Nicley, Shannon S; Haenen, Ken; Mayrhofer, Karl J J; Cherevko, Serhiy

    2017-09-18

    In searching for alternative oxygen evolution reaction (OER) catalysts for acidic water splitting, fast screening of the material intrinsic activity and stability in half-cell tests is of vital importance. The screening process significantly accelerates the discovery of new promising materials without the need of time-consuming real-cell analysis. In commonly employed tests, a conclusion on the catalyst stability is drawn solely on the basis of electrochemical data, for example, by evaluating potential-versus-time profiles. Herein important limitations of such approaches, which are related to the degradation of the backing electrode material, are demonstrated. State-of-the-art Ir-black powder is investigated for OER activity and for dissolution as a function of the backing electrode material. Even at very short time intervals materials like glassy carbon passivate, increasing the contact resistance and concealing the degradation phenomena of the electrocatalyst itself. Alternative backing electrodes like gold and boron-doped diamond show better stability and are thus recommended for short accelerated aging investigations. Moreover, parallel quantification of dissolution products in the electrolyte is shown to be of great importance for comparing OER catalyst feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  20. Acceleration of integral imaging based incoherent Fourier hologram capture using graphic processing unit.

    PubMed

    Jeong, Kyeong-Min; Kim, Hee-Seung; Hong, Sung-In; Lee, Sung-Keun; Jo, Na-Young; Kim, Yong-Soo; Lim, Hong-Gi; Park, Jae-Hyeung

    2012-10-08

    Speed enhancement of integral imaging based incoherent Fourier hologram capture using a graphic processing unit is reported. Integral imaging based method enables exact hologram capture of real-existing three-dimensional objects under regular incoherent illumination. In our implementation, we apply parallel computation scheme using the graphic processing unit, accelerating the processing speed. Using enhanced speed of hologram capture, we also implement a pseudo real-time hologram capture and optical reconstruction system. The overall operation speed is measured to be 1 frame per second.

  1. The signaling pathways by which the Fas/FasL system accelerates oocyte aging.

    PubMed

    Zhu, Jiang; Lin, Fei-Hu; Zhang, Jie; Lin, Juan; Li, Hong; Li, You-Wei; Tan, Xiu-Wen; Tan, Jing-He

    2016-02-01

    In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis.

  2. Analyzing Collision Processes with the Smartphone Acceleration Sensor

    ERIC Educational Resources Information Center

    Vogt, Patrik; Kuhn, Jochen

    2014-01-01

    It has been illustrated several times how the built-in acceleration sensors of smartphones can be used gainfully for quantitative experiments in school and university settings (see the overview in Ref. 1 ). The physical issues in that case are manifold and apply, for example, to free fall, radial acceleration, several pendula, or the exploitation…

  3. Hardware accelerator of convolution with exponential function for image processing applications

    NASA Astrophysics Data System (ADS)

    Panchenko, Ivan; Bucha, Victor

    2015-12-01

    In this paper we describe a Hardware Accelerator (HWA) for fast recursive approximation of separable convolution with exponential function. This filter can be used in many Image Processing (IP) applications, e.g. depth-dependent image blur, image enhancement and disparity estimation. We have adopted this filter RTL implementation to provide maximum throughput in constrains of required memory bandwidth and hardware resources to provide a power-efficient VLSI implementation.

  4. Biological age and tempos of aging in women over 60 in connection with their morphofunctional characteristics.

    PubMed

    Negasheva, Marina; Lapshina, Natalia; Okushko, Rostislav; Godina, Elena

    2014-05-19

    The study of aging processes and the changes in morphological, physiological, and functional characteristics that are associated with aging is of great interest not only for researchers, but also for the general public. The aim of the present paper is to study the biological age and tempos of aging in women older than 60 years, including long-lived females (over 90-years-old), and their associations with morphofunctional characteristics. Somatic traits, body mass components, and functional characteristics were investigated in 119 elderly (between 60 and 74-years-old) and long-lived (over 90-years-old) women in Tiraspol. With the special PC software 'Diagnostics of Aging: BioAge' (National Gerontological Center, Moscow, Russia) the biological age and tempos of aging were evaluated in the study participants. The results show close connections between morphofunctional changes, particularly in body mass components, and biological age. The software demonstrated its validity in the estimation of biological age in the group of elderly women. In the homogenous (according to their chronological age) group of women, three subgroups were separated with different tempos of aging: those with lower rates of aging (biological age less than chronological age by two years or more); those consistent with their chronological age, and those with accelerated tempos of aging (biological age higher than chronological age by two years or more). Morphofunctional characteristics in the studied groups of women demonstrate the trends of age-involutive changes which can be traced through all groups, from those with slow rates of aging, to those with average rates, to those with accelerated tempos of aging, and finally in long-lived women. The results of comparative analysis show that women with accelerated aging are characterized with such traits as lower skeletal muscle mass, lower hand grip strength, and higher metabolic rate. Canonical discriminant analysis revealed a number of

  5. Accelerated Aging of the M119 Simulator

    NASA Technical Reports Server (NTRS)

    Bixon, Eric R.

    2000-01-01

    This paper addresses the storage requirement, shelf life, and the reliability of M119 Whistling Simulator. Experimental conditions have been determined and the data analysis has been completed for the accelerated testing of the system. A general methodology to evaluate the shelf life of the system as a function of the storage time, temperature, and relative humidity is discussed.

  6. Biological age and tempos of aging in women over 60 in connection with their morphofunctional characteristics

    PubMed Central

    2014-01-01

    Background The study of aging processes and the changes in morphological, physiological, and functional characteristics that are associated with aging is of great interest not only for researchers, but also for the general public. The aim of the present paper is to study the biological age and tempos of aging in women older than 60 years, including long-lived females (over 90-years-old), and their associations with morphofunctional characteristics. Results Somatic traits, body mass components, and functional characteristics were investigated in 119 elderly (between 60 and 74-years-old) and long-lived (over 90-years-old) women in Tiraspol. With the special PC software ‘Diagnostics of Aging: BioAge’ (National Gerontological Center, Moscow, Russia) the biological age and tempos of aging were evaluated in the study participants. The results show close connections between morphofunctional changes, particularly in body mass components, and biological age. The software demonstrated its validity in the estimation of biological age in the group of elderly women. In the homogenous (according to their chronological age) group of women, three subgroups were separated with different tempos of aging: those with lower rates of aging (biological age less than chronological age by two years or more); those consistent with their chronological age, and those with accelerated tempos of aging (biological age higher than chronological age by two years or more). Conclusions Morphofunctional characteristics in the studied groups of women demonstrate the trends of age-involutive changes which can be traced through all groups, from those with slow rates of aging, to those with average rates, to those with accelerated tempos of aging, and finally in long-lived women. The results of comparative analysis show that women with accelerated aging are characterized with such traits as lower skeletal muscle mass, lower hand grip strength, and higher metabolic rate. Canonical discriminant

  7. Monitoring oil displacement processes with k-t accelerated spin echo SPI.

    PubMed

    Li, Ming; Xiao, Dan; Romero-Zerón, Laura; Balcom, Bruce J

    2016-03-01

    Magnetic resonance imaging (MRI) is a robust tool to monitor oil displacement processes in porous media. Conventional MRI measurement times can be lengthy, which hinders monitoring time-dependent displacements. Knowledge of the oil and water microscopic distribution is important because their pore scale behavior reflects the oil trapping mechanisms. The oil and water pore scale distribution is reflected in the magnetic resonance T2 signal lifetime distribution. In this work, a pure phase-encoding MRI technique, spin echo SPI (SE-SPI), was employed to monitor oil displacement during water flooding and polymer flooding. A k-t acceleration method, with low-rank matrix completion, was employed to improve the temporal resolution of the SE-SPI MRI measurements. Comparison to conventional SE-SPI T2 mapping measurements revealed that the k-t accelerated measurement was more sensitive and provided higher-quality results. It was demonstrated that the k-t acceleration decreased the average measurement time from 66.7 to 20.3 min in this work. A perfluorinated oil, containing no (1) H, and H2 O brine were employed to distinguish oil and water phases in model flooding experiments. High-quality 1D water saturation profiles were acquired from the k-t accelerated SE-SPI measurements. Spatially and temporally resolved T2 distributions were extracted from the profile data. The shift in the (1) H T2 distribution of water in the pore space to longer lifetimes during water flooding and polymer flooding is consistent with increased water content in the pore space. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Tanning accelerators: prevalence, predictors of use, and adverse effects.

    PubMed

    Herrmann, Jennifer L; Cunningham, Rachel; Cantor, Alan; Elewski, Boni E; Elmets, Craig A

    2015-01-01

    Tanning accelerators are topical products used by indoor tanners to augment and hasten the tanning process. These products contain tyrosine, psoralens, and/or other chemicals. We sought to better define the population using accelerators, identify predictors of their use, and describe any related adverse effects. This cross-sectional study surveyed 200 indoor tanners about their tanning practices and accelerator use. Primary analysis compared accelerator users with nonusers with respect to questionnaire variables. Descriptive statistics and χ(2) contingency tables were applied to identify statistically significant variables. Of respondents, 53% used accelerators; 97% were female and 3% were male with a median age of 22 years (range: 19-67). Users were more likely to spray tan, tan frequently, and be addicted to tanning. Acne and rashes were more common in accelerator users. Adverse reactions to accelerators prevented their further use 31% of the time. A limited adult population was evaluated; exact accelerator ingredients were not examined. Tanning accelerator users are high-risk indoor tanners who tan more frequently and who are more likely addicted to tanning. Acne and rashes are more common with these products and act as only mild deterrents to continued use. Additional research should investigate accelerators' longer-term health effects. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Depth of Processing and Age Differences.

    PubMed

    Kheirzadeh, Shiela; Pakzadian, Sarah Sadat

    2016-10-01

    The present article is aimed to investigate whether there are any differences between youngsters and adults in their working and long-term memory functioning. The theory of Depth of Processing (Craik and Lockhart in J Verbal Learning Verbal Behav 11:671-684, 1972) discusses the varying degrees of strengths of memory traces as the result of differential levels of processing on the retrieved input. Additionally, they claim that there are three levels of visual, auditory and semantic processes applied on the stimuli in the short-term memory leading to discrepancy in the durability of the memory traces and the later ease of recall and retrieval. In the present article, it is tried to demonstrate if there are evidences of more durable memory traces formed after semantic, visual and auditory processions of the incoming language data in two groups of (a) children in their language learning critical age and (b) youngsters who have passed the critical age period. The comparisons of the results made using two-way ANOVAs revealed the superiority of semantic processing for both age groups in recall, retention and consequently recognition of the new English vocabularies by EFL learners.

  10. Impact of laboratory treatment with coloring and fluorescent liquids on the optical properties of zirconia before and after accelerated aging.

    PubMed

    Rafael, Caroline Freitas; Cesar, Paulo Francisco; Fredel, Marcio; Magini, Ricardo de Souza; Liebermann, Anja; Maziero Volpato, Cláudia Angela

    2018-03-15

    Laboratory procedures, such as dipping in coloring and fluorescent liquids, can be used to improve the optical properties of zirconia. However, information is lacking on the effect of these liquids. The purpose of this in vitro study was to evaluate the color differences and degree of fluorescence of zirconia (3Y-TZP) treated with coloring and fluorescent liquids before and after an accelerated aging protocol. Forty disk-shaped specimens of 3Y-TZP were fabricated by milling and separated according to the laboratory treatment performed: white zirconia (control group); zirconia treated with coloring liquid (A2 group); zirconia treated with fluorescent liquid (fluorescent group); and zirconia treated with both liquids (A2 fluorescent group). The L*a*b* coordinates before aging (T 0 ) were obtained with a spectrophotometer, and the degree of fluorescence was measured. The disks were subjected to accelerated aging for 1 hour (T 1 ) and 5 hours (T 2 ). Measurements were made before and after each time interval. Color differences (ΔE 00 ) were calculated using the CIEDE2000 formula and analyzed by 2-way ANOVA. Lightness (ΔL'), chroma (ΔC'), and hue differences (ΔH') were analyzed by multivariate ANOVA. Degrees of fluorescence were obtained as percentages and were analyzed by 2-way ANOVA. Multiple comparisons were performed by the Tukey HSD test (α=.05). Color differences were observed when 3Y-TZP disks were treated with coloring (7.91 ΔE 00 ), with fluorescent liquid (5.81 ΔE 00 ), and with both liquids (5.52 ΔE 00 ). Accelerated aging resulted in color differences in the T 2 A2 group (6.74 ΔE 00 ) and at both times evaluated in the fluorescent group (T 1 =8.59 ΔE 00 and T 2 =8.47 ΔE 00 ) (P<.001). In the A2 fluorescent group, the degree of fluorescence was not influenced significantly (P>.05). The use of fluorescent liquid influenced the degree of fluorescence in the fluorescent group (T 0 =20%). Significant differences in color, lightness, chroma, and hue

  11. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, P.; /Fermilab; Cary, J.

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The Com

  12. Abrasive blast cleaning method for the renewal of worn-out acceleration tubes

    NASA Astrophysics Data System (ADS)

    Bartha, L.; Koltay, E.; Mórik, Gy.

    1996-04-01

    The degradation of the electrical properties of acceleration tubes emerging with performance time is known to be assigned mainly to impurities and surface breakdown tracks appearing on the inner surface of the insulators. Consequently, a radical treatment for removing the surface layer may result in a renewal of the tube. An abrasive blast cleaning procedure has been used on a set of worn-out acceleration tube units. The cleaned tube exhibited its original electrical characteristics and it has been used for more than 4000 h of operation up to the maximum rated voltage of our 5 MV electrostatic accelerator without any observable degradation. XRF and PIXE analytical measurements performed on used and blast-treated insulators as well as on electrode and pump oil samples reveal the contribution of elementary processes in the acceleration tube to the ageing of the tube and indicate the effectness of the blasting process used for the re-establishment of clean surface conditions.

  13. Glutamate Cysteine Ligase Modifier Subunit (Gclm) Null Mice Have Increased Ovarian Oxidative Stress and Accelerated Age-Related Ovarian Failure

    PubMed Central

    Lim, Jinhwan; Nakamura, Brooke N.; Mohar, Isaac; Kavanagh, Terrance J.

    2015-01-01

    Glutathione (GSH) is the one of the most abundant intracellular antioxidants. Mice lacking the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH. Our prior work showed that GSH plays antiapoptotic roles in ovarian follicles. We hypothesized that Gclm−/− mice have accelerated ovarian aging due to ovarian oxidative stress. We found significantly decreased ovarian GSH concentrations and oxidized GSH/oxidized glutathione redox potential in Gclm−/− vs Gclm+/+ ovaries. Prepubertal Gclm−/− and Gclm+/+ mice had similar numbers of ovarian follicles, and as expected, the total number of ovarian follicles declined with age in both genotypes. However, the rate of decline in follicles was significantly more rapid in Gclm−/− mice, and this was driven by accelerated declines in primordial follicles, which constitute the ovarian reserve. We found significantly increased 4-hydroxynonenal immunostaining (oxidative lipid damage marker) and significantly increased nitrotyrosine immunostaining (oxidative protein damage marker) in prepubertal and adult Gclm−/− ovaries compared with controls. The percentage of small ovarian follicles with increased granulosa cell proliferation was significantly higher in prepubertal and 2-month-old Gclm−/− vs Gclm+/+ ovaries, indicating accelerated recruitment of primordial follicles into the growing pool. The percentages of growing follicles with apoptotic granulosa cells were increased in young adult ovaries. Our results demonstrate increased ovarian oxidative stress and oxidative damage in young Gclm−/− mice, associated with an accelerated decline in ovarian follicles that appears to be mediated by increased recruitment of follicles into the growing pool, followed by apoptosis at later stages of follicular development. PMID:26083875

  14. Fanconi Anemia: A DNA repair disorder characterized by accelerated decline of the hematopoietic stem cell compartment and other features of aging.

    PubMed

    Brosh, Robert M; Bellani, Marina; Liu, Yie; Seidman, Michael M

    2017-01-01

    Fanconi Anemia (FA) is a rare autosomal genetic disorder characterized by progressive bone marrow failure (BMF), endocrine dysfunction, cancer, and other clinical features commonly associated with normal aging. The anemia stems directly from an accelerated decline of the hematopoietic stem cell compartment. Although FA is a complex heterogeneous disease linked to mutations in 19 currently identified genes, there has been much progress in understanding the molecular pathology involved. FA is broadly considered a DNA repair disorder and the FA gene products, together with other DNA repair factors, have been implicated in interstrand cross-link (ICL) repair. However, in addition to the defective DNA damage response, altered epigenetic regulation, and telomere defects, FA is also marked by elevated levels of inflammatory mediators in circulation, a hallmark of faster decline in not only other hereditary aging disorders but also normal aging. In this review, we offer a perspective of FA as a monogenic accelerated aging disorder, citing the latest evidence for its multi-factorial deficiencies underlying its unique clinical and cellular features. Published by Elsevier B.V.

  15. Holocene age of the Yuha burial: Direct radiocarbon determinations by accelerator mass spectrometry

    USGS Publications Warehouse

    Stafford, Thomas W.; Jull, A.J.T.; Zabel, T.H.; Donahue, D.J.; Duhamel, R.C.; Brendel, K.; Haynes, C.V.; Bischoff, J.L.; Payen, L.A.; Taylor, R.E.

    1984-01-01

    The view that human populations may not have arrived in the Western Hemisphere before about 12,000 radiocarbon yr BP1,2 has been challenged by claims of much greater antiquity for a small number of archaeological sites and human skeleton samples. One such site is the Homo sapiens sapiens cairn burial excavated in 1971 from the Yuha desert, Imperial County, California3-5. Radiocarbon analysis of caliche coating one of the bones of the skeleton yielded a radiocarbon age of 21,500??1,000 yr BP4, while radiocarbon and uranium series analyses of caliche coating a cairn boulder yielded ages of 22,125??400 and 19,000??3,000 yr BP, respectively5. The late Pleistocene age assignment to the Yuha burial has been challenged by comparing the cultural context of the burial with other cairn burials in the same region6, on the basis of the site's geomorphological context and from radiocarbon analyses of soil caliches. 7,8 In rebuttal, arguments in defence of the original age assignment have been presented9,10 as well as an amino acid racemization analysis on the Yuha skeleton indicating an age of 23,600??2,600 yr BP11. The tandem accelerator mass spectrometer at the University of Arizona has now been used to measure the ratio of 14C/13C in several organic and inorganic fractions of post-cranial bone from the Yuha H. sapiens sapiens skeleton. Isotope ratios from six chemical fractions all yielded radiocarbon ages for the skeleton of less than 4,000 yr BP. These results indicate that the Yuha skeleton is of Holocene age, in agreement with the cultural context of the burial, and in disagreement with the previously assigned Pleistocene age of 19,000-23,000 yr. ?? 1984 Nature Publishing Group.

  16. Accelerated numerical processing of electronically recorded holograms with reduced speckle noise.

    PubMed

    Trujillo, Carlos; Garcia-Sucerquia, Jorge

    2013-09-01

    The numerical reconstruction of digitally recorded holograms suffers from speckle noise. An accelerated method that uses general-purpose computing in graphics processing units to reduce that noise is shown. The proposed methodology utilizes parallelized algorithms to record, reconstruct, and superimpose multiple uncorrelated holograms of a static scene. For the best tradeoff between reduction of the speckle noise and processing time, the method records, reconstructs, and superimposes six holograms of 1024 × 1024 pixels in 68 ms; for this case, the methodology reduces the speckle noise by 58% compared with that exhibited by a single hologram. The fully parallelized method running on a commodity graphics processing unit is one order of magnitude faster than the same technique implemented on a regular CPU using its multithreading capabilities. Experimental results are shown to validate the proposal.

  17. Spatial structure of the neck and acceleration processes in a micropinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgov, A. N., E-mail: alnikdolgov@mail.ru; Klyachin, N. A., E-mail: NAKlyachin@mephi.ru; Prokhorovich, D. E., E-mail: prokhorovich73@mail.ru

    2016-12-15

    It is shown that the spatial structure of the micropinch neck during the transition from magnetohydrodynamic to radiative compression and the bremsstrahlung spectrum of the discharge in the photon energy range of up to 30 keV depend on the configuration of the inner electrode of the coaxial electrode system of the micropinch discharge. Analysis of the experimental results indicates that the acceleration processes in the electron component of the micropinch plasma develop earlier than radiative compression.

  18. Modified aging of elite athletes revealed by analysis of epigenetic age markers

    PubMed Central

    Spólnicka, Magdalena; Pośpiech, Ewelina; Adamczyk, Jakub Grzegorz; Freire-Aradas, Ana; Pepłońska, Beata; Zbieć-Piekarska, Renata; Makowska, Żanetta; Pięta, Anna; Lareu, Maria Victoria; Phillips, Christopher; Płoski, Rafał; Żekanowski, Cezary

    2018-01-01

    Recent progress in epigenomics has led to the development of prediction systems that enable accurate age estimation from DNA methylation data. Our objective was to track responses to intense physical exercise of individual age-correlated DNA methylation markers and to infer their potential impact on the aging processes. The study showed accelerated DNA hypermethylation for two CpG sites in TRIM59 and KLF14. Both markers predicted the investigated elite athletes to be several years older than controls and this effect was more substantial in subjects involved in power sports. Accordingly, the complete 5-CpG model revealed age acceleration of elite athletes (P=1.503x10-7) and the result was more significant amongst power athletes (P=1.051x10-9). The modified methylation of TRIM59 and KLF14 in top athletes may be accounted for by the biological roles played by these genes. Their known anti-tumour and anti-inflammatory activities suggests that intense physical training has a complex influence on aging and potentially launches signalling networks that contribute to the observed lower risk of elite athletes to develop cardiovascular disease and cancer. PMID:29466246

  19. Modified aging of elite athletes revealed by analysis of epigenetic age markers.

    PubMed

    Spólnicka, Magdalena; Pośpiech, Ewelina; Adamczyk, Jakub Grzegorz; Freire-Aradas, Ana; Pepłońska, Beata; Zbieć-Piekarska, Renata; Makowska, Żanetta; Pięta, Anna; Lareu, Maria Victoria; Phillips, Christopher; Płoski, Rafał; Żekanowski, Cezary; Branicki, Wojciech

    2018-02-15

    Recent progress in epigenomics has led to the development of prediction systems that enable accurate age estimation from DNA methylation data. Our objective was to track responses to intense physical exercise of individual age-correlated DNA methylation markers and to infer their potential impact on the aging processes. The study showed accelerated DNA hypermethylation for two CpG sites in TRIM59 and KLF14 . Both markers predicted the investigated elite athletes to be several years older than controls and this effect was more substantial in subjects involved in power sports. Accordingly, the complete 5-CpG model revealed age acceleration of elite athletes ( P =1.503x10 -7 ) and the result was more significant amongst power athletes (P=1.051x10 -9 ). The modified methylation of TRIM59 and KLF14 in top athletes may be accounted for by the biological roles played by these genes. Their known anti-tumour and anti-inflammatory activities suggests that intense physical training has a complex influence on aging and potentially launches signalling networks that contribute to the observed lower risk of elite athletes to develop cardiovascular disease and cancer.

  20. Modeling a Material's Instantaneous Velocity during Acceleration Driven by a Detonation's Gas-Push Process

    NASA Astrophysics Data System (ADS)

    Backofen, Joseph E.

    2005-07-01

    This paper will describe both the scientific findings and the model developed in order to quantfy a material's instantaneous velocity versus position, time, or the expansion ratio of an explosive's gaseous products while its gas pressure is accelerating the material. The formula derived to represent this gas-push process for the 2nd stage of the BRIGS Two-Step Detonation Propulsion Model was found to fit very well the published experimental data available for twenty explosives. When the formula's two key parameters (the ratio Vinitial / Vfinal and ExpansionRatioFinal) were adjusted slightly from the average values describing closely many explosives to values representing measured data for a particular explosive, the formula's representation of that explosive's gas-push process was improved. The time derivative of the velocity formula representing acceleration and/or pressure compares favorably to Jones-Wilkins-Lee equation-of-state model calculations performed using published JWL parameters.

  1. Engineering functionality gradients by dip coating process in acceleration mode.

    PubMed

    Faustini, Marco; Ceratti, Davide R; Louis, Benjamin; Boudot, Mickael; Albouy, Pierre-Antoine; Boissière, Cédric; Grosso, David

    2014-10-08

    In this work, unique functional devices exhibiting controlled gradients of properties are fabricated by dip-coating process in acceleration mode. Through this new approach, thin films with "on-demand" thickness graded profiles at the submillimeter scale are prepared in an easy and versatile way, compatible for large-scale production. The technique is adapted to several relevant materials, including sol-gel dense and mesoporous metal oxides, block copolymers, metal-organic framework colloids, and commercial photoresists. In the first part of the Article, an investigation on the effect of the dip coating speed variation on the thickness profiles is reported together with the critical roles played by the evaporation rate and by the viscosity on the fluid draining-induced film formation. In the second part, dip-coating in acceleration mode is used to induce controlled variation of functionalities by playing on structural, chemical, or dimensional variations in nano- and microsystems. In order to demonstrate the full potentiality and versatility of the technique, original graded functional devices are made including optical interferometry mirrors with bidirectional gradients, one-dimensional photonic crystals with a stop-band gradient, graded microfluidic channels, and wetting gradient to induce droplet motion.

  2. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  3. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE PAGES

    Persaud, A.; Seidl, P. A.; Ji, Q.; ...

    2017-10-26

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  4. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persaud, A.; Seidl, P. A.; Ji, Q.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  5. In-situ plasma processing to increase the accelerating gradients of SRF cavities

    DOE PAGES

    Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; ...

    2015-12-31

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipactingmore » issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.« less

  6. The electrical performance of polymeric insulating materials under accelerated aging in a fog chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorur, R.S.; Cherney, E.A.; Hackam, R.

    1988-07-01

    A comparative study of the ac (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low conductivity (250 ..mu..S/cm) fog, silicone rubber performed better than EPDM samples whereas in high conductivity (1000 ..mu..S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (Electronmore » Spectroscopy for Chemical Analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low molecular weight polymer chains and/or mobile fluids, such as silicone oil.« less

  7. Metabolic syndrome but not obesity measures are risk factors for accelerated age-related glomerular filtration rate decline in the general population.

    PubMed

    Stefansson, Vidar T N; Schei, Jørgen; Solbu, Marit D; Jenssen, Trond G; Melsom, Toralf; Eriksen, Bjørn O

    2018-05-01

    Rapid age-related glomerular filtration rate (GFR) decline increases the risk of end-stage renal disease, and a low GFR increases the risk of mortality and cardiovascular disease. High body mass index and the metabolic syndrome are well-known risk factors for patients with advanced chronic kidney disease, but their role in accelerating age-related GFR decline independent of cardiovascular disease, hypertension and diabetes is not adequately understood. We studied body mass index, waist circumference, waist-hip ratio and metabolic syndrome as risk factors for accelerated GFR decline in 1261 middle-aged people representative of the general population without diabetes, cardiovascular disease or kidney disease. GFR was measured as iohexol clearance at baseline and repeated after a median of 5.6 years. Metabolic syndrome was defined as fulfilling three out of five criteria, based on waist circumference, blood pressure, glucose, high-density lipoprotein cholesterol and triglycerides. The mean GFR decline rate was 0.95 ml/min/year. Neither the body mass index, waist circumference nor waist-hip ratio predicted statistically significant changes in age-related GFR decline, but individuals with baseline metabolic syndrome had a significant mean of 0.30 ml/min/year faster decline than individuals without metabolic syndrome in a multivariable adjusted linear regression model. This association was mainly driven by the triglyceride criterion of metabolic syndrome, which was associated with a significant 0.36 ml/min/year faster decline when analyzed separately. Results differed significantly when GFR was estimated using creatinine and/or cystatin C. Thus, metabolic syndrome, but not the body mass index, waist circumference or waist-hip ratio, is an independent risk factor for accelerated age-related GFR decline in the general population. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. D-Galactose High-Dose Administration Failed to Induce Accelerated Aging Changes in Neurogenesis, Anxiety, and Spatial Memory on Young Male Wistar Rats.

    PubMed

    Cardoso, Armando; Magano, Sara; Marrana, Francisco; Andrade, José P

    2015-12-01

    The model of accelerated senescence with the prolonged administration of d-galactose is used in anti-aging studies because it mimics several aging-associated alterations such as increase of oxidative stress and decline of cognition. However, there is no standardized protocol for this aging model, and recently some reports have questioned its effectiveness. To clarify this issue, we used a model of high-dose d-galactose on 1-month-old male Wistar rats and studied the hippocampus, one of the most affected brain regions. In one group (n = 10), d-galactose was daily administered intraperitoneally (300 mg/kg) during 8 weeks whereas age-matched controls (n = 10) were injected intraperitoneally with saline. A third group (n = 10) was treated with the same dose of d-galactose and with oral epigallocatechin-3-gallate (EGCG) (2 grams/L), a green tea catechin with anti-oxidant and neuroprotective properties. After treatments, animals were submitted to open-field, elevated plus-maze and Morris water maze tests, and neurogenesis in the dentate gyrus subgranular layer was quantified. There were no significant alterations when the three groups were compared in the number of doublecortin- and Ki-67-immunoreactive cells, and also on anxiety levels, spatial learning, and memory. Therefore, d-galactose was not effective in the induction of accelerated aging, and EGCG administered to d-galactose-treated animals did not improve behavior and had no effects on neurogenesis. We conclude that daily 300 mg/kg of d-galactose administered intraperitoneally may not be a suitable model for inducing age-related neurobehavioral alterations in young male Wistar rats. More studies are necessary to obtain a reliable and reproducible model of accelerated senescence in rodents using d-galactose.

  9. Introduction to Particle Acceleration in the Cosmos

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Horwitz, J. L.; Perez, J.; Quenby, J.

    2005-01-01

    Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.

  10. Intrauterine growth restriction programs an accelerated age-related increase in cardiovascular risk in male offspring

    PubMed Central

    Dasinger, John Henry; Intapad, Suttira; Backstrom, Miles A.; Carter, Anthony J.

    2016-01-01

    Placental insufficiency programs an increase in blood pressure associated with a twofold increase in serum testosterone in male growth-restricted offspring at 4 mo of age. Population studies indicate that the inverse relationship between birth weight and blood pressure is amplified with age. Thus, we tested the hypothesis that intrauterine growth restriction programs an age-related increase in blood pressure in male offspring. Growth-restricted offspring retained a significantly higher blood pressure at 12 but not at 18 mo of age compared with age-matched controls. Blood pressure was significantly increased in control offspring at 18 mo of age relative to control counterparts at 12 mo; however, blood pressure was not increased in growth-restricted at 18 mo relative to growth-restricted counterparts at 12 mo. Serum testosterone levels were not elevated in growth-restricted offspring relative to control at 12 mo of age. Thus, male growth-restricted offspring no longer exhibited a positive association between blood pressure and testosterone at 12 mo of age. Unlike hypertension in male growth-restricted offspring at 4 mo of age, inhibition of the renin-angiotensin system with enalapril (250 mg/l for 2 wk) did not abolish the difference in blood pressure in growth-restricted offspring relative to control counterparts at 12 mo of age. Therefore, these data suggest that intrauterine growth restriction programs an accelerated age-related increase in blood pressure in growth-restricted offspring. Furthermore, this study suggests that the etiology of increased blood pressure in male growth-restricted offspring at 12 mo of age differs from that at 4 mo of age. PMID:27147668

  11. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats

    PubMed Central

    Kopylova, Lyudmila V.; Cherepanov, Ivan V.; Snytnikova, Olga A.; Rumyantseva, Yuliya V.; Kolosova, Nataliya G.; Sagdeev, Renad Z.

    2011-01-01

    Purpose To determine the age-related and the cataract-specific changes in the crystallin composition in lenses of accelerated-senescence OXYS (cataract model) and Wistar (control) rats. Methods The water soluble (WS) and insoluble (WIS) fractions of the lens proteins were separated; the identity and relative abundance of each crystallin in WS fraction were determined with the use of two-dimensional electrophoresis (2-DE) and Matrix-Assisted Laser Desorption Ionization – Time Of Flight (MALDI-TOF) mass spectrometry. All statistical calculations were performed using the software package Statistica 6.0 by factor dispersion analysis (ANOVA/MANOVA) and Newman-Keuls post-hoc test for comparison of group mean values. Results The WIS protein content increased significantly in the aged animal lenses; the WIS/WS ratio increases in approximately 8 times to the age of 62 weeks. The interstrain difference was insignificant in this experiment. 2-DE maps of the young rat lenses (3 weeks) showed single spots for each lens protein while in older lenses (12 and 62 weeks) each crystallin was presented by several spots. The abundance of γA-γF-crystallins in WS fraction significantly decreases with age. A significant increase in the percentage abundance was also found for α-crystallins and βB2-crystallin from 3 to 12 weeks. The major differences between Wistar and OXYS lenses are the faster decay of the content of γA-γF-crystallins in OXYS lenses, and the significant decrease of unmodified αA-crystallin abundance in old OXYS lenses. Conclusions The presented results demonstrate that the increase of the water-insoluble (WIS) protein fraction is rather age-specific than cataract-specific phenomenon. The major age-related changes in WS protein composition are the fast insolubilization of γ-crystallins, and the increase of αB- and βB2-crystallin abundance. The main interstrain differences, which could be attributed to the cataract-specific processes, are the faster decay of the

  12. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaury, C.; Ta Phuoc, K.; Corde, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction lengthmore » to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.« less

  13. [Autonomic regulation at emotional stress under hypoxic conditions in the elderly with physiological and accelerated aging: effect of hypoxic training].

    PubMed

    Os'mak, E D; Asanov, É O

    2014-01-01

    The effect of hypoxic training on autonomic regulation in psycho-emotional stress conditions in hypoxic conditions in older people with physiological (25 people) and accelerated (28 people) aging respiratory system. It is shown that hypoxic training leads to an increase in vagal activity indicators (HF) and reduced simpatovagal index (LF/HF), have a normalizing effect on the autonomic balance during stress loads in older people with different types of aging respiratory system.

  14. Accelerated life testing of spacecraft subsystems

    NASA Technical Reports Server (NTRS)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  15. Mechanical and Chemical Properties of Harvested Hypalon Cable Jacket Subjected to Accelerated Thermal Aging

    DOE PAGES

    Duckworth, Robert C.; Kidder, Michelle K.; Aytug, Tolga; ...

    2018-02-27

    We report that for nuclear power plants (NPPs) considering second license renewal for operation beyond 60 years, knowledge of long-term operation, condition monitoring, and viability for the reactor components including reactor pressure vessel, concrete structures, and cable systems is essential. Such knowledge will provide NPP owners/operators with a basis for predicting performance and estimating the costs associated with monitoring or replacement programs for the affected systems. For cable systems that encompass a wide variety of materials, manufacturers, and in-plant locations, accelerated aging of harvested cable jacket and insulation can provide insight into a remaining useful life and methods for monitoring.more » Accelerated thermal aging in air at temperatures between 80°C and 120°C was conducted on a multiconductor control rod drive mechanism cable manufactured by Boston Insulated Wire (BIW). The cable, which had been in service for over 30 years, was jacketed with Hypalon and insulated with ethylene propylene rubber. From elongation at break (EAB) measurements and supporting Arrhenius analysis of the jacket material, an activation energy of 97.84 kJ/mol was estimated, and the time to degradation, as represented by 50% EAB at the expected maximum operating temperature of 45°C, was estimated to be 80 years. These values were slightly below previous measurements on similar BIW Hypalon cable jacket and could be attributed to either in-service degradation or variations in material properties from production variations. Lastly, results from indenter modulus measurements and Fourier transform infrared spectroscopy suggest possible markers that could be beneficial in monitoring cable conditions.« less

  16. Mechanical and Chemical Properties of Harvested Hypalon Cable Jacket Subjected to Accelerated Thermal Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C.; Kidder, Michelle K.; Aytug, Tolga

    We report that for nuclear power plants (NPPs) considering second license renewal for operation beyond 60 years, knowledge of long-term operation, condition monitoring, and viability for the reactor components including reactor pressure vessel, concrete structures, and cable systems is essential. Such knowledge will provide NPP owners/operators with a basis for predicting performance and estimating the costs associated with monitoring or replacement programs for the affected systems. For cable systems that encompass a wide variety of materials, manufacturers, and in-plant locations, accelerated aging of harvested cable jacket and insulation can provide insight into a remaining useful life and methods for monitoring.more » Accelerated thermal aging in air at temperatures between 80°C and 120°C was conducted on a multiconductor control rod drive mechanism cable manufactured by Boston Insulated Wire (BIW). The cable, which had been in service for over 30 years, was jacketed with Hypalon and insulated with ethylene propylene rubber. From elongation at break (EAB) measurements and supporting Arrhenius analysis of the jacket material, an activation energy of 97.84 kJ/mol was estimated, and the time to degradation, as represented by 50% EAB at the expected maximum operating temperature of 45°C, was estimated to be 80 years. These values were slightly below previous measurements on similar BIW Hypalon cable jacket and could be attributed to either in-service degradation or variations in material properties from production variations. Lastly, results from indenter modulus measurements and Fourier transform infrared spectroscopy suggest possible markers that could be beneficial in monitoring cable conditions.« less

  17. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (acceleration. At least three different groups of central response dynamics were described according to the properties observed for motion along the maximum sensitivity direction. "High-pass" neurons exhibited increasing gains and phase values as a function of frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements

  18. Global form and motion processing in healthy ageing.

    PubMed

    Agnew, Hannah C; Phillips, Louise H; Pilz, Karin S

    2016-05-01

    The ability to perceive biological motion has been shown to deteriorate with age, and it is assumed that older adults rely more on the global form than local motion information when processing point-light walkers. Further, it has been suggested that biological motion processing in ageing is related to a form-based global processing bias. Here, we investigated the relationship between older adults' preference for form information when processing point-light actions and an age-related form-based global processing bias. In a first task, we asked older (>60years) and younger adults (19-23years) to sequentially match three different point-light actions; normal actions that contained local motion and global form information, scrambled actions that contained primarily local motion information, and random-position actions that contained primarily global form information. Both age groups overall performed above chance in all three conditions, and were more accurate for actions that contained global form information. For random-position actions, older adults were less accurate than younger adults but there was no age-difference for normal or scrambled actions. These results indicate that both age groups rely more on global form than local motion to match point-light actions, but can use local motion on its own to match point-light actions. In a second task, we investigated form-based global processing biases using the Navon task. In general, participants were better at discriminating the local letters but faster at discriminating global letters. Correlations showed that there was no significant linear relationship between performance in the Navon task and biological motion processing, which suggests that processing biases in form- and motion-based tasks are unrelated. Copyright © 2016. Published by Elsevier B.V.

  19. Age Differences in Face Processing: The Role of Perceptual Degradation and Holistic Processing.

    PubMed

    Boutet, Isabelle; Meinhardt-Injac, Bozana

    2018-01-24

    We simultaneously investigated the role of three hypotheses regarding age-related differences in face processing: perceptual degradation, impaired holistic processing, and an interaction between the two. Young adults (YA) aged 20-33-year olds, middle-age adults (MA) aged 50-64-year olds, and older adults (OA) aged 65-82-year olds were tested on the context congruency paradigm, which allows measurement of face-specific holistic processing across the life span (Meinhardt-Injac, Persike & Meinhardt, 2014. Acta Psychologica, 151, 155-163). Perceptual degradation was examined by measuring performance with faces that were not filtered (FSF), with faces filtered to preserve low spatial frequencies (LSF), and with faces filtered to preserve high spatial frequencies (HSF). We found that reducing perceptual signal strength had a greater impact on MA and OA for HSF faces, but not LSF faces. Context congruency effects were significant and of comparable magnitude across ages for FSF, LSF, and HSF faces. By using watches as control objects, we show that these holistic effects reflect face-specific mechanisms in all age groups. Our results support the perceptual degradation hypothesis for faces containing only HSF and suggest that holistic processing is preserved in aging even under conditions of reduced signal strength. © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Chronic Inflammation: Accelerator of Biological Aging.

    PubMed

    Fougère, Bertrand; Boulanger, Eric; Nourhashémi, Fati; Guyonnet, Sophie; Cesari, Matteo

    2017-09-01

    Biological aging is characterized by a chronic low-grade inflammation level. This chronic phenomenon has been named "inflamm-aging" and is a highly significant risk factor for morbidity and mortality in the older persons. The most common theories of inflamm-aging include redox stress, mitochondrial dysfunction, glycation, deregulation of the immune system, hormonal changes, epigenetic modifications, and dysfunction telomere attrition. Inflamm-aging plays a role in the initiation and progression of age-related diseases such as type II diabetes, Alzheimer's disease, cardiovascular disease, frailty, sarcopenia, osteoporosis, and cancer. This review will cover the identification of pathways that control age-related inflammation across multiple systems and its potential causal role in contributing to adverse health outcomes. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Molecular inflammation as an underlying mechanism of the aging process and age-related diseases.

    PubMed

    Chung, H Y; Lee, E K; Choi, Y J; Kim, J M; Kim, D H; Zou, Y; Kim, C H; Lee, J; Kim, H S; Kim, N D; Jung, J H; Yu, B P

    2011-07-01

    Aging is a biological process characterized by time-dependent functional declines that are influenced by changes in redox status and by oxidative stress-induced inflammatory reactions. An organism's pro-inflammatory status may underlie the aging process and age-related diseases. In this review, we explore the molecular basis of low-grade, unresolved, subclinical inflammation as a major risk factor for exacerbating the aging process and age-related diseases. We focus on the redox-sensitive transcription factors, NF-κB and FOXO, which play essential roles in the expression of pro-inflammatory mediators and anti-oxidant enzymes, respectively. Major players in molecular inflammation are discussed with respect to the age-related up-regulation of pro-inflammatory cytokines and adhesion molecules, cyclo-oxygenase-2, lipoxygenase, and inducible nitric oxide synthase. The molecular inflammation hypothesis proposed by our laboratory is briefly described to give further molecular insights into the intricate interplay among redox balance, pro-inflammatory gene activation, and chronic age-related inflammatory diseases. The final section discusses calorie restriction as an aging-retarding intervention that also exhibits extraordinarily effective anti-inflammatory activity by modulating GSH redox, NF-κB, SIRT1, PPARs, and FOXOs.

  2. Comparison of cable ageing

    NASA Astrophysics Data System (ADS)

    Plaček, Vít; Kohout, Tomáš

    2010-03-01

    Two cable types, which currently are used in nuclear power plants (NPP) and which are composed by jacket/insulation materials, i.e. PVC/PVC and PVC/PE, were exposed to accelerated ageing conditions, in order to simulate their behavior after 10 years in service. The cables were aged under two different test conditions: With relatively high accelerating ageing speed:Radiation ageing was carried out at room temperature at a dose rate of 2900 Gy/h, followed by thermal ageing at 100 °C. This accelerated ageing condition was fairly fast, but still in compliance with the standards. With moderate ageing speed:The radiation and thermal ageing was performed simultaneously (superimposed) at a dose rate of 2.7-3.7Gy/h and a temperature of 68-70 °C. Such a test condition seems to be very close to the radiation and temperature impact onto the cables in the real NPP service. Finally, mechanical properties were measured to characterize the ageing status of the cables. The purpose of this study was to compare degradation effects, derived from both ageing methods, and to demonstrate that results obtained from high values of accelerating parameters and from fast ageing simulation can be very different from reality. The observed results corroborated this assumption.

  3. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    PubMed

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  4. Accelerators for E-beam and X-ray processing

    NASA Astrophysics Data System (ADS)

    Auslender, V. L.; Bryazgin, A. A.; Faktorovich, B. L.; Gorbunov, V. A.; Kokin, E. N.; Korobeinikov, M. V.; Krainov, G. S.; Lukin, A. N.; Maximov, S. A.; Nekhaev, V. E.; Panfilov, A. D.; Radchenko, V. N.; Tkachenko, V. O.; Tuvik, A. A.; Voronin, L. A.

    2002-03-01

    During last years the demand for pasteurization and desinsection of various food products (meat, chicken, sea products, vegetables, fruits, etc.) had increased. The treatment of these products in industrial scale requires the usage of powerful electron accelerators with energy 5-10 MeV and beam power at least 50 kW or more. The report describes the ILU accelerators with energy range up to 10 MeV and beam power up to 150 kW.The different irradiation schemes in electron beam and X-ray modes for various products are described. The design of the X-ray converter and 90° beam bending system are also given.

  5. Explosive and pyrotechnic aging demonstration

    NASA Technical Reports Server (NTRS)

    Rouch, L. L., Jr.; Maycock, J. N.

    1976-01-01

    The survivability was experimentally verified of fine selected explosive and pyrotechnic propellant materials when subjected to sterilization, and prolonged exposure to space environments. This verification included thermal characterization, sterilization heat cycling, sublimation measurements, isothermal decomposition measurements, and accelerated aging at a preselected elevated temperature. Temperatures chosen for sublimation and isothermal decomposition measurements were those in which the decomposition processess occurring would be the same as those taking place in real-time aging. The elevated temperature selected (84 C) for accelerated aging was based upon the parameters calculated from the kinetic data obtained in the isothermal measurement tests and was such that one month of accelerated aging in the laboratory approximated one year of real-time aging at 66 C. Results indicate that HNS-IIA, pure PbN6, KDNBF, and Zr/KC10 are capable of withstanding sterilization. The accelerated aging tests indicated that unsterilized HNS-IIA and Zr/KC104 can withstand the 10 year, elevated temperature exposure, pure PbN6 and KDNBF exhibit small weight losses (less than 2 percent) and B/KC104 exhibits significant changes in its thermal characteristics. Accelerated aging tests after sterilization indicated that only HNS-IIA exhibited high stability.

  6. Soiling of building envelope surfaces and its effect on solar reflectance – Part III: Interlaboratory study of an accelerated aging method for roofing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleiman, Mohamad; Chen, Sharon; Gilbert, Haley E.

    A laboratory method to simulate natural exposure of roofing materials has been reported in a companion article. Here in the current article, we describe the results of an international, nine-participant interlaboratory study (ILS) conducted in accordance with ASTM Standard E691-09 to establish the precision and reproducibility of this protocol. The accelerated soiling and weathering method was applied four times by each laboratory to replicate coupons of 12 products representing a wide variety of roofing categories (single-ply membrane, factory-applied coating (on metal), bare metal, field-applied coating, asphalt shingle, modified-bitumen cap sheet, clay tile, and concrete tile). Participants reported initial and laboratory-agedmore » values of solar reflectance and thermal emittance. Measured solar reflectances were consistent within and across eight of the nine participating laboratories. Measured thermal emittances reported by six participants exhibited comparable consistency. For solar reflectance, the accelerated aging method is both repeatable and reproducible within an acceptable range of standard deviations: the repeatability standard deviation sr ranged from 0.008 to 0.015 (relative standard deviation of 1.2–2.1%) and the reproducibility standard deviation sR ranged from 0.022 to 0.036 (relative standard deviation of 3.2–5.8%). The ILS confirmed that the accelerated aging method can be reproduced by multiple independent laboratories with acceptable precision. In conclusion, this study supports the adoption of the accelerated aging practice to speed the evaluation and performance rating of new cool roofing materials.« less

  7. High Gradient Accelerator Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temkin, Richard

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less

  8. Comparison of clinical explants and accelerated hydrolytic aging to improve biostability assessment of silicone-based polyurethanes.

    PubMed

    Cosgriff-Hernandez, Elizabeth; Tkatchouk, Ekaterina; Touchet, Tyler; Sears, Nick; Kishan, Alysha; Jenney, Christopher; Padsalgikar, Ajay D; Chen, Emily

    2016-07-01

    Although silicone-based polyurethanes have demonstrated increased oxidative stability, there have been conflicting reports of the long-term hydrolytic stability of Optim™ and PurSil(®) 35 based on recent temperature-accelerated hydrolysis studies. The goal of the current study was to identify in vitro-in vivo correlations to determine the relevance of this accelerated in vitro model for predicting clinical outcomes. Temperature-accelerated hydrolytic aging of three commonly used cardiac lead insulation materials, Optim™, Elasthane™ 55D, Elasthane™ 80A, and a related silicone-polyurethane, PurSil(®) 35, was performed. After 1 year at 85°C, similar losses in Mn and Mz were observed for the poly(ether urethanes), but an increase in Mz loss as compared to Mn loss was observed for the silicone-based polyurethanes. A similar trend of increased Mz loss as compared to Mn loss was observed in explanted Optim™ leads after 2-3 years; however, no statistically significant Mn loss was detected between 2-3 and 7-8 years of implantation. Given this preferential loss of high molecular weight chains, it was hypothesized that the observed differences between the polyurethanes were due to allophanate dissociation rather than backbone chain scission. Following full dissociation of the small percentage of allophanates in vivo, the observed molecular weight stability and proven clinical performance of Optim™ was attributed to the well-documented stability of the urethane bond under physiological conditions. This allophanate dissociation reaction is incompatible with the first order mechanism proposed in previous temperature-accelerated hydrolysis studies and may be the reason for the model's inaccurate prediction of significant and progressive molecular weight loss in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1805-1816, 2016. © 2016 Wiley Periodicals, Inc.

  9. Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, J.H.; Michelotti, M.D.; Riemer, N.

    2016-10-01

    Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removalmore » rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.« less

  10. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data

    NASA Astrophysics Data System (ADS)

    Ecker, Madeleine; Gerschler, Jochen B.; Vogel, Jan; Käbitz, Stefan; Hust, Friedrich; Dechent, Philipp; Sauer, Dirk Uwe

    2012-10-01

    Battery lifetime prognosis is a key requirement for successful market introduction of electric and hybrid vehicles. This work aims at the development of a lifetime prediction approach based on an aging model for lithium-ion batteries. A multivariable analysis of a detailed series of accelerated lifetime experiments representing typical operating conditions in hybrid electric vehicle is presented. The impact of temperature and state of charge on impedance rise and capacity loss is quantified. The investigations are based on a high-power NMC/graphite lithium-ion battery with good cycle lifetime. The resulting mathematical functions are physically motivated by the occurring aging effects and are used for the parameterization of a semi-empirical aging model. An impedance-based electric-thermal model is coupled to the aging model to simulate the dynamic interaction between aging of the battery and the thermal as well as electric behavior. Based on these models different drive cycles and management strategies can be analyzed with regard to their impact on lifetime. It is an important tool for vehicle designers and for the implementation of business models. A key contribution of the paper is the parameterization of the aging model by experimental data, while aging simulation in the literature usually lacks a robust empirical foundation.

  11. SU-F-T-475: An Evaluation of the Overlap Between the Acceptance Testing and Commissioning Processes for Conventional Medical Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, A; Rangaraj, D; Perez-Andujar, A

    2016-06-15

    Purpose: This work’s objective is to determine the overlap of processes, in terms of sub-processes and time, between acceptance testing and commissioning of a conventional medical linear accelerator and to evaluate the time saved by consolidating the two processes. Method: A process map for acceptance testing for medical linear accelerators was created from vendor documentation (Varian and Elekta). Using AAPM TG-106 and inhouse commissioning procedures, a process map was created for commissioning of said accelerators. The time to complete each sub-process in each process map was evaluated. Redundancies in the processes were found and the time spent on each weremore » calculated. Results: Mechanical testing significantly overlaps between the two processes - redundant work here amounts to 9.5 hours. Many beam non-scanning dosimetry tests overlap resulting in another 6 hours of overlap. Beam scanning overlaps somewhat - acceptance tests include evaluating PDDs and multiple profiles but for only one field size while commissioning beam scanning includes multiple field sizes and depths of profiles. This overlap results in another 6 hours of rework. Absolute dosimetry, field outputs, and end to end tests are not done at all in acceptance testing. Finally, all imaging tests done in acceptance are repeated in commissioning, resulting in about 8 hours of rework. The total time overlap between the two processes is about 30 hours. Conclusion: The process mapping done in this study shows that there are no tests done in acceptance testing that are not also recommended to do for commissioning. This results in about 30 hours of redundant work when preparing a conventional linear accelerator for clinical use. Considering these findings in the context of the 5000 linacs in the United states, consolidating acceptance testing and commissioning would have allowed for the treatment of an additional 25000 patients using no additional resources.« less

  12. Towards Prognostics of Power MOSFETs: Accelerated Aging and Precursors of Failure

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saxena, Abhinav; Wysocki, Philip; Saha, Sankalita; Goebel, Kai

    2010-01-01

    This paper presents research results dealing with power MOSFETs (metal oxide semiconductor field effect transistor) within the prognostics and health management of electronics. Experimental results are presented for the identification of the on-resistance as a precursor to failure of devices with die-attach degradation as a failure mechanism. Devices are aged under power cycling in order to trigger die-attach damage. In situ measurements of key electrical and thermal parameters are collected throughout the aging process and further used for analysis and computation of the on-resistance parameter. Experimental results show that the devices experience die-attach damage and that the on-resistance captures the degradation process in such a way that it could be used for the development of prognostics algorithms (data-driven or physics-based).

  13. Dissociating Normal Aging from Alzheimer’s Disease: A View from Cognitive Neuroscience

    PubMed Central

    Toepper, Max

    2017-01-01

    Both normal aging and Alzheimer’s disease (AD) are associated with changes in cognition, grey and white matter volume, white matter integrity, neural activation, functional connectivity, and neurotransmission. Obviously, all of these changes are more pronounced in AD and proceed faster providing the basis for an AD diagnosis. Since these differences are quantitative, however, it was hypothesized that AD might simply reflect an accelerated aging process. The present article highlights the different neurocognitive changes associated with normal aging and AD and shows that, next to quantitative differences, there are multiple qualitative differences as well. These differences comprise different neurocognitive dissociations as different cognitive deficit profiles, different weights of grey and white matter atrophy, and different gradients of structural decline. These qualitative differences clearly indicate that AD cannot be simply described as accelerated aging process but on the contrary represents a solid entity. PMID:28269778

  14. Anti-aging and aging factors in life. The role of free radicals

    NASA Astrophysics Data System (ADS)

    Getoff, Nikola

    2007-10-01

    The present review deals with some factors determining the anti-aging as well as the aging process. In order to get a deeper insight in the subject matter, firstly some less known spectroscopic and kinetic data of antioxidant vitamins (C, E, β-carotene) acting as anti-aging factors by electron transfer are briefly discussed. The generation of oxygen transients (OH, ROO rad , 1O 2, ozone radicals, etc.) by sunlight, ultrasonic and microwave radiation are causing "oxygen stress" and contribute to early ageing is also reviewed. Particular attention is paid to external environmental aging factors. Their action is based on the incorporation of various pollutants contained in water and air in the human organism. In this respect the polycyclic aromatic hydrocarbons (PAHs) play an essential role by initiating DNA-mutation, leading to an accelerate aging, carcinogenesis and diseases.

  15. Expression of CGRP neurotransmitter and vascular genesis marker mRNA is age-dependent in superior cervical ganglia of senescence-accelerated prone mice.

    PubMed

    Mitsuoka, Kazuyuki; Kikutani, Takeshi; Miwa, Yoko; Sato, Iwao

    2018-01-18

    Calcitonin gene-related peptide (CGRP) is a neurotransmitter that is released from the superior cervical ganglion (SCG) and causes head and neck pain. The morphological properties of human SCG neurons, including neurotransmitter content, are altered during aging. However, morphological changes in CGRP in the SCG during aging are not known. Therefore, we investigated CGRP and other markers in the SCG during aging in an aging model of senescence-accelerated prone mouse (SAMP8) and senescence-accelerated resistant mice (SAMR1) using real-time RT-PCR mRNA analyses and in situ hybridization. The abundance of neurotransmitter (CGRP, NPY, TRPV1), vascular genesis marker (CD31, LYVE-1), and cytochrome C mRNA differed between 12-week-old and 24-week-old SAMP8 and SAMR1. Abundance of TRPV1, CD31 and cytochrome C mRNAs of SAMP8 decreased between 12- and 24-week-old. The ratio of CGRP mRNA positive cells and CGRP mRNA abundance levels of the SCG of aging mouse such as SAMP8 have already been also higher than that of SAMR1 at 12-week-old. The CGRP positive shrunken ganglion cells was increased from 12- to 24-weeks-old mouse in SAMR1 and SAMP8. The SCG primarily affected the internal and external carotid arteries, larynx thyroid gland, and pharyngeal muscle during aging. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Social-emotional characteristics of gifted accelerated and non-accelerated students in the Netherlands.

    PubMed

    Hoogeveen, Lianne; van Hell, Janet G; Verhoeven, Ludo

    2012-12-01

    In the studies of acceleration conducted so far a multidimensional perspective has largely been neglected. No attempt has been made to relate social-emotional characteristics of accelerated versus non-accelerated students in perspective of environmental factors. In this study, social-emotional characteristics of accelerated gifted students in the Netherlands were examined in relation to personal and environmental factors. Self-concept and social contacts of accelerated (n = 148) and non-accelerated (n = 55) gifted students, aged 4 to 27 (M = 11.22, SD = 4.27) were measured. Self-concept and social contacts of accelerated and non-accelerated gifted students were measured using a questionnaire and a diary, and parents of these students evaluated their behavioural characteristics. Gender and birth order were studied as personal factors and grade, classroom, teachers' gender, teaching experience, and the quality of parent-school contact as environmental factors. The results showed minimal differences in the social-emotional characteristics of accelerated and non-accelerated gifted students. The few differences we found favoured the accelerated students. We also found that multiple grade skipping does not have negative effects on social-emotional characteristics, and that long-term effects of acceleration tend to be positive. As regards the possible modulation of personal and environmental factors, we merely found an impact of such factors in the non-accelerated group. The results of this study strongly suggest that social-emotional characteristics of accelerated gifted students and non-accelerated gifted students are largely similar. These results thus do not support worries expressed by teachers about the acceleration of gifted students. Our findings parallel the outcomes of earlier studies in the United States and Germany in that we observed that acceleration does not harm gifted students, not even in the case of multiple grade skipping. On the contrary, there is a

  17. Characteristics of four SPE groups with different origins and acceleration processes

    NASA Astrophysics Data System (ADS)

    Kim, R.-S.; Cho, K.-S.; Lee, J.; Bong, S.-C.; Joshi, A. D.; Park, Y.-D.

    2015-09-01

    Solar proton events (SPEs) can be categorized into four groups based on their associations with flare or CME inferred from onset timings as well as acceleration patterns using multienergy observations. In this study, we have investigated whether there are any typical characteristics of associated events and acceleration sites in each group using 42 SPEs from 1997 to 2012. We find the following: (i) if the proton acceleration starts from a lower energy, a SPE has a higher chance to be a strong event (> 5000 particle flux per unit (pfu)) even if its associated flare and/or CME are not so strong. The only difference between the SPEs associated with flare and CME is the location of the acceleration site. (ii) For the former (Group A), the sites are very low (˜ 1 Rs) and close to the western limb, while the latter (Group C) have relatively higher (mean = 6.05 Rs) and wider acceleration sites. (iii) When the proton acceleration starts from the higher energy (Group B), a SPE tends to be a relatively weak event (< 1000 pfu), although its associated CME is relatively stronger than previous groups. (iv) The SPEs categorized by the simultaneous acceleration in whole energy range within 10 min (Group D) tend to show the weakest proton flux (mean = 327 pfu) in spite of strong associated eruptions. Based on those results, we suggest that the different characteristics of SPEs are mainly due to the different conditions of magnetic connectivity and particle density, which are changed with longitude and height as well as their origin.

  18. The MiAge Calculator: a DNA methylation-based mitotic age calculator of human tissue types.

    PubMed

    Youn, Ahrim; Wang, Shuang

    2018-01-01

    Cell division is important in human aging and cancer. The estimation of the number of cell divisions (mitotic age) of a given tissue type in individuals is of great interest as it allows not only the study of biological aging (using a new molecular aging target) but also the stratification of prospective cancer risk. Here, we introduce the MiAge Calculator, a mitotic age calculator based on a novel statistical framework, the MiAge model. MiAge is designed to quantitatively estimate mitotic age (total number of lifetime cell divisions) of a tissue using the stochastic replication errors accumulated in the epigenetic inheritance process during cell divisions. With the MiAge model, the MiAge Calculator was built using the training data of DNA methylation measures of 4,020 tumor and adjacent normal tissue samples from eight TCGA cancer types and was tested using the testing data of DNA methylation measures of 2,221 tumor and adjacent normal tissue samples of five other TCGA cancer types. We showed that within each of the thirteen cancer types studied, the estimated mitotic age is universally accelerated in tumor tissues compared to adjacent normal tissues. Across the thirteen cancer types, we showed that worse cancer survivals are associated with more accelerated mitotic age in tumor tissues. Importantly, we demonstrated the utility of mitotic age by showing that the integration of mitotic age and clinical information leads to improved survival prediction in six out of the thirteen cancer types studied. The MiAge Calculator is available at http://www.columbia.edu/∼sw2206/softwares.htm .

  19. A Brain Network Processing the Age of Faces

    PubMed Central

    Homola, György A.; Jbabdi, Saad; Beckmann, Christian F.; Bartsch, Andreas J.

    2012-01-01

    Age is one of the most salient aspects in faces and of fundamental cognitive and social relevance. Although face processing has been studied extensively, brain regions responsive to age have yet to be localized. Using evocative face morphs and fMRI, we segregate two areas extending beyond the previously established face-sensitive core network, centered on the inferior temporal sulci and angular gyri bilaterally, both of which process changes of facial age. By means of probabilistic tractography, we compare their patterns of functional activation and structural connectivity. The ventral portion of Wernicke's understudied perpendicular association fasciculus is shown to interconnect the two areas, and activation within these clusters is related to the probability of fiber connectivity between them. In addition, post-hoc age-rating competence is found to be associated with high response magnitudes in the left angular gyrus. Our results provide the first evidence that facial age has a distinct representation pattern in the posterior human brain. We propose that particular face-sensitive nodes interact with additional object-unselective quantification modules to obtain individual estimates of facial age. This brain network processing the age of faces differs from the cortical areas that have previously been linked to less developmental but instantly changeable face aspects. Our probabilistic method of associating activations with connectivity patterns reveals an exemplary link that can be used to further study, assess and quantify structure-function relationships. PMID:23185334

  20. Phase locked multiple rings in the radiation pressure ion acceleration process

    NASA Astrophysics Data System (ADS)

    Wan, Y.; Hua, J. F.; Pai, C.-H.; Li, F.; Wu, Y. P.; Lu, W.; Zhang, C. J.; Xu, X. L.; Joshi, C.; Mori, W. B.

    2018-04-01

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. the interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. A theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.

  1. Integrated condition monitoring of a fleet of offshore wind turbines with focus on acceleration streaming processing

    NASA Astrophysics Data System (ADS)

    Helsen, Jan; Gioia, Nicoletta; Peeters, Cédric; Jordaens, Pieter-Jan

    2017-05-01

    Particularly offshore there is a trend to cluster wind turbines in large wind farms, and in the near future to operate such a farm as an integrated power production plant. Predictability of individual turbine behavior across the entire fleet is key in such a strategy. Failure of turbine subcomponents should be detected well in advance to allow early planning of all necessary maintenance actions; Such that they can be performed during low wind and low electricity demand periods. In order to obtain the insights to predict component failure, it is necessary to have an integrated clean dataset spanning all turbines of the fleet for a sufficiently long period of time. This paper illustrates our big-data approach to do this. In addition, advanced failure detection algorithms are necessary to detect failures in this dataset. This paper discusses a multi-level monitoring approach that consists of a combination of machine learning and advanced physics based signal-processing techniques. The advantage of combining different data sources to detect system degradation is in the higher certainty due to multivariable criteria. In order to able to perform long-term acceleration data signal processing at high frequency a streaming processing approach is necessary. This allows the data to be analysed as the sensors generate it. This paper illustrates this streaming concept on 5kHz acceleration data. A continuous spectrogram is generated from the data-stream. Real-life offshore wind turbine data is used. Using this streaming approach for calculating bearing failure features on continuous acceleration data will support failure propagation detection.

  2. Literature and the Process of Aging.

    ERIC Educational Resources Information Center

    DeSalvo, Louise A.

    1980-01-01

    Contends that strong images of older people in today's books can help students better understand the process of aging. Discusses the novels "The Lilith Summer,""Queen of Hearts,""The Pigman," and "All Together Now." (FL)

  3. The Influence of Passive Acceleration and Exercise+Acceleration on Work Capacity and Orthostasis

    NASA Technical Reports Server (NTRS)

    Simonson, S. R.; Cowell, S. A.; Stocks, J. M.; Biagini, H. W.; Vener, J. M.; Evetts, S. N.; Bailey, K. N.; Evans, J.; Knapp, C.; Greenleaf, J. E.

    1999-01-01

    The losses of aerobic power and orthostatic tolerance are significant effects of manned C) spaceflight that can negatively impact crew health and safety. Daily acceleration and aerobic training may ameliorate these effects. To determine the influence of passive intermittent +Gz acceleration (PA) training and active acceleration + interval exercise (AE) training on work 0 0 capacity and the acute (1 min) response to 70 deg head-up tilt, 6 men (X-Bar SD: age, 33 +/- 6 y; height, 178.3 +/- 4.6 cm; mass, 86.3 +/- 6.6 kg) participated in two 3-wk training protocols. It was hypothesized that PA and AE training would improve orthostatic tolerance and that the addition of aerobic conditioning, would not alter this effect.

  4. Ageing and the border between health and disease.

    PubMed

    MacNee, William; Rabinovich, Roberto A; Choudhury, Gourab

    2014-11-01

    Ageing is associated with a progressive degeneration of the tissues, which has a negative impact on the structure and function of vital organs and is among the most important known risk factors for most chronic diseases. Since the proportion of the world's population aged >60 years will double in the next four decades, this will be accompanied by an increased incidence of chronic age-related diseases that will place a huge burden on healthcare resources. There is increasing evidence that many chronic inflammatory diseases represent an acceleration of the ageing process. Chronic pulmonary diseases represents an important component of the increasingly prevalent multiple chronic debilitating diseases, which are a major cause of morbidity and mortality, particularly in the elderly. The lungs age and it has been suggested that chronic obstructive pulmonary disease (COPD) is a condition of accelerated lung ageing and that ageing may provide a mechanistic link between COPD and many of its extrapulmonary effects and comorbidities. In this article we will describe the physiological changes and mechanisms of ageing, with particular focus on the pulmonary effects of ageing and how these may be relevant to the development of COPD and its major extrapulmonary manifestations. ©ERS 2014.

  5. Influence of aging and growth hormone on different members of the NFkB family and IkB expression in the heart from a murine model of senescence-accelerated aging.

    PubMed

    Forman, K; Vara, E; García, C; Kireev, R; Cuesta, S; Acuña-Castroviejo, D; Tresguerres, J A F

    2016-01-01

    Inflammation is related to several pathological processes. The aim of this study was to investigate the protein expression of the different subunits of the nuclear factor Kappa b (NFkBp65, p50, p105, p52, p100) and the protein expressions of IkB beta and alpha in the hearts from a murine model of accelerated aging (SAM model) by Western blot. In addition, the translocation of some isoforms of NFkB from cytosol to nuclei (NFkBp65, p50, p52) and ATP level content was studied. In addition we investigated the effect of the chronic administration of growth hormone (GH) on these age-related parameters. SAMP8 and SAMR1 mice of 2 and 10 months of age were used (n = 30). Animals were divided into five experimental groups: 2 old untreated (SAMP8/SAMR1), 2 young control (SAMP8/SAMR1) and one GH treated-old groups (SAMP8). Age-related changes were found in the studied parameters. We were able to see decreases of ATP level contents and the translocation of the nuclear factor kappa B p50, p52 and p65 from cytosol to nuclei in old SAMP8 mice together with a decrease of IKB proteins. However p100 and p105 did not show differences with aging. No significant changes were recorded in SAMR1 animals. GH treatment showed beneficial effects in old SAMP8 mice inducing an increase in ATP levels and inhibiting the translocation of some NFkB subunits such as p52. Our results supported the relation of NFkB activation with enhanced apoptosis and pro-inflammatory status in old SAMP8 mice and suggested a selective beneficial effect of the GH treatment, which was able to partially reduce the incidence of some deleterious changes in the heart of those mice.

  6. Episodic memory, concentrated attention and processing speed in aging: A comparative study of Brazilian age groups.

    PubMed

    Fonseca, Rochele Paz; Zimmermann, Nicolle; Scherer, Lilian Cristine; Parente, Maria Alice de Mattos Pimenta; Ska, Bernadette

    2010-01-01

    Neuropsychological studies on the processing of some specific cognitive functions throughout aging are essential for the understanding of human cognitive development from ages 19 to 89. This study aimed to verify the occurrence of differences in the processing of episodic memory, concentrated attention and speed of attentional processing among four age groups of adults. A total of 136 neurologically healthy adults, aged 19-89, with 9 or more years of schooling, took part in the study. Participants were divided according to four age groups: young, middle-aged, elderly and oldest old adults. Subtests of the Brief Neuropsychological Evaluation Instrument (NEUPSILIN) were applied for the cognitive assessment. Mean score of corrected answers and of response times were compared between groups by means of a one-way ANOVA test with post-hoc Scheffe procedures and ANCOVA including the co-variables of years of schooling and socio-economical scores. In general, differences in performance were observed from 60 years old on. Only the episodic memory task of delayed recall reflected differences from the age of around 40 onwards and processing speed from around the age of 70 onwards. Thus, differences were found between the age groups regarding their cognitive performance, particularly between young adults and elderly adults, and young adults and oldest old adults. Our research indicates that the middle-aged group should be better analyzed and that comparative cross-sectional studies including only extreme groups such as young and elderly adults are not sufficient.

  7. Accelerated Testing Of Photothermal Degradation Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  8. Age-related perspectives and emotion processing.

    PubMed

    Lynchard, Nicholas A; Radvansky, Gabriel A

    2012-12-01

    Emotion is processed differently in younger and older adults. Older adults show a positivity effect, whereas younger adults show a negativity effect. Socioemotional selectivity theory suggests that these effects can be elicited in any age group when age-related perspectives are manipulated. To examine this, younger and older adults were oriented to actual and age-contrasting possible selves. Emotion activations were assessed using lexical decision. In line with socioemotional selectivity theory, shifts in emotion orientation varied according to perspective, with both younger and older adults showing a negativity effect when a younger adult perspective was taken and a positivity effect when an older adult perspective was taken. 2013 APA, all rights reserved

  9. Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1992-01-01

    This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.

  10. [A paradox of a parasite prolonging the life of its host. Pearl mussel can cancel the accelerated aging program in salmon].

    PubMed

    Ziuganov, V V

    2005-01-01

    A unique case is analyzed when the accelerated aging program (progeria) in salmons (Salmonidae) can be canceled by larval parasite of the gills--freshwater pearl mussel Margaritifera margaritifera. As a result, the maximum age of Salmo fishes hosting the mussel can be as high as 13 years. The mollusk-fish system made it possible to demonstrate that the parasite can inhibit aging of the host and stimulate nonspecific resistance to stress, i.e., can control longevity. The mussel proved to increase the resistance to epitheliomata and cutaneous mycoses. The parasite is perceived to neutralize the senile changes in the regulatory system hypothalamus-pituitary-peripheral endocrine glands-hypothalamus of salmon.

  11. Accelerated construction

    DOT National Transportation Integrated Search

    2004-01-01

    Accelerated Construction Technology Transfer (ACTT) is a strategic process that uses various innovative techniques, strategies, and technologies to minimize actual construction time, while enhancing quality and safety on today's large, complex multip...

  12. Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to the Enterprise

    DTIC Science & Technology

    2010-04-29

    Technology: From the Office Larry Smith Software Technology Support Center to the Enterprise 517 SMXS/MXDEA 6022 Fir Avenue Hill AFB, UT 84056 801...2010 to 00-00-2010 4. TITLE AND SUBTITLE Accelerating Project and Process Improvement using Advanced Software Simulation Technology: From the Office to

  13. Universality of accelerating change

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Shlesinger, Michael F.

    2018-03-01

    On large time scales the progress of human technology follows an exponential growth trend that is termed accelerating change. The exponential growth trend is commonly considered to be the amalgamated effect of consecutive technology revolutions - where the progress carried in by each technology revolution follows an S-curve, and where the aging of each technology revolution drives humanity to push for the next technology revolution. Thus, as a collective, mankind is the 'intelligent designer' of accelerating change. In this paper we establish that the exponential growth trend - and only this trend - emerges universally, on large time scales, from systems that combine together two elements: randomness and amalgamation. Hence, the universal generation of accelerating change can be attained by systems with no 'intelligent designer'.

  14. Disparity between online and offline tests in accelerated aging tests of LED lamps under electric stress.

    PubMed

    Wang, Yao; Jing, Lei; Ke, Hong-Liang; Hao, Jian; Gao, Qun; Wang, Xiao-Xun; Sun, Qiang; Xu, Zhi-Jun

    2016-09-20

    The accelerated aging tests under electric stress for one type of LED lamp are conducted, and the differences between online and offline tests of the degradation of luminous flux are studied in this paper. The transformation of the two test modes is achieved with an adjustable AC voltage stabilized power source. Experimental results show that the exponential fitting of the luminous flux degradation in online tests possesses a higher fitting degree for most lamps, and the degradation rate of the luminous flux by online tests is always lower than that by offline tests. Bayes estimation and Weibull distribution are used to calculate the failure probabilities under the accelerated voltages, and then the reliability of the lamps under rated voltage of 220 V is estimated by use of the inverse power law model. Results show that the relative error of the lifetime estimation by offline tests increases as the failure probability decreases, and it cannot be neglected when the failure probability is less than 1%. The relative errors of lifetime estimation are 7.9%, 5.8%, 4.2%, and 3.5%, at the failure probabilities of 0.1%, 1%, 5%, and 10%, respectively.

  15. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  16. Age differences in dual information-processing modes: implications for cancer decision making.

    PubMed

    Peters, Ellen; Diefenbach, Michael A; Hess, Thomas M; Västfjäll, Daniel

    2008-12-15

    Age differences in affective/experiential and deliberative processes have important theoretical implications for cancer decision making, as cancer is often a disease of older adulthood. The authors examined evidence for adult age differences in affective and deliberative information processes, reviewed the sparse evidence about age differences in decision making, and introduced how dual process theories and their findings might be applied to cancer decision making. Age-related declines in the efficiency of deliberative processes predict poorer-quality decisions as we age, particularly when decisions are unfamiliar and the information is numeric. However, age-related adaptive processes, including an increased focus on emotional goals and greater experience, can influence decision making and potentially offset age-related declines. A better understanding of the mechanisms that underlie cancer decision processes in our aging population should ultimately allow us to help older adults to better help themselves.

  17. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE PAGES

    Wan, Y.; Hua, J. F.; Pai, C. -H.; ...

    2018-03-05

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  18. Phase locked multiple rings in the radiation pressure ion acceleration process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Y.; Hua, J. F.; Pai, C. -H.

    Laser contrast plays a crucial role for obtaining high quality ion beams in the radiation pressure ion acceleration (RPA) process. Through one- and two-dimensional particle-in-cell (PIC) simulations, we show that a plasma with a bi-peak density profile can be produced from a thin foil on the effects of a picosecond prepulse, and it can then lead to distinctive modulations in the ion phase space (phase locked double rings) when the main pulse interacts with the target. These fascinating ion dynamics are mainly due to the trapping effect from the ponderomotive potential well of a formed moving standing wave (i.e. themore » interference between the incoming pulse and the pulse reflected by a slowly moving surface) at nodes, quite different from the standard RPA process. Here, a theoretical model is derived to explain the underlying mechanism, and good agreements have been achieved with PIC simulations.« less

  19. Development of Acceleration Sensor and Acceleration Evaluation System for Super-Low-Range Frequencies

    NASA Astrophysics Data System (ADS)

    Asano, Shogo; Matsumoto, Hideki

    2001-05-01

    This paper describes the development process for acceleration sensors used on automobiles and an acceleration evaluation system designed specifically for acceleration at super-low-range frequencies. The features of the newly developed sensor are as follows. 1) Original piezo-bimorph design based on a disc-center-fixed structure achieves pyroeffect cancelling and stabilization of sensor characteristics and enables the detection of the acceleration of 0.0009 G at the super-low-range-frequency of 0.03 Hz. 2) The addition of a self-diagnostic function utilizing the characteristics of piezoceramics enables constant monitoring of sensor failure. The frequency range of acceleration for accurate vehicle motion control is considered to be from DC to about 50 Hz. However, the measurement of acceleration in the super-low-range frequency near DC has been difficult because of mechanical and electrical noise interruption. This has delayed the development of the acceleration sensor for automotive use. We have succeeded in the development of an acceleration evaluation system for super-low-range frequencies from 0.015 Hz to 2 Hz with detection of the acceleration range from 0.0002 G (0.2 gal) to 1 G, as well as the development of a piezoelectric-type acceleration sensor for automotive use.

  20. Why and How We Age, and Is That Process Modifiable?

    NASA Astrophysics Data System (ADS)

    Arking, R.

    Aging is an almost-universal biological process that is better understood in terms of an evolutionary explanation than in terms of a medical or adaptationist explanation. The major advances in human longevity which took place in developed countries during the past century arose from decreases in external (e.g., environmental) sources of mortality, and not from any effect on the aging process. Laboratory studies show that the aging process is under genetic control, can be manipulated, and can be expressed in three different phenotypes. The adult lifespan consists of the health span (ages 20-55 yrs) and the senescent span (ages 55+), with a relatively short but variable transition phase between the two. The most socially desirable phenotype would be that where the transition phase is delayed and the health span extended with little effect on the senescent span. The genetic, nutritional, cell-signaling and pharmecutical interventions inducing this phenotype are discussed. The genetic architecture of senescence is discussed and its stochastic nature made clear. The social and ethical consequences of pharmecutical intervention into the aging process are briefly discussed.

  1. Ground Test of the Urine Processing Assembly for Accelerations and Transfer Functions

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Almond, Deborah F. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the ground test of the urine processing assembly for accelerations and transfer functions. Details are given on the test setup, test data, data analysis, analytical results, and microgravity assessment. The conclusions of the tests include the following: (1) the single input/multiple output method is useful if the data is acquired by tri-axial accelerometers and inputs can be considered uncorrelated; (2) tying coherence with the matrix yields higher confidence in results; (3) the WRS#2 rack ORUs need to be isolated; (4) and future work includes a plan for characterizing performance of isolation materials.

  2. Employing OpenCL to Accelerate Ab Initio Calculations on Graphics Processing Units.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2017-06-13

    We present an extension of our graphics processing units (GPU)-accelerated quantum chemistry package to employ OpenCL compute kernels, which can be executed on a wide range of computing devices like CPUs, Intel Xeon Phi, and AMD GPUs. Here, we focus on the use of AMD GPUs and discuss differences as compared to CUDA-based calculations on NVIDIA GPUs. First illustrative timings are presented for hybrid density functional theory calculations using serial as well as parallel compute environments. The results show that AMD GPUs are as fast or faster than comparable NVIDIA GPUs and provide a viable alternative for quantum chemical applications.

  3. Age Differences in Dual Information-Processing Modes: Implications for Cancer Decision Making

    PubMed Central

    Peters, Ellen; Diefenbach, Michael A.; Hess, Thomas M.; Västfjäll, Daniel

    2008-01-01

    Age differences in affective/experiential and deliberative processes have important theoretical implications for cancer decision making as cancer is often a disease of older adulthood. We examine evidence for adult age differences in affective and deliberative information processes, review the sparse evidence about age differences in decision making and introduce how dual process theories and their findings might be applied to cancer decision making. Age-related declines in the efficiency of deliberative processes predict poorer-quality decisions as we age, particularly when decisions are unfamiliar and the information is numeric. However, age-related adaptive processes, including an increased focus on emotional goals and greater experience, can influence decision making and potentially offset age-related declines. A better understanding of the mechanisms that underlie cancer decision processes in our aging population should ultimately allow us to help older adults to better help themselves. PMID:19058148

  4. Auditory temporal processing in healthy aging: a magnetoencephalographic study

    PubMed Central

    Sörös, Peter; Teismann, Inga K; Manemann, Elisabeth; Lütkenhöner, Bernd

    2009-01-01

    Background Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years. Results The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants. Conclusion The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms. PMID:19351410

  5. Comparing aging of graphite/LiFePO4 cells at 22 °C and 55 °C - Electrochemical and photoelectron spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Hellqvist Kjell, Maria; Malmgren, Sara; Ciosek, Katarzyna; Behm, Mårten; Edström, Kristina; Lindbergh, Göran

    2013-12-01

    Accelerated aging at elevated temperature is commonly used to test lithium-ion battery lifetime, but the effect of an elevated temperature is still not well understood. If aging at elevated temperature would only be faster, but in all other respects equivalent to aging at ambient temperature, cells aged to end-of-life (EOL) at different temperatures would be very similar. The present study compares graphite/LiFePO4-based cells either cycle- or calendar-aged to EOL at 22 °C and 55 °C. Cells cycled at the two temperatures show differences in electrochemical impedance spectra as well as in X-ray photoelectron spectroscopy (XPS) spectra. These results show that lithium-ion cell aging is a complex set of processes. At elevated temperature, the aging is accelerated in process-specific ways. Furthermore, the XPS results of cycle-aged samples indicate increased deposition of oxygenated LiPF6 decomposition products in both the negative and positive electrode/electrolyte interfaces. The decomposition seems more pronounced at elevated temperature, and largely accelerated by cycling, which could contribute to the observed cell impedance increase.

  6. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE PAGES

    Doche, A.; Beekman, C.; Corde, S.; ...

    2017-10-27

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  7. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doche, A.; Beekman, C.; Corde, S.

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less

  8. Theory of unfolded cyclotron accelerator

    NASA Astrophysics Data System (ADS)

    Rax, J.-M.; Robiche, J.

    2010-10-01

    An acceleration process based on the interaction between an ion, a tapered periodic magnetic structure, and a circularly polarized oscillating electric field is identified and analyzed, and its potential is evaluated. A Hamiltonian analysis is developed in order to describe the interplay between the cyclotron motion, the electric acceleration, and the magnetic modulation. The parameters of this universal class of magnetic modulation leading to continuous acceleration without Larmor radius increase are expressed analytically. Thus, this study provides the basic scaling of what appears as a compact unfolded cyclotron accelerator.

  9. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  10. Effects of Bushen-Yizhi formula on age-related inflammation and oxidative stress in senescence-accelerated mice

    PubMed Central

    Hou, Xue-Qin; Song, Hou-Pan; Chen, Yun-Bo; Cheng, Shu-Yi; Fang, Shu-Huan; Zhang, Ji-Guo; Wang, Qi

    2018-01-01

    The present study aimed to investigate the possible effects and underlying molecular mechanism of Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine, on age-related degeneration of brain physiology in senescence-accelerated mouse prone 8 (SAMP8) mice. SAMP8 mice (age, 6 months) were administered BSYZ (1.46, 2.92 and 5.84 g/kg/day) for 30 days. Morris water maze and step-down tests demonstrated that BSYZ significantly improved memory impairments in SAMP8 mice. In addition, BSYZ significantly enhanced the expression levels of peroxisome proliferator-activated receptor-γ and B-cell lymphoma extra-large, and downregulated the expression levels of inflammatory mediators, glial fibrillary acidic protein, cyclooxygenase-2, nuclear factor-κB and interleukin-1β in the brain compared with untreated SAMP8 mice. Furthermore, BSYZ reversed disordered superoxide dismutase activity, malondialdehyde content and glutathione peroxidase activity, and ameliorated apoptosis and histological alterations. The present study indicated that BSYZ may attenuate cognitive impairment in SAMP8 mice, and modulate inflammation, oxidative stress and neuronal apoptosis. These results suggested that BSYZ may have the potential to be further developed into a therapeutic agent for protection against age-related neurodegenerative diseases. PMID:29568888

  11. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  12. A Review of the Aging Process and Facilities Topic.

    PubMed

    Jornitz, Maik W

    2015-01-01

    Aging facilities have become a concern in the pharmaceutical and biopharmaceutical manufacturing industry, so much that task forces are formed by trade organizations to address the topic. Too often, examples of aging or obsolete equipment, unit operations, processes, or entire facilities have been encountered. Major contributors to this outcome are the failure to invest in new equipment, disregarding appropriate maintenance activities, and neglecting the implementation of modern technologies. In some cases, a production process is insufficiently modified to manufacture a new product in an existing process that was used to produce a phased-out product. In other instances, manufacturers expanded the facility or processes to fulfill increasing demand and the scaling occurred in a non-uniform manner, which led to non-optimal results. Regulatory hurdles of post-approval changes in the process may thwart companies' efforts to implement new technologies. As an example, some changes have required 4 years to gain global approval. This paper will address cases of aging processes and facilities aside from modernizing options. © PDA, Inc. 2015.

  13. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  14. Relaxation processes and physical aging in metallic glasses

    NASA Astrophysics Data System (ADS)

    Ruta, B.; Pineda, E.; Evenson, Z.

    2017-12-01

    Since their discovery in the 1960s, metallic glasses have continuously attracted much interest across the physics and materials science communities. In the forefront are their unique properties, which hold the alluring promise of broad application in fields as diverse as medicine, environmental science and engineering. However, a major obstacle to their wide-spread commercial use is their inherent temporal instability arising from underlying relaxation processes that can dramatically alter their physical properties. The result is a physical aging process which can bring about degradation of mechanical properties, namely through embrittlement and catastrophic mechanical failure. Understanding and controlling the effects of aging will play a decisive role in our on-going endeavor to advance the use of metallic glasses as structural materials, as well as in the more general comprehension of out-of-equilibrium dynamics in complex systems. This review presents an overview of the current state of the art in the experimental advances probing physical aging and relaxation processes in metallic glasses. Similarities and differences between other hard and soft matter glasses are highlighted. The topic is discussed in a multiscale approach, first presenting the key features obtained in macroscopic studies, then connecting them to recent novel microscopic investigations. Particular emphasis is put on the occurrence of distinct relaxation processes beyond the main structural process in viscous metallic melts and their fate upon entering the glassy state, trying to disentangle results and formalisms employed by the different groups of the glass-science community. A microscopic viewpoint is presented, in which physical aging manifests itself in irreversible atomic-scale processes such as avalanches and intermittent dynamics, ascribed to the existence of a plethora of metastable glassy states across a complex energy landscape. Future experimental challenges and the comparison with

  15. Auroral particle acceleration: An example of a universal plasma process

    NASA Astrophysics Data System (ADS)

    Haerendel, G.

    1980-06-01

    The occurrence of discrete and narrow auroral arcs is attributed to a sudden release of magnetic tensions set up in a magnetospheric-ionospheric current circuit of high strength. At altitudes of several 1000 km the condition of frozen in magnetic fields can be broken temporarily in thin regions corresponding to the observed width of auroral arcs. This implies magnetic field-aligned potential drops of several kilovolts supported by certain anomalous transport processes which can only be maintained in a quasi-stationary fashion if the current density exceeds a critical limit. The region of field aligned potential drops is structured by two pairs of standing waves which are generalized Alfven waves of large amplitude across which the parallel electric field has a finite jump. The waves are emitted from the leading edge of the acceleration region which propagates slowly into the stressed magnetic field.

  16. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    PubMed

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  17. Top-down modulation of visual and auditory cortical processing in aging.

    PubMed

    Guerreiro, Maria J S; Eck, Judith; Moerel, Michelle; Evers, Elisabeth A T; Van Gerven, Pascal W M

    2015-02-01

    Age-related cognitive decline has been accounted for by an age-related deficit in top-down attentional modulation of sensory cortical processing. In light of recent behavioral findings showing that age-related differences in selective attention are modality dependent, our goal was to investigate the role of sensory modality in age-related differences in top-down modulation of sensory cortical processing. This question was addressed by testing younger and older individuals in several memory tasks while undergoing fMRI. Throughout these tasks, perceptual features were kept constant while attentional instructions were varied, allowing us to devise all combinations of relevant and irrelevant, visual and auditory information. We found no top-down modulation of auditory sensory cortical processing in either age group. In contrast, we found top-down modulation of visual cortical processing in both age groups, and this effect did not differ between age groups. That is, older adults enhanced cortical processing of relevant visual information and suppressed cortical processing of visual distractors during auditory attention to the same extent as younger adults. The present results indicate that older adults are capable of suppressing irrelevant visual information in the context of cross-modal auditory attention, and thereby challenge the view that age-related attentional and cognitive decline is due to a general deficits in the ability to suppress irrelevant information. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Are objective measures of physical capability related to accelerated epigenetic age? Findings from a British birth cohort

    PubMed Central

    Cooper, Rachel; Howe, Laura D; Relton, Caroline L; Davey Smith, George; Teschendorff, Andrew; Widschwendter, Martin; Wong, Andrew; Kuh, Diana; Hardy, Rebecca

    2017-01-01

    Objectives Our aim was to investigate the association of epigenetic age and physical capability in later life. Having a higher epigenetic than chronological age (known as age acceleration (AA)) has been found to be associated with an increased rate of mortality. Similarly, physical capability has been proposed as a marker of ageing due to its consistent associations with mortality. Setting The MRC National Survey of Health and Development (NSHD) cohort study. Participants We used data from 790 women from the NSHD who had DNA methylation data available. Design Epigenetic age was calculated using buccal cell (n=790) and matched blood tissue (n=152) from 790 female NSHD participants. We investigated the association of AA at age 53 with changes in physical capability in women from ages 53 to 60–64. Regression models of change in each measure of physical capability on AA were conducted. Secondary analysis focused on the relationship between AA and smoking, alcohol, body mass index (BMI) and socioeconomic position. Outcome measures Three objective measures of physical capability were used: grip strength, standing balance time and chair rise speed. Results Epigenetic age was lower than chronological age (mean 53.4) for both blood (50.3) and buccal cells (42.8). AA from blood was associated with a greater decrease in grip strength from ages 53 to 60–64 (0.42 kg decrease per year of AA, 95% CI 0.03, 0.82 kg; p=0.03, n=152), but no associations were observed with standing balance time or chair rise speed. Current smoking and lower BMI were associated with lower epigenetic age from buccal cells. Conclusions We found evidence that AA in blood is associated with a greater decrease in grip strength in British females aged between 53 and 60–64, but no association with standing balance time or chair rise speed was found. PMID:29092899

  19. Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair.

    PubMed

    Borgesius, Nils Z; de Waard, Monique C; van der Pluijm, Ingrid; Omrani, Azar; Zondag, Gerben C M; van der Horst, Gijsbertus T J; Melton, David W; Hoeijmakers, Jan H J; Jaarsma, Dick; Elgersma, Ype

    2011-08-31

    Age-related cognitive decline and neurodegenerative diseases are a growing challenge for our societies with their aging populations. Accumulation of DNA damage has been proposed to contribute to these impairments, but direct proof that DNA damage results in impaired neuronal plasticity and memory is lacking. Here we take advantage of Ercc1(Δ/-) mutant mice, which are impaired in DNA nucleotide excision repair, interstrand crosslink repair, and double-strand break repair. We show that these mice exhibit an age-dependent decrease in neuronal plasticity and progressive neuronal pathology, suggestive of neurodegenerative processes. A similar phenotype is observed in mice where the mutation is restricted to excitatory forebrain neurons. Moreover, these neuron-specific mutants develop a learning impairment. Together, these results suggest a causal relationship between unrepaired, accumulating DNA damage, and age-dependent cognitive decline and neurodegeneration. Hence, accumulated DNA damage could therefore be an important factor in the onset and progression of age-related cognitive decline and neurodegenerative diseases.

  20. Aging process alters hippocampal and cortical secretase activities of Wistar rats.

    PubMed

    Bertoldi, Karine; Cechinel, Laura Reck; Schallenberger, Bruna; Meireles, Louisiana; Basso, Carla; Lovatel, Gisele Agustini; Bernardi, Lisiane; Lamers, Marcelo Lazzaron; Siqueira, Ionara Rodrigues

    2017-01-15

    A growing body of evidence has demonstrated amyloid plaques in aged brain; however, little attention has been given to amyloid precursor protein (APP) processing machinery during the healthy aging process. The amyloidogenic and non-amyloidogenic pathways, represented respectively by β- and α-secretases (BACE and TACE), are responsible for APP cleavage. Our working hypothesis is that the normal aging process could imbalance amyloidogenic and non-amyloidogenic pathways specifically BACE and TACE activities. Besides, although it has been showed that exercise can modulate secretase activities in Alzheimer Disease models the relationship between exercise effects and APP processing during healthy aging process is rarely studied. Our aim was to investigate the aging process and the exercise effects on cortical and hippocampal BACE and TACE activities and aversive memory performance. Young adult and aged Wistar rats were subjected to an exercise protocol (20min/day for 2 weeks) and to inhibitory avoidance task. Biochemical parameters were evaluated 1h and 18h after the last exercise session in order to verify transitory and delayed exercise effects. Aged rats exhibited impaired aversive memory and diminished cortical TACE activity. Moreover, an imbalance between TACE and BACE activities in favor of BACE activity was observed in aged brain. Moderate treadmill exercise was unable to alter secretase activities in any brain areas or time points evaluated. Our results suggest that aging-related aversive memory decline is partly linked to decreased cortical TACE activity. Additionally, an imbalance between secretase activities can be related to the higher vulnerability to neurodegenerative diseases induced by aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Age, Marital Processes, and Depressed Affect

    ERIC Educational Resources Information Center

    Bookwala, Jamila; Jacobs, Jamie

    2004-01-01

    Purpose: We examined age-cohort differences in the interrelationships among marital processes and depressed affect. Design and Methods: We used data from individuals in first marriages that participated in the National Survey of Families and Households (NSFH). The NSFH interviewed one adult per household of a nationally representative sample.…

  2. Electron acceleration by turbulent plasmoid reconnection

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.

    2018-04-01

    In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.

  3. Age effects on sensory-processing abilities and their impact on handwriting.

    PubMed

    Engel-Yeger, Batya; Hus, Sari; Rosenblum, Sara

    2012-12-01

    Sensory-processing abilities are known to deteriorate in the elderly. As a result, daily activities such as handwriting may be impaired. Yet, knowledge about sensory-processing involvement in handwriting characteristics among older persons is limited. To examine how age influences sensory-processing abilities and the impact on handwriting as a daily performance. The study participants were 118 healthy, independently functioning adults divided into four age groups: 31-45, 46-60, 61-75 and 76+ years. All participants completed the Adolescent/ Adult Sensory Profile (AASP). Handwriting process was documented using the Computerized Handwriting Penmanship Evaluation Tool (ComPET). Age significantly affects sensory processing and handwriting pressure as well as temporal and spatial measures. Both handwriting time and spatial organization of the written product were predicted by sensory seeking. When examining age contribution to the prediction of handwriting by sensory processing, sensory seeking showed a tendency for predicting handwriting pressure (p = .06), while sensory sensitivity significantly predicted handwriting velocity. Age appears to influence sensory-processing abilities and affect daily performance tasks, such as handwriting, for which sensitivity and seeking for sensations are essential. Awareness of clinicians to sensory-processing deficits among older adults and examining their impact on broader daily activities are essential to improve daily performance and quality of life.

  4. Accelerated rescaling of single Monte Carlo simulation runs with the Graphics Processing Unit (GPU).

    PubMed

    Yang, Owen; Choi, Bernard

    2013-01-01

    To interpret fiber-based and camera-based measurements of remitted light from biological tissues, researchers typically use analytical models, such as the diffusion approximation to light transport theory, or stochastic models, such as Monte Carlo modeling. To achieve rapid (ideally real-time) measurement of tissue optical properties, especially in clinical situations, there is a critical need to accelerate Monte Carlo simulation runs. In this manuscript, we report on our approach using the Graphics Processing Unit (GPU) to accelerate rescaling of single Monte Carlo runs to calculate rapidly diffuse reflectance values for different sets of tissue optical properties. We selected MATLAB to enable non-specialists in C and CUDA-based programming to use the generated open-source code. We developed a software package with four abstraction layers. To calculate a set of diffuse reflectance values from a simulated tissue with homogeneous optical properties, our rescaling GPU-based approach achieves a reduction in computation time of several orders of magnitude as compared to other GPU-based approaches. Specifically, our GPU-based approach generated a diffuse reflectance value in 0.08ms. The transfer time from CPU to GPU memory currently is a limiting factor with GPU-based calculations. However, for calculation of multiple diffuse reflectance values, our GPU-based approach still can lead to processing that is ~3400 times faster than other GPU-based approaches.

  5. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes

    PubMed Central

    Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I.

    2016-01-01

    We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729

  6. Stochastic Modeling and Analysis of Multiple Nonlinear Accelerated Degradation Processes through Information Fusion

    PubMed Central

    Sun, Fuqiang; Liu, Le; Li, Xiaoyang; Liao, Haitao

    2016-01-01

    Accelerated degradation testing (ADT) is an efficient technique for evaluating the lifetime of a highly reliable product whose underlying failure process may be traced by the degradation of the product’s performance parameters with time. However, most research on ADT mainly focuses on a single performance parameter. In reality, the performance of a modern product is usually characterized by multiple parameters, and the degradation paths are usually nonlinear. To address such problems, this paper develops a new s-dependent nonlinear ADT model for products with multiple performance parameters using a general Wiener process and copulas. The general Wiener process models the nonlinear ADT data, and the dependency among different degradation measures is analyzed using the copula method. An engineering case study on a tuner’s ADT data is conducted to demonstrate the effectiveness of the proposed method. The results illustrate that the proposed method is quite effective in estimating the lifetime of a product with s-dependent performance parameters. PMID:27509499

  7. Stochastic Modeling and Analysis of Multiple Nonlinear Accelerated Degradation Processes through Information Fusion.

    PubMed

    Sun, Fuqiang; Liu, Le; Li, Xiaoyang; Liao, Haitao

    2016-08-06

    Accelerated degradation testing (ADT) is an efficient technique for evaluating the lifetime of a highly reliable product whose underlying failure process may be traced by the degradation of the product's performance parameters with time. However, most research on ADT mainly focuses on a single performance parameter. In reality, the performance of a modern product is usually characterized by multiple parameters, and the degradation paths are usually nonlinear. To address such problems, this paper develops a new s-dependent nonlinear ADT model for products with multiple performance parameters using a general Wiener process and copulas. The general Wiener process models the nonlinear ADT data, and the dependency among different degradation measures is analyzed using the copula method. An engineering case study on a tuner's ADT data is conducted to demonstrate the effectiveness of the proposed method. The results illustrate that the proposed method is quite effective in estimating the lifetime of a product with s-dependent performance parameters.

  8. Heavy Ion Acceleration at J-PARC

    NASA Astrophysics Data System (ADS)

    SATO, Susumu

    2018-02-01

    J-PARC, the Japan Proton Accelerator Research Complex, is an accelerator, which provides a high-intensity proton beam. Recently as a very attractive project, the acceleration of heavy ions produced by supplementary ion sources, called J-PARC-HI, is seriously contemplated by domestic as well as international communities. The planned facility would accelerate heavy ions up to U92+ with a beam energy 20 AGeV ( of 6.2 AGeV). The highlight of the J-PARC-HI project is its very high beam rate up to 1011 Hz, which will enable the study of very rare events. Taking advantage of this high intensity, J-PARC-HI will carry out frontier studies of new and rare observables in this energy region: (i) nuclear medium modification of chiral property of vector mesons through low-mass di-lepton signal, (ii) QCD critical pointcharacterization through event-by-event fluctuation signals of particle production, (iii) systematic measurements related to the equation of state through collective flow signal or two-particle momentum correlation signal, or (iv) the search of hyper nuclei with multi strangeness including or exceeding S = 3. The current plan of J-PARC-HI aims to carrying out the first experimental measurements in 2025.

  9. Accelerated aging versus rejuvenation of the immune system in heterochronic parabiosis.

    PubMed

    Pishel, Iryna; Shytikov, Dmytro; Orlova, Tatiana; Peregudov, Alex; Artyuhov, Igor; Butenko, Gennadij

    2012-04-01

    The emergence of immune disorders in aging is explained by many factors, including thymus dysfunction, decrease in the proportion and function of naïve T cells, and so forth. There are several approaches to preventing these changes, such as thymus rejuvenation, stem cells recovery, modulation of hormone production, and others. Our investigations of heterochronic parabiosis have shown that benefits of a young immune system, e.g., actively working thymus and regular migration of young hematopoietic stem cells between parabiotic partners, appeared unable to restore the immune system of the old partner. At the same time, we have established a progressive immune impairment in the young heterochronic partners. The mechanism of age changes in the immune system in this model, which may lead to reduced life expectancy, has not been fully understood. The first age-related manifestation in the young partners observed 3 weeks after the surgery was a dramatic increase of CD8(+)44(+) cells population in the spleen. A detailed analysis of further changes revealed a progressive decline of most immunological functions observable for up to 3 months after the surgery. This article reviews possible mechanisms of induction of age-related changes in the immune system of young heterochronic partners. The data obtained suggest the existence of certain factors in the old organisms that trigger aging, thus preventing the rejuvenation process.

  10. Effects of accelerated artificial daylight aging on bending strength and bonding of glass fibers in fiber-embedded maxillofacial silicone prostheses.

    PubMed

    Hatamleh, Muhanad M; Watts, David C

    2010-07-01

    The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p < 0.05). Mean (SD) values of maximum pull-out forces (in N) for groups 1 to 4 were: 13.63 (7.45), 19.67 (1.37), 13.58 (2.61), and 10.37 (2.52). Group 2 exhibited the highest pull-out force that was statistically significant when compared to the other groups. Maximum bending strengths of fiber bundles were in the range of 917.72 MPa to 1124.06 MPa. Bending strength significantly increased after 200 and 400 hours of aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.

  11. Radioisotope Dating with Accelerators.

    ERIC Educational Resources Information Center

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  12. Interplay between Shear Loading and Structural Aging in a Physical Gelatin Gel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronsin, O.; Caroli, C.; Baumberger, T.

    2009-09-25

    We show that the aging of the mechanical relaxation of a gelatin gel exhibits the same scaling phenomenology as polymer and colloidal glasses. In addition, gelatin is known to exhibit logarithmic structural aging (stiffening). We find that stress accelerates this process. However, this effect is definitely irreducible to a mere age shift with respect to natural aging. We suggest that it is interpretable in terms of elastically aided elementary (coil->helix) local events whose dynamics gradually slows down as aging increases geometric frustration.

  13. Planning for an Accelerated School. A Two Day Workshop (Stanford, California, November 17-18, 1988). Illinois Network of Accelerated Schools.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, Springfield. Dept. of School Improvement Services.

    The thesis of this conference report is that acceleration is a much more effective method than remediation for bringing at-risk children into the educational mainstream at an early age. The papers summarized in the report provide a background on the history, politics, and demography of at-risk students and suggest applications of acceleration to…

  14. Micro structure processing on plastics by accelerated hydrogen molecular ions

    NASA Astrophysics Data System (ADS)

    Hayashi, H.; Hayakawa, S.; Nishikawa, H.

    2017-08-01

    A proton has 1836 times the mass of an electron and is the lightest nucleus to be used for accelerator in material modification. We can setup accelerator with the lowest acceleration voltage. It is preferable characteristics of Proton Beam Writer (PBW) for industrial applications. On the contrary ;proton; has the lowest charge among all nuclei and the potential impact to material is lowest. The object of this research is to improve productivity of the PBW for industry application focusing on hydrogen molecular ions. These ions are generated in the same ion source by ionizing hydrogen molecule. There is no specific ion source requested and it is suitable for industrial use. We demonstrated three dimensional (3D) multilevel micro structures on polyester base FPC (Flexible Printed Circuits) using proton, H2+ and H3+. The reactivity of hydrogen molecular ions is much higher than that of proton and coincident with the level of expectation. We can apply this result to make micro devices of 3D multilevel structures on FPC.

  15. Microscopic Processes On Radiation from Accelerated Particles in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P. E.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Sol, H.; Niemiec, J.; Pohl, M.; Nordlund, A.; Fredriksen, J.; hide

    2009-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  16. The cerebellum ages slowly according to the epigenetic clock.

    PubMed

    Horvath, Steve; Mah, Vei; Lu, Ake T; Woo, Jennifer S; Choi, Oi-Wa; Jasinska, Anna J; Riancho, José A; Tung, Spencer; Coles, Natalie S; Braun, Jonathan; Vinters, Harry V; Coles, L Stephen

    2015-05-01

    Studies that elucidate why some human tissues age faster than others may shed light on how we age, and ultimately suggest what interventions may be possible. Here we utilize a recent biomarker of aging (referred to as epigenetic clock) to assess the epigenetic ages of up to 30 anatomic sites from supercentenarians (subjects who reached an age of 110 or older) and younger subjects. Using three novel and three published human DNA methylation data sets, we demonstrate that the cerebellum ages more slowly than other parts of the human body. We used both transcriptional data and genetic data to elucidate molecular mechanisms which may explain this finding. The two largest superfamilies of helicases (SF1 and SF2) are significantly over-represented (p=9.2x10-9) among gene transcripts that are over-expressed in the cerebellum compared to other brain regions from the same subject. Furthermore, SNPs that are associated with epigenetic age acceleration in the cerebellum tend to be located near genes from helicase superfamilies SF1 and SF2 (enrichment p=5.8x10-3). Our genetic and transcriptional studies of epigenetic age acceleration support the hypothesis that the slow aging rate of the cerebellum is due to processes that involve RNA helicases.

  17. The cerebellum ages slowly according to the epigenetic clock

    PubMed Central

    Horvath, Steve; Mah, Vei; Lu, Ake T.; Woo, Jennifer S.; Choi, Oi-Wa; Jasinska, Anna J.; Riancho, José A.; Tung, Spencer; Coles, Natalie S.; Braun, Jonathan; Vinters, Harry V.; Coles, L. Stephen

    2015-01-01

    Studies that elucidate why some human tissues age faster than others may shed light on how we age, and ultimately suggest what interventions may be possible. Here we utilize a recent biomarker of aging (referred to as epigenetic clock) to assess the epigenetic ages of up to 30 anatomic sites from supercentenarians (subjects who reached an age of 110 or older) and younger subjects. Using three novel and three published human DNA methylation data sets, we demonstrate that the cerebellum ages more slowly than other parts of the human body. We used both transcriptional data and genetic data to elucidate molecular mechanisms which may explain this finding. The two largest superfamilies of helicases (SF1 and SF2) are significantly over-represented (p=9.2×10−9) among gene transcripts that are over-expressed in the cerebellum compared to other brain regions from the same subject. Furthermore, SNPs that are associated with epigenetic age acceleration in the cerebellum tend to be located near genes from helicase superfamilies SF1 and SF2 (enrichment p=5.8×10−3). Our genetic and transcriptional studies of epigenetic age acceleration support the hypothesis that the slow aging rate of the cerebellum is due to processes that involve RNA helicases. PMID:26000617

  18. An mtDNA mutation accelerates liver aging by interfering with the ROS response and mitochondrial life cycle.

    PubMed

    Niemann, Jan; Johne, Cindy; Schröder, Susanne; Koch, Franziska; Ibrahim, Saleh M; Schultz, Julia; Tiedge, Markus; Baltrusch, Simone

    2017-01-01

    Mitochondrial dysfunction affects liver metabolism, but it remains unclear whether this interferes with normal liver aging. We investigated several mitochondrial pathways in hepatocytes and liver tissue from a conplastic mouse strain compared with the control C57BL/6NTac strain over 18 months of life. The C57BL/6NTac-mtNODLtJ mice differed from C57BL/6NTac mice by a point mutation in mitochondrial-encoded subunit 3 of cytochrome c oxidase. Young C57BL/6NTac-mtNODLtJ mice showed reduced mitochondrial metabolism but similar reactive oxygen species (ROS) production to C57BL/6NTac mice. Whereas ROS increased almost equally up to 9 months in both strains, different mitochondrial adaptation strategies resulted in decreasing ROS in advanced age in C57BL/6NTac mice, but persistent ROS production in C57BL/6NTac-mtNODLtJ mice. Only the conplastic strain developed elongated mitochondrial networks with artificial loop structures, depressed autophagy, high mitochondrial respiration and up-regulated antioxidative response. Our results indicate that mtDNA mutations accelerate liver ballooning degeneration and carry a serious risk of premature organ aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Efficient particle acceleration in shocks

    NASA Astrophysics Data System (ADS)

    Heavens, A. F.

    1984-10-01

    A self-consistent non-linear theory of acceleration of particles by shock waves is developed, using an extension of the two-fluid hydrodynamical model by Drury and Völk. The transport of the accelerated particles is governed by a diffusion coefficient which is initially assumed to be independent of particle momentum, to obtain exact solutions for the spectrum. It is found that steady-state shock structures with high acceleration efficiency are only possible for shocks with Mach numbers less than about 12. A more realistic diffusion coefficient is then considered, and this maximum Mach number is reduced to about 6. The efficiency of the acceleration process determines the relative importance of the non-relativistic and relativistic particles in the distribution of accelerated particles, and this determines the effective specific heat ratio.

  20. Differential Effects of Aging on Processes Underlying Task Switching

    ERIC Educational Resources Information Center

    West, Robert; Travers, Stephanie

    2008-01-01

    In this study, we used event-related brain potentials (ERPs) to examine the effects of aging on processes underlying task switching. The response time data revealed an age-related increase in mixing costs before controlling for general slowing and no effect of aging on switching costs. In the cue-locked epoch, the ERP data revealed little effect…

  1. Impact of nutrition on the ageing process.

    PubMed

    Mathers, John C

    2015-01-01

    Human life expectancy has been increasing steadily for almost two centuries and is now approximately double what it was at the beginning of the Victorian era. This remarkable demographic change has been accompanied by a shift in disease prevalence so that age is now the major determinant of most common diseases. The challenge is to enhance healthy ageing and to reduce the financial and social burdens associated with chronic ill health in later life. Studies in model organisms have demonstrated that the ageing phenotype arises because of the accumulation of macromolecular damage within the cell and that the ageing process is plastic. Nutritional interventions that reduce such damage, or which enhance the organism's capacity to repair damage, lead to greater longevity and to reduced risk of age-related diseases. Dietary (energy) restriction increases lifespan in several model organisms, but it is uncertain whether it is effective in primates, including humans. However, excess energy storage leading to increased adiposity is a risk factor for premature mortality and for age-related diseases so that obesity prevention is likely to be a major public health route to healthy ageing. In addition, adherence to healthy eating patterns, such as the Mediterranean dietary pattern, is associated with longevity and reduced risk of age-related diseases.

  2. Research on control law accelerator of digital signal process chip TMS320F28035 for real-time data acquisition and processing

    NASA Astrophysics Data System (ADS)

    Zhao, Shuangle; Zhang, Xueyi; Sun, Shengli; Wang, Xudong

    2017-08-01

    TI C2000 series digital signal process (DSP) chip has been widely used in electrical engineering, measurement and control, communications and other professional fields, DSP TMS320F28035 is one of the most representative of a kind. When using the DSP program, need data acquisition and data processing, and if the use of common mode C or assembly language programming, the program sequence, analogue-to-digital (AD) converter cannot be real-time acquisition, often missing a lot of data. The control low accelerator (CLA) processor can run in parallel with the main central processing unit (CPU), and the frequency is consistent with the main CPU, and has the function of floating point operations. Therefore, the CLA coprocessor is used in the program, and the CLA kernel is responsible for data processing. The main CPU is responsible for the AD conversion. The advantage of this method is to reduce the time of data processing and realize the real-time performance of data acquisition.

  3. Stereotypes of Aging. Module A-2. Block A. Basic Knowledge of the Aging Process.

    ERIC Educational Resources Information Center

    Harvey, Dexter; Cap, Orest

    This instructional module on stereotypes of aging is one in a block of 10 modules designed to provide the human services worker who works with older adults with basic information regarding the aging process. An introduction provides an overview of the module content. A listing of general objectives follows. Three sections present informative…

  4. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials.

    PubMed

    Flinn, Brian D; deGroot, Dirk A; Mancl, Lloyd A; Raigrodski, Ariel J

    2012-10-01

    Concerns have been expressed about the effect of aging on the mechanical properties of zirconia. The purpose of this study was to assess the accelerated aging characteristics of 3 commercially available yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) materials by exposing specimens to hydrothermal treatments at 134°C, 0.2 MPa and 180°C, 1.0 MPa in steam. Thin bars of Y-TZP from 3 manufacturers, Lava, Zirkonzahn, and Zirprime, n=30 for each brand (22 × 3 × 0.2 mm), were cut and ground from blocks and sintered according to the manufacturer's specifications. Control specimens (n=10) for each brand were evaluated in the as-received condition. Experimental specimens were artificially aged at standard autoclave sterilization conditions,134°C at 0.2 MPa (n=5 per group at 50, 100, 150, and 200 hours) and standard industrial ceramic aging conditions, 180°C at 1.0 MPa (n=5 per group at 8, 16, 24, 28, and 48 hours). Tetragonal to monoclinic transformation was measured by using X-ray diffraction (XRD) for all groups. Flexural strength was measured in 4-point bending (ASTM1161-B) for all groups. Fracture surfaces were examined by scanning electron microscopy (SEM). Data were analyzed as a function of aging time. The statistical comparisons were based on the log value and 2-way ANOVA with heteroscedasticity-consistent standard errors used to compare mean strength among conditions (α=.05). After 200 hours at 134°C and 0.2 MPa, flexural strength (SD) decreased significantly from 1156 (87.6) MPa to 829.5 (71) MPa for Lava; 1406 (243) MPa to 882.7 (91) MPa for Zirkonzahn; and 1126 (92.4) MPa to 976 (36.4) MPa for Zirprime with P<.001 for all 3 comparisons. After 200 hours at 134°C and 0.2 MPa, some tetragonal crystals transformed to the monoclinic phase. The relative XRD peak intensity of the monoclinic to tetragonal crystal phases increased from 0.07 to 1.82 for Lava, from 0.06 to 2.43 for Zirkonzahn, and from 0.05 to 0.53 for Zirprime. After 28 hours at 180

  5. Maturation of Visual and Auditory Temporal Processing in School-Aged Children

    ERIC Educational Resources Information Center

    Dawes, Piers; Bishop, Dorothy V. M.

    2008-01-01

    Purpose: To examine development of sensitivity to auditory and visual temporal processes in children and the association with standardized measures of auditory processing and communication. Methods: Normative data on tests of visual and auditory processing were collected on 18 adults and 98 children aged 6-10 years of age. Auditory processes…

  6. DNA-aptamers raised against AGEs as a blocker of various aging-related disorders.

    PubMed

    Yamagishi, Sho-Ichi; Taguchi, Kensei; Fukami, Kei

    2016-08-01

    A non-enzymatic reaction between sugars or aldehydes and the amino groups of proteins, lipids and nucleic acids contributes to the aging of macromolecules, which could impair their structural integrity and function. This process begins with the conversion of reversible Schiff base adducts, and then to more stable, covalently-bound Amadori rearrangement products. Over a course of days to weeks, these early glycation products undergo further reactions, such as rearrangements and dehydration to become irreversibly crossed-linked, fluorescent protein derivatives termed advanced glycation end products (AGEs). The formation and accumulation of AGEs have been known to progress in a physiological aging process and at an accelerated rate under hyperglycemic, inflammatory and oxidative stress conditions. There is a growing body of evidence that AGEs and their receptor RAGE interaction play a role in the pathogenesis of various devastating disorders, including cardiovascular disease, Alzheimer's disease, insulin resistance, osteoporosis and cancer growth and metastasis. Furthermore, diet has been recently recognized as a major environmental source of AGEs that could also elicit pro-inflammatory reactions, thereby being involved in organ damage in vivo. Therefore, inhibition of AGE formation and/or blockade of the interaction of AGEs with RAGE may be a novel therapeutic target for aging-related disorders. This article discusses a potential utility of DNA-aptamers raised against AGEs for preventing aging and/or diabetes-associated organ damage, especially focusing on diabetic microvascular complications, vascular remodeling, metabolic derangements, and melanoma growth and expansion in animal models.

  7. Emotion processing in the aging brain is modulated by semantic elaboration

    PubMed Central

    Ritchey, Maureen; Bessette-Symons, Brandy; Hayes, Scott M.; Cabeza, Roberto

    2010-01-01

    The neural correlates of emotion processing have been shown to vary with age: older adults (OAs) exhibit increased frontal activations and, under some circumstances, decreased amygdala activations relative to young adults (YAs) during emotion processing. Some of these differences are additionally modulated by valence, with age-related biases toward positive versus negative stimuli, and are thought to depend on OAs’ capacity for controlled elaboration. However, the role of semantic elaboration in mediating valence effects in the aging brain has not yet been explicitly tested. In the present study, YAs and OAs were scanned while they viewed negative, neutral, and positive pictures during either a deep, elaborative task or a shallow, perceptual task. FMRI results reveal that emotion-related activity in the amygdala is preserved in aging and insensitive to elaboration demands. This study provides novel evidence that differences in valence processing are modulated by elaboration: relative to YAs, OAs show enhanced activity in the medial prefrontal cortex (PFC) and ventrolateral PFC in response to positive versus negative stimuli, but only during elaborative processing. These positive valence effects are predicted by individual differences in executive function in OAs for the deep but not shallow task. Finally, psychophysiological interaction analyses reveal age effects on valence-dependent functional connectivity between medial PFC and ventral striatum, as well as age and task effects on medial PFC-retrosplenial cortex interactions. Altogether, these findings provide support for the hypothesis that valence shifts in the aging brain are mediated by controlled processes such as semantic elaboration, self-referential processing, and emotion regulation. PMID:20869375

  8. Accelerating Wright–Fisher Forward Simulations on the Graphics Processing Unit

    PubMed Central

    Lawrie, David S.

    2017-01-01

    Forward Wright–Fisher simulations are powerful in their ability to model complex demography and selection scenarios, but suffer from slow execution on the Central Processor Unit (CPU), thus limiting their usefulness. However, the single-locus Wright–Fisher forward algorithm is exceedingly parallelizable, with many steps that are so-called “embarrassingly parallel,” consisting of a vast number of individual computations that are all independent of each other and thus capable of being performed concurrently. The rise of modern Graphics Processing Units (GPUs) and programming languages designed to leverage the inherent parallel nature of these processors have allowed researchers to dramatically speed up many programs that have such high arithmetic intensity and intrinsic concurrency. The presented GPU Optimized Wright–Fisher simulation, or “GO Fish” for short, can be used to simulate arbitrary selection and demographic scenarios while running over 250-fold faster than its serial counterpart on the CPU. Even modest GPU hardware can achieve an impressive speedup of over two orders of magnitude. With simulations so accelerated, one can not only do quick parametric bootstrapping of previously estimated parameters, but also use simulated results to calculate the likelihoods and summary statistics of demographic and selection models against real polymorphism data, all without restricting the demographic and selection scenarios that can be modeled or requiring approximations to the single-locus forward algorithm for efficiency. Further, as many of the parallel programming techniques used in this simulation can be applied to other computationally intensive algorithms important in population genetics, GO Fish serves as an exciting template for future research into accelerating computation in evolution. GO Fish is part of the Parallel PopGen Package available at: http://dl42.github.io/ParallelPopGen/. PMID:28768689

  9. Charge-Transfer Processes in Warm Dense Matter: Selective Spectral Filtering for Laser-Accelerated Ion Beams

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Barriga-Carrasco, M. D.; Morales, R.; Schnürer, M.

    2018-05-01

    We investigate, both experimentally and theoretically, how the spectral distribution of laser accelerated carbon ions can be filtered by charge exchange processes in a double foil target setup. Carbon ions at multiple charge states with an initially wide kinetic energy spectrum, from 0.1 to 18 MeV, were detected with a remarkably narrow spectral bandwidth after they had passed through an ultrathin and partially ionized foil. With our theoretical calculations, we demonstrate that this process is a consequence of the evolution of the carbon ion charge states in the second foil. We calculated the resulting spectral distribution separately for each ion species by solving the rate equations for electron loss and capture processes within a collisional radiative model. We determine how the efficiency of charge transfer processes can be manipulated by controlling the ionization degree of the transfer matter.

  10. Jupiter radio bursts and particle acceleration

    NASA Technical Reports Server (NTRS)

    Desch, Michael D.

    1994-01-01

    Particle acceleration processes are important in understanding many of the Jovian radio and plasma wave emissions. However, except for the high-energy electrons that generate synchrotron emission following inward diffusion from the outer magnetosphere, acceleration processes in Jupiter's magnetosphere and between Jupiter and Io are poorly understood. We discuss very recent observations from the Ulysses spacecraft of two new Jovian radio and plamas wave emissions in which particle acceleration processes are important and have been addressed directly by complementary investigations. First, radio bursts known as quasi-periodic bursts have been observed in close association with a population of highly energetic electrons. Second, a population of much lower energy (keV range) electrons on auroral field lines can be shown to be responsible for the first observation of a Jovian plasma wave emission known as auroral hiss.

  11. Artificial seismic acceleration

    USGS Publications Warehouse

    Felzer, Karen R.; Page, Morgan T.; Michael, Andrew J.

    2015-01-01

    In their 2013 paper, Bouchon, Durand, Marsan, Karabulut, 3 and Schmittbuhl (BDMKS) claim to see significant accelerating seismicity before M 6.5 interplate mainshocks, but not before intraplate mainshocks, reflecting a preparatory process before large events. We concur with the finding of BDMKS that their interplate dataset has significantly more fore- shocks than their intraplate dataset; however, we disagree that the foreshocks are predictive of large events in particular. Acceleration in stacked foreshock sequences has been seen before and has been explained by the cascade model, in which earthquakes occasionally trigger aftershocks larger than themselves4. In this model, the time lags between the smaller mainshocks and larger aftershocks follow the inverse power law common to all aftershock sequences, creating an apparent acceleration when stacked (see Supplementary Information).

  12. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  13. Study on acceleration processes of the radiation belt electrons through interaction with sub-packet chorus waves in parallel propagation

    NASA Astrophysics Data System (ADS)

    Hiraga, R.; Omura, Y.

    2017-12-01

    By recent observations, chorus waves include fine structures such as amplitude fluctuations (i.e. sub-packet structure), and it has not been verified in detail yet how energetic electrons are efficiently accelerated under the wave features. In this study, we firstly focus on the acceleration process of a single electron: how it experiences the efficient energy increase by interaction with sub-packet chorus waves in parallel propagation along the Earth's magnetic field. In order to reproduce the chorus waves as seen by the latest observations by Van Allen Probes (Foster et al. 2017), the wave model amplitude in our simulation is structured such that when the wave amplitude nonlinearly grows to reach the optimum amplitude, it starts decreasing until crossing the threshold. Once it crosses the threshold, the wave dissipates and a new wave rises to repeat the nonlinear growth and damping in the same manner. The multiple occurrence of this growth-damping cycle forms a saw tooth-like amplitude variation called sub-packet. This amplitude variation also affects the wave frequency behavior which is derived by the chorus wave equations as a function of the wave amplitude (Omura et al. 2009). It is also reasonable to assume that when a wave packet diminishes and the next wave rises, it has a random phase independent of the previous wave. This randomness (discontinuity) in phase variation is included in the simulation. Through interaction with such waves, dynamics of energetic electrons were tracked. As a result, some electrons underwent an efficient acceleration process defined as successive entrapping, in which an electron successfully continues to surf the trapping potential generated by consecutive wave packets. When successive entrapping occurs, an electron trapped and de-trapped (escape the trapping potential) by a single wave packet falls into another trapping potential generated by the next wave sub-packet and continuously accelerated. The occurrence of successive

  14. REVIEWS OF TOPICAL PROBLEMS: Acceleration of cosmic rays by shock waves

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Krymskiĭ, G. F.

    1988-01-01

    Theoretical work on various processes by which shock waves accelerate cosmic rays is reviewed. The most efficient of these processes, Fermi acceleration, is singled out for special attention. A linear theory for this process is presented. The results found on the basis of nonlinear models of Fermi acceleration, which incorporate the modification of the structure caused by the accelerated particles, are reported. There is a discussion of various possibilities for explaining the generation of high-energy particles observed in interplanetary and interstellar space on the basis of a Fermi acceleration mechanism. The acceleration by shock waves from supernova explosions is discussed as a possible source of galactic cosmic rays. The most important unresolved questions in the theory of acceleration of charged particles by shock waves are pointed out.

  15. Microstructures and Mechanical Properties of Commercially Pure Ti Processed by Rotationally Accelerated Shot Peening

    PubMed Central

    Huang, Zhaowen; Cao, Yang; Nie, Jinfeng; Zhou, Hao; Li, Yusheng

    2018-01-01

    Gradient structured materials possess good combinations of strength and ductility, rendering the materials attractive in industrial applications. In this research, a surface nanocrystallization (SNC) technique, rotationally accelerated shot peening (RASP), was employed to produce a gradient nanostructured pure Ti with a deformation layer that had a thickness of 2000 μm, which is thicker than those processed by conventional SNC techniques. It is possible to fabricate a gradient structured Ti workpiece without delamination. Moreover, based on the microstructural features, the microstructure of the processed sample can be classified into three regions, from the center to the surface of the RASP-processed sample: (1) a twinning-dominated core region; (2) a “twin intersection”-dominated twin transition region; and (3) the nanostructured region, featuring nanograins. A microhardness gradient was detected from the RASP-processed Ti. The surface hardness was more than twice that of the annealed Ti sample. The RASP-processed Ti sample exhibited a good combination of yield strength and uniform elongation, which may be attributed to the high density of deformation twins and a strong back stress effect. PMID:29498631

  16. Brain white matter structure and information processing speed in healthy older age.

    PubMed

    Kuznetsova, Ksenia A; Maniega, Susana Muñoz; Ritchie, Stuart J; Cox, Simon R; Storkey, Amos J; Starr, John M; Wardlaw, Joanna M; Deary, Ian J; Bastin, Mark E

    2016-07-01

    Cognitive decline, especially the slowing of information processing speed, is associated with normal ageing. This decline may be due to brain cortico-cortical disconnection caused by age-related white matter deterioration. We present results from a large, narrow age range cohort of generally healthy, community-dwelling subjects in their seventies who also had their cognitive ability tested in youth (age 11 years). We investigate associations between older age brain white matter structure, several measures of information processing speed and childhood cognitive ability in 581 subjects. Analysis of diffusion tensor MRI data using Tract-based Spatial Statistics (TBSS) showed that all measures of information processing speed, as well as a general speed factor composed from these tests (g speed), were significantly associated with fractional anisotropy (FA) across the white matter skeleton rather than in specific tracts. Cognitive ability measured at age 11 years was not associated with older age white matter FA, except for the g speed-independent components of several individual processing speed tests. These results indicate that quicker and more efficient information processing requires global connectivity in older age, and that associations between white matter FA and information processing speed (both individual test scores and g speed), unlike some other aspects of later life brain structure, are generally not accounted for by cognitive ability measured in youth.

  17. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagatesmore » in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.« less

  18. Psychological Adjustment in a College-Level Program of Marked Academic Acceleration.

    ERIC Educational Resources Information Center

    Robinson, Nancy M.; Janos, Paul M.

    1986-01-01

    The questionnaire responses of 24 markedly accelerated young students at the University of Washington were compared with those of 24 regular-aged university students, 23 National Merit Scholors, and 27 students who had qualified for acceleration but instead elected to participate in high school. Accelerants appeared as well adjusted as all…

  19. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NASA Astrophysics Data System (ADS)

    Zemskov, Serguey V.; Ahmad, Bilal; Copuroglu, Oguzhan; Vermolen, Fred J.

    2013-02-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate, which is incorporated into the impregnation of the sodium mono-fluorophosphate (Na-MFP) solution. The model of the self-healing process is built under the assumption that the position of the carbonation front changes in time where the rate of diffusion of Na-MFP into the carbonated cement matrix and the reaction rates of the free phosphate and fluorophosphate with the components of the cement are comparable to the speed of the carbonation front under accelerated carbonation conditions. The model is based on an initial-boundary value problem for a system of partial differential equations which is solved using a Galerkin finite element method. The results obtained are discussed and generalized to a three-dimensional case.

  20. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2018-02-07

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  1. Breakthrough: Fermilab Accelerator Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-04-23

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  2. Accumulation of severely atrophic myofibers marks the acceleration of sarcopenia in slow and fast twitch muscles.

    PubMed

    Rowan, Sharon L; Purves-Smith, Fennigje M; Solbak, Nathan M; Hepple, Russell T

    2011-08-01

    The age-related decline in muscle mass, known as sarcopenia, exhibits a marked acceleration in advanced age. Although many studies have remarked upon the accumulation of very small myofibers, particularly at advanced stages of sarcopenia, the significance of this phenomenon in the acceleration of sarcopenia has never been examined. Furthermore, although mitochondrial dysfunction characterized by a lack of cytochrome oxidase (COX) activity has been implicated in myofiber atrophy in sarcopenia, the contribution of this phenotype to the accumulation of severely atrophied fibers in aged muscles has never been determined. To this end, we examined the fiber size distribution in the slow twitch soleus (Sol) and fast twitch gastrocnemius (Gas) muscles between young adulthood (YA) and senescence (SEN). We also quantified the abundance of COX deficient myocytes and their size attributes to gain insight into the contribution of this phenotype to myofiber atrophy with aging. Our data showed that the progression of muscle atrophy, particularly its striking acceleration between late middle age and SEN, was paralleled by an accumulation of severely atrophic myofibers (≤ 1000 μm(2) in size) in both Sol and Gas. On the other hand, we observed no COX deficient myofibers in Sol, despite nearly 20% of the myofibers being severely atrophic. Similarly, only 0.17 ± 0.06% of all fibers in Gas were COX deficient, and their size was generally larger (2375 ± 319 μm(2)) than the severely atrophied myofibers noted above. Collectively, our results suggest that similar processes likely contribute to the acceleration of sarcopenia in both slow twitch and fast twitch muscles, and that COX deficiency is not a major contributor to this phenomenon. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The Louisiana Accelerated Schools Project First Year Evaluation Report.

    ERIC Educational Resources Information Center

    St. John, Edward P.; And Others

    The Louisiana Accelerated Schools Project (LASP) is a statewide network of schools that are changing from the traditional mode of schooling for at-risk students, which stresses remediation, to one of acceleration, which stresses accelerated learning for all students. The accelerated schools process provides a systematic approach to the…

  4. Detailed Modeling of Physical Processes in Electron Sources for Accelerator Applications

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Afanasev, Andrei

    2017-01-01

    At present, electron sources are essential in a wide range of applications - from common technical use to exploring the nature of matter. Depending on the application requirements, different methods and materials are used to generate electrons. State-of-the-art accelerator applications set a number of often-conflicting requirements for electron sources (e.g., quantum efficiency vs. polarization, current density vs. lifetime, etc). Development of advanced electron sources includes modeling and design of cathodes, material growth, fabrication of cathodes, and cathode testing. The detailed simulation and modeling of physical processes is required in order to shed light on the exact mechanisms of electron emission and to develop new-generation electron sources with optimized efficiency. The purpose of the present work is to study physical processes in advanced electron sources and develop scientific tools, which could be used to predict electron emission from novel nano-structured materials. In particular, the area of interest includes bulk/superlattice gallium arsenide (bulk/SL GaAs) photo-emitters and nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) photo/field-emitters. Work supported by The George Washington University and Euclid TechLabs LLC.

  5. Emotion processing in the aging brain is modulated by semantic elaboration.

    PubMed

    Ritchey, Maureen; Bessette-Symons, Brandy; Hayes, Scott M; Cabeza, Roberto

    2011-03-01

    The neural correlates of emotion processing have been shown to vary with age: older adults (OAs) exhibit increased frontal activations and, under some circumstances, decreased amygdala activations relative to young adults (YAs) during emotion processing. Some of these differences are additionally modulated by valence, with age-related biases toward positive versus negative stimuli, and are thought to depend on OAs' capacity for controlled elaboration. However, the role of semantic elaboration in mediating valence effects in the aging brain has not yet been explicitly tested. In the present study, YAs and OAs were scanned while they viewed negative, neutral, and positive pictures during either a deep, elaborative task or a shallow, perceptual task. fMRI results reveal that emotion-related activity in the amygdala is preserved in aging and insensitive to elaboration demands. This study provides novel evidence that differences in valence processing are modulated by elaboration: relative to YAs, OAs show enhanced activity in the medial prefrontal cortex (PFC) and ventrolateral PFC in response to positive versus negative stimuli, but only during elaborative processing. These positive valence effects are predicted by individual differences in executive function in OAs for the deep but not shallow task. Finally, psychophysiological interaction analyses reveal age effects on valence-dependent functional connectivity between medial PFC and ventral striatum, as well as age and task effects on medial PFC-retrosplenial cortex interactions. Altogether, these findings provide support for the hypothesis that valence shifts in the aging brain are mediated by controlled processes such as semantic elaboration, self-referential processing, and emotion regulation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Age-dependent increase in ortho-tyrosine and methionine sulfoxide in human skin collagen is not accelerated in diabetes. Evidence against a generalized increase in oxidative stress in diabetes.

    PubMed Central

    Wells-Knecht, M C; Lyons, T J; McCance, D R; Thorpe, S R; Baynes, J W

    1997-01-01

    The glycoxidation products Nepsilon-(carboxymethyl)lysine and pentosidine increase in skin collagen with age and at an accelerated rate in diabetes. Their age-adjusted concentrations in skin collagen are correlated with the severity of diabetic complications. To determine the relative roles of increased glycation and/or oxidation in the accelerated formation of glycoxidation products in diabetes, we measured levels of amino acid oxidation products, distinct from glycoxidative modifications of amino acids, as independent indicators of oxidative stress and damage to collagen in aging and diabetes. We show that ortho-tyrosine and methionine sulfoxide are formed in concert with Nepsilon-(carboxymethyl)lysine and pentosidine during glycoxidation of collagen in vitro, and that they also increase with age in human skin collagen. The age-adjusted levels of these oxidized amino acids in collagen was the same in diabetic and nondiabetic subjects, arguing that diabetes per se does not cause an increase in oxidative stress or damage to extracellular matrix proteins. These results provide evidence for an age-dependent increase in oxidative damage to collagen and support previous conclusions that the increase in glycoxidation products in skin collagen in diabetes can be explained by the increase in glycemia alone, without invoking a generalized, diabetes-dependent increase in oxidative stress. PMID:9259583

  7. Strength and muscle mass loss with aging process. Age and strength loss.

    PubMed

    Keller, Karsten; Engelhardt, Martin

    2013-10-01

    aging process is associated with changes in muscle mass and strength with decline of muscle strength after the 30(th) life year. The aim of this study was to investigate these changes in muscle mass and strength. for this analysis 26 participants were subdivided in two groups. Group 1 comprises participants aged <40 years (n=14), group 2 those >40 years (n=12). We assessed anthropometrics, range of motions, leg circumferences and isometric strength values of the knee joints. besides comparable anthropometrics, circumferences and strength were higher in group 1 than in group 2. Circumference of upper leg (20 cm above knee articular space) showed for right leg a trend to a significant (median: 54.45 cm (1(st) quartile: 49.35/3(rd) quartile: 57.78) vs 49.80 cm (49.50/50.75), p=0.0526) and for left leg a significant 54.30 cm (49.28/58.13) vs 49.50 cm (48.00/52.53), p=0.0356) larger circumference in group 1. Isometric strength was in 60° knee flexion significantly higher in group 1 than in group 2 for right (729.88N (561.47/862.13) vs 456.92N (304.67/560.12), p=0.00448) and left leg (702.49N (581.36/983.87) vs 528.49N (332.95/648.58), p=0.0234). aging process leads to distinct muscle mass and strength loss. Muscle strength declines from people aged <40 years to those >40 years between 16.6% and 40.9%.

  8. Particle Acceleration in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Miller, James A.

    1997-01-01

    The high efficiency of energy generation inferred from radio observations of quasars and X-ray observations of Seyfert active galactic nuclei (AGNs) is apparently achieved only by the gravitational conversion of the rest mass energy of accreting matter onto supermassive black holes. Evidence for the acceleration of particles to high energies by a central engine is also inferred from observations of apparent superluminal motion in flat spectrum, core-dominated radio sources. This phenomenon is widely attributed to the ejection of relativistic bulk plasma from the nuclei of active galaxies, and accounts for the existence of large scale radio jets and lobes at large distances from the central regions of radio galaxies. Reports of radio jets and superluminal motion from galactic black hole candidate X-ray sources indicate that similar processes are operating in these sources. Observations of luminous, rapidly variable high-energy radiation from active galactic nuclei (AGNs) with the Compton Gamma Ray Observatory show directly that particles are accelerated to high energies in a compact environment. The mechanisms which transform the gravitational potential energy of the infalling matter into nonthermal particle energy in galactic black hole candidates and AGNs are not conclusively identified, although several have been proposed. These include direct acceleration by static electric fields (resulting from, for example, magnetic reconnection), shock acceleration, and energy extraction from the rotational energy of Kerr black holes. The dominant acceleration mechanism(s) operating in the black hole environment can only be determined, of course, by a comparison of model predictions with observations. The purpose of the work proposed for this grant was to investigate stochastic particle acceleration through resonant interactions with plasma waves that populate the magnetosphere surrounding an accreting black hole. Stochastic acceleration has been successfully applied to the

  9. Accelerating the commercialization of university technologies for military healthcare applications: the role of the proof of concept process

    NASA Astrophysics Data System (ADS)

    Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli

    2011-06-01

    The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the

  10. ERPs, semantic processing and age.

    PubMed

    Miyamoto, T; Katayama, J; Koyama, T

    1998-06-01

    ERPs (N400, LPC and CNV) were elicited in two sets of subjects grouped according to age (young vs. elderly) using a word-pair category matching paradigm. Each prime consisted of a Japanese noun (constructed from two to four characters of the Hiragana) followed by one Chinese character (Kanji) as the target, this latter representing one of five semantic categories. There were two equally probable target conditions: match or mismatch. Each target was preceded by a prime, either belonging to, or not belonging to, the same semantic category. The subjects were required to respond with a specified button press to the given target according to the condition. We found RTs to be longer in the elderly subjects and under the mismatch condition. N400 amplitude was reduced in the elderly subjects under the mismatch condition and there was no difference between match and mismatch response, which were similar in amplitude to that under match condition for the young subjects. In addition, the CNV amplitudes were larger in the elderly subjects. These results suggested that functional changes in semantic processing through aging (larger semantic networks and diffuse semantic activation) were the cause of this N400 reduction, attributing a subsidiary role to attentional disturbance. We also discuss the importance of taking age-related changes into consideration in clinical studies.

  11. EIDOSCOPE: particle acceleration at plasma boundaries

    NASA Astrophysics Data System (ADS)

    Vaivads, A.; Andersson, G.; Bale, S. D.; Cully, C. M.; De Keyser, J.; Fujimoto, M.; Grahn, S.; Haaland, S.; Ji, H.; Khotyaintsev, Yu. V.; Lazarian, A.; Lavraud, B.; Mann, I. R.; Nakamura, R.; Nakamura, T. K. M.; Narita, Y.; Retinò, A.; Sahraoui, F.; Schekochihin, A.; Schwartz, S. J.; Shinohara, I.; Sorriso-Valvo, L.

    2012-04-01

    We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely

  12. Kinetic theory of age-structured stochastic birth-death processes

    NASA Astrophysics Data System (ADS)

    Greenman, Chris D.; Chou, Tom

    2016-01-01

    Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but are unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Stochastic theories that treat semi-Markov age-dependent processes using, e.g., the Bellman-Harris equation do not resolve a population's age structure and are unable to quantify population-size dependencies. Conversely, current theories that include size-dependent population dynamics (e.g., mathematical models that include carrying capacity such as the logistic equation) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new, fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a Bogoliubov--Born--Green--Kirkwood--Yvon-like hierarchy. Explicit solutions are derived in three limits: no birth, no death, and steady state. These are then compared with their corresponding mean-field results. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution.

  13. Signaling pathway activation drift during aging: Hutchinson-Gilford Progeria Syndrome fibroblasts are comparable to normal middle-age and old-age cells.

    PubMed

    Aliper, Alexander M; Csoka, Antonei Benjamin; Buzdin, Anton; Jetka, Tomasz; Roumiantsev, Sergey; Moskalev, Alexy; Zhavoronkov, Alex

    2015-01-01

    For the past several decades, research in understanding the molecular basis of human aging has progressed significantly with the analysis of premature aging syndromes. Progerin, an altered form of lamin A, has been identified as the cause of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), and may be a contributing causative factor in normal aging. However, the question of whether HGPS actually recapitulates the normal aging process at the cellular and organismal level, or simply mimics the aging phenotype is widely debated. In the present study we analyzed publicly available microarray datasets for fibroblasts undergoing cellular aging in culture, as well as fibroblasts derived from young, middle-age, and old-age individuals, and patients with HGPS. Using GeroScope pathway analysis and drug discovery platform we analyzed the activation states of 65 major cellular signaling pathways. Our analysis reveals that signaling pathway activation states in cells derived from chronologically young patients with HGPS strongly resemble cells taken from normal middle-aged and old individuals. This clearly indicates that HGPS may truly represent accelerated aging, rather than being just a simulacrum. Our data also points to potential pathways that could be targeted to develop drugs and drug combinations for both HGPS and normal aging.

  14. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  15. Depth and Elaboration of Processing in Relation to Age.

    ERIC Educational Resources Information Center

    Simon, Eileen

    1979-01-01

    The recall effectiveness of semantic and phonemic cues was compared to uncover the pattern of deep and elaborate processing in relation to age and experimental treatment. It was concluded that aging results in poor elaboration, especially in inefficient integration of word events with the context of presentation. (Author/CP)

  16. EDITORIAL: Laser and plasma accelerators Laser and plasma accelerators

    NASA Astrophysics Data System (ADS)

    Bingham, Robert

    2009-02-01

    This special issue on laser and plasma accelerators illustrates the rapid advancement and diverse applications of laser and plasma accelerators. Plasma is an attractive medium for particle acceleration because of the high electric field it can sustain, with studies of acceleration processes remaining one of the most important areas of research in both laboratory and astrophysical plasmas. The rapid advance in laser and accelerator technology has led to the development of terawatt and petawatt laser systems with ultra-high intensities and short sub-picosecond pulses, which are used to generate wakefields in plasma. Recent successes include the demonstration by several groups in 2004 of quasi-monoenergetic electron beams by wakefields in the bubble regime with the GeV energy barrier being reached in 2006, and the energy doubling of the SLAC high-energy electron beam from 42 to 85 GeV. The electron beams generated by the laser plasma driven wakefields have good spatial quality with energies ranging from MeV to GeV. A unique feature is that they are ultra-short bunches with simulations showing that they can be as short as a few femtoseconds with low-energy spread, making these beams ideal for a variety of applications ranging from novel high-brightness radiation sources for medicine, material science and ultrafast time-resolved radiobiology or chemistry. Laser driven ion acceleration experiments have also made significant advances over the last few years with applications in laser fusion, nuclear physics and medicine. Attention is focused on the possibility of producing quasi-mono-energetic ions with energies ranging from hundreds of MeV to GeV per nucleon. New acceleration mechanisms are being studied, including ion acceleration from ultra-thin foils and direct laser acceleration. The application of wakefields or beat waves in other areas of science such as astrophysics and particle physics is beginning to take off, such as the study of cosmic accelerators considered

  17. Nanoprecipitates and Their Strengthening Behavior in Al-Mg-Si Alloy During the Aging Process

    NASA Astrophysics Data System (ADS)

    Li, Hui; Liu, Wenqing

    2017-04-01

    The different nanoprecipitates formed in a 6061 aluminum alloy during aging at 453 K (180 °C), with or without 168 hours of pre-natural aging (NA), and the age-hardening response of the alloy were investigated by atom probe tomography (APT) and hardness testing. A hardness plateau developed between 2 and 8 hours in both the artificial aging (AA) and artificial aging with pre-natural aging (NAAA) samples. The hardness of NAAA samples was lower than that of AA samples when artificially aged for the same time. A 168-hour NA led to the formation of solute atom clusters in the matrix. The NA accelerated the precipitation kinetics of the following AA. The solute atom clusters gave the highest hardness increment per unit volume fraction. The β″ precipitates were dominant in the samples at the hardness plateau. The average normalized Mg:Si ratios of the solute atom clusters and GP zones were near 1. The average Mg:Si ratio of β″ precipitates increased from 1.3 to 1.5 upon aging for 2 hours. The microstructural evolution of samples with or without NA and its influence on the strengthening effects are discussed based on the experimental results.

  18. The anti-aging effects of LW-AFC via correcting immune dysfunctions in senescence accelerated mouse resistant 1 (SAMR1) strain.

    PubMed

    Wang, Jianhui; Cheng, Xiaorui; Zhang, Xiaorui; Cheng, Junping; Xu, Yiran; Zeng, Ju; Zhou, Wenxia; Zhang, Yongxiang

    2016-05-10

    Although there were considerable advances in the anti-aging medical field, it is short of therapeutic drug for anti-aging. Mounting evidence indicates that the immunosenescence is the key physiopathological mechanism of aging. This study showed the treatment of LW-AFC, an herbal medicine, decreased the grading score of senescence, increased weight, prolonged average life span and ameliorated spatial memory impairment in 12- and 24-month-old senescence accelerated mouse resistant 1 (SAMR1) strain. And these anti-aging effects of LW-AFC were more excellent than melatonin. The administration of LW-AFC enhanced ConA- and LPS-induced splenocyte proliferation in aged SAMR1 mice. The treatment of LW-AFC not only reversed the decreased the proportions of helper T cells, suppressor T cells and B cells, the increased regulatory T cells in the peripheral blood of old SAMR1 mice, but also could modulate the abnormal secretion of IL-1β, IL-2, IL-6, IL-17, IL-23, GM-CSF, IFN-γ, TNF-α, TNF-β, RANTES, eotaxin, MCP-1, IL-4, IL-5, IL-10 and G-CSF. These data indicated that LW-AFC reversed the immunosenescence status by restoring immunodeficiency and decreasing chronic inflammation and suggested LW-AFC may be an effective anti-aging agent.

  19. Multi-tissue DNA methylation age predictor in mouse.

    PubMed

    Stubbs, Thomas M; Bonder, Marc Jan; Stark, Anne-Katrien; Krueger, Felix; von Meyenn, Ferdinand; Stegle, Oliver; Reik, Wolf

    2017-04-11

    DNA methylation changes at a discrete set of sites in the human genome are predictive of chronological and biological age. However, it is not known whether these changes are causative or a consequence of an underlying ageing process. It has also not been shown whether this epigenetic clock is unique to humans or conserved in the more experimentally tractable mouse. We have generated a comprehensive set of genome-scale base-resolution methylation maps from multiple mouse tissues spanning a wide range of ages. Many CpG sites show significant tissue-independent correlations with age which allowed us to develop a multi-tissue predictor of age in the mouse. Our model, which estimates age based on DNA methylation at 329 unique CpG sites, has a median absolute error of 3.33 weeks and has similar properties to the recently described human epigenetic clock. Using publicly available datasets, we find that the mouse clock is accurate enough to measure effects on biological age, including in the context of interventions. While females and males show no significant differences in predicted DNA methylation age, ovariectomy results in significant age acceleration in females. Furthermore, we identify significant differences in age-acceleration dependent on the lipid content of the diet. Here we identify and characterise an epigenetic predictor of age in mice, the mouse epigenetic clock. This clock will be instrumental for understanding the biology of ageing and will allow modulation of its ticking rate and resetting the clock in vivo to study the impact on biological age.

  20. Aging curve of neuromotor function by pronation and supination of forearms using three-dimensional wireless acceleration and angular velocity sensors.

    PubMed

    Kaneko, M; Okui, H; Hirakawa, G; Ishinishi, H; Katayama, Y; Iramina, K

    2012-01-01

    We have developed an evaluation system for pronation and supination of forearms. The motion of pronation and supination of the forearm is used as a diagnosis method of developmental disability, etc. However, this diagnosis method has a demerit in which diagnosis results between doctors are not consistent. It is hoped that a more quantitative and simple evaluation method is established. Moreover it is hoped a diagnostic criteria obtained from healthy subjects can be established to diagnose developmental disorder patients. We developed a simple and portable evaluation system for pronation and supination of forearms. Three-dimensional wireless acceleration and angular velocity sensors are used for this system. In this study, pronation and supination of forearms of 570 subjects (subjects aged 6-12, 21-100) were examined. We could obtain aging curves in the neuromotor function of pronation and supination. These aging curves obtained by our developed system, has the potential to become diagnostic criteria for a developmental disability, etc.

  1. 75 FR 62410 - Notice of Proposed Information Collection: Comment Request; The Multifamily Accelerated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... Information Collection: Comment Request; The Multifamily Accelerated Processing Guide AGENCY: Office of the... also lists the following information: Title of Proposal: Multifamily Accelerated Processing Guide (MAP...-0541. Description of the need for the information and proposed use: Multifamily Accelerated Processing...

  2. Accelerated Reader: Evaluation Report and Executive Summary

    ERIC Educational Resources Information Center

    Gorard, Stephen; Siddiqui, Nadia; See, Beng Huat

    2015-01-01

    Accelerated Reader (AR) is a whole-group reading management and monitoring program that aims to foster the habit of independent reading among primary and early secondary age pupils. The internet-based software initially screens pupils according to their reading levels, and suggests books that match their reading age and reading interest. Pupils…

  3. Improving particle beam acceleration in plasmas

    NASA Astrophysics Data System (ADS)

    C. de Sousa, M.; L. Caldas, I.

    2018-04-01

    The dynamics of wave-particle interactions in magnetized plasmas restricts the wave amplitude to moderate values for particle beam acceleration from rest energy. We analyze how a perturbing invariant robust barrier modifies the phase space of the system and enlarges the wave amplitude interval for particle acceleration. For low values of the wave amplitude, the acceleration becomes effective for particles with initial energy close to the rest energy. For higher values of the wave amplitude, the robust barrier controls chaos in the system and restores the acceleration process. We also determine the best position for the perturbing barrier in phase space in order to increase the final energy of the particles.

  4. Accelerator system and method of accelerating particles

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  5. Physiological Aspects of Aging. Module A-5. Block A. Basic Knowledge of the Aging Process.

    ERIC Educational Resources Information Center

    Harvey, Dexter; Cap, Orest

    This instructional module on physiological aspects of aging is one in a block of 10 modules designed to provide the human services worker who works with older adults with basic information regarding the aging process. An introduction provides an overview of the module content. A listing of general objectives follows. Nine sections present…

  6. Test of the wire ageing induced by radiation for the CMS barrel muon chambers

    NASA Astrophysics Data System (ADS)

    Conti, E.; Gasparini, F.

    2001-06-01

    We have carried out laboratory tests to measure the ageing of a wire tube due to pollutants outgassed by various materials. The tested materials are those used in the barrel muon drift tubes of the CMS experiment at LHC. An X-ray gun irradiated the test tube to accelerate the ageing process. No ageing effect has been measured for a period equivalent to 10 years of operation at LHC.

  7. Using Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data

    NASA Astrophysics Data System (ADS)

    O'Connor, A. S.; Justice, B.; Harris, A. T.

    2013-12-01

    Graphics Processing Units (GPUs) are high-performance multiple-core processors capable of very high computational speeds and large data throughput. Modern GPUs are inexpensive and widely available commercially. These are general-purpose parallel processors with support for a variety of programming interfaces, including industry standard languages such as C. GPU implementations of algorithms that are well suited for parallel processing can often achieve speedups of several orders of magnitude over optimized CPU codes. Significant improvements in speeds for imagery orthorectification, atmospheric correction, target detection and image transformations like Independent Components Analsyis (ICA) have been achieved using GPU-based implementations. Additional optimizations, when factored in with GPU processing capabilities, can provide 50x - 100x reduction in the time required to process large imagery. Exelis Visual Information Solutions (VIS) has implemented a CUDA based GPU processing frame work for accelerating ENVI and IDL processes that can best take advantage of parallelization. Testing Exelis VIS has performed shows that orthorectification can take as long as two hours with a WorldView1 35,0000 x 35,000 pixel image. With GPU orthorecification, the same orthorectification process takes three minutes. By speeding up image processing, imagery can successfully be used by first responders, scientists making rapid discoveries with near real time data, and provides an operational component to data centers needing to quickly process and disseminate data.

  8. Mouse models of ageing and their relevance to disease.

    PubMed

    Kõks, Sulev; Dogan, Soner; Tuna, Bilge Guvenc; González-Navarro, Herminia; Potter, Paul; Vandenbroucke, Roosmarijn E

    2016-12-01

    Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Principles of Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Briggs*, Richard J.

    The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)

  10. Characterization of Chinese liquor aroma components during aging process and liquor age discrimination using gas chromatography combined with multivariable statistics

    NASA Astrophysics Data System (ADS)

    Xu, M. L.; Yu, Y.; Ramaswamy, H. S.; Zhu, S. M.

    2017-01-01

    Chinese liquor aroma components were characterized during the aging process using gas chromatography (GC). Principal component and cluster analysis (PCA, CA) were used to discriminate the Chinese liquor age which has a great economic value. Of a total of 21 major aroma components identified and quantified, 13 components which included several acids, alcohols, esters, aldehydes and furans decreased significantly in the first year of aging, maintained the same levels (p > 0.05) for next three years and decreased again (p < 0.05) in the fifth year. On the contrary, a significant increase was observed in propionic acid, furfural and phenylethanol. Ethyl lactate was found to be the most stable aroma component during aging process. Results of PCA and CA demonstrated that young liquor (fresh) and aged liquors were well separated from each other, which is in consistent with the evolution of aroma components along with the aging process. These findings provide a quantitative basis for discriminating the Chinese liquor age and a scientific basis for further research on elucidating the liquor aging process, and a possible tool to guard against counterfeit and defective products.

  11. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  12. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1984-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  13. Do schizophrenia patients age early?

    PubMed

    Shivakumar, Venkataram; Kalmady, Sunil V; Venkatasubramanian, Ganesan; Ravi, Vasanthapuram; Gangadhar, Bangalore N

    2014-08-01

    The etiopathogenesis of schizophrenia is poorly understood. Within the proposed "neurodegeneration paradigm", observations have been put forth for "accelerated aging" in this disorder. This proposition is largely based on the neuroscience research that demonstrates progressive changes in brain as well as other systemic abnormalities supportive of faster aging process in patients with this disorder. In this review, we have summarized the literature related to the concept of early aging in schizophrenia. These studies include P300 abnormalities & visual motion discrimination, neuroimaging findings, telomere dynamics as well as neuropathology of related brain regions. We also propose a role of vitamin D, neuroimmunological changes and elevated oxidative stress as well as mitochondrial dysfunction in addition to the above factors with 'vitamin-D deficiency' as the central paradox. Put together, the evidence supporting early aging in schizophrenia is compelling and this requires further systematic studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Klotho dysfunction: A pathway linking the aging process to bipolar disorder?

    PubMed

    Barbosa, Izabela Guimarães; Rocha, Natalia Pessoa; Alpak, Gokay; Vieira, Erica Leandro Marciano; Huguet, Rodrigo Barreto; Rocha, Fabio Lopes; de Oliveira Diniz, Breno Satler; Teixeira, Antonio Lucio

    2017-12-01

    Although accelerated aging profile has been described in bipolar disorder (BD), the biology linking BD and aging is still largely unknown. Reduced levels and/or activity of a protein named Klotho is associated with decreased life span, premature aging and occurrence of age-related diseases. Therefore, this study was designed to evaluate plasma levels of Klotho in BD patients and controls. Forty patients with type 1 BD and 30 controls were enrolled in this study. After clinical evaluation, peripheral blood samples were drawn and plasma levels of Klotho were measured using enzyme-linked immunosorbent assay. Patients with BD and controls presented similar age and sex distribution. The mean ± SD length of illness was 24.00 ± 12.75 years. BD patients presented increased frequency of clinical comorbidities in comparison with controls, mainly arterial hypertension, diabetes mellitus, and hypothyroidism. Both patients with BD in remission and in mania exhibited increased plasma levels of Klotho in comparison with controls. There was no significant difference between patients in mania and patients in remission regarding the levels of Klotho. Klotho-related pathway is altered in BD. Contrary to our original hypothesis, our sample of patients with BD presented increased plasma levels of Klotho in comparison with controls. Elevated levels of Klotho in long-term BD patients may be associated with the disorder progression. Further studies are needed to better understand the role of Klotho in BD and other mood disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Do attentional capacities and processing speed mediate the effect of age on executive functioning?

    PubMed

    Gilsoul, Jessica; Simon, Jessica; Hogge, Michaël; Collette, Fabienne

    2018-02-06

    The executive processes are well known to decline with age, and similar data also exists for attentional capacities and processing speed. Therefore, we investigated whether these two last nonexecutive variables would mediate the effect of age on executive functions (inhibition, shifting, updating, and dual-task coordination). We administered a large battery of executive, attentional and processing speed tasks to 104 young and 71 older people, and we performed mediation analyses with variables showing a significant age effect. All executive and processing speed measures showed age-related effects while only the visual scanning task performance (selective attention) was explained by age when controlled for gender and educational level. Regarding mediation analyses, visual scanning partially mediated the age effect on updating while processing speed partially mediated the age effect on shifting, updating and dual-task coordination. In a more exploratory way, inhibition was also found to partially mediate the effect of age on the three other executive functions. Attention did not greatly influence executive functioning in aging while, in agreement with the literature, processing speed seems to be a major mediator of the age effect on these processes. Interestingly, the global pattern of results seems also to indicate an influence of inhibition but further studies are needed to confirm the role of that variable as a mediator and its relative importance by comparison with processing speed.

  16. Age Differences in Brain Activity during Emotion Processing: Reflections of Age-Related Decline or Increased Emotion Regulation?

    PubMed Central

    Nashiro, Kaoru; Sakaki, Michiko; Mather, Mara

    2012-01-01

    Despite the fact that physical health and cognitive abilities decline with aging, the ability to regulate emotion remains stable and in some aspects improves across the adult life span. Older adults also show a positivity effect in their attention and memory, with diminished processing of negative stimuli relative to positive stimuli compared with younger adults. The current paper reviews functional magnetic resonance imaging studies investigating age-related differences in emotional processing and discusses how this evidence relates to two opposing theoretical accounts of older adults’ positivity effect. The aging-brain model [Cacioppo et al. in: Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind. New York, Oxford University Press, 2011] proposes that older adults’ positivity effect is a consequence of age-related decline in the amygdala, whereas the cognitive control hypothesis [Kryla-Lighthall and Mather in: Handbook of Theories of Aging, ed 2. New York, Springer, 2009; Mather and Carstensen: Trends Cogn Sci 2005;9:496–502; Mather and Knight: Psychol Aging 2005;20:554–570] argues that the positivity effect is a result of older adults’ greater focus on regulating emotion. Based on evidence for structural and functional preservation of the amygdala in older adults and findings that older adults show greater prefrontal cortex activity than younger adults while engaging in emotion-processing tasks, we argue that the cognitive control hypothesis is a more likely explanation for older adults’ positivity effect than the aging-brain model. PMID:21691052

  17. Age differences in brain activity during emotion processing: reflections of age-related decline or increased emotion regulation?

    PubMed

    Nashiro, Kaoru; Sakaki, Michiko; Mather, Mara

    2012-01-01

    Despite the fact that physical health and cognitive abilities decline with aging, the ability to regulate emotion remains stable and in some aspects improves across the adult life span. Older adults also show a positivity effect in their attention and memory, with diminished processing of negative stimuli relative to positive stimuli compared with younger adults. The current paper reviews functional magnetic resonance imaging studies investigating age-related differences in emotional processing and discusses how this evidence relates to two opposing theoretical accounts of older adults' positivity effect. The aging-brain model [Cacioppo et al. in: Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind. New York, Oxford University Press, 2011] proposes that older adults' positivity effect is a consequence of age-related decline in the amygdala, whereas the cognitive control hypothesis [Kryla-Lighthall and Mather in: Handbook of Theories of Aging, ed 2. New York, Springer, 2009; Mather and Carstensen: Trends Cogn Sci 2005;9:496-502; Mather and Knight: Psychol Aging 2005;20:554-570] argues that the positivity effect is a result of older adults' greater focus on regulating emotion. Based on evidence for structural and functional preservation of the amygdala in older adults and findings that older adults show greater prefrontal cortex activity than younger adults while engaging in emotion-processing tasks, we argue that the cognitive control hypothesis is a more likely explanation for older adults' positivity effect than the aging-brain model. Copyright © 2011 S. Karger AG, Basel.

  18. Adult Age Differences in Dual Information Processes: Implications for the Role of Affective and Deliberative Processes in Older Adults' Decision Making.

    PubMed

    Peters, Ellen; Hess, Thomas M; Västfjäll, Daniel; Auman, Corinne

    2007-03-01

    Age differences in affective/experiential and deliberative processes have important theoretical implications for judgment and decision theory and important pragmatic implications for older-adult decision making. Age-related declines in the efficiency of deliberative processes predict poorer-quality decisions as we age. However, age-related adaptive processes, including motivated selectivity in the use of deliberative capacity, an increased focus on emotional goals, and greater experience, predict better or worse decisions for older adults depending on the situation. The aim of the current review is to examine adult age differences in affective and deliberative information processes in order to understand their potential impact on judgments and decisions. We review evidence for the role of these dual processes in judgment and decision making and then review two representative life-span perspectives (based on aging-related changes to cognitive or motivational processes) on the interplay between these processes. We present relevant predictions for older-adult decisions and make note of contradictions and gaps that currently exist in the literature. Finally, we review the sparse evidence about age differences in decision making and how theories and findings regarding dual processes could be applied to decision theory and decision aiding. In particular, we focus on prospect theory (Kahneman & Tversky, 1979) and how prospect theory and theories regarding age differences in information processing can inform one another. © 2007 Association for Psychological Science.

  19. Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment

    PubMed Central

    Cassol, Edana; Misra, Vikas; Dutta, Anupriya; Morgello, Susan; Gabuzda, Dana

    2014-01-01

    Objective(s): HIV-associated neurocognitive disorders (HAND) remain prevalent in HIV-infected patients on antiretroviral therapy (ART), but the underlying mechanisms are unclear. Some features of HAND resemble those of age-associated cognitive decline in the absence of HIV, suggesting that overlapping mechanisms may contribute to neurocognitive impairment. Design: Cross-sectional analysis of cerebrospinal fluid (CSF) from 100 individuals (46 HIV-positive patients and 54 HIV-negative controls). Methods: Untargeted CSF metabolite profiling was performed using liquid/gas chromatography followed by mass spectrometry. Cytokine profiling was performed by Bioplex. Bioinformatic analyses were performed in Metaboanalyst and R. Results: Alterations in the CSF metabolome of HIV patients on ART mapped to pathways associated with neurotransmitter production, mitochondrial function, oxidative stress, and metabolic waste. Many CSF metabolites altered in HIV overlapped with those altered with advanced age in HIV-negative controls, suggesting a pattern indicative of accelerated aging. Machine learning models identified neurotransmitters (glutamate, N-acetylaspartate), markers of glial activation (myo-inositol), and ketone bodies (beta-hydroxybutyric acid, 1,2-propanediol) as top-ranked classifiers of HAND. These CSF metabolites correlated with worse neurocognitive test scores, plasma inflammatory biomarkers [interferon (IFN)-α, IFN-γ, interleukin (IL)-8, IL-1β, IL-6, IL-2Ra], and intrathecal IFN responses (IFN-γ and kynurenine : tryptophan ratio), suggesting inter-relationships between systemic and intrathecal inflammation and metabolic alterations in CSF. Conclusions: Alterations in the CSF metabolome of HIV patients on ART suggest that persistent inflammation, glial responses, glutamate neurotoxicity, and altered brain waste disposal systems contribute to mechanisms involved in HAND that may be augmented with aging. PMID:24752083

  20. Phasic alertness cues modulate visual processing speed in healthy aging.

    PubMed

    Haupt, Marleen; Sorg, Christian; Napiórkowski, Natan; Finke, Kathrin

    2018-05-31

    Warning signals temporarily increase the rate of visual information in younger participants and thus optimize perception in critical situations. It is unclear whether such important preparatory processes are preserved in healthy aging. We parametrically assessed the effects of auditory alertness cues on visual processing speed and their time course using a whole report paradigm based on the computational Theory of Visual Attention. We replicated prior findings of significant alerting benefits in younger adults. In conditions with short cue-target onset asynchronies, this effect was baseline-dependent. As younger participants with high baseline speed did not show a profit, an inverted U-shaped function of phasic alerting and visual processing speed was implied. Older adults also showed a significant cue-induced benefit. Bayesian analyses indicated that the cueing benefit on visual processing speed was comparably strong across age groups. Our results indicate that in aging individuals, comparable to younger ones, perception is active and increased expectancy of the appearance of a relevant stimulus can increase the rate of visual information uptake. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Modeling of Particle Acceleration at Multiple Shocks via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2013-01-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  2. Future HEP Accelerators: The US Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Pushpalatha; Shiltsev, Vladimir

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN throughmore » its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.« less

  3. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    DOE PAGES

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheldmore » LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.« less

  4. Age-Related Neural Oscillation Patterns During the Processing of Temporally Manipulated Speech.

    PubMed

    Rufener, Katharina S; Oechslin, Mathias S; Wöstmann, Malte; Dellwo, Volker; Meyer, Martin

    2016-05-01

    This EEG-study aims to investigate age-related differences in the neural oscillation patterns during the processing of temporally modulated speech. Viewing from a lifespan perspective, we recorded the electroencephalogram (EEG) data of three age samples: young adults, middle-aged adults and older adults. Stimuli consisted of temporally degraded sentences in Swedish-a language unfamiliar to all participants. We found age-related differences in phonetic pattern matching when participants were presented with envelope-degraded sentences, whereas no such age-effect was observed in the processing of fine-structure-degraded sentences. Irrespective of age, during speech processing the EEG data revealed a relationship between envelope information and the theta band (4-8 Hz) activity. Additionally, an association between fine-structure information and the gamma band (30-48 Hz) activity was found. No interaction, however, was found between acoustic manipulation of stimuli and age. Importantly, our main finding was paralleled by an overall enhanced power in older adults in high frequencies (gamma: 30-48 Hz). This occurred irrespective of condition. For the most part, this result is in line with the Asymmetric Sampling in Time framework (Poeppel in Speech Commun 41:245-255, 2003), which assumes an isomorphic correspondence between frequency modulations in neurophysiological patterns and acoustic oscillations in spoken language. We conclude that speech-specific neural networks show strong stability over adulthood, despite initial processes of cortical degeneration indicated by enhanced gamma power. The results of our study therefore confirm the concept that sensory and cognitive processes undergo multidirectional trajectories within the context of healthy aging.

  5. The role of epigenetics in cardiovascular health and ageing: A focus on physical activity and nutrition.

    PubMed

    Wallace, Robert G; Twomey, Laura C; Custaud, Marc-Antoine; Turner, Jonathan D; Moyna, Niall; Cummins, Philip M; Murphy, Ronan P

    2017-11-16

    The cardiovascular system is responsible for transport of blood and nutrients to tissues, and is pivotal to the physiological health and longevity. Epigenetic modification is a natural, age-associated process resulting in highly contextualised gene expression with clear implications for cell differentiation and disease onset. Biological/epigenetic age is independent of chronological age, constituting a highly reflective snapshot of an individual's overall health. Accelerated vascular ageing is of major concern, effectively lowering disease threshold. Age-related chronic illness involves a complex interplay between many biological processes and is modulated by non-modifiable and modifiable risk factors. These alter the static genome by a number of epigenetic mechanisms, which change gene expression in an age and lifestyle dependent manner. This 'epigenetic drift' impacts health and contributes to the etiology of chronic illness. Lifestyle factors may cause acceleration of this epigenetic "clock", pre-disposing individuals to cardiovascular disease. Nutrition and physical activity are modifiable lifestyle choices, synergistically contributing to cardiovascular health. They represent a powerful potential epigenetic intervention point for effective cardiovascular protective and management strategies. Thus, together with traditional risk factors, monitoring the epigenetic signature of ageing may prove beneficial for tailoring lifestyle to fit biology - supporting the increasingly popular concept of "ageing well". Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Environmental aging in polycrystalline-Si photovoltaic modules: comparison of chamber-based accelerated degradation studies with field-test data

    NASA Astrophysics Data System (ADS)

    Lai, T.; Biggie, R.; Brooks, A.; Potter, B. G.; Simmons-Potter, K.

    2015-09-01

    Lifecycle degradation testing of photovoltaic (PV) modules in accelerated-degradation chambers can enable the prediction both of PV performance lifetimes and of return-on-investment for installations of PV systems. With degradation results strongly dependent on chamber test parameters, the validity of such studies relative to fielded, installed PV systems must be determined. In the present work, accelerated aging of a 250 W polycrystalline silicon module is compared to real-time performance degradation in a similar polycrystalline-silicon, fielded, PV technology that has been operating since October 2013. Investigation of environmental aging effects are performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability providing illumination uniformity of 98% over a 2 x 1.6 m area. Time-dependent, photovoltaic performance (J-V) is evaluated over a recurring, compressed night-day cycle providing representative local daily solar insolation for the southwestern United States, followed by dark (night) cycling. This cycle is synchronized with thermal and humidity environmental variations that are designed to mimic, as closely as possible, test-yard conditions specific to a 12 month weather profile for a fielded system in Tucson, AZ. Results confirm the impact of environmental conditions on the module long-term performance. While the effects of temperature de-rating can be clearly seen in the data, removal of these effects enables the clear interpretation of module efficiency degradation with time and environmental exposure. With the temperature-dependent effect removed, the normalized efficiency is computed and compared to performance results from another panel of similar technology that has previously experienced identical climate changes in the test yard. Analysis of relative PV module efficiency degradation for the chamber-tested system shows good comparison to the field-tested system with ~2.5% degradation following

  7. New Targets for New Accelerators

    NASA Astrophysics Data System (ADS)

    Frentz, Bryce; Manukyan, Khachatur; Aprahamian, Ani

    2013-10-01

    New accelerators, such as the 5 MV Sta Ana accelerator at the University of Notre Dame, will produce more powerful beams up to 100's of μAmps. These accelerators require a complete rethinking of target preparation since the high intensity of such beams would melt conventional targets. Traditionally, accelerator targets are made with a tantalum backing because of its high atomic mass. However, tantalum is brittle, a poor conductor, and, if produced commercially, often contains impurities (e.g. fluorine) that produce undesirable background and reaction products. Tungsten, despite its brittle structure and poor conductivity, has a high atomic mass and lacks impurities, making it a more desirable backing. In conjunction with tungsten's properties, copper is robust and a far superior thermal conductor. We describe a new method of reactive joining that we developed for creating targets that use the advantageous properties of both tungsten and copper. This process involved placing a reactive mixture between tungsten and copper and applying a load force. The mixture is then ignited, and while under pressure, the system produces conditions to join the materials. We present our investigation to optimize the process of reactive joining, as well as some of the final target's properties. This work was supported by the National Science Foundation under Grant PHY-1068192.

  8. Factors and processes causing accelerated decomposition in human cadavers - An overview.

    PubMed

    Zhou, Chong; Byard, Roger W

    2011-01-01

    Artefactually enhanced putrefactive and autolytic changes may be misinterpreted as indicating a prolonged postmortem interval and throw doubt on the veracity of witness statements. Review of files from Forensic Science SA and the literature revealed a number of external and internal factors that may be responsible for accelerating these processes. Exogenous factors included exposure to elevated environmental temperatures, both outdoors and indoors, exacerbated by increased humidity or fires. Situations indoor involved exposure to central heating, hot water, saunas and electric blankets. Deaths within motor vehicles were also characterized by enhanced decomposition. Failure to quickly or adequately refrigerate bodies may also lead to early decomposition. Endogenous factors included fever, infections, illicit and prescription drugs, obesity and insulin-dependent diabetes mellitus. When these factors or conditions are identified at autopsy less significance should, therefore, be attached to changes of decomposition as markers of time since death. Copyright © 2010 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  9. Gaussian process regression to accelerate geometry optimizations relying on numerical differentiation

    NASA Astrophysics Data System (ADS)

    Schmitz, Gunnar; Christiansen, Ove

    2018-06-01

    We study how with means of Gaussian Process Regression (GPR) geometry optimizations, which rely on numerical gradients, can be accelerated. The GPR interpolates a local potential energy surface on which the structure is optimized. It is found to be efficient to combine results on a low computational level (HF or MP2) with the GPR-calculated gradient of the difference between the low level method and the target method, which is a variant of explicitly correlated Coupled Cluster Singles and Doubles with perturbative Triples correction CCSD(F12*)(T) in this study. Overall convergence is achieved if both the potential and the geometry are converged. Compared to numerical gradient-based algorithms, the number of required single point calculations is reduced. Although introducing an error due to the interpolation, the optimized structures are sufficiently close to the minimum of the target level of theory meaning that the reference and predicted minimum only vary energetically in the μEh regime.

  10. Accelerated protein damage in brains of PIMT+/- mice; a possible model for the variability of cognitive decline in human aging.

    PubMed

    Qin, Zhenxia; Dimitrijevic, Aleksandra; Aswad, Dana W

    2015-02-01

    Isoaspartate formation is a common type of protein damage normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). Mice with a knockout of the gene (Pcmt1) for this enzyme (KO, -/-) exhibit a pronounced neuropathology with fatal epileptic seizures at 30-60 days. Heterozygous (HZ, +/-) mice have 50% of the PIMT activity found in wild-type (WT, +/+) mice, but appear normal. To see if HZ mice exhibit accelerated aging at the molecular level, we compared brain extracts from HZ and WT mice at 8 months and 2 years with regard to PIMT activity, isoaspartate levels, and activity of an endogenous PIMT substrate, creatine kinase B. PIMT activity declined modestly with age in both genotypes. Isoaspartate was significantly higher in HZ than WT mice at 8 months and more so at 2 years, rising 5× faster in HZ males and 3× faster in females. Creatine kinase activity decreased with age and was always lower in the HZ mice. These findings suggest the individual variation of human PIMT levels may significantly influence the course of age-related central nervous system dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A Graphics Processing Unit Accelerated Motion Correction Algorithm and Modular System for Real-time fMRI

    PubMed Central

    Scheinost, Dustin; Hampson, Michelle; Qiu, Maolin; Bhawnani, Jitendra; Constable, R. Todd; Papademetris, Xenophon

    2013-01-01

    Real-time functional magnetic resonance imaging (rt-fMRI) has recently gained interest as a possible means to facilitate the learning of certain behaviors. However, rt-fMRI is limited by processing speed and available software, and continued development is needed for rt-fMRI to progress further and become feasible for clinical use. In this work, we present an open-source rt-fMRI system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated motion correction strategy as part of the BioImage Suite project (www.bioimagesuite.org). Our system contributes to the development of rt-fMRI by presenting a motion correction algorithm that provides an estimate of motion with essentially no processing delay as well as a modular rt-fMRI system design. Using empirical data from rt-fMRI scans, we assessed the quality of motion correction in this new system. The present algorithm performed comparably to standard (non real-time) offline methods and outperformed other real-time methods based on zero order interpolation of motion parameters. The modular approach to the rt-fMRI system allows the system to be flexible to the experiment and feedback design, a valuable feature for many applications. We illustrate the flexibility of the system by describing several of our ongoing studies. Our hope is that continuing development of open-source rt-fMRI algorithms and software will make this new technology more accessible and adaptable, and will thereby accelerate its application in the clinical and cognitive neurosciences. PMID:23319241

  12. A graphics processing unit accelerated motion correction algorithm and modular system for real-time fMRI.

    PubMed

    Scheinost, Dustin; Hampson, Michelle; Qiu, Maolin; Bhawnani, Jitendra; Constable, R Todd; Papademetris, Xenophon

    2013-07-01

    Real-time functional magnetic resonance imaging (rt-fMRI) has recently gained interest as a possible means to facilitate the learning of certain behaviors. However, rt-fMRI is limited by processing speed and available software, and continued development is needed for rt-fMRI to progress further and become feasible for clinical use. In this work, we present an open-source rt-fMRI system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated motion correction strategy as part of the BioImage Suite project ( www.bioimagesuite.org ). Our system contributes to the development of rt-fMRI by presenting a motion correction algorithm that provides an estimate of motion with essentially no processing delay as well as a modular rt-fMRI system design. Using empirical data from rt-fMRI scans, we assessed the quality of motion correction in this new system. The present algorithm performed comparably to standard (non real-time) offline methods and outperformed other real-time methods based on zero order interpolation of motion parameters. The modular approach to the rt-fMRI system allows the system to be flexible to the experiment and feedback design, a valuable feature for many applications. We illustrate the flexibility of the system by describing several of our ongoing studies. Our hope is that continuing development of open-source rt-fMRI algorithms and software will make this new technology more accessible and adaptable, and will thereby accelerate its application in the clinical and cognitive neurosciences.

  13. Beamlets from stochastic acceleration

    NASA Astrophysics Data System (ADS)

    Perri, Silvia; Carbone, Vincenzo

    2008-09-01

    We investigate the dynamics of a realization of the stochastic Fermi acceleration mechanism. The model consists of test particles moving between two oscillating magnetic clouds and differs from the usual Fermi-Ulam model in two ways. (i) Particles can penetrate inside clouds before being reflected. (ii) Particles can radiate a fraction of their energy during the process. Since the Fermi mechanism is at work, particles are stochastically accelerated, even in the presence of the radiated energy. Furthermore, due to a kind of resonance between particles and oscillating clouds, the probability density function of particles is strongly modified, thus generating beams of accelerated particles rather than a translation of the whole distribution function to higher energy. This simple mechanism could account for the presence of beamlets in some space plasma physics situations.

  14. Two Step Acceleration Process of Electrons in the Outer Van Allen Radiation Belt by Time Domain Electric Field Bursts and Large Amplitude Chorus Waves

    NASA Astrophysics Data System (ADS)

    Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.

    2014-12-01

    A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.

  15. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction.

    PubMed

    Watanabe, Yuuki; Takahashi, Yuhei; Numazawa, Hiroshi

    2014-02-01

    We demonstrate intensity-based optical coherence tomography (OCT) angiography using the squared difference of two sequential frames with bulk-tissue-motion (BTM) correction. This motion correction was performed by minimization of the sum of the pixel values using axial- and lateral-pixel-shifted structural OCT images. We extract the BTM-corrected image from a total of 25 calculated OCT angiographic images. Image processing was accelerated by a graphics processing unit (GPU) with many stream processors to optimize the parallel processing procedure. The GPU processing rate was faster than that of a line scan camera (46.9 kHz). Our OCT system provides the means of displaying structural OCT images and BTM-corrected OCT angiographic images in real time.

  16. Perinatal Complications and Aging Indicators by Midlife

    PubMed Central

    Caspi, Avshalom; Ambler, Antony; Belsky, Daniel W.; Chapple, Simon; Cohen, Harvey Jay; Israel, Salomon; Poulton, Richie; Ramrakha, Sandhya; Rivera, Christine D.; Sugden, Karen; Williams, Benjamin; Wolke, Dieter; Moffitt, Terrie E.

    2014-01-01

    BACKGROUND: Perinatal complications predict increased risk for morbidity and early mortality. Evidence of perinatal programming of adult mortality raises the question of what mechanisms embed this long-term effect. We tested a hypothesis related to the theory of developmental origins of health and disease: that perinatal complications assessed at birth predict indicators of accelerated aging by midlife. METHODS: Perinatal complications, including both maternal and neonatal complications, were assessed in the Dunedin Multidisciplinary Health and Development Study cohort (N = 1037), a 38-year, prospective longitudinal study of a representative birth cohort. Two aging indicators were assessed at age 38 years, objectively by leukocyte telomere length (TL) and subjectively by perceived facial age. RESULTS: Perinatal complications predicted both leukocyte TL (β = −0.101; 95% confidence interval, −0.169 to −0.033; P = .004) and perceived age (β = 0.097; 95% confidence interval, 0.029 to 0.165; P = .005) by midlife. We repeated analyses with controls for measures of family history and social risk that could predispose to perinatal complications and accelerated aging, and for measures of poor health taken in between birth and the age-38 follow-up. These covariates attenuated, but did not fully explain the associations observed between perinatal complications and aging indicators. CONCLUSIONS: Our findings provide support for early-life developmental programming by linking newborns’ perinatal complications to accelerated aging at midlife. We observed indications of accelerated aging “inside,” as measured by leukocyte TL, an indicator of cellular aging, and “outside,” as measured by perceived age, an indicator of declining tissue integrity. A better understanding of mechanisms underlying perinatal programming of adult aging is needed. PMID:25349321

  17. Repeated superovulation increases the risk of osteoporosis and cardiovascular diseases by accelerating ovarian aging in mice.

    PubMed

    Zhang, Jinjin; Lai, Zhiwen; Shi, Liangyan; Tian, Yong; Luo, Aiyue; Xu, Zheyuan; Ma, Xiangyi; Wang, Shixuan

    2018-05-22

    Superovulation procedures and assisted reproductive technologies have been widely used to treat couples who have infertility problems. Although generally safe, the superovulation procedures are associated with a series of complications, such as ovarian hyper-stimulation syndrome, thromboembolism, and adnexal torsion. The role of long-term repeated superovulation in ovarian aging and especially in associated disorders such as osteoporosis and cardiovascular diseases is still unclear. In this study, we sought to determine if repeated superovulation by ten cycles of treatment with pregnant mare serum gonadotropin/human chorionic gonadotropin could affect ovarian reserve, ovarian function, bone density and heart function. Ovarian reserve and function were reflected by the size of the primordial follicle pool, anti-Mullerian hormone expressions, hormone levels and fertility status. Furthermore, we examined bone density and heart function by microCT and cardiovascular ultrasonography, respectively. After repeated superovulation, the size of the primordial follicle pool and the expression of anti-mullerian hormone decreased, along with the concentrations of estrogen and progesterone. Mice exposed to repeated superovulation showed an obvious decrease in fertility and fecundity. Furthermore, both bone density and heart ejection fraction significantly decreased. These results suggest that repeated superovulation may increase the risk of osteoporosis and cardiovascular diseases by accelerating ovarian aging.

  18. Stability of auditory discrimination and novelty processing in physiological aging.

    PubMed

    Raggi, Alberto; Tasca, Domenica; Rundo, Francesco; Ferri, Raffaele

    2013-01-01

    Complex higher-order cognitive functions and their possible changes with aging are mandatory objectives of cognitive neuroscience. Event-related potentials (ERPs) allow investigators to probe the earliest stages of information processing. N100, Mismatch negativity (MMN) and P3a are auditory ERP components that reflect automatic sensory discrimination. The aim of the present study was to determine if N100, MMN and P3a parameters are stable in healthy aged subjects, compared to those of normal young adults. Normal young adults and older participants were assessed using standardized cognitive functional instruments and their ERPs were obtained with an auditory stimulation at two different interstimulus intervals, during a passive paradigm. All individuals were within the normal range on cognitive tests. No significant differences were found for any ERP parameters obtained from the two age groups. This study shows that aging is characterized by a stability of the auditory discrimination and novelty processing. This is important for the arrangement of normative for the detection of subtle preclinical changes due to abnormal brain aging.

  19. The interplay between immunity and aging in Drosophila.

    PubMed

    Garschall, Kathrin; Flatt, Thomas

    2018-01-01

    Here, we provide a brief review of the mechanistic connections between immunity and aging-a fundamental biological relationship that remains poorly understood-by considering two intertwined questions: how does aging affect immunity, and how does immunity affect aging? On the one hand, aging contributes to the deterioration of immune function and predisposes the organism to infections ("immuno-senescence"). On the other hand, excessive activation of the immune system can accelerate degenerative processes, cause inflammation and immunopathology, and thus promote aging ("inflammaging"). Interestingly, several recent lines of evidence support the hypothesis that restrained or curbed immune activity at old age (that is, optimized age-dependent immune homeostasis) might actually improve realized immune function and thereby promote longevity. We focus mainly on insights from Drosophila , a powerful genetic model system in which both immunity and aging have been extensively studied, and conclude by outlining several unresolved questions in the field.

  20. Sodium hyaluronate accelerates the healing process in tooth sockets of rats.

    PubMed

    Mendes, Renato M; Silva, Gerluza A B; Lima, Miguel F; Calliari, Marcelo V; Almeida, Alvair P; Alves, José B; Ferreira, Anderson J

    2008-12-01

    In this study we evaluated the effects of sodium hyaluronate (HY) in the healing process of tooth sockets of rats. Immediately after the extraction of the upper first molars of male Holtzman rats, right sockets were treated with 1% HY gel (approximately 0.1 ml), while left sockets were used as control (blood clot). The animals were sacrificed at 2, 7, and 21 days after tooth extraction and upper maxillaries processed for histological and morphometric analysis of the apical and medium thirds of the sockets. Carbopol, an inert gel, was used to evaluate the mechanical effect of gel injection into sockets. Expression of bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) was determined by immunohistochemistry at 1, 2, 3, 4, 5, and 7 days after tooth extraction. Histological analysis showed that HY treatment induced earlier trabecular bone deposition resulting in a bone matrix more organized at 7 and 21 days after tooth extraction. Also, HY elicited significant increase in the amount of bone trabeculaes at 7 and 21 days after tooth extraction (percentage of trabecular bone area at 7 days: 13.21+/-4.66% vs. 2.58+/-1.36% in the apical third of control sockets) and in the vessels counting at 7 days. Conversely, the number of cell nuclei was decreased in HY-treated sockets. Additionally, expression of BMP-2 and OPN was enhanced in HY-treated sockets compared with control sockets. These findings suggest that HY accelerates the healing process in tooth sockets of rats stimulating the expression of osteogenic proteins.

  1. Effecting aging time of epoxy molding compound to molding process for integrated circuit packaging

    NASA Astrophysics Data System (ADS)

    Tachapitunsuk, Jirayu; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about effecting aging time of epoxy molding compound (EMC) that effect to reliability performance of integrated circuit (IC) package in molding process. Molding process is so important of IC packaging process for protecting IC chip (or die) from temperature and humidity environment using encapsulated EMC. For general molding process, EMC are stored in the frozen at 5°C and left at room temperature at 25 °C for aging time on self before molding of die onto lead frame is 24 hours. The aging time effect to reliability performance of IC package due to different temperature and humidity inside the package. In experiment, aging time of EMC were varied from 0 to 24 hours for molding process of SOIC-8L packages. For analysis, these packages were tested by x-ray and scanning acoustic microscope to analyze properties of EMC with an aging time and also analyzed delamination, internal void, and wire sweep inside the packages with different aging time. The results revealed that different aging time of EMC effect to properties and reliability performance of molding process.

  2. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  3. Trends for Electron Beam Accelerator Applications in Industry

    NASA Astrophysics Data System (ADS)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  4. Microwave-assisted synthesis of N-pyrazole ureas and the p38alpha inhibitor BIRB 796 for study into accelerated cell ageing.

    PubMed

    Bagley, Mark C; Davis, Terence; Dix, Matthew C; Widdowson, Caroline S; Kipling, David

    2006-11-21

    Microwave irradiation of substituted hydrazines and beta-ketoesters gives 5-aminopyrazoles in excellent yield, which can be transformed to the corresponding N-carbonyl derivatives by treatment with an isocyanate or chloroformate. Derivatization of 4-nitronaphth-1-ol using predominantly microwave heating methods and reaction with an N-pyrazole carbamate provides a rapid route to the N-pyrazole urea BIRB 796 in high purity, as a potent and selective inhibitor of p38alpha mitogen-activated protein kinase for the study of accelerated ageing in Werner syndrome cells.

  5. Processing speed and memory mediate age-related differences in decision making.

    PubMed

    Henninger, Debra E; Madden, David J; Huettel, Scott A

    2010-06-01

    Decision making under risk changes with age. Increases in risk aversion with age have been most commonly characterized, although older adults may be risk seeking in some decision contexts. An important, and unanswered, question is whether these changes in decision making reflect a direct effect of aging or, alternatively, an indirect effect caused by age-related changes in specific cognitive processes. In the current study, older adults (M = 71 years) and younger adults (M = 24 years) completed a battery of tests of cognitive capacities and decision-making preferences. The results indicated systematic effects of age upon decision quality-with both increased risk seeking and increased risk aversion observed in different tasks-consistent with prior studies. Path analyses, however, revealed that age-related effects were mediated by individual differences in processing speed and memory. When those variables were included in the model, age was no longer a significant predictor of decision quality. The authors conclude that the reduction in decision quality and associated changes in risk preferences commonly ascribed to aging are instead mediated by age-related changes in underlying cognitive capacities. (c) 2010 APA, all rights reserved

  6. Accelerated Molecular Dynamics Simulations with the AMOEBA Polarizable Force Field on Graphics Processing Units

    PubMed Central

    2013-01-01

    The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination with the AMOEBA polarizable force field (AMOEBA-aMD), allowing the simulation of long time-scale events with a polarizable force field. Benchmarks are provided to show that the AMOEBA-aMD method is efficiently implemented and produces accurate results in its standard parametrization. For the BPTI protein, we demonstrate that the protein structure described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use of a polarizable force field and enhanced sampling. PMID:24634618

  7. Large-scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU).

    PubMed

    Shi, Yulin; Veidenbaum, Alexander V; Nicolau, Alex; Xu, Xiangmin

    2015-01-15

    Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post hoc processing and analysis. Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22× speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Large scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU)

    PubMed Central

    Shi, Yulin; Veidenbaum, Alexander V.; Nicolau, Alex; Xu, Xiangmin

    2014-01-01

    Background Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post-hoc processing and analysis. New Method Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. Results We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22x speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. Comparison with Existing Method(s) To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Conclusions Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. PMID:25277633

  9. Framing the inborn aging process and longevity science.

    PubMed

    Farrelly, Colin

    2010-06-01

    The medical sciences are currently dominated by the "disease-model" approach to health extension, an approach that prioritizes the study of pathological mechanisms with the goal of discovering treatment modalities for specific diseases. This approach has marginalized research on the aging process itself, research that could lead to an intervention that retards aging, thus conferring health dividends that would far exceed what could be expected by eliminating any specific disease of aging. This paper offers a diagnosis of how this sub-optimal approach to health extension arose and some general prescriptions concerning how progress could be made in terms of adopting a more rational approach to health extension. Drawing on empirical findings from psychology and economics, "prospect theory" is applied to the challenges of "framing" the inborn aging process given the cognitive capacities of real (rather than rational) decision-makers under conditions of risk and uncertainty. Prospect theory reveals that preferences are in fact dependent on whether particular outcomes of a choice are regarded as "a loss" or "a gain", relative to a reference point (or "aspiration level for survival"). And this has significant consequences for the way biogerontologists ought to characterise the central aspirations of the field (i.e. to prevent disease versus extend lifespan). Furthermore, it reveals the importance of shifting the existing reference point of the medical sciences to one that is shaped by the findings of evolutionary biology and biodemography.

  10. Effect of Accelerated Artificial Aging on Translucency of Methacrylate and Silorane-Based Composite Resins.

    PubMed

    Shirinzad, Mehdi; Rezaei-Soufi, Loghman; Mirtorabi, Maryam Sadat; Vahdatinia, Farshid

    2016-03-01

    Composite restorations must have tooth-like optical properties namely color and translucency and maintain them for a long time. This study aimed to compare the effect of accelerated artificial aging (AAA) on the translucency of three methacrylate-based composites (Filtek Z250, Filtek Z250XT and Filtek Z350XT) and one silorane-based composite resin (Filtek P90). For this in vitro study, 56 composite discs were fabricated (n=14 for each group). Using scanning spectrophotometer, CIE L*a*b* parameters and translucency of each specimen were measured at 24 hours and after AAA for 384 hours. Data were analyzed using one-way ANOVA, Tukey's test and paired t-test at P=0.05 level of significance. The mean (±standard deviation) translucency parameter for Filtek Z250, Filtek Z250XT, Filtek Z350XT and Filtek P90 was 5.67±0.64, 4.59±0.77, 7.87±0.82 and 4.21±0.71 before AAA and 4.25±0.615, 3.53±0.73, 5.94±0.57 and 4.12±0.54 after AAA, respectively. After aging, the translucency of methacrylate-based composites decreased significantly (P<0.05). However, the translucency of Filtek P90 did not change significantly (P>0.05). The AAA significantly decreased the translucency of methacrylate-based composites (Filtek Z250, Filtek Z250XT and Filtek Z350XT) but no change occurred in the translucency of Filtek P90 silorane-based composite.

  11. Effect of Accelerated Artificial Aging on Translucency of Methacrylate and Silorane-Based Composite Resins

    PubMed Central

    Shirinzad, Mehdi; Rezaei-Soufi, Loghman; Mirtorabi, Maryam Sadat; Vahdatinia, Farshid

    2016-01-01

    Objectives: Composite restorations must have tooth-like optical properties namely color and translucency and maintain them for a long time. This study aimed to compare the effect of accelerated artificial aging (AAA) on the translucency of three methacrylate-based composites (Filtek Z250, Filtek Z250XT and Filtek Z350XT) and one silorane-based composite resin (Filtek P90). Materials and Methods: For this in vitro study, 56 composite discs were fabricated (n=14 for each group). Using scanning spectrophotometer, CIE L*a*b* parameters and translucency of each specimen were measured at 24 hours and after AAA for 384 hours. Data were analyzed using one-way ANOVA, Tukey's test and paired t-test at P=0.05 level of significance. Results: The mean (±standard deviation) translucency parameter for Filtek Z250, Filtek Z250XT, Filtek Z350XT and Filtek P90 was 5.67±0.64, 4.59±0.77, 7.87±0.82 and 4.21±0.71 before AAA and 4.25±0.615, 3.53±0.73, 5.94±0.57 and 4.12±0.54 after AAA, respectively. After aging, the translucency of methacrylate-based composites decreased significantly (P<0.05). However, the translucency of Filtek P90 did not change significantly (P>0.05). Conclusions: The AAA significantly decreased the translucency of methacrylate-based composites (Filtek Z250, Filtek Z250XT and Filtek Z350XT) but no change occurred in the translucency of Filtek P90 silorane-based composite. PMID:27928237

  12. Accelerating cardiac bidomain simulations using graphics processing units.

    PubMed

    Neic, A; Liebmann, M; Hoetzl, E; Mitchell, L; Vigmond, E J; Haase, G; Plank, G

    2012-08-01

    Anatomically realistic and biophysically detailed multiscale computer models of the heart are playing an increasingly important role in advancing our understanding of integrated cardiac function in health and disease. Such detailed simulations, however, are computationally vastly demanding, which is a limiting factor for a wider adoption of in-silico modeling. While current trends in high-performance computing (HPC) hardware promise to alleviate this problem, exploiting the potential of such architectures remains challenging since strongly scalable algorithms are necessitated to reduce execution times. Alternatively, acceleration technologies such as graphics processing units (GPUs) are being considered. While the potential of GPUs has been demonstrated in various applications, benefits in the context of bidomain simulations where large sparse linear systems have to be solved in parallel with advanced numerical techniques are less clear. In this study, the feasibility of multi-GPU bidomain simulations is demonstrated by running strong scalability benchmarks using a state-of-the-art model of rabbit ventricles. The model is spatially discretized using the finite element methods (FEM) on fully unstructured grids. The GPU code is directly derived from a large pre-existing code, the Cardiac Arrhythmia Research Package (CARP), with very minor perturbation of the code base. Overall, bidomain simulations were sped up by a factor of 11.8 to 16.3 in benchmarks running on 6-20 GPUs compared to the same number of CPU cores. To match the fastest GPU simulation which engaged 20 GPUs, 476 CPU cores were required on a national supercomputing facility.

  13. Accelerating Cardiac Bidomain Simulations Using Graphics Processing Units

    PubMed Central

    Neic, Aurel; Liebmann, Manfred; Hoetzl, Elena; Mitchell, Lawrence; Vigmond, Edward J.; Haase, Gundolf

    2013-01-01

    Anatomically realistic and biophysically detailed multiscale computer models of the heart are playing an increasingly important role in advancing our understanding of integrated cardiac function in health and disease. Such detailed simulations, however, are computationally vastly demanding, which is a limiting factor for a wider adoption of in-silico modeling. While current trends in high-performance computing (HPC) hardware promise to alleviate this problem, exploiting the potential of such architectures remains challenging since strongly scalable algorithms are necessitated to reduce execution times. Alternatively, acceleration technologies such as graphics processing units (GPUs) are being considered. While the potential of GPUs has been demonstrated in various applications, benefits in the context of bidomain simulations where large sparse linear systems have to be solved in parallel with advanced numerical techniques are less clear. In this study, the feasibility of multi-GPU bidomain simulations is demonstrated by running strong scalability benchmarks using a state-of-the-art model of rabbit ventricles. The model is spatially discretized using the finite element methods (FEM) on fully unstructured grids. The GPU code is directly derived from a large pre-existing code, the Cardiac Arrhythmia Research Package (CARP), with very minor perturbation of the code base. Overall, bidomain simulations were sped up by a factor of 11.8 to 16.3 in benchmarks running on 6–20 GPUs compared to the same number of CPU cores. To match the fastest GPU simulation which engaged 20GPUs, 476 CPU cores were required on a national supercomputing facility. PMID:22692867

  14. Testosterone Deficiency Accelerates Neuronal and Vascular Aging of SAMP8 Mice: Protective Role of eNOS and SIRT1

    PubMed Central

    Ota, Hidetaka; Akishita, Masahiro; Akiyoshi, Takuyu; Kahyo, Tomoaki; Setou, Mitsutoshi; Ogawa, Sumito; Iijima, Katsuya; Eto, Masato; Ouchi, Yasuyoshi

    2012-01-01

    Oxidative stress and atherosclerosis-related vascular disorders are risk factors for cognitive decline with aging. In a small clinical study in men, testosterone improved cognitive function; however, it is unknown how testosterone ameliorates the pathogenesis of cognitive decline with aging. Here, we investigated whether the cognitive decline in senescence-accelerated mouse prone 8 (SAMP8), which exhibits cognitive impairment and hypogonadism, could be reversed by testosterone, and the mechanism by which testosterone inhibits cognitive decline. We found that treatment with testosterone ameliorated cognitive function and inhibited senescence of hippocampal vascular endothelial cells of SAMP8. Notably, SAMP8 showed enhancement of oxidative stress in the hippocampus. We observed that an NAD+-dependent deacetylase, SIRT1, played an important role in the protective effect of testosterone against oxidative stress-induced endothelial senescence. Testosterone increased eNOS activity and subsequently induced SIRT1 expression. SIRT1 inhibited endothelial senescence via up-regulation of eNOS. Finally, we showed, using co-culture system, that senescent endothelial cells promoted neuronal senescence through humoral factors. Our results suggest a critical role of testosterone and SIRT1 in the prevention of vascular and neuronal aging. PMID:22238626

  15. The interactive effects of age, education, and BMI on cognitive functioning.

    PubMed

    Kirton, Joshua W; Dotson, Vonetta M

    2016-01-01

    We examined the moderating effects of age and cognitive reserve on the relationship between body mass index (BMI) and processing speed, executive function, and working memory based on the literature suggesting that obese individuals perform more poorly on measures of these abilities. Fifty-six healthy, dementia-free community-dwelling older (mean age 65.72 ± 7.40) and younger (mean age 21.10 ± 2.33) adults completed a neuropsychological battery and reported height and weight. Mixed effects models were used to evaluate the interactive effects of age, education (a proxy for cognitive reserve), and BMI on cognitive scores. Higher education was protective for executive deficits in younger, but not older adults. Age differences in executive functions were reduced at higher education levels but increased in individuals with higher BMI. Results suggest the inter-relationships between cognitive reserve - as measured by education - and BMI differ across age, and that obesity may accelerate the cognitive aging process.

  16. Pilot-scale steam aging of steel slags.

    PubMed

    Kumar, Praveen; Satish Kumar, D; Marutiram, K; Prasad, Smr

    2017-06-01

    Solid waste management has gained importance in the steel industry in view of rising environmental concerns and scarcity of raw materials. In spite of significant developments in reducing waste generation and development of recycling technologies, steel slag is still a concern for the industry as most of it is dumped. Steel slag is similar to stone aggregates in strength, but its volumetric instability in contact with water hinders its application as aggregates in construction. A part of steel slag is normally exposed to rain and sun for natural aging and stabilization for months before use. The natural aging process is slow and time-consuming, and thus restricts its usage. The steelmaking slag can be put to effective use as coarse aggregates if quickly aged and stabilized by pre-reacting the free expansive phases. In the present work, a new process has been developed to accelerate the steel slag aging process using steam in a 30 T pilot scale facility. The setup has controlled steam injection, distribution, and process control system for steam, temperature, flow, and pressure. Steam percolates through the minute pores in the slag lumps and hydrates the expansive free lime and MgO phases, making it stable. The aged slag expansion properties were tested using an in-house developed expansion testing apparatus. The process is capable of reducing the expansion of steel slag from 3.5% to <1.5% (standard requirement) in 7 days. The aged steel slag is currently being used in roads at JSW Steel, Vijayanagar Works.

  17. Passive avoidance and complex maze learning in the senescence accelerated mouse (SAM): age and strain comparisons of SAM P8 and R1.

    PubMed

    Spangler, Edward L; Patel, Namisha; Speer, Dorey; Hyman, Michael; Hengemihle, John; Markowska, Alicja; Ingram, Donald K

    2002-02-01

    Two strains of the senescence accelerated mouse, P8 and R1,were tested in footshock-motivated passive avoidance (PA; P8, 3-21 months; R1, 3-24 months) and 14-unit T-maze (P8 and R1, 9, and 15 months) tasks. For PA, entry to a dark chamber from a lighted chamber was followed by a brief shock. Latency to enter the dark chamber 24 hours later served as a measure of retention. Two days of active avoidance training in a straight runway preceded 2 days (8 trials/day) of testing in the 14-unit T-maze. For PA retention, older P8 mice entered the dark chamber more quickly than older R1 mice, whereas no differences were observed between young P8 or R1 mice. In the 14-unit T-maze, age-related learning performance deficits were reflected in higher error scores for older mice. P8 mice were actually superior learners; that is, they had lower error scores compared with those of age-matched R1 counterparts. Although PA learning results were in agreement with other reports, results obtained in the 14-unit T-maze were not consistent with previous reports of learning impairments in the P8 senescence accelerated mouse.

  18. Age-related white matter microstructural differences partly mediate age-related decline in processing speed but not cognition.

    PubMed

    Salami, Alireza; Eriksson, Johan; Nilsson, Lars-Göran; Nyberg, Lars

    2012-03-01

    Aging is associated with declining cognitive performance as well as structural changes in brain gray and white matter (WM). The WM deterioration contributes to a disconnection among distributed brain networks and may thus mediate age-related cognitive decline. The present diffusion tensor imaging (DTI) study investigated age-related differences in WM microstructure and their relation to cognition (episodic memory, visuospatial processing, fluency, and speed) in a large group of healthy subjects (n=287) covering 6 decades of the human life span. Age related decreases in fractional anisotropy (FA) and increases in mean diffusivity (MD) were observed across the entire WM skeleton as well as in specific WM tracts, supporting the WM degeneration hypothesis. The anterior section of the corpus callosum was more susceptible to aging compared to the posterior section, lending support to the anterior-posterior gradient of WM integrity in the corpus callosum. Finally, and of critical interest, WM integrity differences were found to mediate age-related reductions in processing speed but no significant mediation was found for episodic memory, visuospatial ability, or fluency. These findings suggest that compromised WM integrity is not a major contributing factor to declining cognitive performance in normal aging. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Mitochondrial damage and ageing using skin as a model organ.

    PubMed

    Hudson, Laura; Bowman, Amy; Rashdan, Eyman; Birch-Machin, Mark A

    2016-11-01

    Ageing describes the progressive functional decline of an organism over time, leading to an increase in susceptibility to age-related diseases and eventually to death, and it is a phenomenon observed across a wide range of organisms. Despite a vast repertoire of ageing studies performed over the past century, the exact causes of ageing remain unknown. For over 50 years it has been speculated that mitochondria play a key role in the ageing process, due mainly to correlative data showing an increase in mitochondrial dysfunction, mitochondrial DNA (mtDNA) damage, and reactive oxygen species (ROS) with age. However, the exact role of the mitochondria in the ageing process remains unknown. The skin is often used to study human ageing, due to its easy accessibility, and the observation that the ageing process is able to be accelerated in this organ via environmental insults, such as ultra violet radiation (UVR). This provides a useful tool to investigate the mechanisms regulating ageing and, in particular, the role of the mitochondria. Observations from dermatological and photoageing studies can provide useful insights into chronological ageing of the skin and other organs such as the brain and liver. Moreover, a wide range of diseases are associated with ageing; therefore, understanding the cause of the ageing process as well as regulatory mechanisms involved could provide potentially advantageous therapeutic targets for the prevention or treatment of such diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. AMS implications of charge-changing during acceleration

    NASA Astrophysics Data System (ADS)

    Knies, D. L.; Grabowski, K. S.; Cetina, C.; Demoranville, L. T.; Dougherty, M. R.; Mignerey, A. C.; Taylor, C. L.

    2007-08-01

    The NRL Accelerator Mass Spectrometer facility was recently reconfigured to incorporate a modified Cameca IMS 6f Secondary Ion Mass Spectrometer as a high-performance ion source. The NRL accelerator facility supplants the mass spectrometer portion of the IMS 6f instrument. As part of the initial testing of the combined instrument, charge-state scans were performed under various conditions. These provided the basis for studying the effects of terminal gas pressure on the process of charge-changing during acceleration. A combined system of transmission-micro-channel plate and energy detector was found to remove ghost beams produced from Pd charge-changing events in the accelerator tube.

  1. Hormones as “difference makers” in cognitive and socioemotional aging processes

    PubMed Central

    Ebner, Natalie C.; Kamin, Hayley; Diaz, Vanessa; Cohen, Ronald A.; MacDonald, Kai

    2015-01-01

    Aging is associated with well-recognized alterations in brain function, some of which are reflected in cognitive decline. While less appreciated, there is also considerable evidence of socioemotional changes later in life, some of which are beneficial. In this review, we examine age-related changes and individual differences in four neuroendocrine systems—cortisol, estrogen, testosterone, and oxytocin—as “difference makers” in these processes. This suite of interrelated hormonal systems actively coordinates regulatory processes in brain and behavior throughout development, and their level and function fluctuate during the aging process. Despite these facts, their specific impact in cognitive and socioemotional aging has received relatively limited study. It is known that chronically elevated levels of the stress hormone cortisol exert neurotoxic effects on the aging brain with negative impacts on cognition and socioemotional functioning. In contrast, the sex hormones estrogen and testosterone appear to have neuroprotective effects in cognitive aging, but may decrease prosociality. Higher levels of the neuropeptide oxytocin benefit socioemotional functioning, but little is known about the effects of oxytocin on cognition or about age-related changes in the oxytocin system. In this paper, we will review the role of these hormones in the context of cognitive and socioemotional aging. In particular, we address the aforementioned gap in the literature by: (1) examining both singular actions and interrelations of these four hormonal systems; (2) exploring their correlations and causal relationships with aspects of cognitive and socioemotional aging; and (3) considering multilevel internal and external influences on these hormone systems within the framework of explanatory pluralism. We conclude with a discussion of promising future research directions. PMID:25657633

  2. Cannabis exposure as an interactive cardiovascular risk factor and accelerant of organismal ageing: a longitudinal study

    PubMed Central

    Reece, Albert Stuart; Hulse, Gary Kenneth

    2016-01-01

    Objectives Many reports exist of the cardiovascular toxicity of smoked cannabis but none of arterial stiffness measures or vascular age (VA). In view of its diverse toxicology, the possibility that cannabis-exposed patients may be ageing more quickly requires investigation. Design Cross-sectional and longitudinal, observational. Prospective. Setting Single primary care addiction clinic in Brisbane, Australia. Participants 11 cannabis-only smokers, 504 tobacco-only smokers, 114 tobacco and cannabis smokers and 534 non-smokers. Exclusions: known cardiovascular disease or therapy or acute exposure to alcohol, amphetamine, heroin or methadone. Intervention Radial arterial pulse wave tonometry (AtCor, SphygmoCor, Sydney) performed opportunistically and sequentially on patients between 2006 and 2011. Main outcome measure Algorithmically calculated VA. Secondary outcomes: other central haemodynamic variables. Results Differences between group chronological ages (CA, 30.47±0.48 to 40.36±2.44, mean±SEM) were controlled with linear regression. Between-group sex differences were controlled by single-sex analysis. Mean cannabis exposure among patients was 37.67±7.16 g-years. In regression models controlling for CA, Body Mass Index (BMI), time and inhalant group, the effect of cannabis use on VA was significant in males (p=0.0156) and females (p=0.0084). The effect size in males was 11.84%. A dose–response relationship was demonstrated with lifetime exposure (p<0.002) additional to that of tobacco and opioids. In both sexes, the effect of cannabis was robust to adjustment and was unrelated to its acute effects. Significant power interactions between cannabis exposure and the square and cube of CA were demonstrated (from p<0.002). Conclusions Cannabis is an interactive cardiovascular risk factor (additional to tobacco and opioids), shows a prominent dose–response effect and is robust to adjustment. Cannabis use is associated with an acceleration of the cardiovascular

  3. Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis.

    PubMed

    Romero-Suarez, Sandra; Shen, Jinhua; Brotto, Leticia; Hall, Todd; Mo, Chenglin; Valdivia, Héctor H; Andresen, Jon; Wacker, Michael; Nosek, Thomas M; Qu, Cheng-Kui; Brotto, Marco

    2010-08-01

    We have recently reported that a novel muscle-specific inositide phosphatase (MIP/MTMR14) plays a critical role in [Ca2+]i homeostasis through dephosphorylation of sn-1-stearoyl-2-arachidonoyl phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2). Loss of function mutations in MIP have been identified in human centronuclear myopathy. We developed a MIP knockout (MIPKO) animal model and found that MIPKO mice were more susceptible to exercise-induced muscle damage, a trademark of muscle functional changes in older subjects. We used wild-type (Wt) mice and MIPKO mice to elucidate the roles of MIP in muscle function during aging. We found MIP mRNA expression, MIP protein levels, and MIP phosphatase activity significantly decreased in old Wt mice. The mature MIPKO mice displayed phenotypes that closely resembled those seen in old Wt mice: i) decreased walking speed, ii) decreased treadmill activity, iii) decreased contractile force, and iv) decreased power generation, classical features of sarcopenia in rodents and humans. Defective Ca2+ homeostasis is also present in mature MIPKO and old Wt mice, suggesting a putative role of MIP in the decline of muscle function during aging. Our studies offer a new avenue for the investigation of MIP roles in skeletal muscle function and as a potential therapeutic target to treat aging sarcopenia.

  4. Effects of Age, Task Performance, and Structural Brain Development on Face Processing

    PubMed Central

    Cohen Kadosh, Kathrin; Johnson, Mark H; Dick, Frederic; Cohen Kadosh, Roi; Blakemore, Sarah-Jayne

    2013-01-01

    In this combined structural and functional MRI developmental study, we tested 48 participants aged 7–37 years on 3 simple face-processing tasks (identity, expression, and gaze task), which were designed to yield very similar performance levels across the entire age range. The same participants then carried out 3 more difficult out-of-scanner tasks, which provided in-depth measures of changes in performance. For our analysis we adopted a novel, systematic approach that allowed us to differentiate age- from performance-related changes in the BOLD response in the 3 tasks, and compared these effects to concomitant changes in brain structure. The processing of all face aspects activated the core face-network across the age range, as well as additional and partially separable regions. Small task-specific activations in posterior regions were found to increase with age and were distinct from more widespread activations that varied as a function of individual task performance (but not of age). Our results demonstrate that activity during face-processing changes with age, and these effects are still observed when controlling for changes associated with differences in task performance. Moreover, we found that changes in white and gray matter volume were associated with changes in activation with age and performance in the out-of-scanner tasks. PMID:22661406

  5. VAChT overexpression increases acetylcholine at the synaptic cleft and accelerates aging of neuromuscular junctions.

    PubMed

    Sugita, Satoshi; Fleming, Leland L; Wood, Caleb; Vaughan, Sydney K; Gomes, Matheus P S M; Camargo, Wallace; Naves, Ligia A; Prado, Vania F; Prado, Marco A M; Guatimosim, Cristina; Valdez, Gregorio

    2016-01-01

    Cholinergic dysfunction occurs during aging and in a variety of diseases, including amyotrophic lateral sclerosis (ALS). However, it remains unknown whether changes in cholinergic transmission contributes to age- and disease-related degeneration of the motor system. Here we investigated the effect of moderately increasing levels of synaptic acetylcholine (ACh) on the neuromuscular junction (NMJ), muscle fibers, and motor neurons during development and aging and in a mouse model for amyotrophic lateral sclerosis (ALS). Chat-ChR2-EYFP (VAChT Hyp ) mice containing multiple copies of the vesicular acetylcholine transporter (VAChT), mutant superoxide dismutase 1 (SOD1 G93A ), and Chat-IRES-Cre and tdTomato transgenic mice were used in this study. NMJs, muscle fibers, and α-motor neurons' somata and their axons were examined using a light microscope. Transcripts for select genes in muscles and spinal cords were assessed using real-time quantitative PCR. Motor function tests were carried out using an inverted wire mesh and a rotarod. Electrophysiological recordings were collected to examine miniature endplate potentials (MEPP) in muscles. We show that VAChT is elevated in the spinal cord and at NMJs of VAChT Hyp mice. We also show that the amplitude of MEPPs is significantly higher in VAChT Hyp muscles, indicating that more ACh is loaded into synaptic vesicles and released into the synaptic cleft at NMJs of VAChT Hyp mice compared to control mice. While the development of NMJs was not affected in VAChT Hyp mice, NMJs prematurely acquired age-related structural alterations in adult VAChT Hyp mice. These structural changes at NMJs were accompanied by motor deficits in VAChT Hyp mice. However, cellular features of muscle fibers and levels of molecules with critical functions at the NMJ and in muscle fibers were largely unchanged in VAChT Hyp mice. In the SOD1 G93A mouse model for ALS, increasing synaptic ACh accelerated degeneration of NMJs caused motor deficits and

  6. Brain Processing of Emotional Scenes in Aging: Effect of Arousal and Affective Context

    PubMed Central

    Mathieu, Nicolas Gilles; Gentaz, Edouard; Harquel, Sylvain; Vercueil, Laurent; Chauvin, Alan; Bonnet, Stéphane; Campagne, Aurélie

    2014-01-01

    Research on emotion showed an increase, with age, in prevalence of positive information relative to negative ones. This effect is called positivity effect. From the cerebral analysis of the Late Positive Potential (LPP), sensitive to attention, our study investigated to which extent the arousal level of negative scenes is differently processed between young and older adults and, to which extent the arousal level of negative scenes, depending on its value, may contextually modulate the cerebral processing of positive (and neutral) scenes and favor the observation of a positivity effect with age. With this aim, two negative scene groups characterized by two distinct arousal levels (high and low) were displayed into two separate experimental blocks in which were included positive and neutral pictures. The two blocks only differed by their negative pictures across participants, as to create two negative global contexts for the processing of the positive and neutral pictures. The results show that the relative processing of different arousal levels of negative stimuli, reflected by LPP, appears similar between the two age groups. However, a lower activity for negative stimuli is observed with the older group for both tested arousal levels. The processing of positive information seems to be preserved with age and is also not contextually impacted by negative stimuli in both younger and older adults. For neutral stimuli, a significantly reduced activity is observed for older adults in the contextual block of low-arousal negative stimuli. Globally, our study reveals that the positivity effect is mainly due to a modulation, with age, in processing of negative stimuli, regardless of their arousal level. It also suggests that processing of neutral stimuli may be modulated with age, depending on negative context in which they are presented to. These age-related effects could contribute to justify the differences in emotional preference with age. PMID:24932857

  7. The effects of aging on the working memory processes of multimodal information.

    PubMed

    Solesio-Jofre, Elena; López-Frutos, José María; Cashdollar, Nathan; Aurtenetxe, Sara; de Ramón, Ignacio; Maestú, Fernando

    2017-05-01

    Normal aging is associated with deficits in working memory processes. However, the majority of research has focused on storage or inhibitory processes using unimodal paradigms, without addressing their relationships using different sensory modalities. Hence, we pursued two objectives. First, was to examine the effects of aging on storage and inhibitory processes. Second, was to evaluate aging effects on multisensory integration of visual and auditory stimuli. To this end, young and older participants performed a multimodal task for visual and auditory pairs of stimuli with increasing memory load at encoding and interference during retention. Our results showed an age-related increased vulnerability to interrupting and distracting interference reflecting inhibitory deficits related to the off-line reactivation and on-line suppression of relevant and irrelevant information, respectively. Storage capacity was impaired with increasing task demands in both age groups. Additionally, older adults showed a deficit in multisensory integration, with poorer performance for new visual compared to new auditory information.

  8. Accelerated transport and growth with symmetrized dynamics

    NASA Astrophysics Data System (ADS)

    Merikoski, Juha

    2013-12-01

    In this paper we consider a model of accelerated dynamics with the rules modified from those of the recently proposed [Dong et al., Phys. Rev. Lett. 109, 130602 (2012), 10.1103/PhysRevLett.109.130602] accelerated exclusion process (AEP) such that particle-vacancy symmetry is restored to facilitate a mapping to a solid-on-solid growth model in 1+1 dimensions. In addition to kicking a particle ahead of the moving particle, as in the AEP, in our model another particle from behind is drawn, provided it is within the "distance of interaction" denoted by ℓmax. We call our model the doubly accelerated exclusion process (DAEP). We observe accelerated transport and interface growth and widening of the cluster size distribution for cluster sizes above ℓmax, when compared with the ordinary totally asymmetric exclusion process (TASEP). We also characterize the difference between the TASEP, AEP, and DAEP by computing a "staggered" order parameter, which reveals the local order in the steady state. This order in part explains the behavior of the particle current as a function of density. The differences of the steady states are also reflected by the behavior of the temporal and spatial correlation functions in the interface picture.

  9. ‘Adipaging’: ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue

    PubMed Central

    Pérez, Laura M.; Pareja‐Galeano, Helios; Sanchis‐Gomar, Fabián; Emanuele, Enzo; Lucia, Alejandro

    2016-01-01

    Abstract The increasing ageing of our societies is accompanied by a pandemic of obesity and related cardiometabolic disorders. Progressive dysfunction of the white adipose tissue is increasingly recognized as an important hallmark of the ageing process, which in turn contributes to metabolic alterations, multi‐organ damage and a systemic pro‐inflammatory state (‘inflammageing’). On the other hand, obesity, the paradigm of adipose tissue dysfunction, shares numerous biological similarities with the normal ageing process such as chronic inflammation and multi‐system alterations. Accordingly, understanding the interplay between accelerated ageing related to obesity and adipose tissue dysfunction is critical to gain insight into the ageing process in general as well as into the pathophysiology of obesity and other related conditions. Here we postulate the concept of ‘adipaging’ to illustrate the common links between ageing and obesity and the fact that, to a great extent, obese adults are prematurely aged individuals. PMID:26926488

  10. High accuracy digital aging monitor based on PLL-VCO circuit

    NASA Astrophysics Data System (ADS)

    Yuejun, Zhang; Zhidi, Jiang; Pengjun, Wang; Xuelong, Zhang

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.

  11. Depth and elaboration of processing in relation to age.

    PubMed

    Simon, E

    1979-03-01

    Processing at encoding and retrieval was jointly manipulated, and then the retrieval effectiveness of different cues was directly compared to uncover the relative pattern of deep and elaborate processing in relation to both age and different experimental manipulations. In experiment 1 phonemic and semantic cues were effective retrieval aids for to-be-remembered words in the youngest group; with increasing age, semantic cues decreased in effectiveness more than phonemic cues. These data showed phonemic features to have an importance that is not recognized in the data generated by the typical levels paradigm. When elaboration of the words was induced in Experiment 2 by presenting them in sentences, semantic and context cues were most effective in the youngest group whereas phonemic cues were most effective in the oldest group. Since the pattern of cue effectiveness in the elderly was similar to that in Experiment 1, where the same words were presented alone, it was concluded that aging results in poor elaboration, in particular, in inefficient integration of word events with the context of presentation. These age effects were mimicked in young subjects in Experiment 3 by experimentally restricting encoding time. The present approach uses somewhat modified views of depth and elaboration.

  12. The biochemistry of aging.

    PubMed

    Knight, J A

    2000-01-01

    Although philosophers and scientists have long been interested in the aging process, general interest in this fascinating and highly important topic was minimal before the 1960s. In recent decades, however, interest in aging has greatly accelerated, not only since the elderly form an ever-increasing percentage of the population, but because they utilize a significant proportion of the national expenditures. In addition, many people have come to the realization that one can now lead a very happy, active, and productive life well beyond the usual retirement age. Scientifically, aging is an extremely complex, multifactorial process, and numerous aging theories have been proposed; the most important of these are probably the genomic and free radical theories. Although it is abundantly clear that our genes influence aging and longevity, exactly how this takes place on a chemical level is only partially understood. For example, what kinds of genes are these, and what proteins do they control? Certainly they include, among others, those that regulate the processes of somatic maintenance and repair, such as the stress-response systems. The accelerated aging syndromes (i.e., Hutchinson-Gilford, Werner's, and Down's syndromes) are genetically controlled, and studies of them have decidedly increased our understanding of aging. In addition, C. elegans and D. melanogaster are important systems for studying aging. This is especially true for the former, in which the age-1 mutant has been shown to greatly increase the life span over the wild-type strain. This genetic mutation results in increased activities of the antioxidative enzymes, Cu-Zn superoxide dismutase and catalase. Thus, the genomic and free radical theories are closely linked. In addition, trisomy 21 (Down's syndrome) is characterized by a significantly shortened life span; it is also plagued by increased oxidative stress which results in various free radical-related disturbances. Exactly how this extra chromosome

  13. Microstructure and mechanical properties of composite resins subjected to accelerated artificial aging.

    PubMed

    dos Reis, Andréa Cândido; de Castro, Denise Tornavoi; Schiavon, Marco Antônio; da Silva, Leandro Jardel; Agnelli, José Augusto Marcondes

    2013-01-01

    The aim of this study was to investigate the influence of accelerated artificial aging (AAA) on the microstructure and mechanical properties of the Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma and Filtek Z100. composite resins. The composites were characterized by Fourier-transform Infrared spectroscopy (FTIR) and thermal analyses (Differential Scanning Calorimetry - DSC and Thermogravimetry - TG). The microstructure of the materials was examined by scanning electron microscopy. Surface hardness and compressive strength data of the resins were recorded and the mean values were analyzed statistically by ANOVA and Tukey's test (α=0.05). The results showed significant differences among the commercial brands for surface hardness (F=86.74, p<0.0001) and compressive strength (F=40.31, p<0.0001), but AAA did not affect the properties (surface hardness: F=0.39, p=0.53; compressive strength: F=2.82, p=0.09) of any of the composite resins. FTIR, DSC and TG analyses showed that resin polymerization was complete, and there were no differences between the spectra and thermal curve profiles of the materials obtained before and after AAA. TG confirmed the absence of volatile compounds and evidenced good thermal stability up to 200 °C, and similar amounts of residues were found in all resins evaluated before and after AAA. The AAA treatment did not significantly affect resin surface. Therefore, regardless of the resin brand, AAA did not influence the microstructure or the mechanical properties.

  14. Laser acceleration

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  15. Accelerated aging in adults with knee osteoarthritis pain: consideration for frequency, intensity, time, and total pain sites

    PubMed Central

    Sibille, Kimberly T.; Chen, Huaihou; Bartley, Emily J.; Riley, Joseph; Glover, Toni L.; King, Christopher D.; Zhang, Hang; Cruz-Almeida, Yenisel; Goodin, Burel R.; Sotolongo, Adriana; Petrov, Megan E.; Herbert, Matthew; Bulls, Hailey W.; Edberg, Jeffrey C.; Staud, Roland; Redden, David; Bradley, Laurence A.; Fillingim, Roger B.

    2017-01-01

    Abstract Introduction: Individuals with osteoarthritis (OA) show increased morbidity and mortality. Telomere length, a measure of cellular aging, predicts increased morbidity and mortality. Telomeres shorten with persisting biological and psychosocial stress. Living with chronic OA pain is stressful. Previous research exploring telomere length in people with OA has produced inconsistent results. Considering pain severity may clarify the relationship between OA and telomeres. Objectives: We hypothesized that individuals with high OA chronic pain severity would have shorter telomeres than those with no or low chronic pain severity. Methods: One hundred thirty-six adults, ages 45 to 85 years old, with and without symptomatic knee OA were included in the analysis. Peripheral blood leukocyte telomere length was measured, and demographic, clinical, and functional data were collected. Participants were categorized into 5 pain severity groups based on an additive index of frequency, intensity, time or duration, and total number of pain sites (FITT). Covariates included age, sex, race or ethnicity, study site, and knee pain status. Results: The no or low chronic pain severity group had significantly longer telomeres compared with the high pain severity group, P = 0.025. A significant chronic pain severity dose response emerged for telomere length, P = 0.034. The FITT chronic pain severity index was highly correlated with the clinical and functional OA pain measures. However, individual clinical and functional measures were not associated with telomere length. Conclusion: Results demonstrate accelerated cellular aging with high knee OA chronic pain severity and provide evidence for the potential utility of the FITT chronic pain severity index in capturing the biological burden of chronic pain. PMID:29392207

  16. Curcuma longa L. extract improves the cortical neural connectivity during the aging process

    PubMed Central

    Flores, Gonzalo

    2017-01-01

    Turmeric or Curcuma is a natural product that has anti-inflammatory, antioxidant and anti-apoptotic pharmacological properties. It can be used in the control of the aging process that involves oxidative stress, inflammation, and apoptosis. Aging is a physiological process that affects higher cortical and cognitive functions with a reduction in learning and memory, limited judgment and deficits in emotional control and social behavior. Moreover, aging is a major risk factor for the appearance of several disorders such as cerebrovascular disease, diabetes mellitus, and hypertension. At the brain level, the aging process alters the synaptic intercommunication by a reduction in the dendritic arbor as well as the number of the dendritic spine in the pyramidal neurons of the prefrontal cortex, hippocampus and basolateral amygdala, consequently reducing the size of these regions. The present review discusses the synaptic changes caused by the aging process and the neuroprotective role the Curcuma has through its anti-inflammatory, antioxidant and anti-apoptotic actions PMID:28761413

  17. Astrophysical particle acceleration mechanisms in colliding magnetized laser-produced plasmas

    DOE PAGES

    Fox, W.; Park, J.; Deng, W.; ...

    2017-08-11

    Significant particle energization is observed to occur in numerous astrophysical environments, and in the standard models, this acceleration occurs alongside energy conversion processes including collisionless shocks or magnetic reconnection. Recent platforms for laboratory experiments using magnetized laser-produced plasmas have opened opportunities to study these particle acceleration processes in the laboratory. Through fully kinetic particle-in-cell simulations, we investigate acceleration mechanisms in experiments with colliding magnetized laser-produced plasmas, with geometry and parameters matched to recent high-Mach number reconnection experiments with externally controlled magnetic fields. 2-D simulations demonstrate significant particle acceleration with three phases of energization: first, a “direct” Fermi acceleration driven bymore » approaching magnetized plumes; second, x-line acceleration during magnetic reconnection of anti-parallel fields; and finally, an additional Fermi energization of particles trapped in contracting and relaxing magnetic islands produced by reconnection. Furthermore, the relative effectiveness of these mechanisms depends on plasma and magnetic field parameters of the experiments.« less

  18. Real-Time Language Processing in School-Age Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Montgomery, James W.

    2006-01-01

    Background:School-age children with specific language impairment (SLI) exhibit slower real-time (i.e. immediate) language processing relative to same-age peers and younger, language-matched peers. Results of the few studies that have been done seem to indicate that the slower language processing of children with SLI is due to inefficient…

  19. The acceleration of particles at propagating interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Prinsloo, P. L.; Strauss, R. D. T.

    2017-12-01

    Enhancements of charged energetic particles are often observed at Earth following the eruption of coronal mass ejections (CMEs) on the Sun. These enhancements are thought to arise from the acceleration of those particles at interplanetary shocks forming ahead of CMEs, propagating into the heliosphere. In this study, we model the acceleration of these energetic particles by solving a set of stochastic differential equations formulated to describe their transport and including the effects of diffusive shock acceleration. The study focuses on how acceleration at halo-CME-driven shocks alter the energy spectra of non-thermal particles, while illustrating how this acceleration process depends on various shock and transport parameters. We finally attempt to establish the relative contributions of different seed populations of energetic particles in the inner heliosphere to observed intensities during selected acceleration events.

  20. Simultaneous Thermal and Gamma Radiation Aging of Cable Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Liu, Shuaishuai; Bowler, Nicola

    Polymers used in nuclear power plant electrical cable systems experience aging and degradation over time due to environmental stress including heat and gamma irradiation. Prediction of long-term cable performance has been based on results of short-term accelerated laboratory aging studies, but questions remain regarding the correlation of accelerated aging to long-term, in-plant aging. This work seeks to increase understanding of the combined effects of heat and radiation on cable polymer material aging toward addressing these questions.

  1. Accelerated longitudinal designs: An overview of modelling, power, costs and handling missing data.

    PubMed

    Galbraith, Sally; Bowden, Jack; Mander, Adrian

    2017-02-01

    Longitudinal studies are often used to investigate age-related developmental change. Whereas a single cohort design takes a group of individuals at the same initial age and follows them over time, an accelerated longitudinal design takes multiple single cohorts, each one starting at a different age. The main advantage of an accelerated longitudinal design is its ability to span the age range of interest in a shorter period of time than would be possible with a single cohort longitudinal design. This paper considers design issues for accelerated longitudinal studies. A linear mixed effect model is considered to describe the responses over age with random effects for intercept and slope parameters. Random and fixed cohort effects are used to cope with the potential bias accelerated longitudinal designs have due to multiple cohorts. The impact of other factors such as costs and the impact of dropouts on the power of testing or the precision of estimating parameters are examined. As duration-related costs increase relative to recruitment costs the best designs shift towards shorter duration and eventually cross-sectional design being best. For designs with the same duration but differing interval between measurements, we found there was a cutoff point for measurement costs relative to recruitment costs relating to frequency of measurements. Under our model of 30% dropout there was a maximum power loss of 7%.

  2. Accelerating 3D Hall MHD Magnetosphere Simulations with Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Bard, C.; Dorelli, J.

    2017-12-01

    The resolution required to simulate planetary magnetospheres with Hall magnetohydrodynamics result in program sizes approaching several hundred million grid cells. These would take years to run on a single computational core and require hundreds or thousands of computational cores to complete in a reasonable time. However, this requires access to the largest supercomputers. Graphics processing units (GPUs) provide a viable alternative: one GPU can do the work of roughly 100 cores, bringing Hall MHD simulations of Ganymede within reach of modest GPU clusters ( 8 GPUs). We report our progress in developing a GPU-accelerated, three-dimensional Hall magnetohydrodynamic code and present Hall MHD simulation results for both Ganymede (run on 8 GPUs) and Mercury (56 GPUs). We benchmark our Ganymede simulation with previous results for the Galileo G8 flyby, namely that adding the Hall term to ideal MHD simulations changes the global convection pattern within the magnetosphere. Additionally, we present new results for the G1 flyby as well as initial results from Hall MHD simulations of Mercury and compare them with the corresponding ideal MHD runs.

  3. Age-Status Labeling in Homosexual Men

    ERIC Educational Resources Information Center

    Minnigerode, Fred A.

    1976-01-01

    Homosexual men (N=95) between 25 and 68 years of age were asked to classify themselves as young, middle-aged, or old. The popular suggestion of accelerated aging in homosexual men was not supported. (Author)

  4. Age-related changes in cognitive conflict processing: an event-related potential study.

    PubMed

    Mager, Ralph; Bullinger, Alex H; Brand, Serge; Schmidlin, Maria; Schärli, Heinz; Müller-Spahn, Franz; Störmer, Robert; Falkenstein, Michael

    2007-12-01

    Cognitive tasks involving conflicting stimuli and responses are associated with an early age-related decline in performance. Conflict and conflict-induced interference can be stimulus- or response-related. In classical stimulus-response compatibility tasks, such as the Stroop task, the event-related potential (ERP) usually reveals a greater negativity on incongruent versus congruent trials which has often been linked with conflict processing. However, it is unclear whether this negativity is related to stimulus- or response-related conflict, thus rendering the meaning of age-related changes inconclusive. In the present study, a modified Stroop task was used to focus on stimulus-related interference processes while excluding response-related interference. Since we intended to study work-relevant effects ERPs and performance were determined in young (about 30 years old) and middle-aged (about 50 years old) healthy subjects (total n=80). In the ERP, a broad negativity developed after incongruent versus congruent stimuli between 350 and 650 ms. An age-related increase of the latency and amplitude of this negativity was observed. These results indicate age-related alterations in the processing of conflicting stimuli already in middle age.

  5. Peak impact accelerations during track and treadmill running.

    PubMed

    Bigelow, Erin M R; Elvin, Niell G; Elvin, Alex A; Arnoczky, Steven P

    2013-10-01

    To determine whether peak vertical and horizontal impact accelerations were different while running on a track or on a treadmill, 12 healthy subjects (average age 32.8 ± 9.8 y), were fitted with a novel, wireless accelerometer capable of recording triaxial acceleration over time. The accelerometer was attached to a custom-made acrylic plate and secured at the level of the L5 vertebra via a tight fitting triathlon belt. Each subject ran 4 miles on a synthetic, indoor track at a self-selected pace and accelerations were recorded on three perpendicular axes. Seven days later, the subjects ran 4 miles on a treadmill set at the individual runner's average pace on the track and the peak vertical and horizontal impact magnitudes between the track and treadmill were compared. There was no difference (P = .52) in the average peak vertical impact accelerations between the track and treadmill over the 4 mile run. However, peak horizontal impact accelerations were greater (P = .0012) on the track when compared with the treadmill. This study demonstrated the feasibility for long-term impact accelerations monitoring using a novel wireless accelerometer.

  6. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Zank, G. P.

    2013-12-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  7. Age-Dependent Relationships between Prefrontal Cortex Activation and Processing Efficiency

    PubMed Central

    Motes, Michael A.; Biswal, Bharat B.; Rypma, Bart

    2012-01-01

    fMRI was used in the present study to examine the neural basis for age-related differences in processing efficiency, particularly targeting prefrontal cortex (PFC). During scanning, older and younger participants completed a processing efficiency task in which they determined on each trial whether a symbol-number pair appeared in a simultaneously presented array of nine symbol-number pairs. Estimates of task-related BOLD signal-change were obtained for each participant. These estimates were then correlated with the participants’ performance on the task. For younger participants, BOLD signal-change within PFC decreased with better performance, but for older participants, BOLD signal-change within PFC increased with better performance. The results support the hypothesis that the availability and use of PFC resources mediates age-related changes in processing efficiency. PMID:22792129

  8. Age-Dependent Relationships between Prefrontal Cortex Activation and Processing Efficiency.

    PubMed

    Motes, Michael A; Biswal, Bharat B; Rypma, Bart

    2011-01-01

    fMRI was used in the present study to examine the neural basis for age-related differences in processing efficiency, particularly targeting prefrontal cortex (PFC). During scanning, older and younger participants completed a processing efficiency task in which they determined on each trial whether a symbol-number pair appeared in a simultaneously presented array of nine symbol-number pairs. Estimates of task-related BOLD signal-change were obtained for each participant. These estimates were then correlated with the participants' performance on the task. For younger participants, BOLD signal-change within PFC decreased with better performance, but for older participants, BOLD signal-change within PFC increased with better performance. The results support the hypothesis that the availability and use of PFC resources mediates age-related changes in processing efficiency.

  9. Aging of theory of mind: the influence of educational level and cognitive processing.

    PubMed

    Li, Xiaoming; Wang, Kai; Wang, Fan; Tao, Qian; Xie, Yu; Cheng, Qi

    2013-01-01

    Previous studies of theory of mind (ToM) in old age have provided mixed results. We predicted that educational level and cognitive processing are two factors influencing the pattern of the aging of ToM. To test this hypothesis, a younger group who received higher education (mean age 20.46 years), an older group with an education level equal to that of the young group (mean age 76.29 years), and an older group with less education (mean age 73.52 years) were recruited. ToM tasks included the following tests: the second-order false-belief task, the faux-pas task, the eyes test, and tests of fundamental aspects of cognitive function that included two background tests (memory span and processing speed) and three subcomponents of executive function (inhibition, updating, and shifting). We found that the younger group and the older group with equally high education outperformed the older group with less education in false-belief and faux-pas tasks. However, there was no significant difference between the two former groups. The three groups of participants performed equivalently in the eyes test as well as in control tasks (false-belief control question, faux-pas control question, faux-pas control story, and Eyes Test control task). The younger group outperformed the other two groups in the cognitive processing tasks. Mediation analyses showed that difficulties in inhibition, memory span, and processing speed mediated the age differences in false-belief reasoning. Also, the variables of inhibition, updating, memory span, and processing speed mediated age-related variance in faux-pas. Discussion focused on the links between ToM aging, educational level, and cognitive processing. Supported by Chinese National Natural Science Foundation (number: 30870766) and Anhui Province Natural Science Foundation (number: 11040606M166).

  10. Advanced glycation End-products (AGEs): an emerging concern for processed food industries.

    PubMed

    Sharma, Chetan; Kaur, Amarjeet; Thind, S S; Singh, Baljit; Raina, Shiveta

    2015-12-01

    The global food industry is expected to increase more than US $ 7 trillion by 2014. This rise in processed food sector shows that more and more people are diverging towards modern processed foods. As modern diets are largely heat processed, they are more prone to contain high levels of advanced glycation end products (AGEs). AGEs are a group of complex and heterogeneous compounds which are known as brown and fluorescent cross-linking substances such as pentosidine, non-fluorescent cross-linking products such as methylglyoxal-lysine dimers (MOLD), or non-fluorescent, non-cross linking adducts such as carboxymethyllysine (CML) and pyrraline (a pyrrole aldehyde). The chemistry of the AGEs formation, absorption and bioavailability and their patho-biochemistry particularly in relation to different complications like diabetes and ageing discussed. The concept of AGEs receptor - RAGE is mentioned. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Different methods of detection and quantification along with types of agents used for the treatment of AGEs are reviewed. Generally, ELISA or LC-MS methods are used for analysis of foods and body fluids, however lack of universally established method highlighted. The inhibitory effect of bioactive components on AGEs by trapping variety of chemical moieties discussed. The emerging evidence about the adverse effects of AGEs makes it necessary to investigate the different therapies to inhibit AGEs.

  11. Characterization of hearing loss in aged type II diabetics

    PubMed Central

    Frisina, Susan T.; Mapes, Frances; Kim, SungHee; Frisina, D. Robert; Frisina, Robert D.

    2009-01-01

    Presbycusis – age-related hearing loss – is the number one communicative disorder and a significant chronic medical condition of the aged. Little is known about how type II diabetes, another prevalent age-related medical condition, and presbycusis interact. The present investigation aimed to comprehensively characterize the nature of hearing impairment in aged type II diabetics. Hearing tests measuring both peripheral (cochlea) and central (brainstem and cortex) auditory processing were utilized. The majority of differences between the hearing abilities of the aged diabetics and their age-matched controls were found in measures of inner ear function. For example, large differences were found in pure-tone audiograms, wideband noise and speech reception thresholds, and otoacoustic emissions. The greatest deficits tended to be at low frequencies. In addition, there was a strong tendency for diabetes to affect the right ear more than the left. One possible interpretation is that as one develops presbycusis, the right ear advantage is lost, and this decline is accelerated by diabetes. In contrast, auditory processing tests that measure both peripheral and central processing showed fewer declines between the elderly diabetics and the control group. Consequences of elevated blood sugar levels as possible underlying physiological mechanisms for the hearing loss are discussed. PMID:16309862

  12. Accelerators as Authentic Training Experiences for Nascent Entrepreneurs

    ERIC Educational Resources Information Center

    Miles, Morgan P.; de Vries, Huibert; Harrison, Geoff; Bliemel, Martin; de Klerk, Saskia; Kasouf, Chick J.

    2017-01-01

    Purpose: The purpose of this paper is to address the role of accelerators as authentic learning-based entrepreneurial training programs. Accelerators facilitate the development and assessment of entrepreneurial competencies in nascent entrepreneurs through the process of creating a start-up venture. Design/methodology/approach: Survey data from…

  13. A Statistical Perspective on Highly Accelerated Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Edward V.

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use ofmore » highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning

  14. Acceleration of linear stationary iterative processes in multiprocessor computers. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romm, Ya.E.

    1982-05-01

    For pt.I, see Kibernetika, vol.18, no.1, p.47 (1982). For pt.I, see Cybernetics, vol.18, no.1, p.54 (1982). Considers a reduced system of linear algebraic equations x=ax+b, where a=(a/sub ij/) is a real n*n matrix; b is a real vector with common euclidean norm >>>. It is supposed that the existence and uniqueness of solution det (0-a) not equal to e is given, where e is a unit matrix. The linear iterative process converging to x x/sup (k+1)/=fx/sup (k)/, k=0, 1, 2, ..., where the operator f translates r/sup n/ into r/sup n/. In considering implementation of the iterative process (ip) inmore » a multiprocessor system, it is assumed that the number of processors is constant, and are various values of the latter investigated; it is assumed in addition, that the processors perform elementary binary arithmetic operations of addition and multiestimates only include the time of execution of arithmetic operations. With any paralleling of individual iteration, the execution time of the ip is proportional to the number of sequential steps k+1. The author sets the task of reducing the number of sequential steps in the ip so as to execute it in a time proportional to a value smaller than k+1. He also sets the goal of formulating a method of accelerated bit serial-parallel execution of each successive step of the ip, with, in the modification sought, a reduced number of steps in a time comparable to the operation time of logical elements. 6 references.« less

  15. 42 CFR 484.245 - Accelerated payments for home health agencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as HHA bills are processed... 42 Public Health 5 2013-10-01 2013-10-01 false Accelerated payments for home health agencies. 484... for Home Health Agencies § 484.245 Accelerated payments for home health agencies. (a) General rule...

  16. 42 CFR 484.245 - Accelerated payments for home health agencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Recovery of payment. Recovery of the accelerated payment is made by recoupment as HHA bills are processed... 42 Public Health 5 2014-10-01 2014-10-01 false Accelerated payments for home health agencies. 484... for Home Health Agencies § 484.245 Accelerated payments for home health agencies. (a) General rule...

  17. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Zank, Gary P.

    2013-01-01

    We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  18. Age-Dependent Positivity-Bias in Children’s Processing of Emotion Terms

    PubMed Central

    Bahn, Daniela; Vesker, Michael; García Alanis, José C.; Schwarzer, Gudrun; Kauschke, Christina

    2017-01-01

    Emotions play an important role in human communication, and the daily-life interactions of young children often include situations that require the verbalization of emotional states with verbal means, e.g., with emotion terms. Through them, one can express own emotional states and those of others. Thus, the acquisition of emotion terms allows children to participate more intensively in social contexts – a basic requirement for learning new words and for elaborating socio-emotional skills. However, little is known about how children acquire and process this specific word category, which is positioned between concrete and abstract words. In particular, the influence of valence on emotion word processing during childhood has not been sufficiently investigated. Previous research points to an advantage of positive words over negative and neutral words in word processing. While previous studies found valence effects to be influenced by factors such as arousal, frequency, concreteness, and task, it is still unclear if and how valence effects are also modified by age. The present study compares the performance of children aged from 5 to 12 years and adults in two experimental tasks: lexical decision (word or pseudoword) and emotional categorization (positive or negative). Stimuli consisted of 48 German emotion terms (24 positive and 24 negative) matched for arousal, concreteness, age of acquisition, word class, word length, morphological complexity, frequency, and neighborhood density. Results from both tasks reveal two developmental trends: First, with increasing age children responded faster and more correctly, suggesting that emotion vocabulary gradually becomes more stable and differentiated during middle childhood. Second, the influence of valence varied with age: younger children (5- and 6-year-olds) showed significantly higher performance levels for positive emotion terms compared to negative emotion terms, whereas older children and adults did not. This age

  19. Mechanisms of lung aging.

    PubMed

    Brandenberger, Christina; Mühlfeld, Christian

    2017-03-01

    Lung aging is associated with structural remodeling, a decline of respiratory function and a higher susceptibility to acute and chronic lung diseases. Individual factors that modulate pulmonary aging include basic genetic configuration, environmental exposure, life-style and biography of systemic diseases. However, the actual aging of the lung takes place in pulmonary resident cells and is closely linked to aging of the immune system (immunosenescence). Therefore, this article reviews the current knowledge about the impact of aging on pulmonary cells and the immune system, without analyzing those factors that may accelerate the aging process in depth. Hallmarks of aging include alterations at molecular, cellular and cell-cell interaction levels. Because of the great variety of cell types in the lung, the consequences of aging display a broad spectrum of phenotypes. For example, aging is associated with more collagen and less elastin production by fibroblasts, thus increasing pulmonary stiffness and lowering compliance. Decreased sympathetic airway innervation may increase the constriction status of airway smooth muscle cells. Aging of resident and systemic immune cells leads to a pro-inflammatory milieu and reduced capacity of fighting infectious diseases. The current review provides an overview of cellular changes occurring with advancing age in general and in several cell types of the lung as well as of the immune system. Thereby, this survey not only aims at providing a better understanding of the mechanisms of pulmonary aging but also to identify gaps in knowledge that warrant further investigations.

  20. Electron acceleration via magnetic island coalescence

    NASA Astrophysics Data System (ADS)

    Shinohara, I.; Yumura, T.; Tanaka, K. G.; Fujimoto, M.

    2009-06-01

    Electron acceleration via fast magnetic island coalescence that happens as quick magnetic reconnection triggering (QMRT) proceeds has been studied. We have carried out a three-dimensional full kinetic simulation of the Harris current sheet with a large enough simulation run for two magnetic islands coalescence. Due to the strong inductive electric field associated with the non-linear evolution of the lower-hybrid-drift instability and the magnetic island coalescence process observed in the non-linear stage of the collisionless tearing mode, electrons are significantly accelerated at around the neutral sheet and the subsequent X-line. The accelerated meandering electrons generated by the non-linear evolution of the lower-hybrid-drift instability are resulted in QMRT, and QMRT leads to fast magnetic island coalescence. As a whole, the reconnection triggering and its transition to large-scale structure work as an effective electron accelerator.