Science.gov

Sample records for accelerated biological function

  1. Menopause accelerates biological aging.

    PubMed

    Levine, Morgan E; Lu, Ake T; Chen, Brian H; Hernandez, Dena G; Singleton, Andrew B; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E; Quach, Austin; Kusters, Cynthia D J; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E; Widschwendter, Martin; Ritz, Beate R; Absher, Devin; Assimes, Themistocles L; Horvath, Steve

    2016-08-16

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the "epigenetic clock"), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  2. Accelerating scientific publication in biology.

    PubMed

    Vale, Ronald D

    2015-11-01

    Scientific publications enable results and ideas to be transmitted throughout the scientific community. The number and type of journal publications also have become the primary criteria used in evaluating career advancement. Our analysis suggests that publication practices have changed considerably in the life sciences over the past 30 years. More experimental data are now required for publication, and the average time required for graduate students to publish their first paper has increased and is approaching the desirable duration of PhD training. Because publication is generally a requirement for career progression, schemes to reduce the time of graduate student and postdoctoral training may be difficult to implement without also considering new mechanisms for accelerating communication of their work. The increasing time to publication also delays potential catalytic effects that ensue when many scientists have access to new information. The time has come for life scientists, funding agencies, and publishers to discuss how to communicate new findings in a way that best serves the interests of the public and the scientific community. PMID:26508643

  3. Accelerating scientific publication in biology

    PubMed Central

    Vale, Ronald D.

    2015-01-01

    Scientific publications enable results and ideas to be transmitted throughout the scientific community. The number and type of journal publications also have become the primary criteria used in evaluating career advancement. Our analysis suggests that publication practices have changed considerably in the life sciences over the past 30 years. More experimental data are now required for publication, and the average time required for graduate students to publish their first paper has increased and is approaching the desirable duration of PhD training. Because publication is generally a requirement for career progression, schemes to reduce the time of graduate student and postdoctoral training may be difficult to implement without also considering new mechanisms for accelerating communication of their work. The increasing time to publication also delays potential catalytic effects that ensue when many scientists have access to new information. The time has come for life scientists, funding agencies, and publishers to discuss how to communicate new findings in a way that best serves the interests of the public and the scientific community. PMID:26508643

  4. Next generation tools to accelerate the synthetic biology process.

    PubMed

    Shih, Steve C C; Moraes, Christopher

    2016-05-16

    Synthetic biology follows the traditional engineering paradigm of designing, building, testing and learning to create new biological systems. While such approaches have enormous potential, major challenges still exist in this field including increasing the speed at which this workflow can be performed. Here, we present recently developed microfluidic tools that can be used to automate the synthetic biology workflow with the goal of advancing the likelihood of producing desired functionalities. With the potential for programmability, automation, and robustness, the integration of microfluidics and synthetic biology has the potential to accelerate advances in areas such as bioenergy, health, and biomaterials. PMID:27146265

  5. Functions in Biological Kind Classification

    ERIC Educational Resources Information Center

    Lombrozo, Tania; Rehder, Bob

    2012-01-01

    Biological traits that serve functions, such as a zebra's coloration (for camouflage) or a kangaroo's tail (for balance), seem to have a special role in conceptual representations for biological kinds. In five experiments, we investigate whether and why functional features are privileged in biological kind classification. Experiment 1…

  6. The relativity of biological function.

    PubMed

    Laubichler, Manfred D; Stadler, Peter F; Prohaska, Sonja J; Nowick, Katja

    2015-12-01

    Function is a central concept in biological theories and explanations. Yet discussions about function are often based on a narrow understanding of biological systems and processes, such as idealized molecular systems or simple evolutionary, i.e., selective, dynamics. Conflicting conceptions of function continue to be used in the scientific literature to support certain claims, for instance about the fraction of "functional DNA" in the human genome. Here we argue that all biologically meaningful interpretations of function are necessarily context dependent. This implies that they derive their meaning as well as their range of applicability only within a specific theoretical and measurement context. We use this framework to shed light on the current debate about functional DNA and argue that without considering explicitly the theoretical and measurement contexts all attempts to integrate biological theories are prone to fail. PMID:26449352

  7. Accelerating Yeast Prion Biology using Droplet Microfluidics

    NASA Astrophysics Data System (ADS)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  8. Biological assessments for the low energy demonstration accelerator, 1996

    SciTech Connect

    Cross, S.

    1997-03-01

    This report discusses the biological impact to the area around the Los Alamos National Laboratory of the Low Energy Demonstration Accelerator. In particular the impact to the soils, water quality, vegetation, and wildlife are discussed.

  9. The biological function of consciousness

    PubMed Central

    Earl, Brian

    2014-01-01

    This research is an investigation of whether consciousness—one's ongoing experience—influences one's behavior and, if so, how. Analysis of the components, structure, properties, and temporal sequences of consciousness has established that, (1) contrary to one's intuitive understanding, consciousness does not have an active, executive role in determining behavior; (2) consciousness does have a biological function; and (3) consciousness is solely information in various forms. Consciousness is associated with a flexible response mechanism (FRM) for decision-making, planning, and generally responding in nonautomatic ways. The FRM generates responses by manipulating information and, to function effectively, its data input must be restricted to task-relevant information. The properties of consciousness correspond to the various input requirements of the FRM; and when important information is missing from consciousness, functions of the FRM are adversely affected; both of which indicate that consciousness is the input data to the FRM. Qualitative and quantitative information (shape, size, location, etc.) are incorporated into the input data by a qualia array of colors, sounds, and so on, which makes the input conscious. This view of the biological function of consciousness provides an explanation why we have experiences; why we have emotional and other feelings, and why their loss is associated with poor decision-making; why blindsight patients do not spontaneously initiate responses to events in their blind field; why counter-habitual actions are only possible when the intended action is in mind; and the reason for inattentional blindness. PMID:25140159

  10. Functional Aspects of Biological Networks

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim

    2007-03-01

    We discuss biological networks with respect to 1) relative positioning and importance of high degree nodes, 2) function and signaling, 3) logic and dynamics of regulation. Visually the soft modularity of many real world networks can be characterized in terms of number of high and low degrees nodes positioned relative to each other in a landscape analogue with mountains (high-degree nodes) and valleys (low-degree nodes). In these terms biological networks looks like rugged landscapes with separated peaks, hub proteins, which each are roughly as essential as any of the individual proteins on the periphery of the hub. Within each sup-domain of a molecular network one can often identify dynamical feedback mechanisms that falls into combinations of positive and negative feedback circuits. We will illustrate this with examples taken from phage regulation and bacterial uptake and regulation of small molecules. In particular we find that a double negative regulation often are replaced by a single positive link in unrelated organisms with same functional requirements. Overall we argue that network topology primarily reflects functional constraints. References: S. Maslov and K. Sneppen. ``Computational architecture of the yeast regulatory network." Phys. Biol. 2:94 (2005) A. Trusina et al. ``Functional alignment of regulatory networks: A study of temerate phages". Plos Computational Biology 1:7 (2005). J.B. Axelsen et al. ``Degree Landscapes in Scale-Free Networks" physics/0512075 (2005). A. Trusina et al. ``Hierarchy and Anti-Hierarchy in Real and Scale Free networks." PRL 92:178702 (2004) S. Semsey et al. ``Genetic Regulation of Fluxes: Iron Homeostasis of Escherichia coli". (2006) q-bio.MN/0609042

  11. Accelerating functional verification of an integrated circuit

    SciTech Connect

    Deindl, Michael; Ruedinger, Jeffrey Joseph; Zoellin, Christian G.

    2015-10-27

    Illustrative embodiments include a method, system, and computer program product for accelerating functional verification in simulation testing of an integrated circuit (IC). Using a processor and a memory, a serial operation is replaced with a direct register access operation, wherein the serial operation is configured to perform bit shifting operation using a register in a simulation of the IC. The serial operation is blocked from manipulating the register in the simulation of the IC. Using the register in the simulation of the IC, the direct register access operation is performed in place of the serial operation.

  12. Biocellion: accelerating computer simulation of multicellular biological system models

    PubMed Central

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-01-01

    Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572

  13. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    PubMed

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses. PMID:25805449

  14. Integrating Functional, Developmental and Evolutionary Biology into Biology Curricula

    ERIC Educational Resources Information Center

    Haave, Neil

    2012-01-01

    A complete understanding of life involves how organisms are able to function in their environment and how they arise. Understanding how organisms arise involves both their evolution and development. Thus to completely comprehend living things, biology must study their function, development and evolution. Previous proposals for standardized…

  15. Functional Translational Readthrough: A Systems Biology Perspective.

    PubMed

    Schueren, Fabian; Thoms, Sven

    2016-08-01

    Translational readthrough (TR) has come into renewed focus because systems biology approaches have identified the first human genes undergoing functional translational readthrough (FTR). FTR creates functional extensions to proteins by continuing translation of the mRNA downstream of the stop codon. Here we review recent developments in TR research with a focus on the identification of FTR in humans and the systems biology methods that have spurred these discoveries. PMID:27490485

  16. Functional Translational Readthrough: A Systems Biology Perspective

    PubMed Central

    Schueren, Fabian

    2016-01-01

    Translational readthrough (TR) has come into renewed focus because systems biology approaches have identified the first human genes undergoing functional translational readthrough (FTR). FTR creates functional extensions to proteins by continuing translation of the mRNA downstream of the stop codon. Here we review recent developments in TR research with a focus on the identification of FTR in humans and the systems biology methods that have spurred these discoveries. PMID:27490485

  17. Metacognition: computation, biology and function

    PubMed Central

    Fleming, Stephen M.; Dolan, Raymond J.; Frith, Christopher D.

    2012-01-01

    Many complex systems maintain a self-referential check and balance. In animals, such reflective monitoring and control processes have been grouped under the rubric of metacognition. In this introductory article to a Theme Issue on metacognition, we review recent and rapidly progressing developments from neuroscience, cognitive psychology, computer science and philosophy of mind. While each of these areas is represented in detail by individual contributions to the volume, we take this opportunity to draw links between disciplines, and highlight areas where further integration is needed. Specifically, we cover the definition, measurement, neurobiology and possible functions of metacognition, and assess the relationship between metacognition and consciousness. We propose a framework in which level of representation, order of behaviour and access consciousness are orthogonal dimensions of the conceptual landscape. PMID:22492746

  18. Metacognition: computation, biology and function.

    PubMed

    Fleming, Stephen M; Dolan, Raymond J; Frith, Christopher D

    2012-05-19

    Many complex systems maintain a self-referential check and balance. In animals, such reflective monitoring and control processes have been grouped under the rubric of metacognition. In this introductory article to a Theme Issue on metacognition, we review recent and rapidly progressing developments from neuroscience, cognitive psychology, computer science and philosophy of mind. While each of these areas is represented in detail by individual contributions to the volume, we take this opportunity to draw links between disciplines, and highlight areas where further integration is needed. Specifically, we cover the definition, measurement, neurobiology and possible functions of metacognition, and assess the relationship between metacognition and consciousness. We propose a framework in which level of representation, order of behaviour and access consciousness are orthogonal dimensions of the conceptual landscape. PMID:22492746

  19. DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research

    PubMed Central

    Seiler, Catherine Y.; Park, Jin G.; Sharma, Amit; Hunter, Preston; Surapaneni, Padmini; Sedillo, Casey; Field, James; Algar, Rhys; Price, Andrea; Steel, Jason; Throop, Andrea; Fiacco, Michael; LaBaer, Joshua

    2014-01-01

    The mission of the DNASU Plasmid Repository is to accelerate research by providing high-quality, annotated plasmid samples and online plasmid resources to the research community through the curated DNASU database, website and repository (http://dnasu.asu.edu or http://dnasu.org). The collection includes plasmids from grant-funded, high-throughput cloning projects performed in our laboratory, plasmids from external researchers, and large collections from consortia such as the ORFeome Collaboration and the NIGMS-funded Protein Structure Initiative: Biology (PSI:Biology). Through DNASU, researchers can search for and access detailed information about each plasmid such as the full length gene insert sequence, vector information, associated publications, and links to external resources that provide additional protein annotations and experimental protocols. Plasmids can be requested directly through the DNASU website. DNASU and the PSI:Biology-Materials Repositories were previously described in the 2010 NAR Database Issue (Cormier, C.Y., Mohr, S.E., Zuo, D., Hu, Y., Rolfs, A., Kramer, J., Taycher, E., Kelley, F., Fiacco, M., Turnbull, G. et al. (2010) Protein Structure Initiative Material Repository: an open shared public resource of structural genomics plasmids for the biological community. Nucleic Acids Res., 38, D743–D749.). In this update we will describe the plasmid collection and highlight the new features in the website redesign, including new browse/search options, plasmid annotations and a dynamic vector mapping feature that was developed in collaboration with LabGenius. Overall, these plasmid resources continue to enable research with the goal of elucidating the role of proteins in both normal biological processes and disease. PMID:24225319

  20. Low-energy dynamics and biological function

    NASA Astrophysics Data System (ADS)

    Lechner, R. E.; Fitter, J.; Dencher, N. A.; Hauß, T.

    2006-11-01

    Results from QENS experiments using a resolution of 93 μeV on a biological system are reported. The photocycle of the proton pump bacteriorhodopsin (BR) is known to slow down with decreasing temperature and humidity, a behaviour related to the ‘dynamic transition’. We have achieved a separation of the pure thermal activation effect involving the plasticizing action of hydration water, from effects due to the variation of the hydration level on the dynamics of purple membrane (PM) with its integral protein BR, and have correlated this with its ability to function. This demonstrates that the biological function of BR requires molecular dynamics in the ps range.

  1. Structure and Associated Biological Functions of Viroids.

    PubMed

    Steger, Gerhard; Perreault, Jean-Pierre

    2016-01-01

    Mature viroids consist of a noncoding, covalently closed circular RNA that is able to autonomously infect respective host plants. Thus, they must utilize proteins of the host for most biological functions such as replication, processing, transport, and pathogenesis. Therefore, viroids can be regarded as minimal parasites of the host machinery. They have to present to the host machinery the appropriate signals based on either their sequence or their structure. Here, we summarize such sequence and structural features critical for the biological functions of viroids. PMID:26997592

  2. [Biological functions of tin and disease].

    PubMed

    Arakawa, Yasuaki; Tomiyama, Kenichi

    2016-07-01

    Tin generates a wide variety of biological functions due to its chemical character. In this article, the modes of the biological functions of tin(especially organotin compounds) are reviewed, with special emphasis on the connection with the immune system, brain nervous system and endocrine system, on the basis of our data. To sum up this article, the biological functions of organotin compounds appear to be due to the following several processes: (1) their incorporation into the cells in vesicle form through fusion or in a similar manner to their incorporation in cationic form; (2) transport to and accumulation in the regions of the Golgi apparatus and endoplasmic reticulum (ER), but not to or in the plasma membrane or nucleus because of their hydrophobicity; (3) inhibition of intracellular phospholipid transport between organelles due to impairment of the structures and functions of the Golgi apparatus and ER; (4) inhibition of the membrane-mediated signal transduction system leading to DNA synthesis via phospholipid turnover and Ca2+ mobilization, as in cell proliferation systems; (5) disturbance of the trace element balance and the localization of certain elements; (6) disorders of membrane-mediated Ca2+ homeostasis via various channel functions including Zn modulation on the plasma and organelle membranes, and protein phosphorylation, as in the signal transduction systems of memory and olfaction; (7) necrosis or apoptosis in vivo or toxic cell death in vitro. PMID:27455812

  3. Biological cluster evaluation for gene function prediction.

    PubMed

    Klie, Sebastian; Nikoloski, Zoran; Selbig, Joachim

    2014-06-01

    Recent advances in high-throughput omics techniques render it possible to decode the function of genes by using the "guilt-by-association" principle on biologically meaningful clusters of gene expression data. However, the existing frameworks for biological evaluation of gene clusters are hindered by two bottleneck issues: (1) the choice for the number of clusters, and (2) the external measures which do not take in consideration the structure of the analyzed data and the ontology of the existing biological knowledge. Here, we address the identified bottlenecks by developing a novel framework that allows not only for biological evaluation of gene expression clusters based on existing structured knowledge, but also for prediction of putative gene functions. The proposed framework facilitates propagation of statistical significance at each of the following steps: (1) estimating the number of clusters, (2) evaluating the clusters in terms of novel external structural measures, (3) selecting an optimal clustering algorithm, and (4) predicting gene functions. The framework also includes a method for evaluation of gene clusters based on the structure of the employed ontology. Moreover, our method for obtaining a probabilistic range for the number of clusters is demonstrated valid on synthetic data and available gene expression profiles from Saccharomyces cerevisiae. Finally, we propose a network-based approach for gene function prediction which relies on the clustering of optimal score and the employed ontology. Our approach effectively predicts gene function on the Saccharomyces cerevisiae data set and is also employed to obtain putative gene functions for an Arabidopsis thaliana data set. PMID:20059365

  4. Phenological response of a key ecosystem function to biological invasion.

    PubMed

    Alp, Maria; Cucherousset, Julien; Buoro, Mathieu; Lecerf, Antoine

    2016-05-01

    Although climate warming has been widely demonstrated to induce shifts in the timing of many biological events, the phenological consequences of other prominent global change drivers remain largely unknown. Here, we investigated the effects of biological invasions on the seasonality of leaf litter decomposition, a crucial freshwater ecosystem function. Decomposition rates were quantified in 18 temperate shallow lakes distributed along a gradient of crayfish invasion and a temperature-based model was constructed to predict yearly patterns of decomposition. We found that, through direct detritus consumption, omnivorous invasive crayfish accelerated decomposition rates up to fivefold in spring, enhancing temperature dependence of the process and shortening the period of major detritus availability in the ecosystem by up to 39 days (95% CI: 15-61). The fact that our estimates are an order of magnitude higher than any previously reported climate-driven phenological shifts indicates that some powerful drivers of phenological change have been largely overlooked. PMID:26931804

  5. Functional Error Models to Accelerate Nested Sampling

    NASA Astrophysics Data System (ADS)

    Josset, L.; Elsheikh, A. H.; Demyanov, V.; Lunati, I.

    2014-12-01

    The main challenge in groundwater problems is the reliance on large numbers of unknown parameters with wide rage of associated uncertainties. To translate this uncertainty to quantities of interest (for instance the concentration of pollutant in a drinking well), a large number of forward flow simulations is required. To make the problem computationally tractable, Josset et al. (2013, 2014) introduced the concept of functional error models. It consists in two elements: a proxy model that is cheaper to evaluate than the full physics flow solver and an error model to account for the missing physics. The coupling of the proxy model and the error models provides reliable predictions that approximate the full physics model's responses. The error model is tailored to the problem at hand by building it for the question of interest. It follows a typical approach in machine learning where both the full physics and proxy models are evaluated for a training set (subset of realizations) and the set of responses is used to construct the error model using functional data analysis. Once the error model is devised, a prediction of the full physics response for a new geostatistical realization can be obtained by computing the proxy response and applying the error model. We propose the use of functional error models in a Bayesian inference context by combining it to the Nested Sampling (Skilling 2006; El Sheikh et al. 2013, 2014). Nested Sampling offers a mean to compute the Bayesian Evidence by transforming the multidimensional integral into a 1D integral. The algorithm is simple: starting with an active set of samples, at each iteration, the sample with the lowest likelihood is kept aside and replaced by a sample of higher likelihood. The main challenge is to find this sample of higher likelihood. We suggest a new approach: first the active set is sampled, both proxy and full physics models are run and the functional error model is build. Then, at each iteration of the Nested

  6. Catch bonds: physical models and biological functions.

    PubMed

    Zhu, Cheng; McEver, Rodger P

    2005-09-01

    Force can shorten the lifetimes of receptor-ligand bonds by accelerating their dissociation. Perhaps paradoxical at first glance, bond lifetimes can also be prolonged by force. This counterintuitive behavior was named catch bonds, which is in contrast to the ordinary slip bonds that describe the intuitive behavior of lifetimes being shortened by force. Fifteen years after their theoretical proposal, catch bonds have finally been observed. In this article we review recently published data that have demonstrated catch bonds in the selectin system and suggested catch bonds in other systems, the theoretical models for their explanations, and their function as a mechanism for flow-enhanced adhesion. PMID:16708472

  7. Aegerolysins: Structure, function, and putative biological role

    PubMed Central

    Berne, Sabina; Lah, Ljerka; Sepčić, Kristina

    2009-01-01

    Aegerolysins, discovered in fungi, bacteria and plants, are highly similar proteins with interesting biological properties. Certain aegerolysins possess antitumoral, antiproliferative, and antibacterial activities. Further possible medicinal applications include their use in the prevention of atherosclerosis, or as vaccines. Additional biotechnological value of fungal aegerolysins lies in their involvement in development, which could improve cultivation of commercially important edible mushrooms. Besides, new insights on microheterogeneity of raft-like membrane domains could be gained by using aegerolysins as specific markers in cell and molecular biology. Although the exact function of aegerolysins in their producing organisms remains to be explained, they are biochemically well characterized all-β structured proteins sharing the following common features: low isoelectric points, similar molecular weights (15–17 kDa), and stability in a wide pH range. PMID:19309687

  8. Source Time Function of P-wave Acceleration

    NASA Astrophysics Data System (ADS)

    Chen, K. J.

    2015-12-01

    In this study, the site effect of time function of the Taiwan area will be invested. The recorded response function of a single earthquake will be calculated by Complex Demodulation. The path effect of each event-station pair will be estimated by using the forward method with a 3-D attenuation structure. After removing the path effect, the source frequency function of each single event will be obtained by averaging the whole station gotten. Using this source time function to calculate the path effect of the all stations, the theoretic received time frequency function can be obtained. The difference between this theoretic function and the recorded function is the site effect function of the single station. The characterics of the site effect in Taiwan area will be analyzed. Recalculate the path effect and remove the site effect of each station to get the new source time function of P-wave acceleration.

  9. Leg joint function during walking acceleration and deceleration.

    PubMed

    Qiao, Mu; Jindrich, Devin L

    2016-01-01

    Although constant-average-velocity walking has been extensively studied, less is known about walking maneuvers that change speed. We investigated the function of individual leg joints when humans walked at a constant speed, accelerated or decelerated. We hypothesized that leg joints make different functional contributions to maneuvers. Specifically, we hypothesized that the hip generates positive mechanical work (acting like a "motor"), the knee generates little mechanical work (acting like a "strut"), and the ankle absorbs energy during the first half of stance and generates energy during the second half (consistent with "spring"-like function). We recorded full body kinematics and kinetics, used inverse dynamics to estimate net joint moments, and decomposed joint function into strut-, motor-, damper-, and spring-like components using indices based on net joint work. Although overall leg mechanics were primarily strut-like, individual joints did not act as struts during stance. The hip functioned as a power generating "motor," and ankle function was consistent with spring-like behavior. Even though net knee work was small, the knee did not behave solely as a strut but also showed motor-, and damper-like function. Acceleration involved increased motor-like function of the hip and ankle. Deceleration involved decreased hip motor-like function and ankle spring-like function and increased damping at the knee and ankle. Changes to joint mechanical work were primarily due to changes in joint angular displacements and not net moments. Overall, joints maintain different functional roles during unsteady locomotion. PMID:26686397

  10. Acceleration of reverse analysis method using hyperbolic activation function

    NASA Astrophysics Data System (ADS)

    Pwasong, Augustine; Sathasivam, Saratha

    2015-10-01

    Hyperbolic activation function is examined for its ability to accelerate the performance of doing data mining by using a technique named as Reverse Analysis method. In this paper, we describe how Hopfield network perform better with hyperbolic activation function and able to induce logical rules from large database by using reverse analysis method: given the values of the connections of a network, we can hope to know what logical rules are entrenched in the database. We limit our analysis to Horn clauses.

  11. Biological dose volume histograms during conformal hypofractionated accelerated radiotherapy for prostate cancer

    SciTech Connect

    Koukourakis, Michael I.; Abatzoglou, Ioannis; Touloupidis, Stavros; Manavis, Ioannis

    2007-01-15

    Radiobiological data suggest that prostate cancer has a low {alpha}/{beta} ratio. Large radiotherapy fractions may, therefore, prove more efficacious than standard radiotherapy, while radiotherapy acceleration should further improve control rates. This study describes the radiobiology of a conformal hypofractionated accelerated radiotherapy scheme for the treatment of high risk prostate cancer. Anteroposterior fields to the pelvis deliver a daily dose of 2.7 Gy, while lateral fields confined to the prostate and seminal vesicles deliver an additional daily dose of 0.7 Gy. Radiotherapy is accomplished within 19 days (15 fractions). Dose volume histograms, calculated for tissue specific {alpha}/{beta} ratios and time factors, predict a high biological dose to the prostate and seminal vesicles (77-93 Gy). The biological dose to normal pelvic tissues is maintained at standard levels. Radiobiological dosimetry suggests that, using hypofractionated and accelerated radiotherapy, high biological radiation dose can be given to the prostate without overdosing normal tissues.

  12. Aluminum-26 as a biological tracer using accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Flarend, Richard Edward

    1997-06-01

    The development of accelerator mass spectrometry (AMS) has provided a practical method of detection for the only isotope of aluminum suitable as a tracer, 26Al. The use of 26Al as a tracer for aluminum has made possible the study of aluminum metabolism and the pharmacokinetics of aluminum-containing drugs at physiological levels. An overview of the various advantages of using 26Al as a tracer for aluminum and a general description of the AMS technique as applied to bio-medical applications is given. To illustrate the versatility of 26Al as a tracer for aluminum, 26Al studies of the past several years are discussed briefly. In addition, Two novel investigations dealing with 26Al-labeled drugs will be presented in more detail. In one of these studies, it was found that 26Al from aluminum hydroxide and aluminum phosphate vaccine adjuvants appeared in the blood just one hour after intramuscular injection. This is a surprising result since the currently held theory of how adjuvants work assumes that adjuvants remain insoluble and hold the antigen at the injection site for a long period of time. In another project, 26Al-labeled antiperspirants are being characterized by combining AMS with traditional analytical and chromatographic techniques. Future directions for this and other possible studies are discussed.

  13. Flavonoids: biosynthesis, biological functions, and biotechnological applications

    PubMed Central

    Falcone Ferreyra, María L.; Rius, Sebastián P.; Casati, Paula

    2012-01-01

    Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds. PMID:23060891

  14. Transcription factor binding energy vs. biological function

    NASA Astrophysics Data System (ADS)

    Djordjevic, M.; Grotewold, E.

    2007-03-01

    Transcription factors (TFs) are proteins that bind to DNA and regulate expression of genes. Identification of transcription factor binding sites within the regulatory segments of genomic DNA is an important step towards understanding of gene regulatory networks. Recent theoretical advances that we developed [1,2], allow us to infer TF-DNA interaction parameters from in-vitro selection experiments [3]. We use more than 6000 binding sequences [3], assembled under controlled conditions, to obtain protein-DNA interaction parameters for a mammalian TF with up to now unprecedented accuracy. Can one accurately identify biologically functional TF binding sites (i.e. the binding sites that regulate gene expression), even with the best possible protein-DNA interaction parameters? To address this issue we i) compare our prediction of protein binding with gene expression data, ii) use evolutionary comparison between related mammalian genomes. Our results strongly suggest that in a genome there exists a large number of randomly occurring high energy binding sites that are not biologically functional. [1] M Djordjevic, submitted to Biomol. Eng. [2] M. Djordjevic and A. M. Sengupta, Phys. Biol. 3: 13, 2006. [3] E. Roulet et al., Nature Biotech. 20: 831, 2002.

  15. Accelerated MRI for the assessment of cardiac function.

    PubMed

    Axel, Leon; Otazo, Ricardo

    2016-07-01

    Heart disease is a worldwide public health problem; assessment of cardiac function is an important part of the diagnosis and management of heart disease. MRI of the heart can provide clinically useful information on cardiac function, although it is still not routinely used in clinical practice, in part because of limited imaging speed. New accelerated methods for performing cardiovascular MRI (CMR) have the potential to provide both increased imaging speed and robustness to CMR, as well as access to increased functional information. In this review, we will briefly discuss the main methods currently employed to accelerate CMR methods, such as parallel imaging, k-t undersampling and compressed sensing, as well as new approaches that extend the idea of compressed sensing and exploit sparsity to provide richer information of potential use in clinical practice. PMID:27033471

  16. Accelerating Cancer Systems Biology Research through Semantic Web Technology

    PubMed Central

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S.

    2012-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute’s caBIG®, so users can not only interact with the DMR through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers’ intellectual property. PMID:23188758

  17. Accelerating cancer systems biology research through Semantic Web technology.

    PubMed

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S

    2013-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute's caBIG, so users can interact with the DMR not only through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers' intellectual property. PMID:23188758

  18. Biological Effectiveness of Accelerated Protons for Chromosome Exchanges

    PubMed Central

    George, Kerry A.; Hada, Megumi; Cucinotta, Francis A.

    2015-01-01

    We have investigated chromosome exchanges induced in human cells by seven different energies of protons (5–2500 MeV) with LET values ranging from 0.2 to 8 keV/μm. Human lymphocytes were irradiated in vitro and chromosome damage was assessed using three-color fluorescence in situ hybridization chromosome painting in chemically condensed chromosomes collected during the first cell division post irradiation. The relative biological effectiveness (RBE) was calculated from the initial slope of the dose–response curve for chromosome exchanges with respect to low dose and low dose-rate γ-rays (denoted as RBEmax), and relative to acute doses of γ-rays (denoted as RBEγAcute). The linear dose–response term was similar for all energies of protons, suggesting that the decrease in LET with increasing proton energy was balanced by the increase in dose from the production of nuclear secondaries. Secondary particles increase slowly above energies of a few hundred megaelectronvolts. Additional studies of 50 g/cm2 aluminum shielded high-energy proton beams showed minor differences compared to the unshielded protons and lower RBE values found for shielded in comparison to unshielded beams of 2 or 2.5 GeV. All energies of protons produced a much higher percentage of complex-type chromosome exchanges when compared to acute doses of γ-rays. The implications of these results for space radiation protection and proton therapy are discussed. PMID:26539409

  19. Biological and medical research with accelerated heavy ions at the Bevalac, 1977-1980. [Lead abstract

    SciTech Connect

    Pirruccello, M.C.; Tobias, C.A.

    1980-11-01

    Separate abstracts were prepared for the 46 papers presented in this progress report. This report is a major review of studies with accelerated heavy ions carried out by the Biology and Medicine Division of Lawrence Berkeley Laboratory from 1977 to 1980. (KRM)

  20. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  1. Frameworks for programming biological function through RNA parts and devices

    PubMed Central

    Win, Maung Nyan; Liang, Joe C.; Smolke, Christina D.

    2009-01-01

    One of the long-term goals of synthetic biology is to reliably engineer biological systems that perform human-defined functions. Currently, researchers face several scientific and technical challenges in designing and building biological systems, one of which is associated with our limited ability to access, transmit, and control molecular information through the design of functional biomolecules exhibiting novel properties. The fields of RNA biology and nucleic acid engineering, along with the tremendous interdisciplinary growth of synthetic biology, are fueling advances in the emerging field of RNA programming in living systems. Researchers are designing functional RNA molecules that exhibit increasingly complex functions and integrating these molecules into cellular circuits to program higher-level biological functions. The continued integration and growth of RNA design and synthetic biology presents exciting potential to transform how we interact with and program biology. PMID:19318211

  2. Biological shield design and analysis of KIPT accelerator-driven subcritical facility.

    SciTech Connect

    Zhong, Z.; Gohar, Y.; Nuclear Engineering Division

    2009-12-01

    Argonne National Laboratory of the United States and Kharkov Institute of Physics and Technology of Ukraine have been collaborating on the conceptual design development of an electron accelerator-driven subcritical facility. The facility will be utilized for performing basic and applied nuclear research, producing medical isotopes, and training young nuclear specialists. This paper presents the design and analyses of the biological shield performed for the top section of the facility. The neutron source driving the subcritical assembly is generated from the interaction of a 100-kW electron beam with a natural uranium target. The electron energy is in the range of 100 to 200 MeV, and it has a uniform spatial distribution. The shield design and the associated analyses are presented including different parametric studies. In the analyses, a significant effort was dedicated to the accurate prediction of the radiation dose outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The MCNPX Monte Carlo code was utilized for the transport calculation of electrons, photons, and neutrons. Weight window variance-reduction techniques were introduced, and the dose equivalent outside the shield can be calculated with reasonably good statistics.

  3. The Structure and Function of Biological Networks

    ERIC Educational Resources Information Center

    Wu, Daniel Duanqing

    2010-01-01

    Biology has been revolutionized in recent years by an explosion in the availability of data. Transforming this new wealth of data into meaningful biological insights and clinical breakthroughs requires a complete overhaul both in the questions being asked and the methodologies used to answer them. A major challenge in organizing and understanding…

  4. Dynamics of biomolecules, ligand binding & biological functions

    NASA Astrophysics Data System (ADS)

    Yi, Myunggi

    Proteins are flexible and dynamic. One static structure alone does not often completely explain biological functions of the protein, and some proteins do not even have high resolution structures. In order to provide better understanding to the biological functions of nicotinic acetylcholine receptor, Diphtheria toxin repressor and M2 proton channel, the dynamics of these proteins are investigated using molecular modeling and molecular dynamics (MD) simulations. With absence of high resolution structure of alpha7 receptor, the homology models of apo and cobra toxin bound forms have been built. From the MD simulations of these model structures, we observed one subunit of apo simulation moved away from other four subunits. With local movement of flexible loop regions, the whole subunit tilted clockwise. These conformational changes occurred spontaneously, and were strongly correlated with the conformational change when the channel is activated by agonists. Unlike other computational studies, we directly compared our model of open conformation with the experimental data. However, the subunits of toxin bound form were stable, and conformational change is restricted by the bound cobra toxin. These results provide activation and inhibition mechanisms of alpha7 receptors and a possible explanation for intermediate conductance of the channel. Intramolecular complex of SH3-like domain with a proline-rich (Pr) peptide segment in Diphtheria toxin repressor (DtxR) is stabilized in inactive state. Upon activation of DtxR by transition metal binding, this intramolecular complex should be dissociated. The dynamics of this intramolecular complex is investigated using MD simulations and NMR spectroscopy. We observed spontaneous opening and closing motions of the Pr segment binding pockets in both Pr-SH3 and SH3 simulations. The MD simulation results and NMR relaxation data suggest that the Pr segment exhibits a binding ↔ unbinding equilibrium. Despite a wealth of experimental

  5. An interdisciplinary approach to study individuality in biological and physical systems functioning

    NASA Astrophysics Data System (ADS)

    Mygal, V. P.; But, A. V.; Mygal, G. V.; Klimenko, I. A.

    2016-07-01

    Signals of system functioning of different nature are presented in the parameter space (state-velocity-acceleration) as a trajectory of dynamic events. Such signals geometrization allows to reveal the hidden spatio-temporal correlation in dynamics of systems functioning. It is shown that the nature of relationship between the dynamic parameters of signal determines the natural cycle of sensor functioning. Its restructuring displays the inherited features of systems functioning in signature package. The universal differential-geometry parameters and new integrative indexes of system functioning are used to analyze the signatures of biological and physical signals.

  6. An interdisciplinary approach to study individuality in biological and physical systems functioning.

    PubMed

    Mygal, V P; But, A V; Mygal, G V; Klimenko, I A

    2016-01-01

    Signals of system functioning of different nature are presented in the parameter space (state-velocity-acceleration) as a trajectory of dynamic events. Such signals geometrization allows to reveal the hidden spatio-temporal correlation in dynamics of systems functioning. It is shown that the nature of relationship between the dynamic parameters of signal determines the natural cycle of sensor functioning. Its restructuring displays the inherited features of systems functioning in signature package. The universal differential-geometry parameters and new integrative indexes of system functioning are used to analyze the signatures of biological and physical signals. PMID:27412253

  7. An interdisciplinary approach to study individuality in biological and physical systems functioning

    PubMed Central

    Mygal, V. P.; But, A. V.; Mygal, G. V.; Klimenko, I. A.

    2016-01-01

    Signals of system functioning of different nature are presented in the parameter space (state-velocity-acceleration) as a trajectory of dynamic events. Such signals geometrization allows to reveal the hidden spatio-temporal correlation in dynamics of systems functioning. It is shown that the nature of relationship between the dynamic parameters of signal determines the natural cycle of sensor functioning. Its restructuring displays the inherited features of systems functioning in signature package. The universal differential-geometry parameters and new integrative indexes of system functioning are used to analyze the signatures of biological and physical signals. PMID:27412253

  8. Fusicoccanes: diterpenes with surprising biological functions.

    PubMed

    de Boer, Albertus H; de Vries-van Leeuwen, Ingrid J

    2012-06-01

    Fusicoccin is the best-studied member of a class of diterpenes sharing a 5-8-5 ring structure, called fusicoccanes. Fusicoccin was and still is a 'tool in plant physiology', targeting the main engine of plasma membrane transport, the P-type H(+)-ATPase, assisted by members of the 14-3-3 family. The key position of 14-3-3 proteins in cell biology, combined with a broader specificity of other fusicoccanes as shown by crystallography studies, make fusicoccanes a versatile tool in plant and animal biology. In this review, we examine recent evidence that fusicoccanes act on animal cells, describe the discovery of the fungal biosynthetic pathway and emphasize that lower (liverworts) and higher plants produce fusicoccanes with intriguing biological activities. PMID:22465041

  9. Anti-muscarinic adjunct therapy accelerates functional human oligodendrocyte repair.

    PubMed

    Abiraman, Kavitha; Pol, Suyog U; O'Bara, Melanie A; Chen, Guang-Di; Khaku, Zainab M; Wang, Jing; Thorn, David; Vedia, Bansi H; Ekwegbalu, Ezinne C; Li, Jun-Xu; Salvi, Richard J; Sim, Fraser J

    2015-02-25

    Therapeutic repair of myelin disorders may be limited by the relatively slow rate of human oligodendrocyte differentiation. To identify appropriate pharmacological targets with which to accelerate differentiation of human oligodendrocyte progenitors (hOPCs) directly, we used CD140a/O4-based FACS of human forebrain and microarray to hOPC-specific receptors. Among these, we identified CHRM3, a M3R muscarinic acetylcholine receptor, as being restricted to oligodendrocyte-biased CD140a(+)O4(+) cells. Muscarinic agonist treatment of hOPCs resulted in a specific and dose-dependent blockade of oligodendrocyte commitment. Conversely, when hOPCs were cocultured with human neurons, M3R antagonist treatment stimulated oligodendrocytic differentiation. Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain. Importantly, solifenacin treatment of engrafted animals reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair. Therefore, solifenacin and other selective muscarinic antagonists represent new adjunct approaches to accelerate repair by engrafted human progenitors. PMID:25716865

  10. Function-Based Algorithms for Biological Sequences

    ERIC Educational Resources Information Center

    Mohanty, Pragyan Sheela P.

    2015-01-01

    Two problems at two different abstraction levels of computational biology are studied. At the molecular level, efficient pattern matching algorithms in DNA sequences are presented. For gene order data, an efficient data structure is presented capable of storing all gene re-orderings in a systematic manner. A common characteristic of presented…

  11. Biological Structures, Interactions, Function and Behavior: Research Opportunities for Physicists

    NASA Astrophysics Data System (ADS)

    Concepcion, Gisela P.

    2008-06-01

    Studies on marine biomolecules at the Marine Natural Products Laboratory (MNPL) and studies on biomedically relevant proteins at the Virtual Laboratory of Biomolecular Structures (VIRLS) of the University of the Philippines Marine Science Institute (UPMSI) are presented. These serve to illustrate some underlying principles of biological structures, interactions, function and behavior, and also to draw out some unresolved questions in biology of possible interest to non-biologists. The Biological Structures course offered at UPMSI, which aims to introduce underlying biological principles to non-biology majors and to promote trans-disciplinary research efforts, is also presented.

  12. Functionalized apertures for the detection of chemical and biological materials

    DOEpatents

    Letant, Sonia E.; van Buuren, Anthony W.; Terminello, Louis J.; Thelen, Michael P.; Hope-Weeks, Louisa J.; Hart, Bradley R.

    2010-12-14

    Disclosed are nanometer to micron scale functionalized apertures constructed on a substrate made of glass, carbon, semiconductors or polymeric materials that allow for the real time detection of biological materials or chemical moieties. Many apertures can exist on one substrate allowing for the simultaneous detection of numerous chemical and biological molecules. One embodiment features a macrocyclic ring attached to cross-linkers, wherein the macrocyclic ring has a biological or chemical probe extending through the aperture. Another embodiment achieves functionalization by attaching chemical or biological anchors directly to the walls of the apertures via cross-linkers.

  13. Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration

    PubMed Central

    Yun, Ye-Rang; Won, Jong Eun; Jeon, Eunyi; Lee, Sujin; Kang, Wonmo; Jo, Hyejin; Jang, Jun-Hyeog; Shin, Ueon Sang; Kim, Hae-Won

    2010-01-01

    Fibroblast growth factors (FGFs) that signal through FGF receptors (FGFRs) regulate a broad spectrum of biological functions, including cellular proliferation, survival, migration, and differentiation. The FGF signal pathways are the RAS/MAP kinase pathway, PI3 kinase/AKT pathway, and PLCγ pathway, among which the RAS/MAP kinase pathway is known to be predominant. Several studies have recently implicated the in vitro biological functions of FGFs for tissue regeneration. However, to obtain optimal outcomes in vivo, it is important to enhance the half-life of FGFs and their biological stability. Future applications of FGFs are expected when the biological functions of FGFs are potentiated through the appropriate use of delivery systems and scaffolds. This review will introduce the biology and cellular functions of FGFs and deal with the biomaterials based delivery systems and their current applications for the regeneration of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve tissues. PMID:21350642

  14. Accelerated Block Preconditioned Gradient method for large scale wave functions calculations in Density Functional Theory

    SciTech Connect

    Fattebert, J.-L.

    2010-01-20

    An Accelerated Block Preconditioned Gradient (ABPG) method is proposed to solve electronic structure problems in Density Functional Theory. This iterative algorithm is designed to solve directly the non-linear Kohn-Sham equations for accurate discretization schemes involving a large number of degrees of freedom. It makes use of an acceleration scheme similar to what is known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of convergence for large scale applications using a finite difference discretization and multigrid preconditioning.

  15. BioFNet: biological functional network database for analysis and synthesis of biological systems.

    PubMed

    Kurata, Hiroyuki; Maeda, Kazuhiro; Onaka, Toshikazu; Takata, Takenori

    2014-09-01

    In synthetic biology and systems biology, a bottom-up approach can be used to construct a complex, modular, hierarchical structure of biological networks. To analyze or design such networks, it is critical to understand the relationship between network structure and function, the mechanism through which biological parts or biomolecules are assembled into building blocks or functional networks. A functional network is defined as a subnetwork of biomolecules that performs a particular function. Understanding the mechanism of building functional networks would help develop a methodology for analyzing the structure of large-scale networks and design a robust biological circuit to perform a target function. We propose a biological functional network database, named BioFNet, which can cover the whole cell at the level of molecular interactions. The BioFNet takes an advantage in implementing the simulation program for the mathematical models of the functional networks, visualizing the simulated results. It presents a sound basis for rational design of biochemical networks and for understanding how functional networks are assembled to create complex high-level functions, which would reveal design principles underlying molecular architectures. PMID:23894104

  16. Diazoxide accelerates wound healing by improving EPC function.

    PubMed

    Li, Zhang-Peng; Xin, Ru-Juan; Yang, Hong; Jiang, Guo-Jun; Deng, Ya-Ping; Li, Dong-Jie; Shen, Fu-Ming

    2016-01-01

    Endothelial cell dysfunction is the primary cause of microvascular complications in diabetes. Diazoxide enables beta cells to rest by reversibly suppressing glucose-induced insulin secretion by opening ATP-sensitive K+ channels in the beta cells. This study investigated the role of diazoxide in wound healing in mice with streptozotocin (STZ)-induced diabetes and explored the possible mechanisms of its effect. Compared to the controls, mice with STZ-induced diabetes exhibited significantly impaired wound healing. Diazoxide treatment (30 mg/kg/d, intragastrically) for 28 days accelerated wound closure and stimulated angiogenesis in the diabetic mice. Circulating endothelial progenitor cells (EPCs) increased significantly in the diazoxide-treated diabetic mice. The adhesion, migration, and tube formation abilities of bone marrow (BM)-EPCs were impaired by diabetes, and these impairments were improved by diazoxide treatment. The expression of both p53 and TSP-1 increased in diabetic mice compared to that in the controls, and these increases were inhibited significantly by diazoxide treatment. In vitro, diazoxide treatment improved the impaired BM-EPC function and diminished the increased expression of p53 and TSP-1 in cultured BM-EPCs caused by high glucose levels. We conclude that diazoxide improved BM-EPC function in mice with STZ-induced diabetes, possibly via a p53- and TSP-1-dependent pathway. PMID:27100489

  17. [The biologic functional surfaces and their applications in tissue engineering].

    PubMed

    Yao, Fanglian; Chen, Man; Zhang, Hong; Zhang, Haiyue; An, Xiaoyan; Yao, Kangde

    2007-10-01

    The construction of biologic functional surfaces of materials, from the visual angle of material science, is aimed to make the biomaterials adapted by tissues, and to endow them with dynamic conformity; moreover, from the view-point of clinical applications, it is the functional surface to join the environmental tissues with the implanted material, playing the role of artificial extracellular matrix (ECM). The architecture of biologic functional surface is very important in tissue engineering science. Here the primary concepts of biological surface science and the construction and application of biofunctional surfaces in tissue engineering are reviewed. PMID:18027721

  18. Tunable ultrasensitivity: functional decoupling and biological insights.

    PubMed

    Wang, Guanyu; Zhang, Mengshi

    2016-01-01

    Sensitivity has become a basic concept in biology, but much less is known about its tuning, probably because allosteric cooperativity, the best known mechanism of sensitivity, is determined by rigid conformations of interacting molecules and is thus difficult to tune. Reversible covalent modification (RCM), owing to its systems-level ingenuity, can generate concentration based, tunable sensitivity. Using a mathematical model of regulated RCM, we find sensitivity tuning can be decomposed into two orthogonal modes, which provide great insights into vital biological processes such as tissue development and cell cycle progression. We find that decoupling of the two modes of sensitivity tuning is critical to fidelity of cell fate decision; the decoupling is thus important in development. The decomposition also allows us to solve the 'wasteful degradation conundrum' in budding yeast cell cycle checkpoint, which further leads to discovery of a subtle but essential difference between positive feedback and double negative feedback. The latter guarantees revocability of stress-induced cell cycle arrest; while the former does not. By studying concentration conditions in the system, we extend applicability of ultrasensitivity and explain the ubiquity of reversible covalent modification. PMID:26847155

  19. Tunable ultrasensitivity: functional decoupling and biological insights

    PubMed Central

    Wang, Guanyu; Zhang, Mengshi

    2016-01-01

    Sensitivity has become a basic concept in biology, but much less is known about its tuning, probably because allosteric cooperativity, the best known mechanism of sensitivity, is determined by rigid conformations of interacting molecules and is thus difficult to tune. Reversible covalent modification (RCM), owing to its systems-level ingenuity, can generate concentration based, tunable sensitivity. Using a mathematical model of regulated RCM, we find sensitivity tuning can be decomposed into two orthogonal modes, which provide great insights into vital biological processes such as tissue development and cell cycle progression. We find that decoupling of the two modes of sensitivity tuning is critical to fidelity of cell fate decision; the decoupling is thus important in development. The decomposition also allows us to solve the ‘wasteful degradation conundrum’ in budding yeast cell cycle checkpoint, which further leads to discovery of a subtle but essential difference between positive feedback and double negative feedback. The latter guarantees revocability of stress-induced cell cycle arrest; while the former does not. By studying concentration conditions in the system, we extend applicability of ultrasensitivity and explain the ubiquity of reversible covalent modification. PMID:26847155

  20. Do US Black Women Experience Stress-Related Accelerated Biological Aging?

    PubMed Central

    Hicken, Margaret T.; Pearson, Jay A.; Seashols, Sarah J.; Brown, Kelly L.; Cruz, Tracey Dawson

    2010-01-01

    We hypothesize that black women experience accelerated biological aging in response to repeated or prolonged adaptation to subjective and objective stressors. Drawing on stress physiology and ethnographic, social science, and public health literature, we lay out the rationale for this hypothesis. We also perform a first population-based test of its plausibility, focusing on telomere length, a biomeasure of aging that may be shortened by stressors. Analyzing data from the Study of Women's Health Across the Nation (SWAN), we estimate that at ages 49–55, black women are 7.5 years biologically “older” than white women. Indicators of perceived stress and poverty account for 27% of this difference. Data limitations preclude assessing objective stressors and also result in imprecise estimates, limiting our ability to draw firm inferences. Further investigation of black-white differences in telomere length using large-population-based samples of broad age range and with detailed measures of environmental stressors is merited. PMID:20436780

  1. Biology under construction: in vitro reconstitution of cellular function

    PubMed Central

    Liu, Allen P.; Fletcher, Daniel A.

    2010-01-01

    We are much better at taking cells apart than putting them together. Reconstitution of biological processes from component molecules has been a powerful but difficult approach to studying functional organization in biology. Recently, the convergence of biochemical and cell biological advances with new experimental and computational tools is providing the opportunity to reconstitute increasingly complex processes. We predict that this bottom-up strategy will uncover basic processes that guide cellular assembly, advancing both basic and applied sciences. PMID:19672276

  2. Chemical Biology for Understanding Matrix Metalloproteinase Function

    PubMed Central

    Knapinska, Anna; Fields, Gregg B.

    2013-01-01

    The matrix metalloproteinase (MMP) family has long been associated with normal physiological processes such as embryonic implantation, tissue remodeling, organ development, and wound healing, as well as multiple aspects of cancer initiation and progression, osteoarthritis, inflammatory and vascular diseases, and neurodegenerative diseases. The development of chemically designed MMP probes has advanced our understanding of the roles of MMPs in disease in addition to shedding considerable light on the mechanisms of MMP action. The first generation of protease-activated agents has demonstrated proof of principle as well as providing impetus for in vivo applications. One common problem has been a lack of agent stability at nontargeted tissues and organs due to activation by multiple proteases. The present review considers how chemical biology has impacted the progress made in understanding the roles of MMPs in disease and the basic mechanisms of MMP action. PMID:22933318

  3. Printable Bioelectronics To Investigate Functional Biological Interfaces.

    PubMed

    Manoli, Kyriaki; Magliulo, Maria; Mulla, Mohammad Yusuf; Singh, Mandeep; Sabbatini, Luigia; Palazzo, Gerardo; Torsi, Luisa

    2015-10-19

    Thin-film transistors can be used as high-performance bioelectronic devices to accomplish tasks such as sensing or controlling the release of biological species as well as transducing the electrical activity of cells or even organs, such as the brain. Organic, graphene, or zinc oxide are used as convenient printable semiconducting layers and can lead to high-performance low-cost bioelectronic sensing devices that are potentially very useful for point-of-care applications. Among others, electrolyte-gated transistors are of interest as they can be operated as capacitance-modulated devices, because of the high capacitance of their charge double layers. Specifically, it is the capacitance of the biolayer, being lowest in a series of capacitors, which controls the output current of the device. Such an occurrence allows for extremely high sensitivity towards very weak interactions. All the aspects governing these processes are reviewed here. PMID:26420480

  4. The evolutionary origin of biological function and complexity.

    PubMed

    Pross, Addy

    2013-04-01

    The identification of dynamic kinetic stability (DKS) as a stability kind that governs the evolutionary process for both chemical and biological replicators, opens up new avenues for uncovering the chemical basis of biological phenomena. In this paper, we utilize the DKS concept to explore the chemical roots of two of biology's central concepts--function and complexity. It is found that the selection rule in the world of persistent replicating systems--from DKS less stable to DKS more stable--is the operational law whose very existence leads to the creation of function from of a world initially devoid of function. The origin of biological complexity is found to be directly related to the origin of function through an underlying connection between the two phenomena. Thus the emergence of both function and complexity during abiogenesis, and their growing expression during biological evolution, are found to be governed by the same single driving force, the drive toward greater DKS. It is reaffirmed that the essence of biological phenomena can be best revealed by uncovering biology's chemical roots, by elucidating the physicochemical principles that governed the process by which life on earth emerged from inanimate matter. PMID:23512244

  5. Functional mapping in biology and medicine

    SciTech Connect

    McEachron, D.L.

    1986-01-01

    This book contains 10 selections. Some of the titles are: Two Views of Functional Mapping and Autoradiography; Quantitative Analysis of Autoradiographs; Hardware and Software Design Considerations in Engineering an Image Processing Workstation: Autoradiographic Analysis with DUMAS and the BRAIN Autoradiograph Analysis Software Package (with 1 color plate); and Quantitative Autoradiography and in vitro Radioligand Binding.

  6. Design and characterization of combined function multipole magnet for accelerators

    SciTech Connect

    Sinha, Gautam; Singh, Gurnam

    2008-12-15

    This paper presents the design and analysis of a multipurpose combined function magnet for use in accelerators. This magnet consists of three corrector magnets: (i) skew quadrupole, (ii) horizontal dipole, and (iii) vertical dipole magnets, along with the main sextupole magnet. The strength of the corrector magnets is smaller than that of the main sextupole magnet. The strength of all the four magnets can be varied independently. The excitation strength required to produce skew quadrupole gradient and the presence of various multipole components in the magnet are estimated using first order perturbation theory. The experimental data for the variation of the sextupole strength and its higher order multipoles in the presence of skew quadrupole excitations are presented and compared to the theoretical predictions. Simulation using two-dimensional fine element code, Poisson, is also done. Results obtained from all the above three methods are found to be in good agreement with each other. The variations of skew quadrupole gradient for different sextupole excitations are also measured. The validity of this theory is also checked for various combinations of excitations including the case where magnet gets saturated. The excitation strengths required for producing the horizontal and vertical dipole fields are estimated analytically along with the presence of various multipoles. Theoretical predictions of permissible multipoles are compared to the results obtained from simulation.

  7. Genomic Functionalization: The Next Revolution In Biology

    SciTech Connect

    Anderson, Peter; Schoeniger, Joseph S.; Imbro, Paula M.

    2014-07-01

    We have implemented a ligand-alignment algorithm into our developed computational pipeline for identifying specificity-determining features (SDFs) in protein-ligand complexes. Given a set of protein-ligand complex structures, the algorithm aligns the complexes by ligand rather than by the C -RMSD or standard approach, providing a single reference frame for extracting SDFs. We anticipate that this ligand-alignment capability will be highly useful for protein function prediction. We already have a database containing > 20 K ligand-protein complex crystal structures taken from the Protein Data Bank. By aligning these proteins to single reference frames using ligand alignment, we can submit the complexes to our pipeline for SDF extraction. The SDFs derived from this training procedure can be used as thumbprints that are hallmarks of individual enzyme classes. These SDF thumbprints may then serve as guides to the prediction of function of new unknown proteins.

  8. Subspace accelerated inexact Newton method for large scale wave functions calculations in Density Functional Theory

    SciTech Connect

    Fattebert, J

    2008-07-29

    We describe an iterative algorithm to solve electronic structure problems in Density Functional Theory. The approach is presented as a Subspace Accelerated Inexact Newton (SAIN) solver for the non-linear Kohn-Sham equations. It is related to a class of iterative algorithms known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of real applications using a finite difference discretization and multigrid preconditioning.

  9. Biological assessments for the low energy demonstration accelerator, 1996 and 1997

    SciTech Connect

    Cross, S.

    1998-12-31

    The Department of Energy (DOE) plans to build, install, and operate a Low Energy Demonstration Accelerator (LMA) in Technical Area 53 of the Los Alamos National Laboratory (LANL). LEDA will demonstrate the accelerator technology necessary to produce tritium, but is not designed to produce tritium at LANL. USFWS reviewers of the Biological Assessment prepared for LEDA insisted that the main drainage be monitored to measure and document changes to vegetation, soils, wildlife, and habitats due to LEDA effluent discharges. The Biology Team of ESH-20 (LANL`s Ecology Group) has performed these monitoring activities during 1996 and 1997 to document baseline conditions before LEDA released significant effluent discharges. Quarterly monitoring of the outfall which will discharge LEDA blowdown effluent had one exceedance of permitted parameters, a high chlorine discharge that was quickly remedied. Samples from 12 soil pits in the drainage area contained no hydric indicators, such as organic matter in the upper layers, streaking, organic pans, and oxidized rhizospheres. Vegetation transacts in the meadows that LEDA discharges will flow through contained 44 species of herbaceous plants, all upland taxa. Surveys of resident birds, reptiles, and amphibians documented a fauna typical of local dry canyons. No threatened or endangered species inhabit the project area, but increased effluent releases may make the area more attractive to many wildlife species, an endangered raptor, and several other species of concern. Biological best management practices especially designed for LEDA are discussed, including protection of floodplains, erosion control measures, hazards posed by increased usage of the area by deer and elk and revegetation of disturbed areas.

  10. Autofluorescence: Biological functions and technical applications.

    PubMed

    García-Plazaola, José Ignacio; Fernández-Marín, Beatriz; Duke, Stephen O; Hernández, Antonio; López-Arbeloa, Fernando; Becerril, José María

    2015-07-01

    Chlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed. Besides, fluorescence emitted by secondary metabolites can convert damaging blue and UV into wavelengths potentially useful for photosynthesis. Detection of the fluorescence of some secondary phytochemicals may be a cue for some pollinators and/or seed dispersal organisms. Independently of their functions, plant fluorophores provide researchers with a tool that allows the visualization of some metabolites in plants and cells, complementing and overcoming some of the limitations of the use of fluorescent proteins and dyes to probe plant physiology and biochemistry. Some fluorophores are influenced by environmental interactions, allowing fluorescence to be also used as a specific stress indicator. PMID:26025527

  11. Labeling and Functionalizing Amphipols for Biological Applications

    PubMed Central

    Bon, Christel Le; Popot, Jean-Luc; Giusti, Fabrice

    2014-01-01

    Amphipols (APols) are short amphipathic polymers developed as an alternative to detergents for handling membrane proteins (MPs) in aqueous solution. MPs are, as a rule, much more stable following trapping with APols than they are in detergent solutions. The best-characterized APol to date, called A8-35, is a mixture of short-chain sodium polyacrylates randomly derivatized with octylamine and isopropylamine. Its solution properties have been studied in detail, and it has been used extensively for biochemical and biophysical studies of MPs. One of the attractive characteristics of APols is that it is relatively easy to label them, isotopically or otherwise, without affecting their physical-chemical properties. Furthermore, several variously modified APols can be mixed, achieving multiple functionalization of MP/APol complexes in the easiest possible manner. Labeled or tagged APols are being used to study the solution properties of APols, their miscibility, their biodistribution upon injection into living organisms, their association with MPs and the composition, structure and dynamics of MP/APol complexes, examining the exchange of surfactants at the surface of MPs, labeling MPs to follow their distribution in fractionation experiments or to immobilize them, increasing the contrast between APols and solvent or MPs in biophysical experiments, improving NMR spectra, etc. Labeling or functionalization of APols can take various courses, each of which has its specific constraints and advantages regarding both synthesis and purification. The present review offers an overview of the various derivatives of A8-35 and its congeners that have been developed in our laboratory and discusses the pros and cons of various synthetic routes. PMID:24696186

  12. Labeling and functionalizing amphipols for biological applications.

    PubMed

    Le Bon, Christel; Popot, Jean-Luc; Giusti, Fabrice

    2014-10-01

    Amphipols (APols) are short amphipathic polymers developed as an alternative to detergents for handling membrane proteins (MPs) in aqueous solution. MPs are, as a rule, much more stable following trapping with APols than they are in detergent solutions. The best-characterized APol to date, called A8-35, is a mixture of short-chain sodium polyacrylates randomly derivatized with octylamine and isopropylamine. Its solution properties have been studied in detail, and it has been used extensively for biochemical and biophysical studies of MPs. One of the attractive characteristics of APols is that it is relatively easy to label them, isotopically or otherwise, without affecting their physical-chemical properties. Furthermore, several variously modified APols can be mixed, achieving multiple functionalization of MP/APol complexes in the easiest possible manner. Labeled or tagged APols are being used to study the solution properties of APols, their miscibility, their biodistribution upon injection into living organisms, their association with MPs and the composition, structure and dynamics of MP/APol complexes, examining the exchange of surfactants at the surface of MPs, labeling MPs to follow their distribution in fractionation experiments or to immobilize them, increasing the contrast between APols and solvent or MPs in biophysical experiments, improving NMR spectra, etc. Labeling or functionalization of APols can take various courses, each of which has its specific constraints and advantages regarding both synthesis and purification. The present review offers an overview of the various derivatives of A8-35 and its congeners that have been developed in our laboratory and discusses the pros and cons of various synthetic routes. PMID:24696186

  13. Connecting leptin signaling to biological function

    PubMed Central

    Allison, Margaret B.; Myers, Martin G.

    2014-01-01

    Hypothalamic leptin action promotes negative energy balance and modulates glucose homeostasis, as well as serving as a permissive signal to the neuroendocrine axes that control growth and reproduction. Since the initial discovery of leptin 20 years ago, we have learned a great deal about the molecular mechanisms of leptin action. An important aspect of this has been the dissection of the cellular mechanisms of leptin signaling, and how specific leptin signals influence physiology. Leptin acts via the long form of the leptin receptor, LepRb. LepRb activation and subsequent tyrosine phosphorylation recruits and activates multiple signaling pathways, including STAT transcription factors, SHP2 and ERK signaling, the IRS-protein/PI3Kinase pathway, and SH2B1. Each of these pathways controls specific aspects of leptin action and physiology. Important inhibitory pathways mediated by suppressor of cytokine signaling (SOCS) proteins and protein tyrosine phosphatases (PTPases) also limit physiologic leptin action. This review summarizes the signaling pathways engaged by LepRb and their effects on energy balance, glucose homeostasis, and reproduction. Particular emphasis is given to the multiple mouse models which have been used to elucidate these functions in vivo. PMID:25232147

  14. [Biological experiments in microgravity: equilibrium function].

    PubMed

    Gorgiladze, G I; Shipov, A A; Horn, E

    2012-01-01

    The review deals with the investigations of structural and functional modifications in the equilibrium organ (EO) in invertebrates (coelenterates, shells, crustaceans and insects) and vertebrates (fishes, amphibians, rats, primates) on different ontogenetic stages in the condition of microgravity and during readaptation to the Earth's gravity. Results of the investigations detail the adaptive strategy of terrestrial organism in the environment lacking the gravitational components that leads to the discrepancy of an inner model of the body-environment schema constructed by the central nervous system at 1 g and the novel reality. It is manifested by ataxic behavior and increased graviceptors' afferentation against efferent system inactivation. The new condition is defined as a sensibilization phase ensued by the eluding phase: behavior obeys the innate motion strategy, whereas graviceptors' afferentation decreases due to activation of the efferent system. Readaptation to 1 G takes several to 50 days and proceeds as a sequence of slow in motion behavior, ataxia and vestibular sensitization. Reactivity of the gravitosensory system to microgravity was found to be age-dependent. Gain in the EO inertial mass in microgravity and reduction with return to 1 g indicates gravity relevance to EO genesis. PMID:23402139

  15. Evidence for a Role of Executive Functions in Learning Biology

    ERIC Educational Resources Information Center

    Rhodes, Sinéad M.; Booth, Josephine N.; Campbell, Lorna Elise; Blythe, Richard A.; Wheate, Nial J.; Delibegovic, Mirela

    2014-01-01

    Research examining cognition and science learning has focused on working memory, but evidence implicates a broader set of executive functions. The current study examined executive functions and learning of biology in young adolescents. Fifty-six participants, aged 12-13?years, completed tasks of working memory (Spatial Working Memory), inhibition…

  16. Distinguishing between "function" and "effect" in genome biology.

    PubMed

    Doolittle, W Ford; Brunet, Tyler D P; Linquist, Stefan; Gregory, T Ryan

    2014-05-01

    Much confusion in genome biology results from conflation of possible meanings of the word "function." We suggest that, in this connection, attention should be paid to evolutionary biologists and philosophers who have previously dealt with this problem. We need only decide that although all genomic structures have effects, only some of them should be said to have functions. Although it will very often be difficult or impossible to establish function (strictly defined), it should not automatically be assumed. We enjoin genomicists in particular to pay greater attention to parsing biological effects. PMID:24814287

  17. Tip110: Physical properties, primary structure, and biological functions.

    PubMed

    Whitmill, Amanda; Timani, Khalid Amine; Liu, Ying; He, Johnny J

    2016-03-15

    HIV-1 Tat-interacting protein of 110kDa (Tip110), also referred to as squamous cell carcinoma antigen recognized by T cells 3 (Sart3), p110 or p110(nrb), was initially identified as a cDNA clone (KIAA0156) without annotated functions. Over the past twenty years, several functions have been attributed to this protein. The proposed biological functions include roles for Tip110 in pre-mRNA splicing, gene transcription, stem cell biology, and development. Dysregulation of Tip110 is also a contributing factor in the development of cancer and other human diseases. It is clear that our understanding of this protein is rapidly evolving. In this review, we aimed to provide a summary of all the existing literature on this gene/protein and its proposed biological functions. PMID:26896687

  18. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    SciTech Connect

    Friedman, Douglas C.

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  19. Experimental stand for studying the impact of laser-accelerated protons on biological objects

    NASA Astrophysics Data System (ADS)

    Burdonov, K. F.; Eremeev, A. A.; Ignatova, N. I.; Osmanov, R. R.; Sladkov, A. D.; Soloviev, A. A.; Starodubtsev, M. V.; Ginzburg, V. N.; Kuz'min, A. A.; Maslennikova, A. V.; Revet, G.; Sergeev, A. M.; Fuchs, J.; Khazanov, E. A.; Chen, S.; Shaykin, A. A.; Shaikin, I. A.; Yakovlev, I. V.

    2016-04-01

    An original experimental stand is presented, aimed at studying the impact of high-energy protons, produced by the laser-plasma interaction at a petawatt power level, on biological objects. In the course of pilot experiments with the energy of laser-accelerated protons up to 25 MeV, the possibility is demonstrated of transferring doses up to 10 Gy to the object of study in a single shot with the magnetic separation of protons from parasitic X-ray radiation and fast electrons. The technique of irradiating the cell culture HeLa Kyoto and measuring the fraction of survived cells is developed. The ways of optimising the parameters of proton beams and the suitable methods of their separation with respect to energy and transporting to the studied living objects are discussed. The construction of the stand is intended for the improvement of laser technologies for hadron therapy of malignant neoplasms.

  20. Validity of Body-Worn Sensor Acceleration Metrics to Index Upper Extremity Function in Hemiparetic Stroke

    PubMed Central

    Urbin, M.A.; Bailey, Ryan R.; Lang, Catherine E.

    2015-01-01

    Background and Purpose In people with stroke, real-world use of the paretic upper extremity influences function. Therefore, measures of real-world use are of value for guiding rehabilitation. We undertook a study to identify the acceleration characteristics that have a stable association with upper extremity function and sensitivity to within-participant fluctuations in function over multiple sessions of task-specific training. Methods Twenty-seven adults > 6 months post stroke with upper extremity paresis participated. Signals from wrist-worn accelerometers were sampled at 30 Hz during seven sessions of task-specific training. Paretic upper extremity function was evaluated with the Action Research Arm Test (ARAT). We used Spearman correlations to examine within-session associations between acceleration metrics and ARAT performance. A mixed model was used to determine which metrics were sensitive to within-participant fluctuations in upper extremity function across the seven training sessions. Results Upper extremity function correlated with bilateral acceleration variability and use ratio during five and six session, respectively. Time accelerating between 76-100% of peak acceleration correlated with function in six sessions. Variability of the paretic upper extremity acceleration and the ratio of acceleration variability between upper extremities were associated with function during all seven sessions. Variability in both the acceleration of the paretic upper extremity, and acceleration of the paretic and non-paretic extremities combined were sensitive to within-participant fluctuations in function across training sessions. Conclusion Multiple features of the acceleration profile track with upper extremity function within and across sessions of task-specific training. It may be possible to monitor these features with accelerometers to index upper extremity function outside of clinical settings. PMID:25742378

  1. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    PubMed

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. PMID:26668171

  2. Accelerating Smith-Waterman Algorithm for Biological Database Search on CUDA-Compatible GPUs

    NASA Astrophysics Data System (ADS)

    Munekawa, Yuma; Ino, Fumihiko; Hagihara, Kenichi

    This paper presents a fast method capable of accelerating the Smith-Waterman algorithm for biological database search on a cluster of graphics processing units (GPUs). Our method is implemented using compute unified device architecture (CUDA), which is available on the nVIDIA GPU. As compared with previous methods, our method has four major contributions. (1) The method efficiently uses on-chip shared memory to reduce the data amount being transferred between off-chip video memory and processing elements in the GPU. (2) It also reduces the number of data fetches by applying a data reuse technique to query and database sequences. (3) A pipelined method is also implemented to overlap GPU execution with database access. (4) Finally, a master/worker paradigm is employed to accelerate hundreds of database searches on a cluster system. In experiments, the peak performance on a GeForce GTX 280 card reaches 8.32 giga cell updates per second (GCUPS). We also find that our method reduces the amount of data fetches to 1/140, achieving approximately three times higher performance than a previous CUDA-based method. Our 32-node cluster version is approximately 28 times faster than a single GPU version. Furthermore, the effective performance reaches 75.6 giga instructions per second (GIPS) using 32 GeForce 8800 GTX cards.

  3. Infrared Structural Biology: Detect Functionally Important Structural Motions of Proteins

    NASA Astrophysics Data System (ADS)

    Xie, Aihua

    Proteins are dynamic. Lack of dynamic structures of proteins hampers our understanding of protein functions. Infrared structural biology (IRSB) is an emerging technology. There are several advantages of IRSB for mechanistic studies of proteins: (1) its excellent dynamic range (detecting structural motions from picoseconds to >= seconds); (2) its high structural sensitivity (detect tiny but functionally important structural motions such as proton transfer and changes in hydrogen bonding interaction); (3) its ability to detect different structural motions simultaneously. Successful development of infrared structural biology demands not only new experimental techniques (from infrared technologies to chemical synthesis and cell biology), but also new data processing (how to translate infrared signals into quantitative structural information of proteins). These topics will be discussed as well as examples of how to use IRSB to study structure-function relationship of proteins. This work was supported by NSF DBI1338097 and OCAST HR10-078.

  4. Can Simple Biophysical Principles Yield Complicated Biological Functions?

    NASA Astrophysics Data System (ADS)

    Liphardt, Jan

    2011-03-01

    About once a year, a new regulatory paradigm is discovered in cell biology. As of last count, eukaryotic cells have more than 40 distinct ways of regulating protein concentration and function. Regulatory possibilities include site-specific phosphorylation, epigenetics, alternative splicing, mRNA (re)localization, and modulation of nucleo-cytoplasmic transport. This raises a simple question. Do all the remarkable things cells do, require an intricately choreographed supporting cast of hundreds of molecular machines and associated signaling networks? Alternatively, are there a few simple biophysical principles that can generate apparently very complicated cellular behaviors and functions? I'll discuss two problems, spatial organization of the bacterial chemotaxis system and nucleo-cytoplasmic transport, where the latter might be true. In both cases, the ability to precisely quantify biological organization and function, at the single-molecule level, helped to find signatures of basic biological organizing principles.

  5. Systematic Functional Annotation and Visualization of Biological Networks.

    PubMed

    Baryshnikova, Anastasia

    2016-06-22

    Large-scale biological networks represent relationships between genes, but our understanding of how networks are functionally organized is limited. Here, I describe spatial analysis of functional enrichment (SAFE), a systematic method for annotating biological networks and examining their functional organization. SAFE visualizes the network in 2D space and measures the continuous distribution of functional enrichment across local neighborhoods, producing a list of the associated functions and a map of their relative positioning. I applied SAFE to annotate the Saccharomyces cerevisiae genetic interaction similarity network and protein-protein interaction network with gene ontology terms. SAFE annotations of the genetic network matched manually derived annotations, while taking less than 1% of the time, and proved robust to noise and sensitive to biological signal. Integration of genetic interaction and chemical genomics data using SAFE revealed a link between vesicle-mediate transport and resistance to the anti-cancer drug bortezomib. These results demonstrate the utility of SAFE for examining biological networks and understanding their functional organization. PMID:27237738

  6. Track Structure and the Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage

    NASA Technical Reports Server (NTRS)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to195 keV/micron. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons.

  7. Measurement of Beryllium in Biological Samples by Accelerator Mass Spectrometry: Applications for Studying Chronic Beryllium Disease

    SciTech Connect

    Chiarappa-Zucca, M L; Finkel, R C; Martinelli, R E; McAninch, J E; Nelson, D O; Turtletaub, K W

    2004-04-15

    A method using accelerator mass spectrometry (AMS) has been developed for quantifying attomoles of beryllium (Be) in biological samples. This method provides the sensitivity to trace Be in biological samples at very low doses with the purpose of identifying the molecular targets involved in chronic beryllium disease. Proof of the method was tested by administering 0.001, 0.05, 0.5 and 5.0 {micro}g {sup 9}Be and {sup 10}Be by intraperitoneal injection to male mice and removing spleen, liver, femurs, blood, lung, and kidneys after 24 h exposure. These samples were prepared for AMS analysis by tissue digestion in nitric acid, followed by further organic oxidation with hydrogen peroxide and ammonium persulfate and lastly, precipitation of Be with ammonium hydroxide, and conversion to beryllium oxide at 800 C. The {sup 10}Be/{sup 9}Be ratio of the extracted beryllium oxide was measured by AMS and Be in the original sample was calculated. Results indicate that Be levels were dose-dependent in all tissues and the highest levels were measured in the spleen and liver. The measured {sup 10}Be/{sup 9}Be ratios spanned 4 orders of magnitude, from 10{sup -10} to 10{sup -14}, with a detection limit of 3.0 x 10{sup -14}, which is equivalent to 0.8 attomoles of {sup 10}Be. These results show that routine quantification of nanogram levels of Be in tissues is possible and that AMS is a sensitive method that can be used in biological studies to understand the molecular dosimetry of Be and mechanisms of toxicity.

  8. Linking structural features of protein complexes and biological function.

    PubMed

    Sowmya, Gopichandran; Breen, Edmond J; Ranganathan, Shoba

    2015-09-01

    Protein-protein interaction (PPI) establishes the central basis for complex cellular networks in a biological cell. Association of proteins with other proteins occurs at varying affinities, yet with a high degree of specificity. PPIs lead to diverse functionality such as catalysis, regulation, signaling, immunity, and inhibition, playing a crucial role in functional genomics. The molecular principle of such interactions is often elusive in nature. Therefore, a comprehensive analysis of known protein complexes from the Protein Data Bank (PDB) is essential for the characterization of structural interface features to determine structure-function relationship. Thus, we analyzed a nonredundant dataset of 278 heterodimer protein complexes, categorized into major functional classes, for distinguishing features. Interestingly, our analysis has identified five key features (interface area, interface polar residue abundance, hydrogen bonds, solvation free energy gain from interface formation, and binding energy) that are discriminatory among the functional classes using Kruskal-Wallis rank sum test. Significant correlations between these PPI interface features amongst functional categories are also documented. Salt bridges correlate with interface area in regulator-inhibitors (r = 0.75). These representative features have implications for the prediction of potential function of novel protein complexes. The results provide molecular insights for better understanding of PPIs and their relation to biological functions. PMID:26131659

  9. Applications of large-scale density functional theory in biology

    NASA Astrophysics Data System (ADS)

    Cole, Daniel J.; Hine, Nicholas D. M.

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.

  10. Applications of large-scale density functional theory in biology.

    PubMed

    Cole, Daniel J; Hine, Nicholas D M

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality. PMID:27494095

  11. Modeling Functional Motions of Biological Systems by Customized Natural Moves.

    PubMed

    Demharter, Samuel; Knapp, Bernhard; Deane, Charlotte M; Minary, Peter

    2016-08-23

    Simulating the functional motions of biomolecular systems requires large computational resources. We introduce a computationally inexpensive protocol for the systematic testing of hypotheses regarding the dynamic behavior of proteins and nucleic acids. The protocol is based on natural move Monte Carlo, a highly efficient conformational sampling method with built-in customization capabilities that allows researchers to design and perform a large number of simulations to investigate functional motions in biological systems. We demonstrate the use of this protocol on both a protein and a DNA case study. Firstly, we investigate the plasticity of a class II major histocompatibility complex in the absence of a bound peptide. Secondly, we study the effects of the epigenetic mark 5-hydroxymethyl on cytosine on the structure of the Dickerson-Drew dodecamer. We show how our customized natural moves protocol can be used to investigate causal relationships of functional motions in biological systems. PMID:27558715

  12. Venom Proteins from Parasitoid Wasps and Their Biological Functions

    PubMed Central

    Moreau, Sébastien J. M.; Asgari, Sassan

    2015-01-01

    Parasitoid wasps are valuable biological control agents that suppress their host populations. Factors introduced by the female wasp at parasitization play significant roles in facilitating successful development of the parasitoid larva either inside (endoparasitoid) or outside (ectoparasitoid) the host. Wasp venoms consist of a complex cocktail of proteinacious and non-proteinacious components that may offer agrichemicals as well as pharmaceutical components to improve pest management or health related disorders. Undesirably, the constituents of only a small number of wasp venoms are known. In this article, we review the latest research on venom from parasitoid wasps with an emphasis on their biological function, applications and new approaches used in venom studies. PMID:26131769

  13. FETAL DEXAMETHASONE EXPOSURE ACCELERATES DEVELOPMENT OF RENAL FUNCTION: RELATIONSHIP TO DOSE, CELL DIFFERENTIATION AND GROWTH INHIBITION

    EPA Science Inventory

    Fetal exposure to high doses of glucocorticoids slows cellular development and impairs organ performance, in association with growth retardation. evertheless, low doses of glucocorticoids may enhance cell differentiation and accelerate specific functions. he current study examine...

  14. Microwave-accelerated bioassay technique for rapid and quantitative detection of biological and environmental samples.

    PubMed

    Mohammed, Muzaffer; Syed, Maleeha F; Aslan, Kadir

    2016-01-15

    Quantitative detection of molecules of interest from biological and environmental samples in a rapid manner, particularly with a relevant concentration range, is imperative to the timely assessment of human diseases and environmental issues. In this work, we employed the microwave-accelerated bioassay (MAB) technique, which is based on the combined use of circular bioassay platforms and microwave heating, for rapid and quantitative detection of Glial Fibrillary Acidic Protein (GFAP) and Shiga like toxin (STX 1). The proof-of-principle use of the MAB technique with the circular bioassay platforms for the rapid detection of GFAP in buffer based on colorimetric and fluorescence readouts was demonstrated with a 900W kitchen microwave. We also employed the MAB technique with a new microwave system (called the iCrystal system) for the detection of GFAP from mice with brain injuries and STX 1 from a city water stream. Control bioassays included the commercially available gold standard bioassay kits run at room temperature. Our results show that the lower limit of detection (LLOD) of the colorimetric and fluorescence based bioassays for GFAP was decreased by ~1000 times using the MAB technique and our circular bioassay platforms as compared to the commercially available bioassay kits. The overall bioassay time for GFAP and STX 1 was reduced from 4h using commercially available bioassay kits to 10min using the MAB technique. PMID:26356762

  15. Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils.

    PubMed

    Maestre, Fernando T; Martín, Noelia; Díez, Beatriz; López-Poma, Rosario; Santos, Fernando; Luque, Ignacio; Cortina, Jordi

    2006-10-01

    Biological soil crusts are very sensitive to human-induced disturbances and are in a degraded state in many areas throughout their range. Given their importance in the functioning of arid and semiarid ecosystems, restoring these crusts may contribute to the recovery of ecosystem functionality in degraded areas. We conducted a factorial microcosm experiment to evaluate the effects of inoculation type (discrete fragments vs slurry), fertilization (control vs addition of composted sewage sludge), and watering frequency (two vs five times per week) on the cyanobacterial composition, nitrogen fixation, chlorophyll content, and net CO2 exchange rate of biological soil crusts inoculated on a semiarid degraded soil from SE Spain. Six months after the inoculation, the highest rates of nitrogen fixation and chlorophyll a content were found when the biological crusts were inoculated as slurry, composted sewage sludge was added, and the microcosms were watered five times per week. Net CO2 exchange rate increased when biological crusts were inoculated as slurry and the microcosms were watered five times per week. Denaturing gradient gel electrophoresis fingerprints and phylogenetic analyses indicated that most of the cyanobacterial species already present in the inoculated crust had the capability to spread and colonize the surface of the surrounding soil. These analyses showed that cyanobacterial communities were less diverse when the microcosms were watered five times per week, and that watering frequency (followed in importance by the addition of composted sewage sludge and inoculation type) was the treatment that most strongly influenced their composition. Our results suggest that the inoculation of biological soil crusts in the form of slurry combined with the addition of composted sewage sludge could be a suitable technique to accelerate the recovery of the composition and functioning of biological soil crusts in drylands. PMID:16710791

  16. Morpho-chemistry and functionality of diseased biological tissues

    NASA Astrophysics Data System (ADS)

    Lange, Marta; Cicchi, Riccardo; Pavone, Francesco

    2014-09-01

    Heart and cardiovascular diseases are one of the most common in the world, in particular - arthrosclerosis. The aim of the research is to distinguish pathological and healthy tissue regions in biological samples, in this case - to distinguish collagen and lipid rich regions within the arterial wall. In the work a specific combination of such methods are used: FLIM and SHG in order to evaluate the biological tissue morphology and functionality, so that this research could give a contribution for creating a new biological tissue imaging standard in the closest future. During the study the most appropriate parameter for fluorescence lifetime decay was chosen in order to evaluate lifetime decay parameters and the isotropy of the arterial wall and deposition, using statistical methods FFT and GLCM. The research gives a contribution or the future investigations for evaluating lipid properties when it can de-attach from the arterial wall and cause clotting in the blood vessel or even a stroke.

  17. From Structure and Function of Proteins Toward in Silico Biology

    NASA Astrophysics Data System (ADS)

    Yamato, Ichiro

    2013-01-01

    Researches of biology are targeted on three major flows, materials (or chemicals), energy, and information. I have been mainly concerned with the studies on bioenergy transducing mechanisms. I have studied the mechanism of secondary active transport systems and proposed an affinity change mechanism as a general hypothesis, then tried to confirm that it is applicable to other kinds of bioenergy transducing systems. Choosing Na+-translocating V-type ATPase from Enterococcus hirae as target, I hypothesized the affinity change mechanism for the energy transduction of this ATPase. Here I describe several three dimensional structures of parts of the ATPase supporting my hypothesis. From such detailed and extensive researches on protein structure/function relationship, we can proceed toward the in silico biology, which I described previously in 2007 ([1] "Toward in silico biology").

  18. Carbon-Oxygen Hydrogen Bonding in Biological Structure and Function

    PubMed Central

    Horowitz, Scott; Trievel, Raymond C.

    2012-01-01

    Carbon-oxygen (CH···O) hydrogen bonding represents an unusual category of molecular interactions first documented in biological structures over 4 decades ago. Although CH···O hydrogen bonding has remained generally underappreciated in the biochemical literature, studies over the last 15 years have begun to yield direct evidence of these interactions in biological systems. In this minireview, we provide a historical context of biological CH···O hydrogen bonding and summarize some major advancements from experimental studies over the past several years that have elucidated the importance, prevalence, and functions of these interactions. In particular, we examine the impact of CH···O bonds on protein and nucleic acid structure, molecular recognition, and enzyme catalysis and conclude by exploring overarching themes and unresolved questions regarding unconventional interactions in biomolecular structure. PMID:23048026

  19. Functional Agents to Biologically Control Deoxynivalenol Contamination in Cereal Grains

    PubMed Central

    Tian, Ye; Tan, Yanglan; Liu, Na; Liao, Yucai; Sun, Changpo; Wang, Shuangxia; Wu, Aibo

    2016-01-01

    Mycotoxins, as microbial secondary metabolites, frequently contaminate cereal grains and pose a serious threat to human and animal health around the globe. Deoxynivalenol (DON), a commonly detected Fusarium mycotoxin, has drawn utmost attention due to high exposure levels and contamination frequency in the food chain. Biological control is emerging as a promising technology for the management of DON contamination. Functional biological control agents (BCAs), which include antagonistic microbes, natural fungicides derived from plants and detoxification enzymes, can be used to control DON contamination at different stages of grain production. In this review, studies regarding different biological agents for DON control in recent years are summarized for the first time. Furthermore, this article highlights the significance of BCAs for controlling DON contamination, as well as the need for more practical and efficient BCAs concerning food safety. PMID:27064760

  20. Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies.

    PubMed

    Mühlbach, Adrian H; Vaucher, Alain C; Reiher, Markus

    2016-03-01

    The inherently high computational cost of iterative self-consistent field (SCF) methods proves to be a critical issue delaying visual and haptic feedback in real-time quantum chemistry. In this work, we introduce two schemes for SCF acceleration. They provide a guess for the initial density matrix of the SCF procedure generated by extrapolation techniques. SCF optimizations then converge in fewer iterations, which decreases the execution time of the SCF optimization procedure. To benchmark the proposed propagation schemes, we developed a test bed for performing quantum chemical calculations on sequences of molecular structures mimicking real-time quantum chemical explorations. Explorations of a set of six model reactions employing the semi-empirical methods PM6 and DFTB3 in this testing environment showed that the proposed propagation schemes achieved speedups of up to 30% as a consequence of a reduced number of SCF iterations. PMID:26788887

  1. Constructing biological pathway models with hybrid functional Petri nets.

    PubMed

    Doi, Atsushi; Fujita, Sachie; Matsuno, Hiroshi; Nagasaki, Masao; Miyano, Satoru

    2004-01-01

    In many research projects on modeling and analyzing biological pathways, the Petri net has been recognized as a promising method for representing biological pathways. From the pioneering works by Reddy et al., 1993, and Hofestädt, 1994, that model metabolic pathways by traditional Petri net, several enhanced Petri nets such as colored Petri net, stochastic Petri net, and hybrid Petri net have been used for modeling biological phenomena. Recently, Matsuno et al., 2003b, introduced the hybrid functional Petri net (HFPN) in order to give a more intuitive and natural modeling method for biological pathways than these existing Petri nets. Although the paper demonstrates the effectiveness of HFPN with two examples of gene regulation mechanism for circadian rhythms and apoptosis signaling pathway, there has been no detailed explanation about the method of HFPN construction for these examples. The purpose of this paper is to describe method to construct biological pathways with the HFPN step-by-step. The method is demonstrated by the well-known glycolytic pathway controlled by the lac operon gene regulatory mechanism. PMID:15724280

  2. Biological activity, membrane-targeting modification, and crystallization of soluble human decay accelerating factor expressed in E. coli

    PubMed Central

    White, Jennifer; Lukacik, Petra; Esser, Dirk; Steward, Michael; Giddings, Naomi; Bright, Jeremy R.; Fritchley, Sarah J.; Morgan, B. Paul; Lea, Susan M.; Smith, Geoffrey P.; Smith, Richard A.G.

    2004-01-01

    Decay-accelerating factor (DAF, CD55) is a glycophosphatidyl inositol-anchored glycoprotein that regulates the activity of C3 and C5 convertases. In addition to understanding the mechanism of complement inhibition by DAF through structural studies, there is also an interest in the possible therapeutic potential of the molecule. In this report we describe the cloning, expression in Escherichia coli, isolation and membrane-targeting modification of the four short consensus repeat domains of soluble human DAF with an additional C-terminal cysteine residue to permit site-specific modification. The purified refolded recombinant protein was active against both classical and alternative pathway assays of complement activation and had similar biological activity to soluble human DAF expressed in Pichia pastoris. Modification with a membrane-localizing peptide restored cell binding and gave a large increase in antihemolytic potency. These data suggested that the recombinant DAF was correctly folded and suitable for structural studies as well as being the basis for a DAF-derived therapeutic. Crystals of the E. coli-derived protein were obtained and diffracted to 2.2 Å, thus permitting the first detailed X-ray crystallography studies on a functionally active human complement regulator protein with direct therapeutic potential. PMID:15322283

  3. SU-E-T-54: Benefits of Biological Cost Functions

    SciTech Connect

    Demirag, N

    2014-06-01

    Purpose: To verify the benefits of the biological cost functions. Methods: TG166 patients were used for the test case scenarios. Patients were planned using Monaco V5.0 (CMS/Elekta, St.Louis, MO) Monaco has 3 biological and 8 physical CFs. In this study the plans were optimized using 3 different scenarios. 1- Biological CFs only 2-Physical CFs only 3- Combination of Physical and Biological CFsMonaco has 3 biological CFs. Target EUD used for the targets, derived from the poisson cell kill model, has an α value that controls the cold spots inside the target. α values used in the optimization were 0.5 and 0.8. if cold spots needs to be penalized α value increased. Serial CF: it's called serial to mimic the behaviour of the serial organs, if a high k value like 12 or 14 is used it controls the maximum dose. Serial CF has a k parameter that is used to shape the whole dvh curve. K value ranges between 1–20. k:1 is used to control the mean dose, lower k value controls the mean dose, higher k value controls the higher dose, using 2 serial CFs with different k values controls the whole DVH. Paralel CF controls the percentage of the volume that tolerates higher doses than the reference dose to mimic the behaviour of the paralel organs. Results: It was possible to achive clinically accepted plans in all 3 scenarios. The benefit of the biological cost functions were to control the mean dose for target and OAR, to shape the DVH curve using one EUD value and one k value simplifies the optimization process. Using the biological CFs alone, it was hard to control the dose at a point. Conclusion: Biological CFs in Monaco doesn't require the ntcp/tcp values from the labs and useful to shape the whole dvh curve. I work as an applications support specialist for Elekta and I am a Ph.D. Student in Istanbul University for radiation therapy physics.

  4. Biological framework for soil aggregation: Implications for ecological functions.

    NASA Astrophysics Data System (ADS)

    Ghezzehei, Teamrat; Or, Dani

    2016-04-01

    Soil aggregation is heuristically understood as agglomeration of primary particles bound together by biotic and abiotic cementing agents. The organization of aggregates is believed to be hierarchical in nature; whereby primary particles bond together to form secondary particles and subsequently merge to form larger aggregates. Soil aggregates are not permanent structures, they continuously change in response to internal and external forces and other drivers, including moisture, capillary pressure, temperature, biological activity, and human disturbances. Soil aggregation processes and the resulting functionality span multiple spatial and temporal scales. The intertwined biological and physical nature of soil aggregation, and the time scales involved precluded a universally applicable and quantifiable framework for characterizing the nature and function of soil aggregation. We introduce a biophysical framework of soil aggregation that considers the various modes and factors of the genesis, maturation and degradation of soil aggregates including wetting/drying cycles, soil mechanical processes, biological activity and the nature of primary soil particles. The framework attempts to disentangle mechanical (compaction and soil fragmentation) from in-situ biophysical aggregation and provides a consistent description of aggregate size, hierarchical organization, and life time. It also enables quantitative description of biotic and abiotic functions of soil aggregates including diffusion and storage of mass and energy as well as role of aggregates as hot spots of nutrient accumulation, biodiversity, and biogeochemical cycles.

  5. Research advances on structure and biological functions of integrins.

    PubMed

    Pan, Li; Zhao, Yuan; Yuan, Zhijie; Qin, Guixin

    2016-01-01

    Integrins are an important family of adhesion molecules that were first discovered two decades ago. Integrins are transmembrane heterodimeric glycoprotein receptors consisting of α and β subunits, and are comprised of an extracellular domain, a transmembrane domain, and a cytoplasmic tail. Therein, integrin cytoplasmic domains may associate directly with numerous cytoskeletal proteins and intracellular signaling molecules, which are crucial for modulating fundamental cell processes and functions including cell adhesion, proliferation, migration, and survival. The purpose of this review is to describe the unique structure of each integrin subunit, primary cytoplasmic association proteins, and transduction signaling pathway of integrins, with an emphasis on their biological functions. PMID:27468395

  6. Deducing protein function by forensic integrative cell biology.

    PubMed

    Earnshaw, William C

    2013-12-01

    Our ability to sequence genomes has provided us with near-complete lists of the proteins that compose cells, tissues, and organisms, but this is only the beginning of the process to discover the functions of cellular components. In the future, it's going to be crucial to develop computational analyses that can predict the biological functions of uncharacterised proteins. At the same time, we must not forget those fundamental experimental skills needed to confirm the predictions or send the analysts back to the drawing board to devise new ones. PMID:24358025

  7. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions

    PubMed Central

    Motorin, Yuri; Lyko, Frank; Helm, Mark

    2010-01-01

    The nucleobase modification 5-methylcytosine (m5C) is widespread both in DNA and different cellular RNAs. The functions and enzymatic mechanisms of DNA m5C-methylation were extensively studied during the last decades. However, the location, the mechanism of formation and the cellular function(s) of the same modified nucleobase in RNA still remain to be elucidated. The recent development of a bisulfite sequencing approach for efficient m5C localization in various RNA molecules puts ribo-m5C in a highly privileged position as one of the few RNA modifications whose detection is amenable to PCR-based amplification and sequencing methods. Additional progress in the field also includes the characterization of several specific RNA methyltransferase enzymes in various organisms, and the discovery of a new and unexpected link between DNA and RNA m5C-methylation. Numerous putative RNA:m5C-MTases have now been identified and are awaiting characterization, including the identification of their RNA substrates and their related cellular functions. In order to bring these recent exciting developments into perspective, this review provides an ordered overview of the detection methods for RNA methylation, of the biochemistry, enzymology and molecular biology of the corresponding modification enzymes, and discusses perspectives for the emerging biological functions of these enzymes. PMID:20007150

  8. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  9. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists

    PubMed Central

    Huang, Da Wei; Sherman, Brad T; Tan, Qina; Collins, Jack R; Alvord, W Gregory; Roayaei, Jean; Stephens, Robert; Baseler, Michael W; Lane, H Clifford; Lempicki, Richard A

    2007-01-01

    The DAVID Gene Functional Classification Tool uses a novel agglomeration algorithm to condense a list of genes or associated biological terms into organized classes of related genes or biology, called biological modules. This organization is accomplished by mining the complex biological co-occurrences found in multiple sources of functional annotation. It is a powerful method to group functionally related genes and terms into a manageable number of biological modules for efficient interpretation of gene lists in a network context. PMID:17784955

  10. Mnk kinase pathway: Cellular functions and biological outcomes.

    PubMed

    Joshi, Sonali; Platanias, Leonidas C

    2014-08-26

    The mitogen-activated protein kinase (MAPK) interacting protein kinases 1 and 2 (Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs (p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E (eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4E. The role of Mnk kinases in inflammation and inflammation-induced malignancies is also discussed. PMID:25225600

  11. Systems analysis of biological networks in skeletal muscle function

    PubMed Central

    Smith, Lucas R.; Meyer, Gretchen; Lieber, Richard L.

    2014-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation–contraction coupling enabling Ca2+ release. Ca2+ then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  12. Biological properties of extracellular vesicles and their physiological functions.

    PubMed

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G; Vasconcelos, M Helena; Wauben, Marca H M; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  13. Systems analysis of biological networks in skeletal muscle function.

    PubMed

    Smith, Lucas R; Meyer, Gretchen; Lieber, Richard L

    2013-01-01

    Skeletal muscle function depends on the efficient coordination among subcellular systems. These systems are composed of proteins encoded by a subset of genes, all of which are tightly regulated. In the cases where regulation is altered because of disease or injury, dysfunction occurs. To enable objective analysis of muscle gene expression profiles, we have defined nine biological networks whose coordination is critical to muscle function. We begin by describing the expression of proteins necessary for optimal neuromuscular junction function that results in the muscle cell action potential. That action potential is transmitted to proteins involved in excitation-contraction coupling enabling Ca(2+) release. Ca(2+) then activates contractile proteins supporting actin and myosin cross-bridge cycling. Force generated by cross-bridges is transmitted via cytoskeletal proteins through the sarcolemma and out to critical proteins that support the muscle extracellular matrix. Muscle contraction is fueled through many proteins that regulate energy metabolism. Inflammation is a common response to injury that can result in alteration of many pathways within muscle. Muscle also has multiple pathways that regulate size through atrophy or hypertrophy. Finally, the isoforms associated with fast muscle fibers and their corresponding isoforms in slow muscle fibers are delineated. These nine networks represent important biological systems that affect skeletal muscle function. Combining high-throughput systems analysis with advanced networking software will allow researchers to use these networks to objectively study skeletal muscle systems. PMID:23188744

  14. Biological properties of extracellular vesicles and their physiological functions

    PubMed Central

    Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  15. Probing the Xenopus laevis inner ear transcriptome for biological function

    PubMed Central

    2012-01-01

    Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors) facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome, thereby addressing the

  16. ACCELERATORS: A GUI tool for beta function measurement using MATLAB

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Ling; Tian, Shun-Qiang; Jiang, Bo-Cheng; Liu, Gui-Min

    2009-04-01

    The beta function measurement is used to detect the shift in the betatron tune as the strength of an individual quadrupole magnet is varied. A GUI (graphic user interface) tool for the beta function measurement is developed using the MATLAB program language in the Linux environment, which facilitates the commissioning of the Shanghai Synchrotron Radiation Facility (SSRF) storage ring. In this paper, we describe the design of the application and give some measuring results and discussions about the definition of the measurement. The program has been optimized to solve some restrictions of the AT tracking code. After the correction with LOCO (linear optics from closed orbits), the horizontal and the vertical root mean square values (rms values) can be reduced to 0.12 and 0.10.

  17. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.

    PubMed

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten

    2016-01-11

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material. PMID:26601641

  18. High-resolution network biology: connecting sequence with function

    PubMed Central

    Ryan, Colm J.; Cimermančič, Peter; Szpiech, Zachary A.; Sali, Andrej; Hernandez, Ryan D.; Krogan, Nevan J.

    2014-01-01

    Proteins are not monolithic entities; rather, they can contain multiple domains that mediate distinct interactions, and their functionality can be regulated through post-translational modifications at multiple distinct sites. Traditionally, network biology has ignored such properties of proteins and has instead examined either the physical interactions of whole proteins or the consequences of removing entire genes. In this Review, we discuss experimental and computational methods to increase the resolution of protein– protein, genetic and drug–gene interaction studies to the domain and residue levels. Such work will be crucial for using interaction networks to connect sequence and structural information, and to understand the biological consequences of disease-associated mutations, which will hopefully lead to more effective therapeutic strategies. PMID:24197012

  19. Considerations to improve functional annotations in biological databases.

    PubMed

    Benítez-Páez, Alfonso

    2009-12-01

    Despite the great effort to design efficient systems allowing the electronic indexation of information concerning genes, proteins, structures, and interactions published daily in scientific journals, some problems are still observed in specific tasks such as functional annotation. The annotation of function is a critical issue for bioinformatic routines, such as for instance, in functional genomics and the further prediction of unknown protein function, which are highly dependent of the quality of existing annotations. Some information management systems evolve to efficiently incorporate information from large-scale projects, but often, annotation of single records from the literature is difficult and slow. In this short report, functional characterizations of a representative sample of the entire set of uncharacterized proteins from Escherichia coli K12 was compiled from Swiss-Prot, PubMed, and EcoCyc and demonstrate a functional annotation deficit in biological databases. Some issues are postulated as causes of the lack of annotation, and different solutions are evaluated and proposed to avoid them. The hope is that as a consequence of these observations, there will be new impetus to improve the speed and quality of functional annotation and ultimately provide updated, reliable information to the scientific community. PMID:20050264

  20. Biomarkers of Aging: From Function to Molecular Biology.

    PubMed

    Wagner, Karl-Heinz; Cameron-Smith, David; Wessner, Barbara; Franzke, Bernhard

    2016-01-01

    Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products. PMID:27271660

  1. Density Functional Theory of Biologically Relevant Metal Centers

    NASA Astrophysics Data System (ADS)

    Siegbahn, Per E. M.; Blomberg, Margareta R. A.

    1999-10-01

    Recent applications of density functional theory to biologically relevant metal centers are reviewed. The emphasis is on reaction mechanisms, structures, and modeling. The accuracy of different functionals is discussed for standard benchmark tests of first- and second-row molecules and for transition metal systems. Modeling aspects of the protein metal complexes are discussed regarding both the size of the model being treated quantum mechanically and the treatment of the protein surrounding it. To illustrate the effects, structures computed without the effects of the protein are compared with experimental structures from enzymes, and results from simple dielectric models of the protein for electron transfer processes are described. The choice of spin state is discussed for multimetal complexes. Examples of mechanisms studied recently by density functional theory are described, such as O2 and methane activation in methane monooxygenase and O2 formation in photosystem II.

  2. RASSF tumor suppressor gene family: biological functions and regulation.

    PubMed

    Volodko, Natalia; Gordon, Marilyn; Salla, Mohamed; Ghazaleh, Haya Abu; Baksh, Shairaz

    2014-08-19

    Genetic changes through allelic loss and nucleic acid or protein modifications are the main contributors to loss of function of tumor suppressor proteins. In particular, epigenetic silencing of genes by promoter hypermethylation is associated with increased tumor severity and poor survival. The RASSF (Ras association domain family) family of proteins consists of 10 members, many of which are tumor suppressor proteins that undergo loss of expression through promoter methylation in numerous types of cancers such as leukemia, melanoma, breast, prostate, neck, lung, brain, colorectal and kidney cancers. In addition to their tumor suppressor function, RASSF proteins act as scaffolding agents in microtubule stability, regulate mitotic cell division, modulate apoptosis, control cell migration and cell adhesion, and modulate NFκB activity and the duration of inflammation. The ubiquitous functions of these proteins highlight their importance in numerous physiological pathways. In this review, we will focus on the biological roles of the RASSF family members and their regulation. PMID:24607545

  3. Biomarkers of Aging: From Function to Molecular Biology

    PubMed Central

    Wagner, Karl-Heinz; Cameron-Smith, David; Wessner, Barbara; Franzke, Bernhard

    2016-01-01

    Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products. PMID:27271660

  4. PELP1: Structure, biological function and clinical significance.

    PubMed

    Sareddy, Gangadhara Reddy; Vadlamudi, Ratna K

    2016-07-01

    Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein that functions as a coregulator of several transcription factors and nuclear receptors. Notably, the PELP1 protein has a histone-binding domain, recognizes histone modifications and interacts with several chromatin-modifying complexes. PELP1 serves as a substrate of multitude of kinases, and phosphorylation regulates its functions in various complexes. Further, PELP1 plays essential roles in several pathways including hormonal signaling, cell cycle progression, ribosomal biogenesis, and the DNA damage response. PELP1 expression is upregulated in several cancers, its deregulation contributes to therapy resistance, and it is a prognostic biomarker for breast cancer survival. Recent evidence suggests that PELP1 represents a novel therapeutic target for many hormonal cancers. In this review, we summarized the emerging biological properties and functions of PELP1. PMID:26997260

  5. Systemic Modeling of Biological Functions in Consideration of Physiome Project

    NASA Astrophysics Data System (ADS)

    Minamitani, Haruyuki

    Emerging of the physiome project provides various influences on the medical, biological and pharmaceutical development. In this paper, as an example of physiome research, neural network model analysis providing the conduction mechanisms of pain and tactile sensations was presented, and the functional relations between neural activities of the network cells and stimulus intensity applied on the peripheral receptive fields were described. The modeling presented here is based on the various assumptions made by the results of physiological and anatomical studies reported in the literature. The functional activities of spinothalamic and thalamocortical cells show a good agreement with the physiological and psychophysical functions of somatosensory system that are very instructive for covering the gap between physiologically and psychophysically aspects of pain and tactile sensation.

  6. The Impact of Collective Molecular Dynamics on Physiological and Biological Functionalities of Artificial and Biological Membranes

    NASA Astrophysics Data System (ADS)

    Rheinstadter, Maikel

    2008-03-01

    We use neutron, X-ray and light scattering techniques to determine dynamical and structural properties of artificial and biological membranes. The combination of various techniques enlarges the window to length scales from the nearest-neighbor distances of lipid molecules to more than 10-6m, covering time scales from about 0.1 ps to 1 s. The main research objective is to quantify collective molecular fluctuations in these systems and to establish relationships to physiological and biological functions of the bilayers, such as transmembrane transport. The motivation for this project is twofold: 1) By understanding fundamental properties of bilayers at the microscopic and mesoscopic level, we aim to tailor membranes with specific properties such as permeability and elasticity. 2) By relating dynamical fluctuations to physiological and biological functions, we can gain a deeper understanding of the bilayers on a molecular scale that may help optimizing the transmembrane transport of certain drugs. We show how bilayer permeability, elasticity and inter protein excitations can be determined from the experiments. M.C. Rheinstädter et al., Phys. Rev. Lett. 93, 108107 (2004); Phys. Rev. Lett. 97, 048103 (2006); Phys. Rev. E 75, 011907 (2007);J. Vac. Soc. Technol. A 24, 1191 (2006).

  7. Accelerating expansion or inhomogeneity? II. Mimicking acceleration with the energy function in the Lemaître-Tolman model

    NASA Astrophysics Data System (ADS)

    Krasiński, Andrzej

    2014-07-01

    This is a continuation of the paper published in Phys. Rev. D 89, 023520 (2014). Here we investigate how the luminosity distance-redshift relation DL(z) of the ΛCDM model is duplicated in the Lemaître-Tolman (L-T) model with Λ =0, constant bang-time function tB and the energy function E(r) mimicking accelerated expansion on the observer's past light cone (r is a uniquely defined comoving radial coordinate). Numerical experiments show that E>0 necessarily. The functions z(r) and E(r) are numerically calculated from the initial point at the observer's position, then backward from the initial point at the apparent horizon (AH). Reconciling the results of the two calculations allows one to determine the values of E/r2 at r=0 and at the AH. The problems connected with continuing the calculation through the AH are discussed in detail and solved. Then z(r) and E(r) are continued beyond the AH, up to the numerical crash that signals the contact of the light cone with the big bang. Similarly, the light cone of the L-T model is calculated by proceeding from the two initial points, and compared with the ΛCDM light cone. The model constructed here contains shell crossings, but they can be removed by matching the L-T region to a Friedmann background, without causing any conflict with the type Ia supernovae observations. The mechanism of imitating the accelerated expansion by the E(r) function is explained in a descriptive way.

  8. A Chemical Biology Approach to Developing STAT Inhibitors: Molecular Strategies for Accelerating Clinical Translation

    PubMed Central

    Nelson, Erik A.; Sharma, Sreenath V.; Settleman, Jeffrey; Frank, David A.

    2011-01-01

    STAT transcription factors transduce signals from the cell surface to the nucleus, where they regulate the expression of genes that control proliferation, survival, self-renewal, and other critical cellular functions. Under normal physiological conditions, the activation of STATs is tightly regulated. In cancer, by contrast, STAT proteins, particularly STAT3 and STAT5, become activated constitutively, thereby driving the malignant phenotype of cancer cells. Since these proteins are largely dispensable in the function of normal adult cells, STATs represent a potentially important target for cancer therapy. Although transcription factors have traditionally been viewed as suboptimal targets for pharmacological inhibition, chemical biology approaches have been particularly fruitful in identifying compounds that can modulate this pathway through a variety of mechanisms. STAT inhibitors have notable anti-cancer effects in many tumor systems, show synergy with other therapeutic modalities, and have the potential to eradicate tumor stem cells. Furthermore, STAT inhibitors identified through the screening of chemical libraries can then be employed in large scale analyses such as gene expression profiling, RNA interference screens, or large-scale tumor cell line profiling. Data derived from these studies can then provide key insights into mechanisms of STAT signal transduction, as well as inform the rational design of targeted therapeutic strategies for cancer patients. PMID:21680956

  9. Tubulin acetylation: responsible enzymes, biological functions and human diseases.

    PubMed

    Li, Lin; Yang, Xiang-Jiao

    2015-11-01

    Microtubules have important functions ranging from maintenance of cell morphology to subcellular transport, cellular signaling, cell migration, and formation of cell polarity. At the organismal level, microtubules are crucial for various biological processes, such as viral entry, inflammation, immunity, learning and memory in mammals. Microtubules are subject to various covalent modifications. One such modification is tubulin acetylation, which is associated with stable microtubules and conserved from protists to humans. In the past three decades, this reversible modification has been studied extensively. In mammals, its level is mainly governed by opposing actions of α-tubulin acetyltransferase 1 (ATAT1) and histone deacetylase 6 (HDAC6). Knockout studies of the mouse enzymes have yielded new insights into biological functions of tubulin acetylation. Abnormal levels of this modification are linked to neurological disorders, cancer, heart diseases and other pathological conditions, thereby yielding important therapeutic implications. This review summarizes related studies and concludes that tubulin acetylation is important for regulating microtubule architecture and maintaining microtubule integrity. Together with detyrosination, glutamylation and other modifications, tubulin acetylation may form a unique 'language' to regulate microtubule structure and function. PMID:26227334

  10. Hyaluronan: A Simple Polysaccharide with Diverse Biological Functions

    PubMed Central

    Dicker, Kevin T.; Gurski, Lisa A.; Pradhan-Bhatt, Swati; Witt, Robert L.; Farach-Carson, Mary C.; Jia, Xinqiao

    2014-01-01

    Hyaluronan (HA) is a linear polysaccharide with disaccharide repeats of D-glucuronic acid and N-acetyl-D-glucosamine. It is evolutionary conserved and abundantly expressed in the extracellular matrix (ECM), on the cell surface and even inside cells. Being a simple polysaccharide, HA exhibits an astonishing array of biological functions. HA interacts with various proteins or proteoglycans to organize the ECM and to maintain tissue homeostasis. The unique physical and mechanical properties of HA contribute to the maintenance of tissue hydration, the mediation of solute diffusion through the extracellular space and the lubrication of certain tissues. The diverse biological functions of HA are manifested through its complex interactions with matrix components and resident cells. Binding of HA with cell surface receptors activates various signaling pathways that regulate cell function, tissue development, inflammation, wound healing and tumor progression and metastasis. Taking advantage of the inherent biocompatibility and biodegradability of HA, as well as its susceptibility to chemical modification, researchers have developed various HA-based biomaterials and tissue constructs with promising and broad clinical potential. In this article, we illustrate the properties of HA from a matrix biology perspective by first introducing principles underlying the biosynthesis and biodegradation of HA, as well as the interactions of HA with various proteins and proteoglycans. We next highlight the roles of HA in physiological and pathological states, including morphogenesis, wound healing and tumor metastasis. A deeper understanding of the mechanisms underlying the roles of HA in various physiological processes can provide new insights and tools for the engineering of complex tissues and tissue models. PMID:24361428

  11. Functional magnetic resonance imaging for defining the biological target volume

    PubMed Central

    Kauczor, Hans-Ulrich; Zechmann, Christian; Stieltjes, Bram; Weber, Marc-Andre

    2006-01-01

    Morphology as demonstrated by CT is the basis for radiotherapy planning. Intensity-modulated and adaptive radiotherapy techniques would greatly benefit from additional functional information allowing for definition of the biological target volume. MRI techniques include several which can characterize and quantify different tissue properties and their tumour-related changes. Results of perfusion MRI represent microvascular density and permeability; MR spectroscopy depicts particular metabolites; diffusion weighted imaging shows tissue at risk and tumour cellularity; while dynamic 3D acquisition (4D MRI) shows organ motion and the mobility of tumours within them. PMID:16766269

  12. Structure and Biological Functions of β-Hairpin Antimicrobial Peptides

    PubMed Central

    Panteleev, P. V.; Bolosov, I. A.; Balandin, S. V.; Ovchinnikova, T. V.

    2015-01-01

    Antimicrobial peptides (AMPs) are evolutionarily ancient factors of the innate immune system that serve as a crucial first line of defense for humans, animals, and plants against infection. This review focuses on the structural organization, biosynthesis, and biological functions of AMPs that possess a β-hairpin spatial structure. Representatives of this class of AMPs are among the most active antibiotic molecules of animal origin. Due to their wide spectrum of activity and resistance to internal environmental factors, natural β-hairpin AMPbased compounds might become the most promising drug candidates. PMID:25927000

  13. Functionalization of polydopamine coated magnetic nanoparticles with biological entities

    NASA Astrophysics Data System (ADS)

    Mǎgeruşan, Lidia; Mrówczyński, Radosław; Turcu, Rodica

    2015-12-01

    New hybrid materials, obtained through introduction of cysteine, lysine and folic acid as biological entities into polydopamine-coated magnetite nanoparticles, are reported. The syntheses are straight forward and various methods were applied for structural and morphological characterization of the resulting nanoparticles. XPS proved a very powerful tool for surface chemical analysis and it evidences the functionalization of polydopamine coated magnetite nanoparticles. The superparamagnetic behavior and the high values of saturation magnetization recommend all products for further application where magnetism is important for targeting, separation, or heating by alternative magnetic fields.

  14. Suboptimal geometrical implantation of biological aortic valves provokes functional deficits.

    PubMed

    Kuehnel, Ralf-Uwe; Wendt, Max O; Jainski, Ute; Hartrumpf, Martin; Pohl, Manfred; Albes, Johannes M

    2010-06-01

    Endovascular valves have become a valid option for patients not qualifying for conventional surgery. Biological valves mounted in a stent are currently used. After implantation, however, geometrical distortion of the valve can occur. We tested whether biological valves suitable for transcatheter implantation exhibit hemodynamic deficits after deployment in a distorted position. Two types of valves [bovine pericardium (BP) and porcine cusps], of 21 and 23 mm diameter, respectively were investigated. Mean transvalvular gradient (TVG), effective orifice area (EOA), and regurgitation fraction (REG) were measured prior to and after the 20% distortion of the original diameter. All valves exhibited an increase of TVG and reduction of EOA whereas REG increased only in BP valves after distortion. The 21 mm valves demonstrated a more pronounced alteration than the 23 mm valves. Even moderately distorted implantation of a biological valve results in a marked functional alteration. The susceptibility of pericardial valves is higher than that of porcine valves probably owing to better coaptation properties of native cusps even under deformed conditions when compared to valves constructed with pericardium. Care should therefore be taken during implantation of endovascular valves in order to avoid fixed hemodynamic deficits. Native valves may preferably be used as they demonstrate a more robust behavior regarding suboptimal implantation. PMID:20233809

  15. An acceleration transducer based on optical fiber Bragging grating with temperature self-compensating function

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Lu, Qiyu; Ou, Jinping

    2013-04-01

    Along with the maturity and development of Optical Fiber Bragg Grating (OFBG) sensing technology, OFBG sensors with different functions have been developed and applied in large-scale engineering structure health monitoring and construction monitoring. In this paper, an acceleration transducer with a characteristic of temperature self-compensating is introduced. It is a cantilever structure model with equal strength beam, fixed with a mass block at the end of the beam, and two consecutive OFBGs are pasted on the upper and lower surface axis of the beam at the corresponding places. Because of the two OFBGs are near to each other, the wavelength changes caused by the environment temperature is the same. According to the temperature self-compensating principle and acceleration measurement principle developed in this paper, we can achieve the temperature self-compensating function of real acceleration measurement by simply calculating the test results. The experimental results show that this type of acceleration transducer has high sensitivity and stability and its measuring range can also be changed according to the practical requirements. This type of acceleration transducer is suitable for engineering structure acceleration measurement in different environment conditions.

  16. Functions of microRNAs in cardiovascular biology and disease.

    PubMed

    Hata, Akiko

    2013-01-01

    In 1993, lin-4 was discovered as a critical modulator of temporal development in Caenorhabditis elegans and, most notably, as the first in the class of small, single-stranded noncoding RNAs now defined as microRNAs (miRNAs). Another eight years elapsed before miRNA expression was detected in mammalian cells. Since then, explosive advancements in the field of miRNA biology have elucidated the basic mechanism of miRNA biogenesis, regulation, and gene-regulatory function. The discovery of this new class of small RNAs has augmented the complexity of gene-regulatory programs as well as the understanding of developmental and pathological processes in the cardiovascular system. Indeed, the contributions of miRNAs in cardiovascular development and function have been widely explored, revealing the extensive role of these small regulatory RNAs in cardiovascular physiology. PMID:23157557

  17. Diffusion of innovations dynamics, biological growth and catenary function

    NASA Astrophysics Data System (ADS)

    Guseo, Renato

    2016-12-01

    The catenary function has a well-known role in determining the shape of chains and cables supported at their ends under the force of gravity. This enables design using a specific static equilibrium over space. Its reflected version, the catenary arch, allows the construction of bridges and arches exploiting the dual equilibrium property under uniform compression. In this paper, we emphasize a further connection with well-known aggregate biological growth models over time and the related diffusion of innovation key paradigms (e.g., logistic and Bass distributions over time) that determine self-sustaining evolutionary growth dynamics in naturalistic and socio-economic contexts. Moreover, we prove that the 'local entropy function', related to a logistic distribution, is a catenary and vice versa. This special invariance may be explained, at a deeper level, through the Verlinde's conjecture on the origin of gravity as an effect of the entropic force.

  18. Current studies on physiological functions and biological production of lactosucrose.

    PubMed

    Mu, Wanmeng; Chen, Qiuming; Wang, Xiao; Zhang, Tao; Jiang, Bo

    2013-08-01

    Lactosucrose (O-β-D-galactopyranosyl-(1,4)-O-α-D-glucopyranosyl-(1,2)-β-D-fructofuranoside) is a trisaccharide formed from lactose and sucrose by enzymatic transglycosylation. This rare trisaccharide is a kind of indigestible carbohydrate, has good prebiotic effect, and promotes intestinal mineral absorption. It has been used as a functional ingredient in a range of food products which are approved as foods for specified health uses in Japan. Using lactose and sucrose as substrates, lactosucrose can be produced through transfructosylation by β-fructofuranosidase from Arthrobacter sp. K-1 or a range of levansucrases, or through transgalactosylation by β-galactosidase from Bacillus circulans. This article presented a review of recent studies on the physiological functions of lactosucrose and the biological production from lactose and sucrose by different enzymes. PMID:23828605

  19. Head and Tibial Acceleration as a Function of Stride Frequency and Visual Feedback during Running

    PubMed Central

    Busa, Michael A.; Lim, Jongil; van Emmerik, Richard E. A.; Hamill, Joseph

    2016-01-01

    Individuals regulate the transmission of shock to the head during running at different stride frequencies although the consequences of this on head-gaze stability remain unclear. The purpose of this study was to examine if providing individuals with visual feedback of their head-gaze orientation impacts tibial and head accelerations, shock attenuation and head-gaze motion during preferred speed running at different stride frequencies. Fifteen strides from twelve recreational runners running on a treadmill at their preferred speed were collected during five stride frequencies (preferred, ±10% and ±20% of preferred) in two visual task conditions (with and without real-time visual feedback of head-gaze orientation). The main outcome measures were tibial and head peak accelerations assessed in the time and frequency domains, shock attenuation from tibia to head, and the magnitude and velocity of head-gaze motion. Decreasing stride frequency resulted in greater vertical accelerations of the tibia (p<0.01) during early stance and at the head (p<0.01) during early and late stance; however, for the impact portion the increase in head acceleration was only observed for the slowest stride frequency condition. Visual feedback resulted in reduced head acceleration magnitude (p<0.01) and integrated power spectral density in the frequency domain (p<0.01) in late stance, as well as overall of head-gaze motion (p<0.01). When running at preferred speed individuals were able to stabilize head acceleration within a wide range of stride frequencies; only at a stride frequency 20% below preferred did head acceleration increase. Furthermore, impact accelerations of the head and tibia appear to be solely a function of stride frequency as no differences were observed between feedback conditions. Increased visual task demands through head gaze feedback resulted in reductions in head accelerations in the active portion of stance and increased head-gaze stability. PMID:27271850

  20. Event-based text mining for biology and functional genomics.

    PubMed

    Ananiadou, Sophia; Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B

    2015-05-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of 'events', i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. PMID:24907365

  1. Sucrose metabolism gene families and their biological functions

    PubMed Central

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-01-01

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions. PMID:26616172

  2. Event-based text mining for biology and functional genomics

    PubMed Central

    Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B.

    2015-01-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. PMID:24907365

  3. Relative biological effectiveness of accelerated heavy ions for induction of morphological transformation in Syrian hamster embryo cells.

    PubMed

    Han, Z B; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-09-01

    Syrian hamster embryo cells were used to study the morphological transformation induced by accelerated heavy ions with different linear energy transfer (LET) ranging from 13 to 400 keV/micron. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), then inoculated to culture dishes. Morphologically altered colonies were scored as transformants. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to X-rays first increased with LET, reached a maximum value of about 7 at 100 keV/micron, then decreased with the further increase of LET. Our findings confirmed that high LET heavy ions are much more effective than X-rays for the induction of in vitro cell transformation. PMID:9868868

  4. DIFFUSIVE PARTICLE ACCELERATION IN SHOCKED, VISCOUS ACCRETION DISKS: GREEN'S FUNCTION ENERGY DISTRIBUTION

    SciTech Connect

    Becker, Peter A.; Das, Santabrata; Le, Truong E-mail: sbdas@iitg.ernet.in

    2011-12-10

    The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classical method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is {approx}0.01 M-dot c{sup 2}, and the outflowing relativistic particles have a mean energy {approx}300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.

  5. Nitrogen compounds in wine during its biological aging by two flor film yeasts: An approach to accelerated biological aging of dry sherry-type wines.

    PubMed

    Mauricio, J C; Ortega, J M

    1997-01-20

    Urea, ammonium, and free amino acid contents were quantified in biological aging of a young wine under two flor film forming yeast strains, Saccharomyces cerevisiae race capensis and S. cerevisiae race bayanus, and compared. Cell viability in the film was different for the two yeast strains. Thus, capensis maintained a much greater number of viable cells per surface area than bayanus and hence used greater amount of nitrogen compounds. The main source of nitrogen for the yeasts during the biological aging process was L-proline. The two yeast strains also differed in the amounts of assimilable nitrogen they utilized, in their preferences for amino acid consumption, and kinetics. To accelerate the aging process, the effect of controlled monthly aeration of the wine aged with capensis strain was investigated. The results revealed that short aeration did not appreciably increase the overall consumption of assimilable nitrogen, but consumption of some nitrogen compounds was accelerated (particularly L-proline, L-tryptophan, L-glutamic acid, ammonium ion, L-lysine, and L-arginine); the use of L-ornithine was inhibited; and GABA, L-methionine, and urea were depletes. Probably the aeration increases the aroma compounds, thereby producing wines with improved sensory properties. (c) 1997 John Wiley & Sons, Inc. PMID:18633960

  6. Students' Perceptions of Long-Functioning Cooperative Teams in Accelerated Adult Degree Programs

    ERIC Educational Resources Information Center

    Favor, Judy

    2012-01-01

    This study examined 718 adult students' perceptions of long-functioning cooperative study teams in accelerated associate's, bachelor's, and master's business degree programs. Six factors were examined: attraction toward team, alignment of performance expectations, intrateam conflict, workload sharing, preference for teamwork, and impact on…

  7. Androgen Receptor Structure, Function and Biology: From Bench to Bedside

    PubMed Central

    Davey, Rachel A; Grossmann, Mathis

    2016-01-01

    The actions of androgens such as testosterone and dihydrotestosterone are mediated via the androgen receptor (AR), a ligand-dependent nuclear transcription factor and member of the steroid hormone nuclear receptor family. Given its widespread expression in many cells and tissues, the AR has a diverse range of biological actions including important roles in the development and maintenance of the reproductive, musculoskeletal, cardiovascular, immune, neural and haemopoietic systems. AR signalling may also be involved in the development of tumours in the prostate, bladder, liver, kidney and lung. Androgens can exert their actions via the AR in a DNA binding-dependent manner to regulate target gene transcription, or in a non-DNA binding-dependent manner to initiate rapid, cellular events such as the phosphorylation of 2nd messenger signalling cascades. More recently, ligand-independent actions of the AR have also been identified. Given the large volume of studies relating to androgens and the AR, this review is not intended as an extensive review of all studies investigating the AR, but rather as an overview of the structure, function, signalling pathways and biology of the AR as well as its important role in clinical medicine, with emphasis on recent developments in this field. PMID:27057074

  8. AFM imaging of functionalized carbon nanotubes on biological membranes

    NASA Astrophysics Data System (ADS)

    Lamprecht, C.; Liashkovich, I.; Neves, V.; Danzberger, J.; Heister, E.; Rangl, M.; Coley, H. M.; McFadden, J.; Flahaut, E.; Gruber, H. J.; Hinterdorfer, P.; Kienberger, F.; Ebner, A.

    2009-10-01

    Multifunctional carbon nanotubes are promising for biomedical applications as their nano-size, together with their physical stability, gives access into the cell and various cellular compartments including the nucleus. However, the direct and label-free detection of carbon nanotube uptake into cells is a challenging task. The atomic force microscope (AFM) is capable of resolving details of cellular surfaces at the nanometer scale and thus allows following of the docking of carbon nanotubes to biological membranes. Here we present topographical AFM images of non-covalently functionalized single walled (SWNT) and double walled carbon nanotubes (DWNT) immobilized on different biological membranes, such as plasma membranes and nuclear envelopes, as well as on a monolayer of avidin molecules. We were able to visualize DWNT on the nuclear membrane while at the same time resolving individual nuclear pore complexes. Furthermore, we succeeded in localizing individual SWNT at the border of incubated cells and in identifying bundles of DWNT on cell surfaces by AFM imaging.

  9. Biologically functionalized nanochannels on ferroelectric lead zirconium titanate surfaces.

    SciTech Connect

    Ocola, L. E.; Pan, W. C.; Kuo, M.; Tirumala, V. R.; Reiss, B. D.; Firestone, M. A.; Illinois Mathematics and Science Academy

    2005-01-01

    We recently started a program at Argonne to exploit patterned, polarizable ferroelectric surfaces, such as lead zirconium titanate (PZT), as a means to create field-responsive inorganic-biomolecule interfaces to study and manipulate biomatter on surfaces. In this paper we will discuss the integration of nanochannels on the surface of PZT films and their selective functionalization to create nanovalves to control nanofluidic flow. Microfluidic devices have been fabricated using a variety of methods, ranging from thermal decomposition of buried patterned channels, to fabricating trenches via plasma etch or hot embossing followed by trench capping. Our work focuses on an alternative method by using a bilayer resist in an inverted configuration normally used for T- and Gamma- gate fabrication. This method is capable of yielding sub-100 nm nanochannels with high aspect ratios and sub-500nm alignment. We have recently demonstrated that the polarization hysteresis loop of PZT is the same before and after exposure to an aqueous environment. This opens the possibility of selective surface modification of PZT via coupling of a wide range of biomolecules (e.g., peptides, proteins) and the use of the electric-field-responsive properties of PZT to manipulate the function (e.g., orientation) of the tethered biomolecules. We have used phage display techniques to evolve specific peptide motifs that selectively bind to PZT. The optimum heptapeptide that facilitates both the attachment of functional biological molecules to the surface of PZT has been identified.

  10. Linking biological soil crust diversity to ecological functions

    NASA Astrophysics Data System (ADS)

    Glaser, Karin; Borchhardt, Nadine; Schulz, Karoline; Mikhailyuk, Tatiana; Baumann, Karen; Leinweber, Peter; Ulf, Karsten

    2016-04-01

    Biological soil crusts (BSCs) are an association of different microorganisms and soil particles in the top millimeters of the soil. They are formed by algae, cyanobacteria, microfungi, bacteria, bryophytes and lichens in various compositions. Our aim was to determine and compare the biodiversity of all occurring organisms in biogeographically different habitats, ranging from polar (both Arctic and Antarctic), subpolar (Scandinavia), temperate (Germany) to dry regions (Chile). The combination of microscopy and molecular techniques (next-generation sequencing) revealed highly diverse crust communities, whose composition clustered by region and correlates with habitat characteristics such as water content. The BSC biodiversity was then linked to the ecological function of the crusts. The functional role of the BSCs in the biogeochemical cycles of carbon, nitrogen and phosphorous is evaluated using an array of state of the art soil chemistry methods including Py-FIMS (pyrolysis field ionization mass spectrometry) and XANES (x-ray absorbance near edge structure). Total P as well as P fractions were quantified in all BSCs, adjacent soil underneath and comparable nearby soil of BSC-free areas revealing a remarkable accumulation of total phosphorous and a distinct pattern of P fractions in the crust. Further, we observed an indication of a different P-speciation composition in the crust compared with BSC-free soil. The data allow answering the question whether BSCs act as sink or source for these compounds, and how biodiversity controls the biogeochemical function of BSCs.

  11. Genome-wide survey for biologically functional pseudogenes.

    PubMed

    Svensson, Orjan; Arvestad, Lars; Lagergren, Jens

    2006-05-01

    According to current estimates there exist about 20,000 pseudogenes in a mammalian genome. The vast majority of these are disabled and nonfunctional copies of protein-coding genes which, therefore, evolve neutrally. Recent findings that a Makorin1 pseudogene, residing on mouse Chromosome 5, is, indeed, in vivo vital and also evolutionarily preserved, encouraged us to conduct a genome-wide survey for other functional pseudogenes in human, mouse, and chimpanzee. We identify to our knowledge the first examples of conserved pseudogenes common to human and mouse, originating from one duplication predating the human-mouse species split and having evolved as pseudogenes since the species split. Functionality is one possible way to explain the apparently contradictory properties of such pseudogene pairs, i.e., high conservation and ancient origin. The hypothesis of functionality is tested by comparing expression evidence and synteny of the candidates with proper test sets. The tests suggest potential biological function. Our candidate set includes a small set of long-lived pseudogenes whose unknown potential function is retained since before the human-mouse species split, and also a larger group of primate-specific ones found from human-chimpanzee searches. Two processed sequences are notable, their conservation since the human-mouse split being as high as most protein-coding genes; one is derived from the protein Ataxin 7-like 3 (ATX7NL3), and one from the Spinocerebellar ataxia type 1 protein (ATX1). Our approach is comparative and can be applied to any pair of species. It is implemented by a semi-automated pipeline based on cross-species BLAST comparisons and maximum-likelihood phylogeny estimations. To separate pseudogenes from protein-coding genes, we use standard methods, utilizing in-frame disablements, as well as a probabilistic filter based on Ka/Ks ratios. PMID:16680195

  12. Comparative genomics of pectinacetylesterases: Insight on function and biology

    PubMed Central

    de Souza, Amancio José; Pauly, Markus

    2015-01-01

    Pectin acetylation influences the gelling ability of this important plant polysaccharide for the food industry. Plant apoplastic pectinacetylesterases (PAEs) play a key role in regulating the degree of pectin acetylation and modifying their expression thus represents one way to engineer plant polysaccharides for food applications. Identifying the major active enzymes within the PAE gene family will aid in our understanding of this biological phenomena as well as provide the tools for direct trait manipulation. Using comparative genomics we propose that there is a minimal set of 4 distinct PAEs in plants. Possible functional diversification of the PAE family in the grasses is also explored with the identification of 3 groups of PAE genes specific to grasses. PMID:26237162

  13. Comparative genomics of pectinacetylesterases: Insight on function and biology.

    PubMed

    de Souza, Amancio José; Pauly, Markus

    2015-01-01

    Pectin acetylation influences the gelling ability of this important plant polysaccharide for the food industry. Plant apoplastic pectinacetylesterases (PAEs) play a key role in regulating the degree of pectin acetylation and modifying their expression thus represents one way to engineer plant polysaccharides for food applications. Identifying the major active enzymes within the PAE gene family will aid in our understanding of this biological phenomena as well as provide the tools for direct trait manipulation. Using comparative genomics we propose that there is a minimal set of 4 distinct PAEs in plants. Possible functional diversification of the PAE family in the grasses is also explored with the identification of 3 groups of PAE genes specific to grasses. PMID:26237162

  14. Update on the functional biology of Lrrk2.

    PubMed

    Melrose, Heather

    2008-01-01

    The etiology of Parkinson's disease (PD) was long thought to be due to environmental factors. Following the discovery of autosomal-dominant mutations in the α-synuclein gene, and later recessive mutations in the DJ-1, Parkin and PINK-1 genes, the field of PD genetics exploded. In 2004, it was discovered that mutations in the PARK8 locus - leucine-rich repeat kinase 2 (LRRK2, Lrrk2) - are the most important genetic cause of autosomal-dominant PD. Lrrk2 substitutions also account for sporadic PD in certain ethnic populations and have been shown to increase the risk of PD in Asian populations. Drug therapies targeting Lrrk2 activity may therefore be beneficial to both familial and sporadic PD patients, hence understanding the role of Lrrk2 in health and disease is critical. This review aims to highlight the research effort concentrated on elucidating the functional biological role of Lrrk2, and to provide some future therapeutic perspectives. PMID:19225574

  15. Biochemical Properties and Biological Functions of FET Proteins.

    PubMed

    Schwartz, Jacob C; Cech, Thomas R; Parker, Roy R

    2015-01-01

    Members of the FET protein family, consisting of FUS, EWSR1, and TAF15, bind to RNA and contribute to the control of transcription, RNA processing, and the cytoplasmic fates of messenger RNAs in metazoa. FET proteins can also bind DNA, which may be important in transcription and DNA damage responses. FET proteins are of medical interest because chromosomal rearrangements of their genes promote various sarcomas and because point mutations in FUS or TAF15 can cause neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar dementia. Recent results suggest that both the normal and pathological effects of FET proteins are modulated by low-complexity or prion-like domains, which can form higher-order assemblies with novel interaction properties. Herein, we review FET proteins with an emphasis on how the biochemical properties of FET proteins may relate to their biological functions and to pathogenesis. PMID:25494299

  16. Functional and Molecular Characterization of the Role of CTCF in Human Embryonic Stem Cell Biology

    PubMed Central

    Balakrishnan, Sri Kripa; Witcher, Michael; Berggren, Travis W.; Emerson, Beverly M.

    2012-01-01

    The CCCTC-binding factor CTCF is the only known vertebrate insulator protein and has been shown to regulate important developmental processes such as imprinting, X-chromosome inactivation and genomic architecture. In this study, we examined the role of CTCF in human embryonic stem cell (hESC) biology. We demonstrate that CTCF associates with several important pluripotency genes, including NANOG, SOX2, cMYC and LIN28 and is critical for hESC proliferation. CTCF depletion impacts expression of pluripotency genes and accelerates loss of pluripotency upon BMP4 induced differentiation, but does not result in spontaneous differentiation. We find that CTCF associates with the distal ends and internal sites of the co-regulated 160 kb NANOG-DPPA3-GDF3 locus. Each of these sites can function as a CTCF-dependent enhancer-blocking insulator in heterologous assays. In hESCs, CTCF exists in multisubunit protein complexes and can be poly(ADP)ribosylated. Known CTCF cofactors, such as Cohesin, differentially co-localize in the vicinity of specific CTCF binding sites within the NANOG locus. Importantly, the association of some cofactors and protein PARlation selectively changes upon differentiation although CTCF binding remains constant. Understanding how unique cofactors may impart specialized functions to CTCF at specific genomic locations will further illuminate its role in stem cell biology. PMID:22879976

  17. Functionalized nanoparticles for biological imaging and detection applications

    NASA Astrophysics Data System (ADS)

    Mei, Bing C.

    Semiconductor quantum dots (QDs) and gold nanoparticles (AuNPs) have gained tremendous attention in the last decade as a result of their size-dependent spectroscopic properties. These nanoparticles have been a subject of intense study to bridge the gap between macroscopic and atomic behavior, as well as to generate new materials for novel applications in therapeutics, biological sensing, light emitting devices, microelectronics, lasers, and solar cells. One of the most promising areas for the use of these nanoparticles is in biotechnology, where their size-dependent optical properties are harnessed for imaging and sensing applications. However, these nanoparticles, as synthesized, are often not stable in aqueous media and lack simple and reliable means of covalently linking to biomolecules. The focus of this work is to advance the progress of these nanomaterials for biotechnology by synthesizing them, characterizing their optical properties and rendering them water-soluble and functional while maintaining their coveted optical properties. QDs were synthesized by an organometallic chemical procedure that utilizes coordinating solvents to provide brightly luminescent nanoparticles. The optical interactions of these QDs were studied as a function of concentration to identify particle size-dependent optimal concentrations, where scattering and indirection excitation are minimized and the amount light observed per particle is maximized. Both QDs and AuNPs were rendered water-soluble and stable in a broad range of biologically relevant conditions by using a series of ligands composed of dihydrolipoic acid (DHLA) appended to poly(ethylene glycol) methyl ether. By studying the stability of the surface modified AuNPs, we revealed some interesting information regarding the role of the surface ligand on the nanoparticle stability (i.e. solubility in high salt concentration, resistance to dithiothreitol competition and cyanide decomposition). Furthermore, the nanoparticles

  18. Functional Skeletal Muscle Formation with a Biologic Scaffold

    PubMed Central

    Valentin, Jolene E.; Turner, Neill J.; Gilbert, Thomas W.; Badylak, Stephen F.

    2010-01-01

    Biologic scaffolds composed of extracellular matrix (ECM) have been used to reinforce or replace damaged or missing musculotendinous tissues in both preclinical studies and in human clinical applications. However, most studies have focused upon morphologic endpoints and few studies have assessed the in-situ functionality of newly formed tissue; especially new skeletal muscle tissue. The objective of the present study was to determine both the in-situ tetanic contractile response and histomorphologic characteristics of skeletal muscle tissue reconstructed using one of four test articles in a rodent abdominal wall model: 1) porcine small intestinal submucosa (SIS)-ECM; 2) carbodiimide-crosslinked porcine SIS-ECM; 3) autologous tissue; or 4) polypropylene mesh. Six months after surgery, the remodeled SIS-ECM showed almost complete replacement by islands and sheets of skeletal muscle, which generated a similar maximal contractile force to native tissue but with greater resistance to fatigue. The autologous tissue graft was replaced by a mixture of collagenous connective tissue, adipose tissue with fewer islands of skeletal muscle compared to SIS-ECM and a similar fatigue resistance to native muscle. Carbodiimide-crosslinked SIS-ECM and polypropylene mesh were characterized by a chronic inflammatory response and produced little or no measureable tetanic force. The findings of this study show that non-crosslinked xenogeneic SIS scaffolds and autologous tissue are associated with the restoration of functional skeletal muscle with histomorphologic characteristics that resemble native muscle. PMID:20638716

  19. Steroid receptor RNA activator: Biologic function and role in disease.

    PubMed

    Liu, Chan; Wu, Hong-Tao; Zhu, Neng; Shi, Ya-Ning; Liu, Zheng; Ao, Bao-Xue; Liao, Duan-Fang; Zheng, Xi-Long; Qin, Li

    2016-08-01

    Steroid receptor RNA activator (SRA) is a type of long noncoding RNA (lncRNA) which coordinates the functions of various transcription factors, enhances steroid receptor-dependent gene expression, and also serves as a distinct scaffold. The novel, profound and expanded roles of SRA are emerging in critical aspects of coactivation of nuclear receptors (NRs). As a nuclear receptor coactivator, SRA can coactivate androgen receptor (AR), estrogen receptor α (ERα), ERβ, progesterone receptor (PR), glucocorticoid receptor (GR), thyroid hormone receptor and retinoic acid receptor (RAR). Although SRA is one of the least well-understood molecules, increasing studies have revealed that SRA plays a key role in both biological processes, such as myogenesis and steroidogenesis, and pathological changes, including obesity, cardiomyopathy, and tumorigenesis. Furthermore, the SRA-related signaling pathways, such as the mitogen-activated protein kinase (p38 MAPK), Notch and tumor necrosis factor α (TNFα) pathways, play critical roles in the pathogenesis of estrogen-dependent breast cancers. In addition, the most recent data demonstrates that SRA expression may serve as a new prognostic marker in patients with ER-positive breast cancer. Thus, elucidating the molecular mechanisms underlying SRA-mediated functions is important to develop proper novel strategies to target SRA in the diagnosis and treatment of human diseases. PMID:27282881

  20. Polysaccharide Immunomodulators as Therapeutic Agents: Structural Aspects and Biologic Function

    PubMed Central

    Tzianabos, Arthur O.

    2000-01-01

    Polysaccharide immunomodulators were first discovered over 40 years ago. Although very few have been rigorously studied, recent reports have revealed the mechanism of action and structure-function attributes of some of these molecules. Certain polysaccharide immunomodulators have been identified that have profound effects in the regulation of immune responses during the progression of infectious diseases, and studies have begun to define structural aspects of these molecules that govern their function and interaction with cells of the host immune system. These polymers can influence innate and cell-mediated immunity through interactions with T cells, monocytes, macrophages, and polymorphonuclear lymphocytes. The ability to modulate the immune response in an appropriate way can enhance the host's immune response to certain infections. In addition, this strategy can be utilized to augment current treatment regimens such as antimicrobial therapy that are becoming less efficacious with the advent of antibiotic resistance. This review focuses on recent studies that illustrate the structural and biologic activities of specific polysaccharide immunomodulators and outlines their potential for clinical use. PMID:11023954

  1. Evidence for Accelerated Decline of Functional Brain Network Efficiency in Schizophrenia.

    PubMed

    Sheffield, Julia M; Repovs, Grega; Harms, Michael P; Carter, Cameron S; Gold, James M; MacDonald, Angus W; Ragland, J Daniel; Silverstein, Steven M; Godwin, Douglass; Barch, Deanna M

    2016-05-01

    Previous work suggests that individuals with schizophrenia display accelerated aging of white matter integrity, however, it is still unknown whether functional brain networks also decline at an elevated rate in schizophrenia. Given the known degradation of functional connectivity and the normal decline in cognitive functioning throughout healthy aging, we aimed to test the hypothesis that efficiency of large-scale functional brain networks supporting overall cognition, as well as integrity of hub nodes within those networks, show evidence of accelerated aging in schizophrenia. Using pseudo-resting state data in 54 healthy controls and 46 schizophrenia patients, in which task-dependent signal from 3 tasks was regressed out to approximate resting-state data, we observed a significant diagnosis by age interaction in the prediction of both global and local efficiency of the cingulo-opercular network, and of the local efficiency of the fronto-parietal network, but no interaction when predicting both default mode network and whole brain efficiency. We also observed a significant diagnosis by age interaction for the node degree of the right anterior insula, left dorsolateral prefrontal cortex, and dorsal anterior cingulate cortex. All interactions were driven by stronger negative associations between age and network metrics in the schizophrenia group than the healthy controls. These data provide evidence that is consistent with accelerated aging of large-scale functional brain networks in schizophrenia that support higher-order cognitive ability. PMID:26472685

  2. Electron distribution function behavior during localized transverse ion acceleration events in the topside auroral zone

    NASA Technical Reports Server (NTRS)

    Lynch, K. A.; Arnoldy, R. L.; Kintner, P. M.; Vago, J. L.

    1994-01-01

    The Topaz3 auroral sounding rocket made the following observations concerning the transfer of precipitating auroral electron energy to transverse ion acceleration in the topside auroral zone. During the course of the flight, the precipitating electron beam was modified to varying degrees by interaction with VLF hiss, at times changing the beam into a field-aligned plateau. The electron distribution functions throughout the flight are classified according to the extent of this modification, and correspondences with ion acceleration events are sought. The hiss power during most of this rocket flight apparently exceeded the threshold for collapse into solitary structures. At the times of plateaued electron distributions, the collapse of these structures was limited by Landau damping through the ambient ions, resulting in a velocity-dependent acceleration of both protons and oxygen. This initial acceleration is sufficient to supply the number flux of upflowing ions observed at satellite altitudes. The bursty ion acceleration was anticorrelated, on 1-s or smaller timescales, with dispersive bursts of precipitating field-aligned electrons, although on longer timescales the bursty ions and the bursty electrons are correlated.

  3. Exploring the mechanical basis for acceleration: pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris).

    PubMed

    Williams, S B; Usherwood, J R; Jespers, K; Channon, A J; Wilson, A M

    2009-02-01

    Animals in their natural environments are confronted with a regular need to perform rapid accelerations (for example when escaping from predators or chasing prey). Such acceleration requires net positive mechanical work to be performed on the centre of mass by skeletal muscle. Here we determined how pelvic limb joints contribute to the mechanical work and power that are required for acceleration in galloping quadrupeds. In addition, we considered what, if any, biomechanical strategies exist to enable effective acceleration to be achieved. Simultaneous kinematic and kinetic data were collected for racing greyhounds undergoing a range of low to high accelerations. From these data, joint moments and joint powers were calculated for individual hindlimb joints. In addition, the mean effective mechanical advantage (EMA) of the limb and the ;gear ratio' of each joint throughout stance were calculated. Greatest increases in joint work and power with acceleration appeared at the hip and hock joints, particularly in the lead limb. Largest increases in absolute positive joint work occurred at the hip, consistent with the hypothesis that quadrupeds power locomotion by torque about the hip. In addition, hindlimb EMA decreased substantially with increased acceleration - a potential strategy to increase stance time and thus ground impulses for a given peak force. This mechanism may also increase the mechanical advantage for applying the horizontal forces necessary for acceleration. PMID:19181903

  4. Polymer biomaterial constructs for regenerative medicine and functional biological systems

    NASA Astrophysics Data System (ADS)

    Meng, Linghui

    The use of collagen as a biomaterial is currently undergoing a renaissance in the tissue engineering field. The excellent biocompatibility and safety due to its biological characteristics, such as biodegradability and weak antigenicity, make collagen a primary material resource in medical applications. Described herein is work towards the development of novel collagen-based matrices, with additional multi-functionality imparted through a novel in-situ crosslinking approach. The process of electrospinning has become a widely used technique for the creation of fibrous scaffolds for tissue engineering applications due to its ability to rapidly create structures composed of nano-scale polymer fibers closely resembling the architecture of the extracellular matrix (ECM). Collagen-PCL sheath-core bicomponent fibrous scaffolds were fabricated using a novel variation on traditional electrospinning, known as co-axial electrospinning. The results showed that the addition of a synthetic polymer core into collagen nanofibers remarkably increased the mechanical strength of collagen matrices spun from the benign solvent system. A novel single-step, in-situ collagen crosslink approach was developed in order to solve the problems dominating traditional collagen crosslinking methods, such as dimensional shrinking and loss of porous morphology, and to simplify the crosslinking procedure for electrospun collagen scaffolds. The excess amount of NHS present in the crosslinking mixture was found to delay the EDC/collagen coupling reaction in a controlled fashion. Fundamental investigations into the development and characterization of in-situ crosslinked collagen matrices such as fibrous scaffolds, gels and sponges, as well as their biomedical applications including cell culture substrates, wound dressings, drug delivery matrices and bone regeneration substitutes, were performed. The preliminary mice studies indicated that the in-situ crosslinked collagen matrices could be good candidates

  5. Accelerated Integrated Science Sequence (AISS): An Introductory Biology, Chemistry, and Physics Course

    ERIC Educational Resources Information Center

    Purvis-Roberts, Kathleen L.; Edwalds-Gilbert, Gretchen; Landsberg, Adam S.; Copp, Newton; Ulsh, Lisa; Drew, David E.

    2009-01-01

    A new interdisciplinary, introductory science course was offered for the first time during the 2007-2008 school year. The purpose of the course is to introduce students to the idea of working at the intersections of biology, chemistry, and physics and to recognize interconnections between the disciplines. Interdisciplinary laboratories are a key…

  6. Heme-nitrosyls: electronic structure implications for function in biology.

    PubMed

    Hunt, Andrew P; Lehnert, Nicolai

    2015-07-21

    The question of why mammalian systems use nitric oxide (NO), a potentially hazardous and toxic diatomic, as a signaling molecule to mediate important functions such as vasodilation (blood pressure control) and nerve signal transduction initially perplexed researchers when this discovery was made in the 1980s. Through extensive research over the past two decades, it is now well rationalized why NO is used in vivo for these signaling functions, and that heme proteins play a dominant role in NO signaling in mammals. Key insight into the properties of heme-nitrosyl complexes that make heme proteins so well poised to take full advantage of the unique properties of NO has come from in-depth structural, spectroscopic, and theoretical studies on ferrous and ferric heme-nitrosyls. This Account highlights recent findings that have led to greater understanding of the electronic structures of heme-nitrosyls, and the contributions that model complex studies have made to elucidate Fe-NO bonding are highlighted. These results are then discussed in the context of the biological functions of heme-nitrosyls, in particular in soluble guanylate cyclase (sGC; NO signaling), nitrophorins (NO transport), and NO-producing enzymes. Central to this Account is the thermodynamic σ-trans effect of NO, and how this relates to the activation of the universal mammalian NO sensor sGC, which uses a ferrous heme as the high affinity "NO detection unit". It is shown via detailed spectroscopic and computational studies that the strong and very covalent Fe(II)-NO σ-bond is at the heart of the strong thermodynamic σ-trans effect of NO, which greatly weakens the proximal Fe-NHis (or Fe-SCys) bond in six-coordinate ferrous heme-nitrosyls. In sGC, this causes the dissociation of the proximally bound histidine ligand upon NO binding to the ferrous heme, inducing a significant conformational change that activates the sGC catalytic domain for the production of cGMP. This, in turn, leads to vasodilation and

  7. Accelerating self-consistent field convergence with the augmented Roothaan–Hall energy function

    PubMed Central

    Hu, Xiangqian; Yang, Weitao

    2010-01-01

    Based on Pulay’s direct inversion iterative subspace (DIIS) approach, we present a method to accelerate self-consistent field (SCF) convergence. In this method, the quadratic augmented Roothaan–Hall (ARH) energy function, proposed recently by Høst and co-workers [J. Chem. Phys. 129, 124106 (2008)], is used as the object of minimization for obtaining the linear coefficients of Fock matrices within DIIS. This differs from the traditional DIIS of Pulay, which uses an object function derived from the commutator of the density and Fock matrices. Our results show that the present algorithm, abbreviated ADIIS, is more robust and efficient than the energy-DIIS (EDIIS) approach. In particular, several examples demonstrate that the combination of ADIIS and DIIS (“ADIIS+DIIS”) is highly reliable and efficient in accelerating SCF convergence. PMID:20136307

  8. Lung function, biological monitoring, and biological effect monitoring of gemstone cutters exposed to beryls

    PubMed Central

    Wegner, R.; Heinrich-Ramm, R.; Nowak, D.; Olma, K.; Poschadel, B.; Szadkowski, D.

    2000-01-01

    OBJECTIVES—Gemstone cutters are potentially exposed to various carcinogenic and fibrogenic metals such as chromium, nickel, aluminium, and beryllium, as well as to lead. Increased beryllium concentrations had been reported in the air of workplaces of beryl cutters in Idar-Oberstein, Germany. The aim of the survey was to study the excretion of beryllium in cutters and grinders with occupational exposure to beryls—for example, aquamarines and emeralds—to examine the prevalence of beryllium sensitisation with the beryllium lymphocyte transformation test (BeLT), to examine the prevalence of lung disease induced by beryllium, to describe the internal load of the respective metals relative to work process, and to screen for genotoxic effects in this particular profession.
METHODS—In a cross sectional investigation, 57 out of 100 gemstone cutters working in 12 factories in Idar-Oberstein with occupational exposure to beryls underwent medical examinations, a chest radiograph, lung function testing (spirometry, airway resistance with the interrupter technique), and biological monitoring, including measurements of aluminium, chromium, and nickel in urine as well as lead in blood. Beryllium in urine was measured with a newly developed direct electrothermal atomic absorption spectroscopy technique with a measurement limit of 0.06 µg/l. Also, cytogenetic tests (rates of micronuclei and sister chromatid exchange), and a BeLT were performed. Airborne concentrations of beryllium were measured in three factories. As no adequate local control group was available, the cutters were categorised into those with an exposure to beryls of >4 hours/week (group A) and ⩽4 hours/week (group B).
RESULTS—Clinical, radiological, or spirometric abnormalities indicating pneumoconiosis were detected in none of the gemstone cutters. Metal concentrations in biological material were far below the respective biological limit values, and beryllium in urine was only measurable in

  9. [Experimental studies of the relative biological effectiveness of accelerated charged particles varying in energy].

    PubMed

    Fedorenko, B S; Petrov, V M; Smirnova, O A; Vorozhtsova, S V; Abrosimova, A N

    2006-01-01

    Experimental results and literary data were analyzed for the relative biological effectiveness of heavy charged particles in a broad range of energy and LET to cells of humans and other mammals in culture, whole body of laboratory animals, microorganisms, bacteriophages, and plants. Analyzed were data obtained with the use of a diversity of tests of acute and delayed lesions induced by ionizing radiation, cancers and cataracts, specifically. Non-parametric methods are applied in parallel to the classic method of calculating the coefficients of relative biological effectiveness by correlating the equal-effective doses of the standard and a given radiation. Consideration is given to factors that may modify RBE values estimated for different types of radiation. PMID:17193971

  10. An accelerated framework for the classification of biological targets from solid-state micropore data.

    PubMed

    Hanif, Madiha; Hafeez, Abdul; Suleman, Yusuf; Mustafa Rafique, M; Butt, Ali R; Iqbal, Samir M

    2016-10-01

    Micro- and nanoscale systems have provided means to detect biological targets, such as DNA, proteins, and human cells, at ultrahigh sensitivity. However, these devices suffer from noise in the raw data, which continues to be significant as newer and devices that are more sensitive produce an increasing amount of data that needs to be analyzed. An important dimension that is often discounted in these systems is the ability to quickly process the measured data for an instant feedback. Realizing and developing algorithms for the accurate detection and classification of biological targets in realtime is vital. Toward this end, we describe a supervised machine-learning approach that records single cell events (pulses), computes useful pulse features, and classifies the future patterns into their respective types, such as cancerous/non-cancerous cells based on the training data. The approach detects cells with an accuracy of 70% from the raw data followed by an accurate classification when larger training sets are employed. The parallel implementation of the algorithm on graphics processing unit (GPU) demonstrates a speedup of three to four folds as compared to a serial implementation on an Intel Core i7 processor. This incredibly efficient GPU system is an effort to streamline the analysis of pulse data in an academic setting. This paper presents for the first time ever, a non-commercial technique using a GPU system for realtime analysis, paired with biological cluster targeting analysis. PMID:27480732

  11. Phytochrome from Green Plants: Properties and biological Function

    SciTech Connect

    Quail, Peter H.

    2014-07-25

    Pfr conformer reverses this activity upon initial light exposure, inducing the switch to photomorphogenic development. This reversal involves light-triggered translocation of the photoactivated phy molecule into the nucleus where it interacts with PIF-family members, inducing rapid phosphorylation and degradation of the PIFs via the ubiquitin-proteasome system. This degradation in turn elicits rapid alterations in gene expression that drive the deetiolation transition. This project has made considerable progress in defining phy-PIF signaling activity in controlling the SAR. The biological functions of the multiple PIF-family members in controlling the SAR, including dissection of the relative contributions of the individual PIFs to this process, as well as to diurnal growth-control oscillations, have been investigated using higher-order pif-mutant combinations. Using microarray analysis of a quadruple pif mutant we have defined the shade-induced, PIF-regulated transcriptional network genome-wide. This has revealed that a dynamic antagonism between the phys and PIFs generates selective reciprocal responses during deetiolation and the SAR in a rapidly light-responsive transcriptional network. Using integrated RNA-seq and ChIP-seq analysis of higher order pif-mutant combinations, we have defined the direct gene-targets of PIF transcriptional regulation, and have obtained evidence that this regulation involves differential direct targeting of rapidly light-responsive genes by the individual PIF-family members. This project has provided significant advances in our understanding of the molecular mechanisms by which the phy-PIF photosensory signaling pathway regulates an important bioenergy-related plant response to the light environment. The identification of molecular targets in the primary transcriptional-regulatory circuitry of this pathway has the potential to enable genetic or reverse-genetic manipulation of the partitioning of carbon between reproductive and

  12. Trajectories of Microbial Community Function in Response to Accelerated Remediation of Subsurface Metal Contaminants

    SciTech Connect

    Firestone, Mary

    2015-01-14

    Objectives of proposed research were to; Determine if the trajectories of microbial community composition and function following organic carbon amendment can be related to, and predicted by, key environmental determinants; Assess the relative importance of the characteristics of the indigenous microbial community, sediment, groundwater, and concentration of organic carbon amendment as the major determinants of microbial community functional response and bioremediation capacity; and Provide a fundamental understanding of the microbial community ecology underlying subsurface metal remediation requisite to successful application of accelerated remediation and long-term stewardship of DOE-IFC sites.

  13. Androgen induced acceleration of functional recovery after rat sciatic nerve injury.

    PubMed

    Brown, Todd J.; Khan, Talat; Jones, Kathryn J.

    1999-01-01

    PURPOSE: Testosterone (T) treatment accelerates recovery from facial paralysis after facial nerve crush in hamsters. In this study, we extended those studies to another injury model and asked the following question: Will T treatment accelerate recovery from lower limb paralysis following sciatic nerve crush in the rat? METHODS: Castrated adult male rats received a right side sciatic nerve crush at the level of the sciatic notch, with the left side serving as control. Half the animals received a subcutaneous implant of a propionated form of T (TP), the others were sham-implanted. Weekly testing using the Sciatic Functional Index (SFI), a quantitative measure of locomotion, was done for 7 weeks postoperative (wpo). RESULTS: Between 3 and 5 weeks post-op, the average SFI score of the TP-treated group was higher than controls. This difference was significant at 4 wpo, indicating an accelerated degree of functional recovery. At these timepoints, the differences were attributable to the footprint or paw length and associated with calf muscle reinnervation rather than the toespreading component associated with intrinsic foot muscle rein-nervation. Beyond 5 wpo, there were no differences in the SFI scores. CONCLUSION: The results indicate that, as with facial nerve regeneration in the hamster, testosterone accelerates functional recovery from hind limb paralysis following sciatic nerve injury in the rat. While the responses of spinal motoneurons to injury can differ from those of cranial motoneurons, in this case it appears that they share a similar response to the trophic actions of androgen. This is important in the context of designing therapeutic strategies for dealing with direct trauma to motoneurons resulting from both peripheral and central nervous system trauma, such as spinal cord injury. PMID:12671219

  14. Distribution of computer functionality for accelerator control at the Brookhaven AGS

    SciTech Connect

    Stevens, A.; Clifford, T.; Frankel, R.

    1985-01-01

    A set of physical and functional system components and their interconnection protocols have been established for all controls work at the AGS. Portions of these designs were tested as part of enhanced operation of the AGS as a source of polarized protons and additional segments will be implemented during the continuing construction efforts which are adding heavy ion capability to our facility. Included in our efforts are the following computer and control system elements: a broad band local area network, which embodies MODEMS; transmission systems and branch interface units; a hierarchical layer, which performs certain data base and watchdog/alarm functions; a group of work station processors (Apollo's) which perform the function of traditional minicomputer host(s) and a layer, which provides both real time control and standardization functions for accelerator devices and instrumentation. Data base and other accelerator functionality is assigned to the most correct level within our network for both real time performance, long-term utility, and orderly growth.

  15. Distribution of computer functionality for accelerator control at the Brookhaven AGS

    SciTech Connect

    Stevens, A.; Clifford, T.; Frankel, R.

    1985-10-01

    A set of physical and functional system components and their interconnection protocols have been established for all controls work at the AGS. Portions of these designs were tested as part of enhanced operation of the AGS as a source of polarized protons and additional segments will be implemented during the continuing construction efforts which are adding heavy ion capability to our facility. Included in our efforts are the following computer and control system elements: a broad band local area network, which embodies MODEMS; transmission systems and branch interface units; a hierarchical layer, which performs certain data base and watchdog/alarm functions; a group of work station processors (Apollo's) which perform the function of traditional minicomputer host(s) and a layer, which provides both real time control and standardization functions for accelerator devices and instrumentation. Data base and other accelerator functionality is assigned to the most correct level within our network for both real time performance, long-term utility, and orderly growth.

  16. Biological Manipulation of Migration Rate: The Use of Advanced Photoperiod to Accelerate Smoltification in Yearling Chinook Salmon, Annual Report 1989.

    SciTech Connect

    Giorgi, Albert E.; Muir, William D.; Zaugg, Waldo S.

    1991-01-01

    Research was conducted to assess the feasibility of biologically manipulating physiological development and migratory behavior of yearling spring chinook salmon, Oncorhynchus tshawytscha. At Dworshak National Fish Hatchery, treatment groups were exposed to a variety of advanced photoperiod cycles preceding release to accelerate smolt development. Physiological development and migratory performance were described for all groups. The treatments included a 14-week exposure to a 3-month advanced photoperiod cycle, an 18-week exposure to a 3-month advanced photoperiod cycle, and an 18-week exposure to a 4-month advanced photoperiod cycle. Two additional groups, an 18-week exposure to a 3-month advanced photoperiod and a control equivalent, were reared at an elevated water temperature (11{degrees}C) for 2 weeks prior to release. Results indicated that the treated fish which were the most physiologically advanced at release were detected in the highest proportion at collector dams and also migrated fastest downstream. 26 refs., 10 figs., 5 tabs.

  17. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice

    PubMed Central

    Zhang, Yiqiang; Fischer, Kathleen E.; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B.

    2015-01-01

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality leading some to suggest this represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased in high fat-fed mice as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. PMID:25558793

  18. Correction of dispersion and the betatron functions in the CEBAF accelerator

    SciTech Connect

    Lebedev, V.A.; Bickley, M.; Schaffner, S.; Zeijts, J. van; Krafft, G.A.; Watson, C.

    1996-10-01

    During the commissioning of the CEBAF accelerator, correction of dispersion and momentum compaction, and, to a lesser extent, transverse transfer matrices were essential for robust operation. With changing machine conditions, repeated correction was found necessary. To speed the diagnostic process the authors developed a method which allows one to rapidly track the machine optics. The method is based on measuring the propagation of 30 Hz modulated betatron oscillations downstream of a point of perturbation. Compared to the usual methods of dispersion or difference orbit measurement, synchronous detection of the beam displacement, as measured by beam position monitors, offers significantly improved speed and accuracy of the measurements. The beam optics of the accelerator was altered to decrease lattice sensitivity at critical points and to simplify control of the betatron function match. The calculation of the Courant-Snyder invariant from signals of each pair of nearby beam position monitors has allowed one to perform on-line measurement and correction of the lattice properties.

  19. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  20. Discovery of biological networks from diverse functional genomic data

    PubMed Central

    Myers, Chad L; Robson, Drew; Wible, Adam; Hibbs, Matthew A; Chiriac, Camelia; Theesfeld, Chandra L; Dolinski, Kara; Troyanskaya, Olga G

    2005-01-01

    We have developed a general probabilistic system for query-based discovery of pathway-specific networks through integration of diverse genome-wide data. This framework was validated by accurately recovering known networks for 31 biological processes in Saccharomyces cerevisiae and experimentally verifying predictions for the process of chromosomal segregation. Our system, bioPIXIE, a public, comprehensive system for integration, analysis, and visualization of biological network predictions for S. cerevisiae, is freely accessible over the worldwide web. PMID:16420673

  1. Accelerating the Discovery of Biologically Active Small Molecules Using a High-Throughput Yeast Halo Assay#

    PubMed Central

    Gassner, Nadine C.; Tamble, Craig M.; Bock, Jonathan E.; Cotton, Naomi; White, Kimberly N.; Tenney, Karen; St. Onge, Robert P.; Proctor, Michael J.; Giaever, Guri; Davis, Ronald W.; Crews, Phillip; Holman, Theodore R.; Lokey, R. Scott

    2008-01-01

    The budding yeast Saccharomyces cerevisiae, a powerful model system for the study of basic eukaryotic cell biology, has been used increasingly as a screening tool for the identification of bioactive small molecules. We have developed a novel yeast toxicity screen that is easily automated and compatible with high-throughput screening robotics. The new screen is quantitative and allows inhibitory potencies to be determined, since the diffusion of the sample provides a concentration gradient and a corresponding toxicity halo. The efficacy of this new screen was illustrated by testing materials including 3,104 compounds from the NCI libraries, 167 marine sponge crude extracts, and 149 crude marine-derived fungal extracts. There were 46 active compounds among the NCI set. One very active extract was selected for bioactivity-guided fractionation resulting in the identification of crambescidin 800 as a potent antifungal agent. PMID:17291044

  2. Leukocyte Telomere Length in Young Adults Born Preterm: Support for Accelerated Biological Ageing

    PubMed Central

    Smeets, Carolina C. J.; Codd, Veryan; Samani, Nilesh J.; Hokken-Koelega, Anita C. S.

    2015-01-01

    Background Subjects born preterm have an increased risk for age-associated diseases, such as cardiovascular disease in later life, but the underlying causes are largely unknown. Shorter leukocyte telomere length (LTL), a marker of biological age, is associated with increased risk of cardiovascular disease. Objectives To compare LTL between subjects born preterm and at term and to assess if LTL is associated with other putative cardiovascular risk factors at young adult age. Methods We measured mean LTL in 470 young adults. LTL was measured using a quantitative PCR assay and expressed as T/S ratio. We analyzed the influence of gestational age on LTL and compared LTL between subjects born preterm (n = 186) and at term (n = 284). Additionally, we analyzed the correlation between LTL and potential risk factors of cardiovascular disease. Results Gestational age was positively associated with LTL (r = 0.11, p = 0.02). Subjects born preterm had shorter LTL (mean (SD) T/S ratio = 3.12 (0.44)) than subjects born at term (mean (SD) T/S ratio = 3.25 (0.46)), p = 0.003). The difference remained significant after adjustment for gender and size at birth (p = 0.001). There was no association of LTL with any one of the putative risk factors analyzed. Conclusions Young adults born preterm have shorter LTL than young adults born at term. Although we found no correlation between LTL and risk for CVD at this young adult age, this biological ageing indicator may contribute to CVD and other adult onset diseases at a later age in those born preterm. PMID:26619005

  3. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands

    PubMed Central

    Wu, Dianming; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich

    2015-01-01

    Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth’s nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a−1 of NO-N and 0.6 Tg a−1 of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate. PMID:26621714

  4. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    PubMed Central

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  5. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands.

    PubMed

    Weber, Bettina; Wu, Dianming; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J; Su, Hang; Pöschl, Ulrich

    2015-12-15

    Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth's nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a(-1) of NO-N and 0.6 Tg a(-1) of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate. PMID:26621714

  6. Biological Effects of Particles with Very High Energy Deposition on Mammalian Cells Utilizing the Brookhaven Tandem Van de Graaff Accelerator

    NASA Technical Reports Server (NTRS)

    Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli

    2013-01-01

    High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.

  7. Spatio-temporal radiation biology with conventionally or laser-accelerated particles for ELIMED

    SciTech Connect

    Ristić-Fira, A.; Bulat, T.; Keta, O.; Petrović, I.; Romano, F.; Cirrone, P.; Cuttone, G.

    2013-07-26

    The aim of this study is to investigate the behavior of radio-resistant human malignant cells, thus enabling better understanding of radiobiological effects of ions in such a case. Radiation sources such as accelerated continuous ion beams and laser technology-based ultra short radiation sources with energy of around 10 MeV will be used. The HTB140 melanoma cells are chosen since it has been shown that they represent the limit case of cellular radio-resistance among the studied tumor cell lines. These cells are particularly interesting as they provide data on the very edge of inactivation capacity of each beam line that is tested. After exposing the cell monolayers to continuous radiations of low (γ-rays) and high (protons) linear energy transfer, the kinetics of disappearance of the phosphorylated histone H2AX (γ-H2AX) foci per cell will be determined. The same procedure will be performed with the pulsed high dose rate protons. Detection and quantification of γ-H2AX foci will be performed by immunohistochemical 3D time-dependent imaging analyses using laser scanning confocal microscopy. Immunoblotting will enable the follow-up of the relation between γ-H2AX and cell cycle arrest via the p53/p21 pathway. In such a way the spatio-temporal changes on sub-cellular level will be visualized, quantified and compared. These results will show whether there is a difference in the effects on cells between continuous and pulsed irradiation mode. Therefore, they will contribute to the data base that might promote pulsed sources for medical treatments of malignant growths.

  8. Spatio-temporal radiation biology with conventionally or laser-accelerated particles for ELIMED

    NASA Astrophysics Data System (ADS)

    Ristić-Fira, A.; Bulat, T.; Keta, O.; Romano, F.; Cirrone, P.; Cuttone, G.; Petrović, I.

    2013-07-01

    The aim of this study is to investigate the behavior of radio-resistant human malignant cells, thus enabling better understanding of radiobiological effects of ions in such a case. Radiation sources such as accelerated continuous ion beams and laser technology-based ultra short radiation sources with energy of around 10 MeV will be used. The HTB140 melanoma cells are chosen since it has been shown that they represent the limit case of cellular radio-resistance among the studied tumor cell lines. These cells are particularly interesting as they provide data on the very edge of inactivation capacity of each beam line that is tested. After exposing the cell monolayers to continuous radiations of low (γ-rays) and high (protons) linear energy transfer, the kinetics of disappearance of the phosphorylated histone H2AX (γ-H2AX) foci per cell will be determined. The same procedure will be performed with the pulsed high dose rate protons. Detection and quantification of γ-H2AX foci will be performed by immunohistochemical 3D time-dependent imaging analyses using laser scanning confocal microscopy. Immunoblotting will enable the follow-up of the relation between γ-H2AX and cell cycle arrest via the p53/p21 pathway. In such a way the spatio-temporal changes on sub-cellular level will be visualized, quantified and compared. These results will show whether there is a difference in the effects on cells between continuous and pulsed irradiation mode. Therefore, they will contribute to the data base that might promote pulsed sources for medical treatments of malignant growths.

  9. Harmonic oscillators: the quantization of simple systems in the old quantum theory and their functional roles in biology.

    PubMed

    Steele, Richard H

    2008-03-01

    This article introduces quantum physics into biology in an intuitive and non-intimidating manner. It extends the quantum aspects of harmonic oscillators, and electromagnetic fields, to their functional roles in biology. Central to this process are the De Broglie wave-particle duality equation, and the adiabatic invariant parameters, magnetic moment, angular momentum and magnetic flux, determined by Ehrenfest as imposing quantum constraints on the dynamics of charges in motion. In mechanisms designed to explain the generation of low-level light emissions in biology we have adopted a biological analog of the electrical circuitry modeled on the parallel plated capacitor, traversed by helical protein structures, capable of generating electromagnetic radiation in the optical spectral region. The charge carrier required for the emissions is an accelerating electron driven, in a cyclotron-type mechanism, by ATP-induced reverse electron transfer with the radial, emission, components, mediated by coulombic forces within the helical configurations. Adenine, an essential nucleotide constituent of DNA, was examined with its long wavelength absorption maximum determining the energetic parameters for the calculations. The calculations were made for a virtual 5-turn helix where each turn of the helix emits a different frequency, generating a biological quantum series. The components of six adiabatic invariant equations were found to be embedded in Planck's constant rendering them discrete, finite, non-random, non-statistical-Planck's constant precludes probability. A mechanism for drug-induced hallucination is described that might provide insights as to the possible role of electromagnetic fields in consciousness. Sodium acceleration through a proposed nerve membrane helical channel generated electromagnetic emissions in the microwave region in confirmation of reported microwave emission for active nerves and may explain saltatory nerve conduction. Theoretical calculations for a

  10. Origins of Highly Structured Distribution Functions in Magnetic Reconnection Exhausts: Understanding Electron Acceleration and Heating

    NASA Astrophysics Data System (ADS)

    Shuster, J. R.; Wang, S.; Chen, L. J.; Bessho, N.; Guo, R.; Torbert, R. B.; Daughton, W. S.

    2014-12-01

    Electron velocity distribution functions (VDFs) during reconnection with negligible guide field from particle in cell (PIC) simulations and Cluster observations are studied to further understand electron acceleration and heating. Until recently, electrons in the exhaust of reconnection with negligible guide field were thought to be isotropic. PIC simulation results with zero guide field reveal that near the time of peak reconnection, VDFs become highly structured in magnetic islands and open exhausts. Ring, arc, and counterstreaming populations are generic and lasting constituents of exhaust electron VDFs. Analyses of particle trajectories indicate that a number of mechanisms including Fermi acceleration, the parallel potential, and adiabatic heating contribute to the energization of exhaust electrons. Near the electron diffusion region (EDR), exhaust electrons exhibit large Te⊥ due to ring and arc populations of electrons accelerated in the EDR. Farther away from the EDR, the VDFs show a mixture of electrons from the EDR and those crossing the separatrix from the inflow. Pitch angle scattering is effective near the exhaust midplane, away from the EDR and before reaching the magnetic pileup region, producing isotropic, high-energy electrons, while the low energy exhaust electrons exhibit the anisotropy Te// > Te⊥ characteristic of the inflow. The work done on the electrons by the perpendicular electric field between the end of EDR and the magnetic pileup region is due to Fermi acceleration which leads to a net increase in the electron's parallel velocity. For the net increase of electrons' v⊥ beyond the EDR, pitch angle scattering effectively converts v// gained by acceleration from the parallel potential into v⊥. Electron's v⊥ further increases downstream through adiabatic heating from the increasing magnetic field in addition to less efficient pitch angle scattering. The parallel potential and the magnetic bottle together determine the trapped

  11. k-t FASTER: Acceleration of functional MRI data acquisition using low rank constraints

    PubMed Central

    Chiew, Mark; Smith, Stephen M; Koopmans, Peter J; Graedel, Nadine N; Blumensath, Thomas; Miller, Karla L

    2015-01-01

    Purpose In functional MRI (fMRI), faster sampling of data can provide richer temporal information and increase temporal degrees of freedom. However, acceleration is generally performed on a volume-by-volume basis, without consideration of the intrinsic spatio-temporal data structure. We present a novel method for accelerating fMRI data acquisition, k-t FASTER (FMRI Accelerated in Space-time via Truncation of Effective Rank), which exploits the low-rank structure of fMRI data. Theory and Methods Using matrix completion, 4.27× retrospectively and prospectively under-sampled data were reconstructed (coil-independently) using an iterative nonlinear algorithm, and compared with several different reconstruction strategies. Matrix reconstruction error was evaluated; a dual regression analysis was performed to determine fidelity of recovered fMRI resting state networks (RSNs). Results The retrospective sampling data showed that k-t FASTER produced the lowest error, approximately 3–4%, and the highest quality RSNs. These results were validated in prospectively under-sampled experiments, with k-t FASTER producing better identification of RSNs than fully sampled acquisitions of the same duration. Conclusion With k-t FASTER, incoherently under-sampled fMRI data can be robustly recovered using only rank constraints. This technique can be used to improve the speed of fMRI sampling, particularly for multivariate analyses such as temporal independent component analysis. Magn Reson Med 74:353–364, 2015. © 2014 Wiley Periodicals, Inc. PMID:25168207

  12. The IWOP Technique and Wigner-Function Approach to Quantum Effect of Mesoscopic Biological Cell

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Xia

    2014-09-01

    Using the IWOP technique, Wigner function theory and TFD theory, the quantization of a mesoscopic biological cell equivalent circuit is proposed, The quantum fluctuations of the mesoscopic biological cell are researched in thermal vacuum state and vacuum state. It is shown that the IWOP technique, Wigner function theory and Umezawa-Takahashi's TFD theory play the key role in quantizing a mesoscopic biological cell at finite temperature and the fluctuations and uncertainty increase with increasing temperature and decrease with prolonged time.

  13. Ground Test of the Urine Processing Assembly for Accelerations and Transfer Functions

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Almond, Deborah F. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the ground test of the urine processing assembly for accelerations and transfer functions. Details are given on the test setup, test data, data analysis, analytical results, and microgravity assessment. The conclusions of the tests include the following: (1) the single input/multiple output method is useful if the data is acquired by tri-axial accelerometers and inputs can be considered uncorrelated; (2) tying coherence with the matrix yields higher confidence in results; (3) the WRS#2 rack ORUs need to be isolated; (4) and future work includes a plan for characterizing performance of isolation materials.

  14. GPU Accelerated Implementation of Density Functional Theory for Hybrid QM/MM Simulations.

    PubMed

    Nitsche, Matías A; Ferreria, Manuel; Mocskos, Esteban E; González Lebrero, Mariano C

    2014-03-11

    The hybrid simulation tools (QM/MM) evolved into a fundamental methodology for studying chemical reactivity in complex environments. This paper presents an implementation of electronic structure calculations based on density functional theory. This development is optimized for performing hybrid molecular dynamics simulations by making use of graphic processors (GPU) for the most computationally demanding parts (exchange-correlation terms). The proposed implementation is able to take advantage of modern GPUs achieving acceleration in relevant portions between 20 to 30 times faster than the CPU version. The presented code was extensively tested, both in terms of numerical quality and performance over systems of different size and composition. PMID:26580175

  15. [Biological functions and the practical use of chitin].

    PubMed

    Feofilova, E P

    1984-01-01

    The review is dedicated to chitin--a wide-spread in nature polyaminosaccharide. Its main physico-chemical properties and biological role in the cell are analyzed. The review centres round the practical use of chitin and its derivatives. Natural resources, modern modes for production and application of chitin and its derivatives in industry, medicine, biotechnology and agriculture are discussed. PMID:6371781

  16. Oxidative metabolites of lycopene and their biological functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain a better understanding of the beneficial biological activities of lycopene on cancer prevention, a greater knowledge of the metabolism of lycopene is needed. In particular, the identification of lycopene metabolites and oxidation products in vivo; the importance of tissue specific lycopene c...

  17. Automated ARGET ATRP Accelerates Catalyst Optimization for the Synthesis of Thiol-Functionalized Polymers

    PubMed Central

    Siegwart, Daniel J.; Leiendecker, Matthias; Langer, Robert; Anderson, Daniel G.

    2013-01-01

    Conventional synthesis of polymers by ATRP is relatively low throughput, involving iterative optimization of conditions in an inert atmosphere. Automated, high-throughput controlled radical polymerization was developed to accelerate catalyst optimization and production of disulfide-functionalized polymers without the need of an inert gas. Using ARGET ATRP, polymerization conditions were rapidly identified for eight different monomers, including the first ARGET ATRP of 2-(diethylamino)ethyl methacrylate and di(ethylene glycol) methyl ether methacrylate. In addition, butyl acrylate, oligo(ethylene glycol) methacrylate 300 and 475, 2-(dimethylamino)ethyl methacrylate, styrene, and methyl methacrylate were polymerized using bis(2-hydroxyethyl) disulfide bis(2-bromo-2-methylpropionate) as the initiator, tris(2-pyridylmethyl)amine as the ligand, and tin(II) 2-ethylhexanoate as the reducing agent. The catalyst and reducing agent concentration was optimized specifically for each monomer, and then a library of polymers was synthesized systematically using the optimized conditions. The disulfide-functionalized chains could be cleaved to two thiol-terminated chains upon exposure to dithiothreitol, which may have utility for the synthesis of polymer bioconjugates. Finally, we demonstrated that these new conditions translated perfectly to conventional batch polymerization. We believe the methods developed here may prove generally useful to accelerate the systematic optimization of a variety of chemical reactions and polymerizations. PMID:23599541

  18. Tables of phase functions, opacities, albedos, equilibrium temperatures, and radiative accelerations of dust grains in exoplanets

    NASA Astrophysics Data System (ADS)

    Budaj, J.; Kocifaj, M.; Salmeron, R.; Hubeny, I.

    2015-11-01

    There has been growing observational evidence for the presence of condensates in the atmospheres and/or comet-like tails of extrasolar planets. As a result, systematic and homogeneous tables of dust properties are useful in order to facilitate further observational and theoretical studies. In this paper we present calculations and analysis of non-isotropic phase functions, asymmetry parameter (mean cosine of the scattering angle), absorption and scattering opacities, single scattering albedos, equilibrium temperatures, and radiative accelerations of dust grains relevant for extrasolar planets. Our assumptions include spherical grain shape, Deirmendjian particle size distribution, and Mie theory. We consider several species: corundum/alumina, perovskite, olivines with 0 and 50 per cent iron content, pyroxenes with 0, 20, and 60 per cent iron content, pure iron, carbon at two different temperatures, water ice, liquid water, and ammonia. The presented tables cover the wavelength range of 0.2-500 μm and modal particle radii from 0.01 to 100 μm. Equilibrium temperatures and radiative accelerations assume irradiation by a non-blackbody source of light with temperatures from 7000 to 700 K seen at solid angles from 2π to 10-6 sr. The tables are provided to the community together with a simple code which allows for an optional, finite, angular dimension of the source of light (star) in the phase function.

  19. Cerenkov Radiation: A Multi-functional Approach for Biological Sciences

    NASA Astrophysics Data System (ADS)

    Ma, Xiaowei; Wang, Jing; Cheng, Zhen

    2014-02-01

    Cerenkov radiation (CR) has been used in various biological research fields, which has aroused lots of attention in recent years. Combining optical imaging instruments and most of nuclear medicine imaging or radiotherapy probes, the CR was developed as a new imaging modality for biology studies, called Cerenkov luminescence imaging (CLI). On the other hand, it was novelly used as an internal excitation source to activate some fluorophores for energy transfer imaging. However, it also has some shortages such as relatively weak luminescence intensity and low penetration in tissue. Thus some scientific groups demonstrated to optimize the CLI and demonstrated it to three-dimension tomography. In this article, we elaborate on its principle, history, and applications and discuss a number of directions for technical improvements. Then concluded some advantages and shortages of CR and discuss some prospects of it.

  20. Accelerating the two-point and three-point galaxy correlation functions using Fourier transforms

    NASA Astrophysics Data System (ADS)

    Slepian, Zachary; Eisenstein, Daniel J.

    2016-01-01

    Though Fourier transforms (FTs) are a common technique for finding correlation functions, they are not typically used in computations of the anisotropy of the two-point correlation function (2PCF) about the line of sight in wide-angle surveys because the line-of-sight direction is not constant on the Cartesian grid. Here we show how FTs can be used to compute the multipole moments of the anisotropic 2PCF. We also show how FTs can be used to accelerate the 3PCF algorithm of Slepian & Eisenstein. In both cases, these FT methods allow one to avoid the computational cost of pair counting, which scales as the square of the number density of objects in the survey. With the upcoming large data sets of Dark Energy Spectroscopic Instrument, Euclid, and Large Synoptic Survey Telescope, FT techniques will therefore offer an important complement to simple pair or triplet counts.

  1. Two-axis acceleration of functional connectivity magnetic resonance imaging by parallel excitation of phase-tagged slices and half k-space acceleration.

    PubMed

    Jesmanowicz, Andrzej; Nencka, Andrew S; Li, Shi-Jiang; Hyde, James S

    2011-01-01

    Whole brain functional connectivity magnetic resonance imaging requires acquisition of a time course of gradient-recalled (GR) volumetric images. A method is developed to accelerate this acquisition using GR echo-planar imaging and radio frequency (RF) slice phase tagging. For N-fold acceleration, a tailored RF pulse excites N slices using a uniform-field transmit coil. This pulse is the Fourier transform of the profile for the N slices with a predetermined RF phase tag on each slice. A multichannel RF receive coil is used for detection. For n slices, there are n/N groups of slices. Signal-averaged reference images are created for each slice within each slice group for each member of the coil array and used to separate overlapping images that are simultaneously received. The time-overhead for collection of reference images is small relative to the acquisition time of a complete volumetric time course. A least-squares singular value decomposition method allows image separation on a pixel-by-pixel basis. Twofold slice acceleration is demonstrated using an eight-channel RF receive coil, with application to resting-state functional magnetic resonance imaging in the human brain. Data from six subjects at 3 T are reported. The method has been extended to half k-space acquisition, which not only provides additional acceleration, but also facilitates slice separation because of increased signal intensity of the central lines of k-space coupled with reduced susceptibility effects. PMID:22432957

  2. Association of occupational pesticide exposure with accelerated longitudinal decline in lung function.

    PubMed

    de Jong, Kim; Boezen, H Marike; Kromhout, Hans; Vermeulen, Roel; Postma, Dirkje S; Vonk, Judith M

    2014-06-01

    Cross-sectional studies have shown that occupational exposure to vapors, gases, dusts, and fumes (VGDF) and pesticides is associated with a lower level of lung function. These associations seem to be stronger in ever smokers. In the current study, we aimed to assess whether occupational exposure to VGDF and pesticides is associated with longitudinal decline in lung function. We used 12,772 observations from 2,527 participants in the Vlagtwedde-Vlaardingen Study, a general-population-based cohort study that followed subjects for 25 years, from 1965 to the last survey in 1989/1990. Job-specific exposure was estimated with the ALOHA+ job exposure matrix. Associations between exposures and annual changes in forced expiratory volume in 1 second (FEV1) and FEV1 as a percentage of inspiratory vital capacity (FEV1%VC) were assessed with linear mixed-effect models including sex, age, and level of lung function at the first measurement and pack-years of smoking at the last measurement. We tested for interaction between smoking and occupational exposure and assessed associations separately for never smokers and ever smokers. Exposure to VGDF was not associated with accelerated lung function decline after adjustment for co-exposure to pesticides. Exposure to pesticides, both in the last-held job and as a cumulative measure, was associated with accelerated decline in FEV1 and FEV1%VC, especially among ever smokers, where we found an excess change in FEV1 of -6.9 mL/year (95% confidence interval: -10.2, -3.7) associated with high pesticide exposure. PMID:24780843

  3. Muscle mass, structural and functional investigations of senescence-accelerated mouse P8 (SAMP8)

    PubMed Central

    Guo, An Yun; Leung, Kwok Sui; Siu, Parco Ming Fai; Qin, Jiang Hui; Chow, Simon Kwoon Ho; Qin, Ling; Li, Chi Yu; Cheung, Wing Hoi

    2015-01-01

    Sarcopenia is an age-related systemic syndrome with progressive deterioration in skeletal muscle functions and loss in mass. Although the senescence-accelerated mouse P8 (SAMP8) was reported valid for muscular ageing research, there was no report on the details such as sarcopenia onset time. Therefore, this study was to investigate the change of muscle mass, structure and functions during the development of sarcopenia. Besides the average life span, muscle mass, structural and functional measurements were also studied. Male SAMP8 animals were examined at month 6, 7, 8, 9, and 10, in which the right gastrocnemius was isolated and tested for ex vivo contractile properties and fatigability while the contralateral one was harvested for muscle fiber cross-sectional area (FCSA) and typing assessments. Results showed that the peak of muscle mass appeared at month 7 and the onset of contractility decline was observed from month 8. Compared with month 8, most of the functional parameters at month 10 decreased significantly. Structurally, muscle fiber type IIA made up the largest proportion of the gastrocnemius, and the fiber size was found to peak at month 8. Based on the altered muscle mass, structural and functional outcomes, it was concluded that the onset of sarcopenia in SAMP8 animals was at month 8. SAMP8 animals at month 8 should be at pre-sarcopenia stage while month 10 at sarcopenia stage. It is confirmed that SAMP8 mouse can be used in sarcopenia research with established time line in this study. PMID:26193895

  4. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    PubMed

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/. PMID:27446133

  5. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach

    PubMed Central

    Li, Jun; Zhao, Patrick X.

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/. PMID:27446133

  6. Characterization of a Source Importance Function in an Accelerator-Driven System

    SciTech Connect

    Kim, Yonghee; Park, Won Seok; Park, Chang Kue

    2003-07-15

    An importance function of the external spallation neutrons in an accelerator-driven system (ADS) has been introduced and characterized to address the source multiplication in a subcritical blanket. For a model ADS problem with a central external source, the source importance function is evaluated with a neutron transport code system. For a homogeneous core, essential characteristics of the importance are identified from the viewpoint of spatial distributions and energy dependency, etc. The importance function is evaluated for two different beam tube diameters, and its dependency on the buffer thickness is also addressed. In order to assess the impact of the power distribution on the importance function, a heterogeneous core is considered, and its importance function is evaluated. The analyses show that the peak importance occurs in the inner fuel blanket zone, not in the central source region, and the neutron importance in a high-energy regime, above 7 to 20 MeV, is high and increases with the energy. Also, the effects of a neutron absorber on the source importance are studied, and it is found that the source importance could be drastically reduced by surrounding the source with a strong neutron absorber such as B{sub 4}C. In addition, the source importance function is compared with the conventional {lambda}-mode adjoint flux, which is used as an importance function of fission neutrons in critical reactors. The comparison reveals that the inhomogeneous source importance function could be quite similar to the homogeneous {lambda}-mode adjoint flux in both spatial and spectral distributions for a wide range of subcriticality.

  7. Polymer gel dosimetry for neutron beam in the Neutron Exposure Accelerator System for Biological Effect Experiments (NASBEE)

    NASA Astrophysics Data System (ADS)

    Kawamura, H.; Sato, H.; Hamano, T.; Suda, M.; Yoshii, H.

    2015-01-01

    This study aimed to investigate whether gel dosimetry could be used to measure neutron beams. We irradiated a BANG3-type polymer gel dosimeter using neutron beams in the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) at the National Institute of Radiological Sciences (NIRS) in Japan. First, the polymer gels were irradiated from 0 to 7.0 Gy to investigate the dose-R2 responses. Irradiated gels were evaluated using 1.5-T magnetic resonance R2 images. Second, the polymer gels were irradiated to 1.0, 3.0, and 5.0 Gy to acquire a depth-R2 response curve. The dose-R2 response curve was linear up to approximately 7 Gy, with a slope of 1.25 Gy-1·s-1. Additionally, compared with the photon- irradiated gels, the neutron-irradiated gels had lower R2 values. The acquired depth-R2 curves of the central axis from the 3.0- and 5.0-Gy neutron dose-irradiated gels exhibited an initial build-up. Although, a detailed investigation is needed, polymer gel dosimetry is effective for measuring the dose-related R2 linearity and depth-R2 relationships of neutron beams.

  8. Identification of Molecular Markers of Delayed Graft Function Based on the Regulation of Biological Ageing

    PubMed Central

    McGuinness, Dagmara; Leierer, Johannes; Shapter, Olivier; Mohammed, Suhaib; Gingell-Littlejohn, Marc; Kingsmore, David B.; Little, Ann-Margaret; Kerschbaum, Julia; Schneeberger, Stefan; Maglione, Manuel; Nadalin, Silvio; Wagner, Sylvia; Königsrainer, Alfred; Aitken, Emma; Whalen, Henry; Clancy, Marc; McConnachie, Alex; Koppelstaetter, Christian; Stevenson, Karen S.; Shiels, Paul G.

    2016-01-01

    Introduction Delayed graft function is a prevalent clinical problem in renal transplantation for which there is no objective system to predict occurrence in advance. It can result in a significant increase in the necessity for hospitalisation post-transplant and is a significant risk factor for other post-transplant complications. Methodology The importance of microRNAs (miRNAs), a specific subclass of small RNA, have been clearly demonstrated to influence many pathways in health and disease. To investigate the influence of miRNAs on renal allograft performance post-transplant, the expression of a panel of miRNAs in pre-transplant renal biopsies was measured using qPCR. Expression was then related to clinical parameters and outcomes in two independent renal transplant cohorts. Results Here we demonstrate, in two independent cohorts of pre-implantation human renal allograft biopsies, that a novel pre-transplant renal performance scoring system (GRPSS), can determine the occurrence of DGF with a high sensitivity (>90%) and specificity (>60%) for donor allografts pre-transplant, using just three senescence associated microRNAs combined with donor age and type of organ donation. Conclusion These results demonstrate a relationship between pre-transplant microRNA expression levels, cellular biological ageing pathways and clinical outcomes for renal transplantation. They provide for a simple, rapid quantitative molecular pre-transplant assay to determine post-transplant allograft function and scope for future intervention. Furthermore, these results demonstrate the involvement of senescence pathways in ischaemic injury during the organ transplantation process and an indication of accelerated bio-ageing as a consequence of both warm and cold ischaemia. PMID:26734715

  9. Unexpected functional similarities between gatekeeper tumour suppressor genes and proto-oncogenes revealed by systems biology.

    PubMed

    Zhao, Yongzhong; Epstein, Richard J

    2011-05-01

    Familial tumor suppressor genes comprise two subgroups: caretaker genes (CTs) that repair DNA, and gatekeeper genes (GKs) that trigger cell death. Since GKs may also induce cell cycle delay and thus enhance cell survival by facilitating DNA repair, we hypothesized that the prosurvival phenotype of GKs could be selected during cancer progression, and we used a multivariable systems biology approach to test this. We performed multidimensional data analysis, non-negative matrix factorization and logistic regression to compare the features of GKs with those of their putative antagonists, the proto-oncogenes (POs), as well as with control groups of CTs and functionally unrelated congenital heart disease genes (HDs). GKs and POs closely resemble each other, but not CTs or HDs, in terms of gene structure (P<0.001), expression level and breadth (P<0.01), DNA methylation signature (P<0.001) and evolutionary rate (P<0.001). The similar selection pressures and epigenetic trajectories of GKs and POs so implied suggest a common functional attribute that is strongly negatively selected-that is, a shared phenotype that enhances cell survival. The counterintuitive finding of similar evolutionary pressures affecting GKs and POs raises an intriguing possibility: namely, that cancer microevolution is accelerated by an epistatic cascade in which upstream suppressor gene defects subvert the normal bifunctionality of wild-type GKs by constitutively shifting the phenotype away from apoptosis towards survival. If correct, this interpretation would explain the hitherto unexplained phenomenon of frequent wild-type GK (for example, p53) overexpression in tumors. PMID:21368766

  10. Water as a green solvent for efficient synthesis of isocoumarins through microwave-accelerated and Rh/Cu-catalyzed C-H/O-H bond functionalization

    SciTech Connect

    Li, Qiu; Yan, Yunnan; Wang, Xiaowei; Gong, Binwei; Tang, Xiaobo; Shi, JingJing; Xu, H. Eric; Yi, Wei

    2014-08-14

    Green chemistry that uses water as a solvent has recently received great attention in organic synthesis. Here we report an efficient synthesis of biologically important isocoumarins through direct cleavage of C–H/O–H bonds by microwave-accelerated and Rh/Cu-catalyzed oxidative annulation of various substituted benzoic acids, where water is used as the only solvent in the reactions. The remarkable features of this “green” methodology include high product yields, wide tolerance of various functional groups as substrates, and excellent region-/site-specificities, thus rendering this methodology a highly versatile and eco-friendly alternative to the existing methods for synthesizing isocoumarins and other biologically important derivatives such as isoquinolones.

  11. Non-coding RNAs: Classification, Biology and Functioning.

    PubMed

    Hombach, Sonja; Kretz, Markus

    2016-01-01

    One of the long-standing principles of molecular biology is that DNA acts as a template for transcription of messenger RNAs, which serve as blueprints for protein translation. A rapidly growing number of exceptions to this rule have been reported over the past decades: they include long known classes of RNAs involved in translation such as transfer RNAs and ribosomal RNAs, small nuclear RNAs involved in splicing events, and small nucleolar RNAs mainly involved in the modification of other small RNAs, such as ribosomal RNAs and transfer RNAs. More recently, several classes of short regulatory non-coding RNAs, including piwi-associated RNAs, endogenous short-interfering RNAs and microRNAs have been discovered in mammals, which act as key regulators of gene expression in many different cellular pathways and systems. Additionally, the human genome encodes several thousand long non-protein coding RNAs >200 nucleotides in length, some of which play crucial roles in a variety of biological processes such as epigenetic control of chromatin, promoter-specific gene regulation, mRNA stability, X-chromosome inactivation and imprinting. In this chapter, we will introduce several classes of short and long non-coding RNAs, describe their diverse roles in mammalian gene regulation and give examples for known modes of action. PMID:27573892

  12. KEK digital accelerator

    NASA Astrophysics Data System (ADS)

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  13. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator

    SciTech Connect

    Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er; University of Chinese Academy of Sciences, Beijing 100049

    2014-02-15

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  14. [Biological problems of origin and development of various physiological functions (theory and application)].

    PubMed

    Ivanov, K P

    2001-01-01

    The author presents some idea about origin and development of some physiological functions: outer breathing, breath function of blood, blood circulation, thermoregulation, energy supply. The conclusions about main directions of evolution of these functions and duration of their development in phylogeny were drawn. The author gave some examples of abrupt changes of development of these functions in different groups of animals and discussed possible reasons of such changes. General quantitative estimation of the results of evolution of these functions from the position of their summArized efficiency was done. Quantitative characteristics of optimization and efficiency limits of physiological functions were suggested on the base of new data in general biology and comparative physiology. The author put toward the hypothesis about conventional "mistakes" of evolution and showed deep biological reasons of some seriOus illness. The examples of some applied problems in biology, physiology and medicine that can be solved with the data on evolution of physiological functions are presented. PMID:11548400

  15. Study of electron acceleration and x-ray radiation as a function of plasma density in capillary-guided laser wakefield accelerators

    SciTech Connect

    Ju, J.; Döpp, A.; Cros, B.; Svensson, K.; Genoud, G.; Wojda, F.; Burza, M.; Persson, A.; Lundh, O.; Wahlström, C.-G.; Ferrari, H.

    2013-08-15

    Laser wakefield electron acceleration in the blow-out regime and the associated betatron X-ray radiation were investigated experimentally as a function of the plasma density in a configuration where the laser is guided. Dielectric capillary tubes were employed to assist the laser keeping self-focused over a long distance by collecting the laser energy around its central focal spot. With a 40 fs, 16 TW pulsed laser, electron bunches with tens of pC charge were measured to be accelerated to an energy up to 300 MeV, accompanied by X-ray emission with a peak brightness of the order of 10{sup 21} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW. Electron trapping and acceleration were studied using the emitted X-ray beam distribution to map the acceleration process; the number of betatron oscillations performed by the electrons was inferred from the correlation between measured X-ray fluence and beam charge. A study of the stability of electron and X-ray generation suggests that the fluctuation of X-ray emission can be reduced by stabilizing the beam charge. The experimental results are in good agreement with 3D particle-in-cell (PIC) simulation.

  16. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    DOEpatents

    Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Hawk, John Eric [Olive Branch, MS; Boiadjiev, Vassil I [Knoxville, TN

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  17. Beyond iron: non-classical biological functions of bacterial siderophores.

    PubMed

    Johnstone, Timothy C; Nolan, Elizabeth M

    2015-04-14

    Bacteria secrete small molecules known as siderophores to acquire iron from their surroundings. For over 60 years, investigations into the bioinorganic chemistry of these molecules, including fundamental coordination chemistry studies, have provided insight into the crucial role that siderophores play in bacterial iron homeostasis. The importance of understanding the fundamental chemistry underlying bacterial life has been highlighted evermore in recent years because of the emergence of antibiotic-resistant bacteria and the need to prevent the global rise of these superbugs. Increasing reports of siderophores functioning in capacities other than iron transport have appeared recently, but reports of "non-classical" siderophore functions have long paralleled those of iron transport. One particular non-classical function of these iron chelators, namely antibiotic activity, was documented before the role of siderophores in iron transport was established. In this Perspective, we present an exposition of past and current work into non-classical functions of siderophores and highlight the directions in which we anticipate that this research is headed. Examples include the ability of siderophores to function as zincophores, chalkophores, and metallophores for a variety of other metals, sequester heavy metal toxins, transport boron, act as signalling molecules, regulate oxidative stress, and provide antibacterial activity. PMID:25764171

  18. Beyond Iron: Non-Classical Biological Functions of Bacterial Siderophores

    PubMed Central

    Johnstone, Timothy C.; Nolan, Elizabeth M.

    2015-01-01

    Bacteria secrete small molecules known as siderophores to acquire iron from their surroundings. For over 60 years, investigations into the bioinorganic chemistry of these molecules, including fundamental coordination chemistry studies, have provided insight into the crucial role that siderophores play in bacterial iron homeostasis. The importance of understanding the fundamental chemistry underlying bacterial life has been highlighted evermore in recent years because of the emergence of antibiotic-resistant bacteria and the need to prevent the global rise of these superbugs. Increasing reports of siderophores functioning in capacities other than iron transport have appeared recently, but reports of “non-classical” siderophore functions have long paralleled those of iron transport. One particular non-classical function of these iron chelators, namely antibiotic activity, was even documented before the role of siderophores in iron transport was established. In this Perspective, we present an exposition of past and current work into non-classical functions of siderophores and highlight the directions in which we anticipate that this research is headed. Examples include the ability of siderophores to function as zincophores, chalkophores, and metallophores for a variety of other metals, sequester heavy metal toxins, transport boron, act as signalling molecules, regulate oxidative stress, and provide antibacterial activity. PMID:25764171

  19. Engineering functional nanostructures for materials and biological applications

    NASA Astrophysics Data System (ADS)

    Subramani, Chandramouleeswaran

    Engineering nanostructures with complete control over the shape, composition, organization of the surface structures, and function remains a major challenge. In my work, I have fabricated nanostructures using functional polymer motifs and nanoparticles (NPs) via supramolecular and non-supramolecular interactions. In one of the approaches to generate nanostructures, I have integrated top-down approaches such as nanoimprint lithography, electron-beam lithography, and photolithography with the self-assembly (bottom-up) of NPs to provide nanostructures with tailored shape and function. In this strategy, I have developed a geometrically assisted orthogonal assembly of nanoparticles onto polymer features at precisely defined locations. This versatile NP functionalization method can be used to fabricate protein resistant patterned surfaces to provide essentially complete control over cellular alignment, making them promising biofunctional structures for cell patterning. In another approach, I have utilized self-assembly of dendrimers and NPs without preformed templates to generate nanostructures that can be used as chemoselective membranes for the separation of small and biomacromolecules.

  20. Exosome Function: From Tumor Immunology to Pathogen Biology

    PubMed Central

    Schorey, Jeffrey S.; Bhatnagar, Sanchita

    2009-01-01

    Exosomes are the newest family member of ‘bioactive vesicles’ that function to promote intercellular communication. Exosomes are derived from the fusion of multi-vesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non-hematopoietic origin, yet their function remains enigmatic. Much of the prior work has focused on exosomes as a source of tumor antigens and in presentation of tumor antigens to T cells. However, new studies have shown that exosomes might also promote cell-to-cell spread of infectious agents. Moreover, exosomes isolated from cells infected with various intra-cellular pathogens, including Mycobacterium tuberculosis and Toxoplasma gondii, have been shown to contain microbial components and can promote antigen presentation and macrophage activation, suggesting that exosomes may function in immune surveillance. In this review, we summarize our understanding of exosome biogenesis but focus primarily on new insights into exosome function. We also discuss their possible use as disease biomarkers and vaccine candidates. PMID:18331451

  1. Biological/biomedical accelerator mass spectrometry targets. 1. optimizing the CO2 reduction step using zinc dust.

    PubMed

    Kim, Seung-Hyun; Kelly, Peter B; Clifford, Andrew J

    2008-10-15

    Biological and biomedical applications of accelerator mass spectrometry (AMS) use isotope ratio mass spectrometry to quantify minute amounts of long-lived radioisotopes such as (14)C. AMS target preparation involves first the oxidation of carbon (in sample of interest) to CO 2 and second the reduction of CO 2 to filamentous, fluffy, fuzzy, or firm graphite-like substances that coat a -400-mesh spherical iron powder (-400MSIP) catalyst. Until now, the quality of AMS targets has been variable; consequently, they often failed to produce robust ion currents that are required for reliable, accurate, precise, and high-throughput AMS for biological/biomedical applications. Therefore, we described our optimized method for reduction of CO 2 to high-quality uniform AMS targets whose morphology we visualized using scanning electron microscope pictures. Key features of our optimized method were to reduce CO 2 (from a sample of interest that provided 1 mg of C) using 100 +/- 1.3 mg of Zn dust, 5 +/- 0.4 mg of -400MSIP, and a reduction temperature of 500 degrees C for 3 h. The thermodynamics of our optimized method were more favorable for production of graphite-coated iron powders (GCIP) than those of previous methods. All AMS targets from our optimized method were of 100% GCIP, the graphitization yield exceeded 90%, and delta (13)C was -17.9 +/- 0.3 per thousand. The GCIP reliably produced strong (12)C (-) currents and accurate and precise F m values. The observed F m value for oxalic acid II NIST SRM deviated from its accepted F m value of 1.3407 by only 0.0003 +/- 0.0027 (mean +/- SE, n = 32), limit of detection of (14)C was 0.04 amol, and limit of quantification was 0.07 amol, and a skilled analyst can prepare as many as 270 AMS targets per day. More information on the physical (hardness/color), morphological (SEMs), and structural (FT-IR, Raman, XRD spectra) characteristics of our AMS targets that determine accurate, precise, and high-hroughput AMS measurement are in the

  2. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps.

    PubMed

    Haastert-Talini, Kirsten; Schmitte, Ruth; Korte, Nele; Klode, Dorothee; Ratzka, Andreas; Grothe, Claudia

    2011-04-01

    Short-term low-frequency electrical stimulation (ESTIM) of proximal peripheral nerve stumps prior to end-to-end coaptation or tubular bridging of small distances has been reported to increase preferential motor reinnervation and functional motor recovery in animal models and human patients undergoing carpal tunnel release surgery. We investigated the effects of ESTIM on regeneration across rat sciatic nerve gaps, which exceed distances that allow spontaneous regeneration. Three different reconstruction approaches were combined with ESTIM in the experimental groups. Nerve gaps (13 mm) were bridged using (I) nerve autotransplantation, (II) transplantation of differentially filled silicone tubes, or (III) transplantation of tubular grafts containing fibroblast growth factor-2 overexpressing Schwann cells (SCs) for gene therapy. The regeneration outcome was followed for up to 8 weeks, and functionally as well as histomorphometrically analyzed in comparison to non-stimulated control groups. Combining ESTIM with nerve autotransplantation significantly increased the nerve fiber density in the regenerated nerve, and the grade of functional recovery as detected by electrodiagnostic recordings from the gastrocnemius muscle. The combination of ESTIM with transplantation of naïve SCs increased the regeneration of gap-bridging nerve tissue. Although macroscopic tissue regeneration was not further improved after combining ESTIM with FGF-2(21/23-kD) gene therapy, the latter resulted in a high rate of regenerated nerves that functionally reconnected to the target muscle. Based on our results, brief ESTIM shows high potential to accelerate axonal as well as functional (motor and sensory) outcomes in the clinical setting of peripheral nerve gap reconstruction in human patients. PMID:21265597

  3. Functional crosstalk between membrane lipids and TLR biology.

    PubMed

    Köberlin, Marielle S; Heinz, Leonhard X; Superti-Furga, Giulio

    2016-04-01

    Toll-like receptors (TLRs) are important transmembrane proteins of the innate immune system that detect invading pathogens and subsequently orchestrate an immune response. The ensuing inflammatory processes are connected to lipid metabolism at multiple levels. Here, we describe different aspects of how membrane lipids can shape the response of TLRs. Recent reports have uncovered the role of individual lipid species on membrane protein function and mouse models have contributed to the understanding of how changes in lipid metabolism alter TLR signaling, endocytosis, and cytokine secretion. Finally, we discuss the importance of systematic approaches to identify the function of individual lipid species or the composition of membrane lipids in TLR-related processes. PMID:26895312

  4. Functionalization of carbon nanotube and nanofiber electrodes with biological macromolecules: Progress toward a nanoscale biosensor

    NASA Astrophysics Data System (ADS)

    Baker, Sarah E.

    The integration of nanoscale carbon-based electrodes with biological recognition and electrical detection promises unparalleled biological detection systems. First, biologically modified carbon-based materials have been shown to have superior long-term chemical stability when compared to other commonly used materials for biological detection such as silicon, gold, and glass surfaces. Functionalizing carbon electrodes for biological recognition and using electrochemical methods to transduce biological binding information will enable real-time, hand-held, lower cost and stable biosensing devices. Nanoscale carbon-based electrodes allow the additional capability of fabricating devices with high densities of sensing elements, enabling multi-analyte detection on a single chip. We have worked toward the integration of these sensor components by first focusing on developing and characterizing the chemistry required to functionalize single-walled carbon nanotubes and vertically aligned carbon nanofibers with oligonucleotides and proteins for specific biological recognition. Chemical, photochemical and electrochemical methods for functionalizing these materials with biological molecules were developed. We determined, using fluorescence and colorimetric techniques, that these biologically modified nanoscale carbon electrodes are biologically active, selective, and stable. A photochemical functionalization method enabled facile functionalization of dense arrays vertically aligned carbon nanofiber forests. We found that much of the vertically aligned carbon nanofiber sidewalls were functionalized and biologically accessible by this method---the absolute number of DNA molecules hybridized to DNA-functionalized nanofiber electrodes was ˜8 times higher than the number of DNA molecules hybridized to flat glassy carbon electrodes and implies that nanofiber forest sensors may facilitate higher sensitivity to target DNA sequences per unit area. We also used the photochemical method

  5. Density functional theory across chemistry, physics and biology

    PubMed Central

    van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre

    2014-01-01

    The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg–Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT. PMID:24516181

  6. STRIPAK Complexes: structure, biological function, and involvement in human diseases

    PubMed Central

    Hwang, Juyeon; Pallas, David C.

    2014-01-01

    The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK–like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK or STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we will explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation. PMID:24333164

  7. Functional Nanostructured Platforms for Chemical and Biological Sensing

    SciTech Connect

    Letant, S E

    2006-03-20

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  8. Functional nanostructured platforms for chemical and biological sensing

    NASA Astrophysics Data System (ADS)

    Létant, S. E.

    2006-05-01

    The central goal of our work is to combine semiconductor nanotechnology and surface functionalization in order to build platforms for the selective detection of bio-organisms ranging in size from bacteria (micron range) down to viruses, as well as for the detection of chemical agents (nanometer range). We will show on three porous silicon platforms how pore geometry and pore wall chemistry can be combined and optimized to capture and detect specific targets. We developed a synthetic route allowing to directly anchor proteins on silicon surfaces and illustrated the relevance of this technique by immobilizing live enzymes onto electrochemically etched luminescent nano-porous silicon. The powerful association of the specific enzymes with the transducing matrix led to a selective hybrid platform for chemical sensing. We also used light-assisted electrochemistry to produce periodic arrays of through pores on pre-patterned silicon membranes with controlled diameters ranging from many microns down to tens of nanometers. We demonstrated the first covalently functionalized silicon membranes and illustrated their selective capture abilities with antibody-coated micro-beads. These engineered membranes are extremely versatile and could be adapted to specifically recognize the external fingerprints (size and coat composition) of target bio-organisms. Finally, we fabricated locally functionalized single nanopores using a combination of focused ion beam drilling and ion beam assisted oxide deposition. We showed how a silicon oxide ring can be grown around a single nanopore and how it can be functionalized with DNA probes to detect single viral-sized beads. The next step for this platform is the detection of whole viruses and bacteria.

  9. Density functional theory across chemistry, physics and biology.

    PubMed

    van Mourik, Tanja; Bühl, Michael; Gaigeot, Marie-Pierre

    2014-03-13

    The past decades have seen density functional theory (DFT) evolve from a rising star in computational quantum chemistry to one of its major players. This Theme Issue, which comes half a century after the publication of the Hohenberg-Kohn theorems that laid the foundations of modern DFT, reviews progress and challenges in present-day DFT research. Rather than trying to be comprehensive, this Theme Issue attempts to give a flavour of selected aspects of DFT. PMID:24516181

  10. Biological factors of natural and artificial ecosystems stable (unstable) functioning

    NASA Astrophysics Data System (ADS)

    Pechurkin, Nikolai S.

    The problem of sustainable development of humanity on Earth and the problem of supporting human life in space have the same scientific and methodological bases. The key to solve both problems is a long term maintenance of balanced material cycle. As a whole, natural or artificial ecosystems are to be more closed than open, but their elements (links of systems) are to be substantially open in interactions with each other. Prolonged stable interactions of different links have to have unique joint results - closed material cycling or biotic turnover. It is necessary to include, at least, three types of main links into any system to support real material cycling: producers, consumers, reducers. Producer links are now under studies in many laboratories. It is evident that the higher productivity of link, the lower link stability. Especially, it concerns with parasite impact to plants. As usual, artificial ecosystems are more simple (incomplete) than natural ecosystems, sometimes, they have not enough links for prolonged stable functioning. For example, life support system for space flight can be incomplete in consumer link, having only some crew persons, instead of interacting populations of consumers. As for reducer link, it is necessary to "organize" a special coordinated work of microbial biocenoses to fulfill proper cycling. Possible evolution of links, their self development is a matter of special attention for the maintenance of prolonged stable functioning. It's the most danger for systems with populations of quickly reproducing, so-called, R - strategists, according to symbols of logistic equation. From another side, quick reproduction of R - strategists is able to increase artificial ecosystems and their links functioning. After some damages of system, R - strategist's link can be quickly "self repaired" up to level of normal functioning. Some experimental data of this kind and mathematical models are to be discussed in the paper. This work is supported by

  11. Oxygen flux analysis to understand the biological function of sirtuins.

    PubMed

    Wang, Dongning; Green, Michelle F; McDonnell, Eoin; Hirschey, Matthew D

    2013-01-01

    The sirtuins are a family of highly conserved NAD(+)-dependent lysine deacylases with important roles in metabolic regulation. Of the seven mammalian sirtuins, three localize to the mitochondria: SIRT3, SIRT4, and SIRT5. Mitochondrial sirtuins are crucial regulators of the metabolic network that controls energy homeostasis and impacts cancer, obesity, diabetes, mitochondrial diseases, metabolic disorders, and many other human diseases of aging. To best study the mitochondrial function of the sirtuins, we have employed an oxygen flux analyzer as a tool to track and record the extracellular oxygen consumption rate and acidification rate that reflects mitochondrial respiration and glycolysis, respectfully. Here we described the methods using this assay to study the substrate utilization and mitochondrial function in a human hepatocellular carcinoma cell line, Huh7. Additionally, we have generated a stable SIRT4 knocked-down Huh7 cell line. With this cell line, we evaluated how the absence of SIRT4 affects mitochondrial function, glucose utilization, glutamine oxidation, and fatty acid oxidation in these cells. PMID:24014411

  12. Effects of mechanical ventilation on diaphragm function and biology.

    PubMed

    Gayan-Ramirez, G; Decramer, M

    2002-12-01

    The pathophysiological mechanisms of weaning from mechanical ventilation are not fully known, but there is accumulating evidence that mechanical ventilation induces inspiratory muscle dysfunction. Recently, several animal models have provided potential mechanisms for mechanical ventilation-induced effects on muscle function. In patients, weaning difficulties are associated with inspiratory muscle weakness and reduced endurance capacity. Animal studies demonstrated that diaphragm force was already decreased after 12 h of controlled mechanical ventilation and this worsened with time spent on the ventilator. Diaphragmatic myofibril damage observed after 3-days controlled mechanical ventilation was inversely correlated with maximal diaphragmatic force. Downregulation of the diaphragm insulin-like growth factor-I and MyoD/myogenin messenger ribonucleic acid occurred after 24 h and diaphragmatic oxidative stress and increased protease activity after 18 h. In keeping with these findings, diaphragm fibre atrophy was shown after 12 h and reduced diaphragm mass was reported after 48 h of controlled mechanical ventilation. These animal studies show that early alterations in diaphragm function develop after short-term mechanical ventilation. These alterations may contribute to the difficulties in weaning from mechanical ventilation seen in patients. Strategies to preserve respiratory muscle mass and function during mechanical ventilation should be developed. These may include: adaptation of medication, training of the diaphragm, stabilisation of the catabolic state and pharmacotherapy. PMID:12503720

  13. Resilin-Like Polypeptide Hydrogels Engineered for Versatile Biological Functions.

    PubMed

    Li, Linqing; Tong, Zhixiang; Jia, Xinqiao; Kiick, Kristi L

    2013-01-01

    Natural resilin, the rubber-like protein that exists in specialized compartments of most arthropods, possesses excellent mechanical properties such as low stiffness, high resilience and effective energy storage. Recombinantly-engineered resilin-like polypeptides (RLPs) that possess the favorable attributes of native resilin would be attractive candidates for the modular design of biomaterials for engineering mechanically active tissues. Based on our previous success in creating a novel RLP-based hydrogel and demonstrating useful mechanical and cell-adhesive properties, we have produced a suite of new RLP-based constructs, each equipped with 12 repeats of the putative resilin consensus sequence and a single, distinct biologically active domain. This approach allows independent control over the concentrations of cell-binding, MMP-sensitive, and polysaccharide-sequestration domains in hydrogels comprising mixtures of the various RLPs. The high purity, molecular weight and correct compositions of each new polypeptide have been confirmed via high performance liquid chromatography (HPLC), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and amino acid analysis. These RLP-based polypeptides exhibit largely random-coil conformation, both in solution and in the cross-linked hydrogels, as indicated by circular dichroic and infrared spectroscopic analyses. Hydrogels of various compositions, with a range of elastic moduli (1kPa to 25kPa) can be produced from these polypeptides, and the activity of the cell-binding and matrix metalloproteinase (MMP) sensitive domains was confirmed. Tris(hydroxymethyl phosphine) cross-linked RLP hydrogels were able to maintain their mechanical integrity as well as the viability of encapsulated primary human mesenchymal stem cells (MSCs). These results validate the promising properties of these RLP-based elastomeric biomaterials. PMID:23505396

  14. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.

    PubMed

    Chiquoine, Lindsay P; Abella, Scott R; Bowker, Matthew A

    2016-06-01

    Restoring biological soil crusts (biocrusts) in degraded drylands can contribute to recovery of ecosystem functions that have global implications, including erosion resistance and nutrient cycling. To examine techniques for restoring biocrusts, we conducted a replicated, factorial experiment on recently abandoned road surfaces by applying biocrust inoculation (salvaged and stored dry for two years), salvaged topsoil, an abiotic soil amendment (wood shavings), and planting of a dominant perennial shrub (Ambrosia dumosa). Eighteen months after treatments, we measured biocrust abundance and species composition, soil chlorophyll a content and fertility, and soil resistance to erosion. Biocrust addition significantly accelerated biocrust recovery on disturbed soils, including increasing lichen and moss cover and cyanobacteria colonization. Compared to undisturbed controls, inoculated plots had similar lichen and moss composition, recovered 43% of total cyanobacteria density, had similar soil chlorophyll content, and exhibited recovery of soil fertility and soil stability. Inoculation was the only treatment that generated lichen and moss cover. Topsoil application resulted in partial recovery of the cyanobacteria community and soil properties. Compared to untreated disturbed plots, topsoil application without inoculum increased cyanobacteria density by 186% and moderately improved soil chlorophyll and ammonium content and soil stability. Topsoil application produced 22% and 51% of the cyanobacteria density g⁻¹ soil compared to undisturbed and inoculated plots, respectively. Plots not treated with either topsoil or inoculum had significantly lower cyanobacteria density, soil chlorophyll and ammonium concentrations, and significantly higher soil nitrate concentration. Wood shavings and Ambrosia had no influence on biocrust lichen and moss species recovery but did affect cyanobacteria composition and soil fertility. Inoculation of severely disturbed soil with native

  15. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    SciTech Connect

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu Chihray; Yan Guanghua

    2010-02-15

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm{sup 3} and a diode of surface area 0.64 mm{sup 2}. The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10x10 cm{sup 2} field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a {+-}0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping

  16. [Dialectic of the interrelationship between structure and function in biology and medicine].

    PubMed

    Strukov, A I; Kakturskiĭ, L V

    1977-01-01

    The paper deals with some aspects of the dialectics of structure and function relationships in biological objects normally and pathologically. Idealistic and metaphysical concepts of the structure-function relationships (morphological idealism, holism, physiological idealism, functionalism) are critisized, and historical premises of these concepts are characterized. The principle of indissoluble unity and interconnection of changes in structure and function is emphasized, while the thesis of the primacy of function in the shaping of the form and the concept of functional diseases are rejected. Much attention is paid to the methodological principles of the study of structure and function based on the systemic approach to the investigation of biological objects from the point of view of structural levels and integratism. The groundlessness of the principles of reductionism and organicism in the solution of this problem is indicated. The connection of the concepts of structure and function with categories and laws of materialistic dialectics is dwelt on. PMID:880057

  17. Estrogen Biology: New Insights into GPER Function and Clinical Opportunities

    PubMed Central

    Prossnitz, Eric R.; Barton, Matthias

    2014-01-01

    Estrogens play an important role in the regulation of normal physiology, aging and many disease states. Although the nuclear estrogen receptors have classically been described to function as ligand-activated transcription factors mediating genomic effects in hormonally regulated tissues, more recent studies reveal that estrogens also mediate rapid signaling events traditionally associated with G protein-coupled receptors. The G protein-coupled estrogen receptor GPER (formerly GPR30) has now become recognized as a major mediator of estrogen’s rapid cellular effects throughout the body. With the discovery of selective synthetic ligands for GPER, both agonists and antagonists, as well as the use of GPER knockout mice, significant advances have been made in our understanding of GPER function at the cellular, tissue and organismal levels. In many instances, the protective/beneficial effects of estrogen are mimicked by selective GPER agonism and are absent or reduced in GPER knockout mice, suggesting an essential or at least parallel role for GPER in the actions of estrogen. In this review, we will discuss recent advances and our current understanding of the role of GPER and certain drugs such as SERMs and SERDs in physiology and disease. We will also highlight novel opportunities for clinical development towards GPER-targeted therapeutics, for molecular imaging, as well as for theranostic approaches and personalized medicine. PMID:24530924

  18. The biomolecule ubiquinone exerts a variety of biological functions.

    PubMed

    Nohl, Hans; Staniek, Katrin; Kozlov, Andrey V; Gille, Lars

    2003-01-01

    The chemistry of ubiquinone allows reversible addition of single electrons and protons. This unique property is used in nature for aerobic energy gain, for unilateral proton accumulation, for the generation of reactive oxygen species involved in physiological signaling and a variety of pathophysiological events. Since several years ubiquinone is also considered to play a major role in the control of lipid peroxidation, since this lipophilic biomolecule was recognized to recycle alpha-tocopherol radicals back to the chain-breaking form, vitamin E. Ubiquinone is therefore a biomolecule which has increasingly focused the interest of many research groups due to its alternative pro- and antioxidant activity. We have intensively investigated the role of ubiquinone as prooxidant in mitochondria and will present experimental evidences on conditions required for this function, we will also show that lysosomal ubiquinone has a double function as proton translocator and radical source under certain metabolic conditions. Furthermore, we have addressed the antioxidant role of ubiquinone and found that the efficiency of this activity is widely dependent on the type of biomembrane where ubiquinone exerts its chain-breaking activity. PMID:14695917

  19. Spruce Budworm (Lepidoptera: Tortricidae) Oral Secretions I: Biology and Function.

    PubMed

    Eveleigh, Eldon; Silk, Peter; Leclair, Gaëtan; Mayo, Peter; Francis, Brittany; Williams, Martin

    2015-12-01

    The potential roles of the oral secretions (OS) of spruce budworm (SBW; Choristoneura fumiferana Clemens) larvae and factors that may affect the volume of OS disgorged were investigated in the laboratory. Experiments revealed that diet-fed SBW larvae readily disgorge OS when induced ("milked"), with minimal overall cost to their development and eventual pupal weight. Exposure of conspecific larvae to OS throughout larval development negatively affected survival and male pupal weight; however, male development time was faster when exposed to OS. Female pupal weight and development time were not affected. Preliminary experiments suggested that OS had a repellent effect on a co-occurring herbivore, the false hemlock looper, Nepytia canosaria (Walker). OS produced by larvae that fed on three host tree species and on artificial diet significantly increased the grooming time of ants (Camponotus sp.), indicating that SBW OS have an anti-predator function. The volume of OS is significantly greater in L6 than in L4 or L5, with the volume produced by L6 depending on weight and age as well as feeding history at time of milking. These findings indicate that SBW OS function as both an intra- and interspecific epideictic pheromone and as an anti-predator defensive mechanism, while incurring minimal metabolic costs. PMID:26454475

  20. Impaired motor function in senescence-accelerated mouse prone 1 (SAMP1).

    PubMed

    Aoyama, Yo; Kim, Tae Yeon; Yoshimoto, Takuro; Niimi, Kimie; Takahashi, Eiki; Itakura, Chitoshi

    2013-06-17

    Senescence-accelerated mouse prone (SAMP) strains of mice show early onset of senescence, whereas senescence-accelerated mouse resistant (SAMR) strains are resistant to early senescence and serve as controls. Although SAMP6 and SAMP8 are established models of central nervous system alterations, it is unclear whether SAMP1/Sku (SAMP1) is characterized by brain alterations and dysfunction related to behavioral functioning. In the present study, behavioral tests (i.e., locomotor activity, Y-maze, rotating rod, hind-limb extension, and traction), histochemistry, and Western blot analyses were employed to study this mouse model using 2- and 4-month-old SAMP1 and age-matched control SAMR1. Although 2-month-old SAMP1 and SAMR1 showed similar activity, 4-month-old SAMP1 exhibited less activity than age-matched SAMR1 in locomotor activity and Y-maze tests. In rotating rod test, 2- and 4-month-old SAMP1 showed motor-coordination dysfunction. An abnormal extension reflex in the hind-limb test was observed in 2- and 4-month-old SAMP1. There were no significant differences between SAMP1 and SAMR1 with respect to grip strength in the traction test or alternation behavior in the Y-maze test. Histochemistry and Western blot analyses exhibited that cerebellar Purkinje cells in 4-month-old SAMP1 mice persistently expressed tyrosine hydroxylase. These results suggest that SAMP1 is a useful model for examining mechanisms underlying motor dysfunction. PMID:23583482

  1. Structure determination of chemisorbed chirality transfer complexes: Accelerated STM analysis and exchange-correlation functional sensitivity

    NASA Astrophysics Data System (ADS)

    Groves, M. N.; Goubert, G.; Rasmussen, A. M. H.; Dong, Y.; Lemay, J.-C.; Demers-Carpentier, V.; McBreen, P. H.; Hammer, B.

    2014-11-01

    Linking STM images to atomic positions determined by DFT calculations is an important step in characterizing the intermolecular interactions at play in many surface processes including asymmetric hydrogenation on heterogeneous catalysts. An accelerated data extraction method is used to collect STM information on the geometry of complexes formed between the two substrates, 2,2,2-trifluoroacetophenone (TFAP) and 3,3,3-methyltrifluoropyruvate (MTFP), and the chiral modifier (R)-(+)-1-(1-naphthyl)ethylamine ((R)-NEA) on Pt(111). We present new experimental data for complexes formed by MTFP and the (R)-NEA-1 conformer along with a new and enlarged set of reformulated STM data that extends what was reported in previously published studies of complexed MTFP and TFAP. Atomic geometries based on DFT calculations using PBE, M06-L, and optB88-vdW exchange-correlation functionals will also be presented. It will be shown that both substrates have well-defined complexation geometries when interacting with the modifier and that the relative complexation energies are not markedly sensitive to the functional employed.

  2. Solar wind acceleration obtained from kinetic models based on electron velocity distribution functions with suprathermal particles

    NASA Astrophysics Data System (ADS)

    Pierrard, V.; Pieters, M.; Lazar, M.; Voitenko, Y.; Lamy, H.; Echim, M.

    2014-12-01

    Astrophysical and space plasmas are commonly found to be out ofthermal equilibrium, i.e., the velocity distribution functions (VDF)of plasma particles cannot be described well enough by Maxwelliandistribution functions. The suprathermal populations are ubiquitousenhancing the high-energy tail of the distribution. A kinetic model has been developed to successfullydescribe such plasmas with tails decreasing as a power law of thevelocity. In the present work, we show that a natural heating ofsolar and stellar coronas automatically appears when an enhancedpopulation of suprathermal particles is present at low altitude inthe solar (or stellar) atmosphere. This is true not only forelectrons and protons, but also for the minor ions which exhibit atemperature increase proportional to their mass. Moreover,suprathermal electrons contribute to the acceleration of stellarwinds to high bulk velocities when Coulomb collisions are neglected.These results are illustrated by using a global model of the solarcorona and solar wind based on VDF with suprathermal tails for thedifferent particle species. The energetic particles are non-collisional (without Coulomb collisions) even when thermalparticles are submitted to collisions. In the presence of long-rangecorrelations supplied by the fields and plasma instabilities,turbulence can play a role in the generation of such suprathermaltails. Solar wind observations are used as boundary conditions to determine the VDF in the other regions of the heliosphere. Consequences of suprathermal particles are also illustratedfor other space plasmas like the plasmasphere and the polar wind ofthe Earth and other planets.

  3. The functions of biological diversity in an age of extinction.

    PubMed

    Naeem, Shahid; Duffy, J Emmett; Zavaleta, Erika

    2012-06-15

    Ecosystems worldwide are rapidly losing taxonomic, phylogenetic, genetic, and functional diversity as a result of human appropriation of natural resources, modification of habitats and climate, and the spread of pathogenic, exotic, and domestic plants and animals. Twenty years of intense theoretical and empirical research have shown that such biotic impoverishment can markedly alter the biogeochemical and dynamic properties of ecosystems, but frontiers remain in linking this research to the complexity of wild nature, and in applying it to pressing environmental issues such as food, water, energy, and biosecurity. The question before us is whether these advances can take us beyond merely invoking the precautionary principle of conserving biodiversity to a predictive science that informs practical and specific solutions to mitigate and adapt to its loss. PMID:22700920

  4. Structure and biological functions of keratan sulfate proteoglycans.

    PubMed

    Greiling, H

    1994-01-01

    The skeletal and corneal keratan sulfate proteoglycans show a different metabolic and structural heterogeneity. The domain structure of the carbohydrate chain has been shown to be different in various animal species. There are two major types of skeletal keratan sulfate proteoglycans with and without fucose. The protein cores of the corneal chicken keratan sulfate proteoglycan (lumican) and those of another small keratan sulfate proteoglycan (fibromodulin) have been sequenced. Keratan sulfate oligosaccharides belong to the members of an antigen family of the poly-N-acetyllactosamine series. Monoclonal antibodies and immunoassay procedures for keratan sulfate proteoglycans have been prepared. In osteoarthritis, no significant specific increase of keratan sulfate has been found. Keratan sulfate is a functional substitute for chondroitin sulfate in O2-deficient tissues. PMID:8298243

  5. The biology and function of exosomes in cancer.

    PubMed

    Kalluri, Raghu

    2016-04-01

    Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40-150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients. PMID:27035812

  6. Re-Annotation Is an Essential Step in Systems Biology Modeling of Functional Genomics Data

    PubMed Central

    van den Berg, Bart H. J.; McCarthy, Fiona M.; Lamont, Susan J.; Burgess, Shane C.

    2010-01-01

    One motivation of systems biology research is to understand gene functions and interactions from functional genomics data such as that derived from microarrays. Up-to-date structural and functional annotations of genes are an essential foundation of systems biology modeling. We propose that the first essential step in any systems biology modeling of functional genomics data, especially for species with recently sequenced genomes, is gene structural and functional re-annotation. To demonstrate the impact of such re-annotation, we structurally and functionally re-annotated a microarray developed, and previously used, as a tool for disease research. We quantified the impact of this re-annotation on the array based on the total numbers of structural- and functional-annotations, the Gene Annotation Quality (GAQ) score, and canonical pathway coverage. We next quantified the impact of re-annotation on systems biology modeling using a previously published experiment that used this microarray. We show that re-annotation improves the quantity and quality of structural- and functional-annotations, allows a more comprehensive Gene Ontology based modeling, and improves pathway coverage for both the whole array and a differentially expressed mRNA subset. Our results also demonstrate that re-annotation can result in a different knowledge outcome derived from previous published research findings. We propose that, because of this, re-annotation should be considered to be an essential first step for deriving value from functional genomics data. PMID:20498845

  7. Functional Tissue Engineering of Tendon: Establishing Biological Success Criteria for Improving Tendon Repair

    PubMed Central

    Breidenbach, Andrew P; Gilday, Steven D; Lalley, Andrea L; Dyment, Nathaniel A; Gooch, Cynthia; Shearn, Jason T; Butler, David L

    2013-01-01

    Improving tendon repair using Functional Tissue Engineering (FTE) principles has been the focus of our laboratory over the last decade. Although our primary goals were initially focused only on mechanical outcomes, we are now carefully assessing the biological properties of our tissue-engineered tendon repairs so as to link biological influences with mechanics. However, given the complexities of tendon development and healing, it remains challenging to determine which aspects of tendon biology are the most important to focus on in the context of tissue engineering. To address this problem, we have formalized a strategy to identify, prioritize, and evaluate potential biological success criteria for tendon repair. We have defined numerous biological properties of normal tendon relative to cellular phenotype, extracellular matrix and tissue ultra-structure that we would like to reproduce in our tissue-engineered repairs and prioritized these biological criteria by examining their relative importance during both normal development and natural tendon healing. Here, we propose three specific biological criteria which we believe are essential for normal tendon function: 1) scleraxis-expressing cells; 2) well-organized and axially-aligned collagen fibrils having bimodal diameter distribution; and 3) a specialized tendon-to-bone insertion site. Moving forward, these biological success criteria will be used in conjunction with our already established mechanical success criteria to evaluate the effectiveness of our tissue-engineered tendon repairs. PMID:24200342

  8. Functional tissue engineering of tendon: Establishing biological success criteria for improving tendon repair.

    PubMed

    Breidenbach, Andrew P; Gilday, Steven D; Lalley, Andrea L; Dyment, Nathaniel A; Gooch, Cynthia; Shearn, Jason T; Butler, David L

    2014-06-27

    Improving tendon repair using Functional Tissue Engineering (FTE) principles has been the focus of our laboratory over the last decade. Although our primary goals were initially focused only on mechanical outcomes, we are now carefully assessing the biological properties of our tissue-engineered tendon repairs so as to link biological influences with mechanics. However, given the complexities of tendon development and healing, it remains challenging to determine which aspects of tendon biology are the most important to focus on in the context of tissue engineering. To address this problem, we have formalized a strategy to identify, prioritize, and evaluate potential biological success criteria for tendon repair. We have defined numerous biological properties of normal tendon relative to cellular phenotype, extracellular matrix and tissue ultra-structure that we would like to reproduce in our tissue-engineered repairs and prioritized these biological criteria by examining their relative importance during both normal development and natural tendon healing. Here, we propose three specific biological criteria which we believe are essential for normal tendon function: (1) scleraxis-expressing cells; (2) well-organized and axially-aligned collagen fibrils having bimodal diameter distribution; and (3) a specialized tendon-to-bone insertion site. Moving forward, these biological success criteria will be used in conjunction with our already established mechanical success criteria to evaluate the effectiveness of our tissue-engineered tendon repairs. PMID:24200342

  9. Biological Functions of the Genes in the Mammaprint Breast Cancer Profile Reflect the Hallmarks of Cancer

    PubMed Central

    Tian, Sun; Roepman, Paul; van’t Veer, Laura J; Bernards, Rene; de Snoo, Femke; Glas, Annuska M

    2010-01-01

    Background: MammaPrint was developed as a diagnostic tool to predict risk of breast cancer metastasis using the expression of 70 genes. To better understand the tumor biology assessed by MammaPrint, we interpreted the biological functions of the 70-genes and showed how the genes reflect the six hallmarks of cancer as defined by Hanahan and Weinberg. Results: We used a bottom-up system biology approach to elucidate how the cellular processes reflected by the 70-genes work together to regulate tumor activities and progression. The biological functions of the genes were analyzed using literature research and several bioinformatics tools. Protein-protein interaction network analyses indicated that the 70-genes form highly interconnected networks and that their expression levels are regulated by key tumorigenesis related genes such as TP53, RB1, MYC, JUN and CDKN2A. The biological functions of the genes could be associated with the essential steps necessary for tumor progression and metastasis, and cover the six well-defined hallmarks of cancer, reflecting the acquired malignant characteristics of a cancer cell along with tumor progression and metastasis-related biological activities. Conclusion: Genes in the MammaPrint gene signature comprehensively measure the six hallmarks of cancer-related biology. This finding establishes a link between a molecular signature and the underlying molecular mechanisms of tumor cell progression and metastasis. PMID:21151591

  10. Selenium and arsenic in biology: their chemical forms and biological functions.

    PubMed

    Shibata, Y; Morita, M; Fuwa, K

    1992-01-01

    Based on the recent development of analytical methods, sensitive systems for the analysis and speciation of selenium and arsenic have been established. A palladium addition technique was developed for the accurate determination of selenium in biological samples using graphite furnace atomic absorption analysis. For the speciation of the elements, combined methods of HPLC either with ICP-AES or with ICP-MS were found to work well. These systems were applied to the elucidation of the chemical form of the elements in natural samples. Some chemical properties of the selenium-mercury complex in dolphin liver were elucidated: i.e., it was a cationic, water-soluble, low molecular weight compound containing selenium and mercury in a 1:1 molar ratio, and was shown to be different from a known selenium-mercury complex, bis(methylmercuric)selenide. The major selenium compound excreted in human urine was revealed to be other than any of those previously identified (TMSe, selenate, and selenite). TMSe, a suspected major metabolite in urine, was found, if at all, in low levels. The major water-soluble, and lipid-soluble arsenic compounds in a brown seaweed, U. pinnatifida (WAKAME), were rigorously identified, and the results were compared with other data on marine algae and animals. The major organic arsenic compounds (termed "arseno-sugars") in marine algae commonly contain 5-deoxy-5-dimethylarsinyl-ribofuranoside moiety. There are various kinds of arseno-sugar derivatives containing different side-chains attached to the anomeric position of the sugar, and the distribution of each arsenic species seems to be related to algal species. The arseno-sugar (A-XI) is present in every alga so far examined, is metabolized to lipids, and possibly may play some specific role in the algal cells. On the other hand, the major arsenic compound in fish, crustacea and molluscs has been identified as arsenobetaine, which is an arseno-analog of glycinebetaine, a very common osmo-regulator in

  11. Using ruthenium polypyridyl functionalized ZnO mesocrystals and gold nanoparticle dotted graphene composite for biological recognition and electrochemiluminescence biosensing

    NASA Astrophysics Data System (ADS)

    Liu, Suli; Zhang, Jinxing; Tu, Wenwen; Bao, Jianchun; Dai, Zhihui

    2014-01-01

    Using ruthenium polypyridyl functionalized ZnO mesocrystals as bionanolabels, a universal biological recognition and biosensing platform based on gold nanoparticle (AuNP) dotted reduced graphene oxide (rGO) composite was developed. AuNP-rGO accelerated electron transfer between the detection probe and the electrode, and increased the surface area of the working electrode to load greater amounts of the capture antibodies. The large surface area of ZnO mesocrystals was beneficial for loading a high content ruthenium polypyridyl complex, leading to an enhanced electrochemiluminescence signal. Using α-fetoprotein (AFP) as a model, a simple and sensitive sandwich-type electrochemiluminescence biosensor with tripropylamine (TPrA) as a coreactant for detection of AFP was constructed. The designed biosensor provided a good linear range from 0.04 to 500 ng mL-1 with a low detection limit of 0.031 ng mL-1 at a S/N of 3 for AFP determination. The proposed biological recognition and biosensing platform extended the application of ruthenium polypyridyl functionalized ZnO mesocrystals, which provided a new promising prospect.

  12. The effect of gravitational acceleration on cardiac diastolic function: a biofluid mechanical perspective with initial results.

    PubMed

    Pantalos, George M; Bennett, Thomas E; Sharp, M Keith; Woodruff, Stewart J; O'Leary, Sean D; Gillars, Kevin J; Schurfranz, Thomas; Everett, Scott D; Lemon, Mark; Schwartz, John

    2005-08-01

    Echocardiographic measurements of astronaut cardiac function have documented an initial increase, followed by a progressive reduction in both left ventricular end-diastolic volume index and stroke volume with entry into microgravity (micro-G). The investigators hypothesize that the observed reduction in cardiac filling may, in part, be due to the absence of a gravitational acceleration dependent, intraventricular hydrostatic pressure difference in micro-G that exists in the ventricle in normal gravity (1-G) due to its size and anatomic orientation. This acceleration-dependent pressure difference, DeltaP(LV), between the base and the apex of the heart for the upright posture can be estimated to be 6660 dynes/cm(2) ( approximately 5 mm Hg) on Earth. DeltaP(LV) promotes cardiac diastolic filling on Earth, but is absent in micro-G. If the proposed hypothesis is correct, cardiac pumping performance would be diminished in micro-G. To test this hypothesis, ventricular function experiments were conducted in the 1-G environment using an artificial ventricle pumping on a mock circulation system with the longitudinal axis anatomically oriented for the upright posture at 45 degrees to the horizon. Additional measurements were made with the ventricle horizontally oriented to null DeltaP(LV)along the apex-base axis of the heart as would be the case for the supine posture, but resulting in a lesser hydrostatic pressure difference along the minor (anterior-posterior) axis. Comparative experiments were also conducted in the micro-G environment of orbital space flight on board the Space Shuttle. This paper reviews the use of an automated cardiovascular simulator flown on STS-85 and STS-95 as a Get Away Special payload to test this hypothesis. The simulator consisted of a pneumatically actuated, artificial ventricle connected to a closed-loop, fluid circuit with adjustable compliance and resistance elements to create physiologic pressure and flow conditions. Ventricular

  13. Towards understanding the biological function of hopanoids (Invited)

    NASA Astrophysics Data System (ADS)

    Doughty, D. M.; Hunter, R.; Summons, R. E.; Newman, D. K.

    2010-12-01

    Rhodopseudomonas palustris TIE-1 expresses bacterial hopanoid lipids that are structurally similar and evolutionarily related to eukaryotic sterols. The genome of R. palustris TIE-1 contains two copies of the hpnN gene (hpnN1 and hpnN2) that are orthologs of genes encoding eukaryotic sterol and lipid transporters. Hopanoid localization to the outer membrane was found to be dependent upon hpnN1. Since the cell cycle of R. palustris TIE-1 is obligately bimodal with each cell division resulting in the generation of one mother and one swarmer cell, evidence was obtained that hopanoids where specifically localized to the outer membrane of mother cells. The sequestration of hopanoids to the mother cells was also disrupted by the deletion of the hpnN1 gene. Mutants lacking the hopanoid transporters were able to grow normally at 30 °C but showed decreased growth at 38 °C. The hopanoid transporter mutant formed cellular filaments when grown at elevated temperature. Because sedimentary steranes and hopanes comprise some of the earliest evidence for the emergence of distinct bacteria and eukaryotic phyla, a better appreciation of the function of hopanoids will improve our ability to interpret the evolution of life on Earth.

  14. Matrix metalloproteinases: their biological functions and clinical implications.

    PubMed

    Hijova, E

    2005-01-01

    Matrix metalloproteinases (MMPs), which are also known as matrixins, are proteinases that participate in extracellular matrix remodelling and degradation. Under normal physiological conditions, the activities of MMPs are precisely regulated at the level of transcription, at that of activation of the pro-MMP precursor zymogenes as well as at that of inhibition by endogenous inhibitors (tissue inhibitors of metalloproteinases, TIMPs). Alterations in the regulation of MMP activity are implicated in diseases such as cancer, fibrosis, arthritis and atherosclerosis. The pathological effects of MMPs and TIMPs in cardiovascular diseases involve vascular remodelling, atherosclerotic plaque instability and cardiac remodelling in congestive heart failure or after myocardial infarction. Since excessive tissue remodelling and increased matrix metalloproteinases activity have been demonstrated during atherosclerotic lesion progression (including plaque disruption), MMPs represent a potential target for therapeutic intervention aimed at the modification of vascular pathology by restoring the physiological balance between MMPs and TIMPs. Recent findings suggest that MMPs are also involved in cancer initiation, invasion and metastasis; MMP inhibitors could be considered for evaluation as cancer chemopreventive molecules. This review describes the members of MMP and TIMP families and discusses the structure, function and regulation of MMP activity. (Tab. 1, Ref: 45.) PMID:16026148

  15. Small regulatory RNAs in Streptococcus pneumoniae: discovery and biological functions

    PubMed Central

    Wilton, Joana; Acebo, Paloma; Herranz, Cristina; Gómez, Alicia; Amblar, Mónica

    2015-01-01

    Streptococcus pneumoniae is a prominent human pathogen responsible for many severe diseases and the leading cause of childhood mortality worldwide. The pneumococcus is remarkably adept at colonizing and infecting different niches in the human body, and its adaptation to dynamic host environment is a central aspect of its pathogenesis. In the last decade, increasing findings have evidenced small RNAs (sRNAs) as vital regulators in a number of important processes in bacteria. In S. pneumoniae, a small antisense RNA was first discovered in the pMV158 plasmid as a copy number regulator. More recently, genome-wide screens revealed that the pneumococcal genome also encodes multiple sRNAs, many of which have important roles in virulence while some are implicated in competence control. The knowledge of the sRNA-mediated regulation in pneumococcus remains very limited, and future research is needed for better understanding of functions and mechanisms. Here, we provide a comprehensive summary of the current knowledge on sRNAs from S. pneumoniae, focusing mainly on the trans-encoded sRNAs. PMID:25904932

  16. Production and biological function of volatile esters in Saccharomyces cerevisiae

    PubMed Central

    Saerens, Sofie M. G.; Delvaux, Freddy R.; Verstrepen, Kevin J.; Thevelein, Johan M.

    2010-01-01

    Summary The need to understand and control ester synthesis is driven by the fact that esters play a key role in the sensorial quality of fermented alcoholic beverages like beer, wine and sake. As esters are synthesized in yeast via several complex metabolic pathways, there is a need to gain a clear understanding of ester metabolism and its regulation. The individual genes involved, their functions and regulatory mechanisms have to be identified. In alcoholic beverages, there are two important groups of esters: the acetate esters and the medium‐chain fatty acid (MCFA) ethyl esters. For acetate ester synthesis, the genes involved have already been cloned and characterized. Also the biochemical pathways and the regulation of acetate ester synthesis are well defined. With respect to the molecular basis of MCFA ethyl ester synthesis, however, significant progress has only recently been made. Next to the characterization of the biochemical pathways and regulation of ester synthesis, a new and more important question arises: what is the advantage for yeast to produce these esters? Several hypotheses have been proposed in the past, but none was satisfactorily. This paper reviews the current hypotheses of ester synthesis in yeast in relation to the complex regulation of the alcohol acetyl transferases and the different factors that allow ester formation to be controlled during fermentation. PMID:21255318

  17. Schematic and realistic biological motion identification in children with high-functioning autism spectrum disorder

    PubMed Central

    Wright, Kristyn; Kelley, Elizabeth; Poulin-Dubois, Diane

    2014-01-01

    Research investigating biological motion perception in children with ASD has revealed conflicting findings concerning whether impairments in biological motion perception exist. The current study investigated how children with high-functioning ASD (HF-ASD) performed on two tasks of biological motion identification: a novel schematic motion identification task and a point-light biological motion identification task. Twenty-two HFASD children were matched with 21 TD children on gender, non-verbal mental, and chronological, age (M years = 6.72). On both tasks, HF-ASD children performed with similar accuracy as TD children. Across groups, children performed better on animate than on inanimate trials of both tasks. These findings suggest that HF-ASD children's identification of both realistic and schematic biological motion identification is unimpaired. PMID:25395988

  18. Schematic and realistic biological motion identification in children with high-functioning autism spectrum disorder.

    PubMed

    Wright, Kristyn; Kelley, Elizabeth; Poulin-Dubois, Diane

    2014-10-01

    Research investigating biological motion perception in children with ASD has revealed conflicting findings concerning whether impairments in biological motion perception exist. The current study investigated how children with high-functioning ASD (HF-ASD) performed on two tasks of biological motion identification: a novel schematic motion identification task and a point-light biological motion identification task. Twenty-two HFASD children were matched with 21 TD children on gender, non-verbal mental, and chronological, age (M years = 6.72). On both tasks, HF-ASD children performed with similar accuracy as TD children. Across groups, children performed better on animate than on inanimate trials of both tasks. These findings suggest that HF-ASD children's identification of both realistic and schematic biological motion identification is unimpaired. PMID:25395988

  19. Accelerating bioelectric functional development of neural stem cells by graphene coupling: Implications for neural interfacing with conductive materials.

    PubMed

    Guo, Rongrong; Zhang, Shasha; Xiao, Miao; Qian, Fuping; He, Zuhong; Li, Dan; Zhang, Xiaoli; Li, Huawei; Yang, Xiaowei; Wang, Ming; Chai, Renjie; Tang, Mingliang

    2016-11-01

    In order to govern cell-specific behaviors in tissue engineering for neural repair and regeneration, a better understanding of material-cell interactions, especially the bioelectric functions, is extremely important. Graphene has been reported to be a potential candidate for use as a scaffold and neural interfacing material. However, the bioelectric evolvement of cell membranes on these conductive graphene substrates remains largely uninvestigated. In this study, we used a neural stem cell (NSC) model to explore the possible changes in membrane bioelectric properties - including resting membrane potentials and action potentials - and cell behaviors on graphene films under both proliferation and differentiation conditions. We used a combination of single-cell electrophysiological recordings and traditional cell biology techniques. Graphene did not affect the basic membrane electrical parameters (capacitance and input resistance), but resting membrane potentials of cells on graphene substrates were more strongly negative under both proliferation and differentiation conditions. Also, NSCs and their progeny on graphene substrates exhibited increased firing of action potentials during development compared to controls. However, graphene only slightly affected the electric characterizations of mature NSC progeny. The modulation of passive and active bioelectric properties on the graphene substrate was accompanied by enhanced NSC differentiation. Furthermore, spine density, synapse proteins expressions and synaptic activity were all increased in graphene group. Modeling of the electric field on conductive graphene substrates suggests that the electric field produced by the electronegative cell membrane is much higher on graphene substrates than that on control, and this might explain the observed changes of bioelectric development by graphene coupling. Our results indicate that graphene is able to accelerate NSC maturation during development, especially with regard to

  20. Sharing Structure and Function in Biological Design with SBOL 2.0.

    PubMed

    Roehner, Nicholas; Beal, Jacob; Clancy, Kevin; Bartley, Bryan; Misirli, Goksel; Grünberg, Raik; Oberortner, Ernst; Pocock, Matthew; Bissell, Michael; Madsen, Curtis; Nguyen, Tramy; Zhang, Michael; Zhang, Zhen; Zundel, Zach; Densmore, Douglas; Gennari, John H; Wipat, Anil; Sauro, Herbert M; Myers, Chris J

    2016-06-17

    The Synthetic Biology Open Language (SBOL) is a standard that enables collaborative engineering of biological systems across different institutions and tools. SBOL is developed through careful consideration of recent synthetic biology trends, real use cases, and consensus among leading researchers in the field and members of commercial biotechnology enterprises. We demonstrate and discuss how a set of SBOL-enabled software tools can form an integrated, cross-organizational workflow to recapitulate the design of one of the largest published genetic circuits to date, a 4-input AND sensor. This design encompasses the structural components of the system, such as its DNA, RNA, small molecules, and proteins, as well as the interactions between these components that determine the system's behavior/function. The demonstrated workflow and resulting circuit design illustrate the utility of SBOL 2.0 in automating the exchange of structural and functional specifications for genetic parts, devices, and the biological systems in which they operate. PMID:27111421

  1. Towards a behavioral-matching based compilation of synthetic biology functions.

    PubMed

    Basso-Blandin, Adrien; Delaplace, Franck

    2015-09-01

    The field of synthetic biology is looking forward engineering framework for safely designing reliable de-novo biological functions. In this undertaking, Computer-Aided-Design (CAD) environments should play a central role for facilitating the design. Although, CAD environment is widely used to engineer artificial systems the application in synthetic biology is still in its infancy. In this article we address the problem of the design of a high level language which at the core of CAD environment. More specifically the Gubs (Genomic Unified Behavioural Specification) language is a specification language used to describe the observations of the expected behaviour. The compiler appropriately selects components such that the observation of the synthetic biological function resulting to their assembly complies to the programmed behaviour. PMID:26141968

  2. Evolutionary cell biology: functional insight from “endless forms most beautiful”

    PubMed Central

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G.; Dacks, Joel B.

    2015-01-01

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. PMID:26668171

  3. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis

    DOE PAGESBeta

    Linshiz, Gregory; Jensen, Erik; Stawski, Nina; Bi, Changhao; Elsbree, Nick; Jiao, Hong; Kim, Jungkyu; Mathies, Richard; Keasling, Jay D.; Hillson, Nathan J.

    2016-02-02

    Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening. Here, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, andmore » proteogenic and metabolic output analysis. Finally, taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.« less

  4. An exploration of skin acceleration level as a measure of phonatory function in singing.

    PubMed

    Lamarche, Anick; Ternström, Sten

    2008-01-01

    Two kinds of fluctuations are observed in phonetogram recordings of singing. Sound pressure level (SPL) can vary due to vibrato and also due to the effect of open and closed vowels. Since vowel variation is mostly a consequence of vocal tract modification and is not directly related to phonatory function, it could be helpful to suppress such variation when studying phonation. Skin acceleration level (SAL), measured at the jugular notch and on the sternum, might be less influenced by effects of the vocal tract. It is explored in this study as an alternative measure to SPL. Five female singers sang vowel series on selected pitches and in different tasks. Recorded data were used to investigate two null hypotheses: (1) SPL and SAL are equally influenced by vowel variation and (2) SPL and SAL are equally correlated to subglottal pressure (P(S)). Interestingly, the vowel variation effect was small in both SPL and SAL. Furthermore, in comparison to SPL, SAL correlated weakly to P(S). SAL exhibited practically no dependence on fundamental frequency, rather, its major determinant was the musical dynamic. This results in a non-sloping, square-like phonetogram contour. These outcomes show that SAL potentially can facilitate phonetographic analysis of the singing voice. PMID:17059878

  5. Acceleration of screened-exchange density-functional calculations with approximate differential overlap

    NASA Astrophysics Data System (ADS)

    Moussa, Jonathan; Schultz, Peter

    2014-03-01

    We implement the Heyd-Scuseria-Ernzerhof (HSE) screened-exchange density functional in the SEQQUEST electronic structure code. HSE calculations are accelerated by approximating differential overlap in the Fock exchange based on an atomic-orbital partitioning scheme. All one-center and two-center exchange integrals are calculated. A subset of three-center exchange integrals are calculated for one-center Fock exchange matrix elements and for exchange mediated by one-center density matrix elements. Four-center exchange integrals are not calculated. We test the validity of this approximation by examining the number and magnitude of these different classes of exchange integrals. Basis set and pseudopotential errors in HSE calculations are benchmarked on atoms. Differential overlap approximation errors are benchmarked on small molecules. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Coevolution within and between Regulatory Loci Can Preserve Promoter Function Despite Evolutionary Rate Acceleration

    PubMed Central

    Barrière, Antoine; Gordon, Kacy L.; Ruvinsky, Ilya

    2012-01-01

    Phenotypes that appear to be conserved could be maintained not only by strong purifying selection on the underlying genetic systems, but also by stabilizing selection acting via compensatory mutations with balanced effects. Such coevolution has been invoked to explain experimental results, but has rarely been the focus of study. Conserved expression driven by the unc-47 promoters of Caenorhabditis elegans and C. briggsae persists despite divergence within a cis-regulatory element and between this element and the trans-regulatory environment. Compensatory changes in cis and trans are revealed when these promoters are used to drive expression in the other species. Functional changes in the C. briggsae promoter, which has experienced accelerated sequence evolution, did not lead to alteration of gene expression in its endogenous environment. Coevolution among promoter elements suggests that complex epistatic interactions within cis-regulatory elements may facilitate their divergence. Our results offer a detailed picture of regulatory evolution in which subtle, lineage-specific, and compensatory modifications of interacting cis and trans regulators together maintain conserved gene expression patterns. PMID:23028368

  7. Center of Mass Acceleration Feedback Control of Functional Neuromuscular Stimulation for Standing in the Presence of Internal Postural Perturbations

    PubMed Central

    Audu, Musa L.; Triolo, Ronald J.

    2013-01-01

    This study determined the feasibility and performance of center of mass (COM) acceleration feedback control of a neuroprosthesis utilizing functional neuromuscular stimulation (FNS) to restore standing balance to a single subject paralyzed by a motor and sensory complete, thoracic-level spinal cord injury (SCI). An artificial neural network (ANN) was created to map gain-modulated changes in total body COM acceleration estimated from body-mounted sensors to optimal changes in stimulation required to maintain standing. Feedback gains were systematically tuned to minimize the upper extremity (UE) loads applied by the subject to an instrumented support device during internally generated postural perturbations produced by volitional reaching and object manipulation. Total body COM acceleration was accurately estimated (> 90% variance explained) from two three-dimensional (3-D) accelerometers mounted on the pelvis and torso. Compared to constant muscle stimulation employed clinically, COM acceleration feedback control of stimulation improved standing performance by reducing the UE loading required to resist internal postural disturbances by 27%. This case study suggests that COM acceleration feedback could potentially be advantageous in a standing neuroprosthesis since it can be implemented with only a few feedback parameters and requires minimal instrumentation for comprehensive, 3-D control of dynamic standing function. PMID:23299260

  8. Graphene for multi-functional synthetic biology: the last 'zeitgeist' in nanomedicine.

    PubMed

    Servant, A; Bianco, A; Prato, M; Kostarelos, K

    2014-04-01

    The high versatility of graphene has attracted significant attention in many areas of scientific research from electronics to physics and mechanics. One of the most intriguing utilisation of graphene remains however in nanomedicine and synthetic biology. In particular, the last decade has witnessed an exponential growth in the generation of novel candidate therapeutics of multiple biological activities based on graphene constructs with small molecules, such as anti-cancer drugs. In this Digest, we summarise the different synthetic strategies and routes available to fabricate these promising graphene conjugates and the opportunities for the design of multi-functional tools for synthetic biology that they offer. PMID:24594351

  9. Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice.

    PubMed

    Yamada, Yosuke; Tomaru, Utano; Ishizu, Akihiro; Ito, Tomoki; Kiuchi, Takayuki; Ono, Ayako; Miyajima, Syota; Nagai, Katsura; Higashi, Tsunehito; Matsuno, Yoshihiro; Dosaka-Akita, Hirotoshi; Nishimura, Masaharu; Miwa, Soichi; Kasahara, Masanori

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly. PMID:25915723

  10. Nerve Regeneration: Understanding Biology and Its Influence on Return of Function After Nerve Transfers.

    PubMed

    Gordon, Tessa

    2016-05-01

    Poor functional outcomes are frequent after peripheral nerve injuries despite the regenerative support of Schwann cells. Motoneurons and, to a lesser extent, sensory neurons survive the injuries but outgrowth of axons across the injury site is slow. The neuronal regenerative capacity and the support of regenerating axons by the chronically denervated Schwann cells progressively declines with time and distance of the injury from the denervated targets. Strategies, including brief low-frequency electrical stimulation that accelerates target reinnervation and functional recovery, and the insertion of cross-bridges between a donor nerve and a recipient denervated nerve stump, are effective in promoting functional outcomes after complete and incomplete injuries. PMID:27094884

  11. Electromagnetic fields as structure-function zeitgebers in biological systems: environmental orchestrations of morphogenesis and consciousness

    PubMed Central

    Rouleau, Nicolas; Dotta, Blake T.

    2014-01-01

    Within a cell system structure dictates function. Any interaction between cells, or a cell and its environment, has the potential to have long term implications on the function of a given cell and emerging cell aggregates. The structure and function of cells are continuously subjected to modification by electrical and chemical stimuli. However, biological systems are also subjected to an ever-present influence: the electromagnetic (EM) environment. Biological systems have the potential to be influenced by subtle energies which are exchanged at atomic and subatomic scales as EM phenomena. These energy exchanges have the potential to manifest at higher orders of discourse and affect the output (behavior) of a biological system. Here we describe theoretical and experimental evidence of EM influence on cells and the integration of whole systems. Even weak interactions between EM energies and biological systems display the potential to affect a developing system. We suggest the growing literature of EM effects on biological systems has significant implications to the cell and its functional aggregates. PMID:25426035

  12. Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage Measured in Metaphase and Interphase Human Lymphocytes

    NASA Technical Reports Server (NTRS)

    George, Kerry; Durante, Marco; Willingham, Veronica; Wu, Honglu; Yang, Tracy C.; Cucinotta, Francis A.

    2003-01-01

    Chromosome aberrations were investigated in human lymphocytes after in vitro exposure to 1H-, 3He-, 12C-, 40Ar-, 28Si-, 56Fe-, or 197Au-ion beams, with LET ranging from approximately 0.4-1393 keV/microm in the dose range of 0.075-3 Gy. Dose-response curves for chromosome exchanges, measured at the first mitosis postirradiation using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosomal damage with respect to low- or high-dose-rate gamma rays. Estimates of RBEmax values for mitotic spreads, which ranged from near 0.7 to 11.1 for total exchanges, increased with LET, reaching a maximum at about 150 keV/microm, and decreased with further increase in LET. RBEs for complex aberrations are undefined due to the lack of an initial slope for gamma rays. Additionally, the effect of mitotic delay on RBE values was investigated by measuring chromosome aberrations in interphase after chemically induced premature chromosome condensation (PCC), and values were up to threefold higher than for metaphase analysis.

  13. Center of Mass Acceleration Feedback Control of Standing Balance by Functional Neuromuscular Stimulation against External Postural Perturbations

    PubMed Central

    Nataraj, Raviraj; Audu, Musa L.; Triolo, Ronald J.

    2013-01-01

    This study investigated the use of center of mass (COM) acceleration feedback for improving performance of a functional neuromuscular stimulation (FNS) control system to restore standing function to a subject with complete, thoracic-level spinal cord injury (SCI). The approach for linearly relating changes in muscle stimulation to changes in COM acceleration was verified experimentally and subsequently produced data to create an input-output map driven by sensor feedback. The feedback gains were systematically tuned to reduce upper extremity (UE) loads applied to an instrumented support device while resisting external postural disturbances. Total body COM acceleration was accurately estimated (> 89% variance explained) using three-dimensional (3-D) outputs of two accelerometers mounted on the pelvis and torso. Compared to constant muscle stimulation employed clinically, feedback control of stimulation reduced UE loading by 33%. COM acceleration feedback is advantageous in constructing a standing neuroprosthesis since it provides the basis for a comprehensive control synergy about a global, dynamic variable and requires minimal instrumentation. Future work should include tuning and testing the feedback control system during functional reaching activity that is more indicative of activities of daily living. PMID:22987499

  14. The biological functions of miRNAs: lessons from in vivo studies

    PubMed Central

    Vidigal, Joana A.; Ventura, Andrea

    2014-01-01

    Despite their clear importance as a class of regulatory molecules, pinpointing the relevance of individual miRNAs has been challenging. Studies querying miRNA functions by overexpressing or silencing specific miRNAs have yielded data that are often at odds with those collected from loss-of-functions models. In addition, knockout studies suggest that many conserved miRNAs are dispensable for animal development or viability. In this review we discuss these observations in the context of our current knowledge of miRNA biology and review the evidence implicating miRNA-mediated gene regulation in the mechanisms that ensure biological robustness. PMID:25484347

  15. The biological functions of miRNAs: lessons from in vivo studies.

    PubMed

    Vidigal, Joana A; Ventura, Andrea

    2015-03-01

    Despite their clear importance as a class of regulatory molecules, pinpointing the relevance of individual miRNAs has been challenging. Studies querying miRNA functions by overexpressing or silencing specific miRNAs have yielded data that are often at odds with those collected from loss-of-functions models. In addition, knockout studies suggest that many conserved miRNAs are dispensable for animal development or viability. In this review, we discuss these observations in the context of our current knowledge of miRNA biology and review the evidence implicating miRNA-mediated gene regulation in the mechanisms that ensure biological robustness. PMID:25484347

  16. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator

    SciTech Connect

    Kneip, S.; McGuffey, C.; Dollar, F.; Chvykov, V.; Kalintchenko, G.; Krushelnick, K.; Maksimchuk, A.; Mangles, S. P. D.; Matsuoka, T.; Schumaker, W.; Thomas, A. G. R.; Yanovsky, V.; Bloom, M. S.; Najmudin, Z.; Palmer, C. A. J.; Schreiber, J.

    2011-08-29

    We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlighting the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.

  17. Exergames: neuroplastic hypothesis about cognitive improvement and biological effects on physical function of institutionalized older persons.

    PubMed

    Monteiro-Junior, Renato Sobral; Vaghetti, César Augusto Otero; Nascimento, Osvaldo José M; Laks, Jerson; Deslandes, Andrea Camaz

    2016-02-01

    Exergames can be considered a dual task because the games are performed by a man-videogame interface, requiring cognitive and motor functions simultaneously. Although the literature has shown improvements of cognitive and physical functions due to exergames, the intrinsic mechanisms involved in these functional changes have still not been elucidated. The aims of the present study were (1) to demonstrate the known biological mechanisms of physical exercise regarding muscle adaptation and establish a relationship with exergames; and (2) to present a neurobiological hypothesis about the neuroplastic effects of exergames on the cognitive function of institutionalized older persons. These hypotheses are discussed. PMID:27073355

  18. Exergames: neuroplastic hypothesis about cognitive improvement and biological effects on physical function of institutionalized older persons

    PubMed Central

    Monteiro-Junior, Renato Sobral; Vaghetti, César Augusto Otero; Nascimento, Osvaldo José M.; Laks, Jerson; Deslandes, Andrea Camaz

    2016-01-01

    Exergames can be considered a dual task because the games are performed by a man-videogame interface, requiring cognitive and motor functions simultaneously. Although the literature has shown improvements of cognitive and physical functions due to exergames, the intrinsic mechanisms involved in these functional changes have still not been elucidated. The aims of the present study were (1) to demonstrate the known biological mechanisms of physical exercise regarding muscle adaptation and establish a relationship with exergames; and (2) to present a neurobiological hypothesis about the neuroplastic effects of exergames on the cognitive function of institutionalized older persons. These hypotheses are discussed. PMID:27073355

  19. Community Structure Reveals Biologically Functional Modules in MEF2C Transcriptional Regulatory Network

    PubMed Central

    Alcalá-Corona, Sergio A.; Velázquez-Caldelas, Tadeo E.; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2016-01-01

    Gene regulatory networks are useful to understand the activity behind the complex mechanisms in transcriptional regulation. A main goal in contemporary biology is using such networks to understand the systemic regulation of gene expression. In this work, we carried out a systematic study of a transcriptional regulatory network derived from a comprehensive selection of all potential transcription factor interactions downstream from MEF2C, a human transcription factor master regulator. By analyzing the connectivity structure of such network, we were able to find different biologically functional processes and specific biochemical pathways statistically enriched in communities of genes into the network, such processes are related to cell signaling, cell cycle and metabolism. In this way we further support the hypothesis that structural properties of biological networks encode an important part of their functional behavior in eukaryotic cells. PMID:27252657

  20. Functional genomics bridges the gap between quantitative genetics and molecular biology

    PubMed Central

    Lappalainen, Tuuli

    2015-01-01

    Deep characterization of molecular function of genetic variants in the human genome is becoming increasingly important for understanding genetic associations to disease and for learning to read the regulatory code of the genome. In this paper, I discuss how recent advances in both quantitative genetics and molecular biology have contributed to understanding functional effects of genetic variants, lessons learned from eQTL studies, and future challenges in this field. PMID:26430152

  1. Biological interpretation of genome-wide association studies using predicted gene functions.

    PubMed

    Pers, Tune H; Karjalainen, Juha M; Chan, Yingleong; Westra, Harm-Jan; Wood, Andrew R; Yang, Jian; Lui, Julian C; Vedantam, Sailaja; Gustafsson, Stefan; Esko, Tonu; Frayling, Tim; Speliotes, Elizabeth K; Boehnke, Michael; Raychaudhuri, Soumya; Fehrmann, Rudolf S N; Hirschhorn, Joel N; Franke, Lude

    2015-01-01

    The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes. PMID:25597830

  2. Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities

    PubMed Central

    Narayanasamy, Shaman; Muller, Emilie E L; Sheik, Abdul R; Wilmes, Paul

    2015-01-01

    Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalities within the framework of Eco-Systems Biology. The integration of information from genome to metabolome allows the establishment of associations between genetic potential and final phenotype, a feature not realizable by only considering single ‘omes’. Therefore, in our opinion, integrated omics will become the future standard for large-scale characterization of microbial consortia including those underpinning biological wastewater treatment processes. Systematically obtained time and space-resolved omic datasets will allow deconvolution of structure–function relationships by identifying key members and functions. Such knowledge will form the foundation for discovering novel genes on a much larger scale compared with previous efforts. In general, these insights will allow us to optimize microbial biotechnological processes either through better control of mixed culture processes or by use of more efficient enzymes in bioengineering applications. PMID:25678254

  3. Exploratory Analysis of Biological Networks through Visualization, Clustering, and Functional Annotation in Cytoscape.

    PubMed

    Baryshnikova, Anastasia

    2016-01-01

    Biological networks define how genes, proteins, and other cellular components interact with one another to carry out specific functions, providing a scaffold for understanding cellular organization. Although in-depth network analysis requires advanced mathematical and computational knowledge, a preliminary visual exploration of biological networks is accessible to anyone with basic computer skills. Visualization of biological networks is used primarily to examine network topology, identify functional modules, and predict gene functions based on gene connectivity within the network. Networks are excellent at providing a bird's-eye view of data sets and have the power of illustrating complex ideas in simple and intuitive terms. In addition, they enable exploratory analysis and generation of new hypotheses, which can then be tested using rigorous statistical and experimental tools. This protocol describes a simple procedure for visualizing a biological network using the genetic interaction similarity network for Saccharomyces cerevisiae as an example. The visualization procedure described here relies on the open-source network visualization software Cytoscape and includes detailed instructions on formatting and loading the data, clustering networks, and overlaying functional annotations. PMID:26988373

  4. Functional Data Analysis of Spaceflight-Induced Changes in Coordination and Phase in Head Pitch Acceleration During Treadmill Walking

    NASA Technical Reports Server (NTRS)

    Miller, Christopher; Peters, Brian; Feiveson, Alan; Bloomberg, Jacob

    2011-01-01

    Astronauts returning from spaceflight experience neurovestibular disturbances during head movements and attempt to mitigate them by limiting head motion. Analyses to date of the head movements made during walking have concentrated on amplitude and variability measures extracted from ensemble averages of individual gait cycles. Phase shifts within each gait cycle can be determined by functional data analysis through the computation of time-warping functions. Large, localized variations in the timing of peaks in head kinematics may indicate changes in coordination. The purpose of this study was to determine timing changes in head pitch acceleration of astronauts during treadmill walking before and after flight. Six astronauts (5M/1F; age = 43.5+/-6.4yr) participated in the study. Subjects walked at 1.8 m/sec (4 mph) on a motorized treadmill while reading optotypes displayed on a computer screen 4 m in front of their eyes. Three-dimensional motion of the subject s head was recorded with an Inertial Measurement Unit (IMU) device. Data were recorded twice before flight and four times after landing. The head pitch acceleration was calculated by taking the time derivative of the pitch velocity data from the IMU. Data for each session with each subject were time-normalized into gait cycles, then registered to align significant features and create a mean curve. The mean curves of each postflight session for each subject were re-registered based on their preflight mean curve to create time-warping functions. The root mean squares (RMS) of these warping functions were calculated to assess the deviation of head pitch acceleration mean curves in each postflight session from the preflight mean curve. After landing, most crewmembers exhibited localized shifts within their head pitch acceleration regimes, with the greatest deviations in RMS occurring on landing day or 1 day after landing. These results show that the alteration of head pitch coordination due to spaceflight may be

  5. Severe Impingement of Lumbar Disc Replacements Increases the Functional Biological Activity of Polyethylene Wear Debris

    PubMed Central

    Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.

    2013-01-01

    Background: Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. Methods: The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Results: Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume

  6. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach

    PubMed Central

    Laurent, Georges St.; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J.L.; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R.R.; Nicolas, Estelle; McCaffrey, Timothy A.; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-01-01

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlincRNAs genes likely function in cis to activate nearby genes. This effect while most pronounced in closely spaced vlincRNA–gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlincRNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. PMID:27001520

  7. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach.

    PubMed

    Laurent, Georges St; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J L; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Nicolas, Estelle; McCaffrey, Timothy A; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-04-20

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlincRNAs genes likely function incisto activate nearby genes. This effect while most pronounced in closely spaced vlincRNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlincRNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. PMID:27001520

  8. Senescence-accelerated mouse (SAM) as an animal model of senile dementia: pharmacological, neurochemical and molecular biological approach.

    PubMed

    Okuma, Y; Nomura, Y

    1998-12-01

    To elucidate the fundamental mechanism of age-related deficiencies of learning and to develop effective drugs for intervention in age-related diseases such as learning dysfunctions, pertinent animal models that have characteristics closely similar to human dysfunctions should be established. SAM (senescence-accelerated mouse) has been established as a murine model of the SAM strains, groups of related inbred strains including nine strains of accelerated senescence-prone, short-lived mice (SAMP) and three strains of accelerated senescence-resistant, long-lived mice (SAMR). SAMP-strain mice show relatively strain-specific age-associated phenotypic pathologies such as shortened life span and early manifestation of senescence. Among the SAMP-strain mice, SAMP8 mice show an age-related deterioration in learning ability. Here, the neuropathological, neurochemical and pharmacological features of SAM are reported, especially for SAMP8. Moreover, the effects of several drugs on the biochemical and behavioral alterations in SAMP8 and the etiologic manifestation of accelerated senescence are also discussed. PMID:9920195

  9. How to use individual differences to isolate functional organization, biology, and utility of visual functions; with illustrative proposals for stereopsis

    PubMed Central

    Wilmer, Jeremy B.

    2008-01-01

    This paper is a call for greater use of individual differences in the basic science of visual perception. Individual differences yield insights into visual perception’s functional organization, underlying biological/environmental mechanisms, and utility. I first explain the general approach advocated and where it comes from. Second, I describe five principles central to learning about the nature of visual perception through individual differences. Third, I elaborate on the use of individual differences to gain insights into the three areas mentioned above (function, biology/environment, utility), in each case describing the approach advocated, presenting model examples from the literature, and laying out illustrative research proposals for the case of stereopsis. PMID:19017483

  10. Develop Infrared Structural Biology for Probing Structural Dynamics of Protein Functions

    NASA Astrophysics Data System (ADS)

    Xie, Aihua; Kang, Zhouyang; Causey, Oliver; Liu, Charle

    2015-03-01

    Protein functions are carried out through a series of structural transitions. Lack of knowledge on functionally important structural motions of proteins impedes our understanding of protein functions. Infrared structural biology is an emerging technology with powerful applications for protein structural dynamics. One key element of infrared structural biology is the development of vibrational structural marker (VSM) database library that translates infrared spectroscopic signals into specific structural information. We report the development of VSM for probing the type, geometry and strength of hydrogen bonding interactions of buried COO- side chains of Asp and Glu in proteins. Quantum theory based first principle computational studies combined with bioinformatic hydrogen bond analysis are employed in this study. We will discuss the applications of VSM in mechanistic studies of protein functions. Infrared structural biology is expected to emerge as a powerful technique for elucidating the functional mechanism of a broad range of proteins, including water soluble and membrane proteins. This work is supported by OCAST HR10-078 and NSF DBI1338097.

  11. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology

    PubMed Central

    Poliseno, Laura; Salmena, Leonardo; Zhang, Jiangwen; Carver, Brett; Haveman, William J.; Pandolfi, Pier Paolo

    2011-01-01

    The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs possess a biological role in cancer cells that relies upon their ability to compete for microRNA binding and is independent of their protein-coding function. As a paradigm for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene (PTENP1) and the critical consequences of this interaction. We find that PTENP1 is biologically active as determined by its ability to regulate cellular levels of PTEN, and that it can exert a growth-suppressive role. We also show that PTENP1 locus is selectively lost in human cancer. We extend our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. Further, we demonstrate that the transcripts of protein coding genes such as PTEN are also biologically active. Together, these findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs. PMID:20577206

  12. Mechanisms by which acellular biologic scaffolds promote functional skeletal muscle restoration.

    PubMed

    Badylak, Stephen F; Dziki, Jenna L; Sicari, Brian M; Ambrosio, Fabrisia; Boninger, Michael L

    2016-10-01

    Acellular biologic scaffolds derived from extracellular matrix have been investigated in preclinical and clinical studies as a regenerative medicine approach for volumetric muscle loss treatment. The present manuscript provides a review of previous studies supporting the use of extracellular matrix derived biologic scaffolds for the promotion of functional skeletal muscle tissue formation that is contractile and innervated. The manuscript also identifies key mechanisms that have been associated with ECM-mediated skeletal muscle repair, and provides hypotheses as to why there have been variable outcomes, ranging from successful to unsatisfactory, associated with ECM bioscaffold implantation in the skeletal muscle injury microenvironment. PMID:27376561

  13. BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments

    PubMed Central

    Al-Shahrour, Fátima; Minguez, Pablo; Tárraga, Joaquín; Montaner, David; Alloza, Eva; Vaquerizas, Juan M.; Conde, Lucía; Blaschke, Christian; Vera, Javier; Dopazo, Joaquín

    2006-01-01

    We present a new version of Babelomics, a complete suite of web tools for functional analysis of genome-scale experiments, with new and improved tools. New functionally relevant terms have been included such as CisRed motifs or bioentities obtained by text-mining procedures. An improved indexing has considerably speeded up several of the modules. An improved version of the FatiScan method for studying the coordinate behaviour of groups of functionally related genes is presented, along with a similar tool, the Gene Set Enrichment Analysis. Babelomics is now more oriented to test systems biology inspired hypotheses. Babelomics can be found at . PMID:16845052

  14. [Relative biological effectiveness of accelerated heavy ions and fast neutrons estimated from frequency of aberration mytoses in the retinal epithelium].

    PubMed

    Vorozhtsova, S V; Shafirkin, A V; Fedorenko, B S

    2006-01-01

    Analyzed was the literature and authors' experimental data concerning lesion and recovery of epithelium cells of mice retina immediately and long after irradiation at different sources including single and partly fractionated irradiation by gamma- and X-rays, accelerated protons, helium, carbon and boron ions, and fast neutrons of the reactor range in a large spectrum of doses and LET. Reviewed are some new techniques of determining the RBE coefficient for these types of radiation; large values of the RBE coefficients for accelerated ions and neutrons (5-10 times higher than RBE coefficients calculated for the next day following irradiation) are a result of integration into calculation of the available data about the delayed disorders in retinal epithelium cell regeneration. PMID:17193969

  15. The Structure of a Gene Co-Expression Network Reveals Biological Functions Underlying eQTLs

    PubMed Central

    Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali

    2013-01-01

    What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology. PMID:23577081

  16. The structure of a gene co-expression network reveals biological functions underlying eQTLs.

    PubMed

    Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali

    2013-01-01

    What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology. PMID:23577081

  17. Accelerating Scientific Discovery Through Computation and Visualization III. Tight-Binding Wave Functions for Quantum Dots

    PubMed Central

    Sims, James S.; George, William L.; Griffin, Terence J.; Hagedorn, John G.; Hung, Howard K.; Kelso, John T.; Olano, Marc; Peskin, Adele P.; Satterfield, Steven G.; Terrill, Judith Devaney; Bryant, Garnett W.; Diaz, Jose G.

    2008-01-01

    This is the third in a series of articles that describe, through examples, how the Scientific Applications and Visualization Group (SAVG) at NIST has utilized high performance parallel computing, visualization, and machine learning to accelerate scientific discovery. In this article we focus on the use of high performance computing and visualization for simulations of nanotechnology. PMID:27096116

  18. Colorimetric detection of biological hydrogen sulfide using fluorosurfactant functionalized gold nanorods.

    PubMed

    Zhang, Xuan; Zhou, Wenjuan; Yuan, Zhiqin; Lu, Chao

    2015-11-01

    As a well-known environmental pollutant but also an important gaseous transmitter, the specific detection of hydrogen sulfide (H2S) is significant in biological systems. In this study, fluorosurfactant functionalized gold nanorods (FSN-AuNRs) have been proposed to act as selective colorimetric nanoprobes for H2S. With the combination of strong gold-S interactions and small FSN bilayer interstices, FSN-AuNRs demonstrate favorable selectivity and sensitivity toward H2S over other anions and small biological molecules. The practical application of the present method in biological H2S detection was validated with human and mouse serum samples. Moreover, the proposed nanoprobe can also be used for evaluating the activity of H2S synthetase. PMID:26415625

  19. From genes to functional classes in the study of biological systems

    PubMed Central

    Al-Shahrour, Fátima; Arbiza, Leonardo; Dopazo, Hernán; Huerta-Cepas, Jaime; Mínguez, Pablo; Montaner, David; Dopazo, Joaquín

    2007-01-01

    Background With the popularisation of high-throughput techniques, the need for procedures that help in the biological interpretation of results has increased enormously. Recently, new procedures inspired in systems biology criteria have started to be developed. Results Here we present FatiScan, a web-based program which implements a threshold-independent test for the functional interpretation of large-scale experiments that does not depend on the pre-selection of genes based on the multiple application of independent tests to each gene. The test implemented aims to directly test the behaviour of blocks of functionally related genes, instead of focusing on single genes. In addition, the test does not depend on the type of the data used for obtaining significance values, and consequently different types of biologically informative terms (gene ontology, pathways, functional motifs, transcription factor binding sites or regulatory sites from CisRed) can be applied to different classes of genome-scale studies. We exemplify its application in microarray gene expression, evolution and interactomics. Conclusion Methods for gene set enrichment which, in addition, are independent from the original data and experimental design constitute a promising alternative for the functional profiling of genome-scale experiments. A web server that performs the test described and other similar ones can be found at: . PMID:17407596

  20. Functionalized Nanoporous Silica for the Removal of Heavy Metals from Biological Systems: Adsorption and Application

    PubMed Central

    Yantasee, Wassana; Rutledge, Ryan D.; Chouyyok, Wilaiwan; Sukwarotwat, Vichaya; Orr, Galya; Warner, Cynthia L.; Warner, Marvin G.; Fryxell, Glen E.; Wiacek, Robert J.; Timchalk, Charles; Addleman, R. Shane

    2012-01-01

    Surface-functionalized nanoporous silica, often referred to as self-assembled monolayers on mesoporous supports (SAMMS), has previously demonstrated the ability to serve as very effective heavy metal sorbents in a range of aquatic and environmental systems, suggesting that they may be advantageously utilized for biomedical applications such as chelation therapy. Herein we evaluate surface chemistries for heavy metal capture from biological fluids, various facets of the materials’ biocompatibility, and the suitability of these materials as potential therapeutics. Of the materials tested, thiol-functionalized SAMMS proved most capable of removing selected heavy metals from biological solutions (i.e., blood, urine, etc.) Consequentially, thiol-functionalized SAMMS was further analyzed to assess the material’s performance under a number of different biologically relevant conditions (i.e., variable pH and ionic strength) to gauge any potentially negative effects resulting from interaction with the sorbent, such as cellular toxicity or the removal of essential minerals. Additionally, cellular uptake studies demonstrated no cell membrane permeation by the silica-based materials generally highlighting their ability to remain cellularly inert and thus nontoxic. The results show that organic ligand functionalized nanoporous silica could be a valuable material for a range of detoxification therapies and potentially other biomedical applications. PMID:20939537

  1. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    PubMed

    McDougall, Carmel; Woodcroft, Ben J; Degnan, Bernard M

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  2. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials

    PubMed Central

    McDougall, Carmel; Woodcroft, Ben J.

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  3. Omega-6 and omega-3 fatty acids predict accelerated decline of peripheral nerve function in older persons

    PubMed Central

    Lauretani, F.; Bandinelli, S.; Benedetta, B.; Cherubini, A.; Iorio, A. D.; Blè, A.; Giacomini, V.; Corsi, A. M.; Guralnik, J. M.; Ferrucci, L.

    2009-01-01

    Pre-clinical studies suggest that both omega-6 and omega-3 fatty acids have beneficial effects on peripheral nerve function. Rats feed a diet rich in polyunsaturated fatty acids (PUFAs) showed modification of phospholipid fatty acid composition in nerve membranes and improvement of sciatic nerve conduction velocity (NCV). We tested the hypothesis that baseline plasma omega-6 and omega-3 fatty acids levels predict accelerated decline of peripheral nerve function. Changes between baseline and the 3-year follow-up in peripheral nerve function was assessed by standard surface ENG of the right peroneal nerve in 384 male and 443 female participants of the InCHIANTI study (age range: 24–97 years). Plasma concentrations of selected fatty acids assessed at baseline by gas chromatography. Independent of confounders, plasma omega-6 fatty acids and linoleic acid were significantly correlated with peroneal NCV at enrollment. Lower plasma PUFA, omega-6 fatty acids, linoleic acid, ratio omega-6/omega-3, arachidonic acid and docosahexanoic acid levels were significantly predicted a steeper decline in nerve function parameters over the 3-year follow-up. Low plasma omega-6 and omega-3 fatty acids levels were associated with accelerated decline of peripheral nerve function with aging. PMID:17594339

  4. Omega-6 and omega-3 fatty acids predict accelerated decline of peripheral nerve function in older persons.

    PubMed

    Lauretani, F; Bandinelli, S; Bartali, B; Benedetta, B; Cherubini, A; Iorio, A D; Blè, A; Giacomini, V; Corsi, A M; Guralnik, J M; Ferrucci, L

    2007-07-01

    Pre-clinical studies suggest that both omega-6 and omega-3 fatty acids have beneficial effects on peripheral nerve function. Rats feed a diet rich in polyunsaturated fatty acids (PUFAs) showed modification of phospholipid fatty acid composition in nerve membranes and improvement of sciatic nerve conduction velocity (NCV). We tested the hypothesis that baseline plasma omega-6 and omega-3 fatty acids levels predict accelerated decline of peripheral nerve function. Changes between baseline and the 3-year follow-up in peripheral nerve function was assessed by standard surface ENG of the right peroneal nerve in 384 male and 443 female participants of the InCHIANTI study (age range: 24-97 years). Plasma concentrations of selected fatty acids assessed at baseline by gas chromatography. Independent of confounders, plasma omega-6 fatty acids and linoleic acid were significantly correlated with peroneal NCV at enrollment. Lower plasma PUFA, omega-6 fatty acids, linoleic acid, ratio omega-6/omega-3, arachidonic acid and docosahexanoic acid levels were significantly predicted a steeper decline in nerve function parameters over the 3-year follow-up. Low plasma omega-6 and omega-3 fatty acids levels were associated with accelerated decline of peripheral nerve function with aging. PMID:17594339

  5. Teleology then and now: the question of Kant's relevance for contemporary controversies over function in biology.

    PubMed

    Zammito, John

    2006-12-01

    'Naturalism' is the aspiration of contemporary philosophy of biology, and Kant simply cannot be refashioned into a naturalist. Instead, epistemological 'deflation' was the decisive feature of Kant's treatment of the 'biomedical' science in his day, so it is not surprising that this might attract some philosophers of science to him today. A certain sense of impasse in the contemporary 'function talk' seems to motivate renewed interest in Kant. Kant--drawing on his eighteenth-century predecessors-provided a discerning and powerful characterization of what biologists had to explain in organic form. His difference from the rest is that he opined that it was impossible to explain it. Its 'inscrutability' was intrinsic. The third Critique essentially proposed the reduction of biology to a kind of pre-scientific descriptivism, doomed never to attain authentic scientificity, to have its 'Newton of the blade of grass'. By contrast, for Locke, and a fortiori for Buffon and his followers, 'intrinsic purposiveness' was a fact of the matter about concrete biological phenomena; the features of internal self-regulation were hypotheses arising out of actual research practice. The difference comes most vividly to light once we recognize Kant's distinction of the concept of organism from the concept of life. If biology must conceptualize self-organization as actual in the world, Kant's regulative/constitutive distinction is pointless in practice and the (naturalist) philosophy of biology has urgent work to undertake for which Kant turns out not to be very helpful. PMID:17157770

  6. Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective.

    PubMed

    Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco

    2016-02-01

    The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. PMID:26542523

  7. Biological master games: using biologists' reasoning to guide algorithm development for integrated functional genomics.

    PubMed

    Breitling, Rainer; Herzyk, Pawel

    2005-01-01

    We review some powerful new algorithms that build on the intuitive biological interpretation techniques for statistical analysis of functional genomics experiments. Although they were originally designed for transcriptomics, we argue that these algorithms are applicable to any type of -omics study (transcriptomics, proteomics, metabolomics). Rank Products (RP), a strictly non-parametric test statistic to detect differentially regulated elements (genes, proteins, metabolites) in genome-wide screens. RP is particularly powerful for noisy data and low numbers of replicates and makes full use of the availability of a large number of parallel measurements that is typical of modern large-scale experiments. Iterative Group Analysis (iGA), a statistical method that makes the transition from regulated single elements to significant classes of elements, and thus provides an automatic functional annotation of an experiment. Graph-based iGA (GiGA), an extension of iGA that combines experimental data with a broad variety of biological annotations to highlight physiologically relevant regions in a given "evidence graph" (e.g., metabolic networks, signaling pathway diagrams, protein interaction maps). The sequential application of these techniques yields an increasingly abstract interpretation of experimental data that is at the same time quantitative, statistically rigorous, and biologically significant. The results can be used either as helpful tools to guide data visualization and exploration, or as the input for downstream computational applications in a systems biology framework. PMID:16209637

  8. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions.

    PubMed

    Martínez-Reyes, Inmaculada; Diebold, Lauren P; Kong, Hyewon; Schieber, Michael; Huang, He; Hensley, Christopher T; Mehta, Manan M; Wang, Tianyuan; Santos, Janine H; Woychik, Richard; Dufour, Eric; Spelbrink, Johannes N; Weinberg, Samuel E; Zhao, Yingming; DeBerardinis, Ralph J; Chandel, Navdeep S

    2016-01-21

    Mitochondrial metabolism is necessary for the maintenance of oxidative TCA cycle function and mitochondrial membrane potential. Previous attempts to decipher whether mitochondria are necessary for biological outcomes have been hampered by genetic and pharmacologic methods that simultaneously disrupt multiple functions linked to mitochondrial metabolism. Here, we report that inducible depletion of mitochondrial DNA (ρ(ο) cells) diminished respiration, oxidative TCA cycle function, and the mitochondrial membrane potential, resulting in diminished cell proliferation, hypoxic activation of HIF-1, and specific histone acetylation marks. Genetic reconstitution only of the oxidative TCA cycle function specifically in these inducible ρ(ο) cells restored metabolites, resulting in re-establishment of histone acetylation. In contrast, genetic reconstitution of the mitochondrial membrane potential restored ROS, which were necessary for hypoxic activation of HIF-1 and cell proliferation. These results indicate that distinct mitochondrial functions associated with respiration are necessary for cell proliferation, epigenetics, and HIF-1 activation. PMID:26725009

  9. The Utility of the HSAB Principle via the Fukui Function in Biological Systems

    PubMed Central

    Faver, John; Merz, Kenneth M.

    2010-01-01

    The hard/soft acid-base principle has long been known to be an excellent predictor of chemical reactivity. The Fukui function, a reactivity descriptor from conceptual density functional theory, has been shown to be related to the local softness of a system. The usefulness of the Fukui function is explored and demonstrated herein for three common biological problems: ligand docking, active site detection, and protein folding. In each type of study, a scoring function is developed based on the local HSAB principle using atomic Fukui indices. Even with necessary approximations for its use in large systems, the Fukui function remains a useful descriptor for predicting chemical reactivity and understanding chemical systems. PMID:20369029

  10. Functional Effects of Delivering Human Mesenchymal Stem Cell-Seeded Biological Sutures to an Infarcted Heart.

    PubMed

    Hansen, Katrina J; Favreau, John T; Guyette, Jacques P; Tao, Ze-Wei; Coffin, Spencer T; Cunha-Gavidia, Anny; D'Amore, Brian; Perreault, Luke R; Fitzpatrick, John P; DeMartino, Angelica; Gaudette, Glenn R

    2016-01-01

    Stem cell therapy has the potential to improve cardiac function after myocardial infarction (MI); however, existing methods to deliver cells to the myocardium, including intramyocardial injection, suffer from low engraftment rates. In this study, we used a rat model of acute MI to assess the effects of human mesenchymal stem cell (hMSC)-seeded fibrin biological sutures on cardiac function at 1 week after implant. Biological sutures were seeded with quantum dot (Qdot)-loaded hMSCs for 24 h before implantation. At 1 week postinfarct, the heart was imaged to assess mechanical function in the infarct region. Regional parameters assessed were regional stroke work (RSW) and systolic area of contraction (SAC) and global parameters derived from the pressure waveform. MI (n = 6) significantly decreased RSW (0.026 ± 0.011) and SAC (0.022 ± 0.015) when compared with sham operation (RSW: 0.141 ± 0.009; SAC: 0.166 ± 0.005, n = 6) (p < 0.05). The delivery of unseeded biological sutures to the infarcted hearts did not change regional mechanical function compared with the infarcted hearts (RSW: 0.032 ± 0.004, SAC: 0.037 ± 0.008, n = 6). The delivery of hMSC-seeded sutures exerted a trend toward increase of regional mechanical function compared with the infarcted heart (RSW: 0.057 ± 0.011; SAC: 0.051 ± 0.014, n = 6). Global function showed no significant differences between any group (p > 0.05); however, there was a trend toward improved function with the addition of either unseeded or seeded biological suture. Histology demonstrated that Qdot-loaded hMSCs remained present in the infarcted myocardium after 1 week. Analysis of serial sections of Masson's trichrome staining revealed that the greatest infarct size was in the infarct group (7.0% ± 2.2%), where unseeded (3.8% ± 0.6%) and hMSC-seeded (3.7% ± 0.8%) suture groups maintained similar infarct sizes. Furthermore, the remaining suture area was

  11. Functional Effects of Delivering Human Mesenchymal Stem Cell-Seeded Biological Sutures to an Infarcted Heart

    PubMed Central

    Hansen, Katrina J.; Favreau, John T.; Guyette, Jacques P.; Tao, Ze-Wei; Coffin, Spencer T.; Cunha-Gavidia, Anny; D'Amore, Brian; Perreault, Luke R.; Fitzpatrick, John P.; DeMartino, Angelica; Gaudette, Glenn R.

    2016-01-01

    Abstract Stem cell therapy has the potential to improve cardiac function after myocardial infarction (MI); however, existing methods to deliver cells to the myocardium, including intramyocardial injection, suffer from low engraftment rates. In this study, we used a rat model of acute MI to assess the effects of human mesenchymal stem cell (hMSC)-seeded fibrin biological sutures on cardiac function at 1 week after implant. Biological sutures were seeded with quantum dot (Qdot)-loaded hMSCs for 24 h before implantation. At 1 week postinfarct, the heart was imaged to assess mechanical function in the infarct region. Regional parameters assessed were regional stroke work (RSW) and systolic area of contraction (SAC) and global parameters derived from the pressure waveform. MI (n = 6) significantly decreased RSW (0.026 ± 0.011) and SAC (0.022 ± 0.015) when compared with sham operation (RSW: 0.141 ± 0.009; SAC: 0.166 ± 0.005, n = 6) (p < 0.05). The delivery of unseeded biological sutures to the infarcted hearts did not change regional mechanical function compared with the infarcted hearts (RSW: 0.032 ± 0.004, SAC: 0.037 ± 0.008, n = 6). The delivery of hMSC-seeded sutures exerted a trend toward increase of regional mechanical function compared with the infarcted heart (RSW: 0.057 ± 0.011; SAC: 0.051 ± 0.014, n = 6). Global function showed no significant differences between any group (p > 0.05); however, there was a trend toward improved function with the addition of either unseeded or seeded biological suture. Histology demonstrated that Qdot-loaded hMSCs remained present in the infarcted myocardium after 1 week. Analysis of serial sections of Masson's trichrome staining revealed that the greatest infarct size was in the infarct group (7.0% ± 2.2%), where unseeded (3.8% ± 0.6%) and hMSC-seeded (3.7% ± 0.8%) suture groups maintained similar infarct sizes. Furthermore, the remaining suture area

  12. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.

    PubMed

    Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie

    2015-12-01

    The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (∼100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue

  13. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis

    NASA Astrophysics Data System (ADS)

    Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie

    2015-11-01

    The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (~100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue

  14. PrOnto database : GO term functional dissimilarity inferred from biological data

    PubMed Central

    Chapple, Charles E.; Herrmann, Carl; Brun, Christine

    2015-01-01

    Moonlighting proteins are defined by their involvement in multiple, unrelated functions. The computational prediction of such proteins requires a formal method of assessing the similarity of cellular processes, for example, by identifying dissimilar Gene Ontology terms. While many measures of Gene Ontology term similarity exist, most depend on abstract mathematical analyses of the structure of the GO tree and do not necessarily represent the underlying biology. Here, we propose two metrics of GO term functional dissimilarity derived from biological information, one based on the protein annotations and the other on the interactions between proteins. They have been collected in the PrOnto database, a novel tool which can be of particular use for the identification of moonlighting proteins. The database can be queried via an web-based interface which is freely available at http://tagc.univ-mrs.fr/pronto. PMID:26089836

  15. Form and function: Perspectives on structural biology and resources for the future

    SciTech Connect

    Vaughan, D.

    1990-12-01

    The purpose of this study is largely to explore and expand on the thesis that biological structures and their functions are suited to. Form indeed follows function and if we are to understand the workings of a living system, with all that such an understanding promises, we must first seek to describe the structure of its parts. Descriptions of a few achievements of structural biology lay the groundwork, but the substance of this booklet is a discussion of important questions yet unanswered and opportunities just beyond our grasp. The concluding pages then outline a course of action in which the Department of Energy would exercise its responsibility to develop the major resources needed to extend our reach and to answer some of those unanswered questions. 22 figs.

  16. Biological control of crystal texture: A widespread strategy for adapting crystal properties to function

    SciTech Connect

    Berman, A.; Leiserowitz, L.; Weiner, S.; Addadi, L. ); Hanson, J.; Koetzle, T.F. )

    1993-02-05

    Textures of calcite crystals from a variety of mineralized tissues belong to organisms from four phyla were examined with high-resolution synchrotron x-ray radiation. Significant differences in coherence length and angular spread were observed between taxonomic groups. Crystals from polycrystalline skeletal ensembles were more perfect than those that function as single-crystal elements. Different anistropic effects on crystal texture were observed for sea urchin and mollusk calcite crystals, whereas none was found for the foraminifer, Patellina, and the control calcite crystals. These results show that the manipulation of crystal texture in different organisms is under biological control and that crystal textures in some tissues are adapted to function. A better understanding of this apparently widespread biological phenomenon may provide new insights for improving synthetic crystal-containing materials. 18 refs., 3 figs., 1 tab.

  17. Chemical Biology Strategies for post-translational control of protein function

    PubMed Central

    Rakhit, Rishi; Navarro, Raul; Wandless, Thomas J.

    2014-01-01

    A common strategy to understand a biological system is to selectively perturb it and observe its response. While technologies now exist to manipulate cellular systems at the genetic and transcript level, the direct manipulation of functions at the protein level can offer significant advantages in precision, speed, and reversibility. Combining the specificity of genetic manipulation and the spatio-temporal resolution of light and small-molecule based approaches now allow exquisite control over biological systems to subtly perturb a system of interest in vitro and in vivo. Conditional perturbation mechanisms may be broadly characterized by change in intracellular localization, intramolecular activation, or degradation of a protein of interest. Here we review recent advances in technologies for conditional regulation of protein function and suggest further areas of potential development PMID:25237866

  18. Predicting gene functions from multiple biological sources using novel ensemble methods.

    PubMed

    Reddy, Chandan K; Aziz, Mohammad S

    2015-01-01

    The functional classification of genes plays a vital role in molecular biology. Detecting previously unknown role of genes and their products in physiological and pathological processes is an important and challenging problem. In this work, information from several biological sources such as comparative genome sequences, gene expression and protein interactions are combined to obtain robust results on predicting gene functions. The information in such heterogeneous sources is often incomplete and hence making the maximum use of all the available information is a challenging problem. We propose an algorithm that improves the performance of prediction of different models built on individual sources. We also develop a heterogeneous boosting framework that uses all the available information even if some sources do not provide any information about some of the genes. We demonstrate the superior performance of the proposed methods in terms of accuracy and F-measure compared to several imputation and integration schemes. PMID:26510302

  19. Accelerated Recovery of Endothelium Function after Stent Implantation with the Use of a Novel Systemic Nanoparticle Curcumin

    PubMed Central

    Lu, Qi; Ye, Fang; Yang, Xiangjun; Gu, Qingqing; Wang, Peng; Zhu, Jianhua; Shen, Li; Gong, Feirong

    2015-01-01

    Curcumin was reported to exhibit a wide range of pharmacological effects including antioxidant, anti-inflammatory, and antiproliferative activities and significantly prevent smooth muscle cells migration. In the present study, a novel kind of curcumin loaded nanoparticles (Cur-NP) has been prepared and characterized with the aim of inhibiting inflammation formation and accelerating the healing process of the stented arteries. Cur-NP was administrated intravenously after stent implantation twice a week and detailed tissue responses were evaluated. The results demonstrated that intravenous administration of Cur-NP after stent implantation accelerated endothelial cells restoration and endothelium function recovery and may potentially be an effective therapeutic alternative to reduce adverse events for currently available drug eluting stents. PMID:26167481

  20. Validation of Procedures for Monitoring Crewmember Immune Function - Short Duration Biological Investigation

    NASA Technical Reports Server (NTRS)

    Sams, Clarence; Crucian, Brian; Stowe, Raymond; Pierson, Duane; Mehta, Satish; Morukov, Boris; Uchakin, Peter; Nehlsen-Cannarella, Sandra

    2008-01-01

    Validation of Procedures for Monitoring Crew Member Immune Function - Short Duration Biological Investigation (Integrated Immune-SDBI) will assess the clinical risks resulting from the adverse effects of space flight on the human immune system and will validate a flightcompatible immune monitoring strategy. Immune system changes will be monitored by collecting and analyzing blood, urine and saliva samples from crewmembers before, during and after space flight.

  1. Nanoelectromechanics of Inorganic and Biological Systems: From Structural Imaging to Local Functionalities

    SciTech Connect

    Rodriguez, Brian; Kalinin, Sergei V; Jesse, Stephen; Thompson, G. L.; Vertegel, Alexey; Hohlbauch, Sophia; Proksch, Roger

    2008-01-01

    Coupling between electrical and mechanical phenomena is extremely common in inorganic materials, and nearly ubiquitous in biological systems, underpinning phenomena and devices ranging from SONAR to cardiac activity and hearing. This paper briefly summarizes the Scanning Probe Microscopy (SPM) approach, referred to as Piezoresponse Force Microscopy (PFM), for probing electromechanical coupling on the nanometer scales, and delineates some existing and emerging applications to probe local structure and functionality in inorganic ferroelectrics, calcified and connective tissues, and complex biosystems based on electromechanical detection.

  2. The Effect of Executive Function on Biological Reasoning in Young Children: An Individual Differences Study

    ERIC Educational Resources Information Center

    Zaitchik, Deborah; Iqbal, Yeshim; Carey, Susan

    2014-01-01

    There is substantial variance in the age at which children construct and deploy their first explicit theory of biology. This study tests the hypothesis that this variance is due, at least in part, to individual differences in their executive function (EF) abilities. A group of 79 boys and girls aged 5-7 years (with a mean age of 6½ years) were…

  3. TRANSFAC database as a bridge between sequence data libraries and biological function

    SciTech Connect

    Wingender, E.; Karas, H.; Knueppel, R.

    1996-12-31

    The TRANSFAC database contains information about regulatory DNA sequences and the proteins (transcription factors) binding to and acting through them. It may thus serve as a dictionary for the biological meaning of these sequence elements. Moreover, the TRANSFAC data can be used to describe these elements, to define consensi and matrices for elements of certain function, and thus to provide means of identifying regulatory signals in newly unravelled genomic sequences. 12 refs., 1 fig.

  4. Fluctuations observed in biological time series signals and their functional significance.

    PubMed

    Yamamoto, M

    1991-01-01

    Fluctuation phenomena in a single neuronal spike train of a cat were investigated during sleep states. Although white-noise-like fluctuations were observed during non-REM sleep, they became 1/f fluctuations during REM sleep. REM sleep is regarded as a reversion to a state of the fetal brain. The functional significance of 1/f fluctuations in biological time series signals is discussed from the viewpoint of homeostasis. PMID:1911468

  5. Integrating biological knowledge based on functional annotations for biclustering of gene expression data.

    PubMed

    Nepomuceno, Juan A; Troncoso, Alicia; Nepomuceno-Chamorro, Isabel A; Aguilar-Ruiz, Jesús S

    2015-05-01

    Gene expression data analysis is based on the assumption that co-expressed genes imply co-regulated genes. This assumption is being reformulated because the co-expression of a group of genes may be the result of an independent activation with respect to the same experimental condition and not due to the same regulatory regime. For this reason, traditional techniques are recently being improved with the use of prior biological knowledge from open-access repositories together with gene expression data. Biclustering is an unsupervised machine learning technique that searches patterns in gene expression data matrices. A scatter search-based biclustering algorithm that integrates biological information is proposed in this paper. In addition to the gene expression data matrix, the input of the algorithm is only a direct annotation file that relates each gene to a set of terms from a biological repository where genes are annotated. Two different biological measures, FracGO and SimNTO, are proposed to integrate this information by means of its addition to-be-optimized fitness function in the scatter search scheme. The measure FracGO is based on the biological enrichment and SimNTO is based on the overlapping among GO annotations of pairs of genes. Experimental results evaluate the proposed algorithm for two datasets and show the algorithm performs better when biological knowledge is integrated. Moreover, the analysis and comparison between the two different biological measures is presented and it is concluded that the differences depend on both the data source and how the annotation file has been built in the case GO is used. It is also shown that the proposed algorithm obtains a greater number of enriched biclusters than other classical biclustering algorithms typically used as benchmark and an analysis of the overlapping among biclusters reveals that the biclusters obtained present a low overlapping. The proposed methodology is a general-purpose algorithm which allows

  6. Identifying effective and feasible interventions to accelerate functional recovery from hospitalization in older adults: A randomized controlled pilot trial.

    PubMed

    Deer, Rachel R; Dickinson, Jared M; Fisher, Steve R; Ju, Hyunsu; Volpi, Elena

    2016-07-01

    Hospitalization induces functional decline in older adults. Many geriatric patients fail to fully recover physical function after hospitalization, which increases the risk of frailty, disability, dependence, re-hospitalization, and mortality. There is a lack of evidence-based therapies that can be implemented following hospitalization to accelerate functional improvements. The aims of this Phase I clinical trial are to determine 1) the effect size and variability of targeted interventions in accelerating functional recovery from hospitalization and 2) the feasibility of implementing such interventions in community-dwelling older adults. Older patients (≥65years, n=100) will be recruited from a single site during hospitalization for an acute medical condition. Subjects will be randomized to one of five interventions initiated immediately upon discharge: 1. protein supplementation, 2. in-home rehabilitation plus placebo supplementation, 3. in-home rehabilitation plus protein supplementation, 4. single testosterone injection, or 5. isocaloric placebo supplementation. Testing will occur during hospitalization (baseline) and at 1 and 4weeks post-discharge. Each testing session will include measures of muscle strength, physical function/performance, body composition, and psychological function. Physical activity levels will be continuously monitored throughout study participation. Feasibility will be determined through collection of the number of eligible, contacted, and enrolled patients; intervention adherence and compliance; and reasons for declining enrollment and study withdrawal. This research will determine the feasibility of post-hospitalization strategies to improve physical function in older adults. These results will also provide a foundation for performing larger, multi-site clinical trials to improve physical function and reduce readmissions in geriatric patents. PMID:27178766

  7. Accelerator mass spectrometry analysis of 14C-oxaliplatin concentrations in biological samples and 14C contents in biological samples and antineoplastic agents

    NASA Astrophysics Data System (ADS)

    Toyoguchi, Teiko; Kobayashi, Takeshi; Konno, Noboru; Shiraishi, Tadashi; Kato, Kazuhiro; Tokanai, Fuyuki

    2015-10-01

    Accelerator mass spectrometry (AMS) is expected to play an important role in microdose trials. In this study, we measured the 14C concentration in 14C-oxaliplatin-spiked serum, urine and supernatant of fecal homogenate samples in our Yamagata University (YU) - AMS system. The calibration curves of 14C concentration in serum, urine and supernatant of fecal homogenate were linear (the correlation coefficients were ⩾0.9893), and the precision and accuracy was within the acceptance criteria. To examine a 14C content of water in three vacuum blood collection tubes and a syringe were measured. 14C was not detected from water in these devices. The mean 14C content in urine samples of 6 healthy Japanese volunteers was 0.144 dpm/mL, and the intra-day fluctuation of 14C content in urine from a volunteer was little. The antineoplastic agents are administered to the patients in combination. Then, 14C contents of the antineoplastic agents were quantitated. 14C contents were different among 10 antineoplastic agents; 14C contents of paclitaxel injection and docetaxel hydrate injection were higher than those of the other injections. These results indicate that our quantitation method using YU-AMS system is suited for microdosing studies and that measurement of baseline and co-administered drugs might be necessary for the studies in low concentrations.

  8. Functionalized Nanoporous Silica for Removal of Heavy Metals from Biological Systems; Adsorption and Application

    SciTech Connect

    Yantasee, Wassana; Rutledge, Ryan D.; Chouyyok, Wilaiwan; Sukwarotwat, Vichaya; Orr, Galya; Warner, Cynthia L.; Warner, Marvin G.; Fryxell, Glen E.; Wiacek, Robert J.; Timchalk, Charles; Addleman, Raymond S.

    2010-10-01

    Functionalized nanoporous silica, often referred to as self-assembled monolayers on mesoporous supports (SAMMS) have previously demonstrated the ability to serve as very effective heavy metal sorbents in a range of aquatic and environmental systems suggesting they may be advantageously utilized for biomedical applications such as chelation therapy. Herein we evaluate surface chemistries for heavy metal capture from biological fluids, various facets of the materials biocompatibility and the suitability of these materials as potential therapeutics. Of the materials tested, thiol-functionalized SAMMS proved most capable of removing selected heavy metals from biological solutions (i.e. blood, urine, etc.) As a result, thiol SAMMS was further analyzed to assess the material’s performance under a number of different biologically relevant conditions (i.e. variable pH and ionic strength) as well to gauge any potentially negative cellular effects resulting from interaction with the sorbent, such as cellular toxicity or possible chelation of essential minerals. Additionally, cellular uptake studies demonstrated no cell membrane permeation by the silica-based materials generally highlighting their ability to remain cellularly inert and thus non-toxic. As a result, it has been determined that organic ligand-functionalized nanoporous silica materials could be a valuable material for detoxification therapeutics and potentially other biomedical applications as needed.

  9. System Review about Function Role of ESCC Driver Gene KDM6A by Network Biology Approach.

    PubMed

    Ran, Jihua; Li, Hui; Li, Huiwu

    2016-01-01

    Background. KDM6A (Lysine (K)-Specific Demethylase 6A) is the driver gene related to esophageal squamous cell carcinoma (ESCC). In order to provide more biological insights into KDM6A, in this paper, we treat PPI (protein-protein interaction) network derived from KDM6A as a conceptual framework and follow it to review its biological function. Method. We constructed a PPI network with Cytoscape software and performed clustering of network with Clust&See. Then, we evaluate the pathways, which are statistically involved in the network derived from KDM6A. Lastly, gene ontology analysis of clusters of genes in the network was conducted. Result. The network includes three clusters that consist of 74 nodes connected via 453 edges. Fifty-five pathways are statistically involved in the network and most of them are functionally related to the processes of cell cycle, gene expression, and carcinogenesis. The biology themes of clusters 1, 2, and 3 are chromatin modification, regulation of gene expression by transcription factor complex, and control of cell cycle, respectively. Conclusion. The PPI network presents a panoramic view which can facilitate for us to understand the function role of KDM6A. It is a helpful way by network approach to perform system review on a certain gene. PMID:27294188

  10. System Review about Function Role of ESCC Driver Gene KDM6A by Network Biology Approach

    PubMed Central

    Ran, Jihua; Li, Hui; Li, Huiwu

    2016-01-01

    Background. KDM6A (Lysine (K)-Specific Demethylase 6A) is the driver gene related to esophageal squamous cell carcinoma (ESCC). In order to provide more biological insights into KDM6A, in this paper, we treat PPI (protein-protein interaction) network derived from KDM6A as a conceptual framework and follow it to review its biological function. Method. We constructed a PPI network with Cytoscape software and performed clustering of network with Clust&See. Then, we evaluate the pathways, which are statistically involved in the network derived from KDM6A. Lastly, gene ontology analysis of clusters of genes in the network was conducted. Result. The network includes three clusters that consist of 74 nodes connected via 453 edges. Fifty-five pathways are statistically involved in the network and most of them are functionally related to the processes of cell cycle, gene expression, and carcinogenesis. The biology themes of clusters 1, 2, and 3 are chromatin modification, regulation of gene expression by transcription factor complex, and control of cell cycle, respectively. Conclusion. The PPI network presents a panoramic view which can facilitate for us to understand the function role of KDM6A. It is a helpful way by network approach to perform system review on a certain gene. PMID:27294188

  11. Emerging Molecular and Biological Functions of MBD2, a Reader of DNA Methylation

    PubMed Central

    Wood, Kathleen H.; Zhou, Zhaolan

    2016-01-01

    DNA methylation is an epigenetic mark that is essential for many biological processes and is linked to diseases such as cancer. Methylation is usually associated with transcriptional silencing, but new research has challenged this model. Both transcriptional activation and repression have recently been found to be associated with DNA methylation in a context-specific manner. How DNA methylation patterns are interpreted into different functional output remains poorly understood. One mechanism involves the protein ‘readers’ of methylation, which includes the methyl-CpG binding domain (MBD) family of proteins. This review examines the molecular and biological functions of MBD2, which binds to CpG methylation and is an integral part of the nucleosome remodeling and histone deacetylation (NuRD) complex. MBD2 has been linked to immune system function and tumorigenesis, yet little is known about its functions in vivo. Recent studies have found the MBD2 protein is ubiquitously expressed, with relatively high levels in the lung, liver, and colon. Mbd2 null mice surprisingly show relatively mild phenotypes compared to mice with loss of function of other MBD proteins. This evidence has previously been interpreted as functional redundancy between the MBD proteins. Here, we examine and contextualize research that suggests MBD2 has unique properties and functions among the MBD proteins. These functions translate to recently described roles in the development and differentiation of multiple cell lineages, including pluripotent stem cells and various cell types of the immune system, as well as in tumorigenesis. We also consider possible models for the dynamic interactions between MBD2 and NuRD in different tissues in vivo. The functions of MBD2 may have direct therapeutic implications for several areas of human disease, including autoimmune conditions and cancer, in addition to providing insights into the actions of NuRD and chromatin regulation. PMID:27303433

  12. Tuning of nanoparticle biological functionality through controlled surface chemistry and characterisation at the bioconjugated nanoparticle surface

    NASA Astrophysics Data System (ADS)

    Hristov, Delyan R.; Rocks, Louise; Kelly, Philip M.; Thomas, Steffi S.; Pitek, Andrzej S.; Verderio, Paolo; Mahon, Eugene; Dawson, Kenneth A.

    2015-12-01

    We have used a silica - PEG based bionanoconjugate synthetic scheme to study the subtle connection between cell receptor specific recognition and architecture of surface functionalization chemistry. Extensive physicochemical characterization of the grafted architecture is capable of capturing significant levels of detail of both the linker and grafted organization, allowing for improved reproducibility and ultimately insight into biological functionality. Our data suggest that scaffold details, propagating PEG layer architecture effects, determine not only the rate of uptake of conjugated nanoparticles into cells but also, more significantly, the specificity of pathways via which uptake occurs.

  13. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands.

    PubMed

    Susumu, Kimihiro; Uyeda, H Tetsuo; Medintz, Igor L; Pons, Thomas; Delehanty, James B; Mattoussi, Hedi

    2007-11-14

    We have designed and synthesized a series of modular ligands based on poly(ethylene glycol) (PEG) coupled with functional terminal groups to promote water-solubility and biocompatibility of quantum dots (QDs). Each ligand is comprised of three modules: a PEG single chain to promote hydrophilicity, a dihydrolipoic acid (DHLA) unit connected to one end of the PEG chain for strong anchoring onto the QD surface, and a potential biological functional group (biotin, carboxyl, and amine) at the other end of the PEG. Water-soluble QDs capped with these functional ligands were prepared via cap exchange with the native hydrophobic caps. Homogeneous QD solutions that are stable over extended periods of time and over a broad pH range were prepared. Surface binding assays and cellular internalization and imaging showed that QDs capped with DHLA-PEG-biotin strongly interacted with either NeutrAvidin immobilized on surfaces or streptavidin coupled to proteins which were subsequently taken up by live cells. EDC coupling in aqueous buffer solutions was also demonstrated using resonance energy transfer between DHLA-PEG-COOH-functionalized QDs and an amine-terminated dye. The new functional surface ligands described here provide not only stable and highly water-soluble QDs but also simple and easy access to various biological entities. PMID:17956097

  14. Systems biology approach reveals possible evolutionarily conserved moonlighting functions for enolase.

    PubMed

    Paludo, Gabriela Prado; Lorenzatto, Karina Rodrigues; Bonatto, Diego; Ferreira, Henrique Bunselmeyer

    2015-10-01

    Glycolytic enzymes, such as enolase, have been described as multifunctional complex proteins that also display non-glycolytic activities, termed moonlighting functions. Although enolase multifunctionality has been described for several organisms, the conservation of enolase alternative functions through different phyla has not been explored with more details. A useful strategy to investigate moonlighting functions is the use of systems biology tools, which allow the prediction of protein functions/interactions by graph design and analysis. In this work, available information from protein-protein interaction (PPI) databases were used to design enolase PPI networks for four eukaryotic organisms, namely Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae, covering a wide spectrum of this domain of life. PPI networks with number of nodes ranging from 140 to 411 and up to 15,855 connections were generated, and modularity and centrality analyses, and functional enrichment were performed for all of them. The performed analyses showed that enolase is a central node within the networks, and that, in addition to its canonical interactions with proteins related to glycolysis and energetic metabolism, it is also part of protein clusters related to different biological processes, like transcription, development, and apoptosis, among others. Some of these non-glycolytic clusters, are partially conserved between networks, in terms of overall sharing of orthologs, overall cluster structure, and/or at the levels of key regulatory proteins within clusters. Overall, our results provided evidences of enolase multifunctionality and evolutionary conservation of enolase PPIs at all these levels. PMID:25978602

  15. The Swine Plasma Metabolome Chronicles "Many Days" Biological Timing and Functions Linked to Growth

    PubMed Central

    Bromage, Timothy G.; Idaghdour, Youssef; Lacruz, Rodrigo S.; Crenshaw, Thomas D.; Ovsiy, Olexandra; Rotter, Björn; Hoffmeier, Klaus; Schrenk, Friedemann

    2016-01-01

    The paradigm of chronobiology is based almost wholly upon the daily biological clock, or circadian rhythm, which has been the focus of intense molecular, cellular, pharmacological, and behavioral, research. However, the circadian rhythm does not explain biological timings related to fundamental aspects of life history such as rates of tissue/organ/body size development and control of the timing of life stages such as gestation length, age at maturity, and lifespan. This suggests that another biological timing mechanism is at work. Here we focus on a "many days" (multidien) chronobiological period first observed as enigmatic recurring growth lines in developing mammalian tooth enamel that is strongly associate with all adult tissue, organ, and body masses as well as life history attributes such as gestation length, age at maturity, weaning, and lifespan, particularly among the well studied primates. Yet, knowledge of the biological factors regulating the patterning of mammalian life, such as the development of body size and life history structure, does not exist. To identify underlying molecular mechanisms we performed metabolome and genome analyses from blood plasma in domestic pigs. We show that blood plasma metabolites and small non-coding RNA (sncRNA) drawn from 33 domestic pigs over a two-week period strongly oscillate on a 5-day multidien rhythm, as does the pig enamel rhythm. Metabolomics and genomics pathway analyses actually reveal two 5-day rhythms, one related to growth in which biological functions include cell proliferation, apoptosis, and transcription regulation/protein synthesis, and another 5-day rhythm related to degradative pathways that follows three days later. Our results provide experimental confirmation of a 5-day multidien rhythm in the domestic pig linking the periodic growth of enamel with oscillations of the metabolome and genome. This association reveals a new class of chronobiological rhythm and a snapshot of the biological bases that

  16. The GroEL protein of Porphyromonas gingivalis accelerates tumor growth by enhancing endothelial progenitor cell function and neovascularization.

    PubMed

    Lin, F-Y; Huang, C-Y; Lu, H-Y; Shih, C-M; Tsao, N-W; Shyue, S-K; Lin, C-Y; Chang, Y-J; Tsai, C-S; Lin, Y-W; Lin, S-J

    2015-06-01

    Porphyromonas gingivalis is a bacterial species that causes destruction of periodontal tissues. Additionally, previous evidence indicates that GroEL from P. gingivalis may possess biological activities involved in systemic inflammation, especially inflammation involved in the progression of periodontal diseases. The literature has established a relationship between periodontal disease and cancer. However, it is unclear whether P. gingivalis GroEL enhances tumor growth. Here, we investigated the effects of P. gingivalis GroEL on neovasculogenesis in C26 carcinoma cell-carrying BALB/c mice and chick eggs in vivo as well as its effect on human endothelial progenitor cells (EPC) in vitro. We found that GroEL treatment accelerated tumor growth (tumor volume and weight) and increased the mortality rate in C26 cell-carrying BALB/c mice. GroEL promoted neovasculogenesis in chicken embryonic allantois and increased the circulating EPC level in BALB/c mice. Furthermore, GroEL effectively stimulated EPC migration and tube formation and increased E-selectin expression, which is mediated by eNOS production and p38 mitogen-activated protein kinase activation. Additionally, GroEL may enhance resistance against paclitaxel-induced cell cytotoxicity and senescence in EPC. In conclusion, P. gingivalis GroEL may act as a potent virulence factor, contributing to the neovasculogenesis of tumor cells and resulting in accelerated tumor growth. PMID:25220060

  17. Biological response on a titanium implant-grade surface functionalized with modular peptides☆

    PubMed Central

    Yazici, H.; Fong, H.; Wilson, B.; Oren, E.E.; Amos, F.A.; Zhang, H.; Evans, J.S.; Snead, M.L.; Sarikaya, M.; Tamerler, C.

    2015-01-01

    Titanium (Ti) and its alloys are among the most successful implantable materials for dental and orthopedic applications. The combination of excellent mechanical and corrosion resistance properties makes them highly desirable as endosseous implants that can withstand a demanding biomechanical environment. Yet, the success of the implant depends on its osteointegration, which is modulated by the biological reactions occurring at the interface of the implant. A recent development for improving biological responses on the Ti-implant surface has been the realization that bifunctional peptides can impart material binding specificity not only because of their molecular recognition of the inorganic material surface, but also through their self-assembly and ease of biological conjugation properties. To assess peptide-based functionalization on bioactivity, the present authors generated a set of peptides for implant-grade Ti, using cell surface display methods. Out of 60 unique peptides selected by this method, two of the strongest titanium binding peptides, TiBP1 and TiBP2, were further characterized for molecular structure and adsorption properties. These two peptides demonstrated unique, but similar molecular conformations different from that of a weak binder peptide, TiBP60. Adsorption measurements on a Ti surface revealed that their disassociation constants were 15-fold less than TiBP60. Their flexible and modular use in biological surface functionalization were demonstrated by conjugating them with an integrin recognizing peptide motif, RGDS. The functionalization of the Ti surface by the selected peptides significantly enhanced the bioactivity of osteoblast and fibroblast cells on implant-grade materials. PMID:23159566

  18. Hubs of knowledge: using the functional link structure in Biozon to mine for biologically significant entities

    PubMed Central

    Shafer, Paul; Isganitis, Timothy; Yona, Golan

    2006-01-01

    Background Existing biological databases support a variety of queries such as keyword or definition search. However, they do not provide any measure of relevance for the instances reported, and result sets are usually sorted arbitrarily. Results We describe a system that builds upon the complex infrastructure of the Biozon database and applies methods similar to those of Google to rank documents that match queries. We explore different prominence models and study the spectral properties of the corresponding data graphs. We evaluate the information content of principal and non-principal eigenspaces, and test various scoring functions which combine contributions from multiple eigenspaces. We also test the effect of similarity data and other variations which are unique to the biological knowledge domain on the quality of the results. Query result sets are assessed using a probabilistic approach that measures the significance of coherence between directly connected nodes in the data graph. This model allows us, for the first time, to compare different prominence models quantitatively and effectively and to observe unique trends. Conclusion Our tests show that the ranked query results outperform unsorted results with respect to our significance measure and the top ranked entities are typically linked to many other biological entities. Our study resulted in a working ranking system of biological entities that was integrated into Biozon at . PMID:16480496

  19. Protease proteomics: revealing protease in vivo functions using systems biology approaches.

    PubMed

    Doucet, Alain; Overall, Christopher M

    2008-10-01

    Proteases irreversibly modify proteins by cleaving their amide bonds and are implicated in virtually every important biological process such as immunity, development and tissue repair. Accordingly, it is easy to see that deregulated proteolysis is a pathognomic feature of many diseases. Most of the current information available on proteases was acquired using in vitro methods, which reveals molecular structure, enzyme kinetics and active-site specificity. However, considerably less is known about the relevant biological functions and combined roles of proteases in moulding the proteome. Although models using genetically modified animals are powerful, they are slow to develop, they can be difficult to interpret, and while useful, they remain only models of human disease. Therefore, to understand how proteases accomplish their tasks in organisms and how they participate in pathology, we need to elucidate the protease degradome-the repertoire of proteases expressed by a cell, a tissue or an organism at a particular time-their expression level, activation state, their biological substrates, also known as the substrate degradome-the repertoire of substrates for each protease-and the effect of the activity of each protease on the pathways of the system under study. Achieving this goal is challenging because several proteases might cleave the same protein, and proteases also form pathways and interact to form the protease web [Overall, C.M., Kleifeld, O., 2006. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6 (3), 227-239]. Hence, the net proteolytic potential of the degradome at a particular time on a substrate and pathway must also be understood. Proteomics offers one of the few routes to the understanding of proteolysis in complex in vivo systems and especially in man where genetic manipulations are impossible. The aim of this chapter is to review methods and tools that allow

  20. Physical property comparison of 11 soft denture lining materials as a function of accelerated aging.

    PubMed

    Dootz, E R; Koran, A; Craig, R G

    1993-01-01

    Soft denture-lining materials are an important treatment option for patients who have chronic soreness associated with dental prostheses. Three distinctly different types of materials are generally used. These are plasticized polymers or copolymers, silicones, or polyphosphazene fluoroelastomer. The acceptance of these materials by patients and dentists is variable. The objective of this study is to compare the tensile strength, percent elongation, hardness, tear strength, and tear energy of eight plasticized polymers or copolymers, two silicones, and one polyphosphazene fluoroelastomer. Tests were run at 24 hours after specimen preparation and repeated after 900 hours of accelerated aging in a Weather-Ometer device. The data indicated a wide range of physical properties for soft denture-lining materials and showed that accelerated aging dramatically affected the physical and mechanical properties of many of the elastomers. No soft denture liner proved to be superior to all others. The data obtained should provide clinicians with useful information for selecting soft denture lining materials for patients. PMID:8455156

  1. Biological Manipulation of Migration Rate: The Use of Advanced Photoperiod to Accelerate Smoltification in Yearling Chinook Salmon, Annual Report of Research 1990.

    SciTech Connect

    Muir, William D.

    1992-06-01

    Research was conducted during 1990 to assess the feasibility of biologically manipulating physiological development and migratory behavior of yearling spring chinook salmon, Oncorhynchus tshawytscha. At Dworshak National Fish Hatchery, one treatment group was exposed to a 3-month advanced photoperiod schedule for 13 weeks preceding release to accelerate smolt development. Another group was exposed to the same advanced photoperiod schedule, but additionally was reared at an elevated water temperature (11.9{degrees}C) for 10 days prior to release. At Leavenworth National Fish Hatchery, a treatment group was exposed to a 3-month advanced photoperiod schedule for 17 weeks. Gill Na{sup +}-K{sup +}ATPase development and migratory performance were described for all groups. The treated fish which were the most physiologically advanced at release were detected in the highest proportions at collector dams and also migrated fastest downstream--similar to results obtained in 1988 and 1989.

  2. Shaping Small Bioactive Molecules to Untangle Their Biological Function: A Focus on Fluorescent Plant Hormones.

    PubMed

    Lace, Beatrice; Prandi, Cristina

    2016-08-01

    Modern biology overlaps with chemistry in explaining the structure and function of all cellular processes at the molecular level. Plant hormone research is perfectly located at the interface between these two disciplines, taking advantage of synthetic and computational chemistry as a tool to decipher the complex biological mechanisms regulating the action of plant hormones. These small signaling molecules regulate a wide range of developmental processes, adapting plant growth to ever changing environmental conditions. The synthesis of small bioactive molecules mimicking the activity of endogenous hormones allows us to unveil many molecular features of their functioning, giving rise to a new field, plant chemical biology. In this framework, fluorescence labeling of plant hormones is emerging as a successful strategy to track the fate of these challenging molecules inside living organisms. Thanks to the increasing availability of new fluorescent probes as well as advanced and innovative imaging technologies, we are now in a position to investigate many of the dynamic mechanisms through which plant hormones exert their action. Such a deep and detailed comprehension is mandatory for the development of new green technologies for practical applications. In this review, we summarize the results obtained so far concerning the fluorescent labeling of plant hormones, highlighting the basic steps leading to the design and synthesis of these compelling molecular tools and their applications. PMID:27378726

  3. Functional Analysis beyond Enrichment: Non-Redundant Reciprocal Linkage of Genes and Biological Terms

    PubMed Central

    Pascual-Montano, Alberto; De Las Rivas, Javier

    2011-01-01

    Functional analysis of large sets of genes and proteins is becoming more and more necessary with the increase of experimental biomolecular data at omic-scale. Enrichment analysis is by far the most popular available methodology to derive functional implications of sets of cooperating genes. The problem with these techniques relies in the redundancy of resulting information, that in most cases generate lots of trivial results with high risk to mask the reality of key biological events. We present and describe a computational method, called GeneTerm Linker, that filters and links enriched output data identifying sets of associated genes and terms, producing metagroups of coherent biological significance. The method uses fuzzy reciprocal linkage between genes and terms to unravel their functional convergence and associations. The algorithm is tested with a small set of well known interacting proteins from yeast and with a large collection of reference sets from three heterogeneous resources: multiprotein complexes (CORUM), cellular pathways (SGD) and human diseases (OMIM). Statistical Precision, Recall and balanced F-score are calculated showing robust results, even when different levels of random noise are included in the test sets. Although we could not find an equivalent method, we present a comparative analysis with a widely used method that combines enrichment and functional annotation clustering. A web application to use the method here proposed is provided at http://gtlinker.cnb.csic.es. PMID:21949701

  4. Proceedings of the Indo-U.S. bilateral workshop on accelerating botanicals/biologics agent development research for cancer chemoprevention, treatment, and survival

    PubMed Central

    B. Kumar, Nagi; Dhurandhar, Medha; Aggarwal, Bharat; Anant, Shrikant; Daniel, Kenyon; Deng, Gary; Djeu, Julie; Dou, Jinhui; Hawk, Ernest; Jayaram, B.; Jia, Libin; Joshi, Rajendra; Kararala, Madhuri; Karunagaran, Devarajan; Kucuk, Omer; Kumar, Lalit; Malafa, Mokenge; Samathanam, G. J.; Sarkar, Fazlul; Siddiqi, Maqsood; Singh, Rana P.; Srivastava, Anil; White, Jeffrey D.

    2013-01-01

    With the evolving evidence of the promise of botanicals/biologics for cancer chemoprevention and treatment, an Indo-U.S. collaborative Workshop focusing on “Accelerating Botanicals Agent Development Research for Cancer Chemoprevention and Treatment” was conducted at the Moffitt Cancer Center, 29–31 May 2012. Funded by the Indo-U.S. Science and Technology Forum, a joint initiative of Governments of India and the United States of America and the Moffitt Cancer Center, the overall goals of this workshop were to enhance the knowledge (agents, molecular targets, biomarkers, approaches, target populations, regulatory standards, priorities, resources) of a multinational, multidisciplinary team of researcher's to systematically accelerate the design, to conduct a successful clinical trials to evaluate botanicals/biologics for cancer chemoprevention and treatment, and to achieve efficient translation of these discoveries into the standards for clinical practice that will ultimately impact cancer morbidity and mortality. Expert panelists were drawn from a diverse group of stakeholders, representing the leadership from the National Cancer Institute's Office of Cancer Complementary and Alternative Medicine (OCCAM), NCI Experimental Therapeutics (NExT), Food and Drug Administration, national scientific leadership from India, and a distinguished group of population, basic and clinical scientists from the two countries, including leaders in bioinformatics, social sciences, and biostatisticians. At the end of the workshop, we established four Indo-U.S. working research collaborative teams focused on identifying and prioritizing agents targeting four cancers that are of priority to both countries. Presented are some of the key proceedings and future goals discussed in the proceedings of this workshop. PMID:24279005

  5. [Current understanding of signaling transduction pathway and biological functions of Karrikins].

    PubMed

    Luo, Xiaofeng; Qi, Ying; Meng, Yongjie; Shuai, Haiwei; Chen, Feng; Yang, Wenyu; Shu, Kai

    2016-01-01

    Karrikins are a class of signaling molecules discovered in wildfire smoke, which can significantly promote seed germination in some species (such as Arabidopsis and Avena fatua). The structures of Karrikins were first elucidated in 2004. At present, six different types of Karrikins have been documented, and their biological activities vary significantly. So far, studies for Karrikins have become a hot spot in the plant molecular biology field. Recent advances demonstrate that Karrikins regulate plant photomorphogenesis and leaf differentiation effectively, in addition to the effect on seed germination. Furthermore, Karrikins share highly similar molecular structures and signaling transduction pathways with strigolactone. In this review, we summarize the history of discovery, signaling transduction pathways, physiological functions and ecological significance of Karrikins, and further discuss the future research directions. PMID:26787523

  6. Simulating photoacoustic waves produced by individual biological particles with spheroidal wave functions

    PubMed Central

    Li, Yong; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2015-01-01

    Under the usual approximation of treating a biological particle as a spheroidal droplet, we consider the analysis of its size and shape with the high frequency photoacoustics and develop a numerical method which can simulate its characteristic photoacoustic waves. This numerical method is based on the calculation of spheroidal wave functions, and when comparing to the finite element model (FEM) calculation, can reveal more physical information and can provide results independently at each spatial points. As the demonstration, red blood cells (RBCs) and MCF7 cell nuclei are studied, and their photoacoustic responses including field distribution, spectral amplitude, and pulse forming are calculated. We expect that integrating this numerical method with the high frequency photoacoustic measurement will form a new modality being extra to the light scattering method, for fast assessing the morphology of a biological particle. PMID:26442830

  7. Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Cullen, John J.; Neale, Patrick J.; Lesser, Michael P.

    1992-01-01

    Severe reduction of stratospheric ozone over Antarctica has focused increasing concern on the biological effects of ultraviolet-B (UVB) radiation (280 to 320 nanometers). Measurements of photosynthesis from an experimental system, in which phytoplankton are exposed to a broad range of irradiance treatments, are fit to an analytical model to provide the spectral biological weighting function that can be used to predict the short-term effects of ozone depletion on aquatic photosynthesis. Results show that UVA (320 to 400 nanometers) significantly inhibits the photosynthesis of a marine diatom and a dinoflagellate, and that the effects of UVB are even more severe. Application of the model suggests that the Antarctic ozone hole might reduce near-surface photosynthesis by 12 to 15 percent, but less so at depth. The experimental system makes possible routine estimation of spectral weightings for natural phytoplankton.

  8. Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation.

    PubMed

    Cullen, J J; Neale, P J; Lesser, M P

    1992-10-23

    Severe reduction of stratospheric ozone over Antarctica has focused increasing concern on the biological effects of ultraviolet-B (UVB) radiation (280 to 320 nanometers). Measurements of photosynthesis from an experimental system, in which phytoplankton are exposed to a broad range of irradiance treatments, are fit to an analytical model to provide the spectral biological weighting function that can be used to predict the short-term effects of ozone depletion on aquatic photosynthesis. Results show that UVA (320 to 400 nanometers) significantly inhibits the photosynthesis of a marine diatom and a dinoflagellate, and that the effects of UVB are even more severe. Application of the model suggests that the Antarctic ozone hole might reduce near-surface photosynthesis by 12 to 15 percent, but less so at depth. The experimental system makes possible routine estimation of spectral weightings for natural phytoplankton. PMID:17748901

  9. Functional profiles reveal unique ecological roles of various biological soil crust organisms

    USGS Publications Warehouse

    Bowker, M.A.; Mau, R.L.; Maestre, F.T.; Escolar, C.; Castillo-Monroy, A. P.

    2011-01-01

    1. At the heart of the body of research on biodiversity effects on ecosystem function is the debate over whether different species tend to be functionally singular or redundant. When we consider ecosystem multi-function, the provision of multiple ecosystem functions simultaneously, we may find that seemingly redundant species may in fact play unique roles in ecosystems. 2. Over the last few decades, the significance of biological soil crusts (BSCs) as ecological boundaries and ecosystem engineers, and their multi-functional nature, has become increasingly well documented. We compiled 'functional profiles' of the organisms in this understudied community, to determine whether functional singularity emerges when multiple ecosystem functions are considered. 3. In two data sets, one representing multiple sites around the semi-arid regions of Spain (regional scale), and another from a single site in central Spain (local scale), we examined correlations between the abundance or frequency of BSC species in a community, and multiple surrogates of ecosystem functioning. There was a wide array of apparent effects of species on specific functions. 4. Notably, in gypsiferous soils and at regional scale, we found that indicators of carbon (C) and phosphorus cycling were apparently suppressed and promoted by the lichens Diploschistes diacapsis and Squamarina lentigera, respectively. The moss Pleurochaete squarrosa appears to promote C cycling in calcareous soils at this spatial scale. At the local scale in gypsiferous soils, D. diacapsis positively correlated with carbon cycling, but negatively with nitrogen cycling, whereas numerous lichens exhibited the opposite profile. 5. We found a high degree of functional singularity, i.e. that species were highly individualistic in their effects on multiple functions. Many functional attributes were not easily predictable from existing functional grouping systems based primarily on morphology. 6. Our results suggest that maintaining

  10. Malaria Parasite Survival Depends on Conserved Binding Peptides' Critical Biological Functions.

    PubMed

    Patarroyo, Manuel E; Arevalo-Pinzon, Gabriela; Reyes, Cesar; Moreno-Vranich, Armando; Patarroyo, Manuel A

    2016-01-01

    Biochemical, structural and single amino acid level analysis of 49 Plasmodium falciparum protein regions (13 sporozoite and 36 merozoite proteins) has highlighted the functional role of each conserved high activity binding peptide (cHABP) in cell host-microbe interaction, involving biological functions such as gliding motility, traversal activity, binding invasion, reproduction, nutrient ion transport and the development of severe malaria. Each protein's key function in the malaria parasite's asexual lifecycle (pre-erythrocyte and erythro-cyte) is described in terms of cHABPs; their sequences were located in elegant work published by other groups regarding critical binding regions implicated in malarial parasite invasion. Such cHABPs represent the starting point for developing a logical and rational methodology for selecting an appropriate mixture of modified cHABPs to be used in a completely effective, synthetic antimalarial vaccine. Such methodology could be used for developing vaccines against diseases scourging humanity. PMID:26317369

  11. Ultrastable-Stealth Large Gold Nanoparticles with DNA Directed Biological Functionality.

    PubMed

    Heo, Jun Hyuk; Kim, Kyung-Il; Cho, Hui Hun; Lee, Jin Woong; Lee, Byoung Sang; Yoon, Seokyoung; Park, Kyung Jin; Lee, Seungwoo; Kim, Jaeyun; Whang, Dongmok; Lee, Jung Heon

    2015-12-29

    The stability of gold nanoparticles (AuNPs) in biological samples is very important for their biomedical applications. Although various molecules such as polystyrenesulfonate (PSS), phosphine, DNA, and polyethylene glycol (PEG) have been used to stabilize AuNPs, it is still very difficult to stabilize large AuNPs. As a result, biomedical applications of large (30-100 nm) AuNPs are limited, even though they possess more favorable optical properties and are easier to be taken up by cells than smaller AuNPs. To overcome this limitation, we herein report a novel method of preparing large (30-100 nm) AuNPs with a high colloidal stability and facile chemical or biological functionality, via surface passivation with an amphiphilic polymer polyvinylpyrrolidone (PVP). This PVP passivation results in an extraordinary colloidal stability for 13, 30, 50, 70, and 100 nm AuNPs to be stabilized in PBS for at least 3 months. More importantly, the PVP capped AuNPs (AuNP-PVP) were also resistant to protein adsorption in the presence of serum containing media and exhibit a negligible cytotoxicity. The AuNP-PVPs functionalized with a DNA aptamer AS1411 remain biologically active, resulting in significant increase in the uptake of the AuNPs (∼12,200 AuNPs per cell) in comparison with AuNPs capped by a control DNA of the same length. The novel method developed in this study to stabilize large AuNPs with high colloidal stability and biological activity will allow much wider applications of these large AuNPs for biomedical applications, such as cellular imaging, molecular diagnosis, and targeted therapy. PMID:26638691

  12. Functionalized carbon nanotube field effect transistors for chemical and biological sensing

    NASA Astrophysics Data System (ADS)

    Chen, Michelle Hsiu-Yu

    Specific, sensitive, reproducible, and rapid detection of chemical and biological species is crucial for the environment, disease diagnosis, and even homeland security. Owing to the miniature size, large surface to volume ratio, high electrical conductivity, and compatibility with dense array fabrication, carbon nanotubes are excellent candidates for sensing application. In this thesis we present nanosealed chemical and biological sensors based on functionalized single-walled carbon nanotube field effect transistors (SWNT-FETs). For chemical sensors, single stranded DNA/RNA serve as the chemical recognition sites and SWNT-FETs as the electronic readout components. Non-covalent functionalization of SWNT-FETs with DNA/RNA resulted in current changes when exposed to gaseous analytes, whereas the bare nanotube devices show no detectable change. The sensor responses differ in sign and magnitude depending both on the type of gaseous analyte and the sequence of DNA/RNA being used. DNA/RNA functionalized SWNT-FET gas sensors possess rapid recovery and self-regenerating ability, which could lead to realization of large arrays for sensitive electronic olfaction and disease diagnosis. For biological sensors, we present proof-of-concept experiments for developing highly sensitive and last-response miniaturized SWNT-FET biosensors for electrically detecting adenovirus using ligand-receptor-protein specificity. SWNTs are mildly oxidized to form carboxylic groups on the surfaces without compromising the electronic integrity of the nanotubes. Then the human coxsackievirus and adenovirus receptor (CAR) is covalently functionalized onto the nanotube surface via diimide-activated amidation process. Upon exposure of the device to adenovirus protein, Ad12 Knob (Knob), specific binding of Knob to CAR decreases the current that flows through the SWNT-FET device. For control experiment, the CAR-SWNT device is exposed to YieF, which is a virus protein that does not bind specifically to CAR

  13. Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments.

    PubMed

    Heister, Elena; Lamprecht, Constanze; Neves, Vera; Tîlmaciu, Carmen; Datas, Lucien; Flahaut, Emmanuel; Soula, Brigitte; Hinterdorfer, Peter; Coley, Helen M; Silva, S Ravi P; McFadden, Johnjoe

    2010-05-25

    Aqueous dispersions of functionalized carbon nanotubes (CNTs) are now widely used for biomedical applications. Their stability in different in vitro or in vivo environments, however, depends on a wide range of parameters, such as pH and salt concentrations of the surrounding medium, and length, aspect ratio, surface charge, and functionalization of the applied CNTs. Although many of these aspects have been investigated separately, no study is available in the literature to date, which examines these parameters simultaneously. Therefore, we have chosen five types of carbon nanotubes, varying in their dimensions and surface properties, for a multidimensional analysis of dispersion stability in salt solutions of differing pH and concentrations. Furthermore, we examine the dispersion stability of oxidized CNTs in biological fluids, such as cellular growth media and human plasma, and their toxicity toward cancer cells. To enhance dispersibility and biocompatibility, the influence of different functionalization schemes is studied. The results of our investigations indicate that both CNT dimensions and surface functionalization have a significant influence on their dispersion and in vitro behavior. In particular, factors such as a short aspect ratio, presence of oxidation debris and serum proteins, low salt concentration, and an appropriate pH are shown to improve the dispersion stability. Furthermore, covalent surface functionalization with amine-terminated polyethylene glycol (PEG) is demonstrated to stabilize CNT dispersions in various media and to reduce deleterious effects on cultured cells. These findings provide crucial data for the development of biofunctionalization protocols, for example, for future cancer theranostics, and optimizing the stability of functionalized CNTs in varied biological environments. PMID:20380453

  14. A primer on molecular biology for imagers: III. Proteins: structure and function.

    PubMed

    Pandit, Sunil D; Li, King C P

    2004-04-01

    This article along with the first 2 in this series (4,12) completes the discussion on the key molecules and process inside the cell namely, DNA, RNA, and proteins. These 3 articles provide a very basic foundation for understanding molecular biology concepts and summarize some of the work of numerous scientists over the past century. We understand these processes far better now than we did in the past, but clearly this knowledge is by no means complete and a number of basic scientists are working hard to elucidate and understand the fundamental mechanisms that operate within a cell. Genes and gene products work with each other in complex, interconnected pathways, and in perfect harmony to make a functional cell, tissue, and an organism as a whole. There is a lot of cross-talk that happens between different proteins that interact with various other proteins, DNA, and RNA to establish pathways, networks, and molecular systems as a team working to perfection. The past 15 years have seen the rapid development of systems biology approaches. We live in an era that emphasizes multi-disciplinary, cross-functional teams to perform science rather than individual researchers working on the bench on a very specific problem. Global approaches have become more common and the amount of data generated must be managed by trained bioinformatics personnel and large computers. In our subsequent articles, we will discuss these global approaches and the areas of genomics, functional genomics, and proteomics that have revolutionized the way we perform science. PMID:15109017

  15. Engineering multiple biological functional motifs into a blank collagen-like protein template from Streptococcus pyogenes.

    PubMed

    Peng, Yong Y; Stoichevska, Violet; Schacht, Kristin; Werkmeister, Jerome A; Ramshaw, John A M

    2014-07-01

    Bacterially derived triple-helical, collagen-like proteins are attractive as potential biomedical materials. The collagen-like domain of the Scl2 protein from S. pyogenes lacks any specific binding sites for mammalian cells yet possesses the inherent structural integrity of the collagen triple-helix of animal collagens. It can, therefore, be considered as a structurally-stable "blank slate" into which various defined, biological sequences, derived from animal collagens, can be added by substitutions or insertions, to enable production of novel designed materials to fit specific functional requirements. In the present study, we have used site directed mutagenesis to substitute two functional sequences, one for heparin binding and the other for integrin binding, into different locations in the triple-helical structure. This provided three new constructs, two containing the single substitutions and one containing both substitutions. The stability of these constructs was marginally reduced when compared to the unmodified sequence. When compared to the unmodified bacterial collagen, both the modified collagens that contain the heparin binding site showed marked binding of fluorescently labeled heparin. Similarly, the modified collagens from both constructs containing the integrin binding site showed significant adhesion of L929 cells that are known to possess the appropriate integrin receptor. C2C12 cells that lack any appropriate integrins did not bind. These data show that bacterial collagen-like sequences can be modified to act like natural extracellular matrix collagens by inserting one or more unique biological domains with defined function. PMID:23913780

  16. The Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage: Track Structure Effects and Cytogenetic Signatures of High-LET Exposure

    NASA Technical Reports Server (NTRS)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2012-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to 195 keV/micrometers. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons. All energies of protons have a much higher percentage of complex-type chromosome exchanges than gamma rays, signifying a cytogenetic signature for proton exposures.

  17. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Konishi, T.; Kobayashi, A.; Suya, N.; Cheng, S. H.; Yu, K. N.

    2015-09-01

    The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with ≤100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis.

  18. Integration of multiscale dendritic spine structure and function data into systems biology models

    PubMed Central

    Mancuso, James J.; Cheng, Jie; Yin, Zheng; Gilliam, Jared C.; Xia, Xiaofeng; Li, Xuping; Wong, Stephen T. C.

    2014-01-01

    Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement. PMID:25429262

  19. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid

    NASA Astrophysics Data System (ADS)

    Ruder, Warren C.; Hsu, Chia-Pei D.; Edelman, Brent D.; Schwartz, Russell; LeDuc, Philip R.

    2012-08-01

    We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe3O4) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures.

  20. Experimental approaches for addressing fundamental biological questions in living, functioning cells with single molecule precision

    PubMed Central

    Lenn, Tchern; Leake, Mark C.

    2012-01-01

    In recent years, single molecule experimentation has allowed researchers to observe biological processes at the sensitivity level of single molecules in actual functioning, living cells, thereby allowing us to observe the molecular basis of the key mechanistic processes in question in a very direct way, rather than inferring these from ensemble average data gained from traditional molecular and biochemical techniques. In this short review, we demonstrate the impact that the application of single molecule bioscience experimentation has had on our understanding of various cellular systems and processes, and the potential that this approach has for the future to really address very challenging and fundamental questions in the life sciences. PMID:22773951

  1. [The influences of anterior disc displacement on oral mandibular function and morphology and their biological mechanisms].

    PubMed

    Xia, Wendi; Fu, Kiayuan

    2016-03-01

    Anterior disc displacement is a common subtype seen in temporomandibular disorders (TMD) patients. It may cause mandibular movement disorders, such as clicking of joint, intermittent closed lock, limitation of mouth opening, etc. These disorders may affect the life qualities of patients. Anterior disc displacement may also cause mandibular malformations, especially among adolescents, which may affect the growth of condyle, therefore may have a correlation with mandibular retrusion or mandibular deviation when grown up. This paper going to review the influences of anterior disc displacement on oral mandibular function and morphology and their biological mechanisms. PMID:26980658

  2. [Biological function of some elements and their compounds. IV. Silicon, silicon acids, silicones].

    PubMed

    Puzanowska-Tarasiewicz, Helena; Kuźmicka, Ludmiła; Tarasiewicz, Mirosław

    2009-11-01

    The review is devoted for the occurance, meaning of silicon and their compounds, especially silicon acids and silicones. Silicon participates in biosynthesis of collagen, the basic component of connective tissue. It strengthens and makes the walls of blood vessels more flexible, diminishes capillaries permeability, accelerates healing processes, has a sebostatic activity, strengthens hair and nails. This element has a beneficial effect on phosphorylation of proteins saccharides, and nucleotides. It is also essential for the formation of cytoskeleton and other cellular structures of mechanical or supportive function. Silicon is an initial substrate for obtaining silicones. These are synthetic polymers, in which silicon atoms are bound by oxygen bridges. They are used in almost all kinds of products due to their most convenient physical and chemical properties: moistening and film-forming, giving liquid form increasing solubility. Silicon acids form colloid gel, silica gel, with absorptive abilities, like active carbon. PMID:19999810

  3. Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer's disease animal model

    PubMed Central

    Cheng, Xiao-rui; Cui, Xiu-liang; Zheng, Yue; Zhang, Gui-rong; Li, Peng; Huang, Huang; Zhao, Yue-ying; Bo, Xiao-chen; Wang, Sheng-qi; Zhou, Wen-xia; Zhang, Yong-xiang

    2013-01-01

    Harboring the behavioral and histopathological signatures of Alzheimer's disease (AD), senescence accelerated mouse-prone 8 (SAMP8) mice are currently considered a robust model for studying AD. However, the underlying mechanisms, prioritized pathways and genes in SAMP8 mice linked to AD remain unclear. In this study, we provide a biological interpretation of the molecular underpinnings of SAMP8 mice. Our results were derived from differentially expressed genes in the hippocampus and cerebral cortex of SAMP8 mice compared to age-matched SAMR1 mice at 2, 6, and 12 months of age using cDNA microarray analysis. On the basis of PPI, MetaCore and the co-expression network, we constructed a distinct genetic sub-network in the brains of SAMP8 mice. Next, we determined that the regulation of synaptic transmission and apoptosis were disrupted in the brains of SAMP8 mice. We found abnormal gene expression of RAF1, MAPT, PTGS2, CDKN2A, CAMK2A, NTRK2, AGER, ADRBK1, MCM3AP, and STUB1, which may have initiated the dysfunction of biological processes in the brains of SAMP8 mice. Specifically, we found microRNAs, including miR-20a, miR-17, miR-34a, miR-155, miR-18a, miR-22, miR-26a, miR-101, miR-106b, and miR-125b, that might regulate the expression of nodes in the sub-network. Taken together, these results provide new insights into the biological and genetic mechanisms of SAMP8 mice and add an important dimension to our understanding of the neuro-pathogenesis in SAMP8 mice from a systems perspective. PMID:24194717

  4. Role of Heat-Shock Proteins in Cellular Function and in the Biology of Fungi

    PubMed Central

    Tiwari, Shraddha; Thakur, Raman; Shankar, Jata

    2015-01-01

    Stress (biotic or abiotic) is an unfavourable condition for an organism including fungus. To overcome stress, organism expresses heat-shock proteins (Hsps) or chaperons to perform biological function. Hsps are involved in various routine biological processes such as transcription, translation and posttranslational modifications, protein folding, and aggregation and disaggregation of proteins. Thus, it is important to understand holistic role of Hsps in response to stress and other biological conditions in fungi. Hsp104, Hsp70, and Hsp40 are found predominant in replication and Hsp90 is found in transcriptional and posttranscriptional process. Hsp90 and Hsp70 in combination or alone play a major role in morphogenesis and dimorphism. Heat stress in fungi expresses Hsp60, Hsp90, Hsp104, Hsp30, and Hsp10 proteins, whereas expression of Hsp12 protein was observed in response to cold stress. Hsp30, Hsp70, and Hsp90 proteins showed expression in response to pH stress. Osmotic stress is controlled by small heat-shock proteins and Hsp60. Expression of Hsp104 is observed under high pressure conditions. Out of these heat-shock proteins, Hsp90 has been predicted as a potential antifungal target due to its role in morphogenesis. Thus, current review focuses on role of Hsps in fungi during morphogenesis and various stress conditions (temperature, pH, and osmotic pressure) and in antifungal drug tolerance. PMID:26881084

  5. Acceleration modules in linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Wang, Shao-Heng; Deng, Jian-Jun

    2014-05-01

    The Linear Induction Accelerator (LIA) is a unique type of accelerator that is capable of accelerating kilo-Ampere charged particle current to tens of MeV energy. The present development of LIA in MHz bursting mode and the successful application into a synchrotron have broadened LIA's usage scope. Although the transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. We have examined the transition of the magnetic cores' functions during the LIA acceleration modules' evolution, distinguished transformer type and transmission line type LIA acceleration modules, and re-considered several related issues based on transmission line type LIA acceleration module. This clarified understanding should help in the further development and design of LIA acceleration modules.

  6. The Influence of Shielding on the Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damages

    NASA Technical Reports Server (NTRS)

    George, K.; Cucinotta, F. A.

    2006-01-01

    Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to the either Si-28 (490 or 600 MeV/n), Ti-48 (1000 MeV/n), or Fe-56 (600, 1000, or 5000 MeV/n). LET values for these ions ranged from approximately 50 to 174 keV/micrometers and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. Chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected 48-56 hours after irradiation using a chemical-induced premature chromosome condensation (PCC) technique. The yield of chromosomal aberrations increased linearly with dose and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose response curve for total chromosomal exchanges with respect to gamma-rays, ranged from 14 to 35. The RBE values increased with LET, reaching a maximum for the 1 GeV/n Fe ions with LET of 150 keV/micrometers, and decreased with further increases in LET. When LET of the primary beam was in the region of increasing RBE (i.e. below approximately 100 keV/micrometers), the addition of shielding material increased the effectiveness per unit dose. Whereas shielding decreased the effectiveness per unit dose when the LET of the primary particle beam was higher than 150 keV/micrometers.

  7. Ubiquinol-10 Supplementation Activates Mitochondria Functions to Decelerate Senescence in Senescence-Accelerated Mice

    PubMed Central

    Tian, Geng; Sawashita, Jinko; Kubo, Hiroshi; Nishio, Shin-ya; Hashimoto, Shigenari; Suzuki, Nobuyoshi; Yoshimura, Hidekane; Tsuruoka, Mineko; Wang, Yaoyong; Liu, Yingye; Luo, Hongming; Xu, Zhe; Mori, Masayuki; Kitano, Mitsuaki; Hosoe, Kazunori; Takeda, Toshio; Usami, Shin-ichi

    2014-01-01

    Abstract Aim: The present study was conducted to define the relationship between the anti-aging effect of ubiquinol-10 supplementation and mitochondrial activation in senescence-accelerated mouse prone 1 (SAMP1) mice. Results: Here, we report that dietary supplementation with ubiquinol-10 prevents age-related decreases in the expression of sirtuin gene family members, which results in the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a major factor that controls mitochondrial biogenesis and respiration, as well as superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2), which are major mitochondrial antioxidant enzymes. Ubiquinol-10 supplementation can also increase mitochondrial complex I activity and decrease levels of oxidative stress markers, including protein carbonyls, apurinic/apyrimidinic sites, malondialdehydes, and increase the reduced glutathione/oxidized glutathione ratio. Furthermore, ubiquinol-10 may activate Sirt1 and PGC-1α by increasing cyclic adenosine monophosphate (cAMP) levels that, in turn, activate cAMP response element-binding protein (CREB) and AMP-activated protein kinase (AMPK). Innovation and Conclusion: These results show that ubiquinol-10 may enhance mitochondrial activity by increasing levels of SIRT1, PGC-1α, and SIRT3 that slow the rate of age-related hearing loss and protect against the progression of aging and symptoms of age-related diseases. Antioxid. Redox Signal. 20, 2606–2620 PMID:24124769

  8. [Plasma antioxidant activity--a test for impaired biological functions of endoecology, exotrophy, and inflammation reactions].

    PubMed

    Titov, V N; Krylin, V V; Dmitriev, V A; Iashin, Ia I

    2010-07-01

    The authors discuss the diagnostic value of a test for total serum antioxidant activity determined by an electrochemistry method on a liquid chromatograph (without a column), by using an amperometric detector, as well as the composition of the endogenously synthesized hydrophilic and hydrophobic acceptors of reactive oxygen species (ROS). Uric acid is a major hydrophilic acceptor of ROS; monoenic oleic fatty acid acts as its major lipophilic acceptor. The constant determined by the authors for of 03 oleic acid oxidation during automatic titration in the organic medium is an order of magnitude higher than that for alpha-tocopherol, beta-carotene and linoleic fatty acid; its concentration is also an order of magnitude higher. In oxidative stress, the adrenal steroid hormone dehydroepiandrosterone initiates oleic acid synthesis via expression of palmitoyl elongase and steatoryl desaturase. In early steps of phylogenesis in primates, spontaneous mutation resulted in ascorbic acid synthesis gene knockout; phylogenetically, further other mutation knocked out the gene encoding the synthesis of uricase and the conversion of uric acid to alantoin. In primates, uric acid became not only a catabolite of purine bases in vivo, but also the major endogenous hydrophilic acceptor of ROS. This philogenetic order makes it clear why the epithelium in the proximal nephron tubule entirely reabsorbs uric acid (a catabolite?) from primary urine and then secretes it again to urine depending on the impairment of biological functions of endoecology (the intercellular medium being contaminated with biological rubbish), the activation of a biological inflammatory reaction, the cellular production of ROS, and the reduction in serum total antioxidant activity. With each biological reaction, there was an increase in the blood content of uric acid as a hydrophilic acceptor of ROS, by actively lowering its secretion into urine. Uric acid is a diagnostic test of inflammation, or rather compensatory

  9. Clustering of DNA words and biological function: a proof of principle.

    PubMed

    Hackenberg, Michael; Rueda, Antonio; Carpena, Pedro; Bernaola-Galván, Pedro; Barturen, Guillermo; Oliver, José L

    2012-03-21

    Relevant words in literary texts (key words) are known to be clustered, while common words are randomly distributed. Given the clustered distribution of many functional genome elements, we hypothesize that the biological text per excellence, the DNA sequence, might behave in the same way: k-length words (k-mers) with a clear function may be spatially clustered along the one-dimensional chromosome sequence, while less-important, non-functional words may be randomly distributed. To explore this linguistic analogy, we calculate a clustering coefficient for each k-mer (k=2-9bp) in human and mouse chromosome sequences, then checking if clustered words are enriched in the functional part of the genome. First, we found a positive general trend relating clustering level and word enrichment within exons and Transcription Factor Binding Sites (TFBSs), while a much weaker relation exists for repeats, and no relation at all exists for introns. Second, we found that 38.45% of the 200 top-clustered 8-mers, but only 7.70% of the non-clustered words, are represented in known motif databases. Third, enrichment/depletion experiments show that highly clustered words are significantly enriched in exons and TFBSs, while they are depleted in introns and repetitive DNA. Considering exons and TFBSs together, 1417 (or 72.26%) in human and 1385 (or 72.97%) in mouse of the top-clustered 8-mers showed a statistically significant association to either exons or TFBSs, thus strongly supporting the link between word clustering and biological function. Lastly, we identified a subset of clustered, diagnostic words that are enriched in exons but depleted in introns, and therefore might help to discriminate between these two gene regions. The clustering of DNA words thus appears as a novel principle to detect functionality in genome sequences. As evolutionary conservation is not a prerequisite, the proof of principle described here may open new ways to detect species-specific functional DNA sequences

  10. Biological Sensitivity to Family Income: Differential Effects on Early Executive Functioning.

    PubMed

    Obradović, Jelena; Portilla, Ximena A; Ballard, Parissa J

    2016-03-01

    The study examined how the interplay between children's cortisol response and family income is related to executive function (EF) skills. The sample included one hundred and two 5- to 6-year-olds (64% minority). EF skills were measured using laboratory tasks and observer ratings. Physiological reactivity was assessed via cortisol response during a laboratory visit. A consistent, positive association between family income and EF skills emerged only for children who showed high cortisol response, a marker of biological sensitivity to context. In contrast, family income was not related to EF skills in children who displayed low cortisol response. Follow-up analyses revealed a disordinal interaction, suggesting that differential susceptibility can be detected at the level of basic cognitive and self-regulatory skills that support adaptive functioning. PMID:26709089

  11. TiO2 nanotube structures for enhanced cell and biological functionality

    NASA Astrophysics Data System (ADS)

    Brammer, Karla S.; Oh, Seunghan; Frandsen, Christine J.; Jin, Sungho

    2010-04-01

    Nanostructures have pronounced effects on biological processes such as growth of cells and their functionality. Advances in biomaterial surface structure and design have resulted in improved tissue engineering. Nanotechnology can be utilized for optimization of titanium implants with a formation of vertically aligned TiO2 nanotube arrays on the implant surface. The anodic oxidation of the titanium implant surface to form a TiO2 nanotube array involves electrochemical processes and self assembly. In this paper, the mechanism of nanotube formation, nanotube bio-characteristics, and their emerging role in soft and hard tissue engineering as well as in regenerative medicine will be reviewed, and the beneficial effects of surface nanotubes on cell adhesion, proliferation, and functionality will be discussed in relation to potential orthopedics applications.

  12. Merger of Ayurveda and Tissue Culture-Based Functional Genomics: Inspirations from Systems Biology

    PubMed Central

    Deocaris, Custer C; Widodo, Nashi; Wadhwa, Renu; Kaul, Sunil C

    2008-01-01

    Ayurveda is one of the ancient systems of health care of Indian origin. Roughly translated into "Knowledge of life", it is based on the use of natural herbs and herb products for therapeutic measures to boost physical, mental, social and spiritual harmony and improve quality of life. Although sheltered with long history and high trust, ayurveda principles have not entered laboratories and only a handful of studies have identified pure components and molecular pathways for its life-enhancing effects. In the post-genomic era, genome-wide functional screenings for targets for diseases is the most recent and practical approach. We illustrate here the merger of ayurveda and functional genomics in a systems biology scenario that reveals the pathway analysis of crude and active components and inspire ayurveda practice for health benefits, disease prevention and therapeutics. PMID:18348714

  13. Biological and radiological exploration and management of non-functioning pituitary adenoma.

    PubMed

    Raverot, Gérald; Assié, Guillaume; Cotton, François; Cogne, Muriel; Boulin, Anne; Dherbomez, Michèle; Bonneville, Jean François; Massart, Catherine

    2015-07-01

    Non-functioning pituitary adenoma may be totally asymptomatic and discovered "incidentally" during radiological examination for some other indication, or else induce tumoral signs with compression of the optic chiasm and pituitary dysfunction. Non-functioning adenomas are mainly gonadotroph, but may also be "silent". Treatment strategy depends on initial clinical, biological, ophthalmological and radiological findings. The present French Society of Endocrinology Consensus work-group sought to update the pitfalls associated with hormone assay and outline a hormonal exploration strategy for diagnosis and follow-up, without overlooking the particularities of silent adenoma. We also drew up basic rules for initial exploration and radiological follow-up of both operated and non-operated pituitary adenomas. PMID:26122495

  14. The SYK tyrosine kinase: a crucial player in diverse biological functions

    PubMed Central

    Mócsai, Attila; Ruland, Jürgen; Tybulewicz, Victor L. J.

    2016-01-01

    Spleen tyrosine kinase (SYK) has been known to relay adaptive immune receptor signalling. However, recent reports indicate that SYK also mediates other, unexpectedly diverse biological functions including cellular adhesion, innate immune recognition, osteoclast maturation, platelet activation and vascular development. SYK is activated by C-type lectins and integrins, and activates novel targets including the CARD9/CARMA1–BCL10–MALT1 pathway and the NLRP3 inflammasome. Drosophila studies indicate evolutionary ancient origin of SYK-mediated signalling. Moreover, SYK has a crucial role in autoimmune diseases and haematological malignancies. This Review summarizes our current understanding of SYK functions and the translation of this knowledge for therapeutic purposes. PMID:20467426

  15. The Influence of Shielding on the Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage

    NASA Technical Reports Server (NTRS)

    Goeorge, Kerry; Cucinotta, Francis A.

    2007-01-01

    Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to the either Si-28 (490 or 600 MeV/n), Ti-48 (1000 MeV/n), or Fe-56 (600, 1000, or 5000 MeV/n). LET values for these ions ranged from 51 to 184 keV/micron and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. Chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected at G2 and mitosis in first division post irradiation after chromosomes were prematurely condensed using calyculin-A. The yield of chromosomal aberrations increased linearly with dose and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose response curve for total chromosomal exchanges with respect to gamma-rays, ranged from 9 to 35. The RBE values increased with LET, reaching a maximum for the 600 MeV/n Fe ions with LET of 184 keV/micron. When the LET of the primary beam was below approximately 100 keV/micron, the addition of shielding material increased the effectiveness per unit dose. Whereas shielding decreased the effectiveness per unit dose when the LET of primary beams was higher than 100 keV/micron. The yield of aberrations correlated with the dose-average LET of the beam after traversal through the shielding.

  16. Predicting Biological Functions of Compounds Based on Chemical-Chemical Interactions

    PubMed Central

    Huang, Tao; Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    Given a compound, how can we effectively predict its biological function? It is a fundamentally important problem because the information thus obtained may benefit the understanding of many basic biological processes and provide useful clues for drug design. In this study, based on the information of chemical-chemical interactions, a novel method was developed that can be used to identify which of the following eleven metabolic pathway classes a query compound may be involved with: (1) Carbohydrate Metabolism, (2) Energy Metabolism, (3) Lipid Metabolism, (4) Nucleotide Metabolism, (5) Amino Acid Metabolism, (6) Metabolism of Other Amino Acids, (7) Glycan Biosynthesis and Metabolism, (8) Metabolism of Cofactors and Vitamins, (9) Metabolism of Terpenoids and Polyketides, (10) Biosynthesis of Other Secondary Metabolites, (11) Xenobiotics Biodegradation and Metabolism. It was observed that the overall success rate obtained by the method via the 5-fold cross-validation test on a benchmark dataset consisting of 3,137 compounds was 77.97%, which is much higher than 10.45%, the corresponding success rate obtained by the random guesses. Besides, to deal with the situation that some compounds may be involved with more than one metabolic pathway class, the method presented here is featured by the capacity able to provide a series of potential metabolic pathway classes ranked according to the descending order of their likelihood for each of the query compounds concerned. Furthermore, our method was also applied to predict 5,549 compounds whose metabolic pathway classes are unknown. Interestingly, the results thus obtained are quite consistent with the deductions from the reports by other investigators. It is anticipated that, with the continuous increase of the chemical-chemical interaction data, the current method will be further enhanced in its power and accuracy, so as to become a useful complementary vehicle in annotating uncharacterized compounds for their biological

  17. Biological functionality of extracellular matrix-ornamented three-dimensional printed hydroxyapatite scaffolds.

    PubMed

    Kumar, A; Nune, K C; Misra, R D K

    2016-06-01

    Three-dimensional (3D) printing is considered an ideally suitable method to fabricate patient specific implantable devices. The approach enabled to produce a porous scaffold with tailored physical, mechanical, and biological properties because of the flexibility to tune the scaffold architecture. The objective of the study described was to elucidate the determining role of cell-laid extracellular matrix (ECM) in impacting biological response. In this regard, to mimic the natural ECM environment or the attributes of the native tissue, a natural ECM analogue surface was produced on the 3D printed and sintered hydroxyapatite (HA) scaffold surface by the mineralized ECM of the osteoblast. This involved the growth of osteoblast on 3D printed scaffolds, followed by differentiation to deposit the mineralized ECM on the biomaterial surface. The cells were removed from the mineralized matrix using freeze-thaw cycles to obtain a decellularized extracellular matrix (dECM) on the biomaterial surface. Subsequently, seeding of osteoblast on dECM-ornamented HA scaffolds led to 3D growth with enhanced expression of prominent proteins, actin and vinculin. Based on preliminary observations of present study, it was underscored that HA scaffolds-ornamented with dECM provided an optimized microenvironment conducive to the growth of 3D structural tissue and favorably promoted biological functionality because of the availability of an environment that promoted cell-cell and cell-scaffold interaction. The primary advantage of dECM is that it enabled constructive remodeling and promoted the formation of tissue in lieu of less functional tissue. The study opens-up a new path for printing of 3D structures suitable to treat segmental bone defects. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1343-1351, 2016. PMID:26799466

  18. Differential Function of Lip Residues in the Mechanism and Biology of an Anthrax Hemophore

    SciTech Connect

    Ekworomadu, MarCia T.; Poor, Catherine B.; Owens, Cedric P.; Balderas, Miriam A.; Fabian, Marian; Olson, John S.; Murphy, Frank; Balkabasi, Erol; Honsa, Erin S.; He, Chuan; Goulding, Celia W.; Maresso, Anthony W.

    2014-10-02

    To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 3{sub 10}-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 3{sub 10}-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with

  19. Biology of bone and how it orchestrates the form and function of the skeleton.

    PubMed

    Sommerfeldt, D W; Rubin, C T

    2001-10-01

    The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself. PMID:11716022

  20. Biological performance of functionalized biomedical polymers for potential applications as intraocular lens.

    PubMed

    Zheng, Zhiwen; Wang, Yingjun; Jiao, Yan; Zhai, Zhichen

    2016-08-01

    To study the biological performance of surface-modified biomedical polymer materials, a model of the functional mechanism of nonspecific adsorption resistance was constructed. Cell behavior on the surface and in vivo transplantation features of intraocular lens (IOL) materials, such as hydrophobic acrylic ester and polymethyl methacrylate (PMMA), were investigated. The results of cell adhesion and proliferation studies showed that the addition of hirudin can significantly resist epithelial cell adhesion, better than the pure amination process, and thereby inhibit excessive proliferation on the surface. Experiments on the eyes of rabbits indicated that the IOL surfaces with hirudin modification reduced the incidence of cell aggregation and inflammation. Combined with a study of protein-resistant layer construction with recombinant hirudin on the material surface, the mechanism of surface functionalization was determined. The biological performance indicated that nonspecific adsorption is greatly decreased due to the existence of amphiphilic ions or hydration layers, which lead to stability and long-term resistance to nonspecific adsorption. These results offer a theoretical basis for the use of traditional biomedical polymer materials in long-term clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1961-1967, 2016. PMID:27027387

  1. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review

    PubMed Central

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R.

    2015-01-01

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed. PMID:26109634

  2. Independent Biological and Biochemical Functions for Individual Structural Domains of Drosophila Linker Histone H1.

    PubMed

    Kavi, Harsh; Emelyanov, Alexander V; Fyodorov, Dmitry V; Skoultchi, Arthur I

    2016-07-15

    Linker histone H1 is among the most abundant components of chromatin. H1 has profound effects on chromosome architecture. H1 also helps to tether DNA- and histone-modifying enzymes to chromatin. Metazoan linker histones have a conserved tripartite structure comprising N-terminal, globular, and long, unstructured C-terminal domains. Here we utilize truncated Drosophila H1 polypeptides in vitro and H1 mutant transgenes in vivo to interrogate the roles of these domains in multiple biochemical and biological activities of H1. We demonstrate that the globular domain and the proximal part of the C-terminal domain are essential for H1 deposition into chromosomes and for the stability of H1-chromatin binding. The two domains are also essential for fly viability and the establishment of a normal polytene chromosome structure. Additionally, through interaction with the heterochromatin-specific histone H3 Lys-9 methyltransferase Su(var)3-9, the H1 C-terminal domain makes important contributions to formation and H3K9 methylation of heterochromatin as well as silencing of transposons in heterochromatin. Surprisingly, the N-terminal domain does not appear to be required for any of these functions. However, it is involved in the formation of a single chromocenter in polytene chromosomes. In summary, we have discovered that linker histone H1, similar to core histones, exerts its multiple biological functions through independent, biochemically separable activities of its individual structural domains. PMID:27226620

  3. Biology of bone and how it orchestrates the form and function of the skeleton

    NASA Technical Reports Server (NTRS)

    Sommerfeldt, D. W.; Rubin, C. T.

    2001-01-01

    The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself.

  4. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review.

    PubMed

    Tallawi, Marwa; Rosellini, Elisabetta; Barbani, Niccoletta; Cascone, Maria Grazia; Rai, Ranjana; Saint-Pierre, Guillaume; Boccaccini, Aldo R

    2015-07-01

    The development of biomaterials for cardiac tissue engineering (CTE) is challenging, primarily owing to the requirement of achieving a surface with favourable characteristics that enhances cell attachment and maturation. The biomaterial surface plays a crucial role as it forms the interface between the scaffold (or cardiac patch) and the cells. In the field of CTE, synthetic polymers (polyglycerol sebacate, polyethylene glycol, polyglycolic acid, poly-l-lactide, polyvinyl alcohol, polycaprolactone, polyurethanes and poly(N-isopropylacrylamide)) have been proven to exhibit suitable biodegradable and mechanical properties. Despite the fact that they show the required biocompatible behaviour, most synthetic polymers exhibit poor cell attachment capability. These synthetic polymers are mostly hydrophobic and lack cell recognition sites, limiting their application. Therefore, biofunctionalization of these biomaterials to enhance cell attachment and cell material interaction is being widely investigated. There are numerous approaches for functionalizing a material, which can be classified as mechanical, physical, chemical and biological. In this review, recent studies reported in the literature to functionalize scaffolds in the context of CTE, are discussed. Surface, morphological, chemical and biological modifications are introduced and the results of novel promising strategies and techniques are discussed. PMID:26109634

  5. Histopathology of growth anomaly affecting the coral, Montipora capitata: implications on biological functions and population viability.

    PubMed

    Burns, John H R; Takabayashi, Misaki

    2011-01-01

    Growth anomalies (GAs) affect the coral, Montipora capitata, at Wai'ōpae, southeast Hawai'i Island. Our histopathological analysis of this disease revealed that the GA tissue undergoes changes which compromise anatomical machinery for biological functions such as defense, feeding, digestion, and reproduction. GA tissue exhibited significant reductions in density of ova (66.1-93.7%), symbiotic dinoflagellates (38.8-67.5%), mesenterial filaments (11.2-29.0%), and nematocytes (28.8-46.0%). Hyperplasia of the basal body wall but no abnormal levels of necrosis and algal or fungal invasion was found in GA tissue. Skeletal density along the basal body wall was significantly reduced in GAs compared to healthy or unaffected sections. The reductions in density of the above histological features in GA tissue were collated with disease severity data to quantify the impact of this disease at the colony and population level. Resulting calculations showed this disease reduces the fecundity of M. capitata colonies at Wai'ōpae by 0.7-49.6%, depending on GA severity, and the overall population fecundity by 2.41±0.29%. In sum, GA in this M. capitata population reduces the coral's critical biological functions and increases susceptibility to erosion, clearly defining itself as a disease and an ecological threat. PMID:22205976

  6. Construction of polycythemia vera protein interaction network and prediction of related biological functions.

    PubMed

    Liu, L-J; Cao, X-J; Zhou, C; Sun, Y; Lv, Q-L; Feng, F-B; Zhang, Y-Y; Sun, C-G

    2016-01-01

    Here, polycythemia vera (PV)-related genes were screened by the Online Mendelian Inheritance in Man (OMIM), and literature pertaining to the identified genes was extracted and a protein-protein interaction network was constructed using various Cytoscape plugins. Various molecular complexes were detected using the Clustervize plugin and a gene ontology-enrichment analysis of the biological pathways, molecular functions, and cellular components of the selected molecular complexes were identified using the BiNGo plugin. Fifty-four PV-related genes were identified in OMIM. The protein-protein interaction network contains 5 molecular complexes with correlation integral values >4. These complexes regulated various biological processes (peptide tyrosinase acidification, cell metabolism, and macromolecular biosynthesis), molecular functions (kinase activity, receptor binding, and cytokine activity), and the cellular components were mainly concentrated in the nucleus, intracellular membrane-bounded organelles, and extracellular region. These complexes were associated with the JAK-STAT signal transduction pathway, neurotrophic factor signaling pathway, and Wnt signaling pathway, which were correlated with chronic myeloid leukemia and acute myeloid leukemia. PMID:26909922

  7. A chemical approach to unraveling the biological function of the glycosylphosphatidylinositol anchor

    PubMed Central

    Paulick, Margot G.; Forstner, Martin B.; Groves, Jay T.; Bertozzi, Carolyn R.

    2007-01-01

    The glycosylphosphatidylinositol (GPI) anchor is a C-terminal posttranslational modification found on many eukaryotic proteins that reside in the outer leaflet of the cell membrane. The complex and diverse structures of GPI anchors suggest a rich spectrum of biological functions, but few have been confirmed experimentally because of the lack of appropriate techniques that allow for structural perturbation in a cellular context. We previously synthesized a series of GPI anchor analogs with systematic deletions within the glycan core and coupled them to the GFP by a combination of expressed protein ligation and native chemical ligation [Paulick MG, Wise AR, Forstner MB, Groves JT, Bertozzi CR (2007) J Am Chem Soc 129:11543–11550]. Here we investigate the behavior of these GPI-protein analogs in living cells. These modified proteins integrated into the plasma membranes of a variety of mammalian cells and were internalized and directed to recycling endosomes similarly to GFP bearing a native GPI anchor. The GPI-protein analogs also diffused freely in cellular membranes. However, changes in the glycan structure significantly affected membrane mobility, with the loss of monosaccharide units correlating to decreased diffusion. Thus, this cellular system provides a platform for dissecting the contributions of various GPI anchor components to their biological function. PMID:18077333

  8. A bottom-up characterization of transfer functions for synthetic biology designs: lessons from enzymology.

    PubMed

    Carbonell-Ballestero, Max; Duran-Nebreda, Salva; Montañez, Raúl; Solé, Ricard; Macía, Javier; Rodríguez-Caso, Carlos

    2014-12-16

    Within the field of synthetic biology, a rational design of genetic parts should include a causal understanding of their input-output responses-the so-called transfer function-and how to tune them. However, a commonly adopted strategy is to fit data to Hill-shaped curves without considering the underlying molecular mechanisms. Here we provide a novel mathematical formalization that allows prediction of the global behavior of a synthetic device by considering the actual information from the involved biological parts. This is achieved by adopting an enzymology-like framework, where transfer functions are described in terms of their input affinity constant and maximal response. As a proof of concept, we characterize a set of Lux homoserine-lactone-inducible genetic devices with different levels of Lux receptor and signal molecule. Our model fits the experimental results and predicts the impact of the receptor's ribosome-binding site strength, as a tunable parameter that affects gene expression. The evolutionary implications are outlined. PMID:25404136

  9. DNA Hypomethylation Affects Cancer-Related Biological Functions and Genes Relevant in Neuroblastoma Pathogenesis

    PubMed Central

    Mayol, Gemma; Martín-Subero, José I.; Ríos, José; Queiros, Ana; Kulis, Marta; Suñol, Mariona; Esteller, Manel; Gómez, Soledad; Garcia, Idoia; de Torres, Carmen; Rodríguez, Eva; Galván, Patricia; Mora, Jaume; Lavarino, Cinzia

    2012-01-01

    Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3′ untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation. PMID:23144874

  10. Accelerating the development of transparent graphene electrodes through basic science driven chemical functionalization.

    SciTech Connect

    Chan, Calvin; Beechem Iii, Thomas Edwin; Ohta, Taisuke; Brumbach, Michael T.; Wheeler, David Roger; Veneman, Alexander; Gearba, I. Raluca; Stevenson, Keith J.

    2013-09-01

    Chemical functionalization is required to adapt graphenes properties to many applications. However, most covalent functionalization schemes are spontaneous or defect driven and are not suitable for applications requiring directed assembly of molecules on graphene substrates. In this work, we demonstrated electrochemically driven covalent bonding of phenyl iodoniums onto epitaxial graphene. The amount of chemisorption was demonstrated by varying the duration of the electrochemical driving potential. Chemical, electronic, and defect states of phenyl-modified graphene were studied by photoemission spectroscopy, spatially resolved Raman spectroscopy, and water contact angle measurement. Covalent attachment rehybridized some of the delocalized graphene sp2 orbitals to localized sp3 states. Control over the relative spontaneity (reaction rate) of covalent graphene functionalization is an important first step to the practical realization of directed molecular assembly on graphene. More than 10 publications, conference presentations, and program highlights were produced (some invited), and follow-on funding was obtained to continue this work.

  11. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function.

    PubMed

    Hwang, Chul Ju; Park, Mi Hee; Hwang, Jae Yeon; Kim, Ju Hwan; Yun, Na Young; Oh, Sang Yeon; Song, Ju Kyung; Seo, Hyun Ok; Kim, Yun-Bae; Hwang, Dae Yeon; Oh, Ki-Wan; Han, Sang-Bae; Hong, Jin Tae

    2016-03-15

    Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment. PMID:26910914

  12. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function

    PubMed Central

    Hwang, Jae Yeon; Kim, Ju Hwan; Yun, Na Young; Oh, Sang Yeon; Song, Ju Kyung; Seo, Hyun Ok; Kim, Yun-Bae; Hwang, Dae Yeon; Oh, Ki-Wan; Han, Sang-Bae; Hong, Jin Tae

    2016-01-01

    Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment. PMID:26910914

  13. Molecular and functional analysis of mouse decay accelerating factor (CD55).

    PubMed Central

    Harris, C L; Rushmere, N K; Morgan, B P

    1999-01-01

    Molecular cloning of mouse decay accelerating factor (DAF; CD55) predicted two forms of the molecule, one transmembrane (TM) and the other glycosylphosphatidylinositol (GPI)-anchored; these are encoded by separate genes termed Daf-GPI and Daf-TM. In the present study several additional isoforms of mouse DAF, generated by alternative splicing from these genes, are described. Northern-blot analysis of RNA and reverse transcriptase-PCR from various tissues indicated that spleen and testis expressed high levels of DAF, which comprised several species. These species were cloned and sequence analysis revealed various novel forms in addition to those previously reported. Two novel forms were derived from the Daf-TM gene but the transmembrane sequence defined previously was replaced by a unique GPI-anchor addition sequence; one clone also had part of the serine/threonine/proline (STP) region deleted. A third clone, encoding a transmembrane protein, was also derived from this gene but the entire STP region was deleted. A fourth clone, derived from the Daf-GPI gene, contained a novel C-terminal sequence, suggestive of a secreted form of the protein. Two DAF cDNAs (TM and GPI-anchored) were stably expressed in Chinese hamster ovary cells. When these cells were attacked with mouse or rat complement and analysed for C3b deposition, DAF-transfected cells had greatly reduced C3b deposition compared with controls. Transfection with DAF also conferred protection from complement in a cell-lysis assay, and a soluble, recombinant form of mouse DAF inhibited complement in a haemolytic assay. PMID:10417349

  14. Pedagogical Design for a Cross-Functional Course in the Accelerated MBA Program

    ERIC Educational Resources Information Center

    Balasubramnian, Bhanu; Steigner, Tanja; Coulson, Kevin R.

    2011-01-01

    The sub-prime financial crisis exposed weaknesses in the financial risk management of several prominent firms. A deficient risk management is mainly attributed to the lack of integration of finance with other business disciplines. In this paper, we describe a tested implementation of a cross-functional project that improves students' understanding…

  15. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    SciTech Connect

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent; Perrin, Greg; Glick, Stephen; Kurtz, Sarah; Wohlgemuth, John

    2015-06-14

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module power degradation data obtained semi-continuously and statistically by in-situ dark current-voltage measurements in an environmental chamber. The modeling enables prediction of degradation rates and times as functions of temperature and humidity. Power degradation could be modeled linearly as a function of time to the second power; additionally, we found that coulombs transferred from the active cell circuit to ground during the stress test is approximately linear with time. Therefore, the power loss could be linearized as a function of coulombs squared. With this result, we observed that when the module face was completely grounded with a condensed phase conductor, leakage current exceeded the anticipated corresponding degradation rate relative to the other tests performed in damp heat.

  16. Acceleration of Functional Maturation and Differentiation of Neonatal Porcine Islet Cell Monolayers Shortly In Vitro Cocultured with Microencapsulated Sertoli Cells

    PubMed Central

    Mancuso, Francesca; Calvitti, Mario; Luca, Giovanni; Nastruzzi, Claudio; Baroni, Tiziano; Mazzitelli, Stefania; Becchetti, Ennio; Arato, Iva; Boselli, Carlo; Ngo Nselel, Monique D.; Calafiore, Riccardo

    2010-01-01

    The limited availability of cadaveric human donor pancreata as well as the incomplete success of the Edmonton protocol for human islet allografts fasten search for new sources of insulin the producing cells for substitution cell therapy of insulin-dependent diabetes mellitus (T1DM). Starting from isolated neonatal porcine pancreatic islets (NPIs), we have obtained cell monolayers that were exposed to microencapsulated monolayered Sertoli cells (ESCs) for different time periods (7, 14, 21 days). To assess the development of the cocultured cell monolayers, we have studied either endocrine cell phenotype differentiation markers or c-kit, a hematopoietic stem cell marker, has recently been involved with growth and differentiation of β-cell subpopulations in human as well as rodent animal models. ESC which were found to either accelerate maturation and differentiation of the NPIs β-cell phenotype or identify an islet cell subpopulation that was marked positively for c-kit. The insulin/c-kit positive cells might represent a new, still unknown functionally immature β-cell like element in the porcine pancreas. Acceleration of maturation and differentiation of our NPI cell monolayers might generate a potential new opportunity to develop insulin-producing cells that may suite experimental trials for cell therapy of T1DM. PMID:21048849

  17. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects

    PubMed Central

    Vassar, Robert; Kuhn, Peer-Hendrik; Haass, Christian; Kennedy, Matthew E.; Rajendran, Lawrence; Wong, Philip C.; Lichtenthaler, Stefan F.

    2014-01-01

    The β-site APP cleaving enzymes 1 and 2 (BACE1 and BACE2) were initially identified as transmembrane aspartyl proteases cleaving the amyloid precursor protein (APP). BACE1 is a major drug target for Alzheimer’s disease because BACE1-mediated cleavage of APP is the first step in the generation of the pathogenic amyloid-β peptides. BACE1, which is highly expressed in the nervous system, is also required for myelination by cleaving neuregulin 1. Several recent proteomic and in vivo studies usingBACE1-andBACE2-deficient mice demonstrate a much wider range of physiological substrates and functions for both proteases within and outside of the nervous system. For BACE1 this includes axon guidance, neurogenesis, muscle spindle formation, and neuronal network functions, whereas BACE2 was shown to be involved in pigmentation and pancreatic β-cell function. This review highlights the recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer’s disease. PMID:24646365

  18. Cocaine Reduces Thymic Endocrine Function: Another Mechanism for Accelerated HIV Disease Progression

    PubMed Central

    Campa, Adriana; Smith, Sylvia; Huffman, Fatma; Newman, Fred; Baum, Marianna K.

    2011-01-01

    Abstract Thymulin is a thymic peptide important for the maturation and differentiation of immature thymocytes, which have been found to be depressed in patients with low-level CD4+ cell recovery despite viral control. Substance use is associated with faster progression of HIV disease, which has been ascribed to poor adherence to antiretroviral medication. Recent findings of an association between cocaine use and decline in CD4+ cell counts independent of antiretroviral adherence indicate alternative mechanisms for disease progression. We evaluated the relationship between thymulin activity, CD4+ and CD8+ cell counts and the CD4+/CD8+ ratio, and the covariate effects of substance use cross-sectionally in 80 HIV+ active substance users and over 12 months in 40 participants. Thymulin activity was analyzed in plasma using a modification of the sheep rosette bioassay. Thymulin activity was negatively associated with cocaine use (β = −0.908,95% CI: −1.704, −0.112; p = 0.026). Compared to those who do not use cocaine, cocaine users were 37% less likely to have detectable thymulin activity (RR = 0.634, 95% CI: 0.406, 0.989 p = 0.045) and were 75 times more likely to show a decrease in thymulin activity (OR = 74.7, 95% CI: 1.59, 3519.74; p = 0.028) over time. CD4+ cell count was positively associated with thymulin activity (β = 0.127, 95% CI: 0.048,0.205; p = 0.002), detectable thymulin activity was 2.32 times more likely in those with a CD4 cell count ≥200 cells/μl (RR = 2.324, 95% CI: 1.196, 4.513, p = 0.013), and those with an increase in CD4 cell counts were more likely to show an increase in thymulin activity (OR = 1.02, 95% CI: 1.00, 1.034; p = 0.041) over time. Thymulin activity is predictive of HIV disease progression and is depressed in cocaine users independent of antiretroviral treatment (ART) and HIV viral load. Understanding the mechanisms for accelerated HIV disease progression provides

  19. [Effects of IFN-γ treatment on biological characteristics and functions of dendritic cells].

    PubMed

    Liu, Yanling; Wang, Hongmei; Yu, Yanrong; Yuan, Keng; Zhang, Yujuan; Min, Weiping

    2016-08-01

    Objective To investigate the effect of IFN-γ treatment on the biological characteristics and functions of C57BL/6 murine dendritic cells (DCs). Methods In the process of DC culture, 20 ng/mL IFN-γ was added in the DCs at the early (day 2) or late (day 5) stage, and on day 7, LPS was added to stimulate DC maturation. The expressions of DC surface molecules CD11c, CD80 and CD86 were determined by flow cytometry. To analyze cell functions, DCs were co-cultured with BALB/c mouse-derived lymphocyte cells. The 5, 6-carboxyfluorescein diacetate N-succinimidyl ester (CFSE) labelling was used to detect their ability to stimulate allogeneic lymphocyte proliferation and flow cytometry was used to measure their ability to induce the production of regulatory T cells (Tregs). Results Compared with the control group, the early IFN-γ treatment group had decreased DC number and inhibited cell differentiation; though there was no difference in the expression of co-stimulatory molecules, early IFN-γ treatment resisted the stimulatory effect of LPS on DC maturation, weakened the ability to stimulate allogeneic lymphocyte proliferation and enhanced the ability to induce more Tregs. Compared with the control group, the late IFN-γ treatment group showed no change in DC number and differentiation; the expressions of co-stimulatory molecules CD86 and CD80 were upregulated; the results of DC maturation and mixed allogeneic lymphocyte reaction stimulated by LPS were similar to those in the control group, but its ability to induce Tregs was stronger. Conclusion DCs treated with IFN-γ at early stage and those at late stage showed obvious difference in biological characteristics and functions. PMID:27412927

  20. Multiscale Modeling of Biological Functions: From Enzymes to Molecular Machines (Nobel Lecture)

    PubMed Central

    Warshel, Arieh

    2016-01-01

    Adetailed understanding of the action of biological molecules is a pre-requisite for rational advances in health sciences and related fields. Here, the challenge is to move from available structural information to a clear understanding of the underlying function of the system. In light of the complexity of macromolecular complexes, it is essential to use computer simulations to describe how the molecular forces are related to a given function. However, using a full and reliable quantum mechanical representation of large molecular systems has been practically impossible. The solution to this (and related) problems has emerged from the realization that large systems can be spatially divided into a region where the quantum mechanical description is essential (e.g. a region where bonds are being broken), with the remainder of the system being represented on a simpler level by empirical force fields. This idea has been particularly effective in the development of the combined quantum mechanics/molecular mechanics (QM/MM) models. Here, the coupling between the electrostatic effects of the quantum and classical subsystems has been a key to the advances in describing the functions of enzymes and other biological molecules. The same idea of representing complex systems in different resolutions in both time and length scales has been found to be very useful in modeling the action of complex systems. In such cases, starting with coarse grained (CG) representations that were originally found to be very useful in simulating protein folding, and augmenting them with a focus on electrostatic energies, has led to models that are particularly effective in probing the action of molecular machines. The same multiscale idea is likely to play a major role in modeling of even more complex systems, including cells and collections of cells. PMID:25060243

  1. Analyzing radial acceleration with a smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  2. [The biological reaction of inflammation, methylglyoxal of blood plasma, functional and structural alterations in elastic type arteries at the early stage of hypertension disease].

    PubMed

    Titov, V N; Dmitriev, V A; Oshchepkov, E V; Balakhonova, T V; Tripoten', M I; Shiriaeva, Iu K

    2012-08-01

    The article deals with studying of the relationship between biologic reaction of inflammation with glycosylation reaction and content of methylglyoxal in blood serum. The positive correlation between pulse wave velocity and content of methylglyoxal, C-reactive protein in intercellular medium and malleolar brachial index value was established. This data matches the experimental results concerning involvement of biological reaction of inflammation into structural changes of elastic type arteries under hypertension disease, formation of arteries' rigidity and increase of pulse wave velocity. The arterial blood pressure is a biological reaction of hydrodynamic pressure which is used in vivo by several biological functions: biological function of homeostasis, function of endoecology, biological function of adaptation and function of locomotion. The biological reaction of hydrodynamic (hydraulic) pressure is a mode of compensation of derangement of several biological functions which results in the very high rate of hypertension disease in population. As a matter of fact, hypertension disease is a syndrome of lingering pathological compensation by higher arterial blood pressure of the biological functions derangements occurring in the distal section at the level of paracrine cenoses of cells. The arterial blood pressure is a kind of in vivo integral indicator of deranged metabolism. The essential hypertension disease pathogenically is a result of the derangement of three biological functions: biological function of homeostasis, biological function of trophology - nutrition (biological reaction of external feeding - exotrophia) and biological function of endoecology. In case of "littering" of intercellular medium in vivo with nonspecific endogenic flogogens a phylogenetically earlier activation of biological reactions of excretion, inflammation and hydrodynamic arterial blood pressure occur. In case of derangement of biological function of homeostasis, decreasing of

  3. Acceleration of crossbridge kinetics by protein kinase A phosphorylation of cardiac myosin binding protein C modulates cardiac function.

    PubMed

    Tong, Carl W; Stelzer, Julian E; Greaser, Marion L; Powers, Patricia A; Moss, Richard L

    2008-10-24

    Normal cardiac function requires dynamic modulation of contraction. beta1-adrenergic-induced protein kinase (PK)A phosphorylation of cardiac myosin binding protein (cMyBP)-C may regulate crossbridge kinetics to modulate contraction. We tested this idea with mechanical measurements and echocardiography in a mouse model lacking 3 PKA sites on cMyBP-C, ie, cMyBP-C(t3SA). We developed the model by transgenic expression of mutant cMyBP-C with Ser-to-Ala mutations on the cMyBP-C knockout background. Western blots, immunofluorescence, and in vitro phosphorylation combined to show that non-PKA-phosphorylatable cMyBP-C expressed at 74% compared to normal wild-type (WT) and was correctly positioned in the sarcomeres. Similar expression of WT cMyBP-C at 72% served as control, ie, cMyBP-C(tWT). Skinned myocardium responded to stretch with an immediate increase in force, followed by a transient relaxation of force and finally a delayed development of force, ie, stretch activation. The rate constants of relaxation, k(rel) (s-1), and delayed force development, k(df) (s-1), in the stretch activation response are indicators of crossbridge cycling kinetics. cMyBP-C(t3SA) myocardium had baseline k(rel) and k(df) similar to WT myocardium, but, unlike WT, k(rel) and k(df) were not accelerated by PKA treatment. Reduced dobutamine augmentation of systolic function in cMyBP-C(t3SA) hearts during echocardiography corroborated the stretch activation findings. Furthermore, cMyBP-C(t3SA) hearts exhibited basal echocardiographic findings of systolic dysfunction, diastolic dysfunction, and hypertrophy. Conversely, cMyBP-C(tWT) hearts performed similar to WT. Thus, PKA phosphorylation of cMyBP-C accelerates crossbridge kinetics and loss of this regulation leads to cardiac dysfunction. PMID:18802026

  4. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats.

    PubMed

    Huang, Jinghui; Zhang, Yongguang; Lu, Lei; Hu, Xueyu; Luo, Zhuojing

    2013-12-01

    The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. We found that the diameter and number of regenerated axons, the thickness of myelin sheath, as well as the number of Fluoro-Gold retrograde-labeled motoneurons and sensory neurons were significantly increased by ES, suggesting that brief ES to proximal nerve stumps is capable of promoting nerve regeneration in DNIR with different delayed durations, with the longest duration of 24 weeks. In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain-derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF-mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions. PMID:24118464

  5. The time dependent propensity function for acceleration of spatial stochastic simulation of reaction–diffusion systems

    SciTech Connect

    Fu, Jin; Wu, Sheng; Li, Hong; Petzold, Linda R.

    2014-10-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy.

  6. The Time Dependent Propensity Function for Acceleration of Spatial Stochastic Simulation of Reaction-Diffusion Systems

    PubMed Central

    Wu, Sheng; Li, Hong; Petzold, Linda R.

    2015-01-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy. PMID:26609185

  7. In vitro characterization of HCN channel kinetics and frequency dependence in myocytes predicts biological pacemaker functionality.

    PubMed

    Zhao, Xin; Bucchi, Annalisa; Oren, Ronit V; Kryukova, Yelena; Dun, Wen; Clancy, Colleen E; Robinson, Richard B

    2009-04-01

    The pacemaker current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, contributes to the initiation and regulation of cardiac rhythm. Previous experiments creating HCN-based biological pacemakers in vivo found that an engineered HCN2/HCN1 chimeric channel (HCN212) resulted in significantly faster rates than HCN2, interrupted by 1-5 s pauses. To elucidate the mechanisms underlying the differences in HCN212 and HCN2 in vivo functionality as biological pacemakers, we studied newborn rat ventricular myocytes over-expressing either HCN2 or HCN212 channels. The HCN2- and HCN212-over-expressing myocytes manifest similar voltage dependence, current density and sensitivity to saturating cAMP concentrations, but HCN212 has faster activation/deactivation kinetics. Compared with HCN2, myocytes expressing HCN212 exhibit a faster spontaneous rate and greater incidence of irregular rhythms (i.e. periods of rapid spontaneous rate followed by pauses). To explore these rhythm differences further, we imposed consecutive pacing and found that activation kinetics of the two channels are slower at faster pacing frequencies. As a result, time-dependent HCN current flowing during diastole decreases for both constructs during a train of stimuli at a rapid frequency, with the effect more pronounced for HCN2. In addition, the slower deactivation kinetics of HCN2 contributes to more pronounced instantaneous current at a slower frequency. As a result of the frequency dependence of both instantaneous and time-dependent current, HCN2 exhibits more robust negative feedback than HCN212, contributing to the maintenance of a stable pacing rhythm. These results illustrate the benefit of screening HCN constructs in spontaneously active myocyte cultures and may provide the basis for future optimization of HCN-based biological pacemakers. PMID:19171659

  8. GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm.

    PubMed

    Wang, Yan; Oh, Christian M; Oliveira, Michael C; Islam, M Shahidul; Ortega, Arthur; Park, B Hyle

    2012-07-01

    We present a GPU accelerated multi-functional spectral domain optical coherence tomography system at 1300 nm. The system is capable of real-time processing and display of every intensity image, comprised of 512 pixels by 2048 A-lines acquired at 20 frames per second. The update rate for all four images with size of 512 pixels by 2048 A-lines simultaneously (intensity, phase retardation, flow and en face view) is approximately 10 frames per second. Additionally, we report for the first time the characterization of phase retardation and diattenuation by a sample comprised of a stacked set of polarizing film and wave plate. The calculated optic axis orientation, phase retardation and diattenuation match well with expected values. The speed of each facet of the multi-functional OCT CPU-GPU hybrid acquisition system, intensity, phase retardation, and flow, were separately demonstrated by imaging a horseshoe crab lateral compound eye, a non-uniformly heated chicken muscle, and a microfluidic device. A mouse brain with thin skull preparation was imaged in vivo and demonstrated the capability of the system for live multi-functional OCT visualization. PMID:22772175

  9. Efficient hardware accelerated rendering of multiple volumes by data dependent local render functions

    NASA Astrophysics Data System (ADS)

    Lehmann, Helko; Geller, Dieter; Weese, Jürgen; Kiefer, Gundolf

    2007-03-01

    The inspection of a patient's data for diagnostics, therapy planning or therapy guidance involves an increasing number of 3D data sets, e.g. acquired by different imaging modalities, with different scanner settings or at different times. To enable viewing of the data in one consistent anatomical context fused interactive renderings of multiple 3D data sets are desirable. However, interactive fused rendering of typical medical data sets using standard computing hardware remains a challenge. In this paper we present a method to render multiple 3D data sets. By introducing local rendering functions, i.e. functions that are adapted to the complexity of the visible data contained in the different regions of a scene, we can ensure that the overall performance for fused rendering of multiple data sets depends on the actual amount of visible data. This is in contrast to other approaches where the performance depends mainly on the number of rendered data sets. We integrate the method into a streaming rendering architecture with brick-based data representations of the volume data. This enables efficient handling of data sets that do not fit into the graphics board memory and a good utilization of the texture caches. Furthermore, transfer and rendering of volume data that does not contribute to the final image can be avoided. We illustrate the benefits of our method by experiments with clinical data.

  10. Heavy ions light flashes and brain functions: recent observations at accelerators and in spaceflight

    NASA Astrophysics Data System (ADS)

    Narici, L.

    2008-07-01

    Interactions between ionizing radiation in space and brain functions, and the related risk assessments, are among the major concerns when programming long permanence in space, especially when outside the protective shield of the Earth's magnetosphere. The light flashes (LF) observed by astronauts in space, mostly when dark adapted, are an example of these interactions; investigations in space and on the ground showed that these effects can originate with the action of ionizing radiation in the eye. Recent findings from ALTEA, an interdisciplinary and multiapproach program devoted to the study of different aspects of the radiation-brain functions interaction, are presented in this paper. These include: (i) study of radiation passing through the astronauts' eyes in the International Space Station (≈20 ions min-1, excluding H and fast and very slow He), measured in conjunction with reporting of the perception of LF; (ii) preliminary electrophysiological evidence of these events in astronauts and in patients during heavy ion therapy; and (iii) in vitro results showing the radiation driven activation of rhodopsin at the start of the phototransduction cascade in the process of vision. These results are in agreement with our previous work on mice. A brief but complete summary of the earlier works is also reported to permit a discussion of the results.

  11. The role of ontologies in biological and biomedical research: a functional perspective.

    PubMed

    Hoehndorf, Robert; Schofield, Paul N; Gkoutos, Georgios V

    2015-11-01

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications. PMID:25863278

  12. The role of ontologies in biological and biomedical research: a functional perspective

    PubMed Central

    Schofield, Paul N.; Gkoutos, Georgios V.

    2015-01-01

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications. PMID:25863278

  13. Exploring New Biological Functions of Amyloids: Bacteria Cell Agglutination Mediated by Host Protein Aggregation

    PubMed Central

    Torrent, Marc; Pulido, David; Nogués, M. Victòria; Boix, Ester

    2012-01-01

    Antimicrobial proteins and peptides (AMPs) are important effectors of the innate immune system that play a vital role in the prevention of infections. Recent advances have highlighted the similarity between AMPs and amyloid proteins. Using the Eosinophil Cationic Protein as a model, we have rationalized the structure-activity relationships between amyloid aggregation and antimicrobial activity. Our results show how protein aggregation can induce bacteria agglutination and cell death. Using confocal and total internal reflection fluorescence microscopy we have tracked the formation in situ of protein amyloid-like aggregates at the bacteria surface and on membrane models. In both cases, fibrillar aggregates able to bind to amyloid diagnostic dyes were detected. Additionally, a single point mutation (Ile13 to Ala) can suppress the protein amyloid behavior, abolishing the agglutinating activity and impairing the antimicrobial action. The mutant is also defective in triggering both leakage and lipid vesicle aggregation. We conclude that ECP aggregation at the bacterial surface is essential for its cytotoxicity. Hence, we propose here a new prospective biological function for amyloid-like aggregates with potential biological relevance. PMID:23133388

  14. Heterogeneous expression and biological function of ubiquitin carboxy-terminal hydrolase-L1 in osteosarcoma.

    PubMed

    Zheng, Shuier; Qiao, Guanglei; Min, Daliu; Zhang, Zhichang; Lin, Feng; Yang, Qingcheng; Feng, Tao; Tang, Lina; Sun, Yuanjue; Zhao, Hui; Li, Hongtao; Yu, Wenxi; Yang, Yumei; Shen, Zan; Yao, Yang

    2015-04-01

    Ubiquitin carboxyl terminal hydrolase 1 (UCHL1), a member of the UCH class of DUBs, has been reported as either an oncogene or a tumor suppressor. However, the molecular mechanism underlying the biological function of UCHL1 in osteosarcoma is still unclear. This study was aimed at elucidating the roles of UCHL1 in regulating the biological behavior of osteosarcoma cells. In this study, we found that UCHL1 was elevated in osteosarcoma compared with normal bone tissue. Moreover, UCHL1 expression level was correlated with tumor maximum diameter, high rate of lung metastases and short survival time. Then, we found that knockdown of UCHL1 in osteosarcoma cell MG63 inhibited cell proliferation and significantly increased cell population in the G1 phase. Several cyclins promoting G1/S phase transition were reduced after UCHL1 knockdown, including cell cycle regulator cyclin D1, cyclin E1 and CDK6. Moreover, inhibition of UCHL1 in MG63 cells dramatically induced cell apoptosis. We also found that down-regulation of UCHL1 in MG63 significantly inhibited cell invasion. Then, we found that there was a positive correlation between UCHL1 expression level and the Akt and ERK phosphorylation status. Finally, in vivo data showed that knockdown of UCHL1 inhibited osteosarcoma growth in nude mice. These results indicate that UCHL1 could work as an oncogene and may serve as a promising therapeutic strategy for osteosarcoma. PMID:25578779

  15. Averaged Propulsive Body Acceleration (APBA) Can Be Calculated from Biologging Tags That Incorporate Gyroscopes and Accelerometers to Estimate Swimming Speed, Hydrodynamic Drag and Energy Expenditure for Steller Sea Lions

    PubMed Central

    Trites, Andrew W.; Rosen, David A. S.; Potvin, Jean

    2016-01-01

    Forces due to propulsion should approximate forces due to hydrodynamic drag for animals horizontally swimming at a constant speed with negligible buoyancy forces. Propulsive forces should also correlate with energy expenditures associated with locomotion—an important cost of foraging. As such, biologging tags containing accelerometers are being used to generate proxies for animal energy expenditures despite being unable to distinguish rotational movements from linear movements. However, recent miniaturizations of gyroscopes offer the possibility of resolving this shortcoming and obtaining better estimates of body accelerations of swimming animals. We derived accelerations using gyroscope data for swimming Steller sea lions (Eumetopias jubatus), and determined how well the measured accelerations correlated with actual swimming speeds and with theoretical drag. We also compared dive averaged dynamic body acceleration estimates that incorporate gyroscope data, with the widely used Overall Dynamic Body Acceleration (ODBA) metric, which does not use gyroscope data. Four Steller sea lions equipped with biologging tags were trained to swim alongside a boat cruising at steady speeds in the range of 4 to 10 kph. At each speed, and for each dive, we computed a measure called Gyro-Informed Dynamic Acceleration (GIDA) using a method incorporating gyroscope data with accelerometer data. We derived a new metric—Averaged Propulsive Body Acceleration (APBA), which is the average gain in speed per flipper stroke divided by mean stroke cycle duration. Our results show that the gyro-based measure (APBA) is a better predictor of speed than ODBA. We also found that APBA can estimate average thrust production during a single stroke-glide cycle, and can be used to estimate energy expended during swimming. The gyroscope-derived methods we describe should be generally applicable in swimming animals where propulsive accelerations can be clearly identified in the signal—and they should

  16. Averaged Propulsive Body Acceleration (APBA) Can Be Calculated from Biologging Tags That Incorporate Gyroscopes and Accelerometers to Estimate Swimming Speed, Hydrodynamic Drag and Energy Expenditure for Steller Sea Lions.

    PubMed

    Ware, Colin; Trites, Andrew W; Rosen, David A S; Potvin, Jean

    2016-01-01

    Forces due to propulsion should approximate forces due to hydrodynamic drag for animals horizontally swimming at a constant speed with negligible buoyancy forces. Propulsive forces should also correlate with energy expenditures associated with locomotion-an important cost of foraging. As such, biologging tags containing accelerometers are being used to generate proxies for animal energy expenditures despite being unable to distinguish rotational movements from linear movements. However, recent miniaturizations of gyroscopes offer the possibility of resolving this shortcoming and obtaining better estimates of body accelerations of swimming animals. We derived accelerations using gyroscope data for swimming Steller sea lions (Eumetopias jubatus), and determined how well the measured accelerations correlated with actual swimming speeds and with theoretical drag. We also compared dive averaged dynamic body acceleration estimates that incorporate gyroscope data, with the widely used Overall Dynamic Body Acceleration (ODBA) metric, which does not use gyroscope data. Four Steller sea lions equipped with biologging tags were trained to swim alongside a boat cruising at steady speeds in the range of 4 to 10 kph. At each speed, and for each dive, we computed a measure called Gyro-Informed Dynamic Acceleration (GIDA) using a method incorporating gyroscope data with accelerometer data. We derived a new metric-Averaged Propulsive Body Acceleration (APBA), which is the average gain in speed per flipper stroke divided by mean stroke cycle duration. Our results show that the gyro-based measure (APBA) is a better predictor of speed than ODBA. We also found that APBA can estimate average thrust production during a single stroke-glide cycle, and can be used to estimate energy expended during swimming. The gyroscope-derived methods we describe should be generally applicable in swimming animals where propulsive accelerations can be clearly identified in the signal-and they should also

  17. Structural and biological function of NYD-SP15 as a new member of cytidine deaminases.

    PubMed

    Xu, Yidan; Li, Lei; Li, Jianmin; Liu, Qinghuai

    2016-05-25

    Recent studies were mainly focus on the cytidine deaminase family genes, which contained a lot of members that varied on the function of catalytic deamination in RNA or DNA and were involved in the process of growth maintenance, host immunity, retroviral infection, tumorigenesis, and drug resistance with a feature of C-U deamination. In this study, we identified a new member of cytidine deaminase family, NYD-SP15. Previous work showed that the deduced structure of the protein contained two dCMP_cyt_deam domains, which were involved in zinc ion binding. NYD-SP15 was expressed variably in a wide range of tissues, indicating its worthy biological function and creative significances. Sequence analysis, RT-PCR, western blot, flow cytometry, direct-site mutation and GST pull-down assay were performed to analyze the construction and function of NYD-SP15. The results in our studies showed that NYD-SP15 was closely related to deoxycytidylate deaminase and cytidine deaminase, with authentic cytidine deaminase activity in vivo and vitro as well as homo dimerization effects. NYD-SP15 contained nuclear localization sequence (NLS) and nuclear export-signal (NES) and could dynamically shuttle between the nucleus and cytoplasm. Furthermore, NYD-SP15 gene over-expression reduced the cells growth and blocked G1 to S phase, which implied a potential inhibition effect on cell growth. PMID:26945630

  18. Friendly Fire: Biological Functions and Consequences of Chromosomal Targeting by CRISPR-Cas Systems.

    PubMed

    Heussler, Gary E; O'Toole, George A

    2016-05-15

    Clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) systems in bacteria and archaea target foreign elements, such as bacteriophages and conjugative plasmids, through the incorporation of short sequences (termed spacers) from the foreign element into the CRISPR array, thereby allowing sequence-specific targeting of the invader. Thus, CRISPR-Cas systems are typically considered a microbial adaptive immune system. While many of these incorporated spacers match targets on bacteriophages and plasmids, a noticeable number are derived from chromosomal DNA. While usually lethal to the self-targeting bacteria, in certain circumstances, these self-targeting spacers can have profound effects in regard to microbial biology, including functions beyond adaptive immunity. In this minireview, we discuss recent studies that focus on the functions and consequences of CRISPR-Cas self-targeting, including reshaping of the host population, group behavior modification, and the potential applications of CRISPR-Cas self-targeting as a tool in microbial biotechnology. Understanding the effects of CRISPR-Cas self-targeting is vital to fully understanding the spectrum of function of these systems. PMID:26929301

  19. Immunoglobulin Classes and Biological Functions of Campylobacter (Vibrio) fetus Antibodies in Serum and Cervicovaginal Mucus

    PubMed Central

    Corbeil, L. B.; Schurig, G. D.; Duncan, J. R.; Corbeil, R. R.; Winter, A. J.

    1974-01-01

    Serum and cervicovaginal mucus (CVM) antibodies from heifers after genital infection or systemic immunization with Campylobacter (Vibrio) fetus were classified according to their immunoglobulin class, antigenic specificities, and biological functions. Only immunoglobulin (Ig) A antibodies, specific both for O and superficial, heat-labile, whole-cell (W) antigens, were detected in CVM of convalescent animals. After systemic immunization, antibodies in serum were directed principally to W antigens and were located in IgG1, IgG2, and IgM classes; CVM antibodies of the same specificity were detected only in the IgG subclasses. Functional tests revealed that antibodies of W specificity, whether of the IgA or IgG class, were capable of immobilizing the organism. However, IgG antibodies immobilized with clumping, whereas IgA antibodies immobilized single organisms within the 3-min period. None of the antibody preparations was bactericidal in the presence of homologous complement when the infecting strain was used as the target organism, but a bactericidal effect was observed when the target strain was rough and non-encapsulated. Both serum and CVM from systemically immunized animals opsonized C. fetus organisms, but CVM from locally immunized animals containing IgA antibodies was not opsonic. It is hypothesized that functions of immobilization for IgA and IgG and of opsonization for IgG are important features of protective immunity in venereal vibriosis. PMID:4609902

  20. Restoration of voice function by using biological feedback in laryngeal and hypopharyngeal carcinoma patients

    NASA Astrophysics Data System (ADS)

    Choinzonov, E. L.; Balatskaya, L. N.; Chizhevskaya, S. Yu.; Meshcheryakov, R. V.; Kostyuchenko, E. Yu.; Ivanova, T. A.

    2016-08-01

    The aim of the research is to develop and introduce a new technique of post-laryngectomy voice rehabilitation of laryngeal and hypopharyngeal carcinoma patients. The study involves comparing and analyzing 82 cases of voice function restoration by using biological feedback based on mathematical modeling of voice production. The advantage of the modern technology-based method in comparison with the conventional one is proved. Restoration of voice function using biofeedback allows taking into account patient's abilities, adjusting parameters of voice trainings, and controlling their efficiency in real-time mode. The data obtained indicate that the new method contributes to the rapid inclusion of self-regulation mechanisms of the body and results in the overall success rate of voice rehabilitation in totally laryngectomized patients reaching 92%, which reduces the rehabilitation period to 18 days, compared to 86% and 38 days in the control group, respectively. Restoration of disturbed functions after successful treatment is an important task of rehabilitation and is crucial in terms of the quality of cancer patients' lives. To assess life quality of laryngeal cancer patients, the EORTC Quality of Life Core Questionnaire (QLQ-C30), and head and neck module (QLQ-H&N35) were used. The analyzed results proved that the technique of biofeedback voice restoration significantly improves the quality of life of laryngectomized patients. It allows reducing the number of disabled people, restoring patients' ability to work-related activities, and significantly improving social adaptation of these patients.

  1. Filtering genetic variants and placing informative priors based on putative biological function.

    PubMed

    Friedrichs, Stefanie; Malzahn, Dörthe; Pugh, Elizabeth W; Almeida, Marcio; Liu, Xiao Qing; Bailey, Julia N

    2016-01-01

    High-density genetic marker data, especially sequence data, imply an immense multiple testing burden. This can be ameliorated by filtering genetic variants, exploiting or accounting for correlations between variants, jointly testing variants, and by incorporating informative priors. Priors can be based on biological knowledge or predicted variant function, or even be used to integrate gene expression or other omics data. Based on Genetic Analysis Workshop (GAW) 19 data, this article discusses diversity and usefulness of functional variant scores provided, for example, by PolyPhen2, SIFT, or RegulomeDB annotations. Incorporating functional scores into variant filters or weights and adjusting the significance level for correlations between variants yielded significant associations with blood pressure traits in a large family study of Mexican Americans (GAW19 data set). Marker rs218966 in gene PHF14 and rs9836027 in MAP4 significantly associated with hypertension; additionally, rare variants in SNUPN significantly associated with systolic blood pressure. Variant weights strongly influenced the power of kernel methods and burden tests. Apart from variant weights in test statistics, prior weights may also be used when combining test statistics or to informatively weight p values while controlling false discovery rate (FDR). Indeed, power improved when gene expression data for FDR-controlled informative weighting of association test p values of genes was used. Finally, approaches exploiting variant correlations included identity-by-descent mapping and the optimal strategy for joint testing rare and common variants, which was observed to depend on linkage disequilibrium structure. PMID:26866982

  2. Marine organism cell biology and regulatory sequence discoveryin comparative functional genomics.

    PubMed

    Barnes, David W; Mattingly, Carolyn J; Parton, Angela; Dowell, Lori M; Bayne, Christopher J; Forrest, John N

    2004-10-01

    The use of bioinformatics to integrate phenotypic and genomic data from mammalian models is well established as a means of understanding human biology and disease. Beyond direct biomedical applications of these approaches in predicting structure-function relationships between coding sequences and protein activities, comparative studies also promote understanding of molecular evolution and the relationship between genomic sequence and morphological and physiological specialization. Recently recognized is the potential of comparative studies to identify functionally significant regulatory regions and to generate experimentally testable hypotheses that contribute to understanding mechanisms that regulate gene expression, including transcriptional activity, alternative splicing and transcript stability. Functional tests of hypotheses generated by computational approaches require experimentally tractable in vitro systems, including cell cultures. Comparative sequence analysis strategies that use genomic sequences from a variety of evolutionarily diverse organisms are critical for identifying conserved regulatory motifs in the 5'-upstream, 3'-downstream and introns of genes. Genomic sequences and gene orthologues in the first aquatic vertebrate and protovertebrate organisms to be fully sequenced (Fugu rubripes, Ciona intestinalis, Tetraodon nigroviridis, Danio rerio) as well as in the elasmobranchs, spiny dogfish shark (Squalus acanthias) and little skate (Raja erinacea), and marine invertebrate models such as the sea urchin (Strongylocentrotus purpuratus) are valuable in the prediction of putative genomic regulatory regions. Cell cultures have been derived for these and other model species. Data and tools resulting from these kinds of studies will contribute to understanding transcriptional regulation of biomedically important genes and provide new avenues for medical therapeutics and disease prevention. PMID:19003267

  3. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    NASA Astrophysics Data System (ADS)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  4. PPAR Ligands Function as Suppressors That Target Biological Actions of HMGB1

    PubMed Central

    Chen, Tianhui

    2016-01-01

    High mobility group box 1 (HMGB1), which has become one of the most intriguing molecules in inflammatory disorders and cancers and with which ligand-activated peroxisome proliferator-activated receptors (PPARs) are highly associated, is considered as a therapeutic target. Of particular interest is the fact that certain PPAR ligands have demonstrated their potent anti-inflammatory activities and potential anticancer effects. In this review article we summarize recent experimental evidence that PPAR ligands function as suppressors that target biological actions of HMGB1, including intracellular expression, receptor signaling cascades, and extracellular secretion of HMGB1 in cell lines and/or animal models. We also propose the possible mechanisms underlying PPAR involvement in inflammatory disorders and discuss the future therapeutic value of PPAR ligands targeting HMGB1 molecule for cancer prevention and treatment. PMID:27563308

  5. Application of comparative biology in GO functional annotation: the mouse model.

    PubMed

    Drabkin, Harold J; Christie, Karen R; Dolan, Mary E; Hill, David P; Ni, Li; Sitnikov, Dmitry; Blake, Judith A

    2015-10-01

    The Gene Ontology (GO) is an important component of modern biological knowledge representation with great utility for computational analysis of genomic and genetic data. The Gene Ontology Consortium (GOC) consists of a large team of contributors including curation teams from most model organism database groups as well as curation teams focused on representation of data relevant to specific human diseases. Key to the generation of consistent and comprehensive annotations is the development and use of shared standards and measures of curation quality. The GOC engages all contributors to work to a defined standard of curation that is presented here in the context of annotation of genes in the laboratory mouse. Comprehensive understanding of the origin, epistemology, and coverage of GO annotations is essential for most effective use of GO resources. Here the application of comparative approaches to capturing functional data in the mouse system is described. PMID:26141960

  6. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    NASA Astrophysics Data System (ADS)

    Zheng, Haoping

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with precise calculations. Thus the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule has become a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), will be presented in this paper. The reactive sites of the inhibitors are determined and explained. The accuracy of structure determination of the inhibitors are tested theoretically.

  7. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    NASA Astrophysics Data System (ADS)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  8. Distinguishing Pattern Formation Phenotypes: Applying Minkowski Functionals to Cell Biology Systems

    NASA Astrophysics Data System (ADS)

    Rericha, Erin; Guven, Can; Parent, Carole; Losert, Wolfgang

    2011-03-01

    Spatial Clustering of proteins within cells or cells themselves frequently occur in cell biology systems. However quantifying the underlying order and determining the regulators of these cluster patterns have proved difficult due to the inherent high noise levels in the systems. For instance the patterns formed by wild type and cyclic-AMP regulatory mutant Dictyostelium cells are visually distinctive, yet the large error bars in measurements of the fractal number, area, Euler number, eccentricity, and wavelength making it difficult to quantitatively distinguish between the patterns. We apply a spatial analysis technique based on Minkowski functionals and develop metrics which clearly separate wild type and mutant cell lines into distinct categories. Having such a metric facilitated the development of a computational model for cellular aggregation and its regulators. Supported by NIH-NGHS Nanotechnology (R01GM085574) and the Burroughs Wellcome Fund.

  9. SET for life: biochemical activities and biological functions of SET domain-containing proteins

    PubMed Central

    Herz, Hans-Martin; Garruss, Alexander; Shilatifard, Ali

    2013-01-01

    SET domain-containing proteins belong to a group of enzymes named after a common domain that utilizes the cofactor S-adenosyl-L-methionine (SAM) to achieve methylation of its substrates. Many SET domain-containing proteins have been shown to display catalytic activity towards particular lysine residues on histones, but emerging evidence also indicates that various non-histone proteins are specifically targeted by this clade of enzymes. Here, we summarize the most recent findings on the biological functions of the major families of SET domain-containing proteins catalyzing the methylation of histones 3 on lysines 4, 9, 27, and 36 (H3K4, H3K9, H3K27, and H3K36) and histone 4 on lysine 20 (H4K20) as well as candidates that have been reported to regulate non-histone substrates. PMID:24148750

  10. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid.

    PubMed

    Ruder, Warren C; Hsu, Chia-Pei D; Edelman, Brent D; Schwartz, Russell; Leduc, Philip R

    2012-08-01

    We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe(3)O(4)) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures. PMID:22952408

  11. Marine biological metapopulation with coupled logistic growth functions: The MSY and quasi MSY

    NASA Astrophysics Data System (ADS)

    Husniah, H.; Supriatna, A. K.

    2014-02-01

    In this paper we develop a mathematical model for a harvested marine biological stock. The stock consists of two discretely separated sub-stocks which are connected by the dispersal of individuals, and hence forms a metapopulation structure. The model assumes that the production function of each stock follows a logistic equation, hence the full system of the stocks governed by a couple of logistic equations. We find the formula of the maximum sustainable yield (MSY) for each sub-stock, which is extendable to a metapopulation with several discretely separated sub-populations. We also give a numerical simulation to illustrate the application of the formula for two-patch case, based on the quasi maximum sustainable yield. The simulation shows that ignoring the existence of the coupling of the system resulting in a lower total harvest from the population. This indicates a financial lost potential arising from an inappropriate recognition of a metapopulation structure in a fishery industry.

  12. Effects of positive acceleration /+Gz/ on renal function and plasma renin in normal man

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Shubrooks, S. J., Jr.; Fishman, L. M.; Duncan, D. C.

    1974-01-01

    The effects of positive radial centrifugation (+Gz) on plasma resin activity (PRA) and renal function were assessed in 15 normal male subjects under carefully controlled conditions of Na, K, and water intake. Twenty minutes of +2.0 Gz resulted in significant decreases in the mean rate of sodium excretion and creatine clearance and in a doubling of PRA in seven sodium-depleted subjects (10 meq Na intake). In eight sodium-replete subjects (200 mq Na intake), 30 min of +2.0 Gz was also associated with a decrease in the mean rate of sodium excretion. As a consequence of a concurrent decrease in creatine clearance, the fractional excretion of sodium during centrifugation did not differ from control, suggesting that the changes in Na excretion were mediated primarily by renal hemodynamic factors, although enhanced renal tubular sodium reabsorption may also have played a role.

  13. Mapping the functional properties of soft biological tissues under shear loading

    NASA Astrophysics Data System (ADS)

    Buckley, Mark Raymond

    The structure and composition of articular cartilage and other load-bearing biological tissues are highly complex and heterogeneous. As a result, their functional mechanical properties exhibit clear spatial variations. Unlocking the structure-function relationship in these materials is critical for devising strategies to restore tissue impaired by injury or disease and can provide a template for successful implant design. Here, we describe a tissue deformation imaging stage (TDIS) allowing for simultaneous force measurement and visualization of microscale deformation in soft biological tissues under controlled shear strain. In combination with a fast confocal microscope, the TDIS is used to test the microscale response of articular cartilage to shear loading. To obtain the location-specific shear modulus of this tissue, we employ a high-resolution technique that involves tracking the deformation of a line photobleached into a fluorescently stained sample loaded in the TDIS. We find that the quasi-static and dynamic shear moduli are lowest roughly 100 mum below the articular surface. Here, articular cartilage is highly nonlinear, stiffening under increased shear strain and becoming more compliant under increased compressive strain. Using a simple thought model, we relate these results to structural features of the collagen network in articular cartilage. Furthermore, we demonstrate that the region of maximum compliance is also the primary site of shear energy dissipation in articular cartilage. Our findings suggest that damage to or surgical removal of the surface of this tissue will increase the joint's susceptibility to shear-induced damage. Finally, similar experiments are performed on intervertebral disc and growth plate, demonstrating the versatility of our in-situ strain mapping techniques.

  14. [Historic and functional biology: the inadequacy of a system theory of evolution].

    PubMed

    Regelmann, J P

    1982-01-01

    In the first half of the 20th century neo-Kantianism in a broad sense proved itself the main conceptual and methodological background of the central European biology. As such it contributed much to the victory on the typological, idealistic-morphological and psycho-vitalistic interpretations of life. On the other hand it could not give tools to the biologists for working out a strictly darwinian evolution theory. Kant's theory of organism was conceived without evolution as a theory of the internal functionality of the organism. There was only some 'play' with the evolutionary differentiation of the species. Since then the disputes around the work of August Weismann, a synthetical evolution theory which is now behind time, arose. This theory developed from coinciding claims, elaborated by geneticists, mathematicians, and by biologists studying development, natural history and systematics. This was done under a strong influence of marxist ideas. Through the interweaving of such different approaches it was possible for this evolutionary synthesis to influence successfully the development of evolution research during more than 40 years. Philosophically speaking modern evolution theory means therefore an aversion, even a positive abolition of Kantian positions. A number of biologists however--as L. von Bertalanffy--refused to adhere to a misinterpreted Kantian methodology and oriented themselves to an approach via system theory, which obtained a place in evolution research. In fact this is a Kantian approach as well. They only repeated the Kantian dilemma of the evolution which can also be found in Lamarck and Hegel. The system theory of the functionality of the organism never reaches to the level of the evolving species, but remains always on the level of epigenetic thinking, because of its philosophical origin. This paper points out the consequences of this still current dilemma. At the same time an all-enclosing reflection on the methodological, epistemological and

  15. ToppMiR: ranking microRNAs and their mRNA targets based on biological functions and context

    PubMed Central

    Wu, Chao; Bardes, Eric E.; Jegga, Anil G.; Aronow, Bruce J.

    2014-01-01

    Identifying functionally significant microRNAs (miRs) and their correspondingly most important messenger RNA targets (mRNAs) in specific biological contexts is a critical task to improve our understanding of molecular mechanisms underlying organismal development, physiology and disease. However, current miR–mRNA target prediction platforms rank miR targets based on estimated strength of physical interactions and lack the ability to rank interactants as a function of their potential to impact a given biological system. To address this, we have developed ToppMiR (http://toppmir.cchmc.org), a web-based analytical workbench that allows miRs and mRNAs to be co-analyzed via biologically centered approaches in which gene function associated annotations are used to train a machine learning-based analysis engine. ToppMiR learns about biological contexts based on gene associated information from expression data or from a user-specified set of genes that relate to context-relevant knowledge or hypotheses. Within the biological framework established by the genes in the training set, its associated information content is then used to calculate a features association matrix composed of biological functions, protein interactions and other features. This scoring matrix is then used to jointly rank both the test/candidate miRs and mRNAs. Results of these analyses are provided as downloadable tables or network file formats usable in Cytoscape. PMID:24829448

  16. Clinical, Functional, and Biological Correlates of Cognitive Dimensions in Major Depressive Disorder - Rationale, Design, and Characteristics of the Cognitive Function and Mood Study (CoFaM-Study).

    PubMed

    Baune, Bernhard T; Air, Tracy

    2016-01-01

    Cross-sectional and longitudinal studies exploring clinical, functional, and biological correlates of major depressive disorder are frequent. In this type of research, depression is most commonly defined as a categorical diagnosis based on studies using diagnostic instruments. Given the phenotypic and biological heterogeneity of depression, we chose to focus the phenotypic assessments on three cognitive dimensions of depression including (a) cognitive performance, (b) emotion processing, and (c) social cognitive functioning. Hence, the overall aim of the study is to investigate the long-term clinical course of these cognitive dimensions in depression and its functional (psychosocial) correlates. We also aim to identify biological "genomic" correlates of these three cognitive dimensions of depression. To address the above overall aim, we created the Cognition and Mood Study (CoFaMS) with the key objective to investigate the clinical, functional, and biological correlates of cognitive dimensions of depression by employing a prospective study design and including a healthy control group. The study commenced in April 2015, including patients with a primary diagnosis of a major depressive episode of major depressive disorder or bipolar disorder according to DSM-IV-TR criteria. The assessments cover the three cognitive dimensions of depression (cognitive performance, emotion processing, and social cognition), cognitive function screening instrument, plus functional scales to assess general, work place, and psychosocial function, depression symptom scales, and clinical course of illness. Blood is collected for comprehensive genomic discovery analyses of biological correlates of cognitive dimensions of depression. The CoFaM-Study represents an innovative approach focusing on cognitive dimensions of depression and its functional and biological "genomic" correlates. The CoFaMS team welcomes collaborations with both national and international researchers. PMID:27616997

  17. Is age-related decline in lean mass and physical function accelerated by Obstructive Lung Disease or smoking?

    PubMed Central

    van den Borst, Bram; Koster, Annemarie; Yu, Binbing; Gosker, Harry R.; Meibohm, Bernd; Bauer, Douglas C.; Kritchevsky, Stephen B.; Liu, Yongmei; Newman, Anne B.; Harris, Tamara B.; Schols, Annemie M.W.J.

    2012-01-01

    Background and aims Cross-sectional studies suggest that Obstructive Lung Disease (OLD) and smoking affect lean mass and mobility. We aimed to investigate whether OLD and smoking accelerate aging-related decline in lean mass and physical functioning. Methods 260 persons with OLD (FEV1 63±18 %predicted), 157 smoking controls (FEV1 95±16 %predicted), 866 formerly smoking controls (FEV1 100±16 %predicted) and 891 never-smoking controls (FEV1 104±17 %predicted) participating in the Health, Aging and Body Composition (ABC) Study were studied. At baseline, the mean age was 74±3 y and participants reported no functional limitations. Baseline and seven-year longitudinal data were investigated of body composition (by Dual-energy X-ray absorptiometry), muscle strength (by hand and leg dynamometry) and Short Physical Performance Battery (SPPB). Results Compared to never-smoking controls, OLD persons and smoking controls had a significantly lower weight, fat mass, lean mass and bone mineral content (BMC) at baseline (p<0.05). While the loss of weight, fat mass, lean mass and strength was comparable between OLD persons and never-smoking controls, the SPPB declined 0.12 points/yr faster in OLD men (p=0.01) and BMC 4 g/yr faster in OLD women (p=0.02). In smoking controls, only lean mass declined 0.1 kg/yr faster in women (p=0.03) and BMC 8 g/yr faster in men (p=0.02) compared to never-smoking controls. Conclusions Initially well-functioning older adults with mild-to-moderate OLD and smokers without OLD have a comparable compromised baseline profile of body composition and physical functioning, while seven-year longitudinal trajectories are to a large extent comparable to those observed in never-smokers without OLD. This suggests a common insult earlier in life related to smoking. 3 PMID:21724748

  18. Using Dark Matter Haloes to Learn about Cosmic Acceleration: A New Proposal for a Universal Mass Function

    NASA Technical Reports Server (NTRS)

    Prescod-Weinstein, Chanda; Afshordi, Niayesh

    2011-01-01

    Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit or overpredict the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement a modified Press-Schechter formalism, which relates the linear overdensities to the abundance of dark matter haloes at the same time. We critically examine the universality of the Press-Schechter formalism for different cosmologies, and show that the halo abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation) time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of best correlation for small haloes), and show that our results agree with deviations from modified Press-Schechter formalism seen in simulated mass functions. This provides a novel universal prescription to measure linear density evolution, based on current and future observations of cluster (or dark matter) halo mass function. In particular, even observations of cluster abundance in a single epoch will constrain the entire history of linear growth of cosmological of perturbations.

  19. [The hyperiricosuria as an indicator of derangement of biologic functions of endoecology and adaptation, biologic reactions of excretion, inflammation and arterial tension].

    PubMed

    Titov, V N; Oshchepkova, E V; Dmitriev, V A; Gushchina, O V; Shiriaeva, Iu K; Iashin, A Ia

    2012-04-01

    During millions years in all animals allantoine (oxidized by uricase uric acid) was catabolite of purines and ascorbic acid was an acceptor of active forms of oxygen. The proximal tubules of nephron reabsorbed the trace amounts of uric acid Then during phylogenesis the primates had a mutation of ascorbic acid gen minus. Later on occurred a second spontaneous mutation and uricase gen minus and uric acid became catabolites of purines. In absence of ascorbic acid synthesis ions of urates became a major capturers of active forms of oxygen and all uric acid as before underwent the reabsorption. Later the carriers were formed which began in epithelium of proximal tubules to secrete all uric acid into urine. At every incident of "littering" of intercellular medium with endogenic flogogens (impairment of biologic function of endoecology) under compensatory development of biologic reaction of inflammation the need in inactivation of active forms of oxygen increases. Hence later on in phylogenesis one more stage was formed--post secretory reabsorption of uric acid In the biologic reaction of inflammation epithelium of proximal tubules initiates retentional hyperiricosuria. The general antioxidant activity of human blood plasma in 60% is presented by urates' ions. The excretion of uric acid includes 4 stages: filtration, full reabsorption, secretion and post secretory reabsorption. In phylogenesis these stages formed in sequence. The mild hyperiricosuria is most frequently considered as a non-specific indicator of activation of biologic reaction of inflammation. The productive hyperiricosuria develops more infrequently under surplus of meat food and cytolysis syndrome (intensification of cell loss in vivo). Under concentration of uric acid more than 400 mkmol/l part of urates circulates in intercellular medium in the form of crystals. The microcrystals of uric acid (biologic "litter") initiate the syndrome of systemic inflammatory response as an endogenic flogogen

  20. A Modern Understanding of the Traditional and Nontraditional Biological Functions of Angiotensin-Converting Enzyme

    PubMed Central

    Ong, Frank S.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Giani, Jorge F.; Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Fuchs, Sebastien

    2013-01-01

    Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors. PMID:23257181

  1. Technique for examining biological materials using diffuse reflectance spectroscopy and the kubelka-munk function

    DOEpatents

    Alfano, Robert R.; Yang, Yuanlong

    2003-09-02

    Method and apparatus for examining biological materials using diffuse reflectance spectroscopy and the Kubelka-Munk function. In one aspect, the method is used to determine whether a tissue sample is cancerous or not and comprises the steps of (a) measuring the diffuse reflectance from the tissue sample at a first wavelength and at a second wavelength, wherein the first wavelength is a wavelength selected from the group consisting of 255-265 nm and wherein the second wavelength is a wavelength selected from the group consisting of 275-285 nm; (b) using the Kubelka-Munk function to transform the diffuse reflectance measurement obtained at the first and second wavelengths; and (c) comparing a ratio or a difference of the transformed Kubelka-Munk measurements at the first and second wavelengths to appropriate standards determine whether or not the tissue sample is cancerous. One can use the spectral profile of KMF between 250 nm to 300 nm to determine whether or not the tissue sample is cancerous or precancerous. According to the value at the first and second wavelengths determine whether or not the malignant tissue is invasive or mixed invasive and in situ or carcinoma in situ.

  2. Expression of Recombinant Human Amelogenin in Iranian Lizard Leishmania and Its Biological Function Assay

    PubMed Central

    YADEGARI, Zahra; BANDEHPOUR, Mojgan; KAZEMI, Bahram; SHARIFI-SARASIABI, Khojasteh

    2015-01-01

    Background: Amelogenins are the major components of enamel matrix proteins. Enamel matrix derivatives (EMD) can be used in periodontal diseases to regenerate periodontal tissues. The main aim of this study was to evaluate expression of full-length functional recombinant human amelogenin (rhAm) in Iranian lizard Leishmania (I.L.L.) as an alternative eukaryotic expression system. Methods: Human cDNA encoding a 175-amino acid amelogenin expression cassette was sub cloned into a pLEXSY vector. The construct was transferred into Leishmania cells by electroporation. The protein production was surveyed in the transcription and the translation levels. The expressed protein was purified and some of its biological properties were investigated in comparison to EMD and negative control. Results: Expression of rhAm was confirmed by RT-PCR and western blot test in Leishmania cells. Purified rhAm significantly inhibited the formation of tartrate-resistant acid phosphatase positive (TRAP+) multinuclear cells in calcitriol stimulated mouse marrow cultures. Moreover, it significantly promoted proliferation and DNA synthesis in L929 mouse fibroblast cells. Conclusion: Functional rhAm was successfully expressed in I.L.L. Easy handling and post translation modification were the main advantages of this expression system. It is suggested to investigate molecular properties of this rhAm in the future. PMID:26576377

  3. Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control.

    PubMed

    Medeiros, David B; Daloso, Danilo M; Fernie, Alisdair R; Nikoloski, Zoran; Araújo, Wagner L

    2015-08-01

    Stomata control the concomitant exchange of CO2 and transpiration in land plants. While a constant supply of CO2 is need to maintain the rate of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. The factors affecting stomatal movement are directly coupled with the cellular networks of guard cells. Although the guard cell has been used as a model for characterization of signaling pathways, several important questions about its functioning remain elusive. Current modeling approaches describe the stomatal conductance in terms of relatively few easy-to-measure variables being unsuitable for in silico design of genetic manipulation strategies. Here, we argue that a system biology approach, combining modeling and high-throughput experiments, may be used to elucidate the mechanisms underlying stomata control and to determine targets for modulation of stomatal responses to environment. In support of our opinion, we review studies demonstrating how high-throughput approaches have provided a systems-view of guard cells. Finally, we emphasize the opportunities and challenges of genome-scale modeling and large-scale data integration for in silico manipulation of guard cell functions to improve crop yields, particularly under stress conditions which are of pertinence both to climate change and water use efficiency. PMID:25689387

  4. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    PubMed Central

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020

  5. (99m) Tc radiolabeling and biological evaluation of nanoparticles functionalized with a versatile coating ligand.

    PubMed

    Felber, Michael; Bauwens, Matthias; Mateos, José M; Imstepf, Sebastian; Mottaghy, Felix M; Alberto, Roger

    2015-04-13

    Radiolabeling allows noninvasive imaging by single photon emission computed tomography (SPECT) or positron emission tomography (PET) for assessing the biodistribution of nanostructures. Herein, the synthesis of a new coating ligand for gold nanoparticles (AuNPs) and quantum dots (QDs) is reported. This ligand is multifunctional; it combines the metal chelate with conjugating functions to biological vectors. The concept allows the coupling of any targeting function to the chelator; an example for the prostate specific membrane antigen is given. Derivatized NPs can directly be labeled in one step with [(99m) Tc(OH2 )3 (CO)3 ](+) . AuNPs in particular are highly stable, a prerequisite for in vivo studies excluding misinterpretation of the biodistribution data. AuNPs with differing sizes (7 and 14 nm core diameter) were administered intravenously into nude NMRI mice bearing LNCaP xenografts. MicroSPECT images show for both probes rapid clearance from the blood pool through the hepatobiliary pathway. The 7 nm AuNPs revealed a significantly higher bone uptake than the 14 nm AuNPs. The high affinity towards bone mineral is further confirmed in vitro with hydroxyapatite. PMID:25765900

  6. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities.

    PubMed

    Romdhane, Molka Ben; Haddar, Anissa; Ghazala, Imen; Jeddou, Khawla Ben; Helbert, Claire Boisset; Ellouz-Chaabouni, Semia

    2017-02-01

    In the present work, optimization of hot water extraction, structural characteristics, functional properties, and biological activities of polysaccharides extracted from watermelon rinds (WMRP) were investigated. The physicochemical characteristics and the monosaccharide composition of these polysaccharides were then determined using chemical composition analysis, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and gas chromatography-flame ionization detection (GC-FID). SEM images showed that extracted polysaccharides had a rough surface with many cavities. GC-FID results proved that galactose was the dominant sugar in the extracted polysaccharides, followed by arabinose, glucose, galacturonic acid, rhamnose, mannose, xylose and traces of glucuronic acid. The findings revealed that WMRP displayed excellent antihypertensive and antioxidant activities. Those polysaccharides had also a protection effect against hydroxyl radical-induced DNA damage. Functional properties of extracted polysaccharides were also evaluated. WMRP showed good interfacial dose-dependent proprieties. Overall, the results suggested that WMRP presents a promising natural source of antioxidants and antihypertensive agents. PMID:27596431

  7. SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function.

    PubMed

    Tomer, Raju; Lovett-Barron, Matthew; Kauvar, Isaac; Andalman, Aaron; Burns, Vanessa M; Sankaran, Sethuraman; Grosenick, Logan; Broxton, Michael; Yang, Samuel; Deisseroth, Karl

    2015-12-17

    The goal of understanding living nervous systems has driven interest in high-speed and large field-of-view volumetric imaging at cellular resolution. Light sheet microscopy approaches have emerged for cellular-resolution functional brain imaging in small organisms such as larval zebrafish, but remain fundamentally limited in speed. Here, we have developed SPED light sheet microscopy, which combines large volumetric field-of-view via an extended depth of field with the optical sectioning of light sheet microscopy, thereby eliminating the need to physically scan detection objectives for volumetric imaging. SPED enables scanning of thousands of volumes-per-second, limited only by camera acquisition rate, through the harnessing of optical mechanisms that normally result in unwanted spherical aberrations. We demonstrate capabilities of SPED microscopy by performing fast sub-cellular resolution imaging of CLARITY mouse brains and cellular-resolution volumetric Ca(2+) imaging of entire zebrafish nervous systems. Together, SPED light sheet methods enable high-speed cellular-resolution volumetric mapping of biological system structure and function. PMID:26687363

  8. Regulation and biological function of a flagellar glucose transporter in Leishmania mexicana: a potential glucose sensor.

    PubMed

    Rodriguez-Contreras, Dayana; Aslan, Hamide; Feng, Xiuhong; Tran, Khoa; Yates, Phillip A; Kamhawi, Shaden; Landfear, Scott M

    2015-01-01

    In Leishmania mexicana parasites, a unique glucose transporter, LmxGT1, is selectively targeted to the flagellar membrane, suggesting a possible sensory role that is often associated with ciliary membrane proteins. Expression of LmxGT1 is down-regulated ∼20-fold by increasing cell density but is up-regulated ∼50-fold by depleting glucose from the medium, and the permease is strongly down-regulated when flagellated insect-stage promastigotes invade mammalian macrophages and transform into intracellular amastigotes. Regulation of LmxGT1 expression by glucose and during the lifecycle operates at the level of protein stability. Significantly, a ∆lmxgt1 null mutant, grown in abundant glucose, undergoes catastrophic loss of viability when parasites deplete glucose from the medium, a property not exhibited by wild-type or add-back lines. These results suggest that LmxGT1 may function as a glucose sensor that allows parasites to enter the stationary phase when they deplete glucose and that in the absence of this sensor, parasites do not maintain viability when they run out of glucose. However, alternate roles for LmxGT1 in monitoring glucose availability are considered. The absence of known sensory receptors with defined ligands and biologic functions in Leishmania and related kinetoplastid parasites underscores the potential significance of these observations. PMID:25300620

  9. Sustained linear acceleration

    NASA Technical Reports Server (NTRS)

    Fraser, T. M.

    1973-01-01

    The subjective effects of sustained acceleration are discussed, including positive, negative, forward, backward, and lateral acceleration effects. Physiological effects, such as retinal and visual response, unconsciousness and cerebral function, pulmonary response, and renal output, are studied. Human tolerance and performance under sustained acceleration are ascertained.

  10. Development of Spectral Domain Optical Coherence Tomography for in vivo Functional Imaging of Biological Tissues

    NASA Astrophysics Data System (ADS)

    An, Lin

    Optical coherence tomography is a rapidly developing optical imaging modality capable of noninvasively providing depth resolved information of biological tissue at micrometer scale. In this thesis, we described several OCT technologies that can be used to double the imaging depth, realize functional vasculature imaging of biological tissue and increase the imaging speed of OCT system. Aim 1: Use of a scanner to introduce spatial frequency modulation to OCT spectral interferograms for in vivo full-range Fourier-domain optical coherence tomography. A novel method was developed that could easily introduce a modulation frequency onto the X-direction (i.e., B-scan) of the FDOCT scanning system, enabling full-range Fourier-domain Optical Coherence Tomography (frFDOCT). Compared to the conventional FDOCT system, the newly developed frFDOCT system can provide increased system sensitivity and deeper imaging depth. The previous technology that can achieve frFDOCT either needed multiple steps for data capturing, which is time consuming, or required additional components which increased the system's complexity. The newly developed method generates a modulation spatial frequency in the spectral interferogram by simply offsetting the probe beam at the X-scanner. Aim 2: Using optical micro-angiography to achieve in vivo volumetric imaging of vascular perfusion within human retina and choroids. Optical Micro-Angiography (OMAG) is a functional extension of FDOCT technology. It can achieve visualization of vasculature network of biological tissue. In order to apply the OMAG method to image vasculature map of human retina and choroid, a phase compensation algorithm was developed, which could minimize the motion artifacts generated by the movements of human eye and head. Aim 3: Developing ultrahigh sensitive optical micro-angiography to achieve micro vasculature imaging of biological tissue. To improve the vasculature image quality, we developed ultrahigh sensitive OMAG (UHS

  11. Structure and functions of water-membrane interfaces and their role in proto-biological evolution

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M.; Macelroy, R. D.

    1991-01-01

    Among the most important developments in proto-biological evolution was the emergence of membrane-like structures. These are formed by spontaneous association of relatively simple amphiphilic molecules that would have been readily available in the primordial environment. The resulting interfacial regions between water and nonpolar interior of the membrane have several properties which made them uniquely suitable for promoting subsequent evolution. They can (1) selectively attract organic material and mediate its transport, (2) serve as simple catalysts for chemical reactions, and (3) promote the formation of trans-membrane electrical and chemical gradients which could provide energy sources for proto-cells. Understanding the structure of interfaces, their interactions with organic molecules and molecular mechanisms of their functions is an essential step to understanding proto-biological evolution. In our computer simulation studies, we showed that the structure of water at interfaces with nonpolar media is significantly different from that in the bulk. In particular, the average surface dipole density points from the vapor to the liquid. As a result, negative ions can approach the interface more easily than positive ions. Amphiphilic molecules composed of hydrocarbon conjugated rings and polar substituents (e.g., phenol) assume at the interface rigid orientations in which polar groups are buried in water while hydrocarbon parts are located in the nonpolar environment. These orientational differences are of special interest in connection with the ability of some of these molecules to efficiently absorb photons. Flexible molecules with polar substituents often adopt at interfaces conformations different from those in the bulk aquaeous solution and in the gas phase. As a result, in many instances both specificity and kinetics of chemical reactions in which these molecules can participate is modified by the presence of surfaces. Of special interest is the mechanism by

  12. Pegylation of fibronectin and its functional domains: Effect on stability and biological activity

    NASA Astrophysics Data System (ADS)

    Zhang, Chen

    Delayed wound healing in many chronic wounds has been linked to the lack of extracellular matrix (ECM) support and the degradation of fibronectin (FN) by an abnormally high protease level. The ECM provides physical and chemical cues that direct tissue growth and development while FN is a key ECM protein that attracts and binds different molecules and cells. The goal of my study is creating an ECM analogue based on a composite of polyethylene glycol (PEG) hydrogels and FN binding domains and stabilizing FN against proteolytic degradation by conjugating it to PEG. The work presented here shows a two-prong approach by which the problem of ECM degradation and deficiency chronic wound healing can be addressed. The first approach for addressing ECM deficiency is through a scaffold design methodology. The novelty of the scaffold approach is that it uses the cell-binding domains of FN instead of the often-used RGD peptide. I demonstrate that a PEG hydrogel with the cell-binding domain produces a more robust biological response in cells than a PEG hydrogel with the RGD peptide. I also demonstrate that varying different functional domains of FN can be used to controllably stimulate multiple biological responses. The second approach demonstrates a method by which FN, a key ECM protein, is stabilized against proteolytic degradation without perturbing its activity. These studies of creating PEG-FN conjugates are the first of their kind. Collectively, the data that I present in this thesis will lead to novel therapeutic methods for treating chronic wounds.

  13. Decreased Functional Diversity and Biological Pest Control in Conventional Compared to Organic Crop Fields

    PubMed Central

    Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf

    2011-01-01

    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid

  14. Recent advances in alveolar biology: evolution and function of alveolar proteins.

    PubMed

    Orgeig, Sandra; Hiemstra, Pieter S; Veldhuizen, Edwin J A; Casals, Cristina; Clark, Howard W; Haczku, Angela; Knudsen, Lars; Possmayer, Fred

    2010-08-31

    This review is focused on the evolution and function of alveolar proteins. The lung faces physical and environmental challenges, due to changing pressures/volumes and foreign pathogens, respectively. The pulmonary surfactant system is integral in protecting the lung from these challenges via two groups of surfactant proteins - the small molecular weight hydrophobic SPs, SP-B and -C, that regulate interfacial adsorption of the lipids, and the large hydrophilic SPs, SP-A and -D, which are surfactant collectins capable of inhibiting foreign pathogens. Further aiding pulmonary host defence are non-surfactant collectins and antimicrobial peptides that are expressed across the biological kingdoms. Linking to the first symposium session, which emphasised molecular structure and biophysical function of surfactant lipids and proteins, this review begins with a discussion of the role of temperature and hydrostatic pressure in shaping the evolution of SP-C in mammals. Transitioning to the role of the alveolus in innate host defence we discuss the structure, function and regulation of antimicrobial peptides, the defensins and cathelicidins. We describe the recent discovery of novel avian collectins and provide evidence for their role in preventing influenza infection. This is followed by discussions of the roles of SP-A and SP-D in mediating host defence at the alveolar surface and in mediating inflammation and the allergic response of the airways. Finally we discuss the use of animal models of lung disease including knockouts to develop an understanding of the role of these proteins in initiating and/or perpetuating disease with the aim of developing new therapeutic strategies. PMID:20433956

  15. RNA-Mediated Silencing in Algae: Biological Roles and Tools for Analysis of Gene Function

    PubMed Central

    Cerutti, Heriberto; Ma, Xinrong; Msanne, Joseph; Repas, Timothy

    2011-01-01

    Algae are a large group of aquatic, typically photosynthetic, eukaryotes that include species from very diverse phylogenetic lineages, from those similar to land plants to those related to protist parasites. The recent sequencing of several algal genomes has provided insights into the great complexity of these organisms. Genomic information has also emphasized our lack of knowledge of the functions of many predicted genes, as well as the gene regulatory mechanisms in algae. Core components of the machinery for RNA-mediated silencing show widespread distribution among algal lineages, but they also seem to have been lost entirely from several species with relatively small nuclear genomes. Complex sets of endogenous small RNAs, including candidate microRNAs and small interfering RNAs, have now been identified by high-throughput sequencing in green, red, and brown algae. However, the natural roles of RNA-mediated silencing in algal biology remain poorly understood. Limited evidence suggests that small RNAs may function, in different algae, in defense mechanisms against transposon mobilization, in responses to nutrient deprivation and, possibly, in the regulation of recently evolved developmental processes. From a practical perspective, RNA interference (RNAi) is becoming a promising tool for assessing gene function by sequence-specific knockdown. Transient gene silencing, triggered with exogenously synthesized nucleic acids, and/or stable gene repression, involving genome-integrated transgenes, have been achieved in green algae, diatoms, yellow-green algae, and euglenoids. The development of RNAi technology in conjunction with system level “omics” approaches may provide the tools needed to advance our understanding of algal physiological and metabolic processes. PMID:21803865

  16. Linear Accelerators

    NASA Astrophysics Data System (ADS)

    Sidorin, Anatoly

    2010-01-01

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  17. Linear Accelerators

    SciTech Connect

    Sidorin, Anatoly

    2010-01-05

    In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.

  18. Supernatant from Bifidobacterium Differentially Modulates Transduction Signaling Pathways for Biological Functions of Human Dendritic Cells

    PubMed Central

    Hoarau, Cyrille; Martin, Laurence; Faugaret, Delphine; Baron, Christophe; Dauba, Audrey; Aubert-Jacquin, Cécile; Velge-Roussel, Florence; Lebranchu, Yvon

    2008-01-01

    Background Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in allergic and inflammatory disorders. However, the signaling pathways engaged by probiotics are poorly understood. We have previously reported that a fermentation product from Bifidobacterium breve C50 (BbC50sn) could induce maturation, high IL-10 production and prolonged survival of DCs via a TLR2 pathway. We therefore studied the roles of mitogen-activated protein kinases (MAPK), glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K) pathways on biological functions of human monocyte-derived DCs treated with BbC50sn. Methodology/Principal Findings DCs were differentiated from human monocytes with IL-4 and GM-CSF for 5 days and cultured with BbC50sn, lipopolysaccharide (LPS) or Zymosan, with or without specific inhibitors of p38MAPK (SB203580), ERK (PD98059), PI3K (LY294002) and GSK3 (SB216763). We found that 1) the PI3K pathway was positively involved in the prolonged DC survival induced by BbC50sn, LPS and Zymosan in contrast to p38MAPK and GSK3 which negatively regulated DC survival; 2) p38MAPK and PI3K were positively involved in DC maturation, in contrast to ERK and GSK3 which negatively regulated DC maturation; 3) ERK and PI3K were positively involved in DC-IL-10 production, in contrast to GSK3 that was positively involved in DC-IL-12 production whereas p38MAPK was positively involved in both; 4) BbC50sn induced a PI3K/Akt phosphorylation similar to Zymosan and a p38MAPK phosphorylation similar to LPS. Conclusion/Significance We report for the first time that a fermentation product of a bifidobacteria can differentially activate MAPK, GSK3 and PI3K in order to modulate DC biological functions. These results give new insights on the fine-tuned balance between the maintenance of normal mucosal homeostasis to commensal and probiotic bacteria and the specific inflammatory immune responses to pathogen bacteria. PMID:18648505

  19. Biological Co-Adaptation of Morphological and Composition Traits Contributes to Mechanical Functionality and Skeletal Fragility

    PubMed Central

    Tommasini, Steven M; Nasser, Philip; Hu, Bin; Jepsen, Karl J

    2008-01-01

    A path analysis was conducted to determine whether functional interactions exist among morphological, compositional, and microstructural traits for young adult human tibias. Data provided evidence that bone traits are co-adapted during ontogeny so that the sets of traits together satisfy physiological loading demands. However, certain sets of traits are expected to perform poorly under extreme load conditions. Introduction Previous data from inbred mouse strains suggested that biological processes within bone co-adapt morphological and compositional traits during ontogeny to satisfy physiological loading demands. Similar work in young adult humans showed that cortical tissue from slender tibias was stiffer, less ductile, and more susceptible to accumulating damage. Here we tested whether the relationships among morphology and tissue level mechanical properties were the result of biological processes that co-adapt physical traits, similar to those observed for the mouse skeleton. Materials and Methods Cross-sectional morphology, bone slenderness (Tt.Ar/Le), and tissue level mechanical properties were measured from tibias from 14 female (22–46 yr old) and 17 male (17–46 yr old) donors. Physical bone traits measured included tissue density, ash content, water content, porosity, and the area fractions of osteonal, interstitial, and circumferential lamellar tissues. Bivariate relationships among traits were determined using linear regression analysis. A path analysis was conducted to test the hypothesis that Tt.Ar/Le is functionally related to mineralization (ash content) and the proportion of total area occupied by cortical bone. Results Ash content correlated negatively with several traits including Tt.Ar/Le and marrow area, indicating that slender bones were constructed of tissue with higher mineralization. Path analysis revealed that slender tibias were compensated by higher mineralization and a greater area fraction of bone. Conclusions The results suggest that

  20. ACCELERATION INTEGRATOR

    DOEpatents

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  1. Environmental Enrichment Improves Behavior, Cognition, and Brain Functional Markers in Young Senescence-Accelerated Prone Mice (SAMP8).

    PubMed

    Griñan-Ferré, Christian; Pérez-Cáceres, David; Gutiérrez-Zetina, Sofía Martínez; Camins, Antoni; Palomera-Avalos, Verónica; Ortuño-Sahagún, Daniel; Rodrigo, M Teresa; Pallàs, M

    2016-05-01

    The environment in which organisms live can greatly influence their development. Consequently, environmental enrichment (EE) is progressively recognized as an important component in the improvement of brain function and development. It has been demonstrated that rodents raised under EE conditions exhibit favorable neuroanatomical effects that improve their learning, spatial memory, and behavioral performance. Here, by using senescence-accelerated prone mice (SAMP8) and these as a model of adverse genetic conditions for brain development, we determined the effect of EE by raising these mice during early life under favorable conditions. We found a better generalized performance of SAMP8 under EE in the results of four behavioral and learning tests. In addition, we demonstrated broad molecular correlation in the hippocampus by an increase in NeuN and Ki67 expression, as well as an increase in the expression of neurotrophic factors, such as pleiotrophin (PTN) and brain-derived neurotrophic factor (BDNF), with a parallel decrease in neurodegenerative markers such as GSK3, amyloid-beta precursor protein, and phosphorylated beta-catenin, and a reduction of SBDP120, Bax, GFAP, and interleukin-6 (IL-6), resulting in a neuroprotective panorama. Globally, it can be concluded that EE applied to SAMP8 at young ages resulted in epigenetic regulatory mechanisms that give rise to significant beneficial effects at the molecular, cellular, and behavioral levels during brain development, particularly in the hippocampus. PMID:26014386

  2. Using natural salmon colonization as a guide to identify functional links between physical and biological processes (Invited)

    NASA Astrophysics Data System (ADS)

    Pess, G. R.

    2009-12-01

    Establishing clear functional links between physical and biological processes in aquatic systems has been difficult to accomplish because many of the aquatic ecosystems we attempt to quantify have been significantly degraded from both perspectives. However there are freshwater ecosystems along the Western Pacific Rim where these functional relationships between physical and biological processes remain intact. I present three examples from Alaska, British Columbia, and Washington State where natural salmon colonization in functioning aquatic ecosystems has allowed for the quantification of functional links between habitat characteristics and the occurrence, persistence, and abundance of salmon populations in newly opened habitats. Habitat metrics such as habitat area, residual depth, and substrate size, combined with biological factors such as individual salmon condition (e.g., length, weight), population dynamics (e.g., population growth rate), and exogenous variables (e.g. ocean conditions) determine many of the functional links that are important to aquatic ecosystems. The relationships between these physical and biological variables can help better define what is needed in aquatic ecosystems that have been simplified and where aquatic biota have significantly declined.

  3. A Novel Aldehyde Dehydrogenase-3 Activator (Alda-89) Protects Submandibular Gland Function from Irradiation without Accelerating Tumor Growth

    PubMed Central

    Xiao, Nan; Cao, Hongbin; Chen, Che-Hong; Kong, Christina S.; Ali, Rehan; Chan, Cato; Sirjani, Davud; Graves, Edward; Koong, Albert; Giaccia, Amato; Mochly-Rosen, Daria; Le, Quynh-Thu

    2013-01-01

    Purpose To determine the effect of Alda-89 (an ALDH3 activitor) on (1) the function of irradiated (RT) submandibular gland (SMG) in mice, (2) its toxicity profile and (3) its effect on the growth of head and neck cancer (HNC) in vitro and in vivo. Experimental Design Adult mice were infused with Alda-89 or vehicle before, during and after RT. Saliva secretion was monitored weekly. Hematology, metabolic profile and post-mortem evaluation for toxicity were examined at the time of sacrifice. Alda-89 or vehicle was applied to HNC cell lines in vitro, and SCID mice transplanted with HNC in vivo with or without radiation; HNC growth was monitored. The ALDH3A1 and ALDH3A2 protein expression was evaluated in 89 HNC patients and correlated to freedom from relapse (FFR) and overall survival (OS). Results Alda-89 infusion significantly resulted in more whole saliva production and a higher percentage of preserved acini after RT compared to vehicle control. There was no difference in the complete blood count, metabolic profile, and major organ morphology between the Alda-89 and vehicle groups. Compared to vehicle control, Alda-89 treatment did not accelerate HNC cell proliferation in vitro, nor did it affect tumor growth in vivo with or without RT. Higher expression of ALDH3A1 or ALDH3A2 was not significantly associated with worse FFR or OS in either HPV-positive or HPV-negative group. Conclusion Alda-89 preserves salivary function after RT without affecting HNC growth or causing measurable toxicity in mice. It is a promising candidate to mitigate RT-related xerostomia. PMID:23812668

  4. Development and evaluation of a pliable biological valved conduit. Part II: Functional and hemodynamic evaluation.

    PubMed

    Sung, H W; Witzel, T H; Hata, C; Tu, R; Shen, S H; Lin, D; Noishiki, Y; Tomizawa, Y; Quijano, R C

    1993-04-01

    Many congenital cardiac malformations may require a valved conduit for the reconstruction of the right ventricular outflow tract. In spite of many endeavors made in the last 25 years, the clinical results of right ventricular outflow tract reconstruction with currently available valved conduits are still not satisfactory. Specific problems encountered clinically include suboptimal hemodynamic performance, conduit kinking or compression, and fibrous peeling from the luminal surface. To address these deficiencies, we undertook the development of a biological valved conduit: a bovine external jugular vein graft with a retained native valve cross-linked with a diglycidyl ether (DE). This study, using a canine model, was to evaluate the functional and hemodynamic performance of this newly developed valved conduit. Three 14 mm conduits, implanted as bypass grafts, right ventricle to pulmonary artery, were evaluated. The evaluation was conducted with a noninvasive color Doppler flow mapping system at pre-implantation, immediately post implantation, one- and three-months post implantation, and prior to retrieval (five-months post implantation). The two-dimensional tomographic inspection of the leaflet motion at various periods post implantation showed that the valvular leaflets in the DE treated conduit was quite pliable. No cardiac failure or valvular dysfunction was observed in any of the studied cases. The color Doppler flow mapping study demonstrated that the valve in the DE treated conduit was competent, with no conduit kinking or compression observed in any of the three cases. The spectral Doppler velocity study evidenced that the transvalvular pressure gradients of the DE treated conduit were minimal as compared to those of the currently available conduits. In conclusion, from the functional and hemodynamic performance points of view, this newly developed valved conduit is superior to those currently available. PMID:8325697

  5. Application of functional genomics to primate endometrium: insights into biological processes

    PubMed Central

    Giudice, Linda C

    2006-01-01

    Endometrium is a dynamic tissue that responds on a cyclic basis to circulating levels of the ovarian-derived steroid hormones, estradiol and progesterone. Functional genomics has enabled a global approach to understanding gene regulation in whole endometrial tissue in the setting of a changing hormonal milieu. The proliferative phase of the cycle, under the influence of estradiol, has a preponderance of genes involved in DNA synthesis and cell cycle regulation. Interestingly, genes encoding ion channels and cell adhesion, as well as angiogenic factors, are also highly regulated in this phase of the cycle. After the LH surge, different gene expression profiles are uniquely observed in the early secretory, mid-secretory (window of implantation), and late secretory phases. The early secretory phase is notable for up-regulation of multiple genes and gene families involved in cellular metabolism, steroid hormone metabolism, as well as some secreted glycoproteins. The mid-secretory phase is characterized by multiple biological processes, including up-regulation of genes encoding secreted glycoproteins, immune response genes with a focus on innate immunity, and genes involved in detoxification mechanisms. In the late secretory phase, as the tissue prepares for desquamation, there is a marked up-regulation of an inflammatory response, along with matrix degrading enzymes, and genes involved in hemostasis, among others. This monograph reviews hormonal regulation of gene expression in this tissue and the molecular events occurring therein throughout the cycle derived from functional genomics analysis. It also highlights challenges encountered in using human endometrial tissue in translational research in this context. PMID:17118168

  6. Multiple functional UV devices based on III-Nitride quantum wells for biological warfare agent detection

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Savage, Susan; Persson, Sirpa; Noharet, Bertrand; Junique, Stéphane; Andersson, Jan Y.; Liuolia, Vytautas; Marcinkevicius, Saulius

    2009-02-01

    We have demonstrated surface normal detecting/filtering/emitting multiple functional ultraviolet (UV) optoelectronic devices based on InGaN/GaN, InGaN/AlGaN and AlxGa1-xN/AlyGa1-yN multiple quantum well (MQW) structures with operation wavelengths ranging from 270 nm to 450 nm. Utilizing MQW structure as device active layer offers a flexibility to tune its long cut-off wavelength in a wide UV range from solar-blind to visible by adjusting the well width, well composition and barrier height. Similarly, its short cut-off wavelength can be adjusted by using a GaN or AlGaN block layer on a sapphire substrate when the device is illuminated from its backside, which further provides an optical filtering effect. When a current injects into the device under forward bias the device acts as an UV light emitter, whereas the device performs as a typical photodetector under reverse biases. With applying an alternating external bias the device might be used as electroabsorption modulator due to quantum confined Stark effect. In present work fabricated devices have been characterized by transmission/absorption spectra, photoresponsivity, electroluminescence, and photoluminescence measurements under various forward and reverse biases. The piezoelectric effect, alloy broadening and Stokes shift between the emission and absorption spectra in different InGaN- and AlGaN-based QW structures have been investigated and compared. Possibilities of monolithic or hybrid integration using such multiple functional devices for biological warfare agents sensing application have also be discussed.

  7. Somatostatin receptor expression and biological functions in endocrine pancreatic cells: review based on a doctoral thesis.

    PubMed

    Ludvigsen, Eva

    2007-01-01

    Type 1 diabetes is resulting from the selective destruction of insulin-producing betacells within the pancreatic islets. Somatostatin acts as an inhibitor of hormone secretion through specific receptors (sst1-5). All ssts were expressed in normal rat and mouse pancreatic islets, although the expression intensity and the co-expression pattern varied between ssts as well as between species. This may reflect a difference in response to somatostatin in islet cells of the two species. The Non-Obese Diabetic (NOD) mouse model is an experimental model of type 1 diabetes, with insulitis accompanied by spontaneous hyperglycaemia. Pancreatic specimens from NOD mice at different age and stage of disease were stained for ssts. The islet cells of diabetic NOD mice showed increased islet expression of sst2-5 compared to normoglycemic NOD mice. The increase in sst2-5 expression in the islets cells may suggest either a contributing factor in the process leading to diabetes, or a defense response against ongoing beta-cell destruction. Somatostatin analogues were tested on a human endocrine pancreatic tumour cell line and cultured pancreatic islets. Somatostatin analogues had an effect on cAMP accumulation, chromogranin A secretion and MAP kinase activity in the cell line. Treatment of rat pancreatic islets with somatostatin analogues with selective receptor affinity was not sufficient to induce an inhibition of insulin and glucagon secretion. However, a combination of selective analogues or non-selective analogues via costimulation of receptors can cause inhibition of hormone production. For insulin and glucagon, combinations of sst2 + sst5 and sst1 + sst2, respectively, showed a biological effect. In summary, knowledge of islet cell ssts expression and the effect of somatostatin analogues with high affinity to ssts may be valuable in the future attempts to influence beta-cell function in type 1 diabetes mellitus, since down-regulation of beta-cell function may promote survival of

  8. Non-random distribution of homo-repeats: links with biological functions and human diseases.

    PubMed

    Lobanov, Michail Yu; Klus, Petr; Sokolovsky, Igor V; Tartaglia, Gian Gaetano; Galzitskaya, Oxana V

    2016-01-01

    The biological function of multiple repetitions of single amino acids, or homo-repeats, is largely unknown, but their occurrence in proteins has been associated with more than 20 hereditary diseases. Analysing 122 bacterial and eukaryotic genomes, we observed that the number of proteins containing homo-repeats is significantly larger than expected from theoretical estimates. Analysis of statistical significance indicates that the minimal size of homo-repeats varies with amino acid type and proteome. In an attempt to characterize proteins harbouring long homo-repeats, we found that those containing polar or small amino acids S, P, H, E, D, K, Q and N are enriched in structural disorder as well as protein- and RNA-interactions. We observed that E, S, Q, G, L, P, D, A and H homo-repeats are strongly linked with occurrence in human diseases. Moreover, S, E, P, A, Q, D and T homo-repeats are significantly enriched in neuronal proteins associated with autism and other disorders. We release a webserver for further exploration of homo-repeats occurrence in human pathology at http://bioinfo.protres.ru/hradis/. PMID:27256590

  9. Nematode cys-loop GABA receptors: biological function, pharmacology and sites of action for anthelmintics.

    PubMed

    Accardi, Michael V; Beech, Robin N; Forrester, Sean G

    2012-06-01

    Parasitic nematode infection of humans and livestock is a major problem globally. Attempts to control nematode populations have led to the development of several classes of anthelmintic, which target cys-loop ligand-gated ion channels. Unlike the vertebrate nervous system, the nematode nervous system possesses a large and diversified array of ligand-gated chloride channels that comprise key components of the inhibitory neurotransmission system. In particular, cys-loop GABA receptors have evolved to play many fundamental roles in nematode behaviour such as locomotion. Analysis of the genomes of several free-living and parasitic nematodes suggests that there are several groups of cys-loop GABA receptor subunits that, for the most part, are conserved among nematodes. Despite many similarities with vertebrate cys-loop GABA receptors, those in nematodes are quite distinct in sequence similarity, subunit composition and biological function. With rising anthelmintic resistance in many nematode populations worldwide, GABA receptors should become an area of increased scientific investigation in the development of the next generation of anthelmintics. PMID:22430311

  10. The emerging characterization of lysine residue deacetylation on the modulation of mitochondrial function and cardiovascular biology

    PubMed Central

    Lu, Zhongping; Scott, Iain; Webster, Bradley R.; Sack, Michael N.

    2009-01-01

    There is emerging recognition of a novel fuel and redox sensing regulatory program that controls cellular adaptation via non-histone protein lysine-residue acetyl post-translation modifications. This program functions in tissues with high energy demand and oxidative capacity and is highly enriched in the heart. Deacetylation is regulated by NAD+-dependent activation of the sirtuin family of proteins while acetyltransferase modifications are controlled by less clearly delineated acetyltransferases. Subcellular localization specific protein targets of lysine-acetyl modification have been identified in the nucleus, cytoplasm and mitochondria. Despite distinct subcellular localizations, these modifications appear, in large part, to modify mitochondrial properties including respiration, energy production, apoptosis and anti-oxidant defenses. These mitochondrial regulatory programs are important in cardiovascular biology, although how protein acetyl modifications effects cardiovascular pathophysiology has not been extensively explored. This review will introduce the role of non-histone protein lysine-residue acetyl modifications, discuss their regulation and biochemistry and present the direct and indirect data implicating their involvement in the heart and vasculature. PMID:19850949

  11. Do microsporidia function as "biological weapon" for Harmonia axyridis under natural conditions?

    PubMed

    Gegner, Tobias; Otti, Oliver; Tragust, Simon; Feldhaar, Heike

    2015-03-01

    Invasive alien species, such as the multicoloured Asian ladybird Harmonia axyridis, are often regarded as major drivers of biodiversity loss. Therefore understanding which characteristics or mechanisms contribute to their invasive success is important. Here the role of symbiotic microsporidia in the hemolymph of H. axyridis was investigated in the context of intraguild predation between wild-caught H. axyridis and the native ladybird species Coccinella septempunctata. The microsporidia were recently discussed to contribute to the unpalatability of Harmonia for other coccinellids during intraguild predation and to function as "biological weapons". In the present study, visual detection of microsporidia in hemolymph samples revealed that 73.5% of H. axyridis were infected. Intraguild predation experiments between larvae of the two species showed a significant competitive advantage for H. axyridis, even against larger larvae of C. septempunctata. Adult C. septempunctata always killed and fed on H. axyridis larvae. However only 11.4% (4 of 47) of C. septempunctata that fed on infected H. axyridis died within 4 months. In contrast to previous studies this suggests that microsporidia or harmonine, the chemical defense compound of H. axyridis, do not lead to death of C. septempunctata preying on larvae of H. axyridis. Instead our results support the idea that competitive advantage during intraguild predation greatly facilitates the success of H. axyridis and that this may help this highly invasive species to outcompete native species. The impact of microsporidia on Harmonia itself as well as on interspecific interactions require further studies. PMID:25829258

  12. Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region.

    PubMed

    Asner, Gregory P; Martin, Roberta E; Carranza-Jiménez, Loreli; Sinca, Felipe; Tupayachi, Raul; Anderson, Christopher B; Martinez, Paola

    2014-10-01

    Spectral properties of foliage express fundamental chemical interactions of canopies with solar radiation. However, the degree to which leaf spectra track chemical traits across environmental gradients in tropical forests is unknown. We analyzed leaf reflectance and transmittance spectra in 2567 tropical canopy trees comprising 1449 species in 17 forests along a 3400-m elevation and soil fertility gradient from the Amazonian lowlands to the Andean treeline. We developed quantitative links between 21 leaf traits and 400-2500-nm spectra, and developed classifications of tree taxa based on spectral traits. Our results reveal enormous inter-specific variation in spectral and chemical traits among canopy trees of the western Amazon. Chemical traits mediating primary production were tightly linked to elevational changes in foliar spectral signatures. By contrast, defense compounds and rock-derived nutrients tracked foliar spectral variation with changing soil fertility in the lowlands. Despite the effects of abiotic filtering on mean foliar spectral properties of tree communities, the spectra were dominated by phylogeny within any given community, and spectroscopy accurately classified 85-93% of Amazonian tree species. Our findings quantify how tropical tree canopies interact with sunlight, and indicate how to measure the functional and biological diversity of forests with spectroscopy. PMID:24942328

  13. Gene-based GWAS and -biological pathway analysis of the resilience of executive functioning

    PubMed Central

    Mukherjee, Shubhabrata; Kim, Sungeun; Ramanan, Vijay K.; Gibbons, Laura E.; Nho, Kwangsik; Glymour, M. Maria; Ertekin-Taner, Nilüfer; Montine, Thomas J.; Saykin, Andrew J.; Crane, Paul K.

    2013-01-01

    Resilience in executive functioning (EF) is characterized by high EF measured by neuropsychological test performance despite structural brain damage from neurodegenerative conditions. We previously reported single nucleotide polymorphism (SNP) genome-wide association study (GWAS) results for EF resilience. Here, we report gene- and pathway-based analyses of the same resilience phenotype, using an optimal SNP-set (Sequence) Kernel Association Test (SKAT) for gene-based analyses (conservative threshold for genome-wide significance = 0.05/18,123=2.8×10−6) and the gene-set enrichment package GSA-SNP for biological pathway analyses (False discovery rate (FDR) < 0.05). Gene-based analyses found a genome-wide significant association between RNASE13 and EF resilience (p=1.33×10−7). Genetic pathways involved with dendritic/neuron spine, presynaptic membrane, postsynaptic density etc. were enriched with association to EF resilience. Although replication of these results is necessary, our findings indicate the potential value of gene- and pathway-based analyses in research on determinants of cognitive resilience. PMID:24072271

  14. Melatonin and its potential biological functions in the fruits of sweet cherry.

    PubMed

    Zhao, Yu; Tan, Dun-Xian; Lei, Qiong; Chen, Hao; Wang, Lin; Li, Qing-tian; Gao, Yinan; Kong, Jin

    2013-08-01

    Melatonin is a well-known molecule which possesses many beneficial effects on human health. Many agriculture products provide natural melatonin in the diet. Cherry is one such fruit as they are rich in melatonin. In order to understand the biological roles of melatonin in cherry fruit, melatonin synthesis and its changes over 24 hr period were systematically monitored both during their development and in the ripe cherries in two cultivars, 'Hongdeng' (Prunus avium L. cv. Hongdeng) and 'Rainier' (Prunus avium L. cv. Rainier). It was found that both darkness and oxidative stress induced melatonin synthesis, which led to dual melatonin synthetic peaks during a 24 hr period. The high levels of malondialdehyde induced by high temperature and high intensity light exposure were directly related to up-regulated melatonin production. A primary function of melatonin in cherry fruits is speculated to be as an antioxidant to protect the cherry from the oxidative stress. Importantly, plant tryptophan decaboxylase gene (PaTDC) was identified in cherry fruits. Our data shows that PaTDC expression is positively related to the melatonin production in the cherry. This provides additional information to suggest that tryptophan decaboxylase is a rate-limiting enzyme of melatonin synthesis in plants. PMID:23480341

  15. Multiple regulation pathways and pivotal biological functions of STAT3 in cancer

    PubMed Central

    Yuan, Jie; Zhang, Fei; Niu, Ruifang

    2015-01-01

    STAT3 is both a transcription activator and an oncogene that is tightly regulated under normal physiological conditions. However, abundant evidence indicates that STAT3 is persistently activated in several cancers, with a crucial position in tumor onset and progression. In addition to its traditional role in cancer cell proliferation, invasion, and migration, STAT3 also promotes cancer through altering gene expression via epigenetic modification, inducing epithelial–mesenchymal transition (EMT) phenotypes in cancer cells, regulating the tumor microenvironment, and promoting cancer stem cells (CSCs) self-renewal and differentiation. STAT3 is regulated not only by the canonical cytokines and growth factors, but also by the G-protein-coupled receptors, cadherin engagement, Toll-like receptors (TLRs), and microRNA (miRNA). Despite the presence of diverse regulators and pivotal biological functions in cancer, no effective therapeutic inventions are available for inhibiting STAT3 and acquiring potent antitumor effects in the clinic. An improved understanding of the complex roles of STAT3 in cancer is required to achieve optimal therapeutic effects. PMID:26631279

  16. The Biology Of Activin: Recent Advances In Structure, Regulation And Function

    PubMed Central

    Xia, Yin; Schneyer, Alan L.

    2009-01-01

    Activin was discovered in the 1980’s as a gonadal protein that stimulated FSH release from pituitary gonadotropes and was thought of as a reproductive hormone. In the ensuing decades many additional activities of activin were described and it was found to be produced in a wide variety of cell types at nearly all stages of development. Its signaling and actions are regulated intracellularly as well as by extracellular antagonists. Over the past 5 years a number of important advances have been made that clarify our understanding of the structural basis for signaling and regulation, as well as the biological roles of activin in stem cells, embryonic development, and in adults. These include the crystallization of activin in complex with the activin type II receptor ActRIIB, or with the binding proteins follistatin and follistatin-like 3 (FSTL3), and identification of the activin roles in gonadal sex development, follicle development and luteolysis, in β-cell proliferation and function in the islet, in stem cell self-renewal and differentiation into different cell types, and in immune cells. These advances are reviewed to provide perspective for future studies. PMID:19273500

  17. Skin of color: biology, structure, function, and implications for dermatologic disease.

    PubMed

    Taylor, Susan C

    2002-02-01

    People with skin of color constitute a wide range of racial and ethnic groups-including Africans, African Americans, African Caribbeans, Chinese and Japanese, Native American Navajo Indians, and certain groups of fair-skinned persons (eg, Indians, Pakistanis, Arabs), and Hispanics. It has been predicted that people with skin of color will constitute a majority of the United States and international populations in the 21st century. There is not a wealth of data on racial and ethnic differences in skin and hair structure, physiology, and function. What studies do exist involve small patient populations and often have methodologic flaws. Consequently, few definitive conclusions can be made. The literature does support a racial differential in epidermal melanin content and melanosome dispersion in people of color compared with fair-skinned persons. Other studies have demonstrated differences in hair structure and fibroblast size and structure between black and fair-skinned persons. These differences could at least in part account for the lower incidence of skin cancer in certain people of color compared with fair-skinned persons; a lower incidence and different presentation of photo aging; pigmentation disorders in people with skin of color; and a higher incidence of certain types of alopecia in Africans and African Americans compared with those of other ancestry. However, biologic or genetic factors are not the only ones impacting on these differences in dermatologic disorders. Cultural practices also can have a significant impact. Further studies are needed to help dermatologists optimally treat people with skin of color. PMID:11807469

  18. Multiple regulation pathways and pivotal biological functions of STAT3 in cancer.

    PubMed

    Yuan, Jie; Zhang, Fei; Niu, Ruifang

    2015-01-01

    STAT3 is both a transcription activator and an oncogene that is tightly regulated under normal physiological conditions. However, abundant evidence indicates that STAT3 is persistently activated in several cancers, with a crucial position in tumor onset and progression. In addition to its traditional role in cancer cell proliferation, invasion, and migration, STAT3 also promotes cancer through altering gene expression via epigenetic modification, inducing epithelial-mesenchymal transition (EMT) phenotypes in cancer cells, regulating the tumor microenvironment, and promoting cancer stem cells (CSCs) self-renewal and differentiation. STAT3 is regulated not only by the canonical cytokines and growth factors, but also by the G-protein-coupled receptors, cadherin engagement, Toll-like receptors (TLRs), and microRNA (miRNA). Despite the presence of diverse regulators and pivotal biological functions in cancer, no effective therapeutic inventions are available for inhibiting STAT3 and acquiring potent antitumor effects in the clinic. An improved understanding of the complex roles of STAT3 in cancer is required to achieve optimal therapeutic effects. PMID:26631279

  19. The formation, function and regulation of amyloids: insights from structural biology.

    PubMed

    Landreh, M; Sawaya, M R; Hipp, M S; Eisenberg, D S; Wüthrich, K; Hartl, F U

    2016-08-01

    Amyloid diseases are characterized by the accumulation of insoluble, β-strand-rich aggregates. The underlying structural conversions are closely associated with cellular toxicity, but can also drive the formation of functional protein assemblies. In recent years, studies in the field of structural studies have revealed astonishing insights into the origins, mechanisms and implications of amyloid formation. Notably, high-resolution crystal structures of peptides in amyloid-like fibrils and prefibrillar oligomers have become available despite their challenging chemical nature. Nuclear magnetic resonance spectroscopy has revealed that dynamic local polymorphisms in the benign form of the prion protein affect the transformation into amyloid fibrils and the transmissibility of prion diseases. Studies of the structures and interactions of chaperone proteins help us to understand how the cellular proteostasis network is able to recognize different stages of aberrant protein folding and prevent aggregation. In this review, we will focus on recent developments that connect the different aspects of amyloid biology and discuss how understanding the process of amyloid formation and the associated defence mechanisms can reveal targets for pharmacological intervention that may become the first steps towards clinically viable treatment strategies. PMID:27237473

  20. Biological function of the dTDP-rhamnose synthesis pathway in Streptococcus mutans.

    PubMed Central

    Tsukioka, Y; Yamashita, Y; Oho, T; Nakano, Y; Koga, T

    1997-01-01

    We have cloned a new gene locus that comprises three genes concerned with the biosynthesis of the serotype c-specific polysaccharide antigen in Streptococcus mutans. The genes encode proteins exhibiting significant homology to the rfbA, rfbB, and rfbD gene products that are involved in the anabolism of dTDP-L-rhamnose from D-glucose-1-phosphate. This anabolism pathway pertains to biosynthesis of the O antigen of lipopolysaccharide in gram-negative bacteria. The cell extract of Escherichia coli expressing each of the cloned genes of S. mutans exhibited enzymatic activity corresponding to the homologous counterpart of the rfb gene products. Rhamnose was not detected in the cell wall preparation purified from the mutant in which each of the three cloned genes was insertionally inactivated. Rabbit antiserum against S. mutans serotype c-specific antigen did not react with the autoclaved extracts from these mutants. These results indicate that the gene products identified in the present study are involved in the dTDP-L-rhamnose synthesis pathway and that the pathway relates to the biosynthesis of the serotype-specific polysaccharide antigen of S. mutans. Southern hybridization analysis revealed that genes homologous to the cloned genes involved in the dTDP-L-rhamnose synthesis pathway were widely distributed in a variety of streptococci. This is the first report of the biological function of the dTDP-rhamnose pathway in streptococci. PMID:9023194

  1. Biology of Treponema pallidum: correlation of functional activities with genome sequence data.

    PubMed

    Norris, S J; Cox, D L; Weinstock, G M

    2001-01-01

    Aspects of the biology of T. pallidum subsp. pallidum, the agent of syphilis, are examined in the context of a century of experimental studies and the recently determined genome sequence. T. pallidum and a group of closely related pathogenic spirochetes have evolved to become highly invasive, persistent pathogens with little toxigenic activity and an inability to survive outside the mammalian host. Analysis of the genome sequence confirms morphologic studies indicating the lack of lipopolysaccharide and lipid biosynthesis mechanisms, as well as a paucity of outer membrane protein candidates. The metabolic capabilities and adaptability of T. pallidum are minimal, and this relative deficiency is reflected by the absence of many pathways, including the tricarboxylic acid cycle, components of oxidative phosphorylation, and most biosynthetic pathways. Although multiplication of T. pallidum has been obtained in a tissue culture system, continuous in vitro culture has not been achieved. The balance of oxygen utilization and toxicity is key to the survival and growth of T. pallidum, and the genome sequence reveals a similarity to lactic acid bacteria that may be useful in understanding this relationship. The identification of relatively few genes potentially involved in pathogenesis reflects our lack of understanding of invasive pathogens relative to toxigenic organisms. The genome sequence will provide useful raw data for additional functional studies on the structure, metabolism, and pathogenesis of this enigmatic organism. PMID:11200228

  2. Biological redundancy of endogenous GPCR ligands in the gut and the potential for endogenous functional selectivity

    PubMed Central

    Thompson, Georgina L.; Canals, Meritxell; Poole, Daniel P.

    2014-01-01

    This review focuses on the existence and function of multiple endogenous agonists of the somatostatin and opioid receptors with an emphasis on their expression in the gastrointestinal tract. These agonists generally arise from the proteolytic cleavage of prepropeptides during peptide maturation or from degradation of peptides by extracellular or intracellular endopeptidases. In other examples, endogenous peptide agonists for the same G protein-coupled receptors can be products of distinct genes but contain high sequence homology. This apparent biological redundancy has recently been challenged by the realization that different ligands may engender distinct receptor conformations linked to different intracellular signaling profiles and, as such the existence of distinct ligands may underlie mechanisms to finely tune physiological responses. We propose that further characterization of signaling pathways activated by these endogenous ligands will provide invaluable insight into the mechanisms governing biased agonism. Moreover, these ligands may prove useful in the design of novel therapeutic tools to target distinct signaling pathways, thereby favoring desirable effects and limiting detrimental on-target effects. Finally we will discuss the limitations of this area of research and we will highlight the difficulties that need to be addressed when examining endogenous bias in tissues and in animals. PMID:25506328

  3. Non-random distribution of homo-repeats: links with biological functions and human diseases

    PubMed Central

    Lobanov, Michail Yu.; Klus, Petr; Sokolovsky, Igor V.; Tartaglia, Gian Gaetano; Galzitskaya, Oxana V.

    2016-01-01

    The biological function of multiple repetitions of single amino acids, or homo-repeats, is largely unknown, but their occurrence in proteins has been associated with more than 20 hereditary diseases. Analysing 122 bacterial and eukaryotic genomes, we observed that the number of proteins containing homo-repeats is significantly larger than expected from theoretical estimates. Analysis of statistical significance indicates that the minimal size of homo-repeats varies with amino acid type and proteome. In an attempt to characterize proteins harbouring long homo-repeats, we found that those containing polar or small amino acids S, P, H, E, D, K, Q and N are enriched in structural disorder as well as protein- and RNA-interactions. We observed that E, S, Q, G, L, P, D, A and H homo-repeats are strongly linked with occurrence in human diseases. Moreover, S, E, P, A, Q, D and T homo-repeats are significantly enriched in neuronal proteins associated with autism and other disorders. We release a webserver for further exploration of homo-repeats occurrence in human pathology at http://bioinfo.protres.ru/hradis/. PMID:27256590

  4. Overexpression and Biological Function of Ubiquitin-Specific Protease 42 in Gastric Cancer

    PubMed Central

    Wang, Yong; Zhang, Chunhui; Yu, Shiyong; Zhu, Qi; Yan, Bo

    2016-01-01

    Ubiquitin-specific protease 42 (USP42) is a member of deubiquitinating enzymes (DUBs). The alterations of DUBs are implicated in the pathogenesis of a wide variety of tumors. However, there are few studies on the expression and biological function of USP42 in gastric cancer (GC). Here, the expression levels of USP42 were significantly higher in GC tissues than in non-tumorous tissues. USP42 expression was significantly correlated with tumor size, TNM stage, lymph node metastasis and overall survival of patients with GC. Moreover, USP42 silencing in two GC cell lines, AGS and MKN-45, notably inhibited cell proliferation, but stimulated G1 phase arrest. The proteins promoting cell cycle progression (Cyclin D1, Cyclin E1 and PCNA) were down-regulated in USP42-suppressed cells. Moreover, inhibition of USP42 in GC cells impaired cell invasion via affecting the expression of matrix metalloproteinases (MMPs) and epithelial-mesenchymal transition (EMT) regulators. In conclusion, USP42 overexpression could be a potential prognostic marker for GC, regulate the survival and invasive properties of GC, and may represent a novel therapeutic molecular target for this tumor. PMID:27030989

  5. Short term recovery of soil biological functions in a new vineyard cultivated in organic farming

    NASA Astrophysics Data System (ADS)

    Costantini, Edoardo; Agnelli, Alessandro; Fabiani, Arturo; Gagnarli, Elena; Mocali, Stefano; Priori, Simone; Simoni, Sauro; Valboa, Giuseppe

    2014-05-01

    soil biological classes). Physical soil characteristics remained unchanged after the first year from the earthworks and did not change under grass cover. Chemical analysis only indicated a significant effect of earthworks. Over the 2010-2013 period, the new vineyard showed a slight increase of TOC and total N contents; as compared to the old vineyard, it averaged lower TOC and total N, and higher CaCO3 contents, suggesting still evolving equilibrium conditions. Microarthropod analysis showed significant different abundances and communities' structures both by management system and by year, increasing where the land use pressure was reduced by permanent grass cover and along with the aging of vineyard. Though the euedaphic forms, well adapted to soil life, were always rare. Microbiological analysis showed a different structure of eubacterial communities and a lower microbial activity in the new vineyard, especially during 2010-2012. In contrast, significant differences were not observed between the two vineyards in 2013, and grass cover effect was controversial. To sum up, the consequence of deep earthworks on chemical and biological properties were still evident after four years from planting and more time was needed to recover soil functions. Permanent grass cover did not always show a consistent positive effect.

  6. From electron microscopy to molecular cell biology, molecular genetics and structural biology: intracellular transport and kinesin superfamily proteins, KIFs: genes, structure, dynamics and functions.

    PubMed

    Hirokawa, Nobutaka

    2011-01-01

    Cells transport and sort various proteins and lipids following synthesis as distinct types of membranous organelles and protein complexes to the correct destination at appropriate velocities. This intracellular transport is fundamental for cell morphogenesis, survival and functioning not only in highly polarized neurons but also in all types of cells in general. By developing quick-freeze electron microscopy (EM), new filamentous structures associated with cytoskeletons are uncovered. The characterization of chemical structures and functions of these new filamentous structures led us to discover kinesin superfamily molecular motors, KIFs. In this review, I discuss the identification of these new structures and characterization of their functions using molecular cell biology and molecular genetics. KIFs not only play significant roles by transporting various cargoes along microtubule rails, but also play unexpected fundamental roles on various important physiological processes such as learning and memory, brain wiring, development of central nervous system and peripheral nervous system, activity-dependent neuronal survival, development of early embryo, left-right determination of our body and tumourigenesis. Furthermore, by combining single-molecule biophysics with structural biology such as cryo-electrom microscopy and X-ray crystallography, atomic structures of KIF1A motor protein of almost all states during ATP hydrolysis have been determined and a common mechanism of motility has been proposed. Thus, this type of studies could be a good example of really integrative multidisciplinary life science in the twenty-first century. PMID:21844601

  7. Single Fluorescent Molecules as Nano-Illuminators for Biological Structure and Function

    NASA Astrophysics Data System (ADS)

    Moerner, W. E.

    2011-03-01

    Since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. {62}, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. For example, the shape of single filaments in a living cell can be extracted simply by allowing a single molecule to move through the filament (PNAS {103}, 10929 (2006)). The addition of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (super-resolution) and a new array of acronyms (PALM, STORM, F-PALM etc.) and advances have appeared. We have used the native blinking and switching of a common yellow-emitting variant of green fluorescent protein (EYFP) reported more than a decade ago (Nature {388}, 355 (1997)) to achieve sub-40 nm super-resolution imaging of several protein structures in the bacterium Caulobacter crescentus: the quasi-helix of the actin-like protein MreB (Nat. Meth. {5}, 947 (2008)), the cellular distribution of the DNA binding protein HU (submitted), and the recently discovered division spindle composed of ParA filaments (Nat. Cell Biol. {12}, 791 (2010)). Even with these advances, better emitters would provide more photons and improved resolution, and a new photoactivatable small-molecule emitter has recently been synthesized and targeted to specific structures in living cells to provide super-resolution images (JACS {132}, 15099 (2010)). Finally, a new optical method for extracting three-dimensional position information based on

  8. Non-invasive technology that improves cardiac function after experimental myocardial infarction: Whole Body Periodic Acceleration (pGz).

    PubMed

    Uryash, Arkady; Bassuk, Jorge; Kurlansky, Paul; Altamirano, Francisco; Lopez, Jose R; Adams, Jose A

    2015-01-01

    Myocardial infarction (MI) may produce significant inflammatory changes and adverse ventricular remodeling leading to heart failure and premature death. Pharmacologic, stem cell transplantation, and exercise have not halted the inexorable rise in the prevalence and great economic costs of heart failure despite extensive investigations of such treatments. New therapeutic modalities are needed. Whole Body Periodic Acceleration (pGz) is a non-invasive technology that increases pulsatile shear stress to the endothelium thereby producing several beneficial cardiovascular effects as demonstrated in animal models, normal humans and patients with heart disease. pGz upregulates endothelial derived nitric oxide synthase (eNOS) and its phosphorylation (p-eNOS) to improve myocardial function in models of myocardial stunning and preconditioning. Here we test whether pGz applied chronically after focal myocardial infarction in rats improves functional outcomes from MI. Focal MI was produced by left coronary artery ligation. One day after ligation animals were randomized to receive daily treatments of pGz for four weeks (MI-pGz) or serve as controls (MI-CONT), with an additional group as non-infarction controls (Sham). Echocardiograms and invasive pressure volume loop analysis were carried out. Infarct transmurality, myocardial fibrosis, and markers of inflammatory and anti-inflammatory cytokines were determined along with protein analysis of eNOS, p-eNOS and inducible nitric oxide synthase (iNOS).At four weeks, survival was 80% in MI-pGz vs 50% in MI-CONT (p< 0.01). Ejection fraction and fractional shortening and invasive pressure volume relation indices of afterload and contractility were significantly better in MI-pGz. The latter where associated with decreased infarct transmurality and decreased fibrosis along with increased eNOS, p-eNOS. Additionally, MI-pGz had significantly lower levels of iNOS, inflammatory cytokines (IL-6, TNF-α), and higher level of anti

  9. Non-Invasive Technology That Improves Cardiac Function after Experimental Myocardial Infarction: Whole Body Periodic Acceleration (pGz)

    PubMed Central

    Kurlansky, Paul; Altamirano, Francisco; Lopez, Jose R.

    2015-01-01

    Myocardial infarction (MI) may produce significant inflammatory changes and adverse ventricular remodeling leading to heart failure and premature death. Pharmacologic, stem cell transplantation, and exercise have not halted the inexorable rise in the prevalence and great economic costs of heart failure despite extensive investigations of such treatments. New therapeutic modalities are needed. Whole Body Periodic Acceleration (pGz) is a non-invasive technology that increases pulsatile shear stress to the endothelium thereby producing several beneficial cardiovascular effects as demonstrated in animal models, normal humans and patients with heart disease. pGz upregulates endothelial derived nitric oxide synthase (eNOS) and its phosphorylation (p-eNOS) to improve myocardial function in models of myocardial stunning and preconditioning. Here we test whether pGz applied chronically after focal myocardial infarction in rats improves functional outcomes from MI. Focal MI was produced by left coronary artery ligation. One day after ligation animals were randomized to receive daily treatments of pGz for four weeks (MI-pGz) or serve as controls (MI-CONT), with an additional group as non-infarction controls (Sham). Echocardiograms and invasive pressure volume loop analysis were carried out. Infarct transmurality, myocardial fibrosis, and markers of inflammatory and anti-inflammatory cytokines were determined along with protein analysis of eNOS, p-eNOS and inducible nitric oxide synthase (iNOS).At four weeks, survival was 80% in MI-pGz vs 50% in MI-CONT (p< 0.01). Ejection fraction and fractional shortening and invasive pressure volume relation indices of afterload and contractility were significantly better in MI-pGz. The latter where associated with decreased infarct transmurality and decreased fibrosis along with increased eNOS, p-eNOS. Additionally, MI-pGz had significantly lower levels of iNOS, inflammatory cytokines (IL-6, TNF-α), and higher level of anti

  10. Can Accelerators Accelerate Learning?

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  11. PARTICLE ACCELERATOR

    DOEpatents

    Teng, L.C.

    1960-01-19

    ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

  12. Nuclear Countermeasure Activity of TP508 Linked to Restoration of Endothelial Function and Acceleration of DNA Repair

    PubMed Central

    Olszewska-Pazdrak, Barbara; McVicar, Scott D.; Rayavara, Kempaiah; Moya, Stephanie M.; Kantara, Carla; Gammarano, Chris; Olszewska, Paulina; Fuller, Gerald M.; Sower, Laurie E.; Carney, Darrell H.

    2016-01-01

    There is increasing evidence that radiation-induced damage to endothelial cells and loss of endothelial function may