Particle Accelerators Test Cosmological Theory.
ERIC Educational Resources Information Center
Schramm, David N.; Steigman, Gary
1988-01-01
Discusses the symbiotic relationship of cosmology and elementary-particle physics. Presents a brief overview of particle physics. Explains how cosmological considerations set limits on the number of types of elementary particles. (RT)
Stephani Cosmological Models with Accelerated Expansion
NASA Astrophysics Data System (ADS)
Korkina, M. P.; Kopteva, E. M.; Egurnov, A. A.
2016-07-01
Stephani cosmological models are considered which describe spacetimes for a shear-free matter distribution and include Friedmann models as a particular case. The possibility is considered of constructing cosmological models in which a change of sign of the acceleration of the Universe expansion arises only due to curvature.
Colliding-beam-accelerator lattice
Claus, J.; Cornacchia, M.; Courant, E.D.; Parzen, G.
1983-01-01
We describe the lattice of the Colliding Beam Accelerator, a 400 x 400 GeV pp facility proposed for construction at Brookhaven National Laboratory. The structure adopted is very versatile, in part in consequence of its desirable behavior as function of momentum deviation and as function of the betatron tunes. Each of the six insertions can be arranged to meet specific requirements at the crossing points as illustrated by a discussion of the tuneable low-beta insertions. The luminosity in these low-beta insertions (2 x 10/sup 33/ cm/sup -2/ sec/sup -1/) would be an order of magnitude larger than the standard insertions.
Lattice QCD input for axion cosmology
NASA Astrophysics Data System (ADS)
Berkowitz, Evan; Buchoff, Michael I.; Rinaldi, Enrico
2015-08-01
One intriguing beyond-the-Standard-Model particle is the QCD axion, which could simultaneously provide a solution to the Strong C P Problem and account for some, if not all, of the dark matter density in the Universe. This particle is a pseudo-Nambu-Goldstone boson of the conjectured Peccei-Quinn symmetry of the Standard Model. Its mass and interactions are suppressed by a heavy symmetry-breaking scale, fa, the value of which is roughly greater than 109 GeV (or, conversely, the axion mass, ma, is roughly less than 104 μ eV ). The density of axions in the Universe, which cannot exceed the relic dark matter density and is a quantity of great interest in axion experiments like ADMX, is a result of the early Universe interplay between cosmological evolution and the axion mass as a function of temperature. The latter quantity is proportional to the second derivative of the temperature-dependent QCD free energy with respect to the C P -violating phase, θ . However, this quantity is generically nonperturbative, and previous calculations have only employed instanton models at the high temperatures of interest (roughly 1 GeV). In this and future works, we aim to calculate the temperature-dependent axion mass at small θ from first-principle lattice calculations, with controlled statistical and systematic errors. Once calculated, this temperature-dependent axion mass is input for the classical evolution equations of the axion density of the Universe, which is required to be less than or equal to the dark matter density. Due to a variety of lattice systematic effects at the very high temperatures required, we perform a calculation of the leading small-θ cumulant of the theta vacua on large volume lattices for SU(3) Yang-Mills with high statistics as a first proof of concept, before attempting a full QCD calculation in the future. From these pure glue results, the misalignment mechanism yields the axion mass bound ma≥(14.6 ±0.1 ) μ eV when Peccei-Quinn breaking occurs
An accelerating cosmology without dark energy
Steigman, G.; Santos, R.C.; Lima, J.A.S. E-mail: cliviars@astro.iag.usp.br
2009-06-01
The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996 [1]) without requiring the presence of dark energy or a cosmological constant. In a recent study, Lima et al. 2008 [2] (LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations [3] of the recent transition from a decelerating to an accelerating Universe, without the need for Dark Energy. Here we consider a class of such models where the particle creation rate is assumed to be of the form Γ = βH+γH{sub 0}, where H is the Hubble parameter and H{sub 0} is its present value. The evolution of such models is tested at low redshift by the latest SNe Ia data provided by the Union compilation [4] and at high redshift using the value of z{sub eq}, the redshift of the epoch of matter — radiation equality, inferred from the WMAP constraints on the early Integrated Sachs-Wolfe (ISW) effect [5]. Since the contributions of baryons and radiation were ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM are constrained at widely-separated epochs (z{sub eq} ≈ 3000 and z ≈ 0) in the evolution of the Universe. The comparison of the parameter values, (β, γ), determined at these different epochs reveals a tension between the values favored by the high redshift CMB constraint on z{sub eq} from the ISW and those which follow from the low redshift SNIa data, posing a potential challenge to this class of models. While for β = 0 this conflict is only at ∼< 2σ, it worsens as β increases from zero.
Can a lattice string have a vanishing cosmological constant\\?
NASA Astrophysics Data System (ADS)
Gannon, Terry; Lam, C. S.
1992-08-01
Given a modular-invariant partition function Q that integrates to a zero cosmological constant, there exists a whole class of functions scrCQ=\\{cQ+I\\} which does this as well; here I is an arbitrary imaginary modular-invariant function and c is an arbitrary scaling constant. The question of whether a nonsupersymmetric lattice string can be constructed to yield any of the partition functions in scrCQ is addressed. Two methods are devised to sidestep the arbitrariness of the function I, and lattice techniques are used to find conditions necessary for the existence of such a string. These conditions rely simply on the properties of lattices, and are independent of the supercurrents chosen, or the presence or absence of any symmetry such as Atkin-Lehner symmetry. As an illustration we apply these conditions to a recently proposed class of partition functions, and show that a nonsupersymmetric string for that class does not exist.
A numerical study of the Regge calculus and smooth lattice methods on a Kasner cosmology
NASA Astrophysics Data System (ADS)
Brewin, Leo
2015-10-01
Two lattice based methods for numerical relativity, the Regge calculus and the smooth lattice relativity, will be compared with respect to accuracy and computational speed in a full 3+1 evolution of initial data representing a standard Kasner cosmology. It will be shown that both methods provide convergent approximations to the exact Kasner cosmology. It will also be shown that the Regge calculus is of the order of 110 times slower than the smooth lattice method.
Scalar-field-dominated cosmology with a transient acceleration phase.
Carvalho, F C; Alcaniz, J S; Lima, J A S; Silva, R
2006-08-25
A new cosmological scenario driven by a slow rolling homogeneous scalar field whose exponential potential V(Phi) has a quadratic dependence on the field Phi in addition to the standard linear term is discussed. The derived equation of state for the field predicts a transient accelerating phase, in which the Universe was decelerated in the past, began to accelerate at redshift z approximately 1, is currently accelerated, but, finally, will return to a decelerating phase in the future. This overall dynamic behavior is profoundly different from the standard evolution of the cold dark matter model with a cosmological constant, and may alleviate some conflicts in reconciling the idea of a dark-energy-dominated universe with observables in String or M theory. Some theoretical predictions for the present scalar field plus dark matter dominated stage are confronted with cosmological observations in order to test the viability of the scenario. PMID:17026287
Inflation and accelerated expansion tensor-vector-scalar cosmological solutions
Diaz-Rivera, Luz Maria; Samushia, Lado; Ratra, Bharat
2006-04-15
We find exact exponentially expanding and contracting de Sitter solutions of the spatially homogeneous TeVeS cosmological equations of motion in the vacuum TeVeS model and a power law accelerated expanding solution in the presence of an additional ideal fluid with equation of state parameter -5/3<{omega}<-1. A preliminary stability analysis shows that the expanding vacuum solution is stable, while in the ideal fluid case stability depends on model parameter values. These solutions might provide a basis for incorporating early-time inflation or late-time accelerated expansion in TeVeS cosmology.
Precision cosmology defeats void models for acceleration
Moss, Adam; Zibin, James P.; Scott, Douglas
2011-05-15
The suggestion that we occupy a privileged position near the center of a large, nonlinear, and nearly spherical void has recently attracted much attention as an alternative to dark energy. Putting aside the philosophical problems with this scenario, we perform the most complete and up-to-date comparison with cosmological data. We use supernovae and the full cosmic microwave background spectrum as the basis of our analysis. We also include constraints from radial baryonic acoustic oscillations, the local Hubble rate, age, big bang nucleosynthesis, the Compton y distortion, and for the first time include the local amplitude of matter fluctuations, {sigma}{sub 8}. These all paint a consistent picture in which voids are in severe tension with the data. In particular, void models predict a very low local Hubble rate, suffer from an ''old age problem,'' and predict much less local structure than is observed.
Applications of black hole lattices in relativistic cosmology
NASA Astrophysics Data System (ADS)
Clifton, Timothy; Gregoris, Daniele; Rosquist, Kjell
2015-12-01
This talk addresses the question of how to model an inhomogeneous universe, and in particular how to model a universe in which all mass is distributed amongst a family of discrete sources (non-rotating black holes). Inhomogeneous cosmological models can be used to place observations of accelerating expansion within wider theoretical frameworks, and can hence be used to critically evaluate the evidence for the existence of dark energy. We use analytic methods to investigate the solutions to Einstein's equations in vacuum along networks of curves that exhibit local rotational and reflection symmetry. It is shown that the deceleration parameter can be negative without invoking the existence of any exotic fluids. The role of the small-scale inhomogeneities on the large-scale expansion of the Universe is studied in a fully non-perturbative and relativistic way, which is made possible by the discrete symmetries of the model. A comparison with other approaches for modeling dark energy and quantifying the effects of local inhomogeneities is discussed.
Late-time acceleration in higher dimensional cosmology
Pahwa, Isha; Choudhury, Debajyoti; Seshadri, T.R. E-mail: debajyoti.choudhury@gmail.com
2011-09-01
We investigate late time acceleration of the universe in higher dimensional cosmology. The content in the universe is assumed to exert pressure which is different in the normal and extra dimensions. Cosmologically viable solutions are found to exist for simple forms of the equation of state. The parameters of the model are fixed by comparing the predictions with supernovae data. While observations stipulate that the matter exerts almost vanishing pressure in the normal dimensions, we assume that, in the extra dimensions, the equation of state is of the form P∝ρ{sup 1−γ}. For appropriate choice of parameters, a late time acceleration in the universe occurs with q{sub 0} and z{sub tr} being approximately -0.46 and 0.76 respectively.
Constraints on cold dark matter accelerating cosmologies and cluster formation
Basilakos, S.; Lima, J. A. S.
2010-07-15
We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles ({Omega}{sub m}=1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor, and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving baryonic acoustic oscillations + cosmic microwave background (CMB) + SNe Ia data yields {Omega}-tilde{sub m}=0.28{+-}0.01 (1{sigma}), where {Omega}-tilde{sub m} is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from the large-scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual {Lambda}CDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with {Lambda}CDM scenarios through a more detailed analysis involving CMB, weak lensing, as well as the large-scale structure.
Learn-as-you-go acceleration of cosmological parameter estimates
NASA Astrophysics Data System (ADS)
Aslanyan, Grigor; Easther, Richard; Price, Layne C.
2015-09-01
Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of ΛCDM posterior probabilities. The computation is significantly accelerated without a pre-defined training set and uncertainties in the posterior probabilities are subdominant to statistical fluctuations. We have obtained a speedup factor of 6.5 for Metropolis-Hastings and 3.5 for nested sampling. Finally, we discuss the general requirements for a credible error model and show how to update them on-the-fly.
Rotating and accelerating black holes with a cosmological constant
NASA Astrophysics Data System (ADS)
Chen, Yu; Ng, Cheryl; Teo, Edward
2016-08-01
We propose a new form of the rotating C-metric with cosmological constant, which generalizes the form found by Hong and Teo for the Ricci-flat case. This solution describes the entire class of spherical black holes undergoing rotation and acceleration in dS or AdS space-time. The new form allows us to identify the complete ranges of coordinates and parameters of this solution. We perform a systematic study of its geometrical and physical properties, and of the various limiting cases that arise from it.
PyCOOL — A Cosmological Object-Oriented Lattice code written in Python
Sainio, J.
2012-04-01
There are a number of different phenomena in the early universe that have to be studied numerically with lattice simulations. This paper presents a graphics processing unit (GPU) accelerated Python program called PyCOOL that solves the evolution of scalar fields in a lattice with very precise symplectic integrators. The program has been written with the intention to hit a sweet spot of speed, accuracy and user friendliness. This has been achieved by using the Python language with the PyCUDA interface to make a program that is easy to adapt to different scalar field models. In this paper we derive the symplectic dynamics that govern the evolution of the system and then present the implementation of the program in Python and PyCUDA. The functionality of the program is tested in a chaotic inflation preheating model, a single field oscillon case and in a supersymmetric curvaton model which leads to Q-ball production. We have also compared the performance of a consumer graphics card to a professional Tesla compute card in these simulations. We find that the program is not only accurate but also very fast. To further increase the usefulness of the program we have equipped it with numerous post-processing functions that provide useful information about the cosmological model. These include various spectra and statistics of the fields. The program can be additionally used to calculate the generated curvature perturbation. The program is publicly available under GNU General Public License at https://github.com/jtksai/PyCOOL. Some additional information can be found from http://www.physics.utu.fi/tiedostot/theory/particlecosmology/pycool/.
Axion cosmology, lattice QCD and the dilute instanton gas
NASA Astrophysics Data System (ADS)
Borsanyi, Sz.; Dierigl, M.; Fodor, Z.; Katz, S. D.; Mages, S. W.; Nogradi, D.; Redondo, J.; Ringwald, A.; Szabo, K. K.
2016-01-01
Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ (T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ (T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.
New Low Emittance Lattice for the Super-B Accelerator
Biagini, M.E.; Boscolo, M.; Raimondi, P.; Tomassini, S.; Zobov, M.; Seeman, J.; Sullivan, M.; Wienands, U.; Wittmer, W.; Bettoni, S.; Paoloni, E.; Bogomyagkov, A.; Koop, I.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; /Novosibirsk, IYF
2011-10-21
New low emittance lattices have been designed for the asymmetric SuperB accelerator, aiming at a luminosity of 10{sup 36} cm{sup -2} s{sup -1}. Main optics features are two alternating arc cells with different horizontal phase advance, decreasing beam emittance and allowing at the same time for easy chromaticity correction in the arcs. Emittance can be further reduced by a factor of two for luminosity upgrade. Spin rotation schemes for the e{sup -} beam have been studied to provide longitudinal polarization at the IP, and implementation into the lattice is in progress.
Nonlinear accelerator lattices with one and two analytic invariants
Danilov, V.; Nagaitsev, S.; /Fermilab
2010-02-01
Integrable systems appeared in physics long ago at the onset of classical dynamics with examples being Kepler's and other famous problems. Unfortunately, the majority of nonlinear problems turned out to be nonintegrable. In accelerator terms, any 2D nonlinear nonintegrable mapping produces chaotic motion and a complex network of stable and unstable resonances. Nevertheless, in the proximity of an integrable system the full volume of such a chaotic network is small. Thus, the integrable nonlinear motion in accelerators has the potential to introduce a large betatron tune spread to suppress instabilities and to mitigate the effects of space charge and magnetic field errors. To create such an accelerator lattice one has to find magnetic and electric field combinations leading to a stable integrable motion. This paper presents families of lattices with one invariant where bounded motion can be easily created in large volumes of the phase space. In addition, it presents 3 families of integrable nonlinear accelerator lattices, realizable with longitudinal-coordinate-dependent magnetic or electric fields with the stable nonlinear motion, which can be solved in terms of separable variables.
Deformed phase space Kaluza-Klein cosmology and late time acceleration
NASA Astrophysics Data System (ADS)
Sabido, M.; Yee-Romero, C.
2016-06-01
The effects of phase space deformations on Kaluza-Klein cosmology are studied. The deformation is introduced by modifying the symplectic structure of the minisuperspace variables. In the deformed model, we find an accelerating scale factor and therefore infer the existence of an effective cosmological constant from the phase space deformation parameter β.
Multipass Arc Lattice Design for Recirculating Linac Muon Accelerators
G.M. Wang, R.P. Johnson, S.A. Bogacz, D. Trbojevic
2009-05-01
Recirculating linear accelerators (RLA) are the most likely means to achieve rapid acceleration of short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. A drawback of this scheme is that a separate return arc is required for each passage of the muons through the linac. In the work described here, a novel arc optics based on a Non-Scaling Fixed Field Alternating Gradient (NSFFAG) lattice is developed, which would provide sufficient momentum acceptance to allow multiple passes (two or more consecutive energies) to be transported in one string of magnets. An RLA with significantly fewer arcs will reduce the cost. We will develop the optics and technical requirements to allow the maximum number of passes by using an adjustable path length to accurately control the returned beam to synchronize with the linac RF phase.
The SuperB Accelerator: Overview and Lattice Studies
Biagini, M.E.; Boni, R.; Boscolo, M.; Drago, A.; Guiducci, S.; Preger, M.; Raimondi, P.; Tomassini, S.; Vaccarezza, C.; Zobov, M.; Cai, Y.; Fisher, A.; Heifets, S.; Novokhatski, A.; Pivi, M.T.; Seeman, J.; Sullivan, M.; Wienands, U.; Paoloni, E.; Marchiori, G.; Koop, I.; /Novosibirsk, IYF /Daresbury /LBL, Berkeley /CERN /Orsay, LAL /KEK, Tsukuba
2011-11-22
SuperB aims at the construction of a very high luminosity (10{sup 36} cm{sup -2} s{sup -1}) asymmetric e{sup +}e{sup -} Flavour Factory, with possible location at the campus of the University of Rome Tor Vergata, near the INFN Frascati National Laboratory. In this paper the basic principles of the design and details on the lattice are given. SuperB is a new machine that can exploit novel very promising design approaches: (1) large Piwinski angle scheme will allow for peak luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1}, well beyond the current state-of-the-art, without a significant increase in beam currents or shorter bunch lengths; (2) 'crab waist' sextupoles will be used for suppression of dangerous resonances; (3) the low beam currents design presents reduced detector and background problems, and affordable operating costs; (4) a polarized electron beam can produce polarized {tau} leptons, opening an entirely new realm of exploration in lepton flavor physics. SuperB studies are already proving useful to the accelerator and particle physics communities. The principle of operation is being tested at DAFNE. The baseline lattice, based on the reuse of all PEP-II hardware, fits in the Tor Vergata University campus site, near Frascati. A CDR is being reviewed by an International Review Committee, chaired by J. Dainton (UK). A Technical Design Report will be prepared to be ready by beginning of 2010.
Farooq, Omer; Ratra, Bharat E-mail: ratra@phys.ksu.edu
2013-03-20
We compile a list of 28 independent measurements of the Hubble parameter between redshifts 0.07 {<=} z {<=} 2.3 and use this to place constraints on model parameters of constant and time-evolving dark energy cosmologies. These H(z) measurements by themselves require a currently accelerating cosmological expansion at about, or better than, 3{sigma} confidence. The mean and standard deviation of the six best-fit model deceleration-acceleration transition redshifts (for the three cosmological models and two Hubble constant priors we consider) are z{sub da} = 0.74 {+-} 0.05, in good agreement with the recent Busca et al. determination of z{sub da} = 0.82 {+-} 0.08 based on 11 H(z) measurements between redshifts 0.2 {<=} z {<=} 2.3, almost entirely from baryon-acoustic-oscillation-like data.
Supernovae, an accelerating universe and the cosmological constant
Kirshner, Robert P.
1999-01-01
Observations of supernova explosions halfway back to the Big Bang give plausible evidence that the expansion of the universe has been accelerating since that epoch, approximately 8 billion years ago and suggest that energy associated with the vacuum itself may be responsible for the acceleration. PMID:10200242
NASA Astrophysics Data System (ADS)
Aledo, Juan A.; Rubio, Rafael M.
2016-06-01
We study the scalar curvature of spacelike hypersurfaces in the family of cosmological models known as generalized Robertson-Walker spacetimes, and give several rigidity results under appropriate mathematical and physical assumptions. On the other hand, we show that this family of spacetimes provides suitable models obeying the null convergence condition to explain accelerated expanding universes.
Scalar speed limits and cosmology: Acceleration from D-cceleration
NASA Astrophysics Data System (ADS)
Silverstein, Eva; Tong, David
2004-11-01
Causality on the gravity side of the AdS/CFT correspondence restricts motion on the moduli space of the N=4 super Yang-Mills theory by imposing a speed limit on how fast the scalar field may roll. This effect can be traced to higher-derivative operators arising from integrating out light degrees of freedom near the origin. In the strong coupling limit of the theory, the dynamics is well approximated by the Dirac-Born-Infeld Lagrangian for a probe D3-brane moving toward the horizon of the AdS Poincaré patch, combined with an estimate of the (ultimately suppressed) rate of particle and string production in the system. We analyze the motion of a rolling scalar field explicitly in the strong coupling regime of the field theory and extend the analysis to cosmological systems obtained by coupling this type of field theory to four-dimensional gravity. This leads to a mechanism for slow roll inflation for a massive scalar at sub-Planckian vacuum expectation value without need for a flat potential (realizing a version of k inflation in a microphysical framework). It also leads to a variety of novel Friedman-Roberston-Walker cosmologies, some of which are related to those obtained with tachyon matter.
Observation of Stueckelberg oscillations in accelerated optical lattices
Zenesini, A.; Ciampini, D.; Arimondo, E.; Morsch, O.
2010-12-15
We report the experimental observation of Stueckelberg oscillations of matter waves in optical lattices. Extending previous work on Landau-Zener tunneling of Bose-Einstein condensates in optical lattices, we study the effects of the accumulated phase between two successive crossings of the Brillouin zone edge. Our results agree well with a simple model for multiple Landau-Zener tunneling events taking into account the band structure of the optical lattice.
NASA Astrophysics Data System (ADS)
Livio, Mario
2000-12-01
Advance Praise for The Accelerating Universe "The Accelerating Universe is not only an informative book about modern cosmology. It is rich storytelling and, above all, a celebration of the human mind in its quest for beauty in all things." -Alan Lightman, author of Einstein's Dreams "This is a wonderfully lucid account of the extraordinary discoveries that have made the last years a golden period for observational cosmology. But Mario Livio has not only given the reader one clear explanation after another of what astronomers are up to, he has used them to construct a provocative argument for the importance of aesthetics in the development of science and for the inseparability of science, art, and culture." -Lee Smolin, author of The Life of the Cosmos "What a pleasure to read! An exciting, simple account of the universe revealed by modern astronomy. Beautifully written, clearly presented, informed by scientific and philosophical insights." -John Bahcall, Institute for Advanced Study "A book with charm, beauty, elegance, and importance. As authoritative a journey as can be taken through modern cosmology." -Allan Sandage, Observatories of the Carnegie Institution of Washington
Gauss-Bonnet cosmology unifying late and early-time acceleration eras with intermediate eras
NASA Astrophysics Data System (ADS)
Oikonomou, V. K.
2016-07-01
In this paper we demonstrate that with vacuum F(G) gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the F(G) description is no, since the resulting power spectrum is not scale invariant, in contrast to the F(R) description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum F(G) gravity, the evolution is not compatible with the observational data, in contrast to the F(R) gravity description of the same cosmological evolution.
A class of transient acceleration models consistent with Big Bang cosmology
NASA Astrophysics Data System (ADS)
Zu, Tian-Long; Chen, Jie-Wen; Zhang, Yang
2014-02-01
Is it possible that the current cosmic accelerating expansion will turn into a decelerating one? Can this transition be realized by some viable theoretical model that is consistent with the standard Big Bang cosmology? We study a class of phenomenological models with a transient acceleration, based on a dynamical dark energy with a very general form of equation of state pde = βρde - βρdem. It mimics the cosmological constant ρde → const for a small scale factor a, and behaves as a barotropic gas with ρde → a-3(α+1) with α >= 0 for large a. The cosmic evolution of four models in the class has been examined in detail, and all yield a smooth transient acceleration. Depending on the specific model, the future universe may be dominated by either dark energy or by matter. In two models, the dynamical dark energy can be explicitly realized by a scalar field with an analytical potential V(φ). Moreover, a statistical analysis shows that the models can be as robust as ΛCDM in confronting the observational data of Type Ia supernovae, cosmic microwave background (CMB) and baryon acoustic oscillation. As improvements over previous studies, our models overcome the problem of over-abundance of dark energy during early eras, and satisfy the constraints on dark energy from WMAP observations of CMB.
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Farooq, Omer; Luongo, Orlando; Ratra, Bharat
2014-08-01
We examine the observational viability of a class of f(R) gravity cosmological models. Particular attention is devoted to constraints from the recent observational determination of the redshift of the cosmological deceleration-acceleration transition. Making use of the fact that the Ricci scalar is a function of redshift z in these models, R =R(z), and so is f(z), we use cosmography to relate a f(z) test function evaluated at higher z to late-time cosmographic bounds. First, we consider a model-independent procedure to build up a numerical f(z) by requiring that at z=0 the corresponding cosmological model reduces to standard ΛCDM. We then infer late-time observational constraints on f(z) in terms of bounds on the Taylor expansion cosmographic coefficients. In doing so we parametrize possible departures from the standard ΛCDM model in terms of a two-parameter logarithmic correction. The physical meaning of the two parameters is also discussed in terms of the post-Newtonian approximation. Second, we provide numerical estimates of the cosmographic series terms by using type Ia supernova apparent magnitude data and Hubble parameter measurements. Finally, we use these estimates to bound the two parameters of the logarithmic correction. We find that the deceleration parameter in our model changes sign at a redshift consistent with what is observed.
Freezing, accelerating, and slowing directed currents in real time with superimposed driven lattices
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Aritra K.; Liebchen, Benno; Wulf, Thomas; Schmelcher, Peter
2016-05-01
We provide a generic scheme offering real-time control of directed particle transport using superimposed driven lattices. This scheme allows one to accelerate, slow, and freeze the transport on demand by switching one of the lattices subsequently on and off. The underlying physical mechanism hinges on a systematic opening and closing of channels between transporting and nontransporting phase space structures upon switching and exploits cantori structures which generate memory effects in the population of these structures. Our results should allow for real-time control of cold thermal atomic ensembles in optical lattices but might also be useful as a design principle for targeted delivery of molecules or colloids in optical devices.
Implications of an Absolute Simultaneity Theory for Cosmology and Universe Acceleration
Kipreos, Edward T.
2014-01-01
An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift–distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe. PMID:25536116
Implications of an absolute simultaneity theory for cosmology and universe acceleration.
Kipreos, Edward T
2014-01-01
An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe. PMID:25536116
LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.
WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.
2006-06-23
Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.
Multigrid lattice Boltzmann method for accelerated solution of elliptic equations
NASA Astrophysics Data System (ADS)
Patil, Dhiraj V.; Premnath, Kannan N.; Banerjee, Sanjoy
2014-05-01
A new solver for second-order elliptic partial differential equations (PDEs) based on the lattice Boltzmann method (LBM) and the multigrid (MG) technique is presented. Several benchmark elliptic equations are solved numerically with the inclusion of multiple grid-levels in two-dimensional domains at an optimal computational cost within the LB framework. The results are compared with the corresponding analytical solutions and numerical solutions obtained using the Stone's strongly implicit procedure. The classical PDEs considered in this article include the Laplace and Poisson equations with Dirichlet boundary conditions, with the latter involving both constant and variable coefficients. A detailed analysis of solution accuracy, convergence and computational efficiency of the proposed solver is given. It is observed that the use of a high-order stencil (for smoothing) improves convergence and accuracy for an equivalent number of smoothing sweeps. The effect of the type of scheduling cycle (V- or W-cycle) on the performance of the MG-LBM is analyzed. Next, a parallel algorithm for the MG-LBM solver is presented and then its parallel performance on a multi-core cluster is analyzed. Lastly, a practical example is provided wherein the proposed elliptic PDE solver is used to compute the electro-static potential encountered in an electro-chemical cell, which demonstrates the effectiveness of this new solver in complex coupled systems. Several orders of magnitude gains in convergence and parallel scaling for the canonical problems, and a factor of 5 reduction for the multiphysics problem are achieved using the MG-LBM.
NASA Astrophysics Data System (ADS)
Aissaoui, H.; Mebarki, N.; Bouhalouf, H.
2010-10-01
An FRW like cosmological model in the non commutative Seiberg-Witten space-time is proposed. The pure NCG dynamical apparent horizon and Hawking temperature are obtained and explicit expressions of the scale factor, Hubble and deceleration parameters are derived. The accelerated expansion of the universe scenario is also discussed.
CDM accelerating cosmology as an alternative to ΛCDM model
Lima, J.A.S.; Jesus, J.F.; Oliveira, F.A. E-mail: jfernando@astro.iag.usp.br
2010-11-01
A new accelerating cosmology driven only by baryons plus cold dark matter (CDM) is proposed in the framework of general relativity. In this scenario the present accelerating stage of the Universe is powered by the negative pressure describing the gravitationally-induced particle production of cold dark matter particles. This kind of scenario has only one free parameter and the differential equation governing the evolution of the scale factor is exactly the same of the ΛCDM model. For a spatially flat Universe, as predicted by inflation (Ω{sub dm}+Ω{sub baryon} = 1), it is found that the effectively observed matter density parameter is Ω{sub meff} = 1−α, where α is the constant parameter specifying the CDM particle creation rate. The supernovae test based on the Union data (2008) requires α ∼ 0.71 so that Ω{sub meff} ∼ 0.29 as independently derived from weak gravitational lensing, the large scale structure and other complementary observations.
The accelerating universe and other cosmological aspects of modified gravity models
NASA Astrophysics Data System (ADS)
de Felice, Antonio
I give a short introduction to standard cosmology and a review of what it is meant by "the dark energy enigma" in chapter l. In chapter 2, I mention and describe some attempts found in the literature of the past few years to attack this problem. Dark energy candidates for which the equation-of-state parameter w is less than -1 violate the dominant energy condition. In scalar-tensor theories of gravity, however, the expansion of the universe can mimic the behavior of general relativity with w < -1 dark energy, without violating any energy conditions. I examine, in chapter 3, whether this possibility is phenomenologically viable by studying Brans-Dicke models and characterizing both the naturalness of the models themselves, and additional observational constraints from limits on the time-dependence of Newton's constant. I find that only highly contrived models would lead observers to measure w < -1. In chapter 4, I consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. I investigate the far future evolution of the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models. In chapter 5, I study a baryogenesis mechanism operating in the context of hyperextended inflation and making use of a coupling between the scalar field and a standard model global current, such as B or B - L . The method is efficient at temperatures at which these currents are not conserved due to some higher dimensional operator. The particle physics and cosmological phenomenology are discussed. I consider constraints stemming from nucleosynthesis and solar system experiments.
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
2016-06-01
We present some cosmological models which unify the late- and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of F(R) gravity. Particularly, the first model unifies the late- and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the R 2 inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination era follows, which lasts until the second Type IV singularity, and then the late-time acceleration era follows. The models have two appealing features: firstly they produce a nearly scale invariant power spectrum of primordial curvature perturbations and a scalar-to-tensor ratio which are compatible with the most recent observational data and secondly, it seems that the deceleration–acceleration transition is crucially affected by the presence of the second Type IV singularity which occurs at the end of the matter domination era. As we demonstrate, the Hubble horizon at early times shrinks, as expected for an initially accelerating Universe, then during the matter domination era, it expands and finally after the Type IV singularity, the Hubble horizon starts to shrink again, during the late-time acceleration era. Intriguingly enough, the deceleration–acceleration transition, occurs after the second Type IV singularity. In addition, we investigate which F
Achromatic and isochronous lattice design of P2DT bending section in RAON accelerator
NASA Astrophysics Data System (ADS)
Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Hong, In-Seok; Jeon, Dong-O.
2015-09-01
In RAON heavy ion accelerator, generally, the In-flight Fragmentation (IF) and Isotope Separation On-Line (ISOL) systems are employed in order to produce various isotope beams. Out of the isotope beams, the beams generated by the ISOL system are transported from the low energy linac SCL3 to the high energy driver linac SCL2. The post-accelerator to the driver linac transport (P2DT) section that consists of the charge stripper section, the 180° bending section, and the SCL2 matching section is placed between the SCL3 and the SCL2. In this P2DT section, however, the transverse and longitudinal emittance growth can aggravate the beam acceptance of the SCL2. Besides, the growth at the P2DT 180° bending section is considered a significant issue because of the unexpected achromatic effect. Therefore an achromatic and isochronous lattice design should be devised to prevent the transverse and longitudinal emittance from increasing while the multi-charge beams flow through the bending section. This study reports an improved design for the achromatic and isochronous lattice up to the second-order. After satisfying the first-order achromatic and isochronous condition by adjusting the field strength of quadrupoles with this design, the simple and efficient method will be utilized with the aim of getting the minimum number of sextupoles. The research on the collimator for the charge selection at the bending section will be also represented by using the designed lattice.
Ishak, Mustapha; Peel, Austin; Troxel, M A
2013-12-20
Probes of cosmic expansion constitute the main basis for arguments to support or refute a possible apparent acceleration due to different expansion rates in the Universe as described by inhomogeneous cosmological models. We present in this Letter a separate argument based on results from an analysis of the growth rate of large-scale structure in the Universe as modeled by the inhomogeneous cosmological models of Szekeres. We use the models with no assumptions of spherical or axial symmetries. We find that while the Szekeres models can fit very well the observed expansion history without a Λ, they fail to produce the observed late-time suppression in the growth unless Λ is added to the dynamics. A simultaneous fit to the supernova and growth factor data shows that the cold dark matter model with a cosmological constant (ΛCDM) provides consistency with the data at a confidence level of 99.65%, while the Szekeres model without Λ achieves only a 60.46% level. When the data sets are considered separately, the Szekeres with no Λ fits the supernova data as well as the ΛCDM does, but provides a very poor fit to the growth data with only 31.31% consistency level compared to 99.99% for the ΛCDM. This absence of late-time growth suppression in inhomogeneous models without a Λ is consolidated by a physical explanation. PMID:24483736
NASA Astrophysics Data System (ADS)
Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.
2014-11-01
Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.
Tunneling dynamics of superfluid Fermi gases in an accelerating optical lattice
Tie Lu; Xue Jukui
2010-11-15
The nonlinear Landau-Zener tunneling and the nonlinear Rabi oscillations of superfluid Fermi gases between Bloch bands in an accelerating optical lattice are discussed. Within the hydrodynamic theory and a two-level model, the tunneling probability of superfluid Fermi gases between Bloch bands is obtained. We find that, as the system crosses from the Bose-Einstein condensation (BEC) side to the BCS side, the tunneling rate is closely related to the particle density: when the density is smaller (larger) than a critical value, the tunneling rate at unitarity is larger (smaller) than that in the BEC limit. This is well explained in terms of an effective interaction and an effective potential. Furthermore, the nonlinear Rabi oscillations of superfluid Fermi gases between the bands are discussed by imposing a periodic modulation on the level bias and the strength of the lattice. Analytical expressions of the critical density for suppressing or enhancing the Rabi oscillations are obtained. It is shown that, as the system crosses from the BEC side to the BCS side, the critical density strongly depends on the modulation parameters (i.e., the modulation amplitude and the modulation frequency). For a fixed density, a high-frequency or low-frequency modulation can suppress or enhance the Rabi oscillations both at unitarity and in the BEC limit. For an intermediate modulation frequency, the Rabi oscillations are chaotic along the entire BEC-BCS crossover, especially, on the BCS side. Interestingly, we find that the modulation of the lattice strength only with an intermediate modulation frequency has significant effect on the Rabi oscillations both in the BEC limit and at unitarity; that is, an intermediate-frequency modulation can enhance the Rabi oscillations, especially on the BCS side.
Design and high order optimization of the Accelerator Test Facility lattices
NASA Astrophysics Data System (ADS)
Marin, E.; Tomás, R.; Bambade, P.; Kubo, K.; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; Seryi, A.; White, G. R.; Woodley, M.
2014-02-01
The Accelerator Test Facility 2 (ATF2) aims to test the novel chromaticity correction scheme which is implemented in the final focus systems of future linear colliders such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC). The ATF2 nominal and ultralow β* lattices are designed to vertically focus the beam at the focal point, or usually referred to as interaction point (IP), down to 37 and 23 nm, respectively. The vertical chromaticities of the nominal and ultralow β* lattices are comparable to those of ILC and CLIC, respectively. When the measured multipole components of the ATF2 magnets are considered in the simulations, the evaluated spot sizes at the IP are well above the design values. In this paper we describe the analysis of the high order aberrations that allows identifying the sources of the observed beam size growth. In order to recover the design spot sizes three solutions are considered, namely final doublet replacement, octupole insertion, and optics modification. Concerning the future linear collider projects, the consequences of magnetic field errors of the focusing quadrupole magnet of the final doublet are also addressed.
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
2016-01-01
We study mimetic F (R ) gravity with a potential and Lagrange multiplier constraint. In the context of these theories, we introduce a reconstruction technique which enables us to realize arbitrary cosmologies, given the Hubble rate and an arbitrarily chosen F (R ) gravity. We exemplify our method by realizing cosmologies that are in concordance with current observations (Planck data) and also well-known bouncing cosmologies. The attribute of our method is that the F (R ) gravity can be arbitrarily chosen, so we can have the appealing features of the mimetic approach combined with the known features of some F (R ) gravities, which unify early-time with late-time acceleration. Moreover, we study the existence and the stability of de Sitter points in the context of mimetic F (R ) gravity. In the case of unstable de Sitter points, it is demonstrated that graceful exit from inflation occurs. We also study the Einstein-frame counterpart theory of the Jordan-frame mimetic F (R ) gravity, and we discuss the general properties of the theory and exemplify our analysis by studying a quite interesting (from a phenomenological point of view) model with two scalar fields. We also calculate the observational indices of the two-scalar-field model, by using the two-scalar-field formalism. Furthermore, we extensively study the dynamical system that corresponds to the mimetic F (R ) gravity, by finding the fixed points and studying their stability. Finally, we modify our reconstruction method to function in the inverse way and thus yield which F (R ) gravity can realize a specific cosmological evolution, given the mimetic potential and the Lagrange multiplier.
NASA Astrophysics Data System (ADS)
Dossett, Jason Nicholas
Since its discovery more than a decade ago, the problem of cosmic acceleration has become one of the largest in cosmology and physics as a whole. An unknown dark energy component of the universe is often invoked to explain this observation. Mathematically, this works because inserting a cosmic fluid with a negative equation of state into Einstein's equations provides an accelerated expansion. There are, however, alternative explanations for the observed cosmic acceleration. Perhaps the most promising of the alternatives is that, on the very largest cosmological scales, general relativity needs to be extended or a new, modified gravity theory must be used. Indeed, many modified gravity models are not only able to replicate the observed accelerated expansion without dark energy, but are also more compatible with a unified theory of physics. Thus it is the goal of this dissertation to develop and study robust tests that will be able to distinguish between these alternative theories of gravity and the need for a dark energy component of the universe. We will study multiple approaches using the growth history of large-scale structure in the universe as a way to accomplish this task. These approaches include studying what is known as the growth index parameter, a parameter that describes the logarithmic growth rate of structure in the universe, which describes the rate of formation of clusters and superclusters of galaxies over the entire age of the universe. We will explore the effectiveness of this parameter to distinguish between general relativity and modifications to gravity physics given realistic expectations of results from future experiments. Next, we will explore the modified growth formalism wherein deviations from the growth expected in general relativity are parameterized via changes to the growth equations, i.e. the perturbed Einstein's equations. We will also explore the impact of spatial curvature on these tests. Finally, we will study how dark energy
Temple, Blake; Smoller, Joel
2009-08-25
We derive a system of three coupled equations that implicitly defines a continuous one-parameter family of expanding wave solutions of the Einstein equations, such that the Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology is embedded as a single point in this family. By approximating solutions near the center to leading order in the Hubble length, the family reduces to an explicit one-parameter family of expanding spacetimes, given in closed form, that represents a perturbation of the Standard Model. By introducing a comoving coordinate system, we calculate the correction to the Hubble constant as well as the exact leading order quadratic correction to the redshift vs. luminosity relation for an observer at the center. The correction to redshift vs. luminosity entails an adjustable free parameter that introduces an anomalous acceleration. We conclude (by continuity) that corrections to the redshift vs. luminosity relation observed after the radiation phase of the Big Bang can be accounted for, at the leading order quadratic level, by adjustment of this free parameter. The next order correction is then a prediction. Since nonlinearities alone could actuate dissipation and decay in the conservation laws associated with the highly nonlinear radiation phase and since noninteracting expanding waves represent possible time-asymptotic wave patterns that could result, we propose to further investigate the possibility that these corrections to the Standard Model might be the source of the anomalous acceleration of the galaxies, an explanation not requiring the cosmological constant or dark energy. PMID:19706502
Temple, Blake; Smoller, Joel
2009-01-01
We derive a system of three coupled equations that implicitly defines a continuous one-parameter family of expanding wave solutions of the Einstein equations, such that the Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology is embedded as a single point in this family. By approximating solutions near the center to leading order in the Hubble length, the family reduces to an explicit one-parameter family of expanding spacetimes, given in closed form, that represents a perturbation of the Standard Model. By introducing a comoving coordinate system, we calculate the correction to the Hubble constant as well as the exact leading order quadratic correction to the redshift vs. luminosity relation for an observer at the center. The correction to redshift vs. luminosity entails an adjustable free parameter that introduces an anomalous acceleration. We conclude (by continuity) that corrections to the redshift vs. luminosity relation observed after the radiation phase of the Big Bang can be accounted for, at the leading order quadratic level, by adjustment of this free parameter. The next order correction is then a prediction. Since nonlinearities alone could actuate dissipation and decay in the conservation laws associated with the highly nonlinear radiation phase and since noninteracting expanding waves represent possible time-asymptotic wave patterns that could result, we propose to further investigate the possibility that these corrections to the Standard Model might be the source of the anomalous acceleration of the galaxies, an explanation not requiring the cosmological constant or dark energy. PMID:19706502
Kafka, Gene
2015-05-01
The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.
NASA Astrophysics Data System (ADS)
Kafka, Gene
The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with significant flexibility in mind, but without compromising cost efficiency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of different variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of-flight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.
NASA Technical Reports Server (NTRS)
Muller, P. M.
1976-01-01
The theory and numerical analysis of ancient astronomical observations (1374 to 1715) are combined with modern data in a simultaneous solution for: the tidal acceleration of the lunar longitude; the observed apparent acceleration of the earth's rotation; the true nontidal geophysical part of this acceleration; and the rate of change in the gravitational constant. Provided are three independent determinations of a rate of change of G consistent with the Hubble Constant and a near zero nontidal rotational acceleration of the earth. The tidal accelerations are shown to have remained constant during the historical period within uncertainties. Ancient and modern solar system data, and extragalactic observations provided a completely consistent astronomical and cosmological scheme.
Analytical Study on the Cosmological Large-scale Structure in an Accelerating Universe
NASA Astrophysics Data System (ADS)
Wang, Xin
2012-01-01
Motivated by the roughly log-normal probability density distribution function (PDF) of the small scale density field, we develop cosmological perturbation theory for the power spectrum of a logarithmically transformed density field with the formalism which is developed in the context of the cosmological renormalized perturbation theory. Compared with the standard perturbation theory, our approach help to regulate the convergence behavior of the perturbation series, and of the Taylor series expansion we use for the logarithmic mapping. The perturbation calculation achieved good agreement with simulation results. Then we consider the topology of the iso-density contour of the density field, especially the genus. The genus is relatively insensitive to nonlinear gravitational evolution, clustering bias and redshift distortion, and is approximately conserved over time as structures grow in Einstein's general relativity, hence it can be used as a robust standard ruler for cosmological measurements. However, in modified gravity models where structures grow with different rates on different scales, the genus should change over time, and therefore it can be used to test the gravity models on large scales. We studied the case of the f(R) theory, DGP brane-world theory as well as phenomenological models. We also forecast how the modified gravity models can be constrained with optical/IR or 21cm surveys in the near future.
NASA Astrophysics Data System (ADS)
Huang, He
In this thesis, I present the results of studies of the structural properties and phase transition of a charge neutral FCC Lattice Gas with Yukawa Interaction and discuss a novel fast calculation algorithm---Accelerated Cartesian Expansion (ACE) method. In the first part of my thesis, I discuss the results of Monte Carlo simulations carried out to understand the finite temperature (phase transition) properties and the ground state structure of a Yukawa Lattice Gas (YLG) model. In this model the ions interact via the potential q iqjexp(-kappar> ij)/rij where qi,j are the charges of the ions located at the lattice sites i and j with position vectors R i and Rj; rij = Ri-Rj, kappa is a measure of the range of the interaction and is called the screening parameter. This model approximates an interesting quaternary system of great current thermoelectric interest called LAST-m, AgSbPbmTem+2. I have also developed rapid calculation methods for the potential energy calculation in a lattice gas system with periodic boundary condition bases on the Ewald summation method and coded the algorithm to compute the energies in MC simulation. Some of the interesting results of the MC simulations are: (i) how the nature and strength of the phase transition depend on the range of interaction (Yukawa screening parameter kappa) (ii) what is the degeneracy of the ground state for different values of the concentration of charges, and (iii) what is the nature of two-stage disordering transition seen for certain values of x. In addition, based on the analysis of the surface energy of different nano-clusters formed near the transition temperature, the solidification process and the rate of production of these nano-clusters have been studied. In the second part of my thesis, we have developed two methods for rapidly computing potentials of the form R-nu. Both these methods are founded on addition theorems based on Taylor expansions. Taylor's series has a couple of inherent advantages: (i) it
SU(2,CMB), the nature of light and accelerated cosmological expansion
NASA Astrophysics Data System (ADS)
Hofmann, Ralf
2006-09-01
We present quantitative and qualitative arguments in favor of the claim that, within the present cosmological epoch, the U(1)Y factor in the Standard Model is an effective manifestation of SU(2) pure gauge dynamics of Yang-Mills scale Λ ˜ 10-4 eV. Results for the pressure and the energy density in the deconfining phase of this theory, obtained in a nonperturbative and analytical way, support this connection in view of large-angle features inherent in the map of the CMB tempera- ture fluctuations and temperature-polarization cross correlations. Dedicated to Pierre van Baal with best wishes for a soon recuperation.
NASA Astrophysics Data System (ADS)
Edmonds, C. S.; Gratus, J.; Hock, K. M.; Machida, S.; Muratori, B. D.; Torromé, R. G.; Wolski, A.
2014-05-01
In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.
NASA Astrophysics Data System (ADS)
Jin, Hyunchang; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O.
2015-12-01
In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.
ENTROPY AT THE OUTSKIRTS OF GALAXY CLUSTERS AS IMPLICATIONS FOR COSMOLOGICAL COSMIC-RAY ACCELERATION
Fujita, Yutaka; Ohira, Yutaka; Yamazaki, Ryo
2013-04-10
Recently, gas entropy at the outskirts of galaxy clusters has attracted much attention. We propose that the entropy profiles could be used to study cosmic-ray (CR) acceleration around the clusters. If the CRs are effectively accelerated at the formation of clusters, the kinetic energy of infalling gas is consumed by the acceleration and the gas entropy should decrease. As a result, the entropy profiles become flat at the outskirts. If the acceleration is not efficient, the entropy should continue to increase outward. By comparing model predictions with X-ray observations with Suzaku, which show flat entropy profiles, we find that the CRs have carried {approx}< 7% of the kinetic energy of the gas away from the clusters. Moreover, the CR pressure at the outskirts can be {approx}< 40% of the total pressure. On the other hand, if the entropy profiles are not flat at the outskirts, as indicated by combined Plank and ROSAT observations, the carried energy and the CR pressure should be much smaller than the above estimations.
Doolin, Ciaran; Neupane, Ishwaree P
2013-04-01
A late epoch cosmic acceleration may be naturally entangled with cosmic coincidence--the observation that at the onset of acceleration the vacuum energy density fraction nearly coincides with the matter density fraction. In this Letter we show that this is indeed the case with the cosmology of a Friedmann-Lamaître-Robertson-Walker (FLRW) 3-brane in a five-dimensional anti-de Sitter spacetime. We derive the four-dimensional effective action on a FLRW 3-brane, from which we obtain a mass-reduction formula, namely, M(P)(2) = ρ(b)/|Λ(5)|, where M(P) is the effective (normalized) Planck mass, Λ(5) is the five-dimensional cosmological constant, and ρ(b) is the sum of the 3-brane tension V and the matter density ρ. Although the range of variation in ρ(b) is strongly constrained, the big bang nucleosynthesis bound on the time variation of the effective Newton constant G(N) = (8πM(P)(2))(-1) is satisfied when the ratio V/ρ ≳ O(10(2)) on cosmological scales. The same bound leads to an effective equation of state close to -1 at late epochs in accordance with astrophysical and cosmological observations. PMID:25166976
NASA Astrophysics Data System (ADS)
Lü, Jian-Bo; Xu, Li-Xin; Liu, Mo-Lin; Gui, Yuan-Xing
2009-04-01
In the framework of a five-dimensional (5D) bounce cosmological model, a useful function f(z) is obtained by giving a concrete expression of deceleration parameter Then using the obtained Hubble parameter H(z) according to the function f(z), we constrain the accelerating universe from recent cosmic observations: the 192 ESSENCE SNe Ia and the 9 observational H(z) data. The best fitting values of transition redshift ZT and current deceleration parameter qo are given as . Furthermore, in the 5D bounce model it can be seen that the evolution of equation of state (EOS) for dark energy wde can cross over -1 at about z = 0.23 and the current value w0de = -1.15 < -1. On the other hand, by giving a concrete expression of model-independent EOS of dark energy wde, in the 5D bounce model we obtain the best fitting values from the recently observed data: the 192 ESSENCE SNe Ia, the observational H(z) data, the 3-year Wilkinson Microwave Anisotropy Probe (WMAP), the Sloan Digital Sky Survey (SDSS) baryon acoustic peak and the x-ray gas mass fraction in clusters.
NASA Astrophysics Data System (ADS)
Montani, Giovanni
1. Historical picture. 1.1. The concept of universe through the centuries. 1.2. The XIX century knowledge. 1.3. Birth of scientific cosmology. 1.4. The genesis of the hot big bang model. 1.5. Guidelines to the literature -- 2. Fundamental tools. 2.1. Einstein equations. 2.2. Matter fields. 2.3. Hamiltonian formulation of the dynamics. 2.4. Synchronous reference system. 2.5. Tetradic formalism. 2.6. Gauge-like formulation of GR. 2.7. Singularity theorems. 2.8. Guidelines to the literature -- 3. The structure and dynamics of the isotropic universe. 3.1. The RW geometry. 3.2. The FRW cosmology. 3.3. Dissipative cosmologies. 3.4. Inhomogeneous fluctuations in the universe. 3.5. General relativistic perturbation theory. 3.6. The Lemaitre-Tolmann-Bondi spherical solution. 3.7. Guidelines to the literature -- 4. Features of the observed universe. 4.1. Current status: The concordance model. 4.2. The large-scale structure. 4.3. The acceleration of the universe. 4.4. The cosmic microwave background. 4.5. Guidelines to the literature -- 5. The theory of inflation. 5.1. The shortcomings of the standard cosmology. 5.2. The inflationary paradigm. 5.3. Presence of a self-interacting scalar field. 5.4. Inflationary dynamics. 5.5. Solution to the shortcomings of the standard cosmology. 5.6. General features. 5.7. Possible explanations for the present acceleration of the universe. 5.8. Guidelines to the literature -- 6. Inhomogeneous quasi-isotropic cosmologies. 6.1. Quasi-isotropic solution. 6.2. The presence of ultrarelativistic matter. 6.3. The role of a massless scalar field. 6.4. The role of an electromagnetic field. 6.5. Quasi-isotropic inflation. 6.6. Quasi-isotropic viscous solution. 6.7. Guidelines to the literature -- 7. Homogeneous universes. 7.1. Homogeneous cosmological models. 7.2. Kasner solution. 7.3. The dynamics of the Bianchi models. 7.4. Bianchi types VIII and IX models. 7.5. Dynamical systems approach. 7.6. Multidimensional homogeneous universes. 7.7. Guidelines
NASA Astrophysics Data System (ADS)
Borovský, Michal; Weigel, Martin; Barash, Lev Yu.; Žukovič, Milan
2016-02-01
The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = -1). The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.
Carloni, Sante; Chaichian, Masud; Tureanu, Anca; Nojiri, Shin'ichi; Odintsov, Sergei D.; Oksanen, Markku
2010-09-15
We propose the most general modified first-order Horava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian structure of this theory is studied in all the details in the case of the spatially-flat Friedmann-Robertson-Walker (FRW) space-time, demonstrating many of the features of the general theory. It is shown that, with some plausible assumptions, including the projectability of the lapse function, this model is consistent. As a large class of such theories, the modified Horava-Lifshitz F(R) gravity is introduced. The study of its ultraviolet properties shows that its z=3 version seems to be renormalizable in the same way as the original Horava-Lifshitz proposal. The Hamiltonian analysis of the modified Horava-Lifshitz F(R) gravity shows that it is in general a consistent theory. The F(R) gravity action is also studied in the fixed-gauge form, where the appearance of a scalar field is particularly illustrative. Then the spatially-flat FRW cosmology for this F(R) gravity is investigated. It is shown that a special choice of parameters for this theory leads to the same equations of motion as in the case of traditional F(R) gravity. Nevertheless, the cosmological structure of the modified Horava-Lifshitz F(R) gravity turns out to be much richer than for its traditional counterpart. The emergence of multiple de Sitter solutions indicates the possibility of unification of early-time inflation with late-time acceleration within the same model. Power-law F(R) theories are also investigated in detail. It is analytically shown that they have a quite rich cosmological structure: early-/late-time cosmic acceleration of quintessence, as well as of phantom types. Also it is demonstrated that all the four known types of finite-time future singularities may occur in the power-law Horava-Lifshitz F(R) gravity. Finally, a covariant proposal for (renormalizable) F(R) gravity within the Horava-Lifshitz spirit is presented.
Cho, Y.M. Department of Physics, Seoul National University, Seoul )
1990-04-15
Recently a unified cosmology was proposed as a higher-dimensional generalization of the standard big-bang cosmology. In this paper we discuss its foundation, characteristics, and possible cosmological solutions in detail. In particular we discuss how the missing-mass problem, the horizon problem, and the flatness problem of the standard model can be resolved within the context of this unified cosmology.
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688
Testing fractional action cosmology
NASA Astrophysics Data System (ADS)
Shchigolev, V. K.
2016-08-01
The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests, which gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.
Cosmology from start to finish.
Bennett, Charles L
2006-04-27
Cosmology is undergoing a revolution. With recent precise measurements of the cosmic microwave background radiation, large galaxy redshift surveys, better measurements of the expansion rate of the Universe and a host of other astrophysical observations, there is now a standard, highly constrained cosmological model. It is not a cosmology that was predicted. Unidentified dark particles dominate the matter content of our Universe, and mysteries surround the processes responsible for the accelerated expansion at its earliest moments (inflation?) and for its recent acceleration (dark energy?). New measurements must address the fundamental questions: what happened at the birth of the Universe, and what is its ultimate fate? PMID:16641983
NASA Astrophysics Data System (ADS)
Pecker, Jean-Claude; Narlikar, Jayant
2006-06-01
Part I. Observational Facts Relating to Discrete Sources: 1. The state of cosmology G. Burbidge; 2. The redshifts of galaxies and QSOs E. M. Burbidge and G. Burbidge; 3. Accretion discs in quasars J. Sulentic; Part II. Observational Facts Relating to Background Radiation: 4. CMB observations and consequences F. Bouchet; 5. Abundances of light nuclei K. Olive; 6. Evidence for an accelerating universe or lack of A. Blanchard; Part III. Standard Cosmology: 7. Cosmology, an overview of the standard model F. Bernardeau; 8. What are the building blocks of our universe? K. C. Wali; Part IV. Large-Scale Structure: 9. Observations of large-scale structure V. de Lapparent; 10. Reconstruction of large-scale peculiar velocity fields R. Mohayaee, B. Tully and U. Frisch; Part V. Alternative Cosmologies: 11. The quasi-steady state cosmology J. V. Narlikar; 12. Evidence for iron whiskers in the universe N. C. Wickramasinghe; 13. Alternatives to dark matter: MOND + Mach D. Roscoe; 14. Anthropic principle in cosmology B. Carter; Part VI. Evidence for Anomalous Redshifts: 15. Anomalous redshifts H. C. Arp; 16. Redshifts of galaxies and QSOs: the problem of redshift periodicities G. Burbidge; 17. Statistics of redshift periodicities W. Napier; 18. Local abnormal redshifts J.-C. Pecker; 19. Gravitational lensing and anomalous redshifts J. Surdej, J.-F. Claeskens and D. Sluse; Panel discussion; General discussion; Concluding remarks.
NASA Astrophysics Data System (ADS)
Pecker, Jean-Claude; Narlikar, Jayant
2011-09-01
Part I. Observational Facts Relating to Discrete Sources: 1. The state of cosmology G. Burbidge; 2. The redshifts of galaxies and QSOs E. M. Burbidge and G. Burbidge; 3. Accretion discs in quasars J. Sulentic; Part II. Observational Facts Relating to Background Radiation: 4. CMB observations and consequences F. Bouchet; 5. Abundances of light nuclei K. Olive; 6. Evidence for an accelerating universe or lack of A. Blanchard; Part III. Standard Cosmology: 7. Cosmology, an overview of the standard model F. Bernardeau; 8. What are the building blocks of our universe? K. C. Wali; Part IV. Large-Scale Structure: 9. Observations of large-scale structure V. de Lapparent; 10. Reconstruction of large-scale peculiar velocity fields R. Mohayaee, B. Tully and U. Frisch; Part V. Alternative Cosmologies: 11. The quasi-steady state cosmology J. V. Narlikar; 12. Evidence for iron whiskers in the universe N. C. Wickramasinghe; 13. Alternatives to dark matter: MOND + Mach D. Roscoe; 14. Anthropic principle in cosmology B. Carter; Part VI. Evidence for Anomalous Redshifts: 15. Anomalous redshifts H. C. Arp; 16. Redshifts of galaxies and QSOs: the problem of redshift periodicities G. Burbidge; 17. Statistics of redshift periodicities W. Napier; 18. Local abnormal redshifts J.-C. Pecker; 19. Gravitational lensing and anomalous redshifts J. Surdej, J.-F. Claeskens and D. Sluse; Panel discussion; General discussion; Concluding remarks.
Chauvin, J. P.; Lebrat, J. F.; Soule, R.; Martini, M.; Jacqmin, R.; Imel, G. R.; Salvatores, M.
1999-06-10
Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, specifically in terms of the physical understanding of the different phenomena involved and their modelling, as well as in terms of experimental validation of coupled systems, sub-critical environment/accelerator. This validation must be achieved through mock-up studies of the sub-critical environments coupled to a source of external neutrons. The MUSE-4 mock-up experiment is planed at the MASURCA facility and will use an accelerator coupled to a tritium target. The great step between the generator used in the past and the accelerator will allow to increase the knowledge in hybrid physic and to decrease the experimental biases and the measurement uncertainties.
NASA Astrophysics Data System (ADS)
Sanders, Robert H.
I discuss the classical cosmological tests, i.e., angular size-redshift, flux-redshift, and galaxy number counts, in the light of the cosmology prescribed by the interpretation of the CMB anisotropies. The discussion is somewhat of a primer for physicists, with emphasis upon the possible systematic uncertainties in the observations and their interpretation. Given the curious composition of the Universe inherent in the emerging cosmological model, I stress the value of searching for inconsistencies rather than concordance, and suggest that the prevailing mood of triumphalism in cosmology is premature.
Lin, Guang; Bao, Jie; Xu, Zhijie
2014-11-01
In this study, which builds on other related work, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component's transport process. The evolution of the crystal growth interface is simulated using the phase field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth.
Cosmology and Particle Physics
NASA Astrophysics Data System (ADS)
Steigman, G.
1982-01-01
The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses. In the last few years we have witnessed the birth and growth to healthy adolescence of a new collaboration between astrophysicists and particle physicists. The most notable success of this cooperative effort has been to provide the framework for understanding, within the context of GUTs and the hot big-bang cosmology, the universal baryon asymmetry. The most exciting new predictions this effort has spawned are that exotic relics may exist in detectable abundances. In particular, we may live in a neutrino-dominated Universe. In the next few years, accummulating laboratory data (for example proton decay, neutrino masses and oscillations) coupled with theoritical work in particle physics and cosmology will ensure the growth to maturity of this joint effort.
NASA Astrophysics Data System (ADS)
Tartaglia, Angelo
2016-01-01
Starting from some relevant facts concerning the behavior of the universe over large scale and time span, the analogy between the geometric approach of General Relativity and the classical description of an elastic strained material continuum is discussed. Extending the elastic deformation approach to four dimensions it is shown that the accelerated expansion of the universe is recovered. The strain field of space-time reproduces properties similar to the ones ascribed to the dark energy currently called in to explain the accelerated expansion. The strain field in the primordial universe behaves as radiation, but asymptotically it reproduces the cosmological constant. Subjecting the theory to a number of cosmological tests confirms the soundness of the approach and gives an optimal value for the one parameter of the model, i.e. the bulk modulus of the space-time continuum. Finally various aspects of the Strained State Cosmology (SSC) are discussed and contrasted with some non-linear massive gravity theories. The possible role of structure topological defects is also mentioned. The conclusion is that SSC is at least as good as the ΛCDM standard cosmology, giving a more intuitive interpretation of the physical nature of the phenomena.
The screening Horndeski cosmologies
NASA Astrophysics Data System (ADS)
Starobinsky, Alexei A.; Sushkov, Sergey V.; Volkov, Mikhail S.
2016-06-01
We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a Λ-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the Λ-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the Λ-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing ``the emergence of time''. Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyse the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.
NASA Astrophysics Data System (ADS)
Krauss, L. M.
1999-01-01
The long-derided cosmological constant - a contrivance of Albert Einstein's that represents a bizarre form of energy inherent in space itself - is one of two contenders for explaining changes in the expansion rate of the Universe.
NASA Astrophysics Data System (ADS)
Banks, T.
This talk is a summary of work done in collaboration with Micha Berkooz, Greg Moore, Steve Shenker and Paul Steinhardt on a cosmology whose early history is described in terms of the moduli fields of string theory.
NASA Astrophysics Data System (ADS)
Lesgourges, J.
2013-08-01
We present a self-contained summary of the theory of linear cosmological perturbations. We emphasize the effect of the six parameters of the minimal cosmological model, first, on the spectrum of Cosmic Microwave Background temperature anisotropies, and second, on the linear matter power spectrum. We briefly review at the end the possible impact of a few non-minimal dark matter and dark energy models.
The Averaging Problem in Cosmology
NASA Astrophysics Data System (ADS)
Paranjape, Aseem
2009-06-01
This thesis deals with the averaging problem in cosmology, which has gained considerable interest in recent years, and is concerned with correction terms (after averaging inhomogeneities) that appear in the Einstein equations when working on the large scales appropriate for cosmology. It has been claimed in the literature that these terms may account for the phenomenon of dark energy which causes the late time universe to accelerate. We investigate the nature of these terms by using averaging schemes available in the literature and further developed to be applicable to the problem at hand. We show that the effect of these terms when calculated carefully, remains negligible and cannot explain the late time acceleration.
NASA Astrophysics Data System (ADS)
Silk, Joseph
2008-11-01
The field of cosmology has been transformed since the glorious decades of the 1920's and 1930's when theory and observation converged to develop the current model of the expanding universe. It was a triumph of the theory of general relativity and astronomy. The first revolution came when the nuclear physicists entered the fray. This marked the debut of the hot big bang, in which the light elements were synthesized in the first three minutes. It was soon realised that elements like carbon and iron were synthesized in exploding stars. However helium, as well as deuterium and lithium, remain as George Gamow envisaged, the detritus of the big bang. The climax arrived with one of the most remarkable discoveries of the twentieth century, the cosmic microwave background radiation, in 1964. The fossil glow turned out to have the spectrum of an ideal black body. One could not imagine a stronger confirmation of the hot and dense origin of the universe. This discovery set the scene for the next major advance. It was now the turn of the particle physicists, who realized that the energies attained near the beginning of the universe, and unachievable in any conceivable terrestrial accelerator, provided a unique testing ground for theories of grand unification of the fundamental forces. This led Alan Guth and Andrei Linde in 1980 to propose the theory of inflation, which solved outstanding puzzles of the big bang. One could now understand why the universe is so large and homogeneous, and the origin of the seed fluctuations that gave rise to large-scale structure. A key prediction was that the universe should have Euclidean geometry, now verified to a precision of a few percent. Modern cosmology is firmly embedded in particle physics. It merits a text written by a particle physicist who can however appreciate the contributions of astronomy that provide the foundation and infrastructure for the theory of the expanding universe. There are now several such texts available. The most
Unstable anisotropic loop quantum cosmology
Nelson, William; Sakellariadou, Mairi
2009-09-15
We study stability conditions of the full Hamiltonian constraint equation describing the quantum dynamics of the diagonal Bianchi I model in the context of loop quantum cosmology. Our analysis has shown robust evidence of an instability in the explicit implementation of the difference equation, implying important consequences for the correspondence between the full loop quantum gravity theory and loop quantum cosmology. As a result, one may question the choice of the quantization approach, the model of lattice refinement, and/or the role of the ambiguity parameters; all these should, in principle, be dictated by the full loop quantum gravity theory.
Vacuum energy and the cosmological constant
NASA Astrophysics Data System (ADS)
Bass, Steven D.
2015-06-01
The accelerating expansion of the Universe points to a small positive value for the cosmological constant or vacuum energy density. We discuss recent ideas that the cosmological constant plus Large Hadron Collider (LHC) results might hint at critical phenomena near the Planck scale.
Cosmological Inflation: A Personal Perspective
NASA Technical Reports Server (NTRS)
Kazanas, Demos
2008-01-01
We present a brief review of Cosmological Inflation from the personal perspective of the speaker who almost 30 years ago proposed a way of resolving the problem of Cosmological Horizon by employing certain notions and developments from the field of High Energy Physics. Along with a brief introduction of the Horizon and Flatness problems of standard cosmology, this lecture concentrates on personal reminiscing of the notions and ideas that prevailed and influenced the author's thinking at the time. The lecture then touches upon some more recent developments related to the subject including exact solutions to conformal gravity that provide a first principles emergence of a characteristic acceleration in the universe and concludes with some personal views concerning the direction that the cosmology field has taken in the past couple of decades and certain speculations some notions that may indicate future directions of research.
Cosmological tests of modified gravity
NASA Astrophysics Data System (ADS)
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years. PMID:27007681
NASA Astrophysics Data System (ADS)
Tsamis, N. C.; Woodard, R. P.
2016-08-01
We study a class of nonlocal, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the Universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense Universe the nonlocal screening terms become constant as the Universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller antiscreening effect that could explain the current phase of acceleration.
NASA Astrophysics Data System (ADS)
Narimani, Ali; Moss, Adam; Scott, Douglas
2012-10-01
Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant G is entirely dimensionfull. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of both Big Bang Nucleosynthesis and recombination in a dimensionless manner. Rigorously determining how to talk about the model in a way which avoids physical dimensions is a requirement for proceeding with a calculation to constrain time-varying fundamental constants. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any one of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding G to the usual cosmological parameter set.
NASA Astrophysics Data System (ADS)
Kraniotis, G. V.
In this work, we review recent work on string cosmology. The need for an inflationary era is well known. Problems of Standard Cosmology such as horizon, flatness, monopole and entropy find an elegant solution in the inflationary scenario. On the other hand no adequate inflationary model has been constructed so far. In this review we discuss the attempts that have been made in the field of string theory for obtaining an adequate Cosmological Inflationary Epoch. In particular, orbifold compactifications of string theory which are constrained by target-space duality symmetry offer as natural candidates for the role of inflatons the orbifold moduli. Orbifold moduli dynamics is very constrained by duality symmetry and offers a concrete framework for discussing Cosmological Inflation. We discuss the resulting cosmology assuming that nonperturbative dynamics generates a moduli potential which respects target-space modular invariance. Various modular forms for the nonperturbative superpotential and Kähler potential which include the absolute modular invariant j(T) besides the Dedekind eta function η(T) are discussed. We also review scale-factor duality and pre-Big-Bang scenarios in which inflation is driven by the kinetic terms of the dilaton modulus. In this context we discuss the problem of graceful exit and review recent attempts for solving the problem of exiting from inflation. The possibility of obtaining inflation through the D-terms in string models with anomalous UA(1) and other Abelian factors is reviewed. In this context we discuss how the slow-roll problem in supergravity models with F-term inflation can be solved by D-term inflation. We also briefly review the consequences of duality for a generalized Heisenberg uncertainty principle and the structure of space-time at short scales. The problem of the Cosmological Constant is also briefly discussed.
Multi-dimensional cosmology and GUP
Zeynali, K.; Motavalli, H.; Darabi, F. E-mail: f.darabi@azaruniv.edu
2012-12-01
We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions.
NASA Astrophysics Data System (ADS)
Wong, Wan Yan
2008-11-01
In this thesis we focus on studying the physics of cosmological recombination and how the details of recombination affect the Cosmic Microwave Background (CMB) anisotropies. We present a detailed calculation of the spectral line distortions on the CMB spectrum arising from the Lyman-alpha and the lowest two-photon transitions in the recombination of hydrogen (H), and the corresponding lines from helium (He). The peak of these distortions mainly comes from the Lyman-alpha transition and occurs at about 170 microns, which is the Wien part of the CMB. The major theoretical limitation for extracting cosmological parameters from the CMB sky lies in the precision with which we can calculate the cosmological recombination process. With this motivation, we perform a multi-level calculation of the recombination of H and He with the addition of the spin-forbidden transition for neutral helium (He I), plus the higher order two-photon transitions for H and among singlet states of He I. We find that the inclusion of the spin-forbidden transition results in more than a percent change in the ionization fraction, while the other transitions give much smaller effects. Last we modify RECFAST by introducing one more parameter to reproduce recent numerical results for the speed-up of helium recombination. Together with the existing hydrogen `fudge factor', we vary these two parameters to account for the remaining dominant uncertainties in cosmological recombination. By using a Markov Chain Monte Carlo method with Planck forecast data, we find that we need to determine the parameters to better than 10% for He I and 1% for H, in order to obtain negligible effects on the cosmological parameters.
NASA Astrophysics Data System (ADS)
Goodstein, David
1. Introduction -- 2. Galaxy formation: from start to finish / Andrew Benson -- 3. The reionization of cosmic hydrogen by the first galaxies / Abraham Loeb -- 4. Clusters of galaxies / Elena Pierpaoli -- 5. Reionizing the universe with the first sources of light / Volker Bromm -- 6. Mapping the cosmic dawn / Steven Furlanetto -- 7. Neutrino masses from cosmology / Ofer Lahav and Shaun Thomas -- 8. Measuring the expansion rate of the universe / Laura Ferrarese -- 9. Particles as dark matter / Dan Hooper -- 10. Detection of WIMP dark matter / Sunil Golwala and Dan McKinsey -- 11. The accelerating universe / Dragan Huterer -- 12. Frontiers of dark energy / Eric V. Linder -- 13. The first supermassive black holes in the universe / Xiaohui Fan.
NASA Astrophysics Data System (ADS)
Bothun, Greg
2011-10-01
Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent
NASA Astrophysics Data System (ADS)
Marsh, David J. E.
2016-07-01
Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also well-motivated within high energy physics, appearing in theories related to CP-violation in the standard model, supersymmetric theories, and theories with extra-dimensions, including string theory, and so axion cosmology offers us a unique view onto these theories. I review the motivation and models for axions in particle physics and string theory. I then present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via BBN, the CMB, reionization and structure formation, up to the present-day Universe. Topics covered include: axion dark matter (DM); direct and indirect detection of axions, reviewing existing and future experiments; axions as dark radiation; axions and the cosmological constant problem; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation. A major focus is on the population of ultralight axions created via vacuum realignment, and its role as a DM candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is ma > 10-24eV from linear observables, extending to ma ≳ 10-22eV from non-linear observables, and has the potential to reach ma ≳ 10-18eV in the future. These bounds are weaker if the axion is not all of the DM, giving rise to limits on the relic density at low mass. This leads to the exciting possibility that the effects of axion DM on structure formation could one day be detected
NASA Astrophysics Data System (ADS)
Kirillov, A. A.; Savelova, E. P.
2016-05-01
We describe in details the procedure how the Lobachevsky space can be factorized to a space of the constant negative curvature filled with a gas of wormholes. We show that such wormholes have throat sections in the form of tori and are traversable and stable in the cosmological context. The relation of such wormholes to the dark matter phenomenon is briefly described. We also discuss the possibility of the existence of analogous factorizations for all types of homogeneous spaces.
NASA Astrophysics Data System (ADS)
Grant, E.; Murdin, P.
2000-11-01
During the early Middle Ages (ca 500 to ca 1130) scholars with an interest in cosmology had little useful and dependable literature. They relied heavily on a partial Latin translation of PLATO's Timaeus by Chalcidius (4th century AD), and on a series of encyclopedic treatises associated with the names of Pliny the Elder (ca AD 23-79), Seneca (4 BC-AD 65), Macrobius (fl 5th century AD), Martianus ...
Bianchi Type V Viscous Fluid Cosmological Models with Varying Cosmological Term
NASA Astrophysics Data System (ADS)
Singh, J. P.; Baghel, P. S.; Singh, A.
2015-08-01
Bianchi type V viscous fluid cosmological models with varying cosmological term Λ are investigated. We have examined a cosmological scenario proposing expansion anisotropy σ/ θ to be suitable function of average scale factor S in the background of homogeneous, anisotropic Bianchi type V space-time. The models isotropize asymptotically and the presence of shear viscosity accelerates the isotropization. Our models describe a unified expansion history of the universe indicating initial decelerating expansion and late time accelerating phase consistent with observations. Physical and kinematical parameters of the models are discussed.
NASA Astrophysics Data System (ADS)
Wickramasinghe, N. C.; Hoyle, Fred
1998-07-01
The central regions of galaxies could provide the most promising venues for the large-scale synthesis of prebiotic molecules by Miller-Urey type processes.Exploding supermassive stars would produce the basic chemical elements necessary to form molecules in high-density mass flows under near-thermodynamic conditions. Such molecules are then acted upon by X-rays in a manner that simulates the conditions required for Miller-Urey type processing. The Miller-Urey molecular products could initially lead to the origination and dispersal of microbial life on a cosmological scale. Thereafter the continuing production of such molecules would serve as the feedstock of life.
Bardeen, J.M.
1986-01-01
The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe. 47 refs.
The Cosmological Constant in Quantum Cosmology
Wu Zhongchao
2008-10-10
Hawking proposed that the cosmological constant is probably zero in quantum cosmology in 1984. By using the right configuration for the wave function of the universe, a complete proof is found very recently.
The cosmology of asymmetric brane modified gravity
O'Callaghan, Eimear; Gregory, Ruth; Pourtsidou, Alkistis E-mail: ppxap1@nottingham.ac.uk
2009-09-01
We consider the asymmetric branes model of modified gravity, which can produce late time acceleration of the universe and compare the cosmology of this model to the standard ΛCDM model and to the DGP braneworld model. We show how the asymmetric cosmology at relevant physical scales can be regarded as a one-parameter extension of the DGP model, and investigate the effect of this additional parameter on the expansion history of the universe.
Dark spinors with torsion in cosmology
Boehmer, Christian G.; Burnett, James
2008-11-15
We solve one of the open problems in Einstein-Cartan theory, namely, we find a natural matter source whose spin angular momentum tensor is compatible with the cosmological principle. We analyze the resulting evolution equations and find that an epoch of accelerated expansion is an attractor. The torsion field quickly decays in that period. Our results are interpreted in the context of the standard model of cosmology.
NASA Astrophysics Data System (ADS)
Weidner, Carrie; Yu, Hoon; Anderson, Dana
2016-05-01
In this work, we report on progress towards performing interferometry using atoms trapped in an optical lattice. That is, we start with atoms in the ground state of an optical lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , and by a prescribed phase function ϕ(t) , transform from one atomic wavefunction to another. In this way, we implement the standard interferometric sequence of beam splitting, propagation, reflection, reverse propagation, and recombination. Through the use of optimal control techniques, we have computationally demonstrated a scalable accelerometer that provides information on the sign of the applied acceleration. Extension of this idea to a two-dimensional shaken-lattice-based gyroscope is discussed. In addition, we report on the experimental implementation of the shaken lattice system.
Observational constraints on undulant cosmologies
Barenboim, Gabriela; Mena Requejo, Olga; Quigg, Chris; /Fermilab
2005-10-01
In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale factor of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.
Nonlinear growing neutrino cosmology
NASA Astrophysics Data System (ADS)
Ayaita, Youness; Baldi, Marco; Führer, Florian; Puchwein, Ewald; Wetterich, Christof
2016-03-01
The energy scale of dark energy, ˜2 ×10-3 eV , is a long way off compared to all known fundamental scales—except for the neutrino masses. If dark energy is dynamical and couples to neutrinos, this is no longer a coincidence. The time at which dark energy starts to behave as an effective cosmological constant can be linked to the time at which the cosmic neutrinos become nonrelativistic. This naturally places the onset of the Universe's accelerated expansion in recent cosmic history, addressing the why-now problem of dark energy. We show that these mechanisms indeed work in the growing neutrino quintessence model—even if the fully nonlinear structure formation and backreaction are taken into account, which were previously suspected of spoiling the cosmological evolution. The attractive force between neutrinos arising from their coupling to dark energy grows as large as 106 times the gravitational strength. This induces very rapid dynamics of neutrino fluctuations which are nonlinear at redshift z ≈2 . Nevertheless, a nonlinear stabilization phenomenon ensures only mildly nonlinear oscillating neutrino overdensities with a large-scale gravitational potential substantially smaller than that of cold dark matter perturbations. Depending on model parameters, the signals of large-scale neutrino lumps may render the cosmic neutrino background observable.
NASA Astrophysics Data System (ADS)
Ross, Charles H.
2005-04-01
Aristotle thought that the universe was finite and Earth centered. Newton thought that it was infinite. Einstein guessed that the universe was finite, spherical, static, warped, and closed. Hubble's 1930 discovery of the expanding universe, Penzias and Wilson's 1968 discovery of the isotropic CMB, and measurements on light element abundances, however, established a big bang origin. Vera Rubin's 1980 dark matter discovery significantly impacted contending theories. However, 1998 is the year when sufficiently accurate supernova and primordial deuterium data was available to truly explore the universe. CMB anisotropy measurements further extended our cosmological database in 2003. On the theoretical side, Friedmann's 1922 perturbation solution of Einstein's general relativity equations for a static universe has shaped the thought and direction in cosmology for the past 80 years. It describes 3D space as a dynamic function of time. However, 80 years of trying to fit Friedmann's solution to observational data has been a bumpy road - resulting in such counter-intuitive, but necessary, features as rapid inflation, precision tuning, esoteric dark matter, and an accelerating input of esoteric dark energy.
Cosmological constraints on a classical limit of quantum gravity
Easson, Damien A.; Trodden, Mark; Schuller, Frederic P.; Wohlfarth, Mattias N.R.
2005-08-15
We investigate the cosmology of a recently proposed deformation of Einstein gravity, emerging from quantum gravity heuristics. The theory is constructed to have de Sitter space as a vacuum solution, and thus to be relevant to the accelerating universe. However, this solution turns out to be unstable, and the true phase space of cosmological solutions is significantly more complex, displaying two late-time power-law attractors - one accelerating and the other dramatically decelerating. It is also shown that nonaccelerating cosmologies sit on a separatrix between the two basins of attraction of these attractors. Hence it is impossible to pass from a decelerating cosmology to an accelerating one, as required in standard cosmology for consistency with nucleosynthesis and structure formation and compatibility with the data inferred from supernovae Ia. We point out that alternative models of the early universe, such as the one investigated here might provide possible ways to circumvent these requirements.
Koivisto, Tomi; Wills, Danielle; Zavala, Ivonne E-mail: d.e.wills@durham.ac.uk
2014-06-01
Disformally coupled cosmologies arise from Dirac-Born-Infeld actions in Type II string theories, when matter resides on a moving hidden sector D-brane. Since such matter interacts only very weakly with the standard model particles, this scenario can provide a natural origin for the dark sector of the universe with a clear geometrical interpretation: dark energy is identified with the scalar field associated to the D-brane's position as it moves in the internal space, acting as quintessence, while dark matter is identified with the matter living on the D-brane, which can be modelled by a perfect fluid. The coupling functions are determined by the (warped) extra-dimensional geometry, and are thus constrained by the theory. The resulting cosmologies are studied using both dynamical system analysis and numerics. From the dynamical system point of view, one free parameter controls the cosmological dynamics, given by the ratio of the warp factor and the potential energy scales. The disformal coupling allows for new scaling solutions that can describe accelerating cosmologies alleviating the coincidence problem of dark energy. In addition, this scenario may ameliorate the fine-tuning problem of dark energy, whose small value may be attained dynamically, without requiring the mass of the dark energy field to be unnaturally low.
Average observational quantities in the timescape cosmology
Wiltshire, David L.
2009-12-15
We examine the properties of a recently proposed observationally viable alternative to homogeneous cosmology with smooth dark energy, the timescape cosmology. In the timescape model cosmic acceleration is realized as an apparent effect related to the calibration of clocks and rods of observers in bound systems relative to volume-average observers in an inhomogeneous geometry in ordinary general relativity. The model is based on an exact solution to a Buchert average of the Einstein equations with backreaction. The present paper examines a number of observational tests which will enable the timescape model to be distinguished from homogeneous cosmologies with a cosmological constant or other smooth dark energy, in current and future generations of dark energy experiments. Predictions are presented for comoving distance measures; H(z); the equivalent of the dark energy equation of state, w(z); the Om(z) measure of Sahni, Shafieloo, and Starobinsky; the Alcock-Paczynski test; the baryon acoustic oscillation measure, D{sub V}; the inhomogeneity test of Clarkson, Bassett, and Lu; and the time drift of cosmological redshifts. Where possible, the predictions are compared to recent independent studies of similar measures in homogeneous cosmologies with dark energy. Three separate tests with indications of results in possible tension with the {lambda}CDM model are found to be consistent with the expectations of the timescape cosmology.
Cosmological constant from the emergent gravity perspective
NASA Astrophysics Data System (ADS)
Padmanabhan, T.; Padmanabhan, Hamsa
2014-05-01
Observations indicate that our universe is characterized by a late-time accelerating phase, possibly driven by a cosmological constant Λ, with the dimensionless parameter Λ {LP2} ˜= 10-122, where LP = (Għ/c3)1/2 is the Planck length. In this review, we describe how the emergent gravity paradigm provides a new insight and a possible solution to the cosmological constant problem. After reviewing the necessary background material, we identify the necessary and sufficient conditions for solving the cosmological constant problem. We show that these conditions are naturally satisfied in the emergent gravity paradigm in which (i) the field equations of gravity are invariant under the addition of a constant to the matter Lagrangian and (ii) the cosmological constant appears as an integration constant in the solution. The numerical value of this integration constant can be related to another dimensionless number (called CosMIn) that counts the number of modes inside a Hubble volume that cross the Hubble radius during the radiation and the matter-dominated epochs of the universe. The emergent gravity paradigm suggests that CosMIn has the numerical value 4π, which, in turn, leads to the correct, observed value of the cosmological constant. Further, the emergent gravity paradigm provides an alternative perspective on cosmology and interprets the expansion of the universe itself as a quest towards holographic equipartition. We discuss the implications of this novel and alternate description of cosmology.
Explicit cosmological coarse graining via spatial averaging
NASA Astrophysics Data System (ADS)
Paranjape, Aseem; Singh, T. P.
2008-01-01
The present matter density of the Universe, while highly inhomogeneous on small scales, displays approximate homogeneity on large scales. We propose that whereas it is justified to use the Friedmann Lemaître Robertson Walker (FLRW) line element (which describes an exactly homogeneous and isotropic universe) as a template to construct luminosity distances in order to compare observations with theory, the evolution of the scale factor in such a construction must be governed not by the standard Einstein equations for the FLRW metric, but by the modified Friedmann equations derived by Buchert (Gen Relat Gravit 32:105, 2000; 33:1381, 2001) in the context of spatial averaging in Cosmology. Furthermore, we argue that this scale factor, defined in the spatially averaged cosmology, will correspond to the effective FLRW metric provided the size of the averaging domain coincides with the scale at which cosmological homogeneity arises. This allows us, in principle, to compare predictions of a spatially averaged cosmology with observations, in the standard manner, for instance by computing the luminosity distance versus red-shift relation. The predictions of the spatially averaged cosmology would in general differ from standard FLRW cosmology, because the scale-factor now obeys the modified FLRW equations. This could help determine, by comparing with observations, whether or not cosmological inhomogeneities are an alternative explanation for the observed cosmic acceleration.
The Age of Precision Cosmology
NASA Technical Reports Server (NTRS)
Chuss, David T.
2012-01-01
In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.
How fabulous is Fab 5 cosmology?
Linder, Eric V.
2013-12-01
Extended gravity origins for cosmic acceleration can solve some fine tuning issues and have useful characteristics, but generally have little to say regarding the cosmological constant problem. Fab 5 gravity can be ghost free and stable, have attractor solutions in the past and future, and possess self tuning that solves the original cosmological constant problem. Here we show however it does not possess all these qualities at the same time. We also demonstrate that the self tuning is so powerful that it not only cancels the cosmological constant but also all other energy density, and we derive the scalings of its approach to a renormalized de Sitter cosmology. While this strong cancellation is bad for the late universe, it greatly eases early universe inflation.
NASA Astrophysics Data System (ADS)
Harling, B. v.
2010-02-01
In this thesis, we study throats in the early, hot universe. Throats are a common feature of the landscape of type IIB string theory. If a throat is heated during cosmological evolution, energy is subsequently transferred to other throats and to the standard model. We calculate the heat transfer rate and the decay rate of throat-localized Kaluza-Klein states in a ten-dimensional model. For the calculation, we employ the dual description of the throats in terms of gauge theories. We discuss modifications of the decay rate which arise in flux compactifications and for Klebanov-Strassler throats and emphasize the role of tachyonic scalars in such throats in mediating decays of Kaluza-Klein modes. Our results are also applicable to the energy transfer from the heated standard model to throats. We determine the resulting energy density in throats at our epoch in dependence of their infrared scales and of the reheating temperature. The Kaluza-Klein modes in the throats decay to other sectors with a highly suppressed rate. If their lifetime is longer than the age of the universe, they are an interesting dark matter candidate. We show that, if the reheating temperature was 10^10 - 10^11 GeV, throats with infrared scales in the range of 10^5 GeV to 10^10 GeV can account for the observed dark matter. We identify several scenarios where this type of dark matter is sufficiently stable but where decays to the standard model can be discovered via gamma-ray observations.
Quantum coherent states in cosmology
NASA Astrophysics Data System (ADS)
Ziaeepour, Houri
2015-07-01
Coherent states consist of superposition of infinite number of particles and do not have a classical analogue. We study their evolution in a FLRW cosmology and show that only when full quantum corrections are considered, they may survive the expansion of the Universe and form a global condensate. This state of matter can be the origin of accelerating expansion of the Universe, generally called dark energy, and inflation in the early universe. Additionally, such a quantum pool may be the ultimate environment for decoherenceat shorter distances. If dark energy is a quantum coherent state, its dominant contribution to the total energy of the Universe at present provides a low entropy state which may be necessary as an initial condition for a new Big Bang in the framework of bouncing cosmology models.
Attractor behaviour in ELKO cosmology
NASA Astrophysics Data System (ADS)
Basak, Abhishek; Bhatt, Jitesh R.; Shankaranarayanan, S.; Prasantha Varma, K. V.
2013-04-01
We study the dynamics of ELKO in the context of accelerated phase of our universe. To avoid the fine tuning problem associated with the initial conditions, it is required that the dynamical equations lead to an early-time attractor. In the earlier works, it was shown that the dynamical equations containing ELKO fields do not lead to early-time stable fixed points. In this work, using redefinition of variables, we show that ELKO cosmology admits early-time stable fixed points. More interestingly, we show that ELKO cosmology admit two sets of attractor points corresponding to slow and fast-roll inflation. The fast-roll inflation attractor point is unique for ELKO as it is independent of the form of the potential. We also discuss the plausible choice of interaction terms in these two sets of attractor points and constraints on the coupling constant.
Cosmology with higher-derivative matter fields
NASA Astrophysics Data System (ADS)
Harko, Tiberiu; Lobo, Francisco S. N.; Saridakis, Emmanuel N.
2016-06-01
We investigate the cosmological implications of a new class of modified gravity, where the field equations generically include higher-order derivatives of the matter fields, arising from the introduction of non-dynamical auxiliary fields in the action. Imposing a flat, homogeneous and isotropic geometry, we extract the Friedmann equations, obtaining an effective dark-energy sector containing higher-derivatives of the matter energy density and pressure. For the cases of dust, radiation and stiff matter, we analyze the cosmological behavior, finding accelerating, de Sitter and non-accelerating phases, dominated by matter or dark-energy. Additionally, the effective dark-energy equation-of-state parameter can be quintessence-like, cosmological-constant-like or even phantom-like. The detailed study of these scenarios may provide signatures, that could distinguish them from other candidates of modified gravity.
Bornyakov, V.G.
2005-06-01
Possibilities that are provided by a lattice regularization of QCD for studying nonperturbative properties of QCD are discussed. A review of some recent results obtained from computer calculations in lattice QCD is given. In particular, the results for the QCD vacuum structure, the hadron mass spectrum, and the strong coupling constant are considered.
Gelfand, N.M.; Mokhov, N.V.
1995-05-01
The design for a high-luminosity {mu}{sup +}{mu}{sup {minus}} superconducting storage ring is presented based on first-pass calculations. Special attention is paid to two Iowa interaction regions (IR) whose optics are literally interlaced with the collider detectors. Various sources of backgrounds in IR are explored via realistic Monte Carlo simulations. An improved design of the collider lattice in the neighborhood of the interaction points (EP) is determined by the need to reduce significantly background levels in the detectors.
NASA Astrophysics Data System (ADS)
Ellis, George F. R.
2014-12-01
This is the text of part of the Cosmology course at the Special Courses at the National Observatory of Rio de Janeiro - CCE. The first part summarises cosmology today, including issues where significant questions reman, and the second part is dedicated to the 1+3 covariant formalism for cosmology.
2013-01-01
The influence of lattice strain on the oxygen exchange kinetics and diffusion in oxides was investigated on (100) epitaxial La1–xSrxCoO3−δ (LSC) thin films grown by pulsed laser deposition. Planar tensile and compressively strained LSC films were obtained on single-crystalline SrTiO3 and LaAlO3. 18O isotope exchange depth profiling with ToF-SIMS was employed to simultaneously measure the tracer surface exchange coefficient k* and the tracer diffusion coefficient D* in the temperature range 280–475 °C. In accordance with recent theoretical findings, much faster surface exchange (∼4 times) and diffusion (∼10 times) were observed for the tensile strained films compared to the compressively strained films in the entire temperature range. The same strain effect—tensile strain leading to higher k* and D*—was found for different LSC compositions (x = 0.2 and x = 0.4) and for surface-etched films. The temperature dependence of k* and D* is discussed with respect to the contributions of strain states, formation enthalpy of oxygen vacancies, and vacancy mobility at different temperatures. Our findings point toward the control of oxygen surface exchange and diffusion kinetics by means of lattice strain in existing mixed conducting oxides for energy conversion applications. PMID:23527691
Exact cosmological solutions of models with an interacting dark sector
NASA Astrophysics Data System (ADS)
Pavan, A. B.; Ferreira, Elisa G. M.; Micheletti, Sandro M. R.; de Souza, J. C. C.; Abdalla, E.
2012-11-01
In this work we extend the first order formalism for cosmological models that present an interaction between a fermionic and a scalar field. Cosmological exact solutions describing universes filled with interacting dark energy and dark matter have been obtained. Viable cosmological solutions with an early period of decelerated expansion followed by late acceleration have been found, notably one which presents a dark matter component dominating in the past and a dark energy component dominating in the future. In another one, the dark energy alone is the responsible for both periods, similar to a Chaplygin gas case. Exclusively accelerating solutions have also been obtained.
Superbounce and loop quantum cosmology ekpyrosis from modified gravity
NASA Astrophysics Data System (ADS)
Oikonomou, V. K.
2015-09-01
As is known, in modified cosmological theories of gravity many of the cosmologies which could not be generated by standard Einstein gravity, can be consistently described by theories. Using known reconstruction techniques, we investigate which theories can lead to a Hubble parameter describing two types of cosmological bounces, the superbounce model, related to supergravity and non-supersymmetric models of contracting ekpyrosis and also the Loop Quantum Cosmology modified ekpyrotic model. Since our method is an approximate method, we investigate the problem at large and small curvatures. As we evince, both models yield power law reconstructed gravities, with the most interesting new feature being that both lead to accelerating cosmologies, in the large curvature approximation. The mathematical properties of the some Friedmann-Robertson-Walker spacetimes , that describe superbounce-like cosmologies are also pointed out, with regards to the group of curvature collineations.
Philosophical Roots of Cosmology
NASA Astrophysics Data System (ADS)
Ivanovic, M.
2008-10-01
We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.
NASA Astrophysics Data System (ADS)
Tipler, Frank J.
1996-10-01
It is generally believed that it is not possible to rigorously analyze a homogeneous and isotropic cosmological model in Newtonian mechanics. I show on the contrary that if Newtonian gravity theory is rewritten in geometrical language in the manner outlined in 1923-1924 by Élie Cartan [Ann. Ecole Norm. Sup. 40, 325-412 (1923); 41, 1-25 (1924)], then Newtonian cosmology is as rigorous as Friedmann cosmology. In particular, I show that the equation of geodesic deviation in Newtonian cosmology is exactly the same as equation of geodesic deviation in the Friedmann universe, and that this equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: Ever-expanding and recollapsing universes are allowed in any noncompact homogeneous and isotropic spatial topology. I shall give a brief history of attempts to do cosmology in the framework of Newtonian mechanics.
ERIC Educational Resources Information Center
Parris, Richard
2011-01-01
Given a segment that joins two lattice points in R[superscript 3], when is it possible to form a lattice cube that uses this segment as one of its twelve edges? A necessary and sufficient condition is that the length of the segment be an integer. This paper presents an algorithm for finding such a cube when the prime factors of the length are…
Conformal cosmological model and SNe Ia data
Zakharov, A. F.; Pervushin, V. N.
2012-11-15
Now there is a huge scientific activity in astrophysical studies and cosmological ones in particular. Cosmology transforms from a pure theoretical branch of science into an observational one. All the cosmological models have to pass observational tests. The supernovae type Ia (SNe Ia) test is among the most important ones. If one applies the test to determine parameters of the standard Friedmann-Robertson-Walker cosmological model one can conclude that observations lead to the discovery of the dominance of the {Lambda} term and as a result to an acceleration of the Universe. However, there are big mysteries connected with an origin and an essence of dark matter (DM) and the {Lambda} term or dark energy (DE). Alternative theories of gravitation are treated as a possible solution of DM and DE puzzles. The conformal cosmological approach is one of possible alternatives to the standard {Lambda}CDM model. As it was noted several years ago, in the framework of the conformal cosmological approach an introduction of a rigid matter can explain observational data without {Lambda} term (or dark energy). We confirm the claim with much larger set of observational data.
NASA Astrophysics Data System (ADS)
Bojowald, Martin
The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge.
TOPICAL REVIEW The cosmological constant puzzle
NASA Astrophysics Data System (ADS)
Bass, Steven D.
2011-04-01
The accelerating expansion of the Universe points to a small positive vacuum energy density and negative vacuum pressure. A strong candidate is the cosmological constant in Einstein's equations of general relativity. Possible contributions are zero-point energies and the condensates associated with spontaneous symmetry breaking. The vacuum energy density extracted from astrophysics is 1056 times smaller than the value expected from quantum fields and standard model particle physics. Is the vacuum energy density time dependent? We give an introduction to the cosmological constant puzzle and ideas how to solve it.
General very special relativity in Finsler cosmology
Kouretsis, A. P.; Stathakopoulos, M.; Stavrinos, P. C.
2009-05-15
General very special relativity (GVSR) is the curved space-time of very special relativity (VSR) proposed by Cohen and Glashow. The geometry of general very special relativity possesses a line element of Finsler geometry introduced by Bogoslovsky. We calculate the Einstein field equations and derive a modified Friedmann-Robertson-Walker cosmology for an osculating Riemannian space. The Friedmann equation of motion leads to an explanation of the cosmological acceleration in terms of an alternative non-Lorentz invariant theory. A first order approach for a primordial-spurionic vector field introduced into the metric gives back an estimation of the energy evolution and inflation.
Bousso, Raphael
2005-01-25
We study conditions for the existence of asymptotic observables in cosmology. With the exception of de Sitter space, the thermal properties of accelerating universes permit arbitrarily long observations, and guarantee the production of accessible states of arbitrarily large entropy. This suggests that some asymptotic observables may exist, despite the presence of an event horizon. Comparison with decelerating universes shows surprising similarities: Neither type suffers from the limitations encountered in de Sitter space, such as thermalization and boundedness of entropy. However, we argue that no realistic cosmology permits the global observations associated with an S-matrix.
Cosmology of a Covariant Galileon Field
NASA Astrophysics Data System (ADS)
de Felice, Antonio; Tsujikawa, Shinji
2010-09-01
We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.
Our Universe from the cosmological constant
Barrau, Aurélien; Linsefors, Linda E-mail: linda.linsefors@lpsc.in2p3.fr
2014-12-01
The issue of the origin of the Universe and of its contents is addressed in the framework of bouncing cosmologies, as described for example by loop quantum gravity. If the current acceleration is due to a true cosmological constant, this constant is naturally conserved through the bounce and the Universe should also be in a (contracting) de Sitter phase in the remote past. We investigate here the possibility that the de Sitter temperature in the contracting branch fills the Universe with radiation that causes the bounce and the subsequent inflation and reheating. We also consider the possibility that this gives rise to a cyclic model of the Universe and suggest some possible tests.
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
NASA Astrophysics Data System (ADS)
Brynjolfsson, Ari
2011-04-01
The newly discovered plasma redshift cross section explains a long range of phenomena; including the cosmological redshift, and the intrinsic redshift of Sun, stars, galaxies and quasars. It explains the beautiful black body spectrum of the CMB, and it predicts correctly: a) the observed XRB, b) the magnitude redshift relation for supernovae, and c) the surface- brightness-redshift relation for galaxies. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Accelerated Expansion, and Black Holes. The universe is quasi-static and can renew itself forever (for details, see: http://www.plasmaredshift.org). There is no cosmic time dilation. In intergalactic space, the average electron temperature is T = 2.7 million K, and the average electron density is N = 0.0002 per cubic cm. Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is: 1) the proper inclusion of the dielectric constant, 2) more exact calculations of imaginary part of the dielectric constant, and as required 3) a quantum mechanical treatment of the interactions.
ELKO applications in cosmology
NASA Astrophysics Data System (ADS)
Pereira, S. H.; Pinho S. S., A.
2014-12-01
A brief review is presented about the ELKO spinor field applied to cosmology, with the main results and limitations of the theory. As a simple application, we have analyzed a model involving the interaction of the ELKO spinor field with dark matter in the universe from a dynamical system approach. When the system is rewritten in terms of the deceleration parameter q and under the assumption that such parameter is nearly constant for some different stages of the evolution, stability points were found for different types of interaction between dark matter and ELKO spinors. Within this new analysis several interesting scenarios are possible, depending on the interaction term. For example, if it is assumed that the equation of the state parameter of the ELKO field is of the phantom type, ωϕ < -1, the current acceleration of the universe can be driven by the decay of dark matter particles into ELKO field. Furthermore, even for ωϕ > 0, the inflationary period can be driven by the decay of the inflaton field (described by the ELKO spinor) into dark matter particles.
Cosmological parallax-distance formula
NASA Astrophysics Data System (ADS)
Singal, Ashok K.
2015-09-01
The standard cosmological parallax-distance formula, as found in the literature, including text-books and reference books on cosmology, requires a correction. This correction stems from the fact that in the standard text-book derivation it has been ignored that any chosen baseline in a gravitationally bound system does not partake in the cosmological expansion. Though the correction is available in the literature for some time, the text-books still continue to use the older, incorrect formula, and its full implications are not yet fully realized. Apart from providing an alternate correct, closed-form expression that is more suitable and convenient for computations for certain limiting cases of FRW () world models, we also demonstrate how one can compute parallax distance for the currently favored flat-space accelerating-universe (, ) cosmologies. Further, we show that the correction in parallax distance at large redshifts could amount to a factor of three or even more. Moreover, even in an infinite universe the parallax distance does not increase indefinitely with redshift and that even the farthest possible observable point may have a finite parallax angle, a factor that needs to be carefully taken into account when using distant objects as the background field against which the parallax of a foreground object is to be measured. Some other complications that could arise in parallax measurements of a distant source, like that due to the deflection of incoming light by the gravitation field of the Sun and other planetary bodies in the solar system, are pointed out.
Wong, Yvonne Y. Y.
2008-01-24
I give an overview of the effects of neutrinos on cosmology, focussing in particular on the role played by neutrinos in the evolution of cosmological perturbations. I discuss how recent observations of the cosmic microwave background and the large-scale structure of galaxies can probe neutrino masses with greater precision than current laboratory experiments. I describe several new techniques that will be used to probe cosmology in the future.
Hamiltonian cosmology of bigravity
NASA Astrophysics Data System (ADS)
Soloviev, V. O.
The purpose of this talk is to give an introduction both to the Hamiltonian formalism and to the cosmological equations of bigravity. In the Hamiltonian language we provide a study of flat-space cosmology in bigravity and massive gravity constructed mostly with de Rham, Gabadadze, Tolley (dRGT) potential. It is demonstrated that the Hamiltonian methods are powerful not only in proving the absence of the Boulware-Deser ghost, but also in addressing cosmological problems.
Dark Energy and the Cosmological Constant: A Brief Introduction
ERIC Educational Resources Information Center
Harvey, Alex
2009-01-01
The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…
NASA Astrophysics Data System (ADS)
López-Corredoira, M.
2009-08-01
Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the ``snowball effect'' or ``groupthink''. We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.
Minamitsuji, Masato; Uzawa, Kunihito
2011-04-15
We present time-dependent solutions in the higher-dimensional gravity which are related to supergravity in the particular cases. Here, we consider p-branes with a cosmological constant and the intersections of two and more branes. The dynamical description of p-branes can be naturally obtained as the extension of static solutions. In the presence of a cosmological constant, we find accelerating solutions if the dilaton is not dynamical. In the case of intersecting branes, the field equations normally indicate that time-dependent solutions in supergravity can be found if only one harmonic function in the metric depends on time. However, if the special relation between dilaton couplings to antisymmetric tensor field strengths is satisfied, one can find a new class of solutions where all harmonic functions depend on time. We then apply our new solutions to study cosmology, with and without performing compactifications.
On the Convergence in Effective Loop Quantum Cosmology
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose Antonio
2010-07-12
In Loop Quantum Cosmology (LQC) there is a discreteness parameter {lambda}, that has been heuristically associated to a fundamental granularity of quantum geometry. It is also possible to consider {lambda} as a regulator in the same spirit as that used in lattice field theory, where it specifies a regular lattice in the real line. A particular quantization of the k = 0 FLRW loop cosmological model yields a completely solvable model, known as solvable loop quantum cosmology(sLQC). In this contribution, we consider effective classical theories motivated by sLQC and study their {lambda}-dependence, with a special interest on the limit {lambda}{yields}0 and the role of the evolution parameter in the convergence of such limit.
The velocity field in MOND cosmology
NASA Astrophysics Data System (ADS)
Candlish, G. N.
2016-08-01
The recently developed code for N-body/hydrodynamics simulations in Modified Newtonian Dynamics (MOND), known as RAYMOND, is used to investigate the consequences of MOND on structure formation in a cosmological context, with a particular focus on the velocity field. This preliminary study investigates the results obtained with the two formulations of MOND implemented in RAYMOND, as well as considering the effects of changing the choice of MOND interpolation function, and the cosmological evolution of the MOND acceleration scale. The simulations are contrived such that structure forms in a background cosmology that is similar to Λcold dark matter, but with a significantly lower matter content. Given this, and the fact that a fully consistent MOND cosmology is still lacking, we compare our results with a standard ΛCDM simulation, rather than observations. As well as demonstrating the effectiveness of using RAYMOND for cosmological simulations, it is shown that a significant enhancement of the velocity field is likely an unavoidable consequence of the gravitational modification implemented in MOND, and may represent a clear observational signature of such a modification. It is further suggested that such a signal may be clearest in intermediate-density regions such as cluster outskirts and filaments.
Bouncing models with a cosmological constant
NASA Astrophysics Data System (ADS)
Maier, Rodrigo; Pereira, Stella; Pinto-Neto, Nelson; Siffert, Beatriz B.
2012-01-01
Bouncing models have been proposed by many authors as a completion of, or even as an alternative to, inflation for the description of the very early and dense Universe. However, most bouncing models contain a contracting phase from a very large and rarefied state, where dark energy might have had an important role as it has today in accelerating our large Universe. In that case, its presence can modify the initial conditions and evolution of cosmological perturbations, changing the known results already obtained in the literature concerning their amplitude and spectrum. In this paper, we assume the simplest and most appealing candidate for dark energy, the cosmological constant, and evaluate its influence on the evolution of cosmological perturbations during the contracting phase of a bouncing model, which also contains a scalar field with a potential allowing background solutions with pressure and energy density satisfying p=wɛ, w being a constant. An initial adiabatic vacuum state can be set at the end of domination by the cosmological constant, and an almost scale-invariant spectrum of perturbations is obtained for w≈0, which is the usual result for bouncing models. However, the presence of the cosmological constant induces oscillations and a running towards a tiny red-tilted spectrum for long-wavelength perturbations.
The velocity field in MOND cosmology
NASA Astrophysics Data System (ADS)
Candlish, G. N.
2016-08-01
The recently developed code for N-body/hydrodynamics simulations in Modified Newtonian Dynamics (MOND), known as RAyMOND, is used to investigate the consequences of MOND on structure formation in a cosmological context, with a particular focus on the velocity field. This preliminary study investigates the results obtained with the two formulations of MOND implemented in RAyMOND, as well as considering the effects of changing the choice of MOND interpolation function, and the cosmological evolution of the MOND acceleration scale. The simulations are contrived such that structure forms in a background cosmology that is similar to $\\Lambda$CDM, but with a significantly lower matter content. Given this, and the fact that a fully consistent MOND cosmology is still lacking, we compare our results with a standard $\\Lambda$CDM simulation, rather than observations. As well as demonstrating the effectiveness of using RAyMOND for cosmological simulations, it is shown that a significant enhancement of the velocity field is likely an unavoidable consequence of the gravitational modification implemented in MOND, and may represent a clear observational signature of such a modification. It is further suggested that such a signal may be clearest in intermediate density regions such as cluster outskirts and filaments.
NASA Astrophysics Data System (ADS)
Damour, T.
2003-10-01
We briefly review two aspects of string cosmology: 1) the presence of chaos in the generic cosmological solutions of the tree-level low-energy effective actions coming out of string theory, and 2) the remarkable link between the latter chaos and the Weyl groups of some hyperbolic Kac-Moody algebras.
NASA Astrophysics Data System (ADS)
Damour, Thibault
We briefly review two aspects of string cosmology: (1) the presence of chaos in the generic cosmological solutions of the tree-level low-energy effective actions coming out of string theory, and (2) the remarkable link between the latter chaos and the Weyl groups of some hyperbolic Kac-Moody algebras.
Klebanov, I.; Susskind, L.
1988-10-01
We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We find a discouraging result that wormholes much bigger than the Planck size are generated. We also consider the implications of the wormhole theory for cosmology. 7 refs., 2 figs.
NASA Astrophysics Data System (ADS)
Hawking, S. W.
2001-09-01
The large N approximation should hold in cosmology even at the origin of the universe. I use ADS-CFT to calculate the effective action and obtain a cosmological model in which inflation is driven by the trace anomaly. Despite having ghosts, this model can agree with observations.
McAllister, Liam P.; Silverstein, Eva
2007-10-22
We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.
The problem of initial conditions in cosmology
NASA Astrophysics Data System (ADS)
Barvinsky, A. O.; Kamenshchik, A. Yu.
2009-05-01
The creation of a quantum Universe is described by a density matrix which yields an ensemble of universes with the cosmological constant limited to a bounded range Λmin<=Λ<=Λmax. The domain Λ<Λmin is ruled out by a cosmological bootstrap requirement (the self-consistent back reaction of hot matter). The upper cutoff results from the quantum effects of vacuum energy and the conformal anomaly mediated by a special ghost-avoidance renormalization. The cutoff Λmax establishes a new quantum scale-the accumulation point of an infinite sequence of garland-type instantons. The Euclidean path integral formalism used for the construction of the fundamental density matrix for a mixed state of the Universe is justified by proving its correspondence to the microcanonical ensemble in quantum cosmology. The cosmological evolution starting with these initial conditions also have some new features: the stage of cosmic acceleration can be followed by a big boost singularity-a rapid growth up to infinity of the scale factor acceleration parameter. From the developed approach it follows that the notion of the density matrix plays a more fundamental role than that was traditionally prescribed to it.
Computational Cosmology at the Bleeding Edge
NASA Astrophysics Data System (ADS)
Habib, Salman
2013-04-01
Large-area sky surveys are providing a wealth of cosmological information to address the mysteries of dark energy and dark matter. Observational probes based on tracking the formation of cosmic structure are essential to this effort, and rely crucially on N-body simulations that solve the Vlasov-Poisson equation in an expanding Universe. As statistical errors from survey observations continue to shrink, and cosmological probes increase in number and complexity, simulations are entering a new regime in their use as tools for scientific inference. Changes in supercomputer architectures provide another rationale for developing new parallel simulation and analysis capabilities that can scale to computational concurrency levels measured in the millions to billions. In this talk I will outline the motivations behind the development of the HACC (Hardware/Hybrid Accelerated Cosmology Code) extreme-scale cosmological simulation framework and describe its essential features. By exploiting a novel algorithmic structure that allows flexible tuning across diverse computer architectures, including accelerated and many-core systems, HACC has attained a performance of 14 PFlops on the IBM BG/Q Sequoia system at 69% of peak, using more than 1.5 million cores.
Exploring bouncing cosmologies with cosmological surveys
NASA Astrophysics Data System (ADS)
Cai, Yi-Fu
2014-08-01
From recent observational data two significant directions have been made in the field of theoretical cosmology recently. First, we are now able to make use of present observations, such as the Planck and BICEP2 data, to examine theoretical predictions from the standard inflationary ΛCDM which were made decades of years ago. Second, we can search for new cosmological signatures as a way to explore physics beyond the standard cosmic paradigm. In particular, a subset of early universe models admit a nonsingular bouncing solution that attempts to address the issue of the big bang singularity. These models have achieved a series of considerable developments in recent years, in particular in their perturbative frameworks, which made brand-new predictions of cosmological signatures that could be visible in current and forthcoming observations. Herein we present two representative paradigms of early universe physics. The first is the reputed new matter (or matter-ekpyrotic) bounce scenario in which the universe starts with a matter-dominated contraction phase and transitions into an ekpyrotic phase. In the setting of this paradigm, we have proposed some possible mechanisms of generating a red tilt for primordial curvature perturbations and confront the general predictions with recent cosmological observations. The second is the matter-bounce inflation scenario which can be viewed as an extension of inflationary cosmology with a matter contraction before inflation. We present a class of possible model constructions and review the implications on the current CMB experiments. Lastly a review of significant achievements of these paradigms beyond the inflationary ΛCDM model is made, which is expected to shed new light on the future direction of observational cosmology.
Cosmology and particle physics
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1988-01-01
The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.
Confirmation of Cosmological Bounces Predicted by Alexander Friedmann
NASA Astrophysics Data System (ADS)
Nurgaliev, Ildus
2011-06-01
It is shown that taking into consideration vorticity-related component of cosmological motion averts singularity and explains acceleration of the expansion. No mystic matter with dark energy is needed. That energy belongs to the local rotational motion (vorticity). Einstein's idea on static universe occurs to be encompassing conception for the standard cosmology, as well as for the emerging new (oscillating) one. Alexander Friedman gave to us its verbal model and was the most well prepared to give mathematical one.
Tracking results using a standard cell lattice
Gelfand, N.M.
1987-10-01
This is a summary of results obtained by tracking a single particle through a lattice composed of a r.f. cavity and standard FODO cells. The lattice also includes two families of sextupoles for controlling the chromaticity. The parameters of the cells, i.e. their length and phase advance, closely resemble those of the Fermilab Main Ring or the Tevatron. We therefore have a model lattice which is similar to that of those accelerators but without the straight sections present in the actual machines. It is hoped that the simplified model used will exhibit the salient features of the actual accelerator but will be simpler to understand. 8 figs., 1 tab.
Stability analysis in tachyonic potential chameleon cosmology
Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A. E-mail: a.salehi@guilan.ac.ir E-mail: aravanpak@guilan.ac.ir
2011-05-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.
Scaling FFAG accelerator for muon acceleration
Lagrange, JB.; Planche, T.; Mori, Y.
2011-10-06
Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. Such principles and matching issues are detailed in this paper. An application of these new concepts is presented to overcome problems in the PRISM project.
Cosmological perturbations in teleparallel Loop Quantum Cosmology
NASA Astrophysics Data System (ADS)
Haro, Jaime
2013-11-01
Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce provided by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.
NASA Astrophysics Data System (ADS)
Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.
2016-06-01
We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein–Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity.
NASA Astrophysics Data System (ADS)
Kehagias, A.; Riotto, A.
2016-05-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Kinney, William H.; Dizgah, Azadeh Moradinezhad
2010-10-15
In this paper, we use a known duality between expanding and contracting cosmologies to construct a dual of the inflationary flow hierarchy applicable to contracting cosmologies such as ekpyrotic and cyclic models. We show that the inflationary flow equations are invariant under the duality and therefore apply equally well to inflation or to cyclic cosmology. We construct a self-consistent small-parameter approximation dual to the slow-roll approximation in inflation, and calculate the power spectrum of perturbations in this limit. We also recover the matter-dominated contracting solution of Wands, and the recently proposed adiabatic ekpyrosis solution.
Cosmic Inhomogeneities and Averaged Cosmological Dynamics
NASA Astrophysics Data System (ADS)
Paranjape, Aseem; Singh, T. P.
2008-10-01
If general relativity (GR) describes the expansion of the Universe, the observed cosmic acceleration implies the existence of a “dark energy.” However, while the Universe is on average homogeneous on large scales, it is inhomogeneous on smaller scales. While GR governs the dynamics of the inhomogeneous Universe, the averaged homogeneous Universe obeys modified Einstein equations. Can such modifications alone explain the acceleration? For a simple generic model with realistic initial conditions, we show the answer to be “no.” Averaging effects negligibly influence the cosmological dynamics.
Arguments concerning Relativity and Cosmology.
Klein, O
1971-01-29
In the first place I have reviewed the true foundation of Einstein's theory of general relativity, the so-called principle of equivalence, according to which there is no essential difference between "genuine" gravitation and inertial forces, well known from accelerated vehicles. By means of a comparison with Gaussian geometry of curved surfaces-the background of Riemannian geometry, the tool used by Einstein for the mathematical formulation of his theory-it is made clear that this principle is incompatible with the idea proposed by Mach and accepted by Einstein as an incitement to his attempt to describe the main situation in the universe as an analogy in three dimensions to the closed surface of a sphere. In the later attempts toward a mathematical description of the universe, where Einstein's cosmology was adapted to the discovery by Hubble that its observed part is expanding, the socalled cosmological postulate has been used as a kind of axiomatic background which, when analyzed, makes it probable that this expansion is shared by a very big, but still bounded system. This implies that our expanding metagalaxy is probably just one of a type of stellar objects in different phases of evolution, some expanding and some contracting. Some attempts toward the description of this evolution are sketched in the article with the hope that further investigation, theoretical and observational, may lead to an interesting advance in this part of astrophysics. PMID:17808634
Computing tools for accelerator design
Parsa, Z.
1986-06-01
An algorithm has been developed that calculates and obtains information about nonlinear contributions in accelerators. The comparison of the results obtained from this program ''NONLIN'' and HARMON is discussed and illustrated for the SSC-CDR clustered lattices.
Cosmological Inflation: A Personal Perspective
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes
2007-01-01
We present a review of the sequence of events/circumstances that led to the introduction of interplay between the physics associated with phase transitions in the early universe and their effects on its dynamics of expansion with the goal of resolving the horizon problem that it has since become known as Cosmological Inflation. We then provide a brief review of the fundamentals and the solutions of a theory of gravity based on local scale invariance, known as Weyl gravity that have been elaborated by the presenter and his collaborator P. D. Mannheim. We point out that this theory provides from first principles for a characteristic universal acceleration, whose value appears to be in agreement with observations across a vast range of length scales in the universe.
Cosmological bounds on tachyonic neutrinos
NASA Astrophysics Data System (ADS)
Davies, P. C. W.; Moss, Ian G.
2012-05-01
Recent time-of-flight measurements on muon neutrinos in the OPERA neutrino oscillation experiment have found anomalously short times compared to the light travel-times, corresponding to a superluminal velocity, v - 1 = 2.37 ± 0.32 × 10-5 in units where c = 1. We show that cosmological bounds rule out an explanation involving a Lorentz invariant tachyonic neutrino. At the OPERA energy scale, nucleosynthesis constraints imply v - 1 < 0.86 × 10-12 and the Cosmic Microwave Background observations imply v - 1 < 7.1 × 10-23. The CMB limit on the velocity of a tachyon with an energy of 10 MeV is stronger than the SN 1987A limit. Superluminal neutrinos that could conceivably be observed at particle accelerator energy scales would have to be associated with Lorentz symmetry violation.
NASA Astrophysics Data System (ADS)
Nelson, William
2014-03-01
I will discuss my transition from Quantum Gravity and Cosmology to the world of consulting and describe the differences and similarities between academia and industry. I will give some dos and don'ts for industry interviews and jobs searches.
The cosmological constant problem
Dolgov, A.D.
1989-05-01
A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs.
NASA Astrophysics Data System (ADS)
Turner, Michael S.
1999-03-01
For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!
NASA Astrophysics Data System (ADS)
Jain, Namrata I.; Bhoga, Shyamsunder S.
2015-08-01
Cosmological models with time varying gravitational constant G and cosmological constant Λ in the presence of viscous fluid in Kaluza-Klein metric were investigated. The solutions to Einstein Field Equation were obtained for different types of G, with bulk coefficient ξ = ξ 0 ρ d (where ρ is density of the Universe, d is some constant) and lambda Λ = α H 2 + β R -2 where H and R are Hubble parameter and scale factor respectively. Two possible models are suggested, one where G is proportional to H and, the other where G is inversely proportional to H. While the former leads to a non-singular model, the latter results in an inflationary model. Both Cosmological models show that the Universe is accelerating; but at the early stage of the Universe the behaviour of both models is quite different,which has been studied through the variation of decelerating parameter q with time.
Cosmology: A research briefing
NASA Technical Reports Server (NTRS)
1995-01-01
As part of its effort to update topics dealt with in the 1986 decadal physics survey, the Board on Physics and Astronomy of the National Research Council (NRC) formed a Panel on Cosmology. The Panel produced this report, intended to be accessible to science policymakers and nonscientists. The chapters include an overview ('What Is Cosmology?'), a discussion of cosmic microwave background radiation, the large-scale structure of the universe, the distant universe, and physics of the early universe.
A simple cosmology with a varying fine structure constant.
Sandvik, Håvard Bunes; Barrow, John D; Magueijo, João
2002-01-21
We investigate the cosmological consequences of a theory in which the electric charge e can vary. In this theory the fine structure "constant," alpha, remains almost constant in the radiation era, undergoes a small increase in the matter era, but approaches a constant value when the universe starts accelerating because of a positive cosmological constant. This model satisfies geonuclear, nucleosynthesis, and cosmic microwave background constraints on time variation in alpha, while fitting the observed accelerating Universe and evidence for small alpha variations in quasar spectra. It also places specific restrictions on the nature of the dark matter. Further tests, involving stellar spectra and Eötvös experiments, are proposed. PMID:11801051
Bag, Satadru; Sahni, Varun; Shtanov, Yuri; Unnikrishnan, Sanil E-mail: varun@iucaa.ernet.in E-mail: sanil@lnmiit.ac.in
2014-07-01
We explore the possibility of emergent cosmology using the effective potential formalism. We discover new models of emergent cosmology which satisfy the constraints posed by the cosmic microwave background (CMB). We demonstrate that, within the framework of modified gravity, the emergent scenario can arise in a universe which is spatially open/closed. By contrast, in general relativity (GR) emergent cosmology arises from a spatially closed past-eternal Einstein Static Universe (ESU). In GR the ESU is unstable, which creates fine tuning problems for emergent cosmology. However, modified gravity models including Braneworld models, Loop Quantum Cosmology (LQC) and Asymptotically Free Gravity result in a stable ESU. Consequently, in these models emergent cosmology arises from a larger class of initial conditions including those in which the universe eternally oscillates about the ESU fixed point. We demonstrate that such an oscillating universe is necessarily accompanied by graviton production. For a large region in parameter space graviton production is enhanced through a parametric resonance, casting serious doubts as to whether this emergent scenario can be past-eternal.
Cosmological Models and Stability
NASA Astrophysics Data System (ADS)
Andersson, Lars
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.
BOOK REVIEW: Observational Cosmology Observational Cosmology
NASA Astrophysics Data System (ADS)
Howell, Dale Andrew
2013-04-01
Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations
Lattice gas and lattice Boltzmann computational physics
Chen, S.
1993-05-01
Recent developments of the lattice gas automata method and its extension to the lattice Boltzmann method have provided new computational schemes for solving a variety of partial differential equations and modeling different physics systems. The lattice gas method, regarded as the simplest microscopic and kinetic approach which generates meaningful macroscopic dynamics, is fully parallel and can be easily programmed on parallel machines. In this talk, the author will review basic principles of the lattice gas and lattice Boltzmann method, its mathematical foundation and its numerical implementation. A detailed comparison of the lattice Boltzmann method with the lattice gas technique and other traditional numerical schemes, including the finite-difference scheme and the pseudo-spectral method, for solving the Navier-Stokes hydrodynamic fluid flows, will be discussed. Recent achievements of the lattice gas and the the lattice Boltzmann method and their applications in surface phenomena, spinodal decomposition and pattern formation in chemical reaction-diffusion systems will be presented.
On cosmic acceleration without dark energy
Kolb, E.W.; Matarrese, S.; Riotto, A.; ,
2005-06-01
We elaborate on the proposal that the observed acceleration of the Universe is the result of the backreaction of cosmological perturbations, rather than the effect of a negative-pressure dark energy fluid or a modification of general relativity. Through the effective Friedmann equations describing an inhomogeneous Universe after smoothing, we demonstrate that acceleration in our local Hubble patch is possible even if fluid elements do not individually undergo accelerated expansion. This invalidates the no-go theorem that there can be no acceleration in our local Hubble patch if the Universe only contains irrotational dust. We then study perturbatively the time behavior of general-relativistic cosmological perturbations, applying, where possible, the renormalization group to regularize the dynamics. We show that an instability occurs in the perturbative expansion involving sub-Hubble modes, which indicates that acceleration in our Hubble patch may originate from the backreaction of cosmological perturbations on observable scales.
The Cosmology Distinction Course in NSW
NASA Astrophysics Data System (ADS)
Hollow, Robert P.; McAdam, W. B.; O'Byrne, J.; White, Graeme L.; Holmes, R.; Webb, J. K.; Allen, L. R.; Zealey, W. J.; Hafner, R.
1994-04-01
The Cosmology Distinction Course is a new one-year course to be introduced for Year 12 candidates in the 1994 Higher School Certificate (HSC) examinations in NSW. It is one of three challenging courses of study that will enrich the HSC for talented students who accelerate and complete part of the HSC one year early. The courses will be taught through distance learning and will include residential seminars. They will be implemented on behalf of the Board of Studies by Charles Sturt University and the University of New England. The Cosmology Course is organized into nine modules of course work covering historical and social aspects of cosmology, observational techniques, key observatons and the various models developed--Newtonian, de Sitter, Friedmann, Lemaitre, steady-state, quasi-steady-state and big bang. Assessment will be through assignments, exams and a major project. As the first Distinction Course in a scientific area, the Cosmology Course represents an exciting and important educational initiative that needs the cooperation of NSW astronomers and, in return, promises to benefit the astronomical and general scientific community in Australia.
Cosmology with cosmic shear observations: a review.
Kilbinger, Martin
2015-07-01
Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations. PMID:26181770
ERIC Educational Resources Information Center
Scott, Paul
2006-01-01
A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…
BOOK REVIEW: Observational Cosmology Observational Cosmology
NASA Astrophysics Data System (ADS)
Howell, Dale Andrew
2013-04-01
Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations
GLAD: A Generic LAttice Debugger
Lee, M.J.
1991-11-01
Today, numerous simulation and analysis codes exist for the design, commission, and operation of accelerator beam lines. There is a need to develop a common user interface and database link to run these codes interactively. This paper will describe a proposed system, GLAD (Generic LAttice Debugger), to fulfill this need. Specifically, GLAD can be used to find errors in beam lines during commissioning, control beam parameters during operation, and design beam line optics and error correction systems for the next generation of linear accelerators and storage rings.
Cosmology in time asymmetric extensions of general relativity
NASA Astrophysics Data System (ADS)
Leon, Genly; Saridakis, Emmanuel N.
2015-11-01
We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we perform a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe.
Multi-scale gravity and cosmology
Calcagni, Gianluca
2013-12-01
The gravitational dynamics and cosmological implications of three classes of recently introduced multi-scale spacetimes (with, respectively, ordinary, weighted and q-derivatives) are discussed. These spacetimes are non-Riemannian: the metric structure is accompanied by an independent measure-differential structure with the characteristics of a multi-fractal, namely, different dimensionality at different scales and, at ultra-short distances, a discrete symmetry known as discrete scale invariance. Under this minimal paradigm, five general features arise: (a) the big-bang singularity can be replaced by a finite bounce, (b) the cosmological constant problem is reinterpreted, since accelerating phases can be mimicked by the change of geometry with the time scale, without invoking a slowly rolling scalar field, (c) the discreteness of geometry at Planckian scales can leave an observable imprint of logarithmic oscillations in cosmological spectra and (d) give rise to an alternative mechanism to inflation or (e) to a fully analytic model of cyclic mild inflation, where near scale invariance of the perturbation spectrum can be produced without strong acceleration. Various properties of the models and exact dynamical solutions are discussed. In particular, the multi-scale geometry with weighted derivatives is shown to be a Weyl integrable spacetime.
Modern cosmology: Interactive computer simulations that use recent observational surveys
NASA Astrophysics Data System (ADS)
Moldenhauer, Jacob; Engelhardt, Larry; Stone, Keenan M.; Shuler, Ezekiel
2013-06-01
We present a collection of new, open-source computational tools for numerically modeling recent large-scale observational data sets using modern cosmology theory. These tools allow both students and researchers to constrain the parameter values in competitive cosmological models, thereby discovering both the accelerated expansion of the universe and its composition (e.g., dark matter and dark energy). These programs have several features to help the non-cosmologist build an understanding of cosmological models and their relation to observational data, including a built-in collection of several real observational data sets. The current list of built-in observations includes several recent supernovae Type-Ia surveys, baryon acoustic oscillations, the cosmic microwave background radiation, gamma-ray bursts, and measurements of the Hubble parameter. In this article, we discuss specific results for testing cosmological models using these observational data.
Implications of the Cosmological Constant for Spherically Symmetric Mass Distributions
NASA Astrophysics Data System (ADS)
Zubairi, Omair; Weber, Fridolin
2013-04-01
In recent years, scientists have made the discovery that the expansion rate of the Universe is increasing rather than decreasing. This acceleration leads to an additional term in Albert Einstein's field equations which describe general relativity and is known as the cosmological constant. This work explores the aftermath of a non-vanishing cosmological constant for relativistic spherically symmetric mass distributions, which are susceptible to change against Einstein's field equations. We introduce a stellar structure equation known as the Tolman-Oppenhiemer-Volkoff (TOV) equation modified for a cosmological constant, which is derived from Einstein's modified field equations. We solve this modified TOV equation for these spherically symmetric mass distributions and obtain stellar properties such as mass and radius and investigate changes that may occur depending on the value of the cosmological constant.
Evolving Lorentzian wormholes supported by phantom matter and cosmological constant
Cataldo, Mauricio; Campo, Sergio del; Minning, Paul; Salgado, Patricio
2009-01-15
In this paper we study the possibility of sustaining an evolving wormhole via exotic matter made of phantom energy in the presence of a cosmological constant. We derive analytical evolving wormhole geometries by supposing that the radial tension of the phantom matter, which is negative to the radial pressure, and the pressure measured in the tangential directions have barotropic equations of state with constant state parameters. In this case the presence of a cosmological constant ensures accelerated expansion of the wormhole configurations. More specifically, for positive cosmological constant we have wormholes which expand forever and, for negative cosmological constant we have wormholes which expand to a maximum value and then recollapse. At spatial infinity the energy density and the pressures of the anisotropic phantom matter threading the wormholes vanish; thus these evolving wormholes are asymptotically vacuum {lambda}-Friedmann models with either open or closed or flat topologies.
Schramm, D.N. |; Fields, B.; Thomas, D.
1992-01-01
The possible implications of the quark-hadron transition for cosmology are explored. Possible surviving signatures are discussed. In particular, the possibility of generating a dark matter candidate such as strange nuggets or planetary mass black holes is noted. Much discussion is devoted to the possible role of the transition for cosmological nucleosynthesis. It is emphasized that even an optimized first order phase transition will not significantly alter the nucleosynthesis constraints on the cosmological baryon density nor on neutrino counting. However, it is noted that Be and B observations in old stars may eventually be able to be a signature of a cosmologically significant quark-hadron transition. It is pointed out that the critical point in this regard is whether the observed B/Be ratio can be produced by spallation processes or requires cosmological input. Spallation cannot produce a B/Be ratio below 7.6. A supporting signature would be Be and B ratios to oxygen that greatly exceed galactic values. At present, all data is still consistent with a spallagenic origin.
Thermal tachyacoustic cosmology
NASA Astrophysics Data System (ADS)
Agarwal, Abhineet; Afshordi, Niayesh
2014-08-01
An intriguing possibility that can address pathologies in both early Universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. nonrenormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early Universe is the tachyacoustic (or speedy sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study thermal tachyacoustic cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early Universe, around the scale of the grand unified theory (GUT scale; T ˜1015 GeV), during which the speed of sound drops by 25 orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of tensor modes (r≳10-3), that are detectable by CMBpol (and might have already been seen by the BICEP-Keck Collaboration).
The Accelerator Markup Language and the Universal Accelerator Parser
Sagan, D.; Forster, M.; Bates, D.A.; Wolski, A.; Schmidt, F.; Walker, N.J.; Larrieu, T.; Roblin, Y.; Pelaia, T.; Tenenbaum, P.; Woodley, M.; Reiche, S.; /UCLA
2006-10-06
A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.
Exact evolution of discrete relativistic cosmological models
Clifton, Timothy; Tavakol, Reza; Gregoris, Daniele; Rosquist, Kjell E-mail: danielegregoris@libero.it E-mail: r.tavakol@qmul.ac.uk
2013-11-01
We study the effects of inhomogeneities on the evolution of the Universe, by considering a range of cosmological models with discretized matter content. This is done using exact and fully relativistic methods that exploit the symmetries in and about submanifolds of spacetimes that themselves possess no continuous global symmetries. These methods allow us to follow the evolution of our models throughout their entire history, far beyond what has previously been possible. We find that while some space-like curves collapse to anisotropic singularities in finite time, others remain non-singular forever. The resulting picture is of a cosmological spacetime in which some behaviour remains close to Friedmann-like, while other behaviours deviate radically. In particular, we find that large-scale acceleration is possible without any violation of the energy conditions.
Confronting general relativity with further cosmological data
Daniel, Scott F.; Linder, Eric V.
2010-11-15
Deviations from general relativity in order to explain cosmic acceleration generically have both time and scale-dependent signatures in cosmological data. We extend our previous work by investigating model-independent gravitational deviations in bins of redshift and length scale, by incorporating further cosmological probes such as temperature-galaxy and galaxy-galaxy cross-correlations, and by examining correlations between deviations. Markov Chain Monte Carlo likelihood analysis of the model-independent parameters fitting current data indicates that at low redshift general relativity deviates from the best fit at the 99% confidence level. We trace this to two different properties of the CFHTLS weak lensing data set and demonstrate that COSMOS weak lensing data does not show such deviation. Upcoming galaxy survey data will greatly improve the ability to test time and scale-dependent extensions to gravity and we calculate the constraints that the BigBOSS galaxy redshift survey could enable.
A cosmological study in massive gravity theory
Pan, Supriya Chakraborty, Subenoy
2015-09-15
A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.
NASA Astrophysics Data System (ADS)
Folatelli, G.
Supernovae are very relevant astrophysical objects because they indicate the violent end of certain stars and because they alter the interstellar medium. But most importantly, they have become an extremely useful tool for measuring cosmological distances. Based on highly precise distances to type Ia supernovae it was possible to find out that the expansion of the universe is currently accelerated. This led to introducing the concept of ``dark energy'' as a dominant and yet unknown component of the cosmos. In this article we will describe the method of distance measurements that leads to the determination of cosmological parameters. We will briefly review the current status of the field with emphasis on the importance of improving our knowledge about the physical nature of supernovae. FULL TEXT IN SPANISH
Lensing effects in inhomogeneous cosmological models
Ghassemi, Sima; Khoeini-Moghaddam, Salomeh; Mansouri, Reza
2009-05-15
Concepts developed in the gravitational lensing techniques such as shear, convergence, tangential, and radial arcs maybe used to see how tenable inhomogeneous models proposed to explain the acceleration of the universe models are. We study the widely discussed Lemaitre-Tolman-Bondi (LTB) cosmological models. It turns out that for the observer sitting at origin of a global LTB solution the shear vanishes as in the Friedmann-Robertson-Walker models, while the value of convergence is different, which may lead to observable cosmological effects. We also consider Swiss-cheese models proposed recently based on LTB with an observer sitting in the Friedmann-Robertson-Walker part. It turns out that they have different behavior as far as the formation of radial and tangential arcs are concerned.
Did Cosmology Trigger the Origin of the Solar System?
NASA Technical Reports Server (NTRS)
Blome, H.-J.; Wilson, T. L.
2011-01-01
It is a matter of curious coincidence that the Solar System formed 4.6 billion years ago around the same epoch that the Friedmann-Lemaitre (FL) universe became -dominated or dark-energy-dominated, where is the cosmological constant. This observation was made in the context of known gravitational anomalies that affect spacecraft orbits during planetary flyby's and the Pioneer anomaly, both possibly having connections with cosmology. In addition, it has been known for some time that the Universe is not only expanding but accelerating as well. Hence one must add the onset of cosmological acceleration in the FL universe as having a possible influence on the origin of the Solar System. These connections will now be examined in greater detail.
Is ΛCDM an effective CCDM cosmology?
NASA Astrophysics Data System (ADS)
Lima, J. A. S.; Santos, R. C.; Cunha, J. V.
2016-03-01
We show that a cosmology driven by gravitationally induced particle production of all non-relativistic species existing in the present Universe mimics exactly the observed flat accelerating ΛCDM cosmology with just one dynamical free parameter. This kind of scenario includes the creation cold dark matter (CCDM) model [1] as a particular case and also provides a natural reduction of the dark sector since the vacuum component is not needed to accelerate the Universe. The new cosmic scenario is equivalent to ΛCDM both at the background and perturbative levels and the associated creation process is also in agreement with the universality of the gravitational interaction and equivalence principle. Implicitly, it also suggests that the present day astronomical observations cannot be considered the ultimate proof of cosmic vacuum effects in the evolved Universe because ΛCDM may be only an effective cosmology.
Perfect Quantum Cosmological Bounce
NASA Astrophysics Data System (ADS)
Gielen, Steffen; Turok, Neil
2016-07-01
We study quantum cosmology with conformal matter comprising a perfect radiation fluid and a number of conformally coupled scalar fields. Focusing initially on the collective coordinates (minisuperspace) associated with homogeneous, isotropic backgrounds, we are able to perform the quantum gravity path integral exactly. The evolution describes a "perfect bounce", in which the Universe passes smoothly through the singularity. We extend the analysis to spatially flat, anisotropic universes, treated exactly, and to generic inhomogeneous, anisotropic perturbations treated at linear and nonlinear order. This picture provides a natural, unitary description of quantum mechanical evolution across a cosmological bounce. We provide evidence for a semiclassical description in which all fields pass "around" the cosmological singularity along complex classical paths.
Esposito-Farese, Gilles; Pitrou, Cyril; Uzan, Jean-Philippe
2010-03-15
This article provides a general study of the Hamiltonian stability and the hyperbolicity of vector field models involving both a general function of the Faraday tensor and its dual, f(F{sup 2},FF-tilde), as well as a Proca potential for the vector field, V(A{sup 2}). In particular it is demonstrated that theories involving only f(F{sup 2}) do not satisfy the hyperbolicity conditions. It is then shown that in this class of models, the cosmological dynamics always dilutes the vector field. In the case of a nonminimal coupling to gravity, it is established that theories involving Rf(A{sup 2}) or Rf(F{sup 2}) are generically pathologic. To finish, we exhibit a model where the vector field is not diluted during the cosmological evolution, because of a nonminimal vector field-curvature coupling which maintains second-order field equations. The relevance of such models for cosmology is discussed.
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Elor, Gilly; Hall, Lawrence J.
2012-01-01
We revisit the cosmology of the supersymmetric QCD axion, highlighting the existence of a serious cosmological axino problem that is fully analogous to the gravitino problem of overclosure via thermal production. A general analysis implies that the QCD axino has a mass greater than or equal to that of the gravitino in the absence of unnatural fine-tuning or sequestering. As a consequence, bounds from thermal gravitino and QCD axino production are complementary in parameter space, and together provide a quite stringent limit on the reheating temperature after inflation given by TR<103-106GeV for an axion decay constant of fa=109-1012GeV. Motivated by this result, we explore the cosmology of gravitino lightest supersymmetric particle and axino next to lightest supersymmetric particle at low TR and present three realistic scenarios for dark matter.
Elementary particles and cosmology
NASA Astrophysics Data System (ADS)
Dobrolyubov, M. I.; Ignatev, A. Yu.; Shaposhnikov, M. E.
1988-12-01
A series of lectures is devoted to actual problems which arise at the junction of elementary particle physics and cosmology. A brief review is given to the standard theory of hot universe and scenario of inflationary universe, modern state of the problem of baryon universe asymmetry and possible new mechanisms of this asymmetry formation. The possibility of construction of cosmological models on the basis of supersymmetric theories is considered: qualitative evaluation of the modern density of relic particles, cosmological restrictions for the mass of the lightest particle, astrophysical restrictions for the coupling constant of weakly interacting particles and matter are given. A perspective direction of search for light particles in light hadron decays is mentioned.
NASA Astrophysics Data System (ADS)
Santos, Mario G.; Alonso, David; Bull, Philip; Camera, Stefano; Ferreira, Pedro G.
2014-05-01
A new generation of radio telescopes with unprecedented capabilities for astronomy and fundamental physics will be in operation over the next few years. With high sensitivities and large fields of view, they are ideal for cosmological applications. We discuss their uses for cosmology focusing on the observational technique of HI intensity mapping, in particular at low redshifts (z < 4). This novel observational window promises to bring new insights for cosmology, in particular on ultra-large scales and at a redshift range that can go beyond the dark energy domination epoch. In terms of standard constraints on the dark energy equation of state, telescopes such as Phase I of the SKA should be able to obtain constrains about as well as a future galaxy redshift surveys. Statistical techniques to deal with foregrounds and calibration issues, as well as possible systematics are also discussed.
Perfect Quantum Cosmological Bounce.
Gielen, Steffen; Turok, Neil
2016-07-01
We study quantum cosmology with conformal matter comprising a perfect radiation fluid and a number of conformally coupled scalar fields. Focusing initially on the collective coordinates (minisuperspace) associated with homogeneous, isotropic backgrounds, we are able to perform the quantum gravity path integral exactly. The evolution describes a "perfect bounce", in which the Universe passes smoothly through the singularity. We extend the analysis to spatially flat, anisotropic universes, treated exactly, and to generic inhomogeneous, anisotropic perturbations treated at linear and nonlinear order. This picture provides a natural, unitary description of quantum mechanical evolution across a cosmological bounce. We provide evidence for a semiclassical description in which all fields pass "around" the cosmological singularity along complex classical paths. PMID:27447496
General relativity and cosmology
NASA Astrophysics Data System (ADS)
Bucher, Martin; Ni, Wei-Tou
2015-10-01
This year marks the 100th anniversary of Einstein’s 1915 landmark paper “Die Feldgleichungen der Gravitation” in which the field equations of general relativity were correctly formulated for the first time, thus rendering general relativity a complete theory. Over the subsequent hundred years, physicists and astronomers have struggled with uncovering the consequences and applications of these equations. This paper, which was written as an introduction to six chapters dealing with the connection between general relativity and cosmology that will appear in the two-volume book One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity, endeavors to provide a historical overview of the connection between general relativity and cosmology, two areas whose development has been closely intertwined.
NASA Technical Reports Server (NTRS)
Mather, John C.
1990-01-01
The effective investigation of observational cosmological parameters is considered with attention given to the shielding provided by the lunar environment. The present measurements of the microwave and IR backgrounds are discussed, and reference is given to IR, microwave, and X- and gamma-ray investigations away from the earth to protect from terrestrial interferences. The most promising lunar investigations of cosmology are found to be studies of the microwave background and the X-ray and gamma-ray backgrounds from a hole in the lunar surface of 10 meters in depth.
Measuring Neutrinos with Cosmology
NASA Astrophysics Data System (ADS)
Knox, Lloyd
2016-03-01
Along with a thermal distribution of photons, we expect a thermal distribution of neutrinos to have been produced in the big bang. Although direct detection of the cosmic neutrino background (CNB) is extremely difficult, if not impossible, there is much we are learning indirectly about the CNB from its gravitational influences. I will review constraints from cosmic microwave background observations on the energy density in the CNB, present a recent detection of supersonic evolution of density perturbations in the CNB, and discuss constraints on neutrino masses from cosmological observables. I will also look toward what we can expect from future cosmological surveys, such as CMB-S4.
Newtonian and relativistic cosmologies
NASA Astrophysics Data System (ADS)
Green, Stephen R.; Wald, Robert M.
2012-03-01
Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic Friedmann-Lemaître-Robinson-Walker cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed [S. R. Green and R. M. Wald, Phys. Rev. DPRVDAQ1550-7998 83, 084020 (2011).10.1103/PhysRevD.83.084020], which allows for such nonlinearity at small scales. We propose a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our “ordering scheme” to determine the degree to which the resulting metric and matter distribution solve Einstein’s equation. We find that, within our ordering scheme, Einstein’s equation fails to hold at “order 1” at small scales and at “order ɛ” at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein’s equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations
Supergravity brane cosmologies
NASA Astrophysics Data System (ADS)
Lidsey, James E.
2000-10-01
Solitonic brane cosmologies are found where the world-volume is curved due to the evolution of the dilaton field on the brane. In many cases, these may be related to the solitonic Dp- and M5-branes of string and M theory. An eleven-dimensional interpretation of the D8-brane cosmology of the massive type IIA theory is discussed in terms of compactification on a torus bundle. Brane worlds are also found in Horava-Witten theory compactified on a Calabi-Yau three-fold. The possibility of dilaton-driven inflation on the brane is discussed.
The Cosmological Mass Function
NASA Astrophysics Data System (ADS)
Monaco, Pierluigi
1997-10-01
This thesis aims to review the cosmological mass function problem, both from the theoretical and the observational point of view, and to present a new mass function theory, based on realistic approximations for the dynamics of gravitational collapse. Chapter 1 gives a general introduction on gravitational dynamics in cosmological models. Chapter 2 gives a complete review of the mass function theory. Chapters 3 and 4 present the ``dynamical'' mass function theory, based on truncated Lagrangian dynamics and on the excursion set approach. Chapter 5 reviews the observational state-of-the-art and the main applications of the mass function theories described before. Finally, Chapter 6 gives conclusions and future prospects.
Bimetric gravity doubly coupled to matter: theory and cosmological implications
Akrami, Yashar; Koivisto, Tomi S.; Mota, David F.; Sandstad, Marit E-mail: t.s.koivisto@astro.uio.no E-mail: marit.sandstad@astro.uio.no
2013-10-01
A ghost-free theory of gravity with two dynamical metrics both coupled to matter is shown to be consistent and viable. Its cosmological implications are studied, and the models, in particular in the context of partially massless gravity, are found to explain the cosmic acceleration without resorting to dark energy.
The New Era of Precision Cosmology: Testing Gravity at Large Scales
NASA Technical Reports Server (NTRS)
Prescod-Weinstein, Chanda
2011-01-01
Cosmic acceleration may be the biggest phenomenological mystery in cosmology today. Various explanations for its cause have been proposed, including the cosmological constant, dark energy and modified gravities. Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy ore modified gravity implement the Press & Schechter formalism (PGF). However, does the PGF apply in all cosmologies? The search is on for a better understanding of universality in the PGF In this talk, I explore the potential for universality and talk about what dark matter haloes may be able to tell us about cosmology. I will also discuss the implications of this and new cosmological experiments for better understanding our theory of gravity.
BOOK REVIEW: The Oxford Companion to Cosmology
NASA Astrophysics Data System (ADS)
Coles, Peter
2008-10-01
compare the two books as I am clearly biased, but looking at mine again in the course of writing this review it struck me how much the landscape of cosmology has changed in the relatively short time that has elapsed between their publication dates. The past decade has seen the discovery of cosmic acceleration, detailed all-sky maps of the microwave background, the completion of huge galaxy surveys, and the synthesis of these observations into a standard 'concordance' cosmological model. If someone has the time and energy to undertake a project like this in ten years' time, I wonder if the current consensus will have survived.
DESIGN OF THE RCMS LATTICE OPTICS.
CARDONA,J.; KEWISCH,J.; PEGGS,S.
2002-06-02
THE RAPID CYCLING MEDICAL SYNCHROTRON (RCMS) IS DESIGNED TO BE A VERY LIGHT AND INEXPENSIVE ACCELERATOR. THIS IS POSSIBLE DUE TO THE SMALL BEAM SIZE THAT HAS BEEN CHOSEN EARLY DURING THE DESIGN STAGE. THIS CHOICE HAS IMPLICATIONS IN THE DESIGN OF THE LATTICE OPTICS. IN THIS PAPER, WE PRESENT AN OVERVIEW OF THE RCMS OPTICS LATTICE, THE KIND OF MAGNETS TO BE USED AND ALSO A DESCRIPTION OF A SPECIAL OPTIC MODULE THAT MATCHES THE ROTATING GANTRY WITH THE REST OF THE FIXED ACCELERATOR. TECHNIQUESDEVELOPED TO WIN ADDITIONAL SPACE BETWEEN QUADRUPOLES WITHOUT DISTRUBING BETA FUNCTIONS ARE ALSO PRESENTED.
Coc, Alain
2014-05-09
There are important aspects of Cosmology, the scientific study of the large scale properties of the universe as a whole, for which nuclear physics can provide insights. Here, we will focus on Standard Big-Bang Nucleosynthesis and we refer to the previous edition of the School [1] for the aspects concerning the variations of constants in nuclear cosmo-physics.
NASA Astrophysics Data System (ADS)
Damour, Thibault
We briefly review recent work which established the existence of chaos in the generic cosmological solutions of the tree-level low-energy effective actions coming out of string theory, and linked this chaos to the Weyl groups of some hyperbolic Kac-Moody algebras.
DaPbrowski, Mariusz P.; Kiefer, Claus; Sandhoefer, Barbara
2006-08-15
We apply the formalism of quantum cosmology to models containing a phantom field. Three models are discussed explicitly: a toy model, a model with an exponential phantom potential, and a model with phantom field accompanied by a negative cosmological constant. In all these cases we calculate the classical trajectories in configuration space and give solutions to the Wheeler-DeWitt equation in quantum cosmology. In the cases of the toy model and the model with exponential potential we are able to solve the Wheeler-DeWitt equation exactly. For comparison, we also give the corresponding solutions for an ordinary scalar field. We discuss, in particular, the behavior of wave packets in minisuperspace. For the phantom field these packets disperse in the region that corresponds to the big-rip singularity. This thus constitutes a genuine quantum region at large scales, described by a regular solution of the Wheeler-DeWitt equation. For the ordinary scalar field, the big-bang singularity is avoided. Some remarks on the arrow of time in phantom models as well as on the relation of phantom models to loop quantum cosmology are given.
NASA Astrophysics Data System (ADS)
Ellis, George F. R.; Gibbons, Gary W.
2014-01-01
In this paper we lay down the foundations for a purely Newtonian theory of cosmology, valid at scales small compared with the Hubble radius, using only Newtonian point particles acted on by gravity and a possible cosmological term. We describe the cosmological background which is given by an exact solution of the equations of motion in which the particles expand homothetically with their comoving positions constituting a central configuration. We point out, using previous work, that an important class of central configurations are homogeneous and isotropic, thus justifying the usual assumptions of elementary treatments. The scale factor is shown to satisfy the standard Raychaudhuri and Friedmann equations without making any fluid dynamic or continuum approximations. Since we make no commitment as to the identity of the point particles, our results are valid for cold dark matter, galaxies, or clusters of galaxies. In future publications we plan to discuss perturbations of our cosmological background from the point particle viewpoint laid down in this paper and show consistency with much standard theory usually obtained by more complicated and conceptually less clear continuum methods. Apart from its potential use in large scale structure studies, we believe that our approach has great pedagogic advantages over existing elementary treatments of the expanding universe, since it requires no use of general relativity or continuum mechanics but concentrates on the basic physics: Newton’s laws for gravitationally interacting particles.
An ancient revisits cosmology.
Greenstein, J L
1993-06-01
In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403
An ancient revisits cosmology.
Greenstein, J L
1993-01-01
In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403
Sefusatti, Emiliano; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman; /CCPP, New York
2006-04-01
The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.
Quantifying concordance in cosmology
NASA Astrophysics Data System (ADS)
Seehars, Sebastian; Grandis, Sebastian; Amara, Adam; Refregier, Alexandre
2016-05-01
Quantifying the concordance between different cosmological experiments is important for testing the validity of theoretical models and systematics in the observations. In earlier work, we thus proposed the Surprise, a concordance measure derived from the relative entropy between posterior distributions. We revisit the properties of the Surprise and describe how it provides a general, versatile, and robust measure for the agreement between data sets. We also compare it to other measures of concordance that have been proposed for cosmology. As an application, we extend our earlier analysis and use the Surprise to quantify the agreement between WMAP 9, Planck 13, and Planck 15 constraints on the Λ CDM model. Using a principle component analysis in parameter space, we find that the large Surprise between WMAP 9 and Planck 13 (S =17.6 bits, implying a deviation from consistency at 99.8% confidence) is due to a shift along a direction that is dominated by the amplitude of the power spectrum. The Planck 15 constraints deviate from the Planck 13 results (S =56.3 bits), primarily due to a shift in the same direction. The Surprise between WMAP and Planck consequently disappears when moving to Planck 15 (S =-5.1 bits). This means that, unlike Planck 13, Planck 15 is not in tension with WMAP 9. These results illustrate the advantages of the relative entropy and the Surprise for quantifying the disagreement between cosmological experiments and more generally as an information metric for cosmology.
Culture and Children's Cosmology
ERIC Educational Resources Information Center
Siegal, Michael; Butterworth, George; Newcombe, Peter A.
2004-01-01
In this investigation, we examined children's knowledge of cosmology in relation to the shape of the earth and the day-night cycle. Using explicit questioning involving a choice of alternative answers and 3D models, we carried out a comparison of children aged 4-9 years living in Australia and England. Though Australia and England have a close…
Harko, Tiberiu; Lobo, Francisco S.N.; Otalora, G.; Saridakis, Emmanuel N. E-mail: flobo@cii.fc.ul.pt
2014-12-01
We present an extension of f(T) gravity, allowing for a general coupling of the torsion scalar T with the trace of the matter energy-momentum tensor T. The resulting f(T,T) theory is a new modified gravity, since it is different from all the existing torsion or curvature based constructions. Applied to a cosmological framework, it leads to interesting phenomenology. In particular, one can obtain a unified description of the initial inflationary phase, the subsequent non-accelerating, matter-dominated expansion, and then the transition to a late-time accelerating phase. Additionally, the effective dark energy sector can be quintessence or phantom-like, or exhibit the phantom-divide crossing during the evolution. Moreover, in the far future the universe results either to a de Sitter exponential expansion, or to eternal power-law accelerated expansions. Finally, a detailed study of the scalar perturbations at the linear level reveals that f(T,T) cosmology can be free of ghosts and instabilities for a wide class of ansatzes and model parameters.
Deformation quantization of cosmological models
NASA Astrophysics Data System (ADS)
Cordero, Rubén; García-Compeán, Hugo; Turrubiates, Francisco J.
2011-06-01
The Weyl-Wigner-Groenewold-Moyal formalism of deformation quantization is applied to cosmological models in the minisuperspace. The quantization procedure is performed explicitly for quantum cosmology in a flat minisuperspace. The de Sitter cosmological model is worked out in detail and the computation of the Wigner functions for the Hartle-Hawking, Vilenkin and Linde wave functions are done numerically. The Wigner function is analytically calculated for the Kantowski-Sachs model in (non)commutative quantum cosmology and for string cosmology with dilaton exponential potential. Finally, baby universes solutions are described in this context and the Wigner function is obtained.
Fundamental Questions of Practical Cosmology
NASA Astrophysics Data System (ADS)
Baryshev, Yurij; Teerikorpi, Pekka
The book guides the reader (astronomer, physicist, university student) through central questions of Practical Cosmology, a term used by the late Allan Sandage to denote the modern scientific enterprise to find out the cosmological model best describing the universe of galaxies, its geometry, size, age, and material contents. The authors draw from their personal experience in astrophysics and cosmology to explain key concepts of cosmology, both observational and theoretical, and to highlight several items which give cosmology its special character: - idiosyncratic features of the "cosmic laboratory" - Malmquist bias in determination of cosmic distances - theory of gravitation as a cornerstone of cosmological models - crucial tests checking the reality of space expansion - methods of analyzing the structures of the universe as mapped by galaxies - usefulness of fractal as a model to describe the large-scale structure - new cosmological physics inherent in the Friedmann world model
Bouncing loop quantum cosmology from F(T) gravity
NASA Astrophysics Data System (ADS)
Amorós, Jaume; de Haro, Jaume; Odintsov, Sergei D.
2013-05-01
The big bang singularity could be understood as a breakdown of Einstein’s general relativity at very high energies. By adopting this viewpoint, other theories that implement Einstein cosmology at high energies might solve the problem of the primeval singularity. One of them is loop quantum cosmology (LQC) with a small cosmological constant that models a universe moving along an ellipse, which prevents singularities like the big bang or the big rip, in the phase space (H,ρ), where H is the Hubble parameter and ρ the energy density of the universe. Using LQC one considers a model universe filled by radiation and matter where, due to the cosmological constant, there are a de Sitter and an anti-de Sitter solution. This means that one obtains a bouncing nonsingular universe which is in the contracting phase at early times. After leaving this phase, i.e., after bouncing, it passes trough a radiation- and matter-dominated phase and finally at late times it expands in an accelerated way (current cosmic acceleration). This model does not suffer from the horizon and flatness problems as in big bang cosmology, where a period of inflation that increases the size of our universe in more than 60 e-folds is needed in order to solve both problems. The model has two mechanisms to avoid these problems: the evolution of the universe through a contracting phase and a period of super inflation (H˙>0).
Some cosmological consequences of Weyl invariance
Alvarez, Enrique; González-Martín, Sergio; Herrero-Valea, Mario
2015-03-19
We examine some Weyl invariant cosmological models in the framework of generalized dilaton gravity, in which the action is made of a set of N conformally coupled scalar fields. It will be shown that when the FRW ansatz for the spacetime metric is assumed, the Ward identity for conformal invariance guarantees that the gravitational equations hold whenever the scalar fields EM do so. It follows that any scale factor can solve the theory provided a non-trivial profile for a dilaton field. In particular, accelerated expansion is a natural solution to the full set of equations.
Neutrino masses, neutrino oscillations, and cosmological implications
NASA Technical Reports Server (NTRS)
Stecker, F. W.
1982-01-01
Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.
The Future of Theoretical Physics and Cosmology
NASA Astrophysics Data System (ADS)
Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.
2009-08-01
Preface; List of contributors; 1. Introduction; Part I. Popular Symposium: 2. Our complex cosmos and its future Martin J. Rees; 3. Theories of everything and Hawking's wave function of the Universe James B. Hartle; 4. The problem of space-time singularities: implications for quantum gravity? Roger Penrose; 5. Warping spacetime Kip Thorne; 6. 60 years in a nutshell Stephen W. Hawking; Part II. Spacetime Singularities: 7. Cosmological perturbations and singularities George F. R. Ellis; 8. The quantum physics of chronology protection Matt Visser; 9. Energy dominance and the Hawking-Ellis vacuum conservation theorem Brandon Carter; 10. On the instability of extra space dimensions Roger Penrose; Part III. Black Holes: 11. Black hole uniqueness and the inner horizon stability problem Werner Israel; 12. Black holes in the real universe and their prospects as probes of relativistic gravity Martin J. Rees; 13. Primordial black holes Bernard Carr; 14. Black hole pair creation Simon F. Ross; 15. Black holes as accelerators Steven Giddings; Part IV. Hawking Radiation: 16. Black holes and string theory Malcolm Perry; 17. M theory and black hole quantum mechanics Joe Polchinski; 18. Playing with black strings Gary Horowitz; 19. Twenty years of debate with Stephen Leonard Susskind; Part V. Quantum Gravity: 20. Euclidean quantum gravity: the view from 2002 Gary Gibbons; 21. Zeta functions, anomalies and stable branes Ian Moss; 22. Some reflections on the status of conventional quantum theory when applied to quantum gravity Chris Isham; 23. Quantum geometry and its ramifications Abhay Ashtekar; 24. Topology change in quantum gravity Fay Dowker; Part VI. M Theory and Beyond: 25. The past and future of string theory Edward Witten; 26. String theory David Gross; 27. A brief description of string theory Michael Green; 28. The story of M Paul Townsend; 29. Gauged supergravity and holographic field theory Nick Warner; 30. 57 varieties in a NUTshell Chris Pope; Part VII. de Sitter Space
Holographic dark energy and late cosmic acceleration
NASA Astrophysics Data System (ADS)
Pavón, Diego
2007-06-01
It has been persuasively argued that the number of effective degrees of freedom of a macroscopic system is proportional to its area rather than to its volume. This entails interesting consequences for cosmology. Here we present a model based on this 'holographic principle' that accounts for the present stage of accelerated expansion of the Universe and significantly alleviates the coincidence problem also for non-spatially flat cosmologies. Likewise, we comment on a recently proposed late transition to a fresh decelerated phase.
Thermodynamics and holography of tachyon cosmology
NASA Astrophysics Data System (ADS)
Farajollahi, H.; Ravanpak, A.; Abolghasemi, M.
2013-02-01
Recently, we have investigated the dynamics of the universe in tachyon cosmology with non-minimal coupling to matter (Farajollahi et al. in Mod Phys Lett A 26(15):1125-1135, 2011; Phys Lett B 711(3-4)15:225-231,2012; Phys Rev D 83:124042, 2011; JCAP 10:014, 20112011; JCAP 05:017, 2011). In particular, for the interacting holographic dark energy (IHDE), the model is studied in Farajollahi et al. (Astrophys Space Sci 336(2):461-467, 2011). In the current work, a significant observational program has been conducted to unveil the model's thermodynamic properties. Our result shows that the IHDE version of our model better fits the observational data than Λ CDM model. The first and generalized second thermodynamics laws for the universe enveloped by cosmological apparent and event horizon are revisited. From the results, both first and generalized second laws, constrained by the observational data, are satisfied on cosmological apparent horizon.In addition, the total entropy is verified with the observation only if the horizon of the universe is taken as apparent horizon. Then, due to validity of generalized second law, the current cosmic acceleration is also predicted.
The Directedness of Time in Classical Cosmology
NASA Astrophysics Data System (ADS)
Bartels, Andreas; Wohlfarth, Daniel
2014-03-01
The aim of this paper is to show that a new understanding of fundamentality can be applied successfully in classical cosmology based on General Relativity. We are thereby able to achieve an account of cosmological time asymmetry as an intrinsic and fun-damental property of the universe. First, we consider Price's arguments against the fundamental status of time-asymmetry (Price (1996, 2002, 2011)). We show that these arguments have some force, but their force depends on understanding fundamentality as law-likeness. Second, we show that alternative approaches attempting to explain time directedness either by applying an anthropic strategy based on a multiverse approach, or by using the empirical fact of accelerated expansion of the universe, equally fail to provide a fundamental explanation of time directedness. In the third part, we present our own new concept of fundamentality based on properties of the solution space of fundamental laws. We demonstrate how this new concept of fundamentality is effective in understanding the cosmological asymmetry.
Supernova tests of the timescape cosmology
NASA Astrophysics Data System (ADS)
Smale, Peter R.; Wiltshire, David L.
2011-05-01
The timescape cosmology has been proposed as a viable alternative to homogeneous cosmologies with dark energy. It realizes cosmic acceleration as an apparent effect that arises in calibrating average cosmological parameters in the presence of spatial curvature and gravitational energy gradients that grow large with the growth of inhomogeneities at late epochs. Recently Kwan, Francis and Lewis have claimed that the timescape model provides a relatively poor fit to the Union and Constitution supernovae compilations, as compared to the standard Λ cold dark matter (ΛCDM) model. We show this conclusion is a result of systematic issues in supernova light-curve fitting, and of failing to exclude data below the scale of statistical homogeneity, z≲ 0.033. Using all currently available supernova data sets (Gold07, Union, Constitution, MLCS17, MLCS31, SDSS-II, CSP, Union2), and making cuts at the statistical homogeneity scale, we show that data reduced by the SALT/SALT-II (Spectral Adaptive Light curve Template) fitters provide Bayesian evidence that favours the spatially flat ΛCDM model over the timescape model, whereas data reduced with MLCS2k2 fitters give Bayesian evidence which favours the timescape model over the ΛCDM model. We discuss the questions of extinction and reddening by dust, and of intrinsic colour variations in supernovae which do not correlate with the decay time, and the likely impact these systematics would have in a scenario consistent with the timescape model.
Brane cosmology in string/M-theory and cosmological parameters estimation
NASA Astrophysics Data System (ADS)
Wu, Qiang
In this dissertation, I mainly focus on two subjects: (I) highly effective and efficient parameter estimation algorithms and their applications to cosmology; and (II) the late cosmic acceleration of the universe in string/M theory. In Part I, after developing two highly successful numerical codes, I apply them to study the holographical dark energy model and ΛCMD model with curvature. By fitting these models with the most recent observations, I find various tight constraints on the parameters involved in the models. In part II, I develop the general formulas to describe orbifold branes in both string and M theories, and then systematical study the two most important issues: (1) the radion stability and radion mass; and (2) the localization of gravity, the effective 4D Newtonian potential. I find that the radion is stable and its mass is in the order of GeV, which is well above the current observational constraints. The gravity is localized on the TeV brane, and the spectra of the gravitational Kluza-Klein towers are discrete and have a mass gap of TeV. The contributions of high order Yukawa corrections to the Newtonian potential are negligible. Using the large extra dimensions, I also show that the cosmological constant can be lowered to its current observational value. Applying the formulas to cosmology, I study several models in the two theories, and find that a late transient acceleration of the universe is a generic feature of our setups.
Integrable cosmological models from higher dimensional Einstein equations
Sano, Masakazu; Suzuki, Hisao
2007-09-15
We consider the cosmological models for the higher dimensional space-time which includes the curvatures of our space as well as the curvatures of the internal space. We find that the condition for the integrability of the cosmological equations is that the total space-time dimensions are D=10 or D=11 which is exactly the conditions for superstrings or M theory. We obtain analytic solutions with generic initial conditions in the four-dimensional Einstein frame and study the accelerating universe when both our space and the internal space have negative curvatures.
Supersymmetric quantum cosmological billiards
NASA Astrophysics Data System (ADS)
Kleinschmidt, Axel; Koehn, Michael; Nicolai, Hermann
2009-09-01
D=11 supergravity near a spacelike singularity admits a cosmological billiard description based on the hyperbolic Kac-Moody group E10. The quantization of this system via the supersymmetry constraint is shown to lead to wave functions involving automorphic (Maass wave) forms under the modular group W+(E10)≅PSL2(O) with Dirichlet boundary conditions on the billiard domain. A general inequality for the Laplace eigenvalues of these automorphic forms implies that the wave function of the Universe is generically complex and always tends to zero when approaching the initial singularity. We discuss possible implications of this result for the question of singularity resolution in quantum cosmology and comment on the differences with other approaches.
Cosmology with hypervelocity stars
Loeb, Abraham
2011-04-01
In the standard cosmological model, the merger remnant of the Milky Way and Andromeda (Milkomeda) will be the only galaxy remaining within our event horizon once the Universe has aged by another factor of ten, ∼ 10{sup 11} years after the Big Bang. After that time, the only extragalactic sources of light in the observable cosmic volume will be hypervelocity stars being ejected continuously from Milkomeda. Spectroscopic detection of the velocity-distance relation or the evolution in the Doppler shifts of these stars will allow a precise measurement of the vacuum mass density as well as the local matter distribution. Already in the near future, the next generation of large telescopes will allow photometric detection of individual stars out to the edge of the Local Group, and may target the ∼ 10{sup 5±1} hypervelocity stars that originated in it as cosmological tracers.
Peter, Patrick; Pinto-Neto, Nelson
2008-09-15
We propose a new cosmological paradigm in which our observed expanding phase is originated from an initially large contracting Universe that subsequently experienced a bounce. This category of models, being geodesically complete, is nonsingular and horizon-free and can be made to prevent any relevant scale to ever have been smaller than the Planck length. In this scenario, one can find new ways to solve the standard cosmological puzzles. One can also obtain scale invariant spectra for both scalar and tensor perturbations: this will be the case, for instance, if the contracting Universe is dust-dominated at the time at which large wavelength perturbations get larger than the curvature scale. We present a particular example based on a dust fluid classically contracting model, where a bounce occurs due to quantum effects, in which these features are explicit.
NASA Astrophysics Data System (ADS)
Tolish, Alexander; Wald, Robert M.
2016-08-01
The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of (1 +z ).
Gravitomagnetic amplification in cosmology
Tsagas, Christos G.
2010-02-15
Magnetic fields interact with gravitational waves in various ways. We consider the coupling between the Weyl and the Maxwell fields in cosmology and study the effects of the former on the latter. The approach is fully analytical and the results are gauge invariant. We show that the nature and the outcome of the gravitomagnetic interaction depends on the electric properties of the cosmic medium. When the conductivity is high, gravitational waves reduce the standard (adiabatic) decay rate of the B field, leading to its superadiabatic amplification. In poorly conductive environments, on the other hand, Weyl-curvature distortions can result into the resonant amplification of large-scale cosmological magnetic fields. Driven by the gravitational waves, these B fields oscillate with an amplitude that is found to diverge when the wavelengths of the two sources coincide. We present technical and physical aspects of the gravitomagnetic interaction and discuss its potential implications.
NASA Astrophysics Data System (ADS)
Hobson, Michael P.; Jaffe, Andrew H.; Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David
2014-02-01
Preface; Part I. Methods: 1. Foundations and algorithms John Skilling; 2. Simple applications of Bayesian methods D. S. Sivia and Steve Rawlings; 3. Parameter estimation using Monte Carlo sampling Antony Lewis and Sarah Bridle; 4. Model selection and multi-model interference Andrew R. Liddle, Pia Mukherjee and David Parkinson; 5. Bayesian experimental design and model selection forecasting Roberto Trotta, Martin Kunz, Pia Mukherjee and David Parkinson; 6. Signal separation in cosmology M. P. Hobson, M. A. J. Ashdown and V. Stolyarov; Part II. Applications: 7. Bayesian source extraction M. P. Hobson, Graça Rocha and R. Savage; 8. Flux measurement Daniel Mortlock; 9. Gravitational wave astronomy Neil Cornish; 10. Bayesian analysis of cosmic microwave background data Andrew H. Jaffe; 11. Bayesian multilevel modelling of cosmological populations Thomas J. Loredo and Martin A. Hendry; 12. A Bayesian approach to galaxy evolution studies Stefano Andreon; 13. Photometric redshift estimation: methods and applications Ofer Lahav, Filipe B. Abdalla and Manda Banerji; Index.
NASA Astrophysics Data System (ADS)
Hobson, Michael P.; Jaffe, Andrew H.; Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David
2009-12-01
Preface; Part I. Methods: 1. Foundations and algorithms John Skilling; 2. Simple applications of Bayesian methods D. S. Sivia and Steve Rawlings; 3. Parameter estimation using Monte Carlo sampling Antony Lewis and Sarah Bridle; 4. Model selection and multi-model interference Andrew R. Liddle, Pia Mukherjee and David Parkinson; 5. Bayesian experimental design and model selection forecasting Roberto Trotta, Martin Kunz, Pia Mukherjee and David Parkinson; 6. Signal separation in cosmology M. P. Hobson, M. A. J. Ashdown and V. Stolyarov; Part II. Applications: 7. Bayesian source extraction M. P. Hobson, Graça Rocha and R. Savage; 8. Flux measurement Daniel Mortlock; 9. Gravitational wave astronomy Neil Cornish; 10. Bayesian analysis of cosmic microwave background data Andrew H. Jaffe; 11. Bayesian multilevel modelling of cosmological populations Thomas J. Loredo and Martin A. Hendry; 12. A Bayesian approach to galaxy evolution studies Stefano Andreon; 13. Photometric redshift estimation: methods and applications Ofer Lahav, Filipe B. Abdalla and Manda Banerji; Index.
Bojowald, Martin
2015-02-01
In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity. De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting 'microscopic' degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions. PMID:25582917
Discrete Newtonian cosmology: perturbations
NASA Astrophysics Data System (ADS)
Ellis, George F. R.; Gibbons, Gary W.
2015-03-01
In a previous paper (Gibbons and Ellis 2014 Discrete Newtonian cosmology Class. Quantum Grav. 31 025003), we showed how a finite system of discrete particles interacting with each other via Newtonian gravitational attraction would lead to precisely the same dynamical equations for homothetic motion as in the case of the pressure-free Friedmann-Lemaître-Robertson-Walker cosmological models of general relativity theory, provided the distribution of particles obeys the central configuration equation. In this paper we show that one can obtain perturbed such Newtonian solutions that give the same linearized structure growth equations as in the general relativity case. We also obtain the Dmitriev-Zel’dovich equations for subsystems in this discrete gravitational model, and show how it leads to the conclusion that voids have an apparent negative mass.
Topics in inflationary cosmologies
Mahajan, S.
1986-04-01
Several aspects of inflationary cosmologies are discussed. An introduction to the standard hot big bang cosmological model is reviewed, and some of the problems associated with it are presented. A short review of the proposals for solving the cosmological conundrums of the big bang model is presented. Old and the new inflationary scenarios are discussed and shown to be unacceptable. Some alternative scenarios especially those using supersymmetry are reviewed briefly. A study is given of inflationary models where the same set of fields that breaks supersymmetry is also responsible for inflation. In these models, the scale of supersymmetry breaking is related to the slope of the potential near the origin and can thus be kept low. It is found that a supersymmetry breaking scale of the order of the weak breaking scale. The cosmology obtained from the simplest of such models is discussed in detail and it is shown that there are no particular problems except a low reheating temperature and a violation of the thermal constraint. A possible solution to the thermal constraint problem is given by introducing a second field, and the role played by this second field in the scenario is discussed. An alternative mechanism for the generation of baryon number within the framework of supergravity inflationary models is studied using the gravitational couplings of the heavy fields with the hidden sector (the sector which breaks supersymmetry). This mechanism is applied to two specific models - one with and one without supersymmetry breaking. The baryon to entropy ratio is found to be dependent on parameters which are model dependent. Finally, the effect of direct coupling between the two sectors on results is related, 88 refs., 6 figs.
Bonnor, W.B.
1987-05-01
The Einstein-Straus (1945) vacuole is here used to represent a bound cluster of galaxies embedded in a standard pressure-free cosmological model, and the average density of the cluster is compared with the density of the surrounding cosmic fluid. The two are nearly but not quite equal, and the more condensed the cluster, the greater the difference. A theoretical consequence of the discrepancy between the two densities is discussed. 25 references.
Cosmology, Clusters and Calorimeters
NASA Technical Reports Server (NTRS)
Figueroa-Feliciano, Enectali
2005-01-01
I will review the current state of Cosmology with Clusters and discuss the application of microcalorimeter arrays to this field. With the launch of Astro-E2 this summer and a slew of new missions being developed, microcalorimeters are the next big thing in x-ray astronomy. I will cover the basics and not-so-basic concepts of microcalorimeter designs and look at the future to see where this technology will go.
Statistical Methods in Cosmology
NASA Astrophysics Data System (ADS)
Verde, L.
2010-03-01
The advent of large data-set in cosmology has meant that in the past 10 or 20 years our knowledge and understanding of the Universe has changed not only quantitatively but also, and most importantly, qualitatively. Cosmologists rely on data where a host of useful information is enclosed, but is encoded in a non-trivial way. The challenges in extracting this information must be overcome to make the most of a large experimental effort. Even after having converged to a standard cosmological model (the LCDM model) we should keep in mind that this model is described by 10 or more physical parameters and if we want to study deviations from it, the number of parameters is even larger. Dealing with such a high dimensional parameter space and finding parameters constraints is a challenge on itself. Cosmologists want to be able to compare and combine different data sets both for testing for possible disagreements (which could indicate new physics) and for improving parameter determinations. Finally, cosmologists in many cases want to find out, before actually doing the experiment, how much one would be able to learn from it. For all these reasons, sophisiticated statistical techniques are being employed in cosmology, and it has become crucial to know some statistical background to understand recent literature in the field. I will introduce some statistical tools that any cosmologist should know about in order to be able to understand recently published results from the analysis of cosmological data sets. I will not present a complete and rigorous introduction to statistics as there are several good books which are reported in the references. The reader should refer to those.
NASA Astrophysics Data System (ADS)
Jones, Alexander
The structure, composition, and long-term history of the cosmos were prominent topics in many ancient Greek philosophical systems. Philosophers and philosophically informed astronomers differed over whether the cosmos was finite or infinite, eternal or transient, and composed of discrete particles or continuous, homogeneous elements. The Aristotelian cosmology preferred by astronomers following Ptolemy assumed a finite, spherical shell of eternally unalterable matter enclosing a terrestrial globe composed of earth, water, air, and fire.
Ekpyrotic loop quantum cosmology
Wilson-Ewing, Edward
2013-08-01
We consider the ekpyrotic paradigm in the context of loop quantum cosmology. In loop quantum cosmology the classical big-bang singularity is resolved due to quantum gravity effects, and so the contracting ekpyrotic branch of the universe and its later expanding phase are connected by a smooth bounce. Thus, it is possible to explicitly determine the evolution of scalar perturbations, from the contracting ekpyrotic phase through the bounce and to the post-bounce expanding epoch. The possibilities of having either one or two scalar fields have been suggested for the ekpyrotic universe, and both cases will be considered here. In the case of a single scalar field, the constant mode of the curvature perturbations after the bounce is found to have a blue spectrum. On the other hand, for the two scalar field ekpyrotic model where scale-invariant entropy perturbations source additional terms in the curvature perturbations, the power spectrum in the post-bounce expanding cosmology is shown to be nearly scale-invariant and so agrees with observations.
Cosmological perturbations in antigravity
NASA Astrophysics Data System (ADS)
Oltean, Marius; Brandenberger, Robert
2014-10-01
We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.
Quantum Vacuum Structure and Cosmology
Rafelski, Johann; Labun, Lance; Hadad, Yaron; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC
2011-12-05
Contemporary physics faces three great riddles that lie at the intersection of quantum theory, particle physics and cosmology. They are: (1) The expansion of the universe is accelerating - an extra factor of two appears in the size; (2) Zero-point fluctuations do not gravitate - a matter of 120 orders of magnitude; and (3) The 'True' quantum vacuum state does not gravitate. The latter two are explicitly problems related to the interpretation and the physical role and relation of the quantum vacuum with and in general relativity. Their resolution may require a major advance in our formulation and understanding of a common unified approach to quantum physics and gravity. To achieve this goal we must develop an experimental basis and much of the discussion we present is devoted to this task. In the following, we examine the observations and the theory contributing to the current framework comprising these riddles. We consider an interpretation of the first riddle within the context of the universe's quantum vacuum state, and propose an experimental concept to probe the vacuum state of the universe.
Cosmology in generalized Proca theories
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-06-01
We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable parameter spaces in which the no-ghost and stability conditions are satisfied during the cosmic expansion history.
A transitionless lattice for the Fermilab Main Injector
Ng, K.Y.; Trbojevic, D. ); Lee, S.Y. . Dept. of Physics)
1991-05-01
Medium energy (1 to 30 GeV) accelerators are often confronted with transition crossing during acceleration. A lattice without transition is presented, which is a design for the Fermilab Main Injector. The main properties of this lattice are that the {gamma}{sub t} is an imaginary number, the maxima of the dispersion function are small, and two long-straight section with zero dispersion. 7 refs., 5 figs.
Backreaction mechanism in multifluid and extended cosmologies
Jiménez, Jose Beltrán; Cruz-Dombriz, Álvaro de la; Dunsby, Peter K.S.; Sáez-Gómez, Diego E-mail: dombriz@fis.ucm.es E-mail: diego.saezgomez@uct.ac.za
2014-05-01
One possible explanation for the present observed acceleration of the Universe is the breakdown of homogeneity and isotropy due to the formation of non-linear structures. How inhomogeneities affect the averaged cosmological expansion rate and lead to late-time acceleration is generally considered to be due to some backreaction mechanism. In the recent literature most averaging calculations have focused their attention on General Relativity together with pressure-free matter. In this communication we focus our attention on more general scenarios, including imperfect fluids as well as alternative theories of gravity, and apply an averaging procedure to them in order to determine possible backreaction effects. For illustrative purposes, we present our results for dark energy models, quintessence and Brans-Dicke theories. We also provide a discussion about the limitations of frame choices in the averaging procedure.
NASA Astrophysics Data System (ADS)
Benoit-Lévy, Aurélien; Chardin, Gabriel
2014-05-01
We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.
Cosmology with galaxy clusters
NASA Astrophysics Data System (ADS)
Sartoris, Barbara
2015-08-01
Clusters of galaxies are powerful probes to constrain parameters that describe the cosmological models and to distinguish among different models. Since, the evolution of the cluster mass function and large-scale clustering contain the informations about the linear growth rate of perturbations and the expansion history of the Universe, clusters have played an important role in establishing the current cosmological paradigm. It is crucial to know how to determine the cluster mass from observational quantities when using clusters as cosmological tools. For this, numerical simulations are helpful to define and study robust cluster mass proxies that have minimal and well understood scatter across the mass and redshift ranges of interest. Additionally, the bias in cluster mass determination can be constrained via observations of the strong and weak lensing effect, X-ray emission, the Sunyaev- Zel’dovic effect, and the dynamics of galaxies.A major advantage of X-ray surveys is that the observable-mass relation is tight. Moreover, clusters can be easily identified in X-ray as continuous, extended sources. As of today, interesting cosmological constraints have been obtained from relatively small cluster samples (~102), X-ray selected by the ROSAT satellite over a wide redshift range (0
The natural science of cosmology
NASA Astrophysics Data System (ADS)
Peebles, P. J. E.
2014-03-01
The network of cosmological tests is tight enough now to show that the relativistic Big Bang cosmology is a good approximation to what happened as the universe expanded and cooled through light element production and evolved to the present. We have explained the reasons to reach this conclusion, commented on the varieties of philosophies informing searches for a still better cosmology, and offered an example for further study, the curious tendency of some classes of galaxies to behave as island universes.
Cosmology for high energy physicists
Albrecht, A.
1987-11-01
The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs.
Philosophical aspects of modern cosmology
NASA Astrophysics Data System (ADS)
Zinkernagel, Henrik
2014-05-01
Cosmology is the attempt to understand in scientific terms the structure and evolution of the universe as a whole. This ambition has been with us since the ancient Greeks, even if the developments in modern cosmology have provided a picture of the universe dramatically different from that of Pythagoras, Plato and Aristotle. The cosmological thinking of these figures, e.g. the belief in uniform circular motion of the heavens, was closely related to their philosophical ideas, and it shaped the field of cosmology at least up to the times of Copernicus and Kepler.
NASA Astrophysics Data System (ADS)
Sidorin, Anatoly
2010-01-01
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
Sidorin, Anatoly
2010-01-05
In linear accelerators the particles are accelerated by either electrostatic fields or oscillating Radio Frequency (RF) fields. Accordingly the linear accelerators are divided in three large groups: electrostatic, induction and RF accelerators. Overview of the different types of accelerators is given. Stability of longitudinal and transverse motion in the RF linear accelerators is briefly discussed. The methods of beam focusing in linacs are described.
Cosmological and astrophysical constraints on tachyon dark energy models
NASA Astrophysics Data System (ADS)
Martins, C. J. A. P.; Moucherek, F. M. O.
2016-06-01
Rolling tachyon field models are among the candidates suggested as explanations for the recent acceleration of the Universe. In these models the field is expected to interact with gauge fields and lead to variations of the fine-structure constant α . Here we take advantage of recent observational progress and use a combination of background cosmological observations of type Ia supernovas and astrophysical and local measurements of α to improve constraints on this class of models. We show that the constraints on α imply that the field dynamics must be extremely slow, leading to a constraint of the present-day dark energy equation of state (1 +w0)<2.4 ×10-7 at the 99.7% confidence level. Therefore current and forthcoming standard background cosmology observational probes cannot distinguish this class of models from a cosmological constant, while detections of α variations could possibly do so since they would have a characteristic redshift dependence.
Palmer, R.B.
1987-05-01
This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.
Cosmological probes of gravity
NASA Astrophysics Data System (ADS)
Rassat, Anais Marie Melanie
This Thesis is concerned with two cosmological probes of linear gravity. The first relates to Large Scale Structure (LSS) in the Universe, probed by galaxy surveys. The second to temperature anisotropics of the Cosmic Microwave Background (CMB), probed by the Wilkinson Microwave Anisotropy Map (WMAP). Both probe the matter and dark energy distributions in the Universe and can be used to test general relativity. The first part of this Thesis (Chapters 2 to 4) is concerned with the analysis of galaxy clustering in redshift space. The second part (Chapters 5 to 7) is concerned with the Integrated Sachs-Wolfe (ISW) effect using LSS-CMB cross-correlations. Chapter 1 introduces the cosmological theory and overviews the subsequent chapters. Chapter 2 gives a review of recent results from the 2 Micron All-Sky Survey (2MASS) and its Redshift Survey (2MRS). It includes work published in Erdogdu (a) et al. (2006) and Erdogdu (b) et al. (2006). Chapter 3 quantifies the clustering of 2MRS galaxies in redshift space. Chapter 4 uses results from Chapter 3 to constrain cosmological parameters. A selection of work from Chapters 3 and 4 will shortly become available in Rassat et al. (2008), entitled 'Redshift Space Analysis of 2MRS'. Chapter 5 overviews the late-time Integrated Sachs-Wolfe effect (ISW) and cross- correlations between the LSS and the CMB. Chapter 6 is also published in Rassat et al. (2007), entitled "Cross-correlation of 2MASS and WMAP3: Implications for the Integrated Sachs-Wolfe effect". It investigates a detection of the ISW effect and correlations which may affect statistical isotropy in the CMB ('Axis of Evil'). Chapter 7 uses the ISW effect to forecast constraints on dark energy parameters and general modifications of general relativity for the next generation of galaxy surveys, particularly the Dark UNiverse Explorer (DUNE) and the Dark Energy Survey (DES). Chapter 8 presents the overall conclusions of this Thesis. Chapter 9 discusses possible extensions to
NASA Astrophysics Data System (ADS)
Dymnikova, Irina
2003-06-01
In the spherically symmetric case the dominant energy condition, together with the requirement of regularity of a density and finiteness of the mass, defines the family of asymptotically flat globally regular solutions to the Einstein minimally coupled equations which includes the class of metrics asymptotically de Sitter as r --> 0 and asymptotically Schwarzschild as r --> ∞. A source term connects smoothly de Sitter vacuum in the origin with the Minkowski vacuum at infinity and corresponds to anisotropic vacuum defined macroscopically by the algebraic structure of its stress-energy tensor invariant under boosts in the radial direction. Dependently on parameters, geometry describes vacuum nonsingular black and white holes, and self-gravitating particle-like structures. ADM mass for this class is related to both de Sitter vacuum trapped inside an object and to breaking of space-time symmetry. This class of metrics is easily extended to the case of nonzero cosmological constant at infinity. The source term connects then smoothly two de Sitter vacua and corresponds to extension of the Einstein cosmological term Λgμν to an r-dependent cosmological term Λμν. In this approach a constant scalar Λ associated with a vacuum density Λ = 8πGρvac, becomes a tensor component Λtt associated explicitly with a density component of a perfect fluid tensor whose vacuum properties follow from its symmetry and whose variability follows from the Bianchi identities. In this review we outline and discuss Λμν geometry and its applications.
NASA Astrophysics Data System (ADS)
Kouneiher, J.
2015-07-01
The recent evolution of the observational technics and the development of new tools in cosmology and gravitation have a significant impact on the study of the cosmological models. In particular, the qualitative and numerical methods used in dynamical system and elsewhere, enable the resolution of some difficult problems and allow the analysis of different cosmological models even with a limited number of symmetries. On the other hand, following Einstein point of view the manifold ℳ and the metric should be built simultaneously when solving Einstein’s equation Rμν -1 2Rgμν = Tμν. From this point of view, the only kinematic condition imposed is that at each point of space-time, the tangent space is endowed with a metric (which is a Minkowski metric in the physical case of pseudo-Riemannian manifolds and an Euclidean one in the Riemannian analogous problem). Then the field (gμν) describes the way these metrics depend on the point in a smooth way and the Einstein equation is the “dynamical” constraint on gμν. So, we have to imagine an infinite continuous family of copies of the same Minkowski or Euclidean space and to find a way to sew together these infinitesimal pieces into a manifold, by respecting Einstein’s equation. Thus, Einstein field equations do not fix once and for all the global topology. 34 Given this freedom in the topology of the space-time manifold, a question arises as to how free the choice of these topologies may be and how one may hope to determine them, which in turn is intimately related to the observational consequences of the space-time possessing nontrivial topologies. Therefore, in this paper we will use a different qualitative dynamical methods to determine the actual topology of the space-time.
Hall, C M
1986-12-01
Sociological concepts are used to demonstrate applications of views of the cosmos to everyday living. Optimal recovery in therapy is defined as increased participation and increased life-satisfaction in family and society, with meaningful motivation and orientation to the universe.Cosmology and therapy concepts are applied to five different kinds of marital relationships in order to clarify possibilities and define contrasts. Family processes which evolve as shifts in views of the cosmos, beliefs, and behavior occur are described. Strengths and weaknesses of this therapy are discussed, and attention is paid to ways in which beliefs provide motivation, meaning, and direction for behavior. PMID:24301690
NASA Technical Reports Server (NTRS)
Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Jun'ichi
1990-01-01
The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.
NASA Technical Reports Server (NTRS)
Turner, Michael S.; Wilczek, Frank
1991-01-01
If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10 to the -6th eV. This bound can be evaded if the universe underwent inflation after PQ-symmetry breaking and if the observable universe happens to be a region where the initial axion angle was atypically small. Consideration of fluctuations induced during inflation severely constrains the latter alternative is shown.
Republication of: Relativistic cosmology
NASA Astrophysics Data System (ADS)
Robertson, H. P.
2012-08-01
This is a reprinting of the paper by Howard Percy Robertson, first published in 1933 in Rev. Mod. Phys., that is a very authoritative summary of relativistic cosmology at the stage at which it was up to 1933. The paper has been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. This republication is accompanied by an editorial note written by George Ellis, and by Robertson's biography, compiled by Andrzej Krasinski from printed sources.
NASA Astrophysics Data System (ADS)
Koshelev, Alexey S.
2010-11-01
We consider the appearance of multiple scalar fields in SFT inspired non-local models with a single scalar field at late times. In this regime all the scalar fields are free. This system minimally coupled to gravity is mainly analyzed in this note. We build one exact solution to the equations of motion. We consider an exactly solvable model which obeys a simple exact solution in the cosmological context for the Friedmann equations and that reproduces the behavior expected from SFT in the asymptotic regime.
Anisotropic spinfoam cosmology
NASA Astrophysics Data System (ADS)
Rennert, Julian; Sloan, David
2014-01-01
The dynamics of a homogeneous, anisotropic universe are investigated within the context of spinfoam cosmology. Transition amplitudes are calculated for a graph consisting of a single node and three links—the ‘Daisy graph’—probing the behaviour a classical Bianchi I spacetime. It is shown further how the use of such single node graphs gives rise to a simplification of states such that all orders in the spin expansion can be calculated, indicating that it is the vertex expansion that contains information about quantum dynamics.
NASA Astrophysics Data System (ADS)
Krishnan, Chethan; Raju, Avinash; Roy, Shubho; Thakur, Somyadip
2014-02-01
We construct cosmological solutions of higher spin gravity in 2+1 dimensional de Sitter space. We show that a consistent thermodynamics can be obtained for their horizons by demanding appropriate holonomy conditions. This is equivalent to demanding the integrability of the Euclidean boundary conformal field theory partition function, and it reduces to Gibbons-Hawking thermodynamics in the spin-2 case. By using the prescription of Maldacena, we relate the thermodynamics of these solutions to those of higher spin black holes in AdS3.
NASA Technical Reports Server (NTRS)
Gregory, Ruth
1988-01-01
The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.
NASA Astrophysics Data System (ADS)
Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza
1999-04-01
Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.
Galileons on cosmological backgrounds
Goon, Garrett; Hinterbichler, Kurt; Trodden, Mark E-mail: kurthi@physics.upenn.edu
2011-12-01
We construct four-dimensional effective field theories of a generalized DBI galileon field, the dynamics of which naturally take place on a Friedmann-Robertson-Walker spacetime. The theories are invariant under non-linear symmetry transformations, which can be thought of as being inherited from five-dimensional bulk Killing symmetries via the probe brane technique through which they are constructed. The resulting model provides a framework in which to explore the cosmological role that galileons may play as the universe evolves.
Chamseddine, Ali H.; Mukhanov, Viatcheslav; Vikman, Alexander E-mail: viatcheslav.Mukhanov@lmu.de
2014-06-01
We consider minimal extensions of the recently proposed Mimetic Dark Matter and show that by introducing a potential for the mimetic non-dynamical scalar field we can mimic nearly any gravitational properties of the normal matter. In particular, the mimetic matter can provide us with inflaton, quintessence and even can lead to a bouncing nonsingular universe. We also investigate the behaviour of cosmological perturbations due to a mimetic matter. We demonstrate that simple mimetic inflation can produce red-tilted scalar perturbations which are largely enhanced over gravity waves.
NASA Astrophysics Data System (ADS)
Gill, Stuart P. D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.
2003-04-01
An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological "market" today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.
DOE R&D Accomplishments Database
Wilczek, Frank; Turner, Michael S.
1990-09-01
If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.
Cosmology with the WFIRST High Latitude Survey
NASA Astrophysics Data System (ADS)
Dore, Olivier
Cosmic acceleration is the most surprising cosmological discovery in many decades. Testing and distinguishing among possible explanations requires cosmological measurements of extremely high precision that probe the full history of cosmic expansion and structure growth. The WFIRST-AFTA mission, as described in the Science Definition Team (SDT) reports (Spergel 2013, 2015), has the ability to improve these measurements by 1-2 orders of magnitude compared to the current state of the art, while simultaneously extending their redshift grasp, greatly improving control of systematic effects, and taking a unified approach to multiple probes that provide complementary physical information and cross-checks of cosmological results. We have assembled a team with the expertise and commitment needed to address the stringent challenges of the WFIRST dark energy program through the Project's formulation phase. After careful consideration, we have elected to address investigations A (Galaxy Redshift Survey) and C (Weak Lensing and Cluster Growth) of the WFIRST SIT NRA with a unified team, because the two investigations are tightly linked at both the technical level and the theoretical modeling level. The imaging and spectroscopic elements of the High Latitude Survey (HLS) will be realized as an integrated observing program, and they jointly impose requirements on instrument and telescope performance, operations, and data transfer. The methods for simulating and interpreting weak lensing and galaxy clustering observations largely overlap, and many members of our team have expertise in both areas. The team PI, Olivier Dore, is a cosmologist with a broad expertise in cosmic microwave background and large scale structures. Yun Wang and Chris Hirata will serve as Lead Co-Investigators for topics A and C, respectively. Many members of our team have been involved with the design and requirements of a dark energy space mission for a decade or more, including the Co-Chair and three
Cosmology with a stiff matter era
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri
2015-11-01
bouncing like in loop quantum cosmology. At t =0 , the scale factor is finite and the energy density is equal to zero. The universe first has a phantom behavior where the energy density increases with the scale factor, then a normal behavior where the energy density decreases with the scale factor. For the sake of generality, we consider a cosmological constant of arbitrary sign. When the cosmological constant is positive, the Universe asymptotically reaches a de Sitter regime where the scale factor increases exponentially rapidly with time. This can account for the accelerating expansion of the Universe that we observe at present. When the cosmological constant is negative (anti-de Sitter), the evolution of the Universe is cyclic. Therefore, depending on the sign of the internal energy of the dark fluid and on the sign of the cosmological constant, we obtain analytical solutions of the Friedmann equations describing singular and nonsingular expanding, bouncing, or cyclic universes.
RESIDUAL HUBBLE-BUBBLE EFFECTS ON SUPERNOVA COSMOLOGY
Sinclair, Benjamin; Davis, Tamara M.; Haugboelle, Troels
2010-08-01
Even in a universe that is homogeneous on large scales, local density fluctuations can imprint a systematic signature on the cosmological inferences we make from distant sources. One example is the effect of a local underdensity on supernova cosmology. Also known as a Hubble-bubble, it has been suggested that a large enough underdensity could account for the supernova magnitude-redshift relation without the need for dark energy or acceleration. Although the size and depth of the underdensity required for such an extreme result is extremely unlikely to be a random fluctuation in an on-average homogeneous universe, even a small underdensity can leave residual effects on our cosmological inferences. It is these small underdensities that we consider here. In this paper, we show that there remain systematic shifts in our cosmological parameter measurements, even after excluding local supernovae that are likely to be within any small Hubble-bubble. We study theoretically the low-redshift cutoff typically imposed by supernova cosmology analyses and show that a low-redshift cut of z {sub 0} {approx} 0.02 may be too low based on the observed inhomogeneity in our local universe. Neglecting to impose any low-redshift cutoff can have a significant effect on the cosmological parameters derived from supernova data. A slight local underdensity, just 30% underdense with scale 70 h {sup -1} Mpc, causes an error in the inferred cosmological constant density {Omega}{sub {Lambda}} of {approx}4%. Imposing a low-redshift cutoff reduces this systematic error but does not remove it entirely. A residual systematic shift of 0.99% remains in the inferred value {Omega}{sub {Lambda}} even when neglecting all data within the currently preferred low-redshift cutoff of 0.02. Given current measurement uncertainties, this shift is not negligible and will need to be accounted for when future measurements yield higher precision.
Photonic Crystal Laser-Driven Accelerator Structures
Cowan, B.; /SLAC
2005-09-19
We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We demonstrate guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode. We also discuss particle beam dynamics in the structure, presenting a novel method for focusing the beam. In addition we describe some potential coupling methods for the structure.
Dark flows and the cosmological axis
NASA Astrophysics Data System (ADS)
Tsagas, Christos G.
2012-10-01
Recent surveys indicate coherent large-scale peculiar motions, commonly referred to as 'dark flows', considerably stronger than expected. At the same time, an increasing number of reports suggest the presence of a weak dipolar anisotropy in the supernova data. The Universe seems to accelerate slightly faster in one direction and equally slower in the opposite. Also, this 'cosmological axis' lies fairly close to the cosmic microwave background dipole. Since apparent, dipole-like, anisotropies are the trademark signature of peculiar motions, we consider the possibility that these, seemingly unconnected, observations are actually related. In the process, we find that observers living inside a dark flow could experience locally accelerated expansion in a globally decelerating Universe. Moreover, to these observers, the acceleration should appear slightly faster in one direction and equally slower in the opposite, as if there is a preferred axis in the universe. When combined, these results open, in principle at least, the theoretical possibility of addressing the supernova data and the cosmic acceleration by appealing to dark flows rather than dark energy.
Turner, Michael S.
1997-03-01
The Hubble constant sets the size and age of the Universe, and, together with independent determinations of the age, provides a consistency check of the standard cosmology. The Hubble constant also provides an important test of our most attractive paradigm for extending the standard cosmology, inflation and cold dark matter.
NASA Astrophysics Data System (ADS)
Longair, Malcolm S.
Some highlights of the history of modern cosmology and the lessons to be learned from the successes and blind alleys of the past are described. This heritage forms the background to the lectures and discussions at this Second Carnegie Centennial Symposium, which celebrates the remarkable contributions of the Carnegie Institution in the support of astronomical and cosmological research.
Non-minimal derivative coupling gravity in cosmology
NASA Astrophysics Data System (ADS)
Gumjudpai, Burin; Rangdee, Phongsaphat
2015-11-01
We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9 + eCMB + BAO + H_0) dataset, the PLANCK + WP dataset, and the PLANCK TT, TE, EE + lowP + Lensing + ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the Λ CDM model, since at late times the NMDC effect is tiny due to small curvature.
Higher dimensional loop quantum cosmology
NASA Astrophysics Data System (ADS)
Zhang, Xiangdong
2016-07-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.
Particle physics and cosmology
Kolb, E.W.
1986-10-01
This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.
Investigations in theoretical cosmology
NASA Astrophysics Data System (ADS)
Barnard, Michael James
This report is a compilation of research I have done in the field of cosmology while at the University of California, Davis. The topics are all closely linked to the physics of scalar fields in General Relativity. This thesis contains the text of two papers, both of which deal with the goals and motivations of future projects in observational cosmology. The first is an evaluation of the effect of future observations on constraints on the parameter space of the Albrecht- Skordis model of dark energy. These future data sets were found to be able of constraining the scalar field model parameters in ways consistent with the constraints on the phenomenological equation of state parameters used by the Dark Energy Task Force. The second paper used principle component analysis of the equation of state parameter on simulated future data sets to construct parameter spaces. Distributions of dark energy quintessence models were then projected into these parameter spaces; it was found that there is structure in the separation of these models that is marginally detectable by so called "Stage 4" experiments. Also included are a review of the derivation of the scale invariant primordial power spectrum and an evaluation of a model of open inflation as the cause of the low CMB quadrupole.
NASA Astrophysics Data System (ADS)
Lyth, D. H.
The author has revisited inflationary axion cosmology. The treatment involves fewer assumptions than in the past, and he arrives at a scenario specified by the values of three parameters fa/N, Nθ¯, and Nσθ (√2fa is the vacuum value of the modulus of the Peccei-Quinn field, θ and σθ are the mean and rms dispersion of its phase θ just before the axion mass switches on, and N is the number of distinct vacuum values of θ once the mass has turned on). The following conclusions are presented: first, axionic domain walls can be cosmologically interesting only if fa/N is within an order of magnitude of its extreme astrophysical lower bound 2×108GeV. Second, the axion density perturbation can be either Gaussian or of the χ2type, but the latter case is likely only if fa/N ≤ 1010GeV. Third, at least in the absence of walls the axion density perturbation can probably not become big enough to be the cause of the observed structure, though the non-Gaussian case requires further investigation. Finally, the author makes the additional assumption that interactions of the Peccei-Quinn field do not alter the effective value of fa, while relevant scales leave the horizon during inflation. This leads to the strong bound on the inflationary energy density.
NASA Astrophysics Data System (ADS)
Perkins, D. K.
2006-08-01
Microbes swarming on a sand grain planet or integral complex organisms evolving consciousness at the forefront of cosmic evolution? How is our new cosmology contributing to redefining who we see ourselves to be at the edge of the 21^st century, as globalization and capitalism speed forward? How is the evolution of stardust and the universe offering new paradigms of process and identity regarding the role, function and emergence of life in space-time? What are the cultural and philosophical questions that are arising and how might astronomy be contributing to the creation of new visions for cooperation and community at a global scale? What is the significance of including astronomy in K-12 education and what can it offer youth regarding values in light of the present world situation? Exploring our new cosmological concepts and the emergence of life at astronomical scales may offer much of valuable orientation toward reframing the human role in global evolution. Considering new insight from astrobiology each diverse species has a definitive role to play in the facilitation and functioning of the biosphere. Thus the question may arise: Is there any sort of ethic implied by natural science and offered by our rapidly expanding cosmic frontier?
The standard cosmological model
NASA Astrophysics Data System (ADS)
Scott, D.
2006-06-01
The Standard Model of Particle Physics (SMPP) is an enormously successful description of high-energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire three-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realization of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas that might explain the values of its parameters. Although it is natural to see analogies between the two Standard Models, some intrinsic differences also exist, which are discussed here. Nevertheless, a truly fundamental theory will have to explain both the SMPP and SMC, and this must include an appreciation of which elements are deterministic and which are accidental. Considering different levels of stochasticity within cosmology may make it easier to accept that physical parameters in general might have a nondeterministic aspect.
Cosmology with matter diffusion
Calogero, Simone; Velten, Hermano E-mail: velten@cce.ufes.br
2013-11-01
We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field φ which we identify with the dark energy component of the universe. The model is characterized by only one new degree of freedom, the diffusion parameter σ. The standard ΛCDM model can be recovered by setting σ = 0. If diffusion takes place (σ > 0) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the universe may serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integrated Sachs-Wolfe signal, and on the matter power spectrum P(k). The latter analysis places strong constraints on the magnitude of the diffusion mechanism but does not rule out the model.
Lee, Y.Y.; Barton, D.S.; Claus, J.; Cottingham, J.G.; Courant, E.D.; Danby, G.T.; Dell, G.F.; Forsyth, E.B.; Gupta, R.C.; Kats, J.
1987-01-01
The AGS Booster has three objectives. They are to increase the space charge limit of the AGS, to increase the intensity of the polarized proton beam by accumulating many linac pulses (since the intensity is limited by the polarized ion source), and to reaccelerate heavy ions from the BNL Tandem Van de Graaff before injection into the AGS. The machine is capable of accelerating protons at 7.5 Hertz from 200 MeV to 1.5 GeV or to lower final energies at faster repetition rates. The machine will also be able to accelerate heavy ions from as low as 1 MeV/nucleon to a magnetic rigidity as high as 17.6 Tesla-meters with a one second repetition rate. As an accumulator for polarized protons, the Booster should be able to store the protons at 200 MeV for several seconds. We expect that the Booster will increase the AGS proton intensity by a factor of four, polarized proton intensity by a factor of twenty to thirty, and will also enable the AGS to accelerate all species of heavy ions (at present the AGS heavy ion program is limited to the elements lighter than sulfur because it can only accelerate fully stripped ions). The construction project started in FY 1985 and is expected to be completed in 1989. The purpose of this paper is to provide a future reference for the AGS Booster lattice.
Towards a Holographic Theory of Cosmology — Threads in a Tapestry
NASA Astrophysics Data System (ADS)
Ng, Y. Jack
2013-10-01
In this paper, we address several fundamental issues in cosmology: What is the nature of dark energy and dark matter? Why is the dark sector so different from ordinary matter? Why is the effective cosmological constant nonzero but so incredibly small? What is the reason behind the emergence of a critical acceleration parameter of magnitude 10-8 cm/s2 in galactic dynamics? We suggest that the holographic principle is the linchpin in a unified scheme to understand these various issues.
Can Accelerators Accelerate Learning?
NASA Astrophysics Data System (ADS)
Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.
2009-03-01
The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.
Teng, L.C.
1960-01-19
ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.
Dynamical Evolution of Quintessence Cosmology in a Physical Phase Space
NASA Astrophysics Data System (ADS)
Qi, Jing-Zhao; Zhang, Ming-Jian; Liu, Wen-Biao
2016-04-01
The phase space analysis of cosmological parameters Ω ϕ and γ ϕ is given. Based on this, the well-known quintessence cosmology is studied with an exponential potential V(φ )=V0exp (-λ φ ). Given observational data, the current state of universe could be pinpointed in the phase diagrams, thus making the diagrams more informative. The scaling solution of quintessence usually is not supposed to give the cosmic accelerating expansion, but we prove it could educe the transient acceleration. We also find that the differential equations of system used widely in study of scalar field are incomplete, and then a numerical method is used to figure out the range of application.
Dynamical Evolution of Quintessence Cosmology in a Physical Phase Space
NASA Astrophysics Data System (ADS)
Qi, Jing-Zhao; Zhang, Ming-Jian; Liu, Wen-Biao
2016-08-01
The phase space analysis of cosmological parameters Ω ϕ and γ ϕ is given. Based on this, the well-known quintessence cosmology is studied with an exponential potential V(φ )=V0exp (-λ φ ). Given observational data, the current state of universe could be pinpointed in the phase diagrams, thus making the diagrams more informative. The scaling solution of quintessence usually is not supposed to give the cosmic accelerating expansion, but we prove it could educe the transient acceleration. We also find that the differential equations of system used widely in study of scalar field are incomplete, and then a numerical method is used to figure out the range of application.
Particles in astrophysics and cosmology: a dark connection
NASA Astrophysics Data System (ADS)
Fornengo, Nicolao
2010-11-01
The particle physics interpretation of the missing-mass, or dark-matter, problem of cosmological and astrophysical nature is going to be posed under deep scrutiny in the next years. From the particle physics side, accelerators will deeply test theoretical ideas of new physics beyond the Standard Model, where particle candidates of dark matter are predicted. From the astrophysical side, many probes are already providing a great deal of independent information on the foreseen signals which can be produced by the galactic or extra-galactic dark matter. The ultimate hope is in fact the emergence of dark matter signals from the various sources of backgrounds and the rise of a coherent picture of new physics from the accelerator physics, astrophysics and cosmology sides. A very ambitious and far-reaching project, which will bring to a deeper level our understanding of the fundamental laws which rule the Universe.
CosMIn: the Solution to the Cosmological Constant Problem
NASA Astrophysics Data System (ADS)
Padmanabhan, Hamsa; Padmanabhan, T.
2013-06-01
The current acceleration of the universe can be modeled in terms of a cosmological constant Λ. We show that the extremely small value of Λ LP2 ≈ 3.4 × 10-122, the holy grail of theoretical physics, can be understood in terms of a new, dimensionless, conserved number Cosmic Mode Index (CosMIn), which counts the number of modes crossing the Hubble radius during the three phases of evolution of the universe. Theoretical considerations suggest that N ≈ 4π. This single postulate leads us to the correct, observed numerical value of the cosmological constant! This approach also provides a unified picture of cosmic evolution relating the early inflationary phase to the late accelerating phase.
Dark Energy and Dark Matter as Components of Cosmological Term Stand for Vorticity and Shear
NASA Astrophysics Data System (ADS)
Nurgaliev, Ildus S.
2015-01-01
This report brings attention to the ignored components of the kinetic energy related to vorticity and shear in the standard cosmological dynamics. It is concluded that averaged term of squared vorticity is term attributed as an accelerated expansion caused by negative energy of an enigmatic repulsive factor. Cosmological singularity has been a consequence of the unrealistically excessive cosmological principle (too detailed symmetry of flow) such as "Hubble law". Appropriate realistic one is suggested, which is also linear function of space coordinates (because of homogeneity principle) but has tensor character. Cosmological principle is applied to irregularities - they are homogeneous and isotropic in average to some extend within the corresponding Megagalactic scales. The "Big Bang" is nothing but the local bounce of the Meta-galaxy which is typical among myriads others. Exact solutions are presented (dynamic, steady and static) of the cosmologic dynamics. "Negative radiation" equation of state p =∈/3 with p≤0, ∈≤0 is generated by vorticity which is dynamic carrier of the dark energy. This fact dismisses the need in any other artificial cosmologic term, the need in any other modifications of the gravity theory or in an exotic matter as a cause for cosmological accelerated expansion. New conception of material point established. Social and educational aspects of the findings touched slightly.
A trace of inflation in the local behavior of cosmological constant
NASA Astrophysics Data System (ADS)
Benedetto, E.; Feoli, A.; Pizza, L.
2015-12-01
Assuming the existence of a cosmological constant depending on time, we study the evolution of this field in a local region of spacetime. Solving the standard equations of Einstein Relativity in the weak field approximation we find two asymptotes in the behavior of the cosmological constant. Their meaning is the existence of an inflationary era both in the far past and in the future. A trace of the initial acceleration of the Universe can be found also in the local behavior of cosmological constant.
Beyond the cosmological standard model
NASA Astrophysics Data System (ADS)
Joyce, Austin; Jain, Bhuvnesh; Khoury, Justin; Trodden, Mark
2015-03-01
After a decade and a half of research motivated by the accelerating universe, theory and experiment have reached a certain level of maturity. The development of theoretical models beyond Λ or smooth dark energy, often called modified gravity, has led to broader insights into a path forward, and a host of observational and experimental tests have been developed. In this review we present the current state of the field and describe a framework for anticipating developments in the next decade. We identify the guiding principles for rigorous and consistent modifications of the standard model, and discuss the prospects for empirical tests. We begin by reviewing recent attempts to consistently modify Einstein gravity in the infrared, focusing on the notion that additional degrees of freedom introduced by the modification must "screen" themselves from local tests of gravity. We categorize screening mechanisms into three broad classes: mechanisms which become active in regions of high Newtonian potential, those in which first derivatives of the field become important, and those for which second derivatives of the field are important. Examples of the first class, such as f(R) gravity, employ the familiar chameleon or symmetron mechanisms, whereas examples of the last class are galileon and massive gravity theories, employing the Vainshtein mechanism. In each case, we describe the theories as effective theories and discuss prospects for completion in a more fundamental theory. We describe experimental tests of each class of theories, summarizing laboratory and solar system tests and describing in some detail astrophysical and cosmological tests. Finally, we discuss prospects for future tests which will be sensitive to different signatures of new physics in the gravitational sector. The review is structured so that those parts that are more relevant to theorists vs. observers/experimentalists are clearly indicated, in the hope that this will serve as a useful reference for
The Anisotropic Geometrodynamics For Cosmology
NASA Astrophysics Data System (ADS)
Siparov, Sergey V.
2009-05-01
The classical geometrodynamics (GRT) and its modern features based on the use of the Fridman-Robertson-Walker type metrics are still unable to explain several important issues of extragalactic observations like flat rotation curves of the spiral galaxies, Tully-Fisher law, globular clusters behavior in comparisson to that of the stars belonging to the galactic plane etc. The chalenging problem of the Universe expansion acceleration stemming from the supernovae observations demands the existence of the repulsion forces which brings one to the choice between the cosmological constant and some quintessence. The popular objects of discussion are now still dark (matter and energy), nevertheless, they are supposed to correspond to more than 95% of the Universe which seems to be far from satisfactory. According to the equivalence principle we can not experimentally distinguish between the inertial forces and the gravitational ones. Since there exist the inertial forces depending on velocity (Coriolis), it seems plausible to explore the velocity dependent gravitational forces. From the mathematical point of view it means that we should use the anisotropic metric. It immediately turns out that the expression for the Einstein-Hilbert action changes in a natural way - contrary to the cases of f(R)-theories, additional scalar fields, arbitrary MOND functions etc.. We use the linear approximation for the metric and derive the generalized geodesics and the equation for the gravity force that contains not only the Newton-Einstein term. The relation between the obtained results and those of Lense-Thirring approach are discussed. The resulting anisotropic geometrodynamics includes all the results of the GRT and is used to give the explanation to the problems mentioned above. One of the impressive consequences is the possibility to explain the observed Hubble red shift not by the Doppler effect as usually but by the gravitational red shift originating from the metric anisotropy.
Experience with split transition lattices at RHIC
Montag, C.; Tepikian, S.; Blaskiewicz, M.; Brennan, J.M.
2010-05-23
During the acceleration process, heavy ion beams in RHIC cross the transition energy. When RHIC was colliding deuterons and gold ions during Run-8, lattices with different integer tunes were used for the two rings. This resulted in the two rings crossing transition at different times, which proved beneficial for the 'Yellow' ring, the RF system of which is slaved to the 'Blue' ring. For the symmetric gold-gold run in FY2010, lattices with different transition energies but equal tunes were implemented. We report the optics design concept as well as operational experience with this configuration.
Weightless bubble lattices: A case of froth wicking
NASA Technical Reports Server (NTRS)
Noever, David A.; Cronise, Raymond J.
1994-01-01
In the absence of gravity drainage, froth wicking draws excess fluid onto a bubble lattice. Capillary forces only cause fluid transport; a moving front moves stably and without fluid fingering along a constant velocity bubble-fluid contact line. This percolation of fluid crawling up the lattice shows fluid coverage on lattice borders varies linearly with available surface area (proportional to lattice perimeter) and fluid accelerates through regions or nests of high bubble density (number of bubbles/sq cm). The development of nearly two-dimensional bubble lattices in variable gravity (step function between 0.01 and 1.8 times earthly gravity) are examined experimentally and a zeroth-order model for froth wetting is presented, which captures many of the principal observations. Possible applications for bubble lattices include adhesion casting of metals and separation of biological cells, bacteria, and particles.
An Introduction to Galaxies and Cosmology
NASA Astrophysics Data System (ADS)
Jones, Mark H.; Lambourne, Robert J. A.; Serjeant, Stephen
2015-01-01
Introduction; 1. The Milky Way - our galaxy; 2. Normal galaxies; 3. Active galaxies; 4. The spatial distribution of galaxies; 5. Introducing cosmology - the science of the Universe; 6. Big bang cosmology - the evolving Universe; 7. Observational cosmology - measuring the Universe; 8. Questioning cosmology - outstanding problems about the Universe; Answers and comments; Appendix; Glossary; Further reading; Acknowledgements; Figure references; Index.
A New Cosmological Model: Black Hole Universe
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2007-12-01
An alternative cosmological model called by Black Hole Universe is newly developed. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses due to continuously inhaling matter from its outside - the mother universe. The structure and evolution of the black hole universe are spatially hierarchical and temporally iterative. In each of iterations, the matter reconfigures and the universe is renewed rather than a simple repeat. A universe passes through birth, growth, and death. The entire life of a universe roughly divides into three periods with different rates of expansion. In the early period, the universe was a child, which did not eat much and thus grew slowly. In the middle period, the universe is an adult, which expands quickly with a speed up to the speed of light. And in the final period, the universe will become elder and slow down the expansion till a complete stop when the outside matter is all swallowed. The black hole universe model is consistent with the Mach principle, the observations of the universe, and the Einstein general theory of relativity and can be understood with the well-developed physics. This new model does not need a dark energy for acceleration and has a great impact on the traditional big bang cosmology. In this presentation, we will show the origin, evolution, and expansion of the black hole universe, explain the cosmic microwave background radiation, describe the energy mechanism of quasars, illustrate the black hole nucleosynthesis of elements, analyze the mechanisms of redshifts, and compare the black hole universe model with the big bang cosmology.
Cosmological structure formation
NASA Technical Reports Server (NTRS)
Schramm, David N.
1991-01-01
A summary of the current forefront problem of physical cosmology, the formation of structures (galaxies, clusters, great walls, etc.) in the universe is presented. Solutions require two key ingredients: (1) matter; and (2) seeds. Regarding the matter, it now seems clear that both baryonic and non-baryonic matter are required. Whether the non-baryonic matter is hot or cold depends on the choice of seeds. Regarding the seeds, both density fluctuations and topological defects are discussed. The combination of isotropy of the microwave background and the recent observations indicating more power on large scales have severly constrained, if not eliminated, Gaussian fluctuations with equal power on all scales, regardless of the eventual resolution of both the matter and seed questions. It is important to note that all current structure formation ideas require new physics beyond SU(3) x SU(2) x U(1).
Cosmology and neutrino physics
NASA Astrophysics Data System (ADS)
Steigman, Gary
1982-05-01
Constraints on cosmology and on neutrino physics are provided by the abundances of the light elements produced during the early evolution of the universe. The predictions of primordial nucleosynthesis depend on the nucleon to photon ratio ɛ and on the number of types of two component neutrinos Nν. A comparison between the big bang predictions and the observed abundances of D, 3He, 4He and 7Li shows that ɛ is constrained to a narrow range around 4×10-10 and Nν<~4. An important consequence of the derived value of ɛ is that the universal density of nucleon is small, raising the possibility that our Universe may be dominated by massive relic neutrinos. The constraint on Nn suggests that (almost) all lepton species are now known.
Janse Van Rensburg, E.J.
1996-12-31
The geometry of polygonal knots in the cubic lattice may be used to define some knot invariants. One such invariant is the minimal edge number, which is the minimum number of edges necessary (and sufficient) to construct a lattice knot of given type. In addition, one may also define the minimal (unfolded) surface number, and the minimal (unfolded) boundary number; these are the minimum number of 2-cells necessary to construct an unfolded lattice Seifert surface of a given knot type in the lattice, and the minimum number of edges necessary in a lattice knot to guarantee the existence of an unfolded lattice Seifert surface. In addition, I derive some relations amongst these invariants. 8 refs., 5 figs., 2 tabs.
Cosmological and supernova neutrinos
NASA Astrophysics Data System (ADS)
Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.
2014-06-01
The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.
Cosmological and supernova neutrinos
Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.
2014-06-24
The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.
Cosmology and the weak interaction
Schramm, D.N. ):)
1989-12-01
The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.
Quantum Weyl invariance and cosmology
NASA Astrophysics Data System (ADS)
Dabholkar, Atish
2016-09-01
Equations for cosmological evolution are formulated in a Weyl invariant formalism to take into account possible Weyl anomalies. Near two dimensions, the renormalized cosmological term leads to a nonlocal energy-momentum tensor and a slowly decaying vacuum energy. A natural generalization to four dimensions implies a quantum modification of Einstein field equations at long distances. It offers a new perspective on time-dependence of couplings and naturalness with potentially far-reaching consequences for the cosmological constant problem, inflation, and dark energy.
Quantum cosmology near two dimensions
NASA Astrophysics Data System (ADS)
Bautista, Teresa; Dabholkar, Atish
2016-08-01
We consider a Weyl-invariant formulation of gravity with a cosmological constant in d -dimensional spacetime and show that near two dimensions the classical action reduces to the timelike Liouville action. We show that the renormalized cosmological term leads to a nonlocal quantum momentum tensor which satisfies the Ward identities in a nontrivial way. The resulting evolution equations for an isotropic, homogeneous universe lead to slowly decaying vacuum energy and power-law expansion. We outline the implications for the cosmological constant problem, inflation, and dark energy.
Cosmological perturbations in massive bigravity
Lagos, Macarena; Ferreira, Pedro G. E-mail: p.ferreira1@physics.ox.ac.uk
2014-12-01
We present a comprehensive analysis of classical scalar, vector and tensor cosmological perturbations in ghost-free massive bigravity. In particular, we find the full evolution equations and analytical solutions in a wide range of regimes. We show that there are viable cosmological backgrounds but, as has been found in the literature, these models generally have exponential instabilities in linear perturbation theory. However, it is possible to find stable scalar cosmological perturbations for a very particular choice of parameters. For this stable subclass of models we find that vector and tensor perturbations have growing solutions. We argue that special initial conditions are needed for tensor modes in order to have a viable model.
Cosmological deceleration and peculiar motion
NASA Astrophysics Data System (ADS)
Teuber, Jan
A closed formula for the rate of change of redshift for a single freely moving cosmological source is presented, and inferences to be drawn from a positive or null measurement of this quantity are discussed. The formula is applied to situations where the resulting effects might be observable, including the study of low-redshift objects to examine kinematic explanations of their redshifts, and the study of intermediate-redshift objects to provide tests of the cosmological hypothesis itself. Changes of high redshifts may give information about the cosmological parameters.
Interpretations of cosmological spectral shifts
NASA Astrophysics Data System (ADS)
Østvang, Dag
2013-03-01
It is shown that for Robertson-Walker models with flat or closed space sections, all of the cosmological spectral shift can be attributed to the non-flat connection (and thus indirectly to space-time curvature). For Robertson-Walker models with hyperbolic space sections, it is shown that cosmological spectral shifts uniquely split up into "kinematic" and "gravitational" parts provided that distances are small. For large distances no such unique split-up exists in general. A number of common, but incorrect assertions found in the literature regarding interpretations of cosmological spectral shifts, is pointed out.
Initial conditions and quantum cosmology
NASA Technical Reports Server (NTRS)
Hartle, James B.
1987-01-01
A theory of initial conditions is necessary for a complete explanation of the presently observed large scale structural features of the universe, and a quantum theory of cosmology is probably needed for its formulation. The kinematics of quantum cosmology are reviewed, and some candidates for a law of initial conditions are discussed. The proposal that the quantum state of a closed universe is the natural analog of the ground state for closed cosmologies and is specified by a Euclidean sum over histories is sketched. When implemented in simple models, this proposal is consistent with the most important large-scale observations.
String inspired brane world cosmology.
Germani, Cristiano; Sopuerta, Carlos F
2002-06-10
We consider brane world scenarios including the leading correction to the Einstein-Hilbert action suggested by superstring theory, the Gauss-Bonnet term. We obtain and study the complete set of equations governing the cosmological dynamics. We find they have the same form as those in Randall-Sundrum scenarios but with time-varying four-dimensional gravitational and cosmological constants. By studying the bulk geometry we show that this variation is produced by bulk curvature terms parametrized by the mass of a black hole. Finally, we show there is a coupling between these curvature terms and matter that can be relevant for early universe cosmology. PMID:12059347
Bianchi Type V Cosmological Models with Varying Cosmological Term
NASA Astrophysics Data System (ADS)
Tiwari, R. K.; Singh, Rameshwar
2015-05-01
We have analyzed a new class of spatially homogeneous and anisotropic Bianchi type-V cosmological models with perfect fluid distribution in presence of time varying cosmological and gravitational constants in the framework of general relativity. Exact solutions of Einstein's field equations are obtained for two types of cosmologies viz. m ≠ 3 and m = 3 respectively. We propose an alternate variation law in which the anisotropy ( σ/ 𝜃) per unit expansion scalar ( 𝜃) is proportional to a function of scale factor R i.e. (where σ is a shear scalar) Tiwari (The African Review of Physics, 8, 437-447 2013). Physical properties of the models are discussed in detail. The models isotropize at late times. Some cosmological distance parameters for both the models have also been presented. We also discussed state finder parameters and observe that our solutions favor Λ C D M model.
Cosmological moduli problem, supersymmetry breaking, and stability in postinflationary cosmology
Banks, T.; Berkooz, M.; Steinhardt, P.J.
1995-07-15
We review scenarios that have been proposed to solve the cosmological problem caused by moduli in string theory, the postmodern Polonyi problem (PPP). In particular, we discuss the difficulties encountered by the apparently ``trivial`` solution of this problem, in which moduli masses are assumed to arise from nonperturbative, SUSY-preserving, dynamics at a scale higher than that of SUSY breaking. This suggests a powerful {ital cosmological} {ital vacuum} {ital selection} {ital principle} in superstring theory. However, we argue that if one eschews the possibility of cancellations between different exponentials of the inverse string coupling, the mechanism described above cannot stabilize the dilaton. Thus, even if supersymmetric dynamics gives mass to the other moduli in string theory, the dilaton mass must be generated by SUSY breaking, and dilaton domination of the energy density of the Universe cannot be avoided. We conclude that the only proposal for solving the PPP that works is the intermediate scale inflation scenario of Randall and Thomas. However, we point out that all extant models have ignored unavoidably large inhomogeneities in the cosmological moduli density at very early times, and speculate that the effects associated with nonlinear gravitational collapse of these inhomogeneities may serve as an efficient mechanism for converting moduli into ordinary matter. As an important by-product of this investigation we show that in a postinflationary universe minima of the effective potential with a negative cosmological constant are not stationary points of the classical equations of scalar field cosmology. Instead, such points lead to catastrophic gravitational collapse of that part of the Universe which is attracted to them. Thus postinflationary cosmology dynamically chooses non-negative values of the cosmological constant. This implies that supersymmetry {ital must} be broken in any sensible inflationary cosmology. (Abstract Truncated)
Extended Born-Infeld dynamics and cosmology
NASA Astrophysics Data System (ADS)
Novello, M.; Makler, M.; Werneck, L. S.; Romero, C. A.
2005-02-01
We introduce an extension of the Born-Infeld action for a scalar field and show that it can act as unifying dark matter, providing an explanation for both structure formation and the accelerated expansion of the universe. We investigate the cosmological dynamics of this theory in a particular case, referred to as the “Milne-Born-Infeld” (MBI) Lagrangian. We show that this model, whose equation of state has effectively a single free parameter, is consistent with recent type Ia supernovae data, providing a fit as good as for the ΛCDM model with the same number of degrees of freedom. Furthermore, this parameter is tightly constrained by current data, making the model easily testable with other observables. Contrary to previous candidates for unifying dark matter, the sound velocity of the MBI model is vanishing both close to the dark-matter state as well as near the cosmological constant state. This could avoid the problems on the matter power spectrum that were present in previous adiabatic dark-matter/dark-energy unification models. We also present a short discussion on the causal propagation in nonlinear scalar field theories such as the one proposed here.
Cosmological constraints on Lorentz violating dark energy
Audren, B.; Lesgourgues, J.; Sibiryakov, S. E-mail: Diego.Blas@cern.ch E-mail: Sergey.Sibiryakov@cern.ch
2013-08-01
The role of Lorentz invariance as a fundamental symmetry of nature has been lately reconsidered in different approaches to quantum gravity. It is thus natural to study whether other puzzles of physics may be solved within these proposals. This may be the case for the cosmological constant problem. Indeed, it has been shown that breaking Lorentz invariance provides Lagrangians that can drive the current acceleration of the universe without experiencing large corrections from ultraviolet physics. In this work, we focus on the simplest model of this type, called ΘCDM, and study its cosmological implications in detail. At the background level, this model cannot be distinguished from ΛCDM. The differences appear at the level of perturbations. We show that in ΘCDM, the spectrum of CMB anisotropies and matter fluctuations may be affected by a rescaling of the gravitational constant in the Poisson equation, by the presence of extra contributions to the anisotropic stress, and finally by the existence of extra clustering degrees of freedom. To explore these modifications accurately, we modify the Boltzmann code class. We then use the parameter inference code Monte Python to confront ΘCDM with data from WMAP-7, SPT and WiggleZ. We obtain strong bounds on the parameters accounting for deviations from ΛCDM. In particular, we find that the discrepancy between the gravitational constants appearing in the Poisson and Friedmann equations is constrained at the level of 1.8%.
Probing quintessence potential with future cosmological surveys
NASA Astrophysics Data System (ADS)
Takeuchi, Yoshitaka; Ichiki, Kiyotomo; Takahashi, Tomo; Yamaguchi, Masahide
2014-03-01
Quintessence, a scalar field model, has been proposed to account for the acceleration of the Universe at present. We discuss how accurately quintessence models are discriminated by future cosmological surveys, which include experiments of CMB, galaxy clustering, weak lensing, and the type Ia SNe surveys, by making use of the conventional parameterized dark energy models. We can see clear differences between the thawing and the freezing quintessence models at more than 1σ (2σ) confidence level as long as the present equation of state for quintessence is away from -1 as wXgtrsim-0.95(-0.90). However, it is found to be difficult to probe the effective mass squared for the potential in thawing models, whose signs are different between the quadratic and the cosine-type potentials. This fact may require us to invent a new estimator to distinguish quintessence models beyond the thawing and the freezing ones.
Probing quintessence potential with future cosmological surveys
Takeuchi, Yoshitaka; Ichiki, Kiyotomo; Takahashi, Tomo; Yamaguchi, Masahide E-mail: ichiki@a.phys.nagoya-u.ac.jp E-mail: gucci@phys.titech.ac.jp
2014-03-01
Quintessence, a scalar field model, has been proposed to account for the acceleration of the Universe at present. We discuss how accurately quintessence models are discriminated by future cosmological surveys, which include experiments of CMB, galaxy clustering, weak lensing, and the type Ia SNe surveys, by making use of the conventional parameterized dark energy models. We can see clear differences between the thawing and the freezing quintessence models at more than 1σ (2σ) confidence level as long as the present equation of state for quintessence is away from -1 as w{sub X}∼>−0.95(−0.90). However, it is found to be difficult to probe the effective mass squared for the potential in thawing models, whose signs are different between the quadratic and the cosine-type potentials. This fact may require us to invent a new estimator to distinguish quintessence models beyond the thawing and the freezing ones.
Scale factor self-dual cosmological models
NASA Astrophysics Data System (ADS)
Camara da Silva, U.; Lima, A. A.; Sotkov, G. M.
2015-07-01
We implement a conformal time scale factor duality for Friedmann-Robertson-Walker cosmological models, which is consistent with the weak energy condition. The requirement for self-duality determines the equations of state for a broad class of barotropic fluids. We study the example of a universe filled with two interacting fluids, presenting an accelerated and a decelerated period, with manifest UV/IR duality. The associated self-dual scalar field interaction turns out to coincide with the "radiation-like" modified Chaplygin gas models. We present an equivalent realization of them as gauged Kähler sigma models (minimally coupled to gravity) with very specific and interrelated Kähler- and super-potentials. Their applications in the description of hilltop inflation and also as quintessence models for the late universe are discussed.
Dilaton cosmology and the modified uncertainty principle
NASA Astrophysics Data System (ADS)
Majumder, Barun
2011-09-01
Very recently Ali et al. (2009) proposed a new generalized uncertainty principle (with a linear term in Plank length which is consistent with doubly special relativity and string theory. The classical and quantum effects of this generalized uncertainty principle (termed as modified uncertainty principle or MUP) are investigated on the phase space of a dilatonic cosmological model with an exponential dilaton potential in a flat Friedmann-Robertson-Walker background. Interestingly, as a consequence of MUP, we found that it is possible to get a late time acceleration for this model. For the quantum mechanical description in both commutative and MUP framework, we found the analytical solutions of the Wheeler-DeWitt equation for the early universe and compare our results. We have used an approximation method in the case of MUP.
Bimetric gravity is cosmologically viable
NASA Astrophysics Data System (ADS)
Akrami, Yashar; Hassan, S. F.; Könnig, Frank; Schmidt-May, Angnis; Solomon, Adam R.
2015-09-01
Bimetric theory describes gravitational interactions in the presence of an extra spin-2 field. Previous work has suggested that its cosmological solutions are generically plagued by instabilities. We show that by taking the Planck mass for the second metric, Mf, to be small, these instabilities can be pushed back to unobservably early times. In this limit, the theory approaches general relativity with an effective cosmological constant which is, remarkably, determined by the spin-2 interaction scale. This provides a late-time expansion history which is extremely close to ΛCDM, but with a technically-natural value for the cosmological constant. We find Mf should be no larger than the electroweak scale in order for cosmological perturbations to be stable by big-bang nucleosynthesis. We further show that in this limit the helicity-0 mode is no longer strongly-coupled at low energy scales.
Neutrinos and Cosmology: An Update
Pisanti, Ofelia; Serpico, Pasquale D.
2005-10-12
We review the current cosmological status of neutrinos, with particular emphasis on their effects on Big Bang Nucleosynthesis, Large Scale Structure of the universe and Cosmic Microwave Background Radiation measurements.
Evolution in bouncing quantum cosmology
NASA Astrophysics Data System (ADS)
Mielczarek, Jakub; Piechocki, Włodzimierz
2012-03-01
We present the method of describing an evolution in quantum cosmology in the framework of the reduced phase space quantization of loop cosmology. We apply our method to the flat Friedmann-Robertson-Walker model coupled to a massless scalar field. We identify the physical quantum Hamiltonian that is positive-definite and generates globally a unitary evolution of the considered quantum system. We examine the properties of expectation values of physical observables in the process of the quantum big bounce transition. The dispersion of evolved observables is studied for the Gaussian state. Calculated relative fluctuations enable an examination of the semi-classicality conditions and possible occurrence of the cosmic forgetfulness. Preliminary estimations based on the cosmological data suggest that there was no cosmic amnesia. Presented results are analytical, and numerical computations are only used for the visualization purposes. Our method may be generalized to sophisticated cosmological models including the Bianchi-type universes.
Newtonian cosmology Newton would understand
Lemons, D.S.
1988-06-01
Isaac Newton envisioned a static, infinite, and initially uniform, zero field universe that was gravitationally unstable to local condensations of matter. By postulating the existence of such a universe and using it as a boundary condition on Newtonian gravity, a new field equation for gravity is derived, which differs from the classical one by a time-dependent cosmological term proportional to the average mass density of the universe. The new field equation not only makes Jeans' analysis of the gravitational instability of a Newtonian universe consistent, but also gives rise to a family of Newtonian evolutionary cosmologies parametrized by a time-invariant expansion velocity. This Newtonian cosmology contrasts with both 19th-century ones and with post general relativity Newtonian cosmology.
Precision cosmology and the landscape
Bousso, Raphael; Bousso, Raphael
2006-10-01
After reviewing the cosmological constant problem -- why is Lambda not huge? -- I outline the two basic approaches that had emerged by the late 1980s, and note that each made a clear prediction. Precision cosmological experiments now indicate that the cosmological constant is nonzero. This result strongly favors the environmental approach, in which vacuum energy can vary discretely among widely separated regions in the universe. The need to explain this variation from first principles constitutes an observational constraint on fundamental theory. I review arguments that string theory satisfies this constraint, as it contains a dense discretuum of metastable vacua. The enormous landscape of vacua calls for novel, statistical methods of deriving predictions, and it prompts us to reexamine our description of spacetime on the largest scales. I discuss the effects of cosmological dynamics, and I speculate that weighting vacua by their entropy production may allow for prior-free predictions that do not resort to explicitly anthropic arguments.
Probing Student Understanding of Cosmology
NASA Astrophysics Data System (ADS)
Coble, Kimberly A.; Cochran, G.; Larrieu, D.; Bailey, J.; Sanchez, R.; Cominsky, L.; McLin, K.
2010-01-01
Recently, powerful new observations and advances in computation and visualization have led to a revolution in our understanding of the origin, evolution and structure of the universe. These gains have been vast, but their impact on education has been limited. At Chicago State (CSU), we are implementing new inquiry-based instructional materials in our astronomy lab course. We are researching the effectiveness of these materials, focusing on student understanding of cosmology. As part of a collaborative effort with the University of Nevada Las Vegas and Sonoma State (SSU) to develop a cosmological subject inventory, we administered an open-ended survey prior to instruction and conducted student interviews using the survey. Students taking the CSU course were also required to write a guided essay on their beliefs about cosmology. We have collected open-ended post-test data through student exams. Preliminary results regarding student misconceptions in cosmology and student attitudes toward inquiry will be presented.
Cosmology and unified gauge theory
NASA Astrophysics Data System (ADS)
Oraifeartaigh, L.
1981-09-01
Theoretical points in common between cosmology and unified gauge theory (UGT) are reviewed, with attention given to areas of one which have proven useful for the other. The underlying principles for both theoretical frameworks are described, noting the differences in scale, i.e., 10 to the 25th cm in cosmology and 10 to the -15th cm for UGT. Cosmology has produced bounds on the number of existing neutrino species, and also on the mass of neutrinos, two factors of interest in particle physics. Electrons, protons, and neutrinos, having been spawned from the same massive leptons, each composed of three quarks, have been predicted to be present in equal numbers in the Universe by UGT, in line with necessities of cosmology. The Grand UGT also suggests specific time scales for proton decay, thus accounting for the observed baryon assymmetry.
Reduced modified Chaplygin gas cosmology
NASA Astrophysics Data System (ADS)
Lu, Jianbo; Geng, Danhua; Xu, Lixin; Wu, Yabo; Liu, Molin
2015-02-01
In this paper, we study cosmologies containing the reduced modified Chaplygin gas (RMCG) fluid which is reduced from the modified Chaplygin gas p = Aρ - Bρ -α for the value of α = -1 /2. In this special case, dark cosmological models can be realized for different values of model parameter A. We investigate the viabilities of these dark cosmological models by discussing the evolutions of cosmological quantities and using the currently available cosmic observations. It is shown that the special RMCG model ( A = 0 or A = 1) which unifies the dark matter and dark energy should be abandoned. For A = 1 /3, RMCG which unifies the dark energy and dark radiation is the favorite model according to the objective Akaike information criteria. In the case of A < 0, RMCG can achieve the features of the dynamical quintessence and phantom models, where the evolution of the universe is not sensitive to the variation of model parameters.
Vergeles, S. N.
2008-01-15
The problem of the doubling of states is investigated in the framework of the theory of discrete quantum gravity under the assumption that the theory has a continuum (macroscopic) limit. It is demonstrated that irregular (in some sense) modes of fields (i.e., modes that change abruptly on scales of a lattice step and have a finite energy when the lattice step tends to zero) are separated from the normal modes. Some cosmological consequences of this finding are discussed.
Neutrinos in astrophysics and cosmology
NASA Astrophysics Data System (ADS)
Balantekin, A. B.
2016-06-01
Neutrinos play a crucial role in many aspects of astrophysics and cosmology. Since they control the electron fraction, or equivalently neutron-to-proton ratio, neutrino properties impact yields of r-process nucleosynthesis. Similarly the weak decoupling temperature in the Big Bang Nucleosynthesis epoch is exponentially dependent on the neutron-to-proton ratio. In these conference proceedings, I briefly summarize some of the recent work exploring the role of neutrinos in astrophysics and cosmology.
Quantum cosmology on the worldsheet
Cooper, A.R.; Susskind, L.; Thorlacius, L.
1991-08-01
Two-dimensional quantum gravity coupled to conformally invariant matter central c > 25 provides a toy model for quantum gravity in four dimensions. Two-dimensional quantum cosmology can thus be studied in terms of string theory in background fields. The large scale cosmological constant depends on non-linear dynamics in the string theory target space and does not appear to be suppressed by wormhole effects. 13 refs.
Cosmological milestones and energy conditions
NASA Astrophysics Data System (ADS)
Cattoën, C.; Visser, M.
2007-05-01
Until recently, the physically relevant singularities occurring in FRW cosmologies had traditionally been thought to be limited to the big bang, and possibly a big crunch. However, over the last few years, the zoo of cosmological singularities considered in the literature has become considerably more extensive, with big rips and sudden singularities added to the mix, as well as renewed interest in non-singular cosmological events such as bounces and turnarounds. In this talk, we present an extensive catalogue of such cosmological milestones, both at the kinematical and dynamical level. First, using generalized power series, purely kinematical definitions of these cosmological events are provided in terms of the behaviour of the scale factor a(t). The notion of a scale-factor singularity is defined, and its relation to curvature singularities (polynomial and differential) is explored. Second, dynamical information is extracted by using the Friedmann equations (without assuming even the existence of any equation of state) to place constraints on whether or not the classical energy conditions are satisfied at the cosmological milestones. Since the classification is extremely general, and modulo certain technical assumptions complete, the corresponding results are to a high degree model-independent.
Lattice Design for the LHEC Recirculating Linac
Sun, Yipeng; Eide, Anders; Zimmermann, Frank; Adolphsen, Chris; /SLAC
2011-05-20
In this paper, we present a lattice design for the Large Hadron Electron Collider (LHeC) recirculating linac. The recirculating linac consists of one roughly 3-km long linac hosting superconducting RF (SRF) accelerating cavities, two arcs and one transfer line for the recirculation. In two passes through a pulsed SRF linac the electron beam can get a maximum energy of 140 GeV. Alternatively, in the Energy Recovery Linac (ERL) option the beam passes through a CW linac four times (two passes for acceleration and two for deceleration) for a maximum energy of 60 GeV.
NASA Astrophysics Data System (ADS)
Bergner, Georg; Catterall, Simon
2016-08-01
We discuss the motivations, difficulties and progress in the study of supersymmetric lattice gauge theories focusing in particular on 𝒩 = 1 and 𝒩 = 4 super-Yang-Mills in four dimensions. Brief reviews of the corresponding lattice formalisms are given and current results are presented and discussed. We conclude with a summary of the main aspects of current work and prospects for the future.
Flat Band Quastiperiodic Lattices
NASA Astrophysics Data System (ADS)
Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo
2014-03-01
Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.
Laterally closed lattice homomorphisms
NASA Astrophysics Data System (ADS)
Toumi, Mohamed Ali; Toumi, Nedra
2006-12-01
Let A and B be two Archimedean vector lattices and let be a lattice homomorphism. We call that T is laterally closed if T(D) is a maximal orthogonal system in the band generated by T(A) in B, for each maximal orthogonal system D of A. In this paper we prove that any laterally closed lattice homomorphism T of an Archimedean vector lattice A with universal completion Au into a universally complete vector lattice B can be extended to a lattice homomorphism of Au into B, which is an improvement of a result of M. Duhoux and M. Meyer [M. Duhoux and M. Meyer, Extended orthomorphisms and lateral completion of Archimedean Riesz spaces, Ann. Soc. Sci. Bruxelles 98 (1984) 3-18], who established it for the order continuous lattice homomorphism case. Moreover, if in addition Au and B are with point separating order duals (Au)' and B' respectively, then the laterally closedness property becomes a necessary and sufficient condition for any lattice homomorphism to have a similar extension to the whole Au. As an application, we give a new representation theorem for laterally closed d-algebras from which we infer the existence of d-algebra multiplications on the universal completions of d-algebras.
Björner, Anders
1987-01-01
A continuous analogue to the partition lattices is presented. This is the metric completion of the direct limit of a system of embeddings of the finite partition lattices. The construction is analogous to von Neumann's construction of a continuous geometry over a field F from the finite-dimensional projective geometries over F. PMID:16593874
Shafi, Qaisar; Barr, Steven; Gaisser, Thomas; Stanev, Todor
2015-03-31
1. Executive Summary (April 1, 2012 - March 31, 2015) Title: Particle Theory, Particle Astrophysics and Cosmology Qaisar Shafi University of Delaware (Principal Investigator) Stephen M. Barr, University of Delaware (Co-Principal Investigator) Thomas K. Gaisser, University of Delaware (Co-Principal Investigator) Todor Stanev, University of Delaware (Co-Principal Investigator) The proposed research was carried out at the Bartol Research included Professors Qaisar Shafi Stephen Barr, Thomas K. Gaisser, and Todor Stanev, two postdoctoral fellows (Ilia Gogoladze and Liucheng Wang), and several graduate students. Five students of Qaisar Shafi completed their PhD during the period August 2011 - August 2014. Measures of the group’s high caliber performance during the 2012-2015 funding cycle included pub- lications in excellent refereed journals, contributions to working groups as well as white papers, and conference activities, which together provide an exceptional record of both individual performance as well as overall strength. Another important indicator of success is the outstanding quality of the past and current cohort of graduate students. The PhD students under our supervision regularly win the top departmental and university awards, and their publications records show excellence both in terms of quality and quantity. The topics covered under this grant cover the frontline research areas in today’s High Energy Theory & Phenomenology. For Professors Shafi and Barr they include LHC related topics including supersymmetry, collider physics, fl vor physics, dark matter physics, Higgs boson and seesaw physics, grand unifi and neutrino physics. The LHC two years ago discovered the Standard Model Higgs boson, thereby at least partially unlocking the secrets behind electroweak symmetry breaking. We remain optimistic that new and exciting physics will be found at LHC 14, which explain our focus on physics beyond the Standard Model. Professors Shafi continued his
Calculating Buckling And Vibrations Of Lattice Structures
NASA Technical Reports Server (NTRS)
Anderson, M. S.; Durling, B. J.; Herstrom, C. L.; Williams, F. W.; Banerjee, J. R.; Kennedy, D.; Warnaar, D. B.
1989-01-01
BUNVIS-RG computer program designed to calculate vibration frequencies or buckling loads of prestressed lattice structures used in outer space. For buckling and vibration problems, BUNVIS-RG calculates deadload axial forces caused in members by any combination of externally-applied static point forces and moments at nodes, axial preload or prestrain in members, and such acceleration loads as those due to gravity. BUNVIS-RG is FORTRAN 77 computer program implemented on CDC CYBER and VAX computer.
Honeycomb lattices with defects
NASA Astrophysics Data System (ADS)
Spencer, Meryl A.; Ziff, Robert M.
2016-04-01
In this paper, we introduce a variant of the honeycomb lattice in which we create defects by randomly exchanging adjacent bonds, producing a random tiling with a distribution of polygon edges. We study the percolation properties on these lattices as a function of the number of exchanged bonds using an alternative computational method. We find the site and bond percolation thresholds are consistent with other three-coordinated lattices with the same standard deviation in the degree distribution of the dual; here we can produce a continuum of lattices with a range of standard deviations in the distribution. These lattices should be useful for modeling other properties of random systems as well as percolation.
Axion cold dark matter in nonstandard cosmologies
Visinelli, Luca; Gondolo, Paolo
2010-03-15
We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.
NASA Technical Reports Server (NTRS)
Canuto, V. M.
1978-01-01
A review of big-bang cosmology is presented, emphasizing the big-bang model, hypotheses on the origin of galaxies, observational tests of the big-bang model that may be possible with the Large Space Telescope, and the scale-covariant theory of gravitation. Detailed attention is given to the equations of general relativity, the redshift-distance relation for extragalactic objects, expansion of the universe, the initial singularity, the discovery of the 3-K blackbody radiation, and measurements of the amount of deuterium in the universe. The curvature of the expanding universe is examined along with the magnitude-redshift relation for quasars and galaxies. Several models for the origin of galaxies are evaluated, and it is suggested that a model of galaxy formation via the formation of black holes is consistent with the model of an expanding universe. Scale covariance is discussed, a scale-covariant theory is developed which contains invariance under scale transformation, and it is shown that Dirac's (1937) large-numbers hypothesis finds a natural role in this theory by relating the atomic and Einstein units.
Buchbinder, Evgeny I.; Khoury, Justin; Ovrut, Burt A.
2007-12-15
In this paper, we present a new scenario of the early universe that contains a pre-big bang ekpyrotic phase. By combining this with a ghost condensate, the theory explicitly violates the null energy condition without developing any ghostlike instabilities. Thus the contracting universe goes through a nonsingular bounce and evolves smoothly into the expanding post-big bang phase. The curvature perturbation acquires a scale-invariant spectrum well before the bounce in this scenario. It is sourced by the scale-invariant entropy perturbation engendered by two ekpyrotic scalar fields, a mechanism recently proposed by Lehners et al. Since the background geometry is nonsingular at all times, the curvature perturbation remains nearly constant on superhorizon scales. It emerges from the bounce unscathed and imprints a scale-invariant spectrum of density fluctuations in the matter-radiation fluid at the onset of the hot big bang phase. The ekpyrotic potential can be chosen so that the spectrum has a red tilt, in accordance with the recent data from WMAP. As in the original ekpyrotic scenario, the model predicts a negligible gravity wave signal on all observable scales. As such ''new ekpyrotic cosmology'' provides a consistent and distinguishable alternative to inflation to account for the origin of the seeds of large-scale structure.
Quantum cosmological metroland model
NASA Astrophysics Data System (ADS)
Anderson, Edward; Franzen, Anne
2010-02-01
Relational particle mechanics is useful for modelling whole-universe issues such as quantum cosmology or the problem of time in quantum gravity, including some aspects outside the reach of comparably complex mini-superspace models. In this paper, we consider the mechanics of pure shape and not scale of four particles on a line, so that the only physically significant quantities are ratios of relative separations between the constituents' physical objects. Many of our ideas and workings extend to the N-particle case. As such models' configurations resemble depictions of metro lines in public transport maps, we term them 'N-stop metrolands'. This 4-stop model's configuration space is a 2-sphere, from which our metroland mechanics interpretation is via the 'cubic' tessellation. This model yields conserved quantities which are mathematically SO(3) objects like angular momenta but are physically relative dilational momenta (i.e. coordinates dotted with momenta). We provide and interpret various exact and approximate classical and quantum solutions for 4-stop metroland; from these results one can construct expectations and spreads of shape operators that admit interpretations as relative sizes and the 'homogeneity of the model universe's contents', and also objects of significance for the problem of time in quantum gravity (e.g. in the naïve Schrödinger and records theory timeless approaches).
Entropy, matter, and cosmology.
Prigogine, I; Géhéniau, J
1986-09-01
The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747
Entropy, matter, and cosmology
Prigogine, I.; Géhéniau, J.
1986-01-01
The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary “C” field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production. PMID:16593747
NASA Technical Reports Server (NTRS)
Schramm, David N.
1989-01-01
Nuclear physics has provided one of two critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. The standard Big Bang Nucleosynthesis arguments are reviewed. The primordial He abundance is inferred from He-C and He-N and He-O correlations. The strengthened Li constraint as well as D-2 plus He-3 are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N(nu), is delineated using the new neutron lifetime value of tau(n) = 890 + or - 4s (tau(1/2) = 10.3 min). The formal statistical result is N(nu) = 2.6 + or - 0.3 (1 sigma), providing a reasonable fit (1.3 sigma) to three families but making a fourth light (m(nu) less than or equal to 10 MeV) neutrino family exceedly unlikely (approx. greater than 4.7 sigma). It is also shown that uncertainties induced by postulating a first-order quark-baryon phase transition do not seriously affect the conclusions.
Varying constants quantum cosmology
Leszczyńska, Katarzyna; Balcerzak, Adam; Dabrowski, Mariusz P. E-mail: abalcerz@wmf.univ.szczecin.pl
2015-02-01
We discuss minisuperspace models within the framework of varying physical constants theories including Λ-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ansätze for the variability of constants: c(a) = c{sub 0} a{sup n} and G(a)=G{sub 0} a{sup q}. We find that most of the varying c and G minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe ''from nothing'' (a=0) to a Friedmann geometry with the scale factor a{sub t} is large for growing c models and is strongly suppressed for diminishing c models. As for G varying, the probability of tunneling is large for G diminishing, while it is small for G increasing. In general, both varying c and G change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.
Phantom wormhole solutions in a generic cosmological constant background
NASA Astrophysics Data System (ADS)
Heydarzade, Y.; Riazi, N.; Moradpour, H.
2015-12-01
There are a number of reasons to study wormholes with generic cosmological constant $\\Lambda$. Recent observations indicate that present accelerating expansion of the universe demands $\\Lambda>0$. On the other hand, some extended theories of gravitation such as supergravity and superstring theories posses vacuum states with $\\Lambda<0$. Even within the framework of general relativity, a negative cosmological constant permits black holes with horizons topologically different from the usual spherical ones. These solutions are convertible to wormhole solutions by adding some exotic matter. In this paper, the asymptotically flat wormhole solutions in a generic cosmological constant background are studied. By constructing a specific class of shape functions, mass function, energy density and pressure profiles which support such a geometry are obtained. It is shown that for having such a geometry, the wormhole throat $r_0$, the cosmological constant $\\Lambda$ and the equation of state parameter $\\omega$ should satisfy two specific conditions. The possibility of setting different values for the parameters of the model helps us to find exact solutions for the metric functions, mass functions and energy-momentum profiles. At last, the volume integral quantifier, which provides useful information about the total amount of energy condition violating matter is discussed briefly.
Reconstruction of modified gravity with perfect fluid cosmological models
NASA Astrophysics Data System (ADS)
Singh, C. P.; Singh, Vijay
2014-04-01
In this paper we present the cosmological viability of reconstruction of an alternative gravitational theory, namely, the modified gravity, where is the Ricci scalar curvature and the trace of stress energy momentum tensor. A functional form of is chosen for the reconstruction in perfect fluid flat Friedmann-Robertson-Walker model. The gravitational field equations contain two fluid sources, one is perfect fluid and other is due to modified gravity which is to be considered as an exotic fluid. This allows us for derivation and analysis of a set of new cosmological solutions for gravity by considering these two fluids as a non-interacting. Two known forms of scale factor (de Sitter and power-law) are considered for the explicit and successful reconstruction. The equation of state parameter (EoS) of exotic matter and the effective EoS parameter have been discussed. In de Sitter solution we find that the fluid behaves as phantom dark energy when the usual matter (perfect fluid) shows the behavior between decelerated phase to accelerated phase. In the absence of usual matter it behaves as a cosmological constant. In case of power -law cosmology two different cases are discussed and analyzed the behavior of different phases of the universe accordingly through the equation of state and density parameters.
Ruth, R.D.; Chen, P.
1986-03-01
In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of the driven beams are very similar. The differences appear in the parameters associated with the driving beams. In particular to obtain a given accelerating gradient, the Plasma Wake Field Accelerator has a higher efficiency and a lower total energy for the driving beam. Finally, we show for the Plasma Wake Field Accelerator that one can accelerate high quality low emittance beams and, in principle, obtain efficiencies and energy spreads comparable to those obtained with conventional techniques.
To theory of asymptotically stable accelerating Universe in Riemann-Cartan spacetime
Garkun, A.S.; Kudin, V.I.; Minkevich, A.V. E-mail: kudzin_w@tut.by
2014-12-01
Homogeneous isotropic cosmological models built in the framework of the Poincar'e gauge theory of gravity based on general expression of gravitational Lagrangian with indefinite parameters are analyzed. Special points of cosmological solutions for flat cosmological models at asymptotics and conditions of their stability in dependence of indefinite parameters are found. Procedure of numerical integration of the system of gravitational equations at asymptotics is considered. Numerical solution for accelerating Universe without dark energy is obtained.
When did cosmic acceleration start?
Melchiorri, Alessandro; Pagano, Luca; Pandolfi, Stefania
2007-08-15
A precise determination, and comparison, of the epoch of the onset of cosmic acceleration, at redshift z{sub acc}, and of dark energy domination, at z{sub eq}, provides an interesting measure with which to parametrize dark energy models. By combining several cosmological data sets, we place constraints on the redshift and age of cosmological acceleration. For a {lambda}CDM model, we find the constraint z{sub acc}=0.76{+-}0.10 at 95% C.L., occurring 6.7{+-}0.4 Gyr ago. Allowing a constant equation of state but different from -1 changes the constraint to z{sub acc}=0.81{+-}0.12 (6.9{+-}0.5 Gyr ago), while dynamical models markedly increase the error on the constraint z{sub acc}=0.81{+-}0.30 (6.8{+-}1.4 Gyr ago). Unified dark energy models such as silent quartessence yield z{sub acc}=0.8{+-}0.16 (6.8{+-}0.6 Gyr ago). Interestingly, we find that the best fit z{sub acc} and z{sub eq} are remarkably insensitive to both the cosmological data sets and theoretical dark energy models considered.
Late decaying dark matter, bulk viscosity, and the cosmic acceleration
Mathews, G. J.; Kolda, C.; Lan, N. Q.
2008-08-15
We discuss a cosmology in which cold dark matter begins to decay into relativistic particles at a recent epoch (z<1). We show that the large entropy production and associated bulk viscosity from such decays leads to an accelerating cosmology as required by observations. We investigate the effects of decaying cold dark matter in a {lambda}=0, flat, initially matter dominated cosmology. We show that this model satisfies the cosmological constraint from the redshift-distance relation for type Ia supernovae. The age in such models is also consistent with the constraints from the oldest stars and globular clusters. Possible candidates for this late decaying dark matter are suggested along with additional observational tests of this cosmological paradigm.
The Fermilab lattice information repository
Ostiguy, J.-F.; Michelotti, L.; McCusker-Whiting, M.; Kriss, M.; /Fermilab
2005-05-01
Over the years, it has become increasingly obvious that a centralized lattice and machine information repository with the capability of keeping track of revision information could be of great value. This is especially true in the context of a large accelerator laboratory like Fermilab with six rings and sixteen beamlines operating in various modes and configurations, constantly subject to modifications, improvements and even major redesign. While there exist a handful of potentially suitable revision systems--both freely available and commercial--our experience has shown that expecting beam physicists to become fully conversant with complex revision system software used on an occasional basis is neither realistic nor practical. In this paper, we discuss technical aspects of the FNAL lattice repository, whose fully web-based interface hides the complexity of Subversion, a comprehensive open source revision system. The FNAL repository has been operational since September 2004; the unique architecture of ''Subversion'' has been a key ingredient of the technical success of its implementation.
Courant, E.D.; Garren, A.A.
1985-10-01
A realistic, distributed interaction region (IR) lattice has been designed that includes new components discussed in the June 1985 lattice workshop. Unlike the test lattices, the lattice presented here includes utility straights and the mechanism for crossing the beams in the experimental straights. Moreover, both the phase trombones and the dispersion suppressors contain the same bending as the normal cells. Vertically separated beams and 6 Tesla, 1-in-1 magnets are assumed. Since the cells are 200 meters long, and have 60 degree phase advance, this lattice has been named RLD1, in analogy with the corresponding test lattice, TLD1. The quadrupole gradient is 136 tesla/meter in the cells, and has similar values in other quadrupoles except in those in the IR`s, where the maximum gradient is 245 tesla/meter. RLD1 has distributed IR`s; however, clustered realistic lattices can easily be assembled from the same components, as was recently done in a version that utilizes the same type of experimental and utility straights as those of RLD1.
Milgrom's revision of Newton's laws - Dynamical and cosmological consequences
NASA Technical Reports Server (NTRS)
Felten, J. E.
1984-01-01
Milgrom's (1983) recent revision of Newtonian dynamics was introduced to eliminate the inference that large quantities of invisible mass exist in galaxies. It is shown by simple examples that a Milgrom acceleration, in the form presented so far, implies other far-reaching changes in dynamics. The momentum of an isolated system is not conserved, and the usual theorem for center-of-mass motion of any system does not hold. Naive applications require extreme caution. The model fails to provide a complete description of particle dynamics and should be thought of as a revision of Kepler's laws rather than Newton's. The Milgrom acceleration also implies fundamental changes in cosmology. A quasi-Newtonian calculation adapted from Newtonian cosmology suggests that a 'Milgrom universe' will recollapse even if the classical closure parameter Omega is much less than unity. The solution, however, fails to satisfy the cosmological principle. Reasons for the breakdown of this calculation are examined. A new theory of gravitation will be needed before the behavior of a Milgrom universe can be predicted.
Cosmological stability bound in massive gravity and bigravity
Fasiello, Matteo; Tolley, Andrew J. E-mail: andrew.j.tolley@case.edu
2013-12-01
We give a simple derivation of a cosmological bound on the graviton mass for spatially flat FRW solutions in massive gravity with an FRW reference metric and for bigravity theories. This bound comes from the requirement that the kinetic term of the helicity zero mode of the graviton is positive definite. The bound is dependent only on the parameters in the massive gravity potential and the Hubble expansion rate for the two metrics. We derive the decoupling limit of bigravity and FRW massive gravity, and use this to give an independent derivation of the cosmological bound. We recover our previous results that the tension between satisfying the Friedmann equation and the cosmological bound is sufficient to rule out all observationally relevant FRW solutions for massive gravity with an FRW reference metric. In contrast, in bigravity this tension is resolved due to different nature of the Vainshtein mechanism. We find that in bigravity theories there exists an FRW solution with late-time self-acceleration for which the kinetic terms for the helicity-2, helicity-1 and helicity-0 are generically nonzero and positive making this a compelling candidate for a model of cosmic acceleration. We confirm that the generalized bound is saturated for the candidate partially massless (bi)gravity theories but the existence of helicity-1/helicity-0 interactions implies the absence of the conjectured partially massless symmetry for both massive gravity and bigravity.
The bouncing cosmology with F(R) gravity and its reconstructing
NASA Astrophysics Data System (ADS)
Amani, Ali R.
2016-04-01
In this paper, we study F(R) gravity by Hu-Sawicki model in Friedmann-Lemaître-Robertson-Walker (FLRW) background. The Friedmann equations are calculated by modified gravity action, and then the obtained Friedmann equations are written in terms of standard Friedmann equations. Next, the behavior of bouncing cosmology is investigated in the modified gravity model, i.e. this behavior can solve the problem of nonsingularity in standard big bang cosmology. We plot the cosmological parameters in terms of cosmic time and then the bouncing condition is investigated. In what follows, we reconstruct the modified gravity by redshift parameter, and also graphs of cosmological parameters are plotted in terms of redshift, in which the figures show us an accelerated expansion of universe. Finally, the stability of the scenario is investigated by a function as sound speed, and the graph of sound speed versus redshift shows us that there is the stability in late-time.
Towards a realistic solution of the cosmological constant fine-tuning problem by Higgs inflation
NASA Astrophysics Data System (ADS)
Feng, Chao-Jun; Li, Xin-Zhou
2014-11-01
Why is the cosmological constant Λ observed today so much smaller than the Planck scale, and why is the Universe accelerating at present? This is the so-called cosmological constant fine-tuning problem. In this paper, we find that this problem may be solved with the help of Higgs inflation by simply assuming a variable cosmological "constant" during the inflationary epoch. Meanwhile, it could predict a large tensor-to-scalar ratio r ≈0.20 and a large running of the spectral index ns'≈-0.028 with a red-tilt spectrum ns≈0.96 , as well as a big enough number of e -folds N ≈40 , requiring that we solve the problems in big bang cosmology with the help of Λ .
The Development of Euclidean and Non-Euclidean Cosmologies
ERIC Educational Resources Information Center
Norman, P. D.
1975-01-01
Discusses early Euclidean cosmologies, inadequacies in classical Euclidean cosmology, and the development of non-Euclidean cosmologies. Explains the present state of the theory of cosmology including the work of Dirac, Sandage, and Gott. (CP)
NASA Astrophysics Data System (ADS)
Zucker, M. H.
This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own
Probing gravitation, dark energy, and acceleration
Linder, Eric V.
2004-02-20
The acceleration of the expansion of the universe arises from unknown physical processes involving either new fields in high energy physics or modifications of gravitation theory. It is crucial for our understanding to characterize the properties of the dark energy or gravity through cosmological observations and compare and distinguish between them. In fact, close consistencies exist between a dark energy equation of state function w(z) and changes to the framework of the Friedmann cosmological equations as well as direct spacetime geometry quantities involving the acceleration, such as ''geometric dark energy'' from the Ricci scalar. We investigate these interrelationships, including for the case of super acceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.
Cosmology with superluminous supernovae
NASA Astrophysics Data System (ADS)
Scovacricchi, D.; Nichol, R. C.; Bacon, D.; Sullivan, M.; Prajs, S.
2016-02-01
We predict cosmological constraints for forthcoming surveys using superluminous supernovae (SLSNe) as standardizable candles. Due to their high peak luminosity, these events can be observed to high redshift (z ˜ 3), opening up new possibilities to probe the Universe in the deceleration epoch. We describe our methodology for creating mock Hubble diagrams for the Dark Energy Survey (DES), the `Search Using DECam for Superluminous Supernovae' (SUDSS) and a sample of SLSNe possible from the Large Synoptic Survey Telescope (LSST), exploring a range of standardization values for SLSNe. We include uncertainties due to gravitational lensing and marginalize over possible uncertainties in the magnitude scale of the observations (e.g. uncertain absolute peak magnitude, calibration errors). We find that the addition of only ≃100 SLSNe from SUDSS to 3800 Type Ia Supernovae (SNe Ia) from DES can improve the constraints on w and Ωm by at least 20 per cent (assuming a flat wCDM universe). Moreover, the combination of DES SNe Ia and 10 000 LSST-like SLSNe can measure Ωm and w to 2 and 4 per cent, respectively. The real power of SLSNe becomes evident when we consider possible temporal variations in w(a), giving possible uncertainties of only 2, 5 and 14 per cent on Ωm, w0 and wa, respectively, from the combination of DES SNe Ia, LSST-like SLSNe and Planck. These errors are competitive with predicted Euclid constraints, indicating a future role for SLSNe for probing the high-redshift Universe.
Cosmic acceleration and the helicity-0 graviton
Rham, Claudia de; Heisenberg, Lavinia; Gabadadze, Gregory; Pirtskhalava, David
2011-05-15
We explore cosmology in the decoupling limit of a nonlinear covariant extension of Fierz-Pauli massive gravity obtained recently in arXiv:1007.0443. In this limit the theory is a scalar-tensor model of a unique form defined by symmetries. We find that it admits a self-accelerated solution, with the Hubble parameter set by the graviton mass. The negative pressure causing the acceleration is due to a condensate of the helicity-0 component of the massive graviton, and the background evolution, in the approximation used, is indistinguishable from the {Lambda}CDM model. Fluctuations about the self-accelerated background are stable for a certain range of parameters involved. Most surprisingly, the fluctuation of the helicity-0 field above its background decouples from an arbitrary source in the linearized theory. We also show how massive gravity can remarkably screen an arbitrarily large cosmological constant in the decoupling limit, while evading issues with ghosts. The obtained static solution is stable against small perturbations, suggesting that the degravitation of the vacuum energy is possible in the full theory. Interestingly, however, this mechanism postpones the Vainshtein effect to shorter distance scales. Hence, fifth force measurements severely constrain the value of the cosmological constant that can be neutralized, making this scheme phenomenologically not viable for solving the old cosmological constant problem. We briefly speculate on a possible way out of this issue.
Toward cosmology in string theory
NASA Astrophysics Data System (ADS)
Boyda, Edward Kenneth
2004-12-01
String theory purports to be the correct theory of quantum gravity, and as such it is expected to provide a viable quantum cosmology. But stable time-dependent backgrounds with well-defined quantum-mechanical observables remain elusive. We first address quantum cosmology by discussing holography in Gödel universes, with an eye toward de Sitter space. Holography may someday provide a good definition of quantum cosmology in spacetimes without simple asymptotic behavior. Supersymmetry is the best candidate for understanding stability and naturalness in quantum cosmology. But if it exists, supersymmetry is broken at low energies. We study in technical detail anomaly-mediated supersymmetry breaking, demonstrating its phenomenologically attractive insensitivty to the details of high-energy physics. The final part of this dissertation presents an alternative to inflationary cosmology which is embedded in heterotic M-theory. This modification of the ekpyrotic scenario offers better calculability than the original, the ekpyrotic phase transition occuring when a membrane tunnels into our visible universe from a computed potential well in the extra dimension.
Cosmology in Mr. Tompkins' Lifetime
NASA Astrophysics Data System (ADS)
Lindner, Rudi Paul
2016-01-01
Mr. Tompkins, the hero of George Gamow's most famous book, was born in the first decade of the twentieth century and lived until its end. A bank clerk by day, Mr. Tompkins had wide-ranging interests, and his curiosity led him to popular scientific presentations, and these in turn brought him a long and happy marriage to Maud, the daughter of a professor of physics. His lifetime offers an appropriate framework for a meditation on the history of cosmology during the century in which cosmology became a scientific enterprise. As it happens, Mr. Tompkins' first exposure to cosmology, in which he observed both the expansion and contraction of an oscillating universe in 1939, happened during the long night of relativity, the generation in which relativity specialists became few and, like the galaxies, far between. This talk will consider the heyday of early relativistic cosmology from 1917 to 1935, the causes and consequences of the "long night" from 1935 until 1963, and the renaissance of cosmology, which, occurring as it did upon the retirement of Mr. Tompkins, afforded him great pleasure in his later years.
Beyond the Standard Model Physics with Lattice Simulations
NASA Astrophysics Data System (ADS)
Rinaldi, Enrico
2016-03-01
Lattice simulations of gauge theories are a powerful tool to investigate strongly interacting systems like Quantum ChromoDynamics (QCD). In recent years, the expertise gathered from lattice QCD studies has been used to explore new extensions of the Standard Model of particle physics that include strong dynamics. This change of gear in lattice field theories is related to the growing experimental search for new physics, from accelerator facilites like the Large Hadron Collider (LHC) to dark matter detectors like LUX or ADMX. In my presentation I will explore different plausible scenarios for physics beyond the standard model where strong dynamics play a dominant role and can be tackled by numerical lattice simulations. The importance of lattice field theories is highlighted in the context of dark matter searches and the search for new resonances at the LHC. Acknowledge the support of the DOE under Contract DE-AC52-07NA27344 (LLNL).
Fab 5: noncanonical kinetic gravity, self tuning, and cosmic acceleration
Appleby, Stephen A.; Linder, Eric V.; Felice, Antonio De E-mail: adefelic@gmail.com
2012-10-01
We investigate circumstances under which one can generalize Horndeski's most general scalar-tensor theory of gravity. Specifically we demonstrate that a nonlinear combination of purely kinetic gravity terms can give rise to an accelerating universe without the addition of extra propagating degrees of freedom on cosmological backgrounds, and exhibit self tuning to bring a large cosmological constant under control. This nonlinear approach leads to new properties that may be instructive for exploring the behaviors of gravity.
Luz Montero Garcia, Jose de la
2008-05-29
In a concise and simplified way, It was verified with the experimental dates of the Solar System and the 55 Cangri Extrasolar System, that the factor and the constant of planeticity, and the rotational geometric factor are nonlinear, volumetric a constant accelerations universal; it allow to enunciate the Kepler's Fourth Law and its relation with the Fourth Principle of Thermodynamics. An understanding of the Equivalence Principle is exposed and it proves that the Universal Gravitation is an inverse quadratic function of the energetic-longitudinal constant where all the fundamental interactions converge and universal rotation of the motion of matter.
ORGINOS,K.
2003-01-07
I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.
Superalloy Lattice Block Structures
NASA Technical Reports Server (NTRS)
Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.
2004-01-01
Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.
Interacting extended Chaplygin gas cosmology in Lyra manifold
NASA Astrophysics Data System (ADS)
Khurshudyan, Martiros
2015-12-01
Subject of our interest is an extended Chaplygin gas cosmology and new receipts providing accelerated expansion of the large scale universe. In Literature a variety of cosmological models exist studying the behavior of the universe in the presence of Chaplygin gas. From its initial form Chaplygin gas evolved and accepted different EoS-s and we will work with one of them. The main purpose of this work is to study behavior of the universe in Lyra Manifold with a varying \\varLambda-term, which does give us modified field equations. Modified field equations compared to field equations of General Relativity provide a new parametrization of dark energy sector of the large scale universe. It is also interesting to study the behavior of the universe in case of an existing coupling between quintessence DE and extended Chaplygin gas. We applied observational constraints and causality issue to separate physically relevant behavior of the phenomenological model.
A new parameter space study of cosmological microlensing
NASA Astrophysics Data System (ADS)
Vernardos, G.; Fluke, C. J.
2013-09-01
Cosmological gravitational microlensing is a useful technique for understanding the structure of the inner parts of a quasar, especially the accretion disc and the central supermassive black hole. So far, most of the cosmological microlensing studies have focused on single objects from ˜90 currently known lensed quasars. However, present and planned all-sky surveys are expected to discover thousands of new lensed systems. Using a graphics processing unit (GPU) accelerated ray-shooting code, we have generated 2550 magnification maps uniformly across the convergence (κ) and shear (γ) parameter space of interest to microlensing. We examine the effect of random realizations of the microlens positions on map properties such as the magnification probability distribution (MPD). It is shown that for most of the parameter space a single map is representative of an average behaviour. All of the simulations have been carried out on the GPU Supercomputer for Theoretical Astrophysics Research.
Bekenstein-Sanders Tensor-Vector-Scalar Theory and Cosmology
NASA Astrophysics Data System (ADS)
Skordis, C.
2007-08-01
The missing mass problem is the longest standing problem of modern cosmology. This is readily solved by positing the existence of an unknown form of matter, called the dark matter. Still, a particle with the properties required is yet to be found experimentally. An alternative explanation is that gravity deviates from General Relativity for small enough accelerations. One such a theory was proposed by Bekenstein, building on earlier work of Sanders and Milgrom. The theory has a tensor, a vector and a scalar field as dynamical agents of gravity and is thus called Tensor-Vector-Scalar (TeVeS). In this talk I give a short overview of TeVeS theory and discuss its cosmology.
Transition redshift in f (T ) cosmology and observational constraints
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; Luongo, Orlando; Saridakis, Emmanuel N.
2015-06-01
We extract constraints on the transition redshift ztr , determining the onset of cosmic acceleration, predicted by an effective cosmographic construction, in the framework of f (T ) gravity. In particular, employing cosmography we obtain bounds on the viable f (T ) forms and their derivatives. Since this procedure is model independent, as long as the scalar curvature is fixed, we are able to determine intervals for ztr . In this way we guarantee that the Solar-System constraints are preserved and, moreover, we extract bounds on the transition time and the free parameters of the scenario. We find that the transition redshifts predicted by f (T ) cosmology, although compatible with the standard Λ CDM predictions, are slightly smaller. Finally, in order to obtain observational constraints on f (T ) cosmology, we perform a Monte Carlo fitting using supernova data, involving the most recent Union 2.1 data set.
An alternative coupled expanding universe without cosmological singularity
NASA Astrophysics Data System (ADS)
Rosa, Reinaldo
In this paper an alternative cosmological scenario which resolves the conventional initial sin-gularity problem is proposed. The space-time geometry has an unconventional 2D (1D+1) topological constraint (TC) connecting two manifolds with different curvatures. The two man-ifolds are called L (Left) and R (Right). While the L manifold has always an open curvature, the R can be flat or closed. The TC structure is described as a squeezed space-time following a quasi-stable state according to the luminiferous medium theory [1]. We demonstrate that both the metrics and expansion of the considered new cosmological scenario are well defined and consistent with the presence of an accelerated universe without dark energy. On approach to the initial singularity, the 1D-spatial constraint is found to be stable as time goes to zero. [1] C.I. Christov, Mathematics and Computers in Simulation Volume 80, Issue 1, September 2009, Pages 91-101
Cosmology in new gravitational scalar-tensor theories
NASA Astrophysics Data System (ADS)
Saridakis, Emmanuel N.; Tsoukalas, Minas
2016-06-01
We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel modifications of gravity possessing 2 +2 propagating degrees of freedom, arising from a Lagrangian that includes the Ricci scalar and its first and second derivatives. Extracting the field equations we obtain an effective dark energy sector that consists of both extra scalar degrees of freedom, and we determine various observables. We analyze two specific models and we obtain a cosmological behavior in agreement with observations, i.e. transition from matter to dark energy era, with the onset of cosmic acceleration. Additionally, for a particular range of the model parameters, the equation-of-state parameter of the effective dark energy sector can exhibit the phantom-divide crossing. These features reveal the capabilities of these theories, since they arise solely from the novel, higher-derivative terms.
Testing the cosmological constant as a candidate for dark energy
Kratochvil, Jan; Linde, Andrei; Linder, Eric V.; Shmakova, Marina
2003-12-03
It may be difficult to single out the best model of dark energy on the basis of the existing and planned cosmological observations, because many different models can lead to similar observational consequences. However, each particular model can be studied and either found consistent with observations or ruled out. In this paper, we concentrate on the possibility to test and rule out the simplest and by far the most popular of the models of dark energy, the theory described by general relativity with positive vacuum energy (the cosmological constant). We evaluate the conditions under which this model could be ruled out by the future observations made by the Supernova/Acceleration Probe SNAP (both for supernovae and weak lensing) and by the Planck Surveyor cosmic microwave background satellite.
Cosmological viability conditions for f(T) dark energy models
Setare, M.R.; Mohammadipour, N. E-mail: N.Mohammadipour@uok.ac.ir
2012-11-01
Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Timelike information broadcasting in cosmology
NASA Astrophysics Data System (ADS)
Blasco, Ana; Garay, Luis J.; Martín-Benito, Mercedes; Martín-Martínez, Eduardo
2016-01-01
We study the transmission of information and correlations through quantum fields in cosmological backgrounds. With this aim, we make use of quantum information tools to quantify the classical and quantum correlations induced by a quantum massless scalar field in two particle detectors, one located in the early universe (Alice's) and the other located at a later time (Bob's). In particular, we focus on two phenomena: (a) the consequences on the transmission of information of the violations of the strong Huygens principle for quantum fields, and (b) the analysis of the field vacuum correlations via correlation harvesting from Alice to Bob. We will study a standard cosmological model first and then assess whether these results also hold if we use other than the general relativistic dynamics. As a particular example, we will study the transmission of information through the big bounce, that replaces the big bang, in the effective dynamics of loop quantum cosmology.
Double field theory inspired cosmology
Wu, Houwen; Yang, Haitang E-mail: hyanga@scu.edu.cn
2014-07-01
Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.
Cosmological implications of unimodular gravity
Jain, Pankaj; Jaiswal, Atul; Karmakar, Purnendu; Kashyap, Gopal; Singh, Naveen K. E-mail: atijazz@iitk.ac.in E-mail: gopal@iitk.ac.in
2012-11-01
We consider a model of gravity and matter fields which is invariant only under unimodular general coordinate transformations (GCT). The determinant of the metric is treated as a separate field which transforms as a scalar under unimodular GCT. Furthermore we also demand that the theory is invariant under a new global symmetry which we call generalized conformal invariance. We study the cosmological implications of the resulting theory. We show that this theory gives a fit to the high-z supernova data which is identical to the standard Big Bang model. Hence we require some other cosmological observations to test the validity of this model. We also consider some models which do not obey the generalized conformal invariance. In these models we can fit the supernova data without introducing the standard cosmological constant term. Furthermore these models introduce only one dark component and hence solve the coincidence problem of dark matter and dark energy.
WMAP normalization of inflationary cosmologies
Liddle, Andrew R.; Parkinson, David; Mukherjee, Pia; Leach, Samuel M.
2006-10-15
We use the three-year WMAP observations to determine the normalization of the matter power spectrum in inflationary cosmologies. In this context, the quantity of interest is not the normalization marginalized over all parameters, but rather the normalization as a function of the inflationary parameters n{sub S} and r with marginalization over the remaining cosmological parameters. We compute this normalization and provide an accurate fitting function. The statistical uncertainty in the normalization is 3%, roughly half that achieved by COBE. We use the k-l relation for the standard cosmological model to identify the pivot scale for the WMAP normalization. We also quote the inflationary energy scale corresponding to the WMAP normalization.
Cosmological AMR MHD with Enzo
Xu, Hao; Li, Hui; Li, Shengtai
2009-01-01
In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.
Gravitational waves from the cosmological QCD transition
NASA Astrophysics Data System (ADS)
Mourão Roque, V. R. C.; Roque, G. Lugones o.; Lugones, G.
2014-09-01
We determine the minimum fluctuations in the cosmological QCD phase transition that could be detectable by the eLISA/NGO gravitational wave observatory. To this end, we performed several hydrodynamical simulations using a state-of-the-art equation of state derived from lattice QCD simulations. Based on the fact that the viscosity per entropy density of the quark gluon plasma obtained from heavy-ion collision experiments at the RHIC and the LHC is extremely small, we considered a non-viscous fluid in our simulations. Several previous works about this transition considered a first order transition that generates turbulence which follows a Kolmogorov power law. We show that for the QCD crossover transition the turbulent spectrum must be very different because there is no viscosity and no source of continuous energy injection. As a consequence, a large amount of kinetic energy accumulates at the smallest scales. From the hydrodynamic simulations, we have obtained the spectrum of the gravitational radiation emitted by the motion of the fluid, finding that, if typical velocity and temperature fluctuations have an amplitude Δ v /c ≳ 10-2 and/or Δ T/T_c ≳ 10-3, they would be detected by eLISA/NGO at frequencies larger than ˜ 10-4 Hz.
NASA Astrophysics Data System (ADS)
Tipler, Frank J.
2003-04-01
I shall present three arguments for the proposition that intelligent life is very rare in the universe. First, I shall summarize the consensus opinion of the founders of the modern synthesis (Simpson, Dobzhanski and Mayr) that the evolution of intelligent life is exceedingly improbable. Secondly, I shall develop the Fermi paradox: if they existed, they would be here. Thirdly, I shall show that if intelligent life were too common, it would use up all available resources and die out. But I shall show that the quantum mechanical principle of unitarity (actually a form of teleology!) requires intelligent life to survive to the end of time. Finally, I shall argue that, if the universe is indeed accelerating, then survival to the end of time requires that intelligent life, though rare, to have evolved several times in the visible universe. I shall argue that the acceleration is a consequence of the excess of matter over antimatter in the universe. I shall suggest experiments to test these claims.
Legless locomotion in lattices
NASA Astrophysics Data System (ADS)
Schiebel, Perrin; Dai, Jin; Gong, Chaohui; Serrano, Miguel M.; Mendelson, Joseph R., III; Choset, Howie; Goldman, Daniel I.
2015-03-01
By propagating waves from head to tail, limbless organisms like snakes can traverse terrain composed of rocks, foliage, soil and sand. Previous research elucidated how rigid obstacles influence snake locomotion by studying a model terrain-symmetric lattices of pegs placed in hard ground. We want to understand how different substrate-body interaction modes affect performance in desert-adapted snakes during transit of substrates composed of both rigid obstacles and granular media (GM). We tested Chionactis occipitalis, the Mojave shovel-nosed snake, in two laboratory treatments: lattices of 0 . 64 cm diameter obstacles arrayed on both a hard, slick substrate and in a GM of ~ 0 . 3 mm diameter glass particles. For all lattice spacings, d, speed through the hard ground lattices was less than that in GM lattices. However, maximal undulation efficiencies ηu (number of body lengths advanced per undulation cycle) in both treatments were comparable when d was intermediate. For other d, ηu was lower than this maximum in hard ground lattices, while on GM, ηu was insensitive to d. To systematically explore such locomotion, we tested a physical robot model of the snake; performance depended sensitively on base substrate, d and body wave parameters.
Cosmic Rays and Their Radiative Processes in Numerical Cosmology
NASA Technical Reports Server (NTRS)
Ryu, Dongsu; Miniati, Francesco; Jones, Tom W.; Kang, Hyesung
2000-01-01
A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive, acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 128 (exp 3) cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.
Quantum cosmology with nontrivial topologies
Vargas, T.
2008-10-10
Quantum creation of a universe with a nontrivial spatial topology is considered. Using the Euclidean functional integral prescription, we calculate the wave function of such a universe with cosmological constant and without matter. The minisuperspace path integral is calculated in the semiclassical approximation, and it is shown that in order to include the nontrivial topologies in the path integral approach to quantum cosmology, it is necessary to generalize the sum over compact and smooth 4-manifolds to sum over finite-volume compact 4-orbifolds.
Cosmologies with variable gravitational constant
NASA Astrophysics Data System (ADS)
Narlikar, J. V.
1983-03-01
In 1937 Dirac presented an argument, based on the socalled large dimensionless numbers, which led him to the conclusion that the Newtonian gravitational constant G changes with epoch. Towards the end of the last century Ernst Mach had given plausible arguments to link the property of inertia of matter to the large scale structure of the universe. Mach's principle also leads to cosmological models with a variable gravitational constant. Three cosmologies which predict a variable G are discussed in this paper both from theoretical and observational points of view.
Cosmological dynamics of extended chameleons
NASA Astrophysics Data System (ADS)
Tamanini, Nicola; Wright, Matthew
2016-04-01
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.
Constraining Lorentz violation with cosmology.
Zuntz, J A; Ferreira, P G; Zlosnik, T G
2008-12-31
The Einstein-aether theory provides a simple, dynamical mechanism for breaking Lorentz invariance. It does so within a generally covariant context and may emerge from quantum effects in more fundamental theories. The theory leads to a preferred frame and can have distinct experimental signatures. In this Letter, we perform a comprehensive study of the cosmological effects of the Einstein-aether theory and use observational data to constrain it. Allied to previously determined consistency and experimental constraints, we find that an Einstein-aether universe can fit experimental data over a wide range of its parameter space, but requires a specific rescaling of the other cosmological densities. PMID:19113765
Cosmology and the weak interaction
NASA Technical Reports Server (NTRS)
Schramm, David N.
1989-01-01
The weak interaction plays a critical role in modern Big Bang cosmology. Two of its most publicized comological connections are emphasized: big bang nucleosynthesis and dark matter. The first of these is connected to the cosmological prediction of neutrine flavors, N(sub nu) is approximately 3 which in now being confirmed. The second is interrelated to the whole problem of galacty and structure formation in the universe. The role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure is demonstrated.
Viable cosmology in bimetric theory
Felice, Antonio De; Gümrükçüoğlu, A. Emir; Mukohyama, Shinji; Tanahashi, Norihiro; Tanaka, Takahiro E-mail: Emir.Gumrukcuoglu@nottingham.ac.uk E-mail: norihiro.tanahashi@ipmu.jp
2014-06-01
We study cosmological perturbations in bimetric theory with two fluids each of which is coupled to one of the two metrics. Focusing on a healthy branch of background solutions, we clarify the stability of the cosmological perturbations. For this purpose, we extend the condition for the absence of the so-called Higuchi ghost, and show that the condition is guaranteed to be satisfied on the healthy branch. We also calculate the squared propagation speeds of perturbations and derive the conditions for the absence of the gradient instability. To avoid the gradient instability, we find that the model parameters are weakly constrained.
Constraining Lorentz Violation with Cosmology
Zuntz, J. A.; Ferreira, P. G.; Zlosnik, T. G
2008-12-31
The Einstein-aether theory provides a simple, dynamical mechanism for breaking Lorentz invariance. It does so within a generally covariant context and may emerge from quantum effects in more fundamental theories. The theory leads to a preferred frame and can have distinct experimental signatures. In this Letter, we perform a comprehensive study of the cosmological effects of the Einstein-aether theory and use observational data to constrain it. Allied to previously determined consistency and experimental constraints, we find that an Einstein-aether universe can fit experimental data over a wide range of its parameter space, but requires a specific rescaling of the other cosmological densities.
Galaxy cosmological mass function
NASA Astrophysics Data System (ADS)
Lopes, Amanda R.; Iribarrem, Alvaro; Ribeiro, Marcelo B.; Stoeger, William R.
2014-12-01
Aims: This paper studies the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach that uses observational data provided by recent galaxy redshift surveys. Methods: Starting from a previously presented relation between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity L, and the average galactic mass ℳg were computed in terms of the redshift. ℳg was also alternatively estimated by means of a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allowed us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range 0.5
Evidence for maximal acceleration and singularity resolution in covariant loop quantum gravity.
Rovelli, Carlo; Vidotto, Francesca
2013-08-30
A simple argument indicates that covariant loop gravity (spin foam theory) predicts a maximal acceleration and hence forbids the development of curvature singularities. This supports the results obtained for cosmology and black holes using canonical methods. PMID:24033021
Screening of Cosmological Constant in Non-Local Cosmology
NASA Astrophysics Data System (ADS)
Zhang, Ying-Li; Sasaki, Misao
We consider a model of non-local gravity with a large bare cosmological constant, Λ, and study its cosmological solutions. The model is characterized by a function f(ψ) = f0eαψ, where ψ = □-1R and α is a real dimensionless parameter. In the absence of matter, we find an expanding universe solution a ∝ tn with n < 1, that is, a universe with decelerated expansion without any fine-tuning of the parameter. Thus the effect of the cosmological constant is effectively shielded in this solution. It has been known that solutions in non-local gravity often suffer from the existence of ghost modes. In the present case, we find the solution is ghost-free if α > αcr ≈ 0.17. This is quite a weak condition. We argue that the solution is stable against the inclusion of matter fields. Thus our solution opens up new possibilities for solution to the cosmological constant problem.
Cosmological constant, violation of cosmological isotropy and CMB
Urban, Federico R.; Zhitnitsky, Ariel R. E-mail: arz@physics.ubc.ca
2009-09-01
We suggest that the solution to the cosmological vacuum energy puzzle does not require any new field beyond the standard model, but rather can be explained as a result of the interaction of the infrared sector of the effective theory of gravity with standard model fields. The cosmological constant in this framework can be presented in terms of QCD parameters and the Hubble constant H as follows, ε{sub vac} ≅ H⋅m{sub q}( q-bar q)/m{sub η'} ≅ (4.3⋅10{sup −3}eV){sup 4}, which is amazingly close to the observed value today. In this work we explain how this proposal can be tested by analyzing CMB data. In particular, knowing the value of the observed cosmological constant fixes univocally the smallest size of the spatially flat, constant time 3d hypersurface which, for instance in the case of an effective 1-torus, is predicted to be around 74 Gpc. We also comment on another important prediction of this framework which is a violation of cosmological isotropy. Such anisotropy is indeed apparently observed by WMAP, and will be confirmed (or ruled out) by future PLANCK data.
The Case for a Hierarchical Cosmology
ERIC Educational Resources Information Center
Vaucouleurs, G. de
1970-01-01
The development of modern theoretical cosmology is presented and some questionable assumptions of orthodox cosmology are pointed out. Suggests that recent observations indicate that hierarchical clustering is a basic factor in cosmology. The implications of hierarchical models of the universe are considered. Bibliography. (LC)
Stringy Model of Cosmological Dark Energy
Aref'eva, Irina Ya.
2007-11-20
A string field theory (SFT) nonlocal model of the cosmological dark energy providing w<-1 is briefly surveyed. We summarize recent developments and open problems, as well as point out some theoretical issues related with others applications of the SFT nonlocal models in cosmology, in particular, in inflation and cosmological singularity.
Regularizing cosmological singularities by varying physical constants
Dąbrowski, Mariusz P.; Marosek, Konrad E-mail: k.marosek@wmf.univ.szczecin.pl
2013-02-01
Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.
Cosmology based on f(R) gravity admits 1 eV sterile neutrinos.
Motohashi, Hayato; Starobinsky, Alexei A; Yokoyama, Jun'ichi
2013-03-22
It is shown that the tension between recent neutrino oscillation experiments, favoring sterile neutrinos with masses of the order of 1 eV, and cosmological data which impose stringent constraints on neutrino masses from the free streaming suppression of density fluctuations, can be resolved in models of the present accelerated expansion of the Universe based on f(R) gravity. PMID:25166788
Cosmology from f( R, T) Theory in a Variant Speed of Light Scenario
NASA Astrophysics Data System (ADS)
Moraes, P. H. R. S.
2016-03-01
In this work I present a generalization of f( R, T) gravity, by allowing the speed of light to vary. Cosmological solutions are presented for matter and radiation-dominated universes, the former allowing the universe expansion to accelerate while the latter contemplating a possible alternative to inflationary scenario. Remarkably, standard gravity is always retrieved for a special case of f( R, T).
Experimentally testing the standard cosmological model
Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )
1990-11-01
The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.
Thermonuclear supernova light curves: Progenitors and cosmology
NASA Astrophysics Data System (ADS)
Rodney, Steven A.
Thermonuclear Supernovae (TN SNe) are an extremely important tool in modern astronomy. In their role as cosmological distance probes, they have revealed the accelerated expansion of the universe and have begun to constrain the nature of the dark energy that may be driving that expansion. The next decade will see a succession of wide-field surveys producing thousands of TNSN detections each year. Traditional methods of SN analysis, rooted in time-intensive spectroscopic follow-up, will become completely impractical. To realize the potential of this coming tide of massive data sets, we will need to extract cosmographic parameters (redshift and luminosity distance) from SN photometry without any spectroscopic support. In this dissertation, I present the Supernova Ontology with Fuzzy Templates (SOFT) method, an innovative new approach to the analysis of SN light curves. SOFT uses the framework of fuzzy set theory to perform direct comparisons of SN candidates against template light curves, simultaneously producing both classifications and cosmological parameter estimates. The SOFT method allows us to shed new light on two rich archival data sets. I revisit the IfA Deep Survey and HST GOODS to extract new and improved measurements of the TNSN rate from z=0.2 out to z=1.6. Our new analysis shows a steady increase in the TNSN rate out to z˜1, and adds support for a decrease in the rate at z=1.5. Comparing these rate measurements to theoretical models, I conclude that the progenitor scenario most favored by the collective observational data is a single degenerate model, regulated by a strong wind from the accreting white dwarf. Using a compilation of SN light curves from five recent surveys, I demonstrate that SOFT is able to derive useful constraints on cosmological models from a data set with no spectroscopic information at all. Looking ahead to the near future, I find that photometric analysis of data sets containing 2,000 SNe will be able to improve our constraints on
The Higgs boson and cosmology.
Shaposhnikov, Mikhail
2015-01-13
I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production. PMID:26949807
Towards Noncommutative Supersymmetric Quantum Cosmology
NASA Astrophysics Data System (ADS)
Sabido, M.; Guzmán, W.; Socorro, J.
2010-12-01
In this work a construction of supersymmetric noncommutative cosmology is presented. We start with a ``noncommutative'' deformation of the minisuperspace variables, and by using the time reparametrization invariance of the noncommutative bosonic model we proceed to construct a super field description of the model.
How Cosmology Became a Science.
ERIC Educational Resources Information Center
Brush, Stephen G.
1992-01-01
Describes the origin of the science of cosmology and the competing theories to explain the beginning of the universe. The big bang theory for the creation of the universe is contrasted with the steady state theory. The author details discoveries that led to the demise of the steady state theory. (PR)
A Critique of Creationist Cosmology.
ERIC Educational Resources Information Center
Dutch, Steven I.
1982-01-01
Critiques Slusher's account of creationist cosmology, with occasional reference to other relevent creationist theories. Points out the fallacies and contradictions on seven topics, including the structure of the galaxies, Olber's Paradox, traveling of light in space, and changes in Saturn's rings. (DC)
Particle cosmology comes of age
Turner, M.S.
1987-12-01
The application of modern ideas in particle physics to astrophysical and cosmological settings is a continuation of a fruitful tradition in astrophysics which began with the application of atomic physics, and then nuclear physics. In the past decade particle cosmology and particle astrophysics have been recognized as 'legitimate activities' by both particle physicists and astrophysicists and astronomers. During this time there has been a high level of theoretical activity producing much speculation about the earliest history of the Universe, as well as important and interesting astrophysical and cosmological constraints to particle physics theories. This period of intense theoretical activity has produced a number of ideas most worthy of careful consideration and scrutiny, and even more importantly, amenable to experimental/observational test. Among the ideas which are likely to be tested in the next decade are: the cosmological bound to the number of neutrino flavors, inflation, relic WIMPs as the dark matter, and MSW neutrino oscillations as a solution to the solar neutrino problems. 94 refs.
Evidence for cosmological particle creation?
NASA Astrophysics Data System (ADS)
Pigozzo, C.; Carneiro, S.; Alcaniz, J. S.; Borges, H. A.; Fabris, J. C.
2016-05-01
A joint analysis of the linear matter power spectrum, distance measurements from type Ia supernovae and the position of the first peak in the anisotropy spectrum of the cosmic microwave background indicates a cosmological, late-time dark matter creation at 95% confidence level.
Shaposhnikov, Mikhail
2015-01-01
I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.
Averaging inhomogeneous cosmologies - a dialogue.
NASA Astrophysics Data System (ADS)
Buchert, T.
The averaging problem for inhomogeneous cosmologies is discussed in the form of a disputation between two cosmologists, one of them (RED) advocating the standard model, the other (GREEN) advancing some arguments against it. Technical explanations of these arguments as well as the conclusions of this debate are given by BLUE.
Averaging inhomogenous cosmologies - a dialogue
NASA Astrophysics Data System (ADS)
Buchert, T.
The averaging problem for inhomogeneous cosmologies is discussed in the form of a disputation between two cosmologists, one of them (RED) advocating the standard model, the other (GREEN) advancing some arguments against it. Technical explanations of these arguments as well as the conclusions of this debate are given by BLUE.
NASA Astrophysics Data System (ADS)
Knuth, Kevin H.
2009-12-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well introduce a general notion of product. To illustrate the generic utility of this novel lattice-theoretic foundation of measure, the sum and product rules are applied to number theory. Further application of these concepts to understand the foundation of quantum mechanics is described in a joint paper in this proceedings.
Thermodynamics of cosmological matter creation.
Prigogine, I; Geheniau, J; Gunzig, E; Nardone, P
1988-10-01
A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the
Cosmological gravitomagnetism and Mach's principle
NASA Astrophysics Data System (ADS)
Schmid, Christoph
2006-08-01
The spin axes of gyroscopes experimentally define local nonrotating frames, i.e. the time evolution of axes of inertial frames. But what physical cause governs the time evolution of gyroscope axes? We consider linear perturbations of Friedmann-Robertson-Walker (FRW) cosmologies with k=0, i.e. spatially flat. We ask the following question: Will cosmological vector perturbations (i.e. vorticity or rotational perturbations) exactly drag the spin axes of gyroscopes relative to the directions of geodesics to quasars in the asymptotic unperturbed FRW space? Using Cartan’s formalism with local orthonormal bases, we cast the laws of linear cosmological gravitomagnetism into a form showing the close correspondence with the laws of ordinary magnetism. Our results, valid for any equation of state and any form of the energy-momentum tensor for cosmological matter, are as follows: (1) the dragging of a gyroscope axis by rotational perturbations of matter beyond the H-dot radius from the gyroscope is exponentially suppressed, where H is the Hubble rate, and the dot is the derivative with respect to cosmic time. (2) If the perturbation of matter is a homogeneous rotation inside some radius around a gyroscope, then exact dragging of the gyroscope axis by the rotational perturbation is reached exponentially fast as the rotation radius gets larger than the H-dot radius. (3) For the most general linear cosmological perturbations, the time evolution of all gyroscope spin axes and the axis directions of all local inertial frames exactly follow a weighted average of the rotational motion of cosmological matter, i.e. there is exact frame-dragging everywhere. The weight function is the density of measured angular momentum of matter times (1/r) times the Yukawa force (-d/dr)[(1/r)exp(-μr)], where r is the geodesic distance from the source to the gyroscope. The exponential cutoff is given by μ2=-4(dH/dt). Except for the Yukawa cutoff the weight function is the same as in the
Thermodynamics of cosmological matter creation
Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P.
1988-01-01
A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the
Superheavy magnetic monopoles and the standard cosmology
NASA Astrophysics Data System (ADS)
Turner, M. S.
1984-10-01
The superheavy magnetic monopoles predicted to exist in grand unified theories (GUTs) are for particle physics, astrophysics and cosmology. Astrophysical and cosmological considerations are invaluable in the study of the properties of GUT monopoles. Because of the glut of monopoles predicted in the standard cosmology for the simplest GUTs. The simplest GUTs and the standard cosmology are not compatible. This is a very important piece of information about physics at unification energies and about the earliest movements of the Universe. The cosmological consequences of GUT monopoles within the context of the standard hot big bang model are reviewed.
Asymmetric cyclic evolution in polymerised cosmology
Hrycyna, Orest; Mielczarek, Jakub; Szydłowski, Marek E-mail: jakub.mielczarek@uj.edu.pl
2009-12-01
The dynamical systems methods are used to study evolution of the polymerised scalar field cosmologies with the cosmological constant. We have found all evolutional paths admissible for all initial conditions on the two-dimensional phase space. We have shown that the cyclic solutions are generic. The exact solution for polymerised cosmology is also obtained. Two basic cases are investigated, the polymerised scalar field and the polymerised gravitational and scalar field part. In the former the division on the cyclic and non-cyclic behaviour is established following the sign of the cosmological constant. The value of the cosmological constant is upper bounded purely from the dynamical setting.
Cosmological model favored by the holographic principle
NASA Astrophysics Data System (ADS)
Dymnikova, Irina; Dobosz, Anna; Sołtysek, Bożena
2016-03-01
We present a regular spherically symmetric cosmological model of the Lemaitre class distinguished by the holographic principle as the thermodynamically stable end-point of quantum evaporation of the cosmological horizon. A source term in the Einstein equations connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. Global structure of space-time is the same as for the de Sitter space-time. Cosmological evolution goes from a big initial value of the cosmological constant towards its presently observed value.
Recycler lattice for Project X at Fermilab
Xiao, Meiqin; Johnson, David E.; /Fermilab
2009-09-01
Project X is an intense proton source that provides beam for various physics programs. The source consists of an 8 GeV H- superconducting linac that injects into the Fermilab Recycler where H- are converted to protons. Protons are provided to the Main Injector and accelerated to desired energy (in the range 60-120 GeV) or extracted from the Recycler for the 8 GeV program. A long drift space is needed to accommodate the injection chicane with stripping foils. The Recycler is a fixed 8 GeV kinetic energy storage ring using permanent gradient magnets. A phase trombone straight section is used to control the tunes. In this paper, the existing FODO lattice in RR10 straight section being converted into doublet will be described. Due to this change, the phase trombone straight section has to be modified to bring the tunes to the nominal working point. A toy lattice of recycler ring is designed to simulate the end-shim effects of each permanent gradient magnet to add the flexibility to handle the tune shift to the lattice during the operation of 1.6E14 with KV distribution of the proton beam to give {approx}0.05 of space charge tune shift. The comparison or the combinations of the two modification ways for the Recycler ring lattice will be presented also in this paper.
Constraining competing models of dark energy with cosmological observations
NASA Astrophysics Data System (ADS)
Pavlov, Anatoly
The last decade of the 20th century was marked by the discovery of the accelerated expansion of the universe. This discovery puzzles physicists and has yet to be fully understood. It contradicts the conventional theory of gravity, i.e. Einstein's General Relativity (GR). According to GR, a universe filled with dark matter and ordinary matter, i.e. baryons, leptons, and photons, can only expand with deceleration. Two approaches have been developed to study this phenomenon. One attempt is to assume that GR might not be the correct description of gravity, hence a modified theory of gravity has to be developed to account for the observed acceleration of the universe's expansion. This approach is known as the "Modified Gravity Theory". The other way is to assume that the energy budget of the universe has one more component which causes expansion of space with acceleration on large scales. Dark Energy (DE) was introduced as a hypothetical type of energy homogeneously filling the entire universe and very weakly or not at all interacting with ordinary and dark matter. Observational data suggest that if DE is assumed then its contribution to the energy budget of the universe at the current epoch should be about 70% of the total energy density of the universe. In the standard cosmological model a DE term is introduced into the Einstein GR equations through the cosmological constant, a constant in time and space, and proportional to the metric tensor gmunu. While this model so far fits most available observational data, it has some significant conceptual shortcomings. Hence there are a number of alternative cosmological models of DE in which the dark energy density is allowed to vary in time and space.
Alcock-paczynski cosmological test
López-Corredoira, M.
2014-02-01
In order to test the expansion of the universe and its geometry, we carry out an Alcock-Paczyński cosmological test, that is, an evaluation of the ratio of observed angular size to radial/redshift size. The main advantage of this test is that it does not depend on the evolution of the galaxies but only on the geometry of the universe. However, the redshift distortions produced by the peculiar velocities of the gravitational infall also have an influence, which should be separated from the cosmological effect. We derive the anisotropic correlation function of sources in three surveys within the Sloan Digital Sky Survey (SDSS): galaxies from SDSS-III/Baryon Oscillation Spectroscopic Survey Data Release 10 (BOSS-DR10) and QSOs from SDSS-II and SDSS-III/BOSS-DR10. From these, we are able to disentangle the dynamic and geometric distortions and thus derive the ratio of observed angular size to radial/redshift size at different redshifts. We also add some other values available in the literature. Then we use the data to evaluate which cosmological model fits them. We used six different models: concordance ΛCDM, Einstein-de Sitter, open-Friedman cosmology without dark energy, flat quasi-steady state cosmology, a static universe with a linear Hubble law, and a static universe with tired-light redshift. Only two of the six models above fit the data of the Alcock-Paczyński test: concordance ΛCDM and static universe with tired-light redshift, whereas the rest of them are excluded at a >95% confidence level. If we assume that ΛCDM is the correct one, the best fit with a free Ω {sub m} is produced for Ω{sub m}=0.24{sub −0.07}{sup +0.10}.
iCosmo: an interactive cosmology package
NASA Astrophysics Data System (ADS)
Refregier, A.; Amara, A.; Kitching, T. D.; Rassat, A.
2011-04-01
Aims: The interactive software package iCosmo, designed to perform cosmological calculations is described. Methods: iCosmo is a software package to perfom interactive cosmological calculations for the low-redshift universe. Computing distance measures, the matter power spectrum, and the growth factor is supported for any values of the cosmological parameters. It also computes derived observed quantities for several cosmological probes such as cosmic shear, baryon acoustic oscillations, and type Ia supernovae. The associated errors for these observable quantities can be derived for customised surveys, or for pre-set values corresponding to current or planned instruments. The code also allows for calculation of cosmological forecasts with Fisher matrices, which can be manipulated to combine different surveys and cosmological probes. The code is written in the IDL language and thus benefits from the convenient interactive features and scientific libraries available in this language. iCosmo can also be used as an engine to perform cosmological calculations in batch mode, and forms a convenient adaptive platform for the development of further cosmological modules. With its extensive documentation, it may also serve as a useful resource for teaching and for newcomers to the field of cosmology. Results: The iCosmo package is described with a number of examples and command sequences. The code is freely available with documentation at http://www.icosmo.org, along with an interactive web interface and is part of the Initiative for Cosmology, a common archive for cosmological resources.
Lattice Boltzmann Stokesian dynamics.
Ding, E J
2015-11-01
Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape. PMID:26651812
Latticed pentamode acoustic cloak
Chen, Yi; Liu, Xiaoning; Hu, Gengkai
2015-01-01
We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821
Lattice Boltzmann Stokesian dynamics
NASA Astrophysics Data System (ADS)
Ding, E. J.
2015-11-01
Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape.
Jain, Bhuvnesh; Khoury, Justin
2010-07-15
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher-dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from {approx} kpc (galaxy scales) to {approx} Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensing, galaxy cluster abundances, galaxy clustering and the integrated Sachs-Wolfe effect. A robust way to interpret observations is by constraining effective parameters, such as the ratio of the two metric potentials. Currently tests of gravity on astrophysical scales are in the early stages - we summarize these tests and discuss the interesting prospects for new tests in the coming decade.
Astroparticle physics and cosmology.
Mitton, Simon
2006-05-20
Astroparticle physics is an interdisciplinary field that explores the connections between the physics of elementary particles and the large-scale properties of the universe. Particle physicists have developed a standard model to describe the properties of matter in the quantum world. This model explains the bewildering array of particles in terms of constructs made from two or three quarks. Quarks, leptons, and three of the fundamental forces of physics are the main components of this standard model. Cosmologists have also developed a standard model to describe the bulk properties of the universe. In this new framework, ordinary matter, such as stars and galaxies, makes up only around 4% of the material universe. The bulk of the universe is dark matter (roughly 23%) and dark energy (about 73%). This dark energy drives an acceleration that means that the expanding universe will grow ever larger. String theory, in which the universe has several invisible dimensions, might offer an opportunity to unite the quantum description of the particle world with the gravitational properties of the large-scale universe. PMID:16714191
Challenging the cosmological constant
NASA Astrophysics Data System (ADS)
Kaloper, Nemanja
2007-09-01
We outline a dynamical dark energy scenario whose signatures may be simultaneously tested by astronomical observations and laboratory experiments. The dark energy is a field with slightly sub-gravitational couplings to matter, a logarithmic self-interaction potential with a scale tuned to ˜10 eV, as is usual in quintessence models, and an effective mass m influenced by the environmental energy density. Its forces may be suppressed just below the current bounds by the chameleon-like mimicry, whereby only outer layers of mass distributions, of thickness 1/m, give off appreciable long range forces. After inflation and reheating, the field is relativistic, and attains a Planckian expectation value before Hubble friction freezes it. This can make gravity in space slightly stronger than on Earth. During the matter era, interactions with nonrelativistic matter dig a minimum close to the Planck scale. However, due to its sub-gravitational matter couplings the field will linger away from this minimum until the matter energy density dips below ˜10 eV. Then it starts to roll to the minimum, driving a period of cosmic acceleration. Among the signatures of this scenario may be dark energy equation of state w≠-1, stronger gravity in dilute mediums, that may influence BBN and appear as an excess of dark matter, and sub-millimeter corrections to Newton's law, close to the present laboratory limits.
A Cosmology with a Gravity Driven Inflation
NASA Astrophysics Data System (ADS)
Enginol, Turan B.
2015-08-01
The theoretically expected value of Λ is some 10120 orders of magnitude larger than the current observational limits. Since Λ=8πc-2ρΛG, where the vacuum energy density ρΛ is constant, we argue that this discrepancy is due to a large value of G at the beginning which decreases to its present value at reheating. This suggests that initially gravity may have been a strong force. Inflation would then be driven by a large Gi, the variation range of G being similar to Λ. This may be a possible solution for the cosmological constant problem.A graceful exit from inflation occurs when ρr reaches the value ρΛ as radiation is created. Radiation is created through the decay of massive particle species φ with small mean lifetimes τ, which are produced by the fluctuations of the gravity field. We find that radiation energy density ρr increases sharply from the end of inflation at Rf to its maximum value and then decreases as R-3/2 until reheating at t=τ, continuing on to decrease with its natural pattern of R-4.Following Sciama's idea of gravitational induction, an equation of continuity for a possibly non-constant G is obtained using the equations of general relativity. This equation indicates that G is non-constant if radiation and/or matter is created, its solution for G having an inverse dependence on the sum of ρr, ρm, and ρΛ. Accordingly, with the sudden increase of ρr, G and therefore Λ fall off sharply from their values Gi and Λi at Rf, and continue to decrease as R-3/2. From reheating on they attain their constant values of the present epoch, namely G0 and Λ0.Our equation of cosmology, obtained by integrating the expression for the deceleration parameter q, gives two inflection points for R=R(t). The first one occurs at the recovery from inflation when ρr(R)=ρΛ. The second inflection is at R’, where R’
Effective cosmological constant induced by stochastic fluctuations of Newton's constant
NASA Astrophysics Data System (ADS)
de Cesare, Marco; Lizzi, Fedele; Sakellariadou, Mairi
2016-09-01
We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.
Realistic cosmological measurement of distances in the Friedmann universe
NASA Astrophysics Data System (ADS)
Nikolaev, Aleksei; Chervon, Sergey
2016-01-01
We consider application of our development of Zeldovich’s ideas, presented in Ref. 1, for measurement of the cosmological angular diameter distance (ADD) in the Friedmann Universe. To make a comparison with ΛCDM we analyze ADD measurement in ϕCDM model responsible for the later inflation (present accelerated expansion of the Universe). We also analyze a small deviation from equality in the distance duality relation induced by the fullness (by matter) of the cone of light rays (CLR) which is used for the ADD measurement method.
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Fast Ion Instability in Real Lattice
Stupakov, G.V.; /SLAC
2011-09-09
The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. The original theory of the Fast Ion Instability was developed assuming both a constant external focusing and the beam size. The theory predicts an instability in which an initial perturbation grows as {approx} exp({alpha}{radical}t). In the present paper we consider a more realistic model that takes into account variation of the beta function in the lattice and associated with it variation of the beam size. We find that, in combination with ion decoherence effect, the spatial inhomogeneity can result in (1) purely exponential growth, {approx} exp({Lambda}t); and (2) typically smaller growth rates. Detailed calculations are performed for the lattice of the Advanced Light Source at the LBL.
Acceleration of the Universe and Gravity Properties
NASA Astrophysics Data System (ADS)
Verozub, L. V.; Kochetov, A. Y.
2001-09-01
The recent results by two teams (the Supernova Cosmology Project and the High-z Supernova Search Team) give evidence that the deceleration parameter in the standard cosmological model is negative. It means that the acceleration of the Universe is positive. It is inconsistent with Newtonian gravitation law, and in General Relativity can be explained only by a nonzero cosmological constant. In the paper [L. V. Verozub, A.Y. Kochetov, Phys. and kinem. Of spacial bodies, 15, 171 (1999)] a model of an expending dust ball from the viewpoint of our gravitation equations [L. V. Verozub, Phys. Lett. A, 156, 404 (1991)] has been considered. It follows from the results that at some parameters of the model the acceleration of the expanding dust ball can be positive. This unexpected from the viewpoint of the Newtonian mechanics fact is a consequence of the peculiarity of the gravitational force [L. V. Verozub, Astr. Nachr. 317, 107 (1996)] resulting from the above gravitation equations. n the present paper a detail analysis of the A.Riess at al. observation data from the viewpoint of the above-mentioned model is given. It is shown that the negative value of the deceleration parameter can be considered as a consequence of the gravitation force peculiarity. It is an alternative explanation to the generally accepted one, which is based on a nonzero cosmological constant in the Einstein's equations.
TOPICAL REVIEW: String cosmology versus standard and inflationary cosmology
NASA Astrophysics Data System (ADS)
Gasperini, M.
2000-06-01
This paper presents a review of the basic, model-independent differences between the pre-big-bang scenario, arising naturally in a string cosmology context, and the standard inflationary scenario. We use an unconventional approach in which the introduction of technical details is avoided as much as possible, trying to focus the reader's attention on the main conceptual aspects of both scenarios. The aim of the paper is not to conclude either in favour of one or other of the scenarios, but to raise questions that are left to the reader's meditation. Warning: the paper does not contain equations, and is not intended as a complete review of all aspects of string cosmology.
Educational aspects of cosmology Global Cosmology Teachers Academy
NASA Astrophysics Data System (ADS)
Smoot, George F.
2011-06-01
This IAU-UNESCO Symposium 260 `The role of Astronomy in Society and Culture' celebrates the 400th anniversary of the beginning of modern astronomy marked by when Galileo turned a telescope to the sky making so many astounding discoveries that changed our perceived position in the solar system. This talk celebrates that cosmology has entered this era in an even deeper and profound discoveries that have changed our perception of the universe and our place in it. As such cosmology is a great interest and educational tool for capturing the attention of the young and broadening their perspective. The first portion of the talk outlines and reveals some of these observations and the second with examples and vision of how this can provide an encompassing storyline for STEM learning. This proceedings also emphasizes the key role that partnerships including the private sector are valuable, critical, and rewarding part of the effort.
How does pressure gravitate? Cosmological constant problem confronts observational cosmology
NASA Astrophysics Data System (ADS)
Narimani, Ali; Afshordi, Niayesh; Scott, Douglas
2014-08-01
An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (``highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ4 = 0.105 ± 0.049 (+highL CMB), or ζ4 = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ4=), and also among different data sets.
How does pressure gravitate? Cosmological constant problem confronts observational cosmology
Narimani, Ali; Scott, Douglas; Afshordi, Niayesh E-mail: nafshordi@pitp.ca
2014-08-01
An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (''highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ{sub 4} = 0.105 ± 0.049 (+highL CMB), or ζ{sub 4} = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ{sub 4}=), and also among different data sets.
ERIC Educational Resources Information Center
Education Commission of the States, Denver, CO.
This paper provides an overview of Accelerated Reader, a system of computerized testing and record-keeping that supplements the regular classroom reading program. Accelerated Reader's primary goal is to increase literature-based reading practice. The program offers a computer-aided reading comprehension and management program intended to motivate…
Bi-scalar modified gravity and cosmology with conformal invariance
NASA Astrophysics Data System (ADS)
Saridakis, Emmanuel N.; Tsoukalas, Minas
2016-04-01
We investigate the cosmological applications of a bi-scalar modified gravity that exhibits partial conformal invariance, which could become full conformal invariance in the absence of the usual Einstein-Hilbert term and introducing additionally either the Weyl derivative or properly rescaled fields. Such a theory is constructed by considering the action of a non-minimally conformally-coupled scalar field, and adding a second scalar allowing for a nonminimal derivative coupling with the Einstein tensor and the energy-momentum tensor of the first field. At a cosmological framework we obtain an effective dark-energy sector constituted from both scalars. In the absence of an explicit matter sector we extract analytical solutions, which for some parameter regions correspond to an effective matter era and/or to an effective radiation era, thus the two scalars give rise to "mimetic dark matter" or to "dark radiation" respectively. In the case where an explicit matter sector is included we obtain a cosmological evolution in agreement with observations, that is a transition from matter to dark energy era, with the onset of cosmic acceleration. Furthermore, for particular parameter regions, the effective dark-energy equation of state can transit to the phantom regime at late times. These behaviors reveal the capabilities of the theory, since they arise purely from the novel, bi-scalar construction and the involved couplings between the two fields.
NASA Astrophysics Data System (ADS)
Singh, Kevin; Geiger, Zachary; Senaratne, Ruwan; Rajagopal, Shankari; Fujiwara, Kurt; Weld, David; Weld Group Team
2015-05-01
Quasiperiodicity is intimately involved in quantum phenomena from localization to the quantum Hall effect. Recent experimental investigation of quasiperiodic quantum effects in photonic and electronic systems have revealed intriguing connections to topological phenomena. However, such experiments have been limited by the absence of techniques for creating tunable quasiperiodic structures. We propose a new type of quasiperiodic optical lattice, constructed by intersecting a Gaussian beam with a 2D square lattice at an angle with an irrational tangent. The resulting potential, a generalization of the Fibonacci lattice, is a physical realization of the mathematical ``cut-and-project'' construction which underlies all quasiperiodic structures. Calculation of the energies and wavefunctions of atoms loaded into the proposed quasiperiodic lattice demonstrate a fractal energy spectrum and the existence of edge states. We acknowledge support from the ONR (award N00014-14-1-0805), the ARO and the PECASE program (award W911NF-14-1-0154), the AFOSR (award FA9550-12-1-0305), and the Alfred P. Sloan foundation (grant BR2013-110).
Andreas S. Kronfeld
2002-09-30
After reviewing some of the mathematical foundations and numerical difficulties facing lattice QCD, I review the status of several calculations relevant to experimental high-energy physics. The topics considered are moments of structure functions, which may prove relevant to search for new phenomena at the LHC, and several aspects of flavor physics, which are relevant to understanding CP and flavor violation.
Feng Haidong; Siegel, Warren
2006-08-15
We propose some new simplifying ingredients for Feynman diagrams that seem necessary for random lattice formulations of superstrings. In particular, half the fermionic variables appear only in particle loops (similarly to loop momenta), reducing the supersymmetry of the constituents of the type IIB superstring to N=1, as expected from their interpretation in the 1/N expansion as super Yang-Mills.
ERIC Educational Resources Information Center
Scott, Paul
2006-01-01
A "convex" polygon is one with no re-entrant angles. Alternatively one can use the standard convexity definition, asserting that for any two points of the convex polygon, the line segment joining them is contained completely within the polygon. In this article, the author provides a solution to a problem involving convex lattice polygons.
NASA Astrophysics Data System (ADS)
Schaich, David
2016-03-01
Lattice field theory provides a non-perturbative regularization of strongly interacting systems, which has proven crucial to the study of quantum chromodynamics among many other theories. Supersymmetry plays prominent roles in the study of physics beyond the standard model, both as an ingredient in model building and as a tool to improve our understanding of quantum field theory. Attempts to apply lattice techniques to supersymmetric field theories have a long history, but until recently these efforts have generally encountered insurmountable difficulties related to the interplay of supersymmetry with the lattice discretization of spacetime. In recent years these difficulties have been overcome for a class of theories that includes the particularly interesting case of maximally supersymmetric Yang-Mills (N = 4 SYM) in four dimensions, which is a cornerstone of AdS/CFT duality. In combination with computational advances this progress enables practical numerical investigations of N = 4 SYM on the lattice, which can address questions that are difficult or impossible to handle through perturbation theory, AdS/CFT duality, or the conformal bootstrap program. I will briefly review some of the new ideas underlying this recent progress, and present some results from ongoing large-scale numerical calculations, including comparisons with analytic predictions.
NASA Astrophysics Data System (ADS)
Weidner, Carrie; Yu, Hoon; Anderson, Dana
2015-05-01
This work introduces a method to perform interferometry using atoms trapped in an optical lattice. Starting at t = 0 with atoms in the ground state of a lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , we show that it is possible to transform from one atomic wavefunction to another by a prescribed shaking of the lattice, i.e., by an appropriately tailored time-dependent phase shift ϕ(t) . In particular, the standard interferometer sequence of beam splitting, propagation, reflection, reverse propagation, and recombination can be achieved via a set of phase modulation operations {ϕj(t) } . Each ϕj(t) is determined using a learning algorithm, and the split-step method calculates the wavefunction dynamics. We have numerically demonstrated an interferometer in which the shaken wavefunctions match the target states to better than 1 % . We carried out learning using a genetic algorithm and optimal control techniques. The atoms remain trapped in the lattice throughout the full interferometer sequence. Thus, the approach may be suitable for use in an dynamic environment. In addition to the general principles, we discuss aspects of the experimental implementation. Supported by the Office of Naval Research (ONR) and Northrop Grumman.
A 5D noncompact and non Ricci flat Kaluza-Klein Cosmology
NASA Astrophysics Data System (ADS)
Darabi, F.
2009-03-01
A model universe is proposed in the framework of 5D noncompact Kaluza-Klein cosmology which is not Ricci flat. The 4D part as the Robertson-Walker metric is coupled to conventional perfect fluid, and its extra-dimensional part is coupled to a dark pressure through a scalar field. It is shown that neither early inflation nor current acceleration of the 4D universe would happen if the nonvacuum states of the scalar field would contribute to 4D cosmology.
Spectral and structural stability properties of charged particle dynamics in coupled lattices
Qin, Hong; Chung, Moses; Davidson, Ronald C.; Burby, Joshua W.
2015-05-15
It has been realized in recent years that coupled focusing lattices in accelerators and storage rings have significant advantages over conventional uncoupled focusing lattices, especially for high-intensity charged particle beams. A theoretical framework and associated tools for analyzing the spectral and structural stability properties of coupled lattices are formulated in this paper, based on the recently developed generalized Courant-Snyder theory for coupled lattices. It is shown that for periodic coupled lattices that are spectrally and structurally stable, the matrix envelope equation must admit matched solutions. Using the technique of normal form and pre-Iwasawa decomposition, a new method is developed to replace the (inefficient) shooting method for finding matched solutions for the matrix envelope equation. Stability properties of a continuously rotating quadrupole lattice are investigated. The Krein collision process for destabilization of the lattice is demonstrated.
Graviton spectra in string cosmology
Galluccio, Massimo; Litterio, Marco; Occhionero, Franco
1996-08-01
We propose to uncover the signature of a stringy era in the primordial Universe by searching for a prominent peak in the relic graviton spectrum. This feature, which in our specific model terminates an ω³ increase and initiates an ω⁻⁷ decrease, is induced during the so far overlooked bounce of the scale factor between the collapsing deflationary era (or pre-Big Bang) and the expanding inflationary era (or post-Big Bang). We evaluate both analytically and numerically the frequency and the intensity of the peak and we show that they may likely fall in the realm of the new generation of interferometric detectors. The existence of a peak is at variance with ordinarily monotonic (either increasing or decreasing) graviton spectra of canonical cosmologies; its detection would therefore offer strong support to string cosmology.
Cosmological perturbations in unimodular gravity
Gao, Caixia; Brandenberger, Robert H.; Cai, Yifu; Chen, Pisin E-mail: rhb@hep.physics.mcgill.ca E-mail: chen@slac.stanford.edu
2014-09-01
We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metric perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.
Causal compensated perturbations in cosmology
NASA Technical Reports Server (NTRS)
Veeraraghavan, Shoba; Stebbins, Albert
1990-01-01
A theoretical framework is developed to calculate linear perturbations in the gravitational and matter fields which arise causally in response to the presence of stiff matter sources in a FRW cosmology. It is shown that, in order to satisfy energy and momentum conservation, the gravitational fields of the source must be compensated by perturbations in the matter and gravitational fields, and the role of such compensation in containing the initial inhomogeneities in their subsequent evolution is discussed. A complete formal solution is derived in terms of Green functions for the perturbations produced by an arbitrary source in a flat universe containing cold dark matter. Approximate Green function solutions are derived for the late-time density perturbations and late-time gravitational waves in a universe containing a radiation fluid. A cosmological energy-momentum pseudotensor is defined to clarify the nature of energy and momentum conservation in the expanding universe.
Axions in astrophysics and cosmology
Sikivie, P.
1984-07-01
Axion models often have a spontaneously broken exact discrete symmetry. In that case, they have discretely degenerate vacua and hence domain walls. The properties of the domain walls, the cosmological catastrophe they produce and the ways in which this catastrophe may be avoided are explained. Cosmology and astrophysics provide arguments that imply the axion decay constant should lie in the range 10/sup 8/ GeV less than or equal to f/sub a/ less than or equal to 10/sup 12/ GeV. Reasons are given why axions are an excellent candidate to constitute the dark matter of galactic halos. Using the coupling of the axions to the electromagnetic field, detectors are described to look for axions floating about in the halo of our galaxy and for axions emitted by the sun. (LEW)
Effective perfect fluids in cosmology
Ballesteros, Guillermo; Bellazzini, Brando E-mail: brando.bellazzini@pd.infn.it
2013-04-01
We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.
Cosmology with negative absolute temperatures
NASA Astrophysics Data System (ADS)
Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony
2016-08-01
Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.
Holographic signatures of cosmological singularities.
Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T
2014-09-19
To gain insight into the quantum nature of cosmological singularities, we study anisotropic Kasner solutions in gauge-gravity duality. The dual description of the bulk evolution towards the singularity involves N=4 super Yang-Mills theory on the expanding branch of deformed de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlators show a strong signature of the singularity around horizon scales and decay at large boundary separation at different rates in different directions. More generally, the boundary evolution exhibits a process of particle creation similar to that in inflation. This leads us to conjecture that information on the quantum nature of cosmological singularities is encoded in long-wavelength features of the boundary wave function. PMID:25279620
Braneworld cosmological models with anisotropy
NASA Astrophysics Data System (ADS)
Campos, Antonio; Maartens, Roy; Matravers, David; Sopuerta, Carlos F.
2003-11-01
For a cosmological Randall-Sundrum braneworld with anisotropy, i.e., of Bianchi type, the modified Einstein equations on the brane include components of the five-dimensional Weyl tensor for which there are no evolution equations on the brane. If the bulk field equations are not solved, this Weyl term remains unknown, and many previous studies have simply prescribed it as ad hoc. We construct a family of Bianchi braneworlds with anisotropy by solving the five-dimensional field equations in the bulk. We analyze the cosmological dynamics on the brane, including the Weyl term, and shed light on the relation between anisotropy on the brane and the Weyl curvature in the bulk. In these models, it is not possible to achieve geometric anisotropy for a perfect fluid or scalar field—the junction conditions require anisotropic stress on the brane. But the solutions can isotropize and approach a Friedmann brane in an anti de Sitter bulk.
Cosmological magnetic fields from inflation
NASA Astrophysics Data System (ADS)
Motta, Leonardo
In this thesis we review the methods for computation of cosmological correlations in the early universe known as the in-in formalism which are then applied to the problem of magnetogenesis from inflation. For this computation, a power-law single field slow- roll inflation is assumed together with a coupling of the form eφ/nuF μnuFμnu between the inflaton φ and the electrodynamical field strength Fμnu. For certain choice of parameters, the model produces a scale-invariant power spectrum that can be as high as 10-12 G at cosmological scales at present time. Finally, we compute the correlation between the magnetic field energy density and scalar metric fluctuations at tree-level from which the shape of the resulting non-gaussianity is analyzed.We show that the corresponding bispectrum is of order 10-5 times the power spectrum of magnetic fields.
Thermal fluctuations and bouncing cosmologies
Cai, Yi-Fu; Zhang, Xinmin; Xue, Wei; Brandenberger, Robert E-mail: xuewei@physics.mcgill.ca E-mail: xmzhang@ihep.ac.cn
2009-06-01
We study the conditions under which thermal fluctuations generated in the contracting phase of a non-singular bouncing cosmology can lead to a scale-invariant spectrum of cosmological fluctuations at late times in the expanding phase. We consider point particle gases, holographic gases and string gases. In the models thus identified, we also study the thermal non-Gaussianities of the resulting distribution of inhomogeneities. For regular point particle radiation, we find that the background must have an equation of state w = 7/3 in order to obtain a scale-invariant spectrum, and that the non-Gaussianities are suppressed on scales larger than the thermal wavelength. For Gibbons-Hawking radiation, we find that a matter-dominated background yields scale-invariance, and that the non-Gaussianities are large. String gases are also briefly considered.
Cosmological Effects in Planetary Science
NASA Technical Reports Server (NTRS)
Blume, H. J.; Wilson, T. L.
2010-01-01
In an earlier discussion of the planetary flyby anomaly, a preliminary assessment of cosmological effects upon planetary orbits exhibiting the flyby anomaly was made. A more comprehensive investigation has since been published, although it was directed at the Pioneer anomaly and possible effects of universal rotation. The general subject of Solar System anomalies will be examined here from the point of view of planetary science.
Information gains from cosmological probes
NASA Astrophysics Data System (ADS)
Grandis, S.; Seehars, S.; Refregier, A.; Amara, A.; Nicola, A.
2016-05-01
In light of the growing number of cosmological observations, it is important to develop versatile tools to quantify the constraining power and consistency of cosmological probes. Originally motivated from information theory, we use the relative entropy to compute the information gained by Bayesian updates in units of bits. This measure quantifies both the improvement in precision and the `surprise', i.e. the tension arising from shifts in central values. Our starting point is a WMAP9 prior which we update with observations of the distance ladder, supernovae (SNe), baryon acoustic oscillations (BAO), and weak lensing as well as the 2015 Planck release. We consider the parameters of the flat ΛCDM concordance model and some of its extensions which include curvature and Dark Energy equation of state parameter w. We find that, relative to WMAP9 and within these model spaces, the probes that have provided the greatest gains are Planck (10 bits), followed by BAO surveys (5.1 bits) and SNe experiments (3.1 bits). The other cosmological probes, including weak lensing (1.7 bits) and {H0} measures (1.7 bits), have contributed information but at a lower level. Furthermore, we do not find any significant surprise when updating the constraints of WMAP9 with any of the other experiments, meaning that they are consistent with WMAP9. However, when we choose Planck15 as the prior, we find that, accounting for the full multi-dimensionality of the parameter space, the weak lensing measurements of CFHTLenS produce a large surprise of 4.4 bits which is statistically significant at the 8 σ level. We discuss how the relative entropy provides a versatile and robust framework to compare cosmological probes in the context of current and future surveys.
Cosmological solution moduli of bigravity
Yılmaz, Nejat Tevfik
2015-09-29
We construct the complete set of metric-configuration solutions of the ghost-free massive bigravity for the scenario in which the g−metric is the Friedmann-Lemaitre-Robertson-Walker (FLRW) one, and the interaction Lagrangian between the two metrics contributes an effective ideal fluid energy-momentum tensor to the g-metric equations. This set corresponds to the exact background cosmological solution space of the theory.
The cosmological potential of supergravity
NASA Astrophysics Data System (ADS)
Hull, C. M.
The implications of a supergravity model for defining a theory for unifying all the laws of nature are discussed. Attention is given to extended supergravity and properties of anti-de Sitter space, positive mass, and stability. Implications of positive mass for anti-de Sitter space are explored, together with supersymmetry breaking, the invalidity of a bubble solution due to positive energy theorems, and the role of space-time foam (Hawking, 1978) in determining a value for the cosmological constant.
Discrete beam acceleration in uniform waveguide arrays
El-Ganainy, Ramy; Makris, Konstantinos G.; Miri, Mohammad Ali; Christodoulides, Demetrios N.; Chen Zhigang
2011-08-15
Within the framework of the tight-binding model we demonstrate that Wannier-Stark states can freely accelerate in uniform optical lattices. As opposed to accelerating Airy wave packets in free space, our analysis reveals that in this case the beam main intensity features self-bend along two opposite hyperbolic trajectories. Two-dimensional geometries are also considered and an asymptotic connection between these Wannier-Stark ladders and Airy profiles is presented.
Statistical properties of cosmological billiards
NASA Astrophysics Data System (ADS)
Damour, Thibault; Lecian, Orchidea Maria
2011-02-01
Belinski, Khalatnikov, and Lifshitz pioneered the study of the statistical properties of the never-ending oscillatory behavior (among successive Kasner epochs) of the geometry near a spacelike singularity. We show how the use of a “cosmological billiard” description allows one to refine and deepen the understanding of these statistical properties. Contrary to previous treatments, we do not quotient the dynamics by its discrete symmetry group (of order 6), thereby uncovering new phenomena, such as correlations between the successive billiard corners in which the oscillations take place. Starting from the general integral invariants of Hamiltonian systems, we show how to construct invariant measures for various projections of the cosmological-billiard dynamics. In particular, we exhibit, for the first time, a (non-normalizable) invariant measure on the “Kasner circle” which parametrizes the exponents of successive Kasner epochs. Finally, we discuss the relation between: (i) the unquotiented dynamics of the Bianchi-IX (a, b, c or mixmaster) model; (ii) its quotienting by the group of permutations of (a, b, c); and (iii) the billiard dynamics that arose in recent studies suggesting the hidden presence of Kac-Moody symmetries in cosmological billiards.
Stability of cosmological deflagration fronts
NASA Astrophysics Data System (ADS)
Mégevand, Ariel; Membiela, Federico Agustín
2014-05-01
In a cosmological first-order phase transition, bubbles of the stable phase nucleate and expand in the supercooled metastable phase. In many cases, the growth of bubbles reaches a stationary state, with bubble walls propagating as detonations or deflagrations. However, these hydrodynamical solutions may be unstable under corrugation of the interface. Such instability may drastically alter some of the cosmological consequences of the phase transition. Here, we study the hydrodynamical stability of deflagration fronts. We improve upon previous studies by making a more careful and detailed analysis. In particular, we take into account the fact that the equation of motion for the phase interface depends separately on the temperature and fluid velocity on each side of the wall. Fluid variables on each side of the wall are similar for weakly first-order phase transitions, but differ significantly for stronger phase transitions. As a consequence, we find that, for large enough supercooling, any subsonic wall velocity becomes unstable. Moreover, as the velocity approaches the speed of sound, perturbations become unstable on all wavelengths. For smaller supercooling and small wall velocities, our results agree with those of previous works. Essentially, perturbations on large wavelengths are unstable, unless the wall velocity is higher than a critical value. We also find a previously unobserved range of marginally unstable wavelengths. We analyze the dynamical relevance of the instabilities, and we estimate the characteristic time and length scales associated with their growth. We discuss the implications for the electroweak phase transition and its cosmological consequences.
Averaging Robertson-Walker cosmologies
NASA Astrophysics Data System (ADS)
Brown, Iain A.; Robbers, Georg; Behrend, Juliane
2009-04-01
The cosmological backreaction arises when one directly averages the Einstein equations to recover an effective Robertson-Walker cosmology, rather than assuming a background a priori. While usually discussed in the context of dark energy, strictly speaking any cosmological model should be recovered from such a procedure. We apply the scalar spatial averaging formalism for the first time to linear Robertson-Walker universes containing matter, radiation and dark energy. The formalism employed is general and incorporates systems of multiple fluids with ease, allowing us to consider quantitatively the universe from deep radiation domination up to the present day in a natural, unified manner. Employing modified Boltzmann codes we evaluate numerically the discrepancies between the assumed and the averaged behaviour arising from the quadratic terms, finding the largest deviations for an Einstein-de Sitter universe, increasing rapidly with Hubble rate to a 0.01% effect for h = 0.701. For the ΛCDM concordance model, the backreaction is of the order of Ωeff0 approx 4 × 10-6, with those for dark energy models being within a factor of two or three. The impacts at recombination are of the order of 10-8 and those in deep radiation domination asymptote to a constant value. While the effective equations of state of the backreactions in Einstein-de Sitter, concordance and quintessence models are generally dust-like, a backreaction with an equation of state weff < -1/3 can be found for strongly phantom models.
Cosmology of a charged universe
NASA Technical Reports Server (NTRS)
Barnes, A.
1979-01-01
The Proca generalization of electrodynamics admits the possibility that the universe could possess a net electric charge uniformly distributed throughout space, while possessing no electric field. A general-relativistic model of cosmological expansion dominated by such a charged background has been calculated, and is consistent with present observational limits on the Hubble constant, the deceleration parameter, and the age of the universe. However, if this cosmology applied at the present epoch, the very early expansion of the universe would have been too rapid for cosmological nucleosynthesis or thermalization of the background radiation to have occurred. Hence, domination of the present expansion by background charge appears to be incompatible with the 3-K background and big-bang production of light elements. If the present background charge density were sufficiently small (but not strictly zero), expansion from the epoch of nucleosynthesis would proceed according to the conventional scenario, but the energy due to the background charge would have dominated at some earlier epoch. This last possibility leads to equality of pressure and energy density in the primordial universe.
Quantum inflationary minisuperspace cosmological models
Kim Sangpyo.
1991-01-01
The Wheeler-DeWitt equations for the Friedmann-Robertson-Walker cosmology conformally and minimally coupled to scalar fields with power-lay potential are expanded in the eigenstates of the scalar field parts. The gravitational parts become a diagonal matrix-valued differential equation for a conformal scalar field, and a coupled matrix-valued differential equation for a minimally coupled scalar field. The Cauchy initial value problem is defined with respect to the intrinsic timelike coordinate, and the wavefunctions incorporating initial data are constructed using the product integral formulation. The packetlike wavefunctions around classical turning points are shown possible in the product integral formulation, and the returning wavepackets near the returning point of the classical Friedmann-Robertson-Walker cosmology are constructed. The wavefunctions to the Wheeler-DeWitt equation minimally coupled to the scaler field are constructed by two differential methods, the master equation and the enlarged matrix equation. The spectrum for the wavefunctions regular at the infinite size of universe is found, and these are interpreted as the Hawking-Page spectrum of wormholes connecting two asymptotically Euclidean regions. The quantum Friedmann-Robertson-Walker cosmology is extended to the minimal scalar field with the inflationary potential having a first order phase transition. The Wheeler-DeWitt equation is expanded in the eigenstates of the scalar field, and the gravitational part becomes a coupled matrix-valued differential equation.
Confusion in Cosmology and Gravitation
NASA Astrophysics Data System (ADS)
Corda, C.; Katebi, R.; Schmidt, N. O.
2016-06-01
In a series of papers, Santilli and collaborators released various strong statements against the general theory of relativity (GTR) and the standard ΛCDM model of cosmology. In this paper we show that such claims are due to misunderstandings of basic concepts of gravitation and cosmology. In particular, we show that Santilli and collaborators demonstrated neither that the GTR is wrong, nor that the Universe is not expanding. We also show that the so-called iso-gravitation theory (IGT) of Santilli is in macroscopic contrast with geodesic motion and, in turn, with the Equivalence Principle (EP) and must therefore be ultimately rejected. Finally, we show that, although the so called iso-redshift could represent an interesting alternative (similar to the tired light theory historically proposed by Zwicky) to the Universe expansion from a qualitative point of view, it must be rejected from a quantitative point of view because the effect of iso-redshift is 10-6 smaller than the effect requested to achieve the cosmological redshift.
Multiverse understanding of cosmological coincidences
Bousso, Raphael; Hall, Lawrence J.; Nomura, Yasunori
2009-09-15
There is a deep cosmological mystery: although dependent on very different underlying physics, the time scales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant, the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.
Cosmological aspects of spontaneous baryogenesis
NASA Astrophysics Data System (ADS)
De Simone, Andrea; Kobayashi, Takeshi
2016-08-01
We investigate cosmological aspects of spontaneous baryogenesis driven by a scalar field, and present general constraints that are independent of the particle physics model. The relevant constraints are obtained by studying the backreaction of the produced baryons on the scalar field, the cosmological expansion history after baryogenesis, and the baryon isocurvature perturbations. We show that cosmological considerations alone provide powerful constraints, especially for the minimal scenario with a quadratic scalar potential. Intriguingly, we find that for a given inflation scale, the other parameters including the reheat temperature, decoupling temperature of the baryon violating interactions, and the mass and decay constant of the scalar are restricted to lie within ranges of at most a few orders of magnitude. We also discuss possible extensions to the minimal setup, and propose two ideas for evading constraints on isocurvature perturbations: one is to suppress the baryon isocurvature with nonquadratic scalar potentials, another is to compensate the baryon isocurvature with cold dark matter isocurvature by making the scalar survive until the present.
Measure and probability in cosmology
NASA Astrophysics Data System (ADS)
Schiffrin, Joshua S.; Wald, Robert M.
2012-07-01
General relativity has a Hamiltonian formulation, which formally provides a canonical (Liouville) measure on the space of solutions. In ordinary statistical physics, the Liouville measure is used to compute probabilities of macrostates, and it would seem natural to use the similar measure arising in general relativity to compute probabilities in cosmology, such as the probability that the Universe underwent an era of inflation. Indeed, a number of authors have used the restriction of this measure to the space of homogeneous and isotropic universes with scalar field matter (minisuperspace)—namely, the Gibbons-Hawking-Stewart measure—to make arguments about the likelihood of inflation. We argue here that there are at least four major difficulties with using the measure of general relativity to make probability arguments in cosmology: (1) Equilibration does not occur on cosmological length scales. (2) Even in the minisuperspace case, the measure of phase space is infinite and the computation of probabilities depends very strongly on how the infinity is regulated. (3) The inhomogeneous degrees of freedom must be taken into account (we illustrate how) even if one is interested only in universes that are very nearly homogeneous. The measure depends upon how the infinite number of degrees of freedom are truncated, and how one defines “nearly homogeneous.” (4) In a Universe where the second law of thermodynamics holds, one cannot make use of our knowledge of the present state of the Universe to retrodict the likelihood of past conditions.
Large classical universes emerging from quantum cosmology
Pinto-Neto, Nelson
2009-04-15
It is generally believed that one cannot obtain a large universe from quantum cosmological models without an inflationary phase in the classical expanding era because the typical size of the universe after leaving the quantum regime should be around the Planck length, and the standard decelerated classical expansion after that is not sufficient to enlarge the universe in the time available. For instance, in many quantum minisuperspace bouncing models studied in the literature, solutions where the universe leaves the quantum regime in the expanding phase with appropriate size have negligible probability amplitude with respect to solutions leaving this regime around the Planck length. In this paper, I present a general class of moving Gaussian solutions of the Wheeler-DeWitt equation where the velocity of the wave in minisuperspace along the scale factor axis, which is the new large parameter introduced in order to circumvent the above-mentioned problem, induces a large acceleration around the quantum bounce, forcing the universe to leave the quantum regime sufficiently big to increase afterwards to the present size, without needing any classical inflationary phase in between, and with reasonable relative probability amplitudes with respect to models leaving the quantum regime around the Planck scale. Furthermore, linear perturbations around this background model are free of any trans-Planckian problem.
Fast cosmological parameter estimation using neural networks
NASA Astrophysics Data System (ADS)
Auld, T.; Bridges, M.; Hobson, M. P.; Gull, S. F.
2007-03-01
We present a method for accelerating the calculation of cosmic microwave background (CMB) power spectra, matter power spectra and likelihood functions for use in cosmological parameter estimation. The algorithm, called COSMONET, is based on training a multilayer perceptron neural network and shares all the advantages of the recently released PICO algorithm of Fendt & Wandelt, but has several additional benefits in terms of simplicity, computational speed, memory requirements and ease of training. We demonstrate the capabilities of COSMONET by computing CMB power spectra over a box in the parameter space of flat Λ cold dark matter (ΛCDM) models containing the 3σ WMAP1-year confidence region. We also use COSMONET to compute the WMAP3-year (WMAP3) likelihood for flat ΛCDM models and show that marginalized posteriors on parameters derived are very similar to those obtained using CAMB and the WMAP3 code. We find that the average error in the power spectra is typically 2-3 per cent of cosmic variance, and that COSMONET is ~7 × 104 faster than CAMB (for flat models) and ~6 × 106 times faster than the official WMAP3 likelihood code. COSMONET and an interface to COSMOMC are publically available at http://www.mrao.cam.ac.uk/software/cosmonet.
Observational constraints to a unified cosmological model
NASA Astrophysics Data System (ADS)
Cuzinatto, Rodrigo R.; de Morais, Eduardo M.; Medeiros, Leo G.
2016-01-01
We propose a phenomenological unified model (UM) for dark matter and dark energy based on an equation of state parameter w that scales with the arctan of the redshift. The free parameters of the model are three constants: Ωb0, α and β. Parameter α dictates the transition rate between the matter dominated era and the accelerated expansion period. The ratio β/α gives the redshift of the equivalence between both regimes. Cosmological parameters are fixed by observational data from primordial nucleosynthesis (PN), supernovae of the type Ia (SNIa), gamma-ray bursts (GRBs) and baryon acoustic oscillations (BAOs). The calibration of the 138 GRB events is performed using the 580 SNIa of the Union2.1 data set and a new set of 79 high-redshift GRB is obtained. The various sets of data are used in different combinations to constraint the parameters through statistical analysis. The UM is compared to the ΛCDM model and their differences are emphasized.
Optimizing cosmological surveys in a crowded market
NASA Astrophysics Data System (ADS)
Bassett, Bruce A.
2005-04-01
Optimizing the major next-generation cosmological surveys (such as SNAP, KAOS, etc.) is a key problem given our ignorance of the physics underlying cosmic acceleration and the plethora of surveys planned. We propose a Bayesian design framework which (1) maximizes the discrimination power of a survey without assuming any underlying dark-energy model, (2) finds the best niche survey geometry given current data and future competing experiments, (3) maximizes the cross section for serendipitous discoveries and (4) can be adapted to answer specific questions (such as “is dark energy dynamical?”). Integrated parameter-space optimization (IPSO) is a design framework that integrates projected parameter errors over an entire dark energy parameter space and then extremizes a figure of merit (such as Shannon entropy gain which we show is stable to off-diagonal covariance matrix perturbations) as a function of survey parameters using analytical, grid or MCMC techniques. We discuss examples where the optimization can be performed analytically. IPSO is thus a general, model-independent and scalable framework that allows us to appropriately use prior information to design the best possible surveys.
Optimizing cosmological surveys in a crowded market
Bassett, Bruce A.
2005-04-15
Optimizing the major next-generation cosmological surveys (such as SNAP, KAOS, etc.) is a key problem given our ignorance of the physics underlying cosmic acceleration and the plethora of surveys planned. We propose a Bayesian design framework which (1) maximizes the discrimination power of a survey without assuming any underlying dark-energy model, (2) finds the best niche survey geometry given current data and future competing experiments, (3) maximizes the cross section for serendipitous discoveries and (4) can be adapted to answer specific questions (such as 'is dark energy dynamical?'). Integrated parameter-space optimization (IPSO) is a design framework that integrates projected parameter errors over an entire dark energy parameter space and then extremizes a figure of merit (such as Shannon entropy gain which we show is stable to off-diagonal covariance matrix perturbations) as a function of survey parameters using analytical, grid or MCMC techniques. We discuss examples where the optimization can be performed analytically. IPSO is thus a general, model-independent and scalable framework that allows us to appropriately use prior information to design the best possible surveys.
Scaling exponents for lattice quantum gravity in four dimensions
NASA Astrophysics Data System (ADS)
Hamber, Herbert W.
2015-09-01
In this work nonperturbative aspects of quantum gravity are investigated using the lattice formulation, and some new results are presented for critical exponents, amplitudes, and invariant correlation functions. Values for the universal scaling dimensions are compared with other nonperturbative approaches to gravity in four dimensions, and specifically to the conjectured value for the universal critical exponent ν =1 /3 . The lattice results are generally consistent with gravitational antiscreening, which would imply a slow increase in the strength of the gravitational coupling with distance, and presented herein are detailed estimates for exponents and amplitudes characterizing this slow rise. Furthermore, it is shown that in the lattice approach (as for gauge theories) the quantum theory is highly constrained, and eventually, by virtue of scaling, depends on a rather small set of physical parameters. Arguments are given in support of the statement that the fundamental reference scale for the growth of the gravitational coupling G with distance is represented by the observed scaled cosmological constant λ , which in gravity acts as an effective nonperturbative infrared cutoff. In this nonperturbative vacuum condensate picture a fundamental relationship emerges among the scale characterizing the running of G at large distances, the macroscopic scale for the curvature as described by the observed cosmological constant, and the behavior of invariant gravitational correlation functions at large distances. Overall, the lattice results suggest that the slow infrared growth of G with distance should become observable only on very large distance scales, comparable to λ . One may hope that future high precision satellite experiments could possibly come within reach of this small quantum correction, as suggested by the vacuum condensate picture of quantum gravity.
Cosmological implications of modified gravity induced by quantum metric fluctuations
NASA Astrophysics Data System (ADS)
Liu, Xing; Harko, Tiberiu; Liang, Shi-Dong
2016-08-01
We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors.
Colgate, S.A.
1958-05-27
An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.