Science.gov

Sample records for accelerated degradation tests

  1. Accelerated Testing Of Photothermal Degradation Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  2. Accelerated degradation testing of a photovoltaic module

    NASA Astrophysics Data System (ADS)

    Charki, Abdérafi; Laronde, Rémi; Bigaud, David

    2013-01-01

    There are a great many photovoltaic (PV) modules installed around the world. Despite this, not enough is known about the reliability of these modules. Their electrical power output decreases with time mainly as a result of the effects of corrosion, encapsulation discoloration, and solder bond failure. The failure of a PV module is defined as the point where the electrical power degradation reaches a given threshold value. Accelerated life tests (ALTs) are commonly used to assess the reliability of a PV module. However, ALTs provide limited data on the failure of a module and these tests are expensive to carry out. One possible solution is to conduct accelerated degradation tests. The Wiener process in conjunction with the accelerated failure time model makes it possible to carry out numerous simulations and thus to determine the failure time distribution based on the aforementioned threshold value. By this means, the failure time distribution and the lifetime (mean and uncertainty) can be evaluated.

  3. Degradation mechanisms and accelerated aging test design

    SciTech Connect

    Clough, R L; Gillen, K T

    1985-01-01

    The fundamental mechanisms underlying the chemical degradation of polymers can change as a function of environmental stress level. When this occurs, it greatly complicates any attempt to use accelerated tests for predicting long-term material degradation behaviors. Understanding how degradation mechanisms can change at different stress levels facilitates both the design and the interpretation of aging tests. Oxidative degradation is a predominant mechanism for many polymers exposed to a variety of different environments in the presence of air, and there are two mechanistic considerations which are widely applicable to material oxidation. One involves a physical process, oxygen diffusion, as a rate-limiting step. This mechanism can predominate at high stress levels. The second is a chemical process, the time-dependent decomposition of peroxide species. This leads to chain branching and can become a rate-controlling factor at lower stress levels involving time-scales applicable to use environments. The authors describe methods for identifying the operation of these mechanisms and illustrate the dramatic influence they can have on the degradation behaviors of a number of polymer types. Several commonly used approaches to accelerated aging tests are discussed in light of the behaviors which result from changes in degradation mechanisms. 9 references, 4 figures.

  4. Step-Stress Accelerated Degradation Testing for Solar Reflectors: Preprint

    SciTech Connect

    Jones, W.; Elmore, R.; Lee, J.; Kennedy, C.

    2011-09-01

    To meet the challenge to reduce the cost of electricity generated with concentrating solar power (CSP) new low-cost reflector materials are being developed including metalized polymer reflectors and must be tested and validated against appropriate failure mechanisms. We explore the application of testing methods and statistical inference techniques for quantifying estimates and improving lifetimes of concentrating solar power (CSP) reflectors associated with failure mechanisms initiated by exposure to the ultraviolet (UV) part of the solar spectrum. In general, a suite of durability and reliability tests are available for testing a variety of failure mechanisms where the results of a set are required to understand overall lifetime of a CSP reflector. We will focus on the use of the Ultra-Accelerated Weathering System (UAWS) as a testing device for assessing various degradation patterns attributable to accelerated UV exposure. Depending on number of samples, test conditions, degradation and failure patterns, test results may be used to derive insight into failure mechanisms, associated physical parameters, lifetimes and uncertainties. In the most complicated case warranting advanced planning and statistical inference, step-stress accelerated degradation (SSADT) methods may be applied.

  5. Degradation mechanisms and accelerated testing in PEM fuel cells

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To

  6. Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)

    SciTech Connect

    Lee, J.; Elmore, R.; Suh, C.; Jones, W.

    2010-10-01

    Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

  7. Degradation Mechanisms and Accelerated Testing in PEM Fuel Cells

    SciTech Connect

    Borup, Rodney L.

    2011-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel or oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability.

  8. Results of metallographical diagnostic examination of Navy half-watt thermoelectric converters degraded by accelerated tests

    NASA Technical Reports Server (NTRS)

    Rosell, F. E., Jr.; Rouklove, P. G.

    1977-01-01

    To verify the 15-year reliability of the Navy half-watt radioisotope thermoelectric generator (RTG), bismuth-telluride thermoelectric converters were submitted to testing at high temperatures which accelerated the degradation and caused failure of the converters. Metallographic diagnostic examination of failed units verified failure mechanisms. Results of diagnostic examinations are presented.

  9. Accelerated Testing of UH-60 Viscous Bearings for Degraded Grease Fault

    NASA Technical Reports Server (NTRS)

    Dykas, Brian; Hood, Adrian; Krantz, Timothy; Klemmer, Marko

    2015-01-01

    An accelerated aging investigation of critical aviation bearings lubricated with MIL-PRF- 81322 grease was conducted to derive an understanding of the mechanisms of grease degradation and loss of lubrication over time. The current study focuses on UH-60 Black Hawk viscous damper bearings supporting the tail rotor driveshaft, which were subjected to more than 5800 hours of testing in a heated environment to accelerate the deterioration of the grease. The mechanism of grease degradation is a reduction in the oil/thickener ratio rather than the expected chemical degradation of grease constituents. Over the course of testing, vibration and temperature monitoring of bearings was conducted and trends for failing bearings are presented.

  10. Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing (Presentation)

    SciTech Connect

    Lee, J.; Elmore, R.; Kennedy, C.; Gray, M.; Jones, W.

    2011-09-01

    This research is to illustrate the use of statistical inference techniques in order to quantify the uncertainty surrounding reliability estimates in a step-stress accelerated degradation testing (SSADT) scenario. SSADT can be used when a researcher is faced with a resource-constrained environment, e.g., limits on chamber time or on the number of units to test. We apply the SSADT methodology to a degradation experiment involving concentrated solar power (CSP) mirrors and compare the results to a more traditional multiple accelerated testing paradigm. Specifically, our work includes: (1) designing a durability testing plan for solar mirrors (3M's new improved silvered acrylic "Solar Reflector Film (SFM) 1100") through the ultra-accelerated weathering system (UAWS), (2) defining degradation paths of optical performance based on the SSADT model which is accelerated by high UV-radiant exposure, and (3) developing service lifetime prediction models for solar mirrors using advanced statistical inference. We use the method of least squares to estimate the model parameters and this serves as the basis for the statistical inference in SSADT. Several quantities of interest can be estimated from this procedure, e.g., mean-time-to-failure (MTTF) and warranty time. The methods allow for the estimation of quantities that may be of interest to the domain scientists.

  11. Acceleration of degradation by highly accelerated stress test and air-included highly accelerated stress test in crystalline silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh; Tanahashi, Tadanori; Doi, Takuya; Masuda, Atsushi

    2016-02-01

    We examined the effects of hyper-hygrothermal stresses with or without air on the degradation of crystalline silicon (c-Si) photovoltaic (PV) modules, to shorten the required duration of a conventional hygrothermal-stress test [i.e., the “damp heat (DH) stress test”, which is conducted at 85 °C/85% relative humidity for 1,000 h]. Interestingly, the encapsulant within a PV module becomes discolored under the air-included hygrothermal conditions achieved using DH stress test equipment and an air-included highly accelerated stress test (air-HAST) apparatus, but not under the air-excluded hygrothermal conditions realized using a highly accelerated stress test (HAST) machine. In contrast, the reduction in the output power of the PV module is accelerated irrespective of air inclusion in hyper-hygrothermal test atmosphere. From these findings, we conclude that the required duration of the DH stress test will at least be significantly shortened using air-HAST, but not HAST.

  12. Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing.

    PubMed

    Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James

    2015-01-01

    Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials. PMID:24810790

  13. Effects of UV on power degradation of photovoltaic modules in combined acceleration tests

    NASA Astrophysics Data System (ADS)

    Ngo, Trang; Heta, Yushi; Doi, Takuya; Masuda, Atsushi

    2016-05-01

    UV exposure and other factors such as high/low temperature, humidity and mechanical stress have been reported to degrade photovoltaic (PV) module materials. By focusing on the combined effects of UV stress and moisture on PV modules, two new acceleration tests of light irradiation and damp heat (DH) were designed and conducted. The effects of UV exposure were validated through a change in irradiation time (UV dosage) and a change of the light irradiation side (glass side vs backsheet side) in the UV-preconditioned DH and cyclic sequential tests, respectively. The chemical corrosion of finger electrodes in the presence of acetic acid generated from ethylene vinyl acetate used as an encapsulant was considered to be the main origin of degradation. The module performance characterized by electroluminescence images was confirmed to correlate with the measured acetic acid concentration and Ag finger electrode resistance.

  14. Reliability and Lifetime Prediction of Remote Phosphor Plates in Solid-State Lighting Applications Using Accelerated Degradation Testing

    NASA Astrophysics Data System (ADS)

    Mehr, M. Yazdan; van Driel, W. D.; Zhang, G. Q.

    2016-01-01

    A methodology, based on accelerated degradation testing, is developed to predict the lifetime of remote phosphor plates used in solid-state lighting (SSL) applications. Both thermal stress and light intensity are used to accelerate degradation reaction in remote phosphor plates. A reliability model, based on the Eyring relationship, is also developed in which both acceleration factors (light intensity and temperature) are incorporated. Results show that the developed methodology leads to a significant decay of the luminous flux, correlated colour temperature (CCT) and chromatic properties of phosphor plates within a practically reasonable period of time. The combination of developed acceleration testing and a generalized Eyring equation-based reliability model is a very promising methodology which can be applied in the SSL industry.

  15. Experimental design and analysis for accelerated degradation tests with Li-ion cells.

    SciTech Connect

    Doughty, Daniel Harvey; Thomas, Edward Victor; Jungst, Rudolph George; Roth, Emanuel Peter

    2003-08-01

    This document describes a general protocol (involving both experimental and data analytic aspects) that is designed to be a roadmap for rapidly obtaining a useful assessment of the average lifetime (at some specified use conditions) that might be expected from cells of a particular design. The proposed experimental protocol involves a series of accelerated degradation experiments. Through the acquisition of degradation data over time specified by the experimental protocol, an unambiguous assessment of the effects of accelerating factors (e.g., temperature and state of charge) on various measures of the health of a cell (e.g., power fade and capacity fade) will result. In order to assess cell lifetime, it is necessary to develop a model that accurately predicts degradation over a range of the experimental factors. In general, it is difficult to specify an appropriate model form without some preliminary analysis of the data. Nevertheless, assuming that the aging phenomenon relates to a chemical reaction with simple first-order rate kinetics, a data analysis protocol is also provided to construct a useful model that relates performance degradation to the levels of the accelerating factors. This model can then be used to make an accurate assessment of the average cell lifetime. The proposed experimental and data analysis protocols are illustrated with a case study involving the effects of accelerated aging on the power output from Gen-2 cells. For this case study, inadequacies of the simple first-order kinetics model were observed. However, a more complex model allowing for the effects of two concurrent mechanisms provided an accurate representation of the experimental data.

  16. Accelerated Testing and Modeling of Potential-Induced Degradation as a Function of Temperature and Relative Humidity

    SciTech Connect

    Hacke, Peter; Spataru, Sergiu; Terwilliger, Kent; Perrin, Greg; Glick, Stephen; Kurtz, Sarah; Wohlgemuth, John

    2015-06-14

    An acceleration model based on the Peck equation was applied to power performance of crystalline silicon cell modules as a function of time and of temperature and humidity, the two main environmental stress factors that promote potential-induced degradation. This model was derived from module power degradation data obtained semi-continuously and statistically by in-situ dark current-voltage measurements in an environmental chamber. The modeling enables prediction of degradation rates and times as functions of temperature and humidity. Power degradation could be modeled linearly as a function of time to the second power; additionally, we found that coulombs transferred from the active cell circuit to ground during the stress test is approximately linear with time. Therefore, the power loss could be linearized as a function of coulombs squared. With this result, we observed that when the module face was completely grounded with a condensed phase conductor, leakage current exceeded the anticipated corresponding degradation rate relative to the other tests performed in damp heat.

  17. Analysis of junction temperature and modification of luminous flux degradation for white LEDs in a thermal accelerated reliability test.

    PubMed

    Ke, Hong-Liang; Jing, Lei; Hao, Jian; Gao, Qun; Wang, Yao; Wang, Xiao-Xun; Sun, Qiang; Xu, Zhi-Jun

    2016-08-01

    An accelerated aging test is the main method in evaluation of the reliability of light-emitting diodes (LEDs), and the first goal of this study is to investigate how the junction temperature (Tj) of the LED varies during accelerated aging. The Tj measured by the forward voltage method shows an upward trend over the aging time, which gives a variation about 6°C-8°C after 3,000 h of aging under an ambient temperature of 80°C. The second goal is to investigate how the variation of Tj affects the lifetime estimation. It is verified that at a certain aging stage, as Tj increases, the normalized luminous flux linearly decreases with variation rate of microns (μ) (1/°C). Then, we propose a method to modify the luminous flux degradation with the Tj and μ to meet the requirements of a constant degradation rate in the data fitting. The experimental results show that with the proposed method, the accelerated lifetimes of samples are bigger than that of the current method with increment values from 8.8% to 21.4% in this research. PMID:27505370

  18. Degradation mechanism of LiCoO2/mesocarbon microbeads battery based on accelerated aging tests

    NASA Astrophysics Data System (ADS)

    Guan, Ting; Zuo, Pengjian; Sun, Shun; Du, Chunyu; Zhang, Lingling; Cui, Yingzhi; Yang, Lijie; Gao, Yunzhi; Yin, Geping; Wang, Fuping

    2014-12-01

    A series of LiCoO2/mesocarbon microbeads (MCMB) commercial cells cycled at different rates (0.6C, 1.2C, 1.5C, 1.8C, 2.4C and 3.0C) are disassembled and the capacity fade mechanism is proposed by analyzing the structure, morphology and electrochemical performance evolution at the capacity retention of 95%, 90%, 85%, 80%. The capacity deterioration of the commercial cell is mainly caused by the decay of the reversible capacity of LiCoO2 cathode, the irreversible loss of active lithium and the lithium remaining in anode. The proportions of effects by the above three factors are calculated accurately. The consumption of the active lithium leads to a cell imbalance between the anode and the cathode. The electrochemical test results indicate that the capacity fade of the active materials at the low rate is more obvious than that at the high rate. The influence of the active lithium is gradually increscent with the increasing rate. The rate of 1.5C is the optimal value to accelerate the aging of the full cell by comparing the testing results at different capacity retentions in the specific condition of low charge/discharge rate and shallow depth of discharge.

  19. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    SciTech Connect

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of BZO layers on CIGS

  20. Stability of CIGS solar cells and component materials evaluated by a step-stress accelerated degradation test method

    NASA Astrophysics Data System (ADS)

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15°C and then a 15% relative humidity (RH) increment step, beginning from 40°C/40%RH (T/RH = 40/40) to 85°C/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear "stepwise" feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH >= 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and "capacitor quality" factor (CPE-P), which were related to the cells' p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH >= 70/70. At T/RH = 85/70, substantial blistering of BZO layers on CIGS

  1. Effect of TiO2-Crystal Forms on the Photo-Degradation of EVA/PLA Blend Under Accelerated Weather Testing

    NASA Astrophysics Data System (ADS)

    Van Cong, Do; Trang, Nguyen Thi Thu; Giang, Nguyen Vu; Lam, Tran Dai; Hoang, Thai

    2016-05-01

    Photo-degradation of poly (ethylene-co-vinyl acetate) (EVA)/poly (lactic acid) (PLA) blend and EVA/PLA/TiO2 nanocomposites was carried out under accelerated weather testing conditions by alternating cycles of ultraviolet (UV) light and moisture at controlled and elevated temperatures. The characters, properties, and morphology of these materials before and after accelerated weather testing were determined by Fourier transform infrared spectroscopy, colour changes, viscosity, tensile test, thermogravimetric analysis, and field emission scanning electron microscopy. The increases in the content of oxygen-containing groups, colour changes; the decreases in viscosity, tensile properties, and thermal stability of these materials after accelerated weather testing are the evidence for the photo-degradation of the blend and nanocomposites. After accelerated weather testing, the appearance of many micro-holes and micro-pores on the surface of the collected samples was observed. The photo-degradation degree of the nanocomposites depended on the TiO2-crystal form. Rutile TiO2 do not enhance the degradation, but anatase and mixed crystals TiO2 nanoparticles promoted the degradation of the nanocomposites. Particularly, the mixed crystals TiO2 nanoparticles showed the highest photo-catalytic activity of the nanocomposites.

  2. HPLC and HPLC/MS/MS Studies on Stress, Accelerated and Intermediate Degradation Tests of Antivirally Active Tricyclic Analog of Acyclovir.

    PubMed

    Lesniewska, Monika A; Dereziński, Paweł; Klupczyńska, Agnieszka; Kokot, Zenon J; Ostrowski, Tomasz; Zeidler, Joanna; Muszalska, Izabela

    2015-01-01

    The degradation behavior of a tricyclic analog of acyclovir [6-(4-MeOPh)-TACV] was determined in accordance with International Conference on Harmonization guidelines for good clinical practice under different stress conditions (neutral hydrolysis, strong acid/base degradation, oxidative decomposition, photodegradation, and thermal degradation). Accelerated [40±2°C/75%±5% relative humidity (RH)] and intermediate (30±2°C/65%±5% RH) stability tests were also performed. For observation of the degradation of the tested compound the RP-HPLC was used, whereas for the analysis of its degradation products HPLC/MS/MS was used. Degradation of the tested substance allowed its classification as unstable in neutral environment, acidic/alkaline medium, and in the presence of oxidizing agent. The tested compound was also light sensitive and was classified as photolabile both in solution and in the solid phase. However, the observed photodegradation in the solid phase was at a much lower level than in the case of photodegradation in solution. The study showed that both air temperature and RH had no significant effect on the stability of the tested substance during storage for 1 month at 100°C (dry heat) as well as during accelerated and intermediate tests. Based on the HPLC/MS/MS analysis, it can be concluded that acyclovir was formed as a degradation product of 6-(4-MeOPh)-TACV. PMID:26525242

  3. Flow accelerated organic coating degradation

    NASA Astrophysics Data System (ADS)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  4. Environmental aging in polycrystalline-Si photovoltaic modules: comparison of chamber-based accelerated degradation studies with field-test data

    NASA Astrophysics Data System (ADS)

    Lai, T.; Biggie, R.; Brooks, A.; Potter, B. G.; Simmons-Potter, K.

    2015-09-01

    Lifecycle degradation testing of photovoltaic (PV) modules in accelerated-degradation chambers can enable the prediction both of PV performance lifetimes and of return-on-investment for installations of PV systems. With degradation results strongly dependent on chamber test parameters, the validity of such studies relative to fielded, installed PV systems must be determined. In the present work, accelerated aging of a 250 W polycrystalline silicon module is compared to real-time performance degradation in a similar polycrystalline-silicon, fielded, PV technology that has been operating since October 2013. Investigation of environmental aging effects are performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability providing illumination uniformity of 98% over a 2 x 1.6 m area. Time-dependent, photovoltaic performance (J-V) is evaluated over a recurring, compressed night-day cycle providing representative local daily solar insolation for the southwestern United States, followed by dark (night) cycling. This cycle is synchronized with thermal and humidity environmental variations that are designed to mimic, as closely as possible, test-yard conditions specific to a 12 month weather profile for a fielded system in Tucson, AZ. Results confirm the impact of environmental conditions on the module long-term performance. While the effects of temperature de-rating can be clearly seen in the data, removal of these effects enables the clear interpretation of module efficiency degradation with time and environmental exposure. With the temperature-dependent effect removed, the normalized efficiency is computed and compared to performance results from another panel of similar technology that has previously experienced identical climate changes in the test yard. Analysis of relative PV module efficiency degradation for the chamber-tested system shows good comparison to the field-tested system with ~2.5% degradation following

  5. Accelerated degradation of silicon metallization systems

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Clemson University has been engaged for the past five years in a program to determine the reliability attributes of solar cells by means of accelerated test procedures. The cells are electrically measured and visually inspected and then subjected for a period of time to stress in excess of that normally encountered in use, and then they are reinspected. Changes are noted and the process repeated. This testing has thus far involved 23 different unencapsulated cell types from 12 different manufacturers, and 10 different encapsulated cell types from 9 different manufacturers. Reliability attributes of metallization systems can be classified as major or minor, depending on the severity of the effects observed. As a result of the accelerated testing conducted under the Clemson program, major effects have been observed related to contact resistance and to mechanical adherence and solderability. This paper does not attempt a generalized survey of accelerated test results, but rather concentrates on one particular attribute of metallization that has been observed to cause electrical degradation - increased contact resistance due to Schottky barrier formation. In this example basic semiconductor theory was able to provide an understanding of the electrical effects observed during accelerated stress testing.

  6. Accelerated Stress-Corrosion Testing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  7. Acceleration of purine degradation by periodontal diseases.

    PubMed

    Barnes, V M; Teles, R; Trivedi, H M; Devizio, W; Xu, T; Mitchell, M W; Milburn, M V; Guo, L

    2009-09-01

    Periodontal diseases, such as gingivitis and periodontitis, are characterized by bacterial plaque accumulation around the gingival crevice and the subsequent inflammation and destruction of host tissues. To test the hypothesis that cellular metabolism is altered as a result of host-bacteria interaction, we performed an unbiased metabolomic profiling of gingival crevicular fluid (GCF) collected from healthy, gingivitis, and periodontitis sites in humans, by liquid and gas chromatography mass spectrometry. The purine degradation pathway, a major biochemical source for reactive oxygen species (ROS) production, was significantly accelerated at the disease sites. This suggests that periodontal-disease-induced oxidative stress and inflammation are mediated through this pathway. The complex host-bacterial interaction was further highlighted by depletion of anti-oxidants, degradation of host cellular components, and accumulation of bacterial products in GCF. These findings provide new mechanistic insights and a panel of comprehensive biomarkers for periodontal disease progression. PMID:19767584

  8. Reliability evaluation of a photovoltaic module using accelerated degradation model

    NASA Astrophysics Data System (ADS)

    Laronde, Rémi; Charki, Abdérafi; Bigaud, David; Excoffier, Philippe

    2011-09-01

    Many photovoltaic modules are installed all around the world. However, the reliability of this product is not enough really known. The electrical power decreases in time due mainly to corrosion, encapsulation discoloration and solder bond failure. The failure of a photovoltaic module is obtained when the electrical power degradation reaches a threshold value. Accelerated life tests are commonly used to estimate the reliability of the photovoltaic module. However, using accelerated life tests, few data on the failure of this product are obtained and the realization of this kind of tests is expensive. As a solution, an accelerated degradation test can be carried out using only one stress if parameters of the acceleration model are known. The Wiener process associated with the accelerated failure time model permits to carry out many simulations and to determine the failure time distribution when the threshold value is reached. So, the failure time distribution and the lifetime (mean and uncertainty) can be evaluated.

  9. Statistical Modeling of Photovoltaic Reliability Using Accelerated Degradation Techniques (Poster)

    SciTech Connect

    Lee, J.; Elmore, R.; Jones, W.

    2011-02-01

    We introduce a cutting-edge life-testing technique, accelerated degradation testing (ADT), for PV reliability testing. The ADT technique is a cost-effective and flexible reliability testing method with multiple (MADT) and Step-Stress (SSADT) variants. In an environment with limited resources, including equipment (chambers), test units, and testing time, these techniques can provide statistically rigorous prediction of lifetime and other interesting parameters, such as failure rate, warranty time, mean time to failure, degradation rate, activation energy, acceleration factor, and upper limit level of stress. J-V characterization can be used for degradation data and the generalized Eyring model can be used for the thermal-humidity stress condition. The SSADT model can be constructed based on the cumulative damage model (CEM), which assumes that the remaining test united are failed according to cumulative density function of current stress level regardless of the history on previous stress levels.

  10. Antifoam degradation testing

    SciTech Connect

    Lambert, D. P.; Zamecnik, J. R.; Newell, D. D.; Williams, M. S.

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  11. Accelerated Testing Validation

    SciTech Connect

    Mukundan, Rangachary; James, Greg; Davey, John; Langlois, David; Torraco, Dennis; Yoon, Wonseok; Weber, Adam Z; Borup, Rodney L.

    2011-07-01

    The DOE Fuel Cell technical team recommended ASTs were performed on 2 different MEAs (designated P5 and HD6) from Ballard Power Systems. These MEAs were also incorporated into stacks and operated in fuel cell bus modules that were either operated in the field (three P5 buses) in Hamburg, or on an Orange county transit authority drive cycle in the laboratory (HD6 bus module). Qualitative agreement was found in the degradation mechanisms and rates observed in the AST and in the field. The HD6 based MEAs exhibited lower voltage degradation rates (due to catalyst corrosion) and slower membrane degradation rates in the field as reflected by their superior performance in the high potential hold and open-circuit potential AST tests. The quantitative correlation of the degradation rates will have to take into account the various stressors in the field including temperature, relative humidity, start/stops and voltage cycles.

  12. Accelerating degradation rate of pure iron by zinc ion implantation.

    PubMed

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-12-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  13. Accelerating degradation rate of pure iron by zinc ion implantation

    PubMed Central

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-01-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  14. Accelerated stress testing of terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.

    1982-01-01

    The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.

  15. Accelerated stress testing of terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Prince, J. L.; Lathrop, J. W.

    1979-01-01

    A program to investigate the reliability characteristics of unencapsulated low-cost terrestrial solar cells using accelerated stress testing is described. Reliability (or parametric degradation) factors appropriate to the cell technologies and use conditions were studied and a series of accelerated stress tests was synthesized. An electrical measurement procedure and a data analysis and management system was derived, and stress test fixturing and material flow procedures were set up after consideration was given to the number of cells to be stress tested and measured and the nature of the information to be obtained from the process. Selected results and conclusions are presented.

  16. Sequential and combined acceleration tests for crystalline Si photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Yamamoto, Chizuko; Uchiyama, Naomi; Ueno, Kiyoshi; Yamazaki, Toshiharu; Mitsuhashi, Kazunari; Tsutsumida, Akihiro; Watanabe, Jyunichi; Shirataki, Jyunko; Matsuda, Keiko

    2016-04-01

    The sequential combination test for photovoltaic modules is effective for accelerating degradation to shorten the test time and for reproducing degradation phenomena observed in modules exposed outdoors for a long time. The damp-heat (DH) test, thermal-cycle (TC) test, humidity-freeze (HF) test or dynamic mechanical load (DML) test is combined for the test modules. It was confirmed that chemical corrosion degradation or physical mechanical degradation is reproduced by the combination of the above tests. Cracks on the back sheet and delamination, often observed upon outdoor exposure, were well reproduced by the combination of DH and TC tests and TC and HF tests, respectively. Sequential DH and TC tests and DML and TC tests accelerated the degradation. These sequential tests are expected to be effective in reducing the required time of indoor testing for ensuring long-term reliability.

  17. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  18. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  19. Accelerated testing of space batteries

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  20. Predicting edge seal performance from accelerated testing

    NASA Astrophysics Data System (ADS)

    Hardikar, Kedar; Vitkavage, Dan; Saproo, Ajay; Krajewski, Todd

    2014-10-01

    Degradation in performance of a PV module attributable to moisture ingress has received significant attention in PV reliability research. Assessment of field performance of PV modules against moisture ingress through product-level testing in temperature-humidity control chambers poses challenges. Development of a meaningful acceleration factor model is challenging due to different rates of degradation of components embedded in a PV module, when exposed to moisture. Test results are typically a convolution of moisture barrier performance of the edge seal and degradation of laminated components when exposed to moisture. It is desirable to have an alternate method by which moisture barrier performance of the edge seal in its end product form can be assessed in any given field conditions, independent of particular cell design. In this work, a relatively inexpensive test technique was developed to test the edge seal in its end product form in a manner that is decoupled from other components of the PV module. A theoretical framework was developed to assess moisture barrier performance of edge seal with desiccants subjected to different conditions. This framework enables the analysis of test results from accelerated tests and prediction of the field performance of the edge seal. Results from this study lead to the conclusion that the edge seal on certain Miasole glass-glass modules studied is effective for the most aggressive weather conditions examined, beyond the intended service.

  1. Experimental test accelerator (ETA) II

    SciTech Connect

    Fessenden, T.J.; Atchison, W.L.; Birx, D.L.

    1981-03-06

    The Experimental Test Accelerator (ETA) is designed to produce a 10 kAmp electron beam at an energy of 4.5 MeV in 40 nsec pulses at an average rate of 2 pps. The accelerator also operates in bursts of 5 pulses spaced by as little as one millisec at an average rate of 5 pps. The machine is currently operating near 80% of its design values and has accumulated over 2.5 million pulses - mostly at a rate of one pps. The plasma cathode electron source, the remainder of the accelerator, and the operating characteristics of the machine are discussed.

  2. High Modulus Biodegradable Polyurethanes for Vascular Stents: Evaluation of Accelerated in vitro Degradation and Cell Viability of Degradation Products

    PubMed Central

    Sgarioto, Melissa; Adhikari, Raju; Gunatillake, Pathiraja A.; Moore, Tim; Patterson, John; Nagel, Marie-Danielle; Malherbe, François

    2015-01-01

    We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%. PMID:26000274

  3. Involvement of microorganisms in accelerated degradation of EPTC in soil

    SciTech Connect

    Tal, A.; Rubin, B.; Katan, J. ); Aharonson, N. )

    1990-04-01

    Accelerated EPTC (S-ethyl dipropylcarbamothioate) degradation was confirmed in a mixed culture of microorganisms derived from a soil with enhanced degradation (history soil) by using {sup 14}C-labeled EPTC. The antibacterial agent chloramphenicol (D-({minus})-threo-2,2-dichloro-N-({beta}-hydroxy-{alpha}-(hydroxymethyl)-p-nitrophenethyl)acetamide) markedly suppressed {sup 14}CO{sub 2} evolution while the antifungal agent cycloheximide (4-((2R)-2((1S,3S,5S)-3,5-dimethyl-2-oxocyclohexyl)-2-hydroxyethyl)glutarimide) did not, suggesting that soil bacteria play a significant role in enhanced EPTC degradation. A fast EPTC bacterial degrader (FD1) strain and a slower one (SD1), which were isolated by a soil enrichment technique from a history soil, were capable of utilizing EPTC as a sole carbon source. Vernolate (S-propyl dipropylcarbamothioate), butylate (S-ethyl bis(2-methylpropyl)carbamothioate), or cycloate (S-ethyl cyclohexylethylcarbamothioate) were also degraded by these bacteria in a pattern similar to that in a soil with enhanced degradation. Inoculation of nonhistory soil with FD1 strain induced accelerated degradation of the herbicide in the soil at rates similar to those in field soils exhibiting EPTC accelerated degradation.

  4. Accelerated leach test development program

    SciTech Connect

    Fuhrmann, M.; Pietrzak, R.F.; Heiser, J.; Franz, E.M.; Colombo, P.

    1990-11-01

    In FY 1989, a draft accelerated leach test for solidified waste was written. Combined test conditions that accelerate leaching were validated through experimental and modeling efforts. A computer program was developed that calculates test results and models leaching mechanisms. This program allows the user to determine if diffusion controls leaching and, if this is the case, to make projections of releases. Leaching mechanisms other than diffusion (diffusion plus source term partitioning and solubility limited leaching) are included in the program is indicators of other processes that may control leaching. Leach test data are presented and modeling results are discussed for laboratory scale waste forms composed of portland cement containing sodium sulfate salt, portland cement containing incinerator ash, and vinyl ester-styrene containing sodium sulfate. 16 refs., 38 figs., 5 tabs.

  5. Testing of biomaterials, accelerated ageing.

    PubMed

    Prodinger, A; Krausler, S; Schima, H; Thoma, H; Wolner, E; Schneider, W

    1985-01-01

    The residual elongation is a critical property of materials used for manufacturing diaphragms of artificial hearts. It is therefore important to check goods received or to control manufactured diaphragms, whether their creep properties are within the required limits. Ordinary creep tests take at least several months, while the release of goods received or diaphragms manufactured should be possible within a few days. Acceleration of the creep test by increasing the test temperature permits an estimation whether the creep properties of a material are within the required limits within a week. PMID:3870605

  6. Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil

    NASA Technical Reports Server (NTRS)

    Ferro, A. M.; Sims, R. C.; Bugbee, B.

    1994-01-01

    We investigated the effects of vegetation on the fate of pentachlorophenol (PCP) in soil using a novel high-flow sealed test system. Pentachlorophenol has been widely used as a wood preservative, and this highly toxic biocide contaminates soil and ground water at many sites. Although plants are known to accelerate the rates of degradation of certain soil contaminants, this approach has not been thoroughly investigated for PCP. The fate of [14C]PCP, added to soil at a concentration of 100 mg/kg, was compared in three unplanted and three planted systems. The plant used was Hycrest, a perennial, drought-tolerant cultivar of crested wheatgrass [Agropyron desertorum (Fischer ex Link) Schultes]. The flow-through test system allowed us to maintain a budget for 14C-label as well as monitor mineralization (breakdown to 14CO2) and volatilization of the test compound in a 155-d trial. In the unplanted systems, an average of 88% of the total radiolabel remained in the soil and leachate and only 6% was mineralized. In the planted system, 33% of the radiolabel remained in the soil plus leachate, 22% was mineralized, and 36% was associated with plant tissue (21% with the root fraction and 15% with shoots). Mineralization rates were 23.1 mg PCP mineralized kg-1 soil in 20 wk in the planted system, and for the unplanted system 6.6 mg PCP kg-1 soil for the same time period. Similar amounts of volatile organic material were generated in the two systems (1.5%). Results indicated that establishing crested wheatgrass on PCP-contaminated surface soils may accelerate the removal of the contaminant.

  7. Advanced Test Accelerator (ATA) injector

    SciTech Connect

    Jackson, C.H.; Bubp, D.G.; Fessenden, T.J.; Hester, R.E.; Neil, V.K.; Paul, A.C.; Prono, D.S.

    1983-03-09

    The ATA injector, developed from experience gained from the Experimental Test Accelerator (ETA) linac, has recently been completed. The injector consists of ten 0.25 MV cells that are used to develop 2.5 MV across a single diode gap. The 10 kA beam is extracted from a 500 cm/sup 2/ plasma cathode at average rates of up to 5 Hz and burst rates to 1 kHz. Pulsed power from 20 water filled blumleins is divided and introduced symmetrically through four ports on each cell. All major insulators are fabricated from filled epoxy castings. With these improvements, the ATA injector is smaller than the ETA injector; has a faster pulse response; has lower voltage stress on insulators and higher ultimate performance. Injector characterization tests began in October 1982. These tests include beam current, energy, and emittance measurements.

  8. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  9. Investigation of accelerated stress factors and failure/degradation mechanisms

    NASA Astrophysics Data System (ADS)

    Lathrop, J. W.

    1984-03-01

    Results of the performance tests on unencapsulated cells are described. Equivalent circuit parameters; characteristics of a degraded solar cell; and atomic and molecular species at the cell surface are detailed.

  10. Polymer degradation and molecular relaxation during accelerated weathering of coatings

    NASA Astrophysics Data System (ADS)

    Fernando, B. Malcolm Dilhan

    2011-12-01

    A model polyester-urethane coating similar to those on USAF aircraft was the focus in this research. It was studied for physical property changes during accelerated weathering. Isothermal aging and natural weathering were utilized as control studies. Coatings subjected to accelerated weathering had an increase in tensile modulus, glass transition temperature and surface stiffness. DSC analysis of these coatings clearly showed evidence for 'physical aging'. This phenomenon was pursued further to find out the impact of macromolecular relaxation on the polymer physical properties. The unique feature of this research is the investigation of kinetics of macromolecular relaxation whilst a polymer undergoes simultaneous degradation. Assessment was done for some material parameters as found in theoretical models. Fictive temperature (Tf), apparent activation energy (Deltah*/R) and non linearity parameter ( x) found in Tool-Narayanswamy-Moyniham (TNM) model were explored. Tf was found to be decreasing with weathering and explained the increasingly aged 'state' of the structure. Deltah*/R was found to be increasing and explains an increased energy barrier to overcome to attain relaxation. DSC peak-shift method was used to characterize x. At early stages there is a stronger non linearity of relaxation (lower x) with a stronger structure dependence and later the relaxation kinetics seems more temperature dependent (higher x). MDSC was done to characterize the non exponentiality parameter (beta) as found in the Kohlrauch-Williams-Watts (KWW) equation. Decreasing beta value with exposure implies an increasingly broad distribution of relaxation times. The Cooperatively Rearranging Regions (CRR) concept of Adams and Gibbs was also examined. Molecular weight (Ma) of the volume (Va) represented by a CRR was compared with Mc, the molecular weight between crosslinks. Nanoindentation was done to explore the coatings' surface mechanical properties. During accelerated weathering the

  11. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  12. Using Uncertainty Analysis to Guide the Development of Accelerated Stress Tests (Presentation)

    SciTech Connect

    Kempe, M.

    2014-03-01

    Extrapolation of accelerated testing to the long-term results expected in the field has uncertainty associated with the acceleration factors and the range of possible stresses in the field. When multiple stresses (such as temperature and humidity) can be used to increase the acceleration, the uncertainty may be reduced according to which stress factors are used to accelerate the degradation.

  13. Uniform and accelerated degradation of pure iron patterned by Pt disc arrays

    PubMed Central

    Huang, Tao; Zheng, Yufeng

    2016-01-01

    Pure iron has been confirmed as a promising biodegradable metal. However, the degradation rate of pure iron should be accelerated to meet the clinical requirements. In this work, two different designs of platinum disc arrays, including sizes of Φ20 μm × S5 μm and Φ4 μm × S4 μm, have been coated on the surface of pure iron. Corrosion tests showed the platinum discs formed plenty of galvanic cells with the iron matrix which significantly accelerated the degradation of pure iron. Simultaneously, due to the designability of the shape, size as well as distribution of Pt discs, the degradation rate as well as degradation uniformity of pure iron can be effectively controlled by coating with platinum discs. The cytotoxicity test results unveiled that Pt discs patterned pure iron exhibited almost no toxicity to human umbilical vein endothelial cells, but a significant inhibition on proliferation of vascular smooth muscle cells. In addition, the hemolysis rate of Pt discs patterned pure iron was lower than 1%. Moreover, Pt discs also effectively reduced the number of adhered platelets. All these results indicated that Pt discs patterning is an effective way to accelerate degradation and improve biocompatibility of pure iron. PMID:27033380

  14. Uniform and accelerated degradation of pure iron patterned by Pt disc arrays

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Zheng, Yufeng

    2016-04-01

    Pure iron has been confirmed as a promising biodegradable metal. However, the degradation rate of pure iron should be accelerated to meet the clinical requirements. In this work, two different designs of platinum disc arrays, including sizes of Φ20 μm × S5 μm and Φ4 μm × S4 μm, have been coated on the surface of pure iron. Corrosion tests showed the platinum discs formed plenty of galvanic cells with the iron matrix which significantly accelerated the degradation of pure iron. Simultaneously, due to the designability of the shape, size as well as distribution of Pt discs, the degradation rate as well as degradation uniformity of pure iron can be effectively controlled by coating with platinum discs. The cytotoxicity test results unveiled that Pt discs patterned pure iron exhibited almost no toxicity to human umbilical vein endothelial cells, but a significant inhibition on proliferation of vascular smooth muscle cells. In addition, the hemolysis rate of Pt discs patterned pure iron was lower than 1%. Moreover, Pt discs also effectively reduced the number of adhered platelets. All these results indicated that Pt discs patterning is an effective way to accelerate degradation and improve biocompatibility of pure iron.

  15. Uniform and accelerated degradation of pure iron patterned by Pt disc arrays.

    PubMed

    Huang, Tao; Zheng, Yufeng

    2016-01-01

    Pure iron has been confirmed as a promising biodegradable metal. However, the degradation rate of pure iron should be accelerated to meet the clinical requirements. In this work, two different designs of platinum disc arrays, including sizes of Φ20 μm × S5 μm and Φ4 μm × S4 μm, have been coated on the surface of pure iron. Corrosion tests showed the platinum discs formed plenty of galvanic cells with the iron matrix which significantly accelerated the degradation of pure iron. Simultaneously, due to the designability of the shape, size as well as distribution of Pt discs, the degradation rate as well as degradation uniformity of pure iron can be effectively controlled by coating with platinum discs. The cytotoxicity test results unveiled that Pt discs patterned pure iron exhibited almost no toxicity to human umbilical vein endothelial cells, but a significant inhibition on proliferation of vascular smooth muscle cells. In addition, the hemolysis rate of Pt discs patterned pure iron was lower than 1%. Moreover, Pt discs also effectively reduced the number of adhered platelets. All these results indicated that Pt discs patterning is an effective way to accelerate degradation and improve biocompatibility of pure iron. PMID:27033380

  16. Optimal sequential Bayesian analysis for degradation tests.

    PubMed

    Rodríguez-Narciso, Silvia; Christen, J Andrés

    2016-07-01

    Degradation tests are especially difficult to conduct for items with high reliability. Test costs, caused mainly by prolonged item duration and item destruction costs, establish the necessity of sequential degradation test designs. We propose a methodology that sequentially selects the optimal observation times to measure the degradation, using a convenient rule that maximizes the inference precision and minimizes test costs. In particular our objective is to estimate a quantile of the time to failure distribution, where the degradation process is modelled as a linear model using Bayesian inference. The proposed sequential analysis is based on an index that measures the expected discrepancy between the estimated quantile and its corresponding prediction, using Monte Carlo methods. The procedure was successfully implemented for simulated and real data. PMID:26307336

  17. Accelerated Degradation of Aldicarb and Its Metabolites in Cotton Field Soils

    PubMed Central

    Lawrence, K. S.; Feng, Yucheng; Lawrence, G. W.; Burmester, C. H.; Norwood, S. H.

    2005-01-01

    The degradation of aldicarb, and the metabolites aldicarb sulfoxide and aldicarb sulfone, was evaluated in cotton field soils previously exposed to aldicarb. A loss of efficacy had been observed in two (LM and MS) of the three (CL) field soils as measured by R. reniformis population development and a lack of cotton yield response. Two soils were compared for the first test—one where aldicarb had been effective (CL) and the second where aldicarb had lost its efficacy (LM). The second test included all three soils: autoclaved, non-autoclaved and treated with aldicarb at 0.59 kg a.i./ha, or not treated with aldicarb. The degradation of aldicarb to aldicarb sulfoxide and then to aldicarb sulfone was measured using high-performance liquid chromatography (HPLC) in both tests. In test one, total degradation of aldicarb and its metabolites occurred within 12 days in the LM soil. Aldicarb sulfoxide and aldicarb sulfone were both present in the CL soil at the conclusion of the test at 42 days after aldicarb application. Autoclaving the LM and MS soils extended the persistence of the aldicarb metabolites as compared to the same soils not autoclaved. The rate of degradation was not changed when the CL natural soil was autoclaved. The accelerated degradation was due to more rapid degradation of aldicarb sulfoxide and appears to be biologically mediated. PMID:19262860

  18. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Results of an ongoing research program into the reliability of terrestrial solar cells are presented. Laboratory accelerated testing procedures are used to identify failure/degradation modes which are then related to basic physical, chemical, and metallurgical phenomena. In the most recent tests, ten different types of production cells, both with and without encapsulation, from eight different manufacturers were subjected to a variety of accelerated tests. Results indicated the presence of a number of hitherto undetected failure mechanisms, including Schottky barrier formation at back contacts and loss of adhesion of grid metallization. The mechanism of Schottky barrier formation is explained by hydrogen, formed by the dissociation of water molecules at the contact surface, diffusing to the metal semiconductor interface. This same mechanism accounts for the surprising increase in sensitivity to accelerated stress conditions that was observed in some cells when encapsulated.

  19. Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data

    SciTech Connect

    Patterson, Timothy; Motupally, Sathya

    2012-06-01

    UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

  20. Accelerator Test of an Imaging Calorimeter

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.

  1. RHIC sextant test: Accelerator systems and performance

    SciTech Connect

    Pilat, F.; Trbojevic, D.; Ahrens, L.

    1997-08-01

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning.

  2. DARHT II Scaled Accelerator Tests on the ETA II Accelerator*

    SciTech Connect

    Weir, J T; Anaya Jr, E M; Caporaso, G J; Chambers, F W; Chen, Y; Falabella, S; Lee, B S; Paul, A C; Raymond, B A; Richardson, R A; Watson, J A; Chan, D; Davis, H A; Day, L A; Scarpetti, R D; Schultze, M E; Hughes, T P

    2005-05-26

    The DARHT II accelerator at LANL is preparing a series of preliminary tests at the reduced voltage of 7.8 MeV. The transport hardware between the end of the accelerator and the final target magnet was shipped to LLNL and installed on ETA II. Using the ETA II beam at 5.2 MeV we completed a set of experiments designed reduce start up time on the DARHT II experiments and run the equipment in a configuration adapted to the reduced energy. Results of the beam transport using a reduced energy beam, including the kicker and kicker pulser system will be presented.

  3. Testing general relativity on accelerators

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2015-11-01

    Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators to the effects of gravity. The main observable - maximal energy of the scattered photons - would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. We confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.

  4. Solid oxide materials research accelerated electrochemical testing

    SciTech Connect

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  5. A Statistical Perspective on Highly Accelerated Testing.

    SciTech Connect

    Thomas, Edward V.

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning the

  6. Accelerated aromatic compounds degradation in aquatic environment by use of interaction between Spirodela polyrrhiza and bacteria in its rhizosphere.

    PubMed

    Toyama, Tadashi; Yu, Ning; Kumada, Hirohide; Sei, Kazunari; Ike, Michihiko; Fujita, Masanori

    2006-04-01

    Accelerated degradation of organic chemicals by aquatic plant-bacterial associations was reported for the first time with elucidation of the role and contribution of aquatic plant and bacteria in its rhizosphere using a fast-growing giant duckweed, Spirodela polyrrhiza. The results clearly showed the accelerated degradation of all the three aromatic compounds (phenol, aniline and 2,4-dichlorophenol [2,4-DCP]) tested by aquatic plant-bacterial associations. In phenol degradation system, phenol-degrading bacteria indigenous to the rhizosphere fraction of S. polyrrhiza mainly contributed, while in aniline degradation system S. polyrrhiza mainly contributed by stimulating aniline-degrading bacteria both in the rhizosphere and balk water fraction. On the other hand in 2,4-DCP degradation system, S. polyrrhiza itself mainly contributed to its removal by uptake and degradation. Thus, the mechanisms for accelerated removal of aromatic compounds were quite different depending on the substrates. S. polyrrhiza showed selective accumulation of phenol-degrading bacteria in its rhizosphere fraction, while aniline- and 2,4-DCP-degrading bacteria were not much accumulated. S. polyrrhiza secreted peroxidase and laccase. However, both of the enzymatic activities increased with the addition of aromatic compounds, degrading ability of S. polyrrhiza itself should be owing to the production of peroxidase rather than laccase because the change of peroxidase activity and concentration of each aromatic compound well concurred. From the results obtained in the present study, it can be concluded that the feasibility of the use of aquatic plant-bacterial associations to accelerate the degradation of organic chemicals especially recalcitrant compounds in aquatic environment was shown. PMID:16716944

  7. Accelerated aging tests of liners for uranium mill tailings disposal

    SciTech Connect

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing.

  8. Light-triggered chemical amplification to accelerate degradation and release from polymeric particles.

    PubMed

    Olejniczak, Jason; Nguyen Huu, Viet Anh; Lux, Jacques; Grossman, Madeleine; He, Sha; Almutairi, Adah

    2015-12-11

    We describe a means of chemical amplification to accelerate triggered degradation of a polymer and particles composed thereof. We designed a light-degradable copolymer containing carboxylic acids masked by photolabile groups and ketals. Photolysis allows the unmasked acidic groups in the polymer backbone to accelerate ketal hydrolysis even at neutral pH. PMID:26445896

  9. Next linear collider test accelerator injector upgrade

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  10. The accelerated testing of cements in brines

    SciTech Connect

    Krumhansl, J.L.

    1993-12-31

    Cementitious materials may be employed in settings where they face prolonged exposure to Mg-rich brines. This study evaluated the possibility of using high temperatures to accelerate brine-cement reaction rates. Class-H cement coupons were tested in Mg-K-Na-C1- SO{sub 4} brines to 100{degrees}C. MgC1{sub 2}-NaC1 solutions were also employed in a test sequence that extended to 200{degrees}C. It was found that accelerated testing could be used successfully to evaluate the compatability of cementitious materials with such brines.

  11. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1984-01-01

    Research on the reliability of terrestrial solar cells was performed to identify failure/degradation modes affecting solar cells and to relate these to basic physical, chemical, and metallurgical phenomena. Particular concerns addressed were the reliability attributes of individual single crystalline, polycrystalline, and amorphous thin film silicon cells. Results of subjecting different types of crystalline cells to the Clemson accelerated test schedule are given. Preliminary step stress results on one type of thin film amorphous silicon (a:Si) cell indicated that extraneous degradation modes were introduced above 140 C. Also described is development of measurement procedures which are applicable to the reliability testing of a:Si solar cells as well as an approach to achieving the necessary repeatability of fabricating a simulated a:Si reference cell from crystalline silicon photodiodes.

  12. RHIC Sextant Test - Accelerator Systems and Performance

    NASA Astrophysics Data System (ADS)

    Pilat, F.; Ahrens, L.; Brown, K.; Connolly, R.; dell, G. F.; Fischer, W.; Kewisch, J.; Mackay, W.; Mane, V.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trbojevic, D.; Tsoupas, N.; Wei, J.

    1997-05-01

    One sextant of the RHIC collider and the full AtR (AGS to RHIC) transfer line have been commissioned in early 1997 with beam. We describe here the design and performance of the accelerator systems during the test, such as the magnet and power supply systems, instrumentation subsystems and application software. After reviewing the main milestones of the commissioning we describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems preformance and their impact on the plannig for RHIC installation and commissioning.

  13. The BNL Accelerator Test Facility control system

    SciTech Connect

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package.

  14. Determining anaerobic degradation kinetics from batch tests.

    PubMed

    Moreda, Iván López

    2016-01-01

    Data obtained from a biomethane potential (BMP) test were used in order to obtain the parameters of a kinetic model of solid wastes anaerobic degradation. The proposed model considers a hydrolysis step with a first order kinetic, a Monod kinetic for the soluble organic substrate degradation and a first order decay of microorganisms. The instantaneous release of methane was assumed. The parameters of the model are determined following a direct search optimization procedure. A 'multiple-shooting' technique was used as a first step of the optimization process. The confidence interval of the parameters was determined by using Monte Carlo simulations. Also, the distribution functions of the parameters were determined. Only the hydrolysis first order constant shows a normal distribution. PMID:27191569

  15. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  16. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries

    DOE PAGESBeta

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; Zawodzinski, Thomas A.; Mench, Matthew M.

    2015-11-21

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less

  17. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries

    SciTech Connect

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; Zawodzinski, Thomas A.; Mench, Matthew M.

    2015-11-21

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrode surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.

  18. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    SciTech Connect

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M.; Rijk, G. de

    2014-01-27

    Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton® non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  19. Detecting and Confirming Accelerated Atrazine Degradation in Illinois Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical abstract: Enhanced degradation of atrazine has been documented in many parts of the world where the herbicide has been extensively used. Atrazine is widely used in corn in Illinois, but enhanced degradation in the field has not been documented. In this study, the dissipation of atrazine...

  20. Accelerated stress testing of amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Stoddard, W. G.; Davis, C. W.; Lathrop, J. W.

    1985-01-01

    A technique for performing accelerated stress tests of large-area thin a-Si solar cells is presented. A computer-controlled short-interval test system employing low-cost ac-powered ELH illumination and a simulated a-Si reference cell (seven individually bandpass-filtered zero-biased crystalline PIN photodiodes) calibrated to the response of an a-Si control cell is described and illustrated with flow diagrams, drawings, and graphs. Preliminary results indicate that while most tests of a program developed for c-Si cells are applicable to a-Si cells, spurious degradation may appear in a-Si cells tested at temperatures above 130 C.

  1. BNL ACCELERATOR TEST FACILITY CONTROL SYSTEM UPGRADE.

    SciTech Connect

    MALONE,R.; BEN-ZVI,I.; WANG,X.; YAKIMENKO,V.

    2001-06-18

    Brookhaven National Laboratory's Accelerator Test Facility (ATF) has embarked on a complete upgrade of its decade old computer system. The planned improvements affect every major component: processors (Intel Pentium replaces VAXes), operating system (Linux/Real-Time Linux supplants OpenVMS), and data acquisition equipment (fast Ethernet equipment replaces CAMAC serial highway.) This paper summarizes the strategies and progress of the upgrade along with plans for future expansion.

  2. Testing a combined vibration and acceleration environment.

    SciTech Connect

    Jepsen, Richard Alan; Romero, Edward F.

    2005-01-01

    Sandia National Laboratories has previously tested a capability to impose a 7.5 g-rms (30 g peak) radial vibration load up to 2 kHz on a 25 lb object with superimposed 50 g acceleration at its centrifuge facility. This was accomplished by attaching a 3,000 lb Unholtz-Dickie mechanical shaker at the end of the centrifuge arm to create a 'Vibrafuge'. However, the combination of non-radial vibration directions, and linear accelerations higher than 50g's are currently not possible because of the load capabilities of the shaker and the stresses on the internal shaker components due to the combined centrifuge acceleration. Therefore, a new technique using amplified piezo-electric actuators has been developed to surpass the limitations of the mechanical shaker system. They are lightweight, modular and would overcome several limitations presented by the current shaker. They are 'scalable', that is, adding more piezo-electric units in parallel or in series can support larger-weight test articles or displacement/frequency regimes. In addition, the units could be mounted on the centrifuge arm in various configurations to provide a variety of input directions. The design along with test results will be presented to demonstrate the capabilities and limitations of the new piezo-electric Vibrafuge.

  3. Accelerated test plan for nickel cadmium spacecraft batteries

    NASA Technical Reports Server (NTRS)

    Hennigan, T. J.

    1973-01-01

    An accelerated test matrix is outlined that includes acceptance, baseline and post-cycling tests, chemical and physical analyses, and the data analysis procedures to be used in determining the feasibility of an accelerated test for sealed, nickel cadmium cells.

  4. Loosening xyloglucan accelerates the enzymatic degradation of cellulose in wood.

    PubMed

    Kaida, Rumi; Kaku, Tomomi; Baba, Kei'ichi; Oyadomari, Masafumi; Watanabe, Takashi; Nishida, Koji; Kanaya, Toshiji; Shani, Ziv; Shoseyov, Oded; Hayashi, Takahisa

    2009-09-01

    In order to create trees in which cellulose, the most abundant component in biomass, can be enzymatically hydrolyzed highly for the production of bioethanol, we examined the saccharification of xylem from several transgenic poplars, each overexpressing either xyloglucanase, cellulase, xylanase, or galactanase. The level of cellulose degradation achieved by a cellulase preparation was markedly greater in the xylem overexpressing xyloglucanase and much greater in the xylems overexpressing xylanase and cellulase than in the xylem of the wild-type plant. Although a high degree of degradation occurred in all xylems at all loci, the crystalline region of the cellulose microfibrils was highly degraded in the xylem overexpressing xyloglucanase. Since the complex between microfibrils and xyloglucans could be one region that is particularly resistant to cellulose degradation, loosening xyloglucan could facilitate the enzymatic hydrolysis of cellulose in wood. PMID:19825667

  5. Vacuum system for Advanced Test Accelerator

    SciTech Connect

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  6. Testing of a Plasmadynamic Hypervelocity Dust Accelerator

    NASA Astrophysics Data System (ADS)

    Ticos, Catalin M.; Wang, Zhehui; Dorf, Leonid A.; Wurden, G. A.

    2006-10-01

    A plasmadynamic accelerator for microparticles (or dust grains) has been designed, built and tested at Los Alamos National laboratory. The dust grains are expected to be accelerated to hypervelocities on the order of 1-30 km/s, depending on their size. The key components of the plasmadynamic accelerator are a coaxial plasma gun operated at 10 kV, a dust dispenser activated by a piezoelectric transducer, and power and remote-control systems. The coaxial plasma gun produces a high density (10^18 cm-3) and low temperature (˜ 1 eV) plasma in deuterium ejected by J x B forces, which provides drag on the dust particles in its path. Carbon dust particles will be used, with diameters from 1 to 50 μm. The plasma parameters produced in the coaxial gun are presented and their implication to dust acceleration is discussed. High speed dust will be injected in the National Spherical Torus Experiment to measure the pitch angle of magnetic field lines.

  7. Quantitative Accelerated Life Testing of MEMS Accelerometers

    PubMed Central

    Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul

    2007-01-01

    Quantitative Accelerated Life Testing (QALT) is a solution for assessing the reliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shown in this paper and an attempt to assess the reliability level for a batch of MEMS accelerometers is reported. The testing plan is application-driven and contains combined tests: thermal (high temperature) and mechanical stress. Two variants of mechanical stress are used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tilting and high temperature is used. Tilting is appropriate as application-driven stress, because the tilt movement is a natural environment for devices used for automotive and aerospace applications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The test results demonstrated the excellent reliability of the studied devices, the failure rate in the “worst case” being smaller than 10-7h-1.

  8. Beam alignment tests for therapy accelerators

    SciTech Connect

    Lutz, W.R.; Larsen, R.D.; Bjarngard, B.E.

    1981-12-01

    Beam spot displacement, collimator asymmetry, and movement of either collimator or gantry rotational axis can cause misalignment of the X ray beam from a therapy accelerator. A test method, sensitive to all the above problems, consists of double-exposing a film, located at the isocenter, for two gantry positions, 180/sup 0/ apart. Opposite halves of the field are blocked for each exposure. A lateral shift of one half with respect to the other indicates the presence of one of the problems mentioned above. Additional tests are described, each of which is sensitive to only one of the problems and capable of quantifying the error.

  9. An Accelerated Method for Soldering Testing

    SciTech Connect

    Han, Qingyou; Xu, Hanbing; Ried, Paul; Olson, Paul

    2007-01-01

    An accelerated method for testing die soldering has been developed. High intensity ultrasonic vibrations have been applied to simulate the die casting conditions such as high pressure and high molten metal velocity on the pin. The soldering tendency of steels and coated pins has been examined. The results suggest that in the low carbon steel/Al system, the onset of soldering is 60 times faster with ultrasonic vibration than that without ultrasonic vibration. In the H13/A380 system, the onset of soldering reaction is accelerated to between 30-60 times. Coatings significantly reduce the soldering tendency. For purposes of this study, several commercial coatings from Balzers demonstrated the potential for increasing the service life of core pins between 15 and 180 times.

  10. Commissioning of the Ground Test Accelerator RFQ

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-09-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations.

  11. Commissioning of the Ground Test Accelerator RFQ

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations.

  12. Ultra-accelerated natural sunlight exposure testing

    DOEpatents

    Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.

    2000-06-13

    Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  13. Accelerated Leach Test(s) Program: Annual report

    SciTech Connect

    Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.

    1986-09-01

    A computerized data base of LLW leaching data has been developed. Long-term tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms containing simulated wastes are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms.

  14. Error-Induced Beam Degradation in Fermilab's Accelerators

    SciTech Connect

    Yoon, Phil S.; /Rochester U.

    2007-08-01

    In Part I, three independent models of Fermilab's Booster synchrotron are presented. All three models are constructed to investigate and explore the effects of unavoidable machine errors on a proton beam under the influence of space-charge effects. The first is a stochastic noise model. Electric current fluctuations arising from power supplies are ubiquitous and unavoidable and are a source of instabilities in accelerators of all types. A new noise module for generating the Ornstein-Uhlenbeck (O-U) stochastic noise is first created and incorporated into the existing Object-oriented Ring Beam Injection and Tracking (ORBIT-FNAL) package. After being convinced with a preliminary model that the noise, particularly non-white noise, does matter to beam quality, we proceeded to measure directly current ripples and common-mode voltages from all four Gradient Magnet Power Supplies (GMPS). Then, the current signals are Fourier-analyzed. Based upon the power spectra of current signals, we tune up the Ornstein-Uhlnbeck noise model. As a result, we are able to closely match the frequency spectra between current measurements and the modeled O-U stochastic noise. The stochastic noise modeled upon measurements is applied to the Booster beam in the presence of the full space-charge effects. This noise model, accompanied by a suite of beam diagnostic calculations, manifests that the stochastic noise, impinging upon the beam and coupled to the space-charge effects, can substantially enhance the beam degradation process throughout the injection period. The second model is a magnet misalignment model. It is the first time to utilize the latest beamline survey data for building a magnet-by-magnet misalignment model. Given as-found survey fiducial coordinates, we calculate all types of magnet alignment errors (station error, pitch, yaw, roll, twists, etc.) are implemented in the model. We then follow up with statistical analysis to understand how each type of alignment errors are

  15. Role of failure-mechanism identification in accelerated testing

    NASA Technical Reports Server (NTRS)

    Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.

    1993-01-01

    Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.

  16. Laboratory test of Newton's second law for small accelerations.

    PubMed

    Gundlach, J H; Schlamminger, S; Spitzer, C D; Choi, K-Y; Woodahl, B A; Coy, J J; Fischbach, E

    2007-04-13

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5 x 10(-14) m/s(2). PMID:17501332

  17. Laboratory Test of Newton's Second Law for Small Accelerations

    SciTech Connect

    Gundlach, J. H.; Schlamminger, S.; Spitzer, C. D.; Choi, K.-Y.; Woodahl, B. A.; Coy, J. J.; Fischbach, E.

    2007-04-13

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5x10{sup -14} m/s{sup 2}.

  18. Instrumentation for accelerated life tests of concentrator solar cells.

    PubMed

    Núñez, N; Vázquez, M; González, J R; Jiménez, F J; Bautista, J

    2011-02-01

    Concentrator photovoltaic is an emergent technology that may be a good economical and efficient alternative for the generation of electricity at a competitive cost. However, the reliability of these new solar cells and systems is still an open issue due to the high-irradiation level they are subjected to as well as the electrical and thermal stresses that they are expected to endure. To evaluate the reliability in a short period of time, accelerated aging tests are essential. Thermal aging tests for concentrator photovoltaic solar cells and systems under illumination are not available because no technical solution to the problem of reaching the working concentration inside a climatic chamber has been available. This work presents an automatic instrumentation system that overcomes the aforementioned limitation. Working conditions have been simulated by forward biasing the solar cells to the current they would handle at the working concentration (in this case, 700 and 1050 times the irradiance at one standard sun). The instrumentation system has been deployed for more than 10 000 h in a thermal aging test for III-V concentrator solar cells, in which the generated power evolution at different temperatures has been monitored. As a result of this test, the acceleration factor has been calculated, thus allowing for the degradation evolution at any temperature in addition to normal working conditions to be obtained. PMID:21361622

  19. Cerium migration during PEM fuel cell accelerated stress testing

    SciTech Connect

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humidity cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.

  20. Cerium migration during PEM fuel cell accelerated stress testing

    DOE PAGESBeta

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less

  1. An accelerated stress testing program for determining the reliability sensitivity of silicon solar cells to encapsulation and metallization systems

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Davis, C. W.; Royal, E.

    1982-01-01

    The use of accelerated testing methods in a program to determine the reliability attributes of terrestrial silicon solar cells is discussed. Different failure modes are to be expected when cells with and without encapsulation are subjected to accelerated testing and separate test schedules for each are described. Unencapsulated test cells having slight variations in metallization are used to illustrate how accelerated testing can highlight different diffusion related failure mechanisms. The usefulness of accelerated testing when applied to encapsulated cells is illustrated by results showing that moisture related degradation may be many times worse with some forms of encapsulation than with no encapsulation at all.

  2. Nylon 6.6 accelerated aging studies : thermal-oxidative degradation and its interaction with hydrolysis.

    SciTech Connect

    Bernstein, Robert; Derzon, Dora Kay; Gillen, Kenneth T.

    2004-06-01

    Accelerated aging of Nylon 6.6 fibers used in parachutes has been conducted by following the tensile strength loss under both thermal-oxidative and 100% relative humidity conditions. Thermal-oxidative studies (air circulating ovens) were performed for time periods of weeks to years at temperatures ranging from 37 C to 138 C. Accelerated aging humidity experiments (100% RH) were performed under both an argon atmosphere to examine the 'pure' hydrolysis pathway, and under an oxygen atmosphere (oxygen partial pressure close to that occurring in air) to mimic true aging conditions. As expected the results indicated that degradation caused by humidity is much more important than thermal-oxidative degradation. Surprisingly when both oxygen and humidity were present the rate of degradation was dramatically enhanced relative to humidity aging in the absence of oxygen. This significant and previously unknown phenomena underscores the importance of careful accelerated aging that truly mimics real world storage conditions.

  3. Accelerated Strength Testing of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  4. Hurricane Isabel gives accelerators a severe test

    SciTech Connect

    Swapan Chattopadhyay

    2004-01-01

    Hurricane Isabel was at category five--the most violent on the Saffir-Simpson scale of hurricane strength--when it began threatening the central Atlantic seaboard of the US. Over the course of several days, precautions against the extreme weather conditions were taken across the Jefferson Lab site in south-east Virginia. On 18 September 2003, when Isabel struck North Carolina's Outer Banks and moved northward, directly across the region around the laboratory, the storm was still quite destructive, albeit considerably reduced in strength. The flood surge and trees felled by wind substantially damaged or even devastated buildings and homes, including many belonging to Jefferson Lab staff members. For the laboratory itself, Isabel delivered an unplanned and severe challenge in another form: a power outage that lasted nearly three-and-a-half days, and which severely tested the robustness of Jefferson Lab's two superconducting machines, the Continuous Electron Beam Accelerator Facility (CEBAF) and the superconducting radiofrequency ''driver'' accelerator of the laboratory's free-electron laser. Robustness matters greatly for science at a time when microwave superconducting linear accelerators (linacs) are not only being considered, but in some cases already being built for projects such as neutron sources, rare-isotope accelerators, innovative light sources and TeV-scale electron-positron linear colliders. Hurricane Isabel interrupted a several-week-long maintenance shutdown of CEBAF, which serves nuclear and particle physics and represents the world's pioneering large-scale implementation of superconducting radiofrequency (SRF) technology. The racetrack-shaped machine is actually a pair of 500-600 MeV SRF linacs interconnected by recirculation arc beamlines. CEBAF delivers simultaneous beams at up to 6 GeV to three experimental halls. An imminent upgrade will double the energy to 12 GeV and add an extra hall for ''quark confinement'' studies. On a smaller scale

  5. Sulforaphane promotes murine hair growth by accelerating the degradation of dihydrotestosterone.

    PubMed

    Sasaki, Mari; Shinozaki, Shohei; Shimokado, Kentaro

    2016-03-25

    Dihydrotestosterone (DHT) causes the regression of human hair follicles in the parietal scalp, leading to androgenic alopecia (AGA). Sulforaphane (SFN) increases the expression of DHT degrading enzymes, such as 3α-hydroxysteroid dehydrogenases (3α-HSDs), and, therefore, SFN treatment may improve AGA. To determine the effects of SFN on hair growth, we administered SFN (10 mg/kg BW, IP) or vehicle (DMSO) to ob/ob mice for six weeks and examined hair regeneration and the plasma levels of testosterone and DHT. We also tested the effects of SFN on the expression of two forms of 3α-HSD, aldo-keto reductase 1c21 and dehydrogenase/reductase (SDR family) member 9, both in vitro and in vivo. SNF significantly enhanced hair regeneration in ob/ob mice. The mice treated with SFN showed lower plasma levels of testosterone and DHT than those treated with vehicle. SFN increased the mRNA and protein levels of the two forms of 3α-HSD in the liver of the mice and in cultured murine hepatocyte Hepa1c1c7 cells. These results suggest that SFN treatment increases the amount of 3α-HSDs in the liver, accelerates the degradation of blood DHT, and subsequently blocks the suppression of hair growth by DHT. PMID:26923074

  6. Operational experience on the Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.; Babzien, M.; Ben-Zvi, I.

    1994-09-01

    Brookhaven National Laboratory Accelerator Test Facility is a laser-electron linear accelerator complex designed to provide high brightness beams for testing of advanced acceleration concepts and high power pulsed photon sources. Results of electron beam parameters attained during the commissioning of the nominally 45 MeV energy machine are presented.

  7. Accelerated Durability Testing of Electrochromic Windows

    SciTech Connect

    Tracy, C. E.; Zhang, J. G.; Benson, D. K.; Czanderna, A. W.; Deb, S. K.

    1998-12-29

    Prototype electrochromic windows made by several different U.S. companies have been tested in our laboratory for their long-term durability. Samples were subjected to alternate coloring and bleaching voltage cycles while exposed to simulated on 1-sun irradiance in a temperature-controlled environmental chamber with low relative humidity. The samples inside the chamber were tested under a matrix of different conditions. These conditions include: cycling at different temperatures (65 C, 85 C, and 107 C) under the irradiance, cycling versus no-cycling under the same irradiance and temperature, testing with different voltage waveforms and duty cycles with the same irradiance and temperature, cycling under various filtered irradiance intensities, and simple thermal exposure with no irradiance or cycling. The electro-optical characteristics of the samples were measured between 350 and 1,100 nm every 4,000 cycles for up to 20,000 cycles. Photographs of the samples were taken periodically wi th a digital camera to record cosmetic defects, the extent of residual coloration, and overall coloration and bleaching uniformity of the samples. Our results indicate that the most important cause of degradation is the combination of continuous cycling, elevated temperature, and irradiance. The relative importance of these variables, when considered synergistically or separately, depends on the particular device materials and design.

  8. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  9. Preliminary tests of the electrostatic plasma accelerator

    NASA Technical Reports Server (NTRS)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  10. Acceleration of potential-induced degradation by salt-mist preconditioning in crystalline silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh; Nishiyama, Naoki; Yoshino, Seiji; Ujiro, Takumi; Watanabe, Shin; Doi, Takuya; Masuda, Atsushi; Tanahashi, Tadanori

    2015-08-01

    We examined the sequential effects of salt-mist stress followed by high-system-voltage stress on the power loss of crystalline silicon photovoltaic (PV) modules to determine whether a crucial failure as potential-induced degradation (PID) is accelerated by material-property changes caused by the long-term effects of a less harmful stress such as salt-mist spraying. Degradation profiles confirmed in this study show that PID is accelerated by certain types of salt-mist preconditioning. For the acceleration of PID, the contribution of sodium ions liberated from the front glass of the PV module seems to be excluded. Therefore, we consider that the sodium ions penetrating into the PV modules from the ambient environment may also cause degradation according to the proposed mechanisms of PID, as the sodium ions existing in the front glass cause PID. Furthermore, this type of degradation may indicate the wear-out phenomenon after a long-term exposure in the field (especially near the coast).

  11. Capacity degradation of field-tested silica gel samples

    NASA Astrophysics Data System (ADS)

    Penney, T. R.; Pesaran, A. A.; Thomas, T. M.

    1985-06-01

    Researchers at the Solar Energy Research Institute (SERI) have begun preliminary studies to quantify the effect of contamination of silica gel used in dehumidification processes of desiccant cooling systems. Sorption capacity degradation of field tested samples was measured, and the source of degradation was quantified using surface analysis experimental methods.

  12. Synthesis and degradation test of hyaluronic acid hydrogels.

    PubMed

    Hahn, Sei Kwang; Park, Jung Kyu; Tomimatsu, Takashi; Shimoboji, Tsuyoshi

    2007-03-10

    Hyaluronic acid (HA) hydrogels prepared with three different crosslinking reagents were assessed by in vitro and in vivo degradation tests for various tissue engineering applications. Adipic acid dihydrazide grafted HA (HA-ADH) was synthesized and used for the preparation of methacrylated HA (HA-MA) with methacrylic anhydride and thiolated HA (HA-SH) with Traut's reagent (imminothiolane). (1)H NMR analysis showed that the degrees of HA-ADH, HA-MA, and HA-SH modification were 69, 29, and 56 mol%, respectively. HA-ADH hydrogel was prepared by the crosslinking with bis(sulfosuccinimidyl) suberate (BS(3)), HA-MA hydrogel with dithiothreitol (DTT) by Michael addition, and HA-SH hydrogel with sodium tetrathionate by disulfide bond formation. According to in vitro degradation tests, HA-SH hydrogel was degraded very fast, compared to HA-ADH and HA-MA hydrogels. HA-ADH hydrogel was degraded slightly faster than HA-MA hydrogel. Based on these results, HA-MA hydrogels and HA-SH hydrogels were implanted in the back of SD rats and their degradation was assessed according to the pre-determined time schedule. As expected from the in vitro degradation test results, HA-SH hydrogel was in vivo degraded completely only in 2 weeks, whereas HA-MA hydrogels were degraded only partially even in 29 days. The degradation rate of HA hydrogels were thought to be controlled by changing the crosslinking reagents and the functional group of HA derivatives. In addition, the state of HA hydrogel was another factor in controlling the degradation rate. Dried HA hydrogel at 37 degrees C for a day resulted in relatively slow degradation compared to the bulk HA hydrogel. There was no adverse effect during the in vivo tests. PMID:17101173

  13. Performance degradation studies on an poly 2,5-benzimidazole high-temperature proton exchange membrane fuel cell using an accelerated degradation technique

    NASA Astrophysics Data System (ADS)

    Jung, Guo-Bin; Chen, Hsin-Hung; Yan, Wei-Mon

    2014-02-01

    In this work, the performance degradation of a poly 2,5-benzimidazole (ABPBI) based high-temperature proton exchange membrane fuel cell (HT-PEMFC) was examined using an accelerated degradation technique (ADT). Experiments using an ADT with 30 min intervals were performed by applying 1.5 V to a membrane electrode assembly (MEA) with hydrogen and nitrogen feeding to the anode and cathode, respectively, to simulate the high voltage generated during fuel cell shutdown and restart. The characterization of the MEAs was performed using in-situ and ex-situ electrochemical methods, such as polarization curves, AC impedance, and cyclic voltammetry (CV), and TEM imaging before and after the ADT experiments. The measured results demonstrated that the ADT testing could be used to dramatically reduce the duration of the degradation. The current output at 0.4 V decreased by 48% after performing ADT testing for 30 min. From the AC impedance, CV and RTGA measurements, the decline in cell performance was found to be primarily due to corrosion and thinning of the catalyst layer (or carbon support) during the first 30 min, leading to the dissolution and agglomeration of the platinum catalyst.

  14. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  15. Radiation Protection in the NLC Test Accelerator at SLAC

    NASA Astrophysics Data System (ADS)

    Lavine, Theodore L.; Vylet, Vaclav

    1997-05-01

    This paper describes the elements of the design of the NLC Test Accelerator pertaining to ionizing radiation protection and safety. The NLC Test Accelerator is an accelerator physics research facility at SLAC designed to validate 2.6-cm microwave linear accelerator technology for a future high-energy linear collider (the "Next Linear Collider"). The NLC Test Accelerator is designed for average beam power levels up to 1.5 kW, at energies up to 1 GeV (roughly equivalent to 1/500 of an NLC linac). The design for radiation protection incorporates shielding, configuration controls, safety interlock systems for personnel protection and beam containment, and operations procedures. The design was guided by the DOE Accelerator Safety Order, internal Laboratory policy, and the general principle of keeping radiation doses as low as reasonably achievable.

  16. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The 250 C, 200C and 125C accelerated tests are described. The wear-out distributions from the 250 and 200 C tests were used to estimate the activation energy between the two test temperatures. The duration of the 125 C test was not sufficient to bring the test devices into the wear-out region. It was estimated that, for the most complex of the three devices types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment is assessed. Guidlines for the development of accelerated life-test conditions are proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life-test characteristics of CMOS microcircuits is described.

  17. Terrestrial Photovoltaic Module Accelerated Test-To-Failure Protocol

    SciTech Connect

    Osterwald, C. R.

    2008-03-01

    This technical report documents a test-to-failure protocol that may be used to obtain quantitative information about the reliability of photovoltaic modules using accelerated testing in environmental temperature-humidity chambers.

  18. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss

    NASA Astrophysics Data System (ADS)

    Lawrence, D. M.; Slater, A. G.; Tomas, R. A.; Holland, M. M.; Deser, C.

    2008-12-01

    Coupled climate models and recent observational evidence suggest that Arctic sea ice may undergo abrupt periods of loss during the next fifty years. Here, we evaluate how rapid sea ice loss affects terrestrial Arctic climate and ground thermal state in the Community Climate System Model. We find that simulated western Arctic land warming trends during rapid sea ice loss are 3.5 times greater than secular 21st century climate- change trends. The accelerated warming signal penetrates up to 1500km inland and is apparent throughout most of the year, peaking in autumn. Idealized experiments using the Community Land Model, with improved permafrost dynamics, indicate that an accelerated warming period substantially increases ground heat accumulation. Enhanced heat accumulation leads to rapid degradation of warm permafrost and may increase the vulnerability of colder permafrost to degradation under continued warming. Taken together, these results imply a direct link between rapid sea ice loss and permafrost health.

  19. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss

    NASA Astrophysics Data System (ADS)

    Lawrence, David M.; Slater, Andrew G.; Tomas, Robert A.; Holland, Marika M.; Deser, Clara

    2008-06-01

    Coupled climate models and recent observational evidence suggest that Arctic sea ice may undergo abrupt periods of loss during the next fifty years. Here, we evaluate how rapid sea ice loss affects terrestrial Arctic climate and ground thermal state in the Community Climate System Model. We find that simulated western Arctic land warming trends during rapid sea ice loss are 3.5 times greater than secular 21st century climate-change trends. The accelerated warming signal penetrates up to 1500 km inland and is apparent throughout most of the year, peaking in autumn. Idealized experiments using the Community Land Model, with improved permafrost dynamics, indicate that an accelerated warming period substantially increases ground heat accumulation. Enhanced heat accumulation leads to rapid degradation of warm permafrost and may increase the vulnerability of colder permafrost to degradation under continued warming. Taken together, these results imply a link between rapid sea ice loss and permafrost health.

  20. Accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1984-01-01

    Plans for the development of amorphous cell accelerated test measurement instrumentation are outlined. Diagrams for an 11-lamp ELH solar simulator and ac light source instrumentation are given. Examples of ac and dc analysis graphs are also provided.

  1. Correlating outdoor exposure with accelerated aging tests for aluminum solar reflectors

    NASA Astrophysics Data System (ADS)

    Wette, Johannes; Sutter, Florian; Fernández-García, Aránzazu

    2016-05-01

    Guaranteeing the durability of concentrated solar power (CSP) components is crucial for the success of the technology. The reflectors of the solar field are a key component of CSP plants, requiring reliable methods for service lifetime prediction. So far, no proven correlations exist to relate accelerated aging test results in climate chambers with relevant CSP exposure sites. In this work, correlations have been derived for selected testing conditions that excite the same degradation mechanisms as for outdoor exposure. Those testing conditions have been identified by performing an extensive microscopic comparison of the appearing degradation mechanisms on reference samples that have been weathered outdoors with samples that underwent a high variety of accelerated aging experiments. The herein developed methodology is derived for aluminum reflectors and future work will study its applicability to silvered-glass mirrors.

  2. Development of an Accelerated Test Design for Predicting the Service Life of the Solar Array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.

    1979-01-01

    Potential long-term degradation modes for the two types of modules in the Mead array were determined and judgments were made as to those environmental stresses and combinations of stresses which accelerate the degradation of the power output. Hierarchical trees representing the severity of effects of stresses (test conditions) on eleven individual degradation modes were constructed and were pruned of tests judged to be nonessential. Composites of those trees were developed so that there is now one pruned tree covering eight degradation modes, another covering two degradation modes, and a third covering one degradation mode. These three composite trees form the basis for selection of test conditions in the final test plan which is now being prepared.

  3. Accelerated Test Method for Corrosion Protective Coatings Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  4. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  5. Accelerated corrosion test for aluminum-zinc alloy coatings

    SciTech Connect

    Simpson, T.C. . Homer Research Labs.)

    1993-07-01

    An electrochemically monitored etching method has been developed to enable accelerated service life testing of aluminum/zinc alloy coatings with a dendritic microstructure. The method involved pre-exposure of materials to the etching solution to remove the most active phases from the coatings. This process simulated the early phases of atmospheric corrosion. The method significantly shortened the time required for an atmospheric exposure test. Historical performance data and data collected using the accelerated test method agreed.

  6. Acceleration of fatigue tests for built-up titanium components

    NASA Technical Reports Server (NTRS)

    Watanabe, R. T.

    1976-01-01

    A study was made of the feasibility of a room-temperature scheme of accelerating fatigue tests for Mach 3 advanced supersonic transport aircraft. The test scheme used equivalent room-temperature cycles calculated for supersonic flight conditions. Verification tests were conducted using specimens representing titanium wing lower surface structure. Test-acceleration parameters were developed for the test with an auxiliary test set. Five specimens were tested with a flight-by-flight load and temperature spectrum to simulate typical Mach 3 operation. Two additional sets of five specimens were tested at room temperature to evaluate the test-acceleration scheme. The fatigue behavior of the specimens generally correlated well with the proposed correction method.

  7. Beam Physics of Integrable Optics Test Accelerator at Fermilab

    SciTech Connect

    Nagaitsev, S.; Valishev, A.; Danilov, V.V.; Shatilov, D.N.; /Novosibirsk, IYF

    2012-05-01

    Fermilab's Integrable Optics Test Accelerator (IOTA) is an electron storage ring designed for testing advanced accelerator physics concepts, including implementation of nonlinear integrable beam optics and experiments on optical stochastic cooling. The machine is currently under construction at the Advanced Superconducting Test Accelerator facility. In this report we present the goals and the current status of the project, and describe the details of machine design. In particular, we concentrate on numerical simulations setting the requirements on the design and supporting the choice of machine parameters.

  8. Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules Undergoing Degradation by System Voltage Stress: Preprint

    SciTech Connect

    Hacke, P.; Smith, R.; Terwiliger, K.; Glick, S.; Jordan, D.; Johnston, S.; Kempe, M.; Kurtz, S.

    2012-07-01

    Acceleration factors are calculated for crystalline silicon PV modules under system voltage stress by comparing the module power during degradation outdoors to that in accelerated testing at three temperatures and 85% relative humidity. A lognormal analysis is applied to the accelerated lifetime test data considering failure at 80% of the initial module power. Activation energy of 0.73 eV for the rate of failure is determined, and the probability of module failure at an arbitrary temperature is predicted. To obtain statistical data for multiple modules over the course of degradation in-situ of the test chamber, dark I-V measurements are obtained and transformed using superposition, which is found well suited for rapid and quantitative evaluation of potential-induced degradation. It is determined that shunt resistance measurements alone do not represent the extent of power degradation. This is explained with a two-diode model analysis that shows an increasing second diode recombination current and ideality factor as the degradation in module power progresses. Failure modes of the modules stressed outdoors are examined and compared to those stressed in accelerated tests.

  9. Tamoxifen Inhibits ER-negative Breast Cancer Cell Invasion and Metastasis by Accelerating Twist1 Degradation

    PubMed Central

    Ma, Gang; He, Jianjun; Yu, Yang; Xu, Yixiang; Yu, Xiaobin; Martinez, Jarrod; Lonard, David M.; Xu, Jianming

    2015-01-01

    Twist1 is a transcription factor driving epithelial-mesenchymal transition, invasion and metastasis of breast cancer cells. Mice with germ-line Twist1 knockout are embryonic lethal, while adult mice with inducible Twist1 knockout have no obvious health problems, suggesting that Twist1 is a viable therapeutic target for the inhibition of invasion and metastasis of breast cancer in adult patients. In this study, we expressed a luciferase protein or a Twist1-luciferase fusion protein in HeLa cells as part of a high throughput system to screen 1280 compounds in the Library of Pharmacologically Active Compounds (LOPAC) from Sigma-Aldrich for their effects on Twist1 protein expression. One of the most interesting compounds identified is tamoxifen, a selective estrogen receptor (ER) modulator used to treat ER-positive breast cancer. Tamoxifen treatment significantly accelerated Twist1 degradation in multiple cell lines including HEK293 human kidney cells, 4T1 and 168FARN mouse mammary tumor cells with either ectopically or endogenously expressed Twist1. Tamoxifen-induced Twist1 degradation could be blocked by the MG132 proteasome inhibitor, suggesting that tamoxifen induces Twist1 degradation through the ubiquitination-proteasome pathway. However, tamoxifen-induced Twist1 degradation was independent of Twist1 mRNA expression, estrogen signaling and MAPK-mediated Twist1 phosphorylation in these cells. Importantly, tamoxifen also significantly inhibited invasive behavior in Matrigel and lung metastasis in SCID-bg mice of ER-negative 4T1 mammary tumor cells, which depend on endogenous Twist1 to invade and metastasize. These results indicate that tamoxifen can significantly accelerate Twist1 degradation to suppress cancer cell invasion and metastasis, suggesting that tamoxifen can be used not only to treat ER-positive breast cancers but also to reduce Twist1-mediated invasion and metastasis in ER-negative breast cancers. PMID:25892968

  10. Tamoxifen inhibits ER-negative breast cancer cell invasion and metastasis by accelerating Twist1 degradation.

    PubMed

    Ma, Gang; He, Jianjun; Yu, Yang; Xu, Yixiang; Yu, Xiaobin; Martinez, Jarrod; Lonard, David M; Xu, Jianming

    2015-01-01

    Twist1 is a transcription factor driving epithelial-mesenchymal transition, invasion and metastasis of breast cancer cells. Mice with germ-line Twist1 knockout are embryonic lethal, while adult mice with inducible Twist1 knockout have no obvious health problems, suggesting that Twist1 is a viable therapeutic target for the inhibition of invasion and metastasis of breast cancer in adult patients. In this study, we expressed a luciferase protein or a Twist1-luciferase fusion protein in HeLa cells as part of a high throughput system to screen 1280 compounds in the Library of Pharmacologically Active Compounds (LOPAC) from Sigma-Aldrich for their effects on Twist1 protein expression. One of the most interesting compounds identified is tamoxifen, a selective estrogen receptor (ER) modulator used to treat ER-positive breast cancer. Tamoxifen treatment significantly accelerated Twist1 degradation in multiple cell lines including HEK293 human kidney cells, 4T1 and 168FARN mouse mammary tumor cells with either ectopically or endogenously expressed Twist1. Tamoxifen-induced Twist1 degradation could be blocked by the MG132 proteasome inhibitor, suggesting that tamoxifen induces Twist1 degradation through the ubiquitination-proteasome pathway. However, tamoxifen-induced Twist1 degradation was independent of Twist1 mRNA expression, estrogen signaling and MAPK-mediated Twist1 phosphorylation in these cells. Importantly, tamoxifen also significantly inhibited invasive behavior in Matrigel and lung metastasis in SCID-bg mice of ER-negative 4T1 mammary tumor cells, which depend on endogenous Twist1 to invade and metastasize. These results indicate that tamoxifen can significantly accelerate Twist1 degradation to suppress cancer cell invasion and metastasis, suggesting that tamoxifen can be used not only to treat ER-positive breast cancers but also to reduce Twist1-mediated invasion and metastasis in ER-negative breast cancers. PMID:25892968

  11. Comparison of online and offline tests in LED accelerated reliability tests under temperature stress.

    PubMed

    Ke, Hong-Liang; Jing, Lei; Gao, Qun; Wang, Yao; Hao, Jian; Sun, Qiang; Xu, Zhi-Jun

    2015-11-20

    Accelerated aging tests are the main method used in the evaluation of LED reliability, and can be performed in either online or offline modes. The goal of this study is to provide the difference between the two test modes. In the experiments, the sample is attached to different heat sinks to acquire the optical parameters under different junction temperatures of LEDs. By measuring the junction temperature in the aging process (Tj1), and the junction temperature in the testing process (Tj2), we achieve consistency with an online test of Tj1 and Tj2 and a difference with an offline test of Tj1 and Tj2. Experimental results show that the degradation rate of the luminous flux rises as Tj2 increases, which yields a difference of projected life L(70%) of 8% to 13%. For color shifts over 5000 h of aging, the online test shows a larger variation of the distance from the Planckian locus, about 40% to 50% more than the normal test at an ambient temperature of 25°C. PMID:26836556

  12. Performance Degradation of Encapsulated Monocrystalline-Si Solar Cells upon Accelerated Weathering Exposures: Preprint

    SciTech Connect

    Glick, S. H.; Pern, F. J.; Watson, G. L.; Tomek, D.; Raaff, J.

    2001-10-01

    Presented at 2001 NCPV Program Review Meeting: Performed accelerated exposures to study performance reliability/materials degradation of encapsulated c-Si cells using weathering protocols in 2 weatherometers. We have performed accelerated exposures to study performance reliability and materials degradation of a total of forty-one 3-cm x 3-cm monocrystalline-Si (c-Si) solar cells that were variously encapsulated using accelerated weathering protocols in two weatherometers (WOMs), with and without front specimen water sprays. Laminated cells (EVA/c-Si/EVA, ethylene vinyl acetate) with one of five superstrate/substrate variations and other features including with and without: (i) load resistance, (ii) Al foil light masks, and (iii) epoxy edge-sealing were studied. Three additional samples, omitting EVA, were exposed under a full-spectrum solar simulator, or heated in an oven, for comparison. After exposures, cell performance decreased irregularly, but to a relatively greater extent for samples exposed in WOM where light, heat, and humidity cycles were present (solar simulator or oven lacked such cycles). EVA laminates in the samples masked with aluminum (Al) foils were observed to retain moisture in WOM with water spray. Moisture effects caused substantial efficiency losses probably related in part to increasing series resistance.

  13. Testing pulse forming networks with DARHT accelerator cells

    SciTech Connect

    Rose, E. A.; Dalmas, D. A.; Downing, J. N. , Jr.; Temple, R. D.

    2001-01-01

    The Dual Axis Radiographic Hydrotest Facility [DARHT] at Los Alamos will use two induction linacs to produce high-energy electron beams. The electron beams will be used to generate x-rays from bremsstrahlung targets. The x-rays will be used to produce radiographs. The first accelerator is operational now, generating a 60-nanosecond electron beam. The second accelerator is under construction. It will generate a 2-microsecond electron beam. The 78 induction cells of the second axis accelerator will be driven by an equal number of pulse forming networks. Each pulse forming network [PFN] generates a nominal 200-kV, 2-microsecond pulse to drive an accelerator cell. Each pulse forming network consists of a set of four equal-capacitance sub-PFN's, stacked in a Marx configuration. The PFN Test Stand was configured to test newly constructed accelerator cells under conditions of full voltage and pulse duration. The PFN Test Stand also explored jitter, prefire and reliability issues for a pulse forming network operated into a purely resistive load. The PFN Test Stand provided experience operating a simple subsystem of the DARHT accelerator. This subsystem involved controls, diagnostics, data acquisition and archival, power supplies, trigger systems, core reset and a gas flow system for the spark gaps. Issues for the DARHT accelerator were investigated in this small-scale facility.

  14. TESTING PULSE FORMING NETWORKS WITH DARHT ACCELERATOR CELLS

    SciTech Connect

    E.A. ROSE; D.A. DALMAS; J.N. DOWNING; R.D. TEMPLE

    2001-06-01

    The Dual Axis Radiographic Hydrotest Facility [DARHT] at Los Alamos will use two induction linacs to produce high-energy electron beams. The electron beams will be used to generate x-rays from bremsstrahlung targets. The x-rays will be used to produce radiographs. The first accelerator is operational now, generating a 60- nanosecond electron beam. The second accelerator is under construction. It will generate a 2-microsecond electron beam. The 78 induction cells of the second axis accelerator will be driven by an equal number of pulse forming networks. Each pulse forming network [PFN] generates a nominal 200-kV, 2-microsecond pulse to drive an accelerator cell. Each pulse forming network consists of a set of four equal-capacitance sub-PFN's, stacked in a Marx configuration. The PFN Test Stand was configured to test newly constructed accelerator cells under conditions of full voltage and pulse duration. The PFN Test Stand also explored jitter, prefire and reliability issues for a pulse forming network operated into a purely resistive load. The PFN Test Stand provided experience operating a simple subsystem of the DARHT accelerator. This subsystem involved controls, diagnostics, data acquisition and archival, power supplies, trigger systems, core reset and a gas flow system for the spark gaps. Issues for the DARHT accelerator were investigated in this small-scale facility.

  15. Accelerated battery-life testing - A concept

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.

    1971-01-01

    Test program, employing empirical, statistical and physical methods, determines service life and failure probabilities of electrochemical cells and batteries, and is applicable to testing mechanical, electrical, and chemical devices. Data obtained aids long-term performance prediction of battery or cell.

  16. Robust Design of Reliability Test Plans Using Degradation Measures.

    SciTech Connect

    Lane, Jonathan Wesley; Lane, Jonathan Wesley; Crowder, Stephen V.; Crowder, Stephen V.

    2014-10-01

    With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus, it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. Generally, the assumption is made that the error associated with a degradation measure follows a known distribution, usually normal, although in practice cases may arise where that assumption is not valid. In this paper, we examine such degradation measures, both simulated and real, and present non-parametric methods to demonstrate reliability and to develop reliability test plans for the future production of components with this form of degradation.

  17. Effect of cyclodextrin derivation and amorphous state of complex on accelerated degradation of ziprasidone.

    PubMed

    Hong, Jinyang; Shah, Jaymin C; Mcgonagle, Maura D

    2011-07-01

    Inclusion complexes of ziprasidone with several β-cyclodextrins [β-CDs; sulfobutylether-β-cyclodextrins (SBEβCD), hydroxypropyl-β-cyclodextrins (HPβCD), methyl-β-cyclodextrins (MβCD), and carboxyethyl-β-cyclodextrins (CEβCD)] were prepared and solution stability was evaluated at elevated temperature. Solid-state stability was assessed by subjecting various CD complexes of ziprasidone, spray-dried dispersion (SDD), partially crystalline ziprasidone-SBEβCD salts, and the physical mixture of ziprasidone-SBEβCD to γ-irradiation. Degradant I was formed by oxidation of ziprasidone, which upon aldol condensation with ziprasidone formed degradant II in both solution and solid states. In the solution state, CD complexes with electron-donating side chains, such as SBEβCD and CEβCD, produced the highest oxidative degradation followed by HPβCD with 6, 3, and 4 degrees of substitution. In the solid state, crystalline drug substance and physical mixture of crystalline drug-SBEβCD showed very little to no degradation. In contrast, amorphous βCD, MβCD, CEβCD, and SBEβCD complexes as well as the amorphous SDD exhibited greatest extent of oxidative degradation. Results suggest that electron-donating side chains of the derivatized CD interact with transition state of the oxidation reaction and catalyze drug degradation in solution, However, higher mobility in the amorphous state of CD-drug complexes promoted chemical instability of ziprasidone under accelerated conditions irrespective of the chemical nature of the side chain on CD. PMID:21283987

  18. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Accelerated life tests were performed on CMOS microcircuits to predict their long term reliability. The consistency of the CMOS microcircuit activation energy between the range of 125 C to 200 C and the range 200 C to 250 C was determined. Results indicate CMOS complexity and the amount of moisture detected inside the devices after testing influences time to failure of tested CMOS devices.

  19. Fructose Accelerates UV-C Induced Photochemical Degradation of Pentachlorophenol in Low and High Salinity Water.

    PubMed

    Nayak, Shaila; O'Donnell, Sean-Erik; Sales, Christopher M; Tikekar, Rohan V

    2016-06-01

    A novel process involving 254 nm UV-C and fructose to degrade pentachlorophenol (PCP), a pollutant, in low and high salinity (0-10 g/L salt) solutions is presented. The first order rate constants in the presence of 0, 300, and 500 mM fructose were 0.23 ± 0.04, 0.54 ± 0.01, and 1.18 ± 0.03 min(-1), respectively. Experimental evidence has shown generation of hydrogen peroxide and singlet oxygen from the UV-C exposure of fructose, which may have accelerated PCP degradation. Although salts (sodium, potassium, and calcium chloride, 1101:6.4:1) are expected to enhance the degradation rate due to generation of reactive halide species (RHS) from exposure to UV-C light, 10 g/L salt decreased the degradation rates in both the absence and presence of fructose. An LC-ESI-MS spectrum of the reaction mixture revealed a high relative abundance at m/z of 215 that corresponds to a fructose-chlorine adduct, indicating that fructose may have scavenged these RHS and prevented their reaction with PCP. PMID:27160945

  20. A Complex of Htm1 and the Oxidoreductase Pdi1 Accelerates Degradation of Misfolded Glycoproteins.

    PubMed

    Pfeiffer, Anett; Stephanowitz, Heike; Krause, Eberhard; Volkwein, Corinna; Hirsch, Christian; Jarosch, Ernst; Sommer, Thomas

    2016-06-01

    A quality control system in the endoplasmic reticulum (ER) efficiently discriminates polypeptides that are in the process of productive folding from conformers that are trapped in an aberrant state. Only the latter are transported into the cytoplasm and degraded in a process termed ER-associated protein degradation (ERAD). In the ER, an enzymatic cascade generates a specific N-glycan structure of seven mannosyl and two N-acetylglucosamine residues (Man7GlcNAc2) on misfolded glycoproteins to facilitate their disposal. We show that a complex encompassing the yeast lectin-like protein Htm1 and the oxidoreductase Pdi1 converts Man8GlcNAc2 on glycoproteins into the Man7GlcNAc2 signal. In vitro the Htm1-Pdi1 complex processes both unfolded and native proteins albeit with a preference for the former. In vivo, elevated expression of HTM1 causes glycan trimming on misfolded and folded proteins, but only degradation of the non-native species is accelerated. Thus, modification with a Man7GlcNAc2 structure does not inevitably commit a protein for ER-associated protein degradation. The function of Htm1 in ERAD relies on its association with Pdi1, which appears to regulate the access to substrates. Our data support a model in which the balanced activities of Pdi1 and Htm1 are crucial determinants for the efficient removal of misfolded secretory glycoproteins. PMID:27053108

  1. Accelerator Tests of the KLEM Prototypes

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J. H.; Bashindzhagyan, P.; Baranova, N.; Christl, M.; Chilingarian, A.; Chupin, I.; Derrickson, J.; Drury, L.; Egorov, N.

    2003-01-01

    The Kinematic Lightweight Energy Meter (KLEM) device is planned for direct measurement of the elemental energy spectra of high-energy (10(exp 11)-10(exp 16) eV) cosmic rays. The first KLEM prototype has been tested at CERN with 180 GeV pion beam in 2001. A modified KLEM prototype will be tested in proton and heavy ion beams to give more experimental data on energy resolution and charge resolution with KLEM method. The first test results are presented and compared with simulations.

  2. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This report covers the time period from May 1976 to December 1979 and encompasses the three phases of accelerated testing: Phase 1, the 250 C testing; Phase 2, the 200 C testing; and Phase 3, the 125 C testing. The duration of the test in Phase 1 and Phase 2 was sufficient to take the devices into the wear out region. The wear out distributions were used to estimate the activation energy between the 250 C and the 200 C test temperatures. The duration of the 125 C test, 20,000 hours, was not sufficient to bring the test devices into the wear out region; consequently the third data point at 125 C for determining the consistency of activation energy could not be obtained. It was estimated that, for the most complex of the three device types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment was assessed. Guidelines for the development of accelerated life test conditions were proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life test characteristics of CMOS microcircuits was explored in Phase 4 of this study and is attached as an appendix to this report.

  3. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    NASA Astrophysics Data System (ADS)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-12-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge from testing at constant conditions to dynamic operation. 7.5 times more cycles than required for 80,000 h lifetime as micro CHP are achieved on one-cell-stack level. The results also suggest that degradation mechanisms that proceed on a longer time-scale, such as creep, might have a more dominating effect for long life-times than regular short time changes of operation. In order to address lifetime testing it is suggested to build a testing program consisting of defined modules that represent different application profiles, such as one module at constant conditions, followed by modules at one set of dynamic conditions etc.

  4. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  5. Earth Scanner Bearing Accelerated Life Test

    NASA Technical Reports Server (NTRS)

    Dietz, Brian J.; VanDyk, Steven G.; Predmore, Roamer E.

    2000-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) optical instrument for NASA Goddard will measure biological and physical processes on the Earth's surface and in the lower atmosphere. A key component of the instrument is an extremely accurate scan mirror motor/encoder assembly. Of prime concern in the performance and reliability of the scan motor/encoder is bearing selection and lubrication. This paper describes life testing of the bearings and lubrication selected for the program.

  6. Preliminary description of the ground test accelerator cryogenic cooling system

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.

    1988-01-01

    The Ground Test Accelerator (GTA) under construction at the Los Alamos National Laboratory is part of the Neutral Particle Beam Program supported by the Strategic Defense Initiative Office. The GTA is a full-sized test facility to evaluate the feasibility of using a negative ion accelerator to produce a neutral particle beam (NPB). The NPB would ultimately be used outside the earth's atmosphere as a target discriminator or as a directed energy weapon. The operation of the GTA at cryogenic temperature is advantageous for two reasons: first, the decrease of temperature caused a corresponding decrease in the rf heating of the copper in the various units of the accelerator, and second, at the lower temperature the decrease in the thermal expansion coefficient also provides greater thermal stability and consequently, better operating stability for the accelerator. This paper discusses the cryogenic cooling system needed to achieve these advantages. 5 figs., 3 tabs.

  7. The Advanced Superconducting Test Accelerator at Fermilab: Science Program

    SciTech Connect

    Piot, Philippe; Harms, Elvin; Henderson, Stuart; Leibfritz, Jerry; Nagaitsev, Sergei; Shiltsev, Vladimir; Valishev, Alexander

    2014-07-01

    The Advanced Superconducting Test Accelerator (ASTA) currently in commissioning phase at Fermilab is foreseen to support a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop novel approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SCRF) linac coupled to a flexible high-brightness photoinjector. The facility also includes a small-circumference storage ring capable of storing electrons or protons. This report summarizes the facility capabilities, and provide an overview of the accelerator-science researches to be enabled.

  8. Evaluation of an Accelerated ELDRS Test Using Molecular Hydrogen

    NASA Technical Reports Server (NTRS)

    Pease, Ronald L.; Adell, Philippe C.; Rax, Bernard; McClure, Steven; Barnaby, Hugh J.; Kruckmeyer, Kirby; Triggs, B.

    2011-01-01

    An accelerated total ionizing dose (TID) hardness assurance test for enhanced low dose rate sensitive (ELDRS) bipolar linear circuits, using high dose rate tests on parts that have been exposed to molecular hydrogen, has been proposed and demonstrated on several ELDRS part types. In this study several radiation-hardened "ELDRS-free" part types have been tested using this same approach to see if the test is overly conservative.

  9. Neuronal-Targeted TFEB Accelerates Lysosomal Degradation of APP, Reducing Aβ Generation and Amyloid Plaque Pathogenesis

    PubMed Central

    Xiao, Qingli; Yan, Ping; Ma, Xiucui; Liu, Haiyan; Perez, Ronaldo; Zhu, Alec; Gonzales, Ernesto; Tripoli, Danielle L.; Czerniewski, Leah; Ballabio, Andrea; Cirrito, John R.

    2015-01-01

    In AD, an imbalance between Aβ production and removal drives elevated brain Aβ levels and eventual amyloid plaque deposition. APP undergoes nonamyloidogenic processing via α-cleavage at the plasma membrane, amyloidogenic β- and γ-cleavage within endosomes to generate Aβ, or lysosomal degradation in neurons. Considering multiple reports implicating impaired lysosome function as a driver of increased amyloidogenic processing of APP, we explored the efficacy of targeting transcription factor EB (TFEB), a master regulator of lysosomal pathways, to reduce Aβ levels. CMV promoter-driven TFEB, transduced via stereotactic hippocampal injections of adeno-associated virus particles in APP/PS1 mice, localized primarily to neuronal nuclei and upregulated lysosome biogenesis. This resulted in reduction of APP protein, the α and β C-terminal APP fragments (CTFs), and in the steady-state Aβ levels in the brain interstitial fluid. In aged mice, total Aβ levels and amyloid plaque load were selectively reduced in the TFEB-transduced hippocampi. TFEB transfection in N2a cells stably expressing APP695, stimulated lysosome biogenesis, reduced steady-state levels of APP and α- and β-CTFs, and attenuated Aβ generation by accelerating flux through the endosome-lysosome pathway. Cycloheximide chase assays revealed a shortening of APP half-life with exogenous TFEB expression, which was prevented by concomitant inhibition of lysosomal acidification. These data indicate that TFEB enhances flux through lysosomal degradative pathways to induce APP degradation and reduce Aβ generation. Activation of TFEB in neurons is an effective strategy to attenuate Aβ generation and attenuate amyloid plaque deposition in AD. SIGNIFICANCE STATEMENT A key driver for AD pathogenesis is the net balance between production and clearance of Aβ, the major component of amyloid plaques. Here we demonstrate that lysosomal degradation of holo-APP influences Aβ production by limiting the availability of

  10. System Voltage Potential-Induced Degradation Mechanisms in PV Modules and Methods for Test: Preprint

    SciTech Connect

    Hacke, P.; Terwilliger, K.; Smith, R.; Glick, S.; Pankow, J.; Kempe, M.; Kurtz, S.; Bennett, I.; Kloos, M.

    2011-07-01

    Over the past decade, degradation and power loss have been observed in PV modules resulting from the stress exerted by system voltage bias. This is due in part to qualification tests and standards that do not adequately evaluate for the durability of modules to the long-term effects of high voltage bias experienced in fielded arrays. High voltage can lead to module degradation by multiple mechanisms. The extent of the voltage bias degradation is linked to the leakage current or coulombs passed from the silicon active layer through the encapsulant and glass to the grounded module frame, which can be experimentally determined; however, competing processes make the effect non-linear and history-dependent. Appropriate testing methods and stress levels are described that demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. This information, along with outdoor testing that is in progress, is used to estimate the acceleration factors needed to evaluate the durability of modules to system voltage stress. Na-rich precipitates are observed on the cell surface after stressing the module to induce PID in damp heat with negative bias applied to the active layer.

  11. System Voltage Potential-Induced Degradation Mechanisms in PV Modules and Methods for Test

    SciTech Connect

    Hacke, P.; Terwilliger, K.; Smith, R.; Glick, S.; Pankow, J.; Kempe, M.; Kurtz, S.; Bennett, I.; Kloos, M.

    2011-01-01

    Over the past decade, degradation and power loss have been observed in PV modules resulting from the stress exerted by system voltage bias. This is due in part to qualification tests and standards that do not adequately evaluate for the durability of modules to the long-term effects of high voltage bias experienced in fielded arrays. High voltage can lead to module degradation by multiple mechanisms. The extent of the voltage bias degradation is linked to the leakage current or culombs passed from the silicon active layer through the encapsulant and glass to the grounded module frame, which can be experimentally determined; however, competing processes make the effect non-linear and history-dependent. Appropriate testing methods and stress levels are described that demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. This information, along with outdoor testing that is in progress, is used to estimate the acceleration factors needed to evaluate the durability of modules to system voltage stress. Na-rich precipitates are observed on the cell surface after stressing the module to induce PID in damp heat with negative bias applied to the active layer.

  12. Method for the Accelerated Testing of the Durability of a Construction Binder using the Arrhenius Approach

    NASA Astrophysics Data System (ADS)

    Fridrichová, Marcela; Dvořák, Karel; Gazdič, Dominik

    2016-03-01

    The single most reliable indicator of a material's durability is its performance in long-term tests, which cannot always be carried out due to a limited time budget. The second option is to perform some kind of accelerated durability tests. The aim of the work described in this article was to develop a method for the accelerated durability testing of binders. It was decided that the Arrhenius equation approach and the theory of chemical reaction kinetics would be applied in this case. The degradation process has been simplified to a single quantifiable parameter, which became compressive strength. A model hydraulic binder based on fluidised bed combustion ash (FBC ash) was chosen as the test subject for the development of the method. The model binder and its hydration products were tested by high-temperature X-ray diffraction analysis. The main hydration product of this binder was ettringite. Due to the thermodynamic instability of this mineral, it was possible to verify the proposed method via long term testing. In order to accelerate the chemical reactions in the binder, four combinations of two temperatures (65 and 85°C) and two different relative humidities (14 and 100%) were used. The upper temperature limit was chosen because of the results of the high-temperature x-ray testing of the ettringite's decomposition. The calculation formulae for the accelerated durability tests were derived on the basis of data regarding the decrease in compressive strength under the conditions imposed by the four above-mentioned combinations. The mineralogical composition of the binder after degradation was also described. The final degradation product was gypsum under dry conditions and monosulphate under wet conditions. The validity of the method and formula was subsequently verified by means of long-term testing. A very good correspondence between the calculated and real values was achieved. The deviation of these values did not exceed 5 %. The designed and verified method

  13. A statistical treatment of accelerated life test data for copper-water heat pipes

    NASA Astrophysics Data System (ADS)

    Murakami, M.; Arai, K.; Kojima, Y.

    1988-03-01

    A statistical method is proposed to treat accelerated life test data conducted at several elevated temperatures for a sufficient number of commercially available Cu-water heat pipes to predict the operation life. The temperature distribution measurements periodically carried out yield both data sets concerning the temperature drop and the gas column length as measures of noncondensible gas accumulation. The gas analysis with a mass spectrometer is also carried out to obtain the gas quantity data. A method of unified regression analysis to take account of the acceleration factor resulted from a number of elevated test temperatures is proposed to establish a method to predict the long term performance degradation from life test data. The mutual correlations among three kinds of data sets are also discussed.

  14. Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer

    NASA Technical Reports Server (NTRS)

    Abdel-Magid, Becky M.; Gates, Thomas S.

    2000-01-01

    Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.

  15. The Brookhaven National Laboratory (BNL) Accelerator Test Facility

    SciTech Connect

    Batchelor, K.

    1990-01-01

    The design of the Brookhaven National Laboratory Accelerator Test Facility is presented including the design goals and computational results. The heart of the system is a radiofrequency electron gun utilizing a photo-excited metal cathode followed by a conventional electron linac. The Nd:YAG laser used to drive the cathode with 6 ps long pulses can be synchronized to a high peak power CO{sub 2} laser in order to study laser acceleration of electrons. Current operational status of the project will be presented along with early beam tests.

  16. Accelerated life testing effects on CMOS microcircuit characteristics, phase 1

    NASA Technical Reports Server (NTRS)

    Maximow, B.

    1976-01-01

    An accelerated life test of sufficient duration to generate a minimum of 50% cumulative failures in lots of CMOS devices was conducted to provide a basis for determining the consistency of activation energy at 250 C. An investigation was made to determine whether any thresholds were exceeded during the high temperature testing, which could trigger failure mechanisms unique to that temperature. The usefulness of the 250 C temperature test as a predictor of long term reliability was evaluated.

  17. Quick setup of unit test for accelerator controls system

    SciTech Connect

    Fu, W.; D'Ottavio, T.; Gassner, D.; Nemesure, S.; Morris, J.

    2011-03-28

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  18. TESTING METGLAS FOR USE IN DARHT ACCELERATOR CELLS

    SciTech Connect

    E.A. ROSE; D.A. DALMAS; J.N. DOWNING; R.D. TEMPLE

    2001-06-01

    The Dual Axis Radiographic Hydrotest Facility [DARHT] at Los Alamos will use two induction linacs to produce high-energy electron beams. The electron beams will be used to generate x-rays from bremsstrahlung targets. The x-rays will be used to produce radiographs. The first accelerator is operational now, producing a 60-nanosecond electron beam. The second accelerator is under construction. It will produce a 2-microsecond electron beam. The 78 induction cells of the second axis accelerator require a total Metglas capacity of approximately 40 volt seconds of flux. Four Metglas cores are used in each of the 5-foot diameter accelerator cells. Each Metglas core weighs approximately 3000 pounds. This paper presents the measurement techniques and results of the Metglas tests. Routine automated analysis and archival of the pulse data provided hysteresis curves, energy loss curves and total flux swing in the operating regime. Results of the tests were used to help the manufacturer improve quality control and increase the average flux swing of the cores. Results of the tests were used to match Metglas cores and to assemble accelerator cells with equal volt-second ratings.

  19. Adhesin degradation accelerates delivery of heat-labile toxin by enterotoxigenic Escherichia coli.

    PubMed

    Roy, Koushik; Kansal, Rita; Bartels, Scott R; Hamilton, David J; Shaaban, Salwa; Fleckenstein, James M

    2011-08-26

    Many enteric pathogens, including enterotoxigenic Escherichia coli (ETEC), produce one or more serine proteases that are secreted via the autotransporter (or type V) bacterial secretion pathway. These molecules have collectively been referred to as SPATE proteins (serine protease autotransporter of the Enterobacteriaceae). EatA, an autotransporter previously identified in ETEC, possesses a functional serine protease motif within its secreted amino-terminal passenger domain. Although this protein is expressed by many ETEC strains and is highly immunogenic, its precise function is unknown. Here, we demonstrate that EatA degrades a recently characterized adhesin, EtpA, resulting in modulation of bacterial adhesion and accelerated delivery of the heat-labile toxin, a principal ETEC virulence determinant. Antibodies raised against the passenger domain of EatA impair ETEC delivery of labile toxin to epithelial cells suggesting that EatA may be an effective target for vaccine development. PMID:21757737

  20. The BNL Accelerator Test Facility and experimental program

    SciTech Connect

    Ben-Zvi, I. |

    1992-09-01

    The Accelerator Test Facility (ATF) at BNL is a users` facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF`s experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  1. The BNL Accelerator Test Facility and experimental program

    SciTech Connect

    Ben-Zvi, I. State Univ. of New York, Stony Brook, NY . Dept. of Physics)

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  2. Status and results from the next linear collider test accelerator

    SciTech Connect

    Ruth, R.D.; Adolphsen, C.; Allison, S.

    1996-08-01

    The design for the Next Linear Collider (NLC) at SLAC is based on two 11.4 GHz linacs operating at an unloaded acceleration gradient of 50 MV/m increasing to 85 MV/m as the energy is increased from {1/2} TeV to 1 TeV in the center of mass. During the past several years there has been tremendous progress on the development of 11.4 GHz (X-band) RF systems. These developments include klystrons which operate at the required power and pulse length, pulse compression systems that achieve a factor of four power multiplication and structures that are specially designed to reduce long-range wakefields. Together with these developments, we have constructed a {1/2} GeV test accelerator, the NLC Test Accelerator (NLCTA). The NLCTA will serve as a test bed as the design of the NLC is refined. In addition to testing the RF system, the NLCTA is designed to address many questions related to the dynamics of the beam during acceleration, in particular the study of multibunch beam loading compensation and transverse beam break-up. In this paper we present the status of the NLCTA and the results of initial commissioning.

  3. Internal loop photo-biodegradation reactor used for accelerated quinoline degradation and mineralization.

    PubMed

    Chang, Ling; Zhang, Yongming; Gan, Lu; Xu, Hua; Yan, Ning; Liu, Rui; Rittmann, Bruce E

    2014-07-01

    Biofilm biodegradation was coupled with ultra-violet photolysis using the internal loop photobiodegradation reactor for degradation of quinoline. Three protocols-photolysis alone (P), biodegradation alone (B), and intimately coupled photolysis and biodegradation (P&B)-were used for degradation of quinoline in batch and continuous-flow experiments. For a 1,000 mg/L initial quinoline concentration, the volumetric removal rate for quinoline was 38 % higher with P&B than with B in batch experiments, and the P&B kinetics were the sum of kinetics from the P and B experiments. Continuous-flow experiments with an influent quinoline concentration of 1,000 mg/L also gave significantly greater quinoline removal in P&B, and the quinoline-removal kinetics for P&B were approximately equal to the sum of the removal kinetics for P and B. P&B similarly increased the rate and extent of quinoline mineralization, for which the kinetics for P&B were nearly equal to the sum of kinetics for P and B. These findings support that the rate-limiting step for mineralization was transformation of quinoline, which was accelerated by the simultaneous action of photolysis and biodegradation. PMID:24488551

  4. Visualization of TlBr ionic transport mechanism by the Accelerated Device Degradation technique

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Becla, Piotr; Motakef, Shariar

    2015-06-01

    Thallium Bromide (TlBr) is a promising gamma radiation semiconductor detector material. However, it is an ionic semiconductor and suffers from polarization. As a result, TlBr devices degrade rapidly at room temperature. Polarization is associated with the flow of ionic current in the crystal under electrical bias, leading to the accumulation of charged ions at the device's electrical contacts. We report a fast and reliable direct characterization technique to identify the effects of various growth and post-growth process modifications on the polarization process. The Accelerated Device Degradation (ADD) characterization technique allows direct observation of nucleation and propagation of ionic transport channels within the TlBr crystals under applied bias. These channels are observed to be initiated both directly under the electrode as well as away from it. The propagation direction is always towards the anode indicating that Br- is the mobile diffusing species within the defect channels. The effective migration energy of the Br- ions was calculated to be 0.33±0.03 eV, which is consistent with other theoretical and experimental results.

  5. Development of an Accelerated Test Design for Predicting the Service Life of the Solar Array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.

    1979-01-01

    An accelerated life test is described which was developed to predict the life of the 25 kW photovoltaic array installed near Mead, Nebraska. A quantitative model for accelerating testing using multiple environmental stresses was used to develop the test design. The model accounts for the effects of thermal stress by a relation of the Arrhenius form. This relation was then corrected for the effects of nonthermal environmental stresses, such as relative humidity, atmospheric pollutants, and ultraviolet radiation. The correction factors for the nonthermal stresses included temperature-dependent exponents to account for the effects of interactions between thermal and nonthermal stresses on the rate of degradation of power output. The test conditions, measurements, and data analyses for the accelerated tests are presented. Constant-temperature, cyclic-temperature, and UV types of tests are specified, incorporating selected levels of relative humidity and chemical contamination and an imposed forward-bias current and static electric field.

  6. An Accelerated Method for Testing Soldering Tendency of Core Pins

    SciTech Connect

    Han, Qingyou; Xu, Hanbing; Ried, Paul; Olson, Paul

    2010-01-01

    An accelerated method for testing die soldering has been developed. High intensity ultrasonic vibrations has been used to simulate the die casting conditions such as high pressure and high impingement speed of molten metal on the pin. Soldering tendency of steels and coated pins has been examined. The results indicate that in the low carbon steel/Al system, the onset of soldering is 60 times faster with ultrasonic vibration than that without ultrasonic vibration. In the H13/A380 system, the onset of soldering reaction is accelerated to 30-60 times. Coating significantly reduces the soldering tendency of the core pins.

  7. Cryogenic cooling system for the ground test accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1993-06-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  8. Cryogenic cooling system for the ground test accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F. ); Spulgis, I. )

    1993-01-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH[sub 2]) storage Dewar with a transfer line to an LH[sub 2] run tank containing an LH[sub 2]/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  9. Cryogenic cooling system for the Ground Test Accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1994-12-31

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  10. Time-dependent diffusive acceleration of test particles at shocks

    NASA Astrophysics Data System (ADS)

    Drury, L. O'C.

    1991-07-01

    A theoretical description is developed for the acceleration of test particles at a steady plane nonrelativistic shock. The mean and the variance of the acceleration-time distribution are expressed analytically for the condition under which the diffusion coefficient is arbitrarily dependent on position and momentum. The formula for an acceleration rate with arbitrary spatial variation in the diffusion coefficient developed by Drury (1987) is supplemented by a general theory of time dependence. An approximation scheme is developed by means of the analysis which permits the description of the spectral cutoff resulting from the finite shock age. The formulas developed in the analysis are also of interest for analyzing the observations of heliospheric shocks made from spacecraft.

  11. Preloading To Accelerate Slow-Crack-Growth Testing

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.; Choi, Sung R.; Pawlik, Ralph J.

    2004-01-01

    An accelerated-testing methodology has been developed for measuring the slow-crack-growth (SCG) behavior of brittle materials. Like the prior methodology, the accelerated-testing methodology involves dynamic fatigue ( constant stress-rate) testing, in which a load or a displacement is applied to a specimen at a constant rate. SCG parameters or life prediction parameters needed for designing components made of the same material as that of the specimen are calculated from the relationship between (1) the strength of the material as measured in the test and (2) the applied stress rate used in the test. Despite its simplicity and convenience, dynamic fatigue testing as practiced heretofore has one major drawback: it is extremely time-consuming, especially at low stress rates. The present accelerated methodology reduces the time needed to test a specimen at a given rate of applied load, stress, or displacement. Instead of starting the test from zero applied load or displacement as in the prior methodology, one preloads the specimen and increases the applied load at the specified rate (see Figure 1). One might expect the preload to alter the results of the test and indeed it does, but fortunately, it is possible to account for the effect of the preload in interpreting the results. The accounting is done by calculating the normalized strength (defined as the strength in the presence of preload the strength in the absence of preload) as a function of (1) the preloading factor (defined as the preload stress the strength in the absence of preload) and (2) a SCG parameter, denoted n, that is used in a power-law crack-speed formulation. Figure 2 presents numerical results from this theoretical calculation.

  12. The application of electrochemistry to pharmaceutical stability testing--comparison with in silico prediction and chemical forced degradation approaches.

    PubMed

    Torres, Susana; Brown, Roland; Szucs, Roman; Hawkins, Joel M; Zelesky, Todd; Scrivens, Garry; Pettman, Alan; Taylor, Mark R

    2015-11-10

    The aim of this study was to evaluate the use of electrochemistry to generate oxidative degradation products of a model pharmaceutical compound. The compound was oxidized at different potentials using an electrochemical flow-cell fitted with a glassy carbon working electrode, a Pd/H2 reference electrode and a titanium auxiliary electrode. The oxidative products formed were identified and structurally characterized by LC-ESI-MS/MS using a high resolution Q-TOF mass spectrometer. Results from electrochemical oxidation using electrolytes of different pH were compared to those from chemical oxidation and from accelerated stability studies. Additionally, oxidative degradation products predicted using an in silico commercially available software were compared to those obtained from the various experimental methods. The electrochemical approach proved to be useful as an oxidative stress test as all of the final oxidation products observed under accelerated stability studies could be generated; previously reported reactive intermediate species were not observed most likely because the electrochemical mechanism differs from the oxidative pathway followed under accelerated stability conditions. In comparison to chemical degradation tests electrochemical degradation has the advantage of being much faster and does not require the use of strong oxidizing agents. Moreover, it enables the study of different operating parameters in short periods of time and optimisation of the reaction conditions (pH and applied potential) to achieve different oxidative products mixtures. This technique may prove useful as a stress test condition for the generation of oxidative degradation products and may help accelerate structure elucidation and development of stability indicating analytical methods. PMID:26299525

  13. Reproduction of natural corrosion by accelerated laboratory testing methods

    SciTech Connect

    Luo, J.S.; Wronkiewicz, D.J.; Mazer, J.J.; Bates, J.K.

    1996-05-01

    Various laboratory corrosion tests have been developed to study the behavior of glass waste forms under conditions similar to those expected in an engineered repository. The data generated by laboratory experiments are useful for understanding corrosion mechanisms and for developing chemical models to predict the long-term behavior of glass. However, it is challenging to demonstrate that these test methods produce results that can be directly related to projecting the behavior of glass waste forms over time periods of thousands of years. One method to build confidence in the applicability of the test methods is to study the natural processes that have been taking place over very long periods in environments similar to those of the repository. In this paper, we discuss whether accelerated testing methods alter the fundamental mechanisms of glass corrosion by comparing the alteration patterns that occur in naturally altered glasses with those that occur in accelerated laboratory environments. This comparison is done by (1) describing the alteration of glasses reacted in nature over long periods of time and in accelerated laboratory environments and (2) establishing the reaction kinetics of naturally altered glass and laboratory reacted glass waste forms.

  14. Accelerated testing of metal foil tape joints and their effect of photovoltaic module reliability

    NASA Astrophysics Data System (ADS)

    Sorensen, N. Robert; Quintana, Michael A.; Puskar, Joseph D.; Lucero, Samuel J.

    2009-08-01

    A program is underway at Sandia National Laboratories to predict long-term reliability of photovoltaic (PV) systems. The vehicle for the reliability predictions is a Reliability Block Diagram (RBD), which models system behavior. Because this model is based mainly on field failure and repair times, it can be used to predict current reliability, but it cannot currently be used to accurately predict lifetime. In order to be truly predictive, physics-informed degradation processes and failure mechanisms need to be included in the model. This paper describes accelerated life testing of metal foil tapes used in thin-film PV modules, and how tape joint degradation, a possible failure mode, can be incorporated into the model.

  15. Long-term storage life of light source modules by temperature cycling accelerated life test

    NASA Astrophysics Data System (ADS)

    Ningning, Sun; Manqing, Tan; Ping, Li; Jian, Jiao; Xiaofeng, Guo; Wentao, Guo

    2014-05-01

    Light source modules are the most crucial and fragile devices that affect the life and reliability of the interferometric fiber optic gyroscope (IFOG). While the light emitting chips were stable in most cases, the module packaging proved to be less satisfactory. In long-term storage or the working environment, the ambient temperature changes constantly and thus the packaging and coupling performance of light source modules are more likely to degrade slowly due to different materials with different coefficients of thermal expansion in the bonding interface. A constant temperature accelerated life test cannot evaluate the impact of temperature variation on the performance of a module package, so the temperature cycling accelerated life test was studied. The main failure mechanism affecting light source modules is package failure due to solder fatigue failure including a fiber coupling shift, loss of cooling efficiency and thermal resistor degradation, so the Norris-Landzberg model was used to model solder fatigue life and determine the activation energy related to solder fatigue failure mechanism. By analyzing the test data, activation energy was determined and then the mean life of light source modules in different storage environments with a continuously changing temperature was simulated, which has provided direct reference data for the storage life prediction of IFOG.

  16. Accelerated aging test results for aerospace wire insulation constructions

    NASA Technical Reports Server (NTRS)

    Dunbar, William G.

    1995-01-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  17. Thermally Accelerated Oxidative Degradation of Quercetin Using Continuous Flow Kinetic Electrospray-Ion Trap-Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Barnes, Jeremy S.; Foss, Frank W.; Schug, Kevin A.

    2013-10-01

    Thermally accelerated oxidative degradation of aqueous quercetin at pH 5.9 and 7.4 was kinetically measured using an in-house built online continuous flow device made of concentric capillary tubes, modified to fit to the inlet of an electrospray ionization-ion trap-time-of-flight-mass spectrometer (ESI-IT-TOF-MS). Time-resolved mass spectral measurements ranging from 2 to 21 min were performed in the negative mode to track intermediate degradation products and to evaluate the degradation rate of the deprotonated quercetin ion, [Q-H]-. Upon heating solutions in the presence of dissolved oxygen, degradation of [Q-H]- was observed and was accelerated by an increase in pH and temperature. Regardless of the condition, the same degradation pathways were observed. Degradation mechanisms and structures were determined using higher order tandem mass spectrometry (up to MS3) and high mass accuracy. The observed degradation mechanisms included oxidation, hydroxylation, and ring-cleavage by nucleophilic attack. A chalcan-trione structure formed by C-ring opening after hydroxylation at C2 was believed to be a precursor for other degradation products, formed by hydroxylation at the C2, C3, and C4 carbons from attack by nucleophilic species. This resulted in A-type and B-type ions after cross-ring cleavage of the C-ring. Based on time of appearance and signal intensity, nucleophilic attack at C3 was the preferred degradation pathway, which generated 2,4,6-trihydroxymandelate and 2,4,6-trihydroxyphenylglyoxylate ions. Overall, 23 quercetin-related ions were observed.

  18. Testing in a combined vibration and acceleration environment.

    SciTech Connect

    Jepsen, Richard Alan; Romero, Edward F.

    2004-10-01

    Sandia National Laboratories has previously tested a capability to impose a 7.5 g-rms (30 g peak) radial vibration load up to 2 kHz on a 25 lb object with superimposed 50 g acceleration at its centrifuge facility. This was accomplished by attaching a 3,000 lb Unholtz-Dickie mechanical shaker at the end of the centrifuge arm to create a 'Vibrafuge'. However, the combination of non-radial vibration directions, and linear accelerations higher than 50g's are currently not possible because of the load capabilities of the shaker and the stresses on the internal shaker components due to the combined centrifuge acceleration. Therefore, a new technique using amplified piezo-electric actuators has been developed to surpass the limitations of the mechanical shaker system. They are lightweight, modular and would overcome several limitations presented by the current shaker. They are 'scalable', that is, adding more piezo-electric units in parallel or in series can support larger-weight test articles or displacement/frequency regimes. In addition, the units could be mounted on the centrifuge arm in various configurations to provide a variety of input directions. The design along with test results will be presented to demonstrate the capabilities and limitations of the new piezo-electric Vibrafuge.

  19. Accelerated Creep Testing of High Strength Aramid Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  20. Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology.

    PubMed

    Lu, Haifeng; Zhang, Guangming; Lu, Yufeng; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2016-01-01

    Starch wastewater is a type of nutrient-rich wastewater that contains numerous macromolecular polysaccharides. Using photosynthetic bacteria (PSB) to treat starch wastewater can reduce pollutants and enhance useful biomass production. However, PSB cannot directly degrade macromolecular polysaccharides, which weakens the starch degradation effect. Therefore, co-metabolism with primary substances was employed in PSB wastewater treatment to promote starch degradation. The results indicated that co-metabolism is a highly effective method in synthetic starch degradation by PSB. When malic acid was used as the optimal primary substrate, the chemical oxygen demand, total sugar, macromolecules removal and biomass yield were considerably higher than when primary substances were not used, respectively. Malic acid was the primary substrate that played a highly important role in starch degradation. It promoted the alpha-amylase activity to 46.8 U and the PSB activity, which induced the degradation of macromolecules. The products in the wastewater were ethanol, acetic acid and propionic acid. Ethanol was the primary product throughout the degradation process. The introduction of co-metabolism with malic acid to treat wastewater can accelerate macromolecules degradation and bioresource production and weaken the acidification effect. This method provides another pathway for bioresource recovery from wastewater. This approach is a sustainable and environmentally friendly wastewater treatment technology. PMID:26360302

  1. GTA (ground test accelerator) Phase 1: Baseline design report

    SciTech Connect

    Not Available

    1986-08-01

    The national Neutral Particle Beam (NPB) program has two objectives: to provide the necessary basis for a discriminator/weapon decision by 1992, and to develop the technology in stages that lead ultimately to a neutral particle beam weapon. The ground test accelerator (GTA) is the test bed that permits the advancement of the state-of-the-art under experimental conditions in an integrated automated system mode. An intermediate goal of the GTA program is to support the Integrated Space Experiments, while the ultimate goal is to support the 1992 decision. The GTA system and each of its major subsystems are described, and project schedules and resource requirements are provided. (LEW)

  2. Highly accelerated life testing for the 1210 Digital Ruggedized Display

    NASA Astrophysics Data System (ADS)

    Becker, Bruce; Phillips, Ruth

    1998-09-01

    The 1210 Digital Ruggedized Display (1210 DRD) was designed and built for a harsh military environment. The 1210 DRD uses a single 1280 X 1024 Digital Micromirror Device (DMDTM) as a reflective image source. Through the use of Highly Accelerated Life Testing we have verified and validated the 1210 DRD through rigorous thermal, vibration, and combined environment testing. The results prove the DMD-based 1210 DRD to be a very rugged display that can meet and exceed the requirements of displays used in military applications.

  3. PEM fuel cell degradation

    SciTech Connect

    Borup, Rodney L; Mukundan, Rangachary

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. While significant progress has been made in understanding degradation mechanisms and improving materials, further improvements in durability are required to meet commercialization targets. Catalyst and electrode durability remains a primary degradation mode, with much work reported on understanding how the catalyst and electrode structure degrades. Accelerated Stress Tests (ASTs) are used to rapidly evaluate component degradation, however the results are sometimes easy, and other times difficult to correlate. Tests that were developed to accelerate degradation of single components are shown to also affect other component's degradation modes. Non-ideal examples of this include ASTs examining catalyst degradation performances losses due to catalyst degradation do not always well correlate with catalyst surface area and also lead to losses in mass transport.

  4. Recovery mechanisms in proton exchange membrane fuel cells after accelerated stress tests

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Guo, Liejin; Liu, Hongtan

    2015-11-01

    The mechanisms of performance recovery after accelerated stress test (AST) in proton exchange membrane fuel cells (PEMFCs) are systematically studied. Experiments are carried out by incorporating a well-designed performance recovery procedure right after the AST protocol. The experiment results show that the cell performance recovers significantly from the degraded state after the AST procedure. The results from cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements further show that the performance recovery can be divided into kinetic and mass transport recoveries. It is further determined that the kinetic recovery, i.e. the recovery of electrochemical active area (ECA), is due to two distinct mechanisms: the reduction of platinum oxide and the re-attachment of detached platinum nanoparticles onto the carbon surface. The mass transport resistance is probably due to reduction of hydrophilic oxide groups on the carbon surface and the microstructure change that alleviates flooding. Performance comparisons show that the recovery procedure is highly effective, indicating the results of AST significantly over-estimate the true degradation in a PEM fuel cell. Therefore, a recovery procedure is highly recommended when an AST protocol is used to evaluate cell degradations to avoid over-estimating true performance degradations in PEMFCs.

  5. Database requirements for the Advanced Test Accelerator project

    SciTech Connect

    Chambers, F.W.

    1984-11-05

    The database requirements for the Advanced Test Accelerator (ATA) project are outlined. ATA is a state-of-the-art electron accelerator capable of producing energetic (50 million electron volt), high current (10,000 ampere), short pulse (70 billionths of a second) beams of electrons for a wide variety of applications. Databasing is required for two applications. First, the description of the configuration of facility itself requires an extended database. Second, experimental data gathered from the facility must be organized and managed to insure its full utilization. The two applications are intimately related since the acquisition and analysis of experimental data requires knowledge of the system configuration. This report reviews the needs of the ATA program and current implementation, intentions, and desires. These database applications have several unique aspects which are of interest and will be highlighted. The features desired in an ultimate database system are outlined. 3 references, 5 figures.

  6. Commissioning of the Ground Test Accelerator Intertank Matching Section

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Little, C.; Lohsen, R.A.; Lysenko, W.P.; Mottershead, C.T.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-09-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 keV H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the IMS beam experiments will be presented.

  7. Beam loading and cavity compensation for the ground test accelerator

    SciTech Connect

    Jachim, S.P.; Natter, E.F.

    1989-01-01

    The Ground Test Accelerator (GTA) will be a heavily beam-loaded H/sup minus/ linac with tight tolerances on accelerating field parameters. The methods used in modeling the effects of beam loading in this machine are described. The response of the cavity to both beam and radio-frequency (RF) drive stimulus is derived, including the effects of cavity detuning. This derivation is not restricted to a small-signal approximation. An analytical method for synthesizing a predistortion network that decouples the amplitude and phase responses of the cavity is also outlined. Simulation of performance, including beam loading, is achieved through use of a control system analysis software package. A straightforward method is presented for extrapolating this work to model large coupled structures with closely spaced parasitic modes. Results to date have enabled the RF control system designs for GTA to be optimized and have given insight into their operation. 6 refs., 10 figs.

  8. Commissioning of the Ground Test Accelerator Intertank Matching Section

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Little, C.; Lohsen, R.A.; Lysenko, W.P.; Mottershead, C.T.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 keV H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the IMS beam experiments will be presented.

  9. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    SciTech Connect

    McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

    2011-03-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  10. Ultra-accelerated natural sunlight exposure testing facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2003-08-12

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  11. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  12. Long-Term Reliability of SiGe/Si HBTs From Accelerated Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Pallab

    2001-01-01

    Accelerated lifetime tests were performed on double-mesa structure Si(0.7)Ge(0.3)/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175 C-275 C. The transistors (with 5x20 sq micron emitter area) have DC current gains approx. 40-50 and f(sub T) and f(sub max) of up to 22 GHz and 25 GHz, respectively. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REED has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of these devices at room temperature under 1.35 x 10(exp 4) A/sq cm current density operation is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation.

  13. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Andrei Seryi

    2010-01-08

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  14. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    SciTech Connect

    Andrei Seryi

    2009-09-09

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  15. Accelerating the degradation of green plant waste with chemical decomposition agents.

    PubMed

    Kejun, Sun; Juntao, Zhang; Ying, Chen; Zongwen, Liao; Lin, Ruan; Cong, Liu

    2011-10-01

    Degradation of green plant waste is often difficult, and excess maturity times are typically required. In this study, we used lignin, cellulose and hemicellulose assays; scanning electron microscopy; infrared spectrum analysis and X-ray diffraction analysis to investigate the effects of chemical decomposition agents on the lignocellulose content of green plant waste, its structure and major functional groups and the mechanism of accelerated degradation. Our results showed that adding chemical decomposition agents to Ficus microcarpa var. pusillifolia sawdust reduced the contents of lignin by 0.53%-11.48% and the contents of cellulose by 2.86%-7.71%, and increased the contents of hemicellulose by 2.92%-33.63% after 24 h. With increasing quantities of alkaline residue and sodium lignosulphonate, the lignin content decreased. Scanning electron microscopy showed that, after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, lignocellulose tube wall thickness increased significantlyIncreases of 29.41%, 3.53% and 34.71% were observed after treatment with NaOH, alkaline residue and sodium lignosulphonate, respectively. Infrared spectroscopy showed that CO and aromatic skeleton stretching absorption peaks were weakened and the C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) (890-900 cm(-1)) was strengthened after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, indicating a reduction in lignin content. Several absorption peaks [i.e., C-H deformations (asymmetry in methyl groups, -CH(3)- and -CH(2)-) (1450-1460 cm(-1)); Aliphatic C-H stretching in methyl and phenol OH (1370-1380 cm(-1)); CO stretching (cellulose and hemicellulose) (1040-1060 cm(-1))] that indicate the presence of a chemical bond between lignin and cellulose was reduced, indicating that the chemical bond between lignin and cellulose had been partially broken. X-ray diffraction analysis showed that Na

  16. Accelerated degradation of 14C-atrazine in an atrazine adapted field soil from Belgium

    NASA Astrophysics Data System (ADS)

    Hamacher, Georg; Jablonowski, Nicolai David; Martinazzo, Rosane; Accinelli, Cesare; Köppchen, Stephan; Langen, Ulrike; Linden, Andreas; Krause, Martina; Burauel, Peter

    2010-05-01

    Atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] is one of the most widely used herbicides in the world. Atrazine is considered to be mobile in soil and has often been characterized as a rather recalcitrant compound in the environment. In the present study the accelerated atrazine degradation in an agriculturally used soil was examined. Soil samples were collected from a Belgian field which was used for corn-plantations and was regularly treated with atrazine during the last 30 years. The experiment was conducted under controlled laboratory conditions (GLP) using 14C-labelled and unlabelled atrazine in accordance to the reported field application dose of 1 mg kg-1. Triplicates of treated subsamples were incubated at 50% WHCmax and under slurry conditions (1:4 soil:solution ratio, using distilled water) in the dark at 20° C. Control samples were collected at an adjacent pear orchard where no atrazine or other triazine pesticides application was reported. After 92 days of incubation, the mineralized amount of atrazine reached 83% of the initially applied 14C-activity in the atrazine treated soil for the slurry setup. A maximum of atrazine mineralization was observed in the treated field soil between 6 and 7 days of incubation for both, 50% WHCmax and slurry setups. The total 14C-atrazine mineralization was equally high for 50% WHCmax in the atrazine treated soil. After an extended lag-phase in comparison to the treated soil the overall mineralization of 14C-atrazine of 81% was observed in the atrazine untreated soil under slurry conditions. This observation might be due to a possible cross adaption of the microflora. These results could be attributed to an atrazine drift during application since the control samples were taken in an adjacent pear orchard with no atrazine application history. These results demonstrate an adaption of the microflora to mineralize atrazine rapidly. The formation of desorbable metabolites as well as the formation of

  17. Design of the fiber optic support system and fiber bundle accelerated life test for VIRUS

    NASA Astrophysics Data System (ADS)

    Soukup, Ian M.; Beno, Joseph H.; Hayes, Richard J.; Heisler, James T.; Mock, Jason R.; Mollison, Nicholas T.; Good, John M.; Hill, Gary J.; Vattiat, Brian L.; Murphy, Jeremy D.; Anderson, Seth C.; Bauer, Svend M.; Kelz, Andreas; Roth, Martin M.; Fahrenthold, Eric P.

    2010-07-01

    The quantity and length of optical fibers required for the Hobby-Eberly Telescope* Dark Energy eXperiment (HETDEX) create unique fiber handling challenges. For HETDEX‡, at least 33,600 fibers will transmit light from the focal surface of the telescope to an array of spectrographs making up the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). Up to 96 Integral Field Unit (IFU) bundles, each containing 448 fibers, hang suspended from the telescope's moving tracker located more than 15 meters above the VIRUS instruments. A specialized mechanical system is being developed to support fiber optic assemblies onboard the telescope. The discrete behavior of 448 fibers within a conduit is also of primary concern. A life cycle test must be conducted to study fiber behavior and measure Focal Ratio Degradation (FRD) as a function of time. This paper focuses on the technical requirements and design of the HETDEX fiber optic support system, the electro-mechanical test apparatus for accelerated life testing of optical fiber assemblies. Results generated from the test will be of great interest to designers of robotic fiber handling systems for major telescopes. There is concern that friction, localized contact, entanglement, and excessive tension will be present within each IFU conduit and contribute to FRD. The test apparatus design utilizes six linear actuators to replicate the movement of the telescope over 65,000 accelerated cycles, simulating five years of actual operation.

  18. Results of accelerated thermal cycle tests of solar cells modules

    NASA Technical Reports Server (NTRS)

    Berman, P.; Mueller, R.; Salama, M.; Yasui, R.

    1976-01-01

    Various candidate solar panel designs were evaluated, both theoretically and experimentally, with respect to their thermal cycling survival capability, and in particular with respect to an accelerated simulation of thermal cycles representative of Viking '75 mission requirements. The experimental results were obtained on 'mini-panels' thermally cycled in a newly installed automated test facility herein described. The resulting damage was analyzed physically and theoretically, and on the basis of these analyses the panel design was suitably modified to significantly improve its ability to withstand the thermal environment. These successful modifications demonstrate the value of the complementary theoretical-experimental approach adopted, and discussed in detail in this paper.

  19. Surface degradation of polymer insulators under accelerated climatic aging in weather-ometer

    SciTech Connect

    Xu, G.; McGrath, P.B.; Burns, C.W.

    1996-12-31

    Climatic aging experiments were conducted on two types of outdoor polymer insulators by using a programmable weather-ometer. The housing materials for the insulators were silicone rubber (SR) and ethylene propylene diene monomer (EPDM). The accelerated aging stresses were comprised of ultraviolet radiation, elevated temperature, temperature cycling, thermal shock and high humidity. Their effects on the insulator surface conditions and electrical performance wee examined through visual inspection and SEM studies, contact angle measurements, thermogravimetric analysis (TGA), energy dispersive spectroscopy (EDS) analysis, and 50% impulse flashover voltage tests. The results showed a significant damage on the insulator surface caused by some of the imposed aging stresses. The EDS analysis suggested a photooxidation process that happened on the insulator surface during the aging period.

  20. Long Term Corrosion/Degradation Test Six Year Results

    SciTech Connect

    M. K. Adler Flitton; C. W. Bishop; M. E. Delwiche; T. S. Yoder

    2004-09-01

    The Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) located at the Idaho National Engineering and Environmental Laboratory (INEEL) contains neutron-activated metals from non-fuel, nuclear reactor core components. The Long-Term Corrosion/Degradation (LTCD) Test is designed to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements to the environment. The test is using two proven, industry-standard methods—direct corrosion testing using metal coupons, and monitored corrosion testing using electrical/resistance probes—to determine corrosion rates for various metal alloys generally representing the metals of interest buried at the SDA, including Type 304L stainless steel, Type 316L stainless steel, Inconel 718, Beryllium S200F, Aluminum 6061, Zircaloy-4, low-carbon steel, and Ferralium 255. In the direct testing, metal coupons are retrieved for corrosion evaluation after having been buried in SDA backfill soil and exposed to natural SDA environmental conditions for times ranging from one year to as many as 32 years, depending on research needs and funding availability. In the monitored testing, electrical/resistance probes buried in SDA backfill soil will provide corrosion data for the duration of the test or until the probes fail. This report provides an update describing the current status of the test and documents results to date. Data from the one-year and three-year results are also included, for comparison and evaluation of trends. In the six-year results, most metals being tested showed extremely low measurable rates of general corrosion. For Type 304L stainless steel, Type 316L stainless steel, Inconel 718, and Ferralium 255, corrosion rates fell in the range of “no reportable” to 0.0002 mils per year (MPY). Corrosion rates for Zircaloy-4 ranged from no measurable corrosion to 0.0001 MPY. These rates are two orders of magnitude lower than those specified in

  1. Accelerated stress testing of thin film solar cells: Development of test methods and preliminary results

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1985-01-01

    If thin film cells are to be considered a viable option for terrestrial power generation their reliability attributes will need to be explored and confidence in their stability obtained through accelerated testing. Development of a thin film accelerated test program will be more difficult than was the case for crystalline cells because of the monolithic construction nature of the cells. Specially constructed test samples will need to be fabricated, requiring committment to the concept of accelerated testing by the manufacturers. A new test schedule appropriate to thin film cells will need to be developed which will be different from that used in connection with crystalline cells. Preliminary work has been started to seek thin film schedule variations to two of the simplest tests: unbiased temperature and unbiased temperature humidity. Still to be examined are tests which involve the passage of current during temperature and/or humidity stress, either by biasing in the forward (or reverse) directions or by the application of light during stress. Investigation of these current (voltage) accelerated tests will involve development of methods of reliably contacting the thin conductive films during stress.

  2. Test-to-Failure of a Two-Grid, 30-cm-dia. Ion Accelerator System

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.; Polk, J. E.; Pless, L. C.

    1993-01-01

    To determine the failure mechanism and erosion characteristics of an ion accelerator system due to erosion by charge-exchange ions a test was performed in which a 30-cm-diameter, 2-grid ion accelerator system was tested to failure. The erosion charcteristics observed in this test, however, imply significantly shorter accelerator grid life times than typically stated in the literature. Finally, the test suggests that structural failure is probably not the most likely first failure mechanism for the accelerator grid.

  3. Development of an artificial climatic complex accelerated corrosion tester and investigation of complex accelerated corrosion test methods

    SciTech Connect

    Li, J.; Li, M.; Sun, Z. )

    1999-05-01

    During recent decades, accelerated corrosion test equipment and methods simulating atmospheric corrosion have been developed to incorporate the many factors involved in complex accelerated corrosion. A new accelerated corrosion tester was developed to simulate various kinds of atmospheric corrosion environments. The equipment can be used to simulate various types of atmospheric corrosion environments with up to eight factors and can be used to carry out 18 kinds of standard corrosion and environmental tasks.

  4. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Towards a Climate-Specific Test: Preprint

    SciTech Connect

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal; Bokria, Jayesh G.; Bruckman, Laura S.; Burns, David M.; Chen, Xinxin; Elliott, Lamont; Feng, Jiangtao; French, Roger H.; Fowler, Sean; Gu, Xiaohong; Hacke, Peter L.; Honeker, Christian C.; Kempe, Michael D.; Khonkar, Hussam; Kohl, Michael; Perret-Aebi, Laure-Emmanuelle; Phillips, Nancy H.; Scott, Kurt P.; Sculati-Meillaud, Fanny; Shioda, Tsuyos

    2015-08-12

    Reduced optical transmittance of encapsulants resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of service in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding that will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xenon, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests.

  5. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Toward a Climate-Specific Test

    SciTech Connect

    Miller, David C.; Hacke, Peter L.; Kempe, Michael D.; Wohlgemuth, John H.; Annigoni, Eleonora; Sculati-Meillaud, Fanny; Ballion, Amal; Kohl, Michael; Bokria, Jayesh G.; Bruckman, Laura S.; French, Roger H.; Burns, David; Phillips, Nancy H.; Feng; Jiangtao; Elliott, Lamont; Scott, Kurt P.; Fowler, Sean; Gu, Xiaohong; Honeker, Christian C.; Khonkar, Hussam; Perret-Aebi, Laure-Emmanuelle; Shioda, Tsy

    2015-06-14

    Reduced optical transmittance of encapsulation resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of installations in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding that will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xe, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests. Index Terms -- reliability, durability, thermal activation.

  6. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Towards a Climate-Specific Test

    SciTech Connect

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal; Bokria, Jayesh G.; Bruckman, Laura S.; Burns, David M.; Chen, Xinxin; Elliott, L.; Feng, J.; French, Roger H.; Fowler, S.; Gu, X.; Hacke, Peter L.; Honeker, C. C.; Kempe, Michael D.; Khonkar, H.; Kohl, M.; Perret-Aebi, Laure-Emmanuelle; Phillips, N. H.; Scott, K. P.; Sculati-Meillaud, F.; Shioda, T.; Suga, S.; Watanabe, S.; Wohlgemuth, John H.

    2015-06-14

    Reduced optical transmittance of encapsulants resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of service in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding that will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xenon, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests.

  7. Degradation of the TBC system during the static oxidation test.

    PubMed

    Moskal, G; Swadźba, L; Mendala, B; Góral, M; Hetmańczyk, M

    2010-03-01

    This study was done on the IN-738 type alloy with thermal barrier coatings. On the basic surface of the NiCoCrAlY superalloy, VPS-sprayed powder was applied as the bond-coat. In addition, ZrO(2)x 8%Y(2)O(3) powder was used for a deposition outside the top surface of a ceramic layer by the APS method. Appropriate control of the spraying process parameters permitted to obtain a gradient of porosity on the thickness of the ceramic coating. Then a static oxidation test at 1100 degrees C and for 1100 h was performed. The basic conclusions of that testing showed that main degradation modes of the gradient thermal barrier coating system were connected with formation of porous NiAl(2)O(4) oxides in the thermally grown oxide area and, consequently, formation of micro-cracks, delamination of a ceramic layer and final spallation of a ceramic top-coat. PMID:20500416

  8. Accelerated life test for high-power white LED based on spectroradiometric measurement

    NASA Astrophysics Data System (ADS)

    Shen, Haiping; Pan, Jiangen; Feng, Huajun

    2008-03-01

    We implement an accelerated life test for the high-power white LEDs based on spectroradiometric measurement. The luminous flux degradation performances are investigated at both the rated current of 350mA and a higher current of 500mA. The average lifetime of the LEDs is 7057 hours at 350mA and 3508 hours at 500mA. The variations of the color of the white LEDs are studied. The color of the low quality white LEDs changes greatly, while the high quality white LEDs keep their color stable. The degradation performances of the chip and phosphor are studied separately. The quantum efficiency of the phosphor becomes lower from 350mA to 500mA current supply. The LED chip degrades faster than the phosphor during the 500mA high current aging. The luminous flux increase and the peak wavelength shift from 350mA to 500mA current supply are found to be useful lifetime indicating parameters that correlate well to the reliability of the high-power white LEDs.

  9. Using Accelerated Testing To Predict Module Reliability: Preprint

    SciTech Connect

    Wohlgemuth, J. H.; Kurtz, S.

    2011-07-01

    Long-term reliability is critical to the cost effectiveness and commercial success of photovoltaic (PV) products. Today most PV modules are warranted for 25 years, but there is no accepted test protocol to validate a 25-year lifetime. The qualification tests do an excellent job of identifying design, materials, and process flaws that are likely to lead to premature failure (infant mortality), but they are not designed to test for wear-out mechanisms that limit lifetime. This paper presents a method for evaluating the ability of a new PV module technology to survive long-term exposure to specific stresses. The authors propose the use of baseline technologies with proven long-term field performance as controls in the accelerated stress tests. The performance of new-technology modules can then be evaluated versus that of proven-technology modules. If the new-technology demonstrates equivalent or superior performance to the proven one, there is a high likelihood that they will survive versus the tested stress in the real world.

  10. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  11. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    NASA Astrophysics Data System (ADS)

    Sawant, M.; Christou, A.

    2012-12-01

    While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, Al

  12. Cosmic acceleration without dark energy: background tests and thermodynamic analysis

    SciTech Connect

    Lima, J.A.S.; Graef, L.L.; Pavón, D.; Basilakos, Spyros E-mail: leilagraef@usp.br E-mail: svasil@academyofathens.gr

    2014-10-01

    A cosmic scenario with gravitationally induced particle creation is proposed. In this model the Universe evolves from an early to a late time de Sitter era, with the recent accelerating phase driven only by the negative creation pressure associated with the cold dark matter component. The model can be interpreted as an attempt to reduce the so-called cosmic sector (dark matter plus dark energy) and relate the two cosmic accelerating phases (early and late time de Sitter expansions). A detailed thermodynamic analysis including possible quantum corrections is also carried out. For a very wide range of the free parameters, it is found that the model presents the expected behavior of an ordinary macroscopic system in the sense that it approaches thermodynamic equilibrium in the long run (i.e., as it nears the second de Sitter phase). Moreover, an upper bound is found for the Gibbons–Hawking temperature of the primordial de Sitter phase. Finally, when confronted with the recent observational data, the current 'quasi'-de Sitter era, as predicted by the model, is seen to pass very comfortably the cosmic background tests.

  13. Power-conditioning system for the Advanced Test Accelerator

    SciTech Connect

    Newton, M.A.; Smith, M.E.; Birx, D.L.; Branum, D.R.; Cook, E.G.; Copp, R.L.; Lee, F.D.; Reginato, L.L.; Rogers, D.; Speckert, G.C.

    1982-06-01

    The Advanced Test Accelerator (ATA) is a pulsed, linear induction, electron accelerator currently under construction and nearing completion at Lawrence Livermore National Laboratory's Site 300 near Livermore, California. The ATA is a 50 MeV, 10 kA machine capable of generating electron beam pulses at a 1 kHz rate in a 10 pulse burst, 5 pps average, with a pulse width of 70 ns FWHM. Ten 18 kV power supplies are used to charge 25 capacitor banks with a total energy storage of 8 megajoules. Energy is transferred from the capacitor banks in 500 microsecond pulses through 25 Command Resonant Charge units (CRC) to 233 Thyratron Switch Chassis. Each Thyratron Switch Chassis contains a 2.5 microfarad capacitor and is charged to 25 kV (780 joules) with voltage regulation of +- .05%. These capacitors are switched into 10:1 step-up resonant transformers to charge 233 Blumleins to 250 kV in 20 microseconds. A magnetic modulator is used instead of a Blumlein to drive the grid of the injector.

  14. Lessons learned on the Ground Test Accelerator control system

    SciTech Connect

    Kozubal, A.J.; Weiss, R.E.

    1994-09-01

    When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers` toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks to deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ``Experimental Physics and Industrial Control System`` (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects.

  15. Cosmic acceleration without dark energy: background tests and thermodynamic analysis

    NASA Astrophysics Data System (ADS)

    Lima, J. A. S.; Graef, L. L.; Pavón, D.; Basilakos, Spyros

    2014-10-01

    A cosmic scenario with gravitationally induced particle creation is proposed. In this model the Universe evolves from an early to a late time de Sitter era, with the recent accelerating phase driven only by the negative creation pressure associated with the cold dark matter component. The model can be interpreted as an attempt to reduce the so-called cosmic sector (dark matter plus dark energy) and relate the two cosmic accelerating phases (early and late time de Sitter expansions). A detailed thermodynamic analysis including possible quantum corrections is also carried out. For a very wide range of the free parameters, it is found that the model presents the expected behavior of an ordinary macroscopic system in the sense that it approaches thermodynamic equilibrium in the long run (i.e., as it nears the second de Sitter phase). Moreover, an upper bound is found for the Gibbons-Hawking temperature of the primordial de Sitter phase. Finally, when confronted with the recent observational data, the current `quasi'-de Sitter era, as predicted by the model, is seen to pass very comfortably the cosmic background tests.

  16. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  17. Accelerated in vitro Degradation of Optically Clear Low β-sheet Silk Films by Enzyme-Mediated Pretreatment

    PubMed Central

    Shang, Ke; Rnjak-Kovacina, Jelena; Lin, Yinan; Hayden, Rebecca S.; Hu, Tao; Kaplan, David L.

    2013-01-01

    Purpose To design patterned, transparent silk films with fast degradation rates for the purpose of tissue engineering corneal stroma, Methods β-sheet (crystalline) content of silk films was decreased significantly by using a short water annealing time. Additionally, a protocol combining short water annealing time with enzymatic pretreatment of silk films with protease XIV was developed. Results Low β-sheet content (17–18%) and enzymatic pre-treatment provided film stability in aqueous environments and accelerated degradation of the silk films in the presence of human corneal fibroblasts in vitro. The results demonstrate a direct relationship between reduced β-sheet content and enzymatic pre-treatment and overall degradation rate of the protein films. Conclusions The novel protocol developed here provides new approaches to modulate the regeneration rate of silk biomaterials for corneal tissue regeneration needs. Translational relevance Patterned silk protein films possess desirable characteristics for corneal tissue engineering, including optical transparency, biocompatibility, cell alignment and tunable mechanical properties, but current fabrication protocols do not provide adequate degradation rates to match the regeneration properties of the human cornea. This novel processing protocol makes silk films more suitable for the construction of human corneal stroma tissue and a promising way to tune silk film degradation properties to match corneal tissue regeneration. PMID:23579493

  18. Mechanical degradation of fuel cell membranes under fatigue fracture tests

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Sadeghi Alavijeh, Alireza; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-01-01

    The effects of cyclic stresses on the fatigue and mechanical stability of perfluorosulfonic acid (PFSA) membranes are experimentally investigated under standard fuel cell conditions. The experiments are conducted ex-situ by subjecting membrane specimens to cyclic uniaxial tension at controlled temperature and relative humidity. The fatigue lifetime is measured in terms of the number of cycles until ultimate fracture. The results indicate that the membrane fatigue lifetime is a strong function of the applied stress, temperature, and relative humidity. The fatigue life increases exponentially with reduced stresses in all cases. The effect of temperature is found to be more significant than that of humidity, with reduced fatigue life at high temperatures. The maximum membrane strain at fracture is determined to decrease exponentially with increasing membrane lifetime. At a given fatigue life, a membrane exposed to fuel cell conditions is shown to accommodate more plastic strain before fracture than one exposed to room conditions. Overall, the proposed ex-situ membrane fatigue experiment can be utilized to benchmark the fatigue lifetime of new materials in a fraction of the time and cost associated with conventional in-situ accelerated stress testing methods.

  19. A flexible and configurable system to test accelerator magnets

    SciTech Connect

    Jerzy M. Nogiec et al.

    2001-07-20

    Fermilab's accelerator magnet R and D programs, including production of superconducting high gradient quadrupoles for the LHC insertion regions, require rigorous yet flexible magnetic measurement systems. Measurement systems must be capable of handling various types of hardware and extensible to all measurement technologies and analysis algorithms. A tailorable software system that satisfies these requirements is discussed. This single system, capable of distributed parallel signal processing, is built on top of a flexible component-based framework that allows for easy reconfiguration and run-time modification. Both core and domain-specific components can be assembled into various magnet test or analysis systems. The system configured to comprise a rotating coil harmonics measurement is presented. Technologies as Java, OODB, XML, JavaBeans, software bus and component-based architectures are used.

  20. The Status of Turkish Accelerator Center Test Facility

    SciTech Connect

    Yavas, Oe.

    2007-04-23

    Recently, conceptual design of Turkic Accelerator Center (TAC) proposal was completed. Main goal of this proposal is a charm factory that consists of a linac-ring type electron-positron collider. In addition, synchrotron radiation from the positron ring and free electron laser from the electron linac are proposed. The project related with this proposal has been accepted by Turkish government. It is planned that the Technical Design Report of TAC will have been written in next three years. In this period, an infrared oscillator free electron laser (IR FEL) will be constructed as a test facility for TAC. 20 and 50 MeV electron energies will be used to obtain infra red free electron laser. The main parameters of the electron linac, the optical cavities and the free electron laser were determined. The possible use of obtained laser beam in basic and applied research areas such as biotechnology, nanotechnology, semiconductors and photo chemistry were stated.

  1. The use of accelerated radiation testing for avionics

    NASA Astrophysics Data System (ADS)

    Quinn, Heather

    2013-04-01

    In recent years, the use of unmanned aerial vehicles (UAVs) for military and national security applications has been increasing. One possible use of these vehicles is as remote sensing platforms, where the UAV carries several sensors to provide real-time information about biological, chemical or radiological agents that might have been released into the environment. One such UAV, the Global Hawk, has a payload space that can carry nearly one ton of sensing equipment, which makes these platforms significantly larger than many satellites. Given the size of the potential payload and the heightened radiation environment at high altitudes, these systems could be affected by the radiation-induced failure mechanisms from the naturally occurring terrestrial environment. In this paper, we will explore the use of accelerated radiation testing to prepare UAV payloads for deployment.

  2. Vibrational Stability of SRF Accelerator Test Facility at Fermilab

    SciTech Connect

    McGee, M.W.; Volk, J.T.; /Fermilab

    2009-05-01

    Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

  3. Users' guide for the Accelerated Leach Test Computer Program

    SciTech Connect

    Fuhrmann, M.; Heiser, J.H.; Pietrzak, R.; Franz, Eena-Mai; Colombo, P.

    1990-11-01

    This report is a step-by-step guide for the Accelerated Leach Test (ALT) Computer Program developed to accompany a new leach test for solidified waste forms. The program is designed to be used as a tool for performing the calculations necessary to analyze leach test data, a modeling program to determine if diffusion is the operating leaching mechanism (and, if not, to indicate other possible mechanisms), and a means to make extrapolations using the diffusion models. The ALT program contains four mathematical models that can be used to represent the data. The leaching mechanisms described by these models are: (1) diffusion through a semi-infinite medium (for low fractional releases), (2) diffusion through a finite cylinder (for high fractional releases), (3) diffusion plus partitioning of the source term, (4) solubility limited leaching. Results are presented as a graph containing the experimental data and the best-fit model curve. Results can also be output as LOTUS 1-2-3 files. 2 refs.

  4. Synergistic acceleration of thyroid hormone degradation by phenobarbital and the PPAR{alpha} agonist WY14643 in rat hepatocytes

    SciTech Connect

    Wieneke, N.; Neuschaefer-Rube, F.; Bode, L.M.; Kuna, M.; Andres, J.; Carnevali, L.C.; Hirsch-Ernst, K.I.; Pueschel, G.P.

    2009-10-01

    Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feedback-controlled regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase II enzymes of xenobiotic metabolism. We have recently shown, that PPAR{alpha} agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR{alpha} agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPAR{alpha} agonist WY14643 to a larger extent than after induction with either compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UGT1A10. The PPAR{alpha}-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-induced reduction in energy expenditure by fatty acids as natural PPAR{alpha} ligands. The synergism of the PPAR{alpha} agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics.

  5. Estimating service lifetimes of a polymer encapsulant for photovoltaic modules from accelerated testing

    SciTech Connect

    Czanderna, A.W.; Pern, F.J.

    1996-05-01

    In this paper, most of the emphasis is on A9918 ethylene vinyl acetate (EVA) used commercially as the pottant for encapsulating photovoltaic (PV) modules, in which the efficiencies in field-deployed modules have been reduced by 10-70% in 4-12 years. Yet, projections were made by several different research groups in the 1980s that the EVA lifetime could range from 2-100 years. The authors (1) elucidate the complexity of the encapsulation problem, (2) indicate the performance losses reported for PV systems deployed since 1981, (3) critically assess the service lifetime predictions for EVA as a PV pottant based on studies by others for which they review the inherent errors in their assumptions about the Arrhenius relation, (4) show how degradation of minimodules in laboratory experiments that simulate reality can produce efficiency losses comparable to those in field-degraded PV modules reported in the literature, and (5) outline an acceptable methodology for making a service lifetime prediction of the polymer encapsulant, including the essential need for relating accelerated lifetime testing to real-time testing with a sufficient number of samples.

  6. Kinetic and multidimensional profiling of accelerated degradation of oil sludge by biostimulation.

    PubMed

    Dong, Yijie; Lang, Zhe; Kong, Xian; Lu, Diannan; Liu, Zheng

    2015-04-01

    Biostimulation, which employs nutrients to enhance the proliferation of indigenous microorganisms and therefore the degradation of contaminants, is an effective tool for treatment of oil-contaminated soil. However, the evolution of microbial ecology, which responds directly to stimulation procedures and intrinsically determines the degradation of oil contaminants, has rarely been explored, particularly in the context of biostimulation. In this study, the effects of biostimulation procedures including the regulation of the C : N : P ratio, as well as application of surfactants and electron acceptors in the degradation of crude oil contaminants and the evolution of the microbial community were examined simultaneously to provide ecological insights into the biostimulation. The real-time PCR showed that biostimulation promoted the proliferation of bacteria, with Gammaproteobacteria showing the greatest increase. However, the proliferation of fungi was inhibited by the accumulation of the degradation products. The degradation of polar compounds of crude oil contaminants was characterized by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (negative-ion ESI FT-ICR MS), showing a biased increase in the relative abundance of naphthenic acids. Principal component analysis (PCA) showed that different species in oil sludge have different degradation rates during biostimulation. The addition of fertilizers with surfactants and electron acceptors profoundly stimulated the indigenous microorganisms with N1, O1 and O2 species as substrates while those with O3 and O4 species were little affected. An enriched abundance of alkB genes was observed during the degradation of saturated hydrocarbons. Monitoring the kinetics of the microbial community, functional genes and degradation offers a comprehensive view for the understanding and optimization of the biostimulation process. PMID:25699544

  7. Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds

    PubMed Central

    Poh, Patrina S.P.; Hutmacher, Dietmar W.; Holzapfel, Boris M.; Solanki, Anu K.; Woodruff, Maria A.

    2016-01-01

    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period. PMID:27081669

  8. Data for accelerated degradation of calcium phosphate surface-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.

    PubMed

    Poh, Patrina S P; Hutmacher, Dietmar W; Holzapfel, Boris M; Solanki, Anu K; Woodruff, Maria A

    2016-06-01

    Polycaprolactone (PCL)-based composite scaffolds containing 50 wt% of 45S5 bioactive glass (45S5) or strontium-substituted bioactive glass (SrBG) particles were fabricated into scaffolds using melt-extrusion based additive manufacturing technique. Additionally, the PCL scaffolds were surface coated with a layer of calcium phosphate (CaP). For a comparison of the scaffold degradation, the scaffolds were then subjected to in vitro accelerated degradation by immersion in 5 M sodium hydroxide (NaOH) solution for up to 7 days. The scaffold׳s morphology was observed by means of SEM imaging and scaffold mass loss was recorded over the experimental period. PMID:27081669

  9. Voltage stress effects on microcircuit accelerated life test failure rates

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The applicability of Arrhenius and Eyring reaction rate models for describing microcircuit aging characteristics as a function of junction temperature and applied voltage was evaluated. The results of a matrix of accelerated life tests with a single metal oxide semiconductor microcircuit operated at six different combinations of temperature and voltage were used to evaluate the models. A total of 450 devices from two different lots were tested at ambient temperatures between 200 C and 250 C and applied voltages between 5 Vdc and 15 Vdc. A statistical analysis of the surface related failure data resulted in bimodal failure distributions comprising two lognormal distributions; a 'freak' distribution observed early in time, and a 'main' distribution observed later in time. The Arrhenius model was shown to provide a good description of device aging as a function of temperature at a fixed voltage. The Eyring model also appeared to provide a reasonable description of main distribution device aging as a function of temperature and voltage. Circuit diagrams are shown.

  10. Accelerated atmospheric corrosion testing of electroplated gold mirror coatings

    NASA Astrophysics Data System (ADS)

    Chu, C.-T.; Alaan, D. R.; Taylor, D. P.

    2010-08-01

    Gold-coated mirrors are widely used in infrared optics for industrial, space, and military applications. These mirrors are often made of aluminum or beryllium substrates with polished nickel plating. Gold is deposited on the nickel layer by either electroplating or vacuum deposition processes. Atmospheric corrosion of gold-coated electrical connectors and contacts was a well-known problem in the electronic industry and studied extensively. However, there is limited literature data that correlates atmospheric corrosion to the optical properties of gold mirror coatings. In this paper, the atmospheric corrosion of different electroplated gold mirror coatings were investigated with an accelerated mixed flowing gas (MFG) test for up to 50 days. The MFG test utilizes a combination of low-level air pollutants, humidity, and temperatures to achieve a simulated indoor environment. Depending on the gold coating thickness, pore corrosion started to appear on samples after about 10 days of the MFG exposure. The corrosion behavior of the gold mirror coatings demonstrated the porous nature of the electroplated gold coatings as well as the variation of porosity to the coating thickness. The changes of optical properties of the gold mirrors were correlated to the morphology of corrosion features on the mirror surface.

  11. Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome.

    PubMed Central

    Loo, M A; Jensen, T J; Cui, L; Hou, Y; Chang, X B; Riordan, J R

    1998-01-01

    Maturation of wild-type CFTR nascent chains at the endoplasmic reticulum (ER) occurs inefficiently; many disease-associated mutant forms do not mature but instead are eliminated by proteolysis involving the cytosolic proteasome. Although calnexin binds nascent CFTR via its oligosaccharide chains in the ER lumen and Hsp70 binds CFTR cytoplasmic domains, perturbation of these interactions alone is without major influence on maturation or degradation. We show that the ansamysin drugs, geldanamycin and herbimycin A, which inhibit the assembly of some signaling molecules by binding to specific sites on Hsp90 in the cytosol or Grp94 in the ER lumen, block the maturation of nascent CFTR and accelerate its degradation. The immature CFTR molecule was detected in association with Hsp90 but not with Grp94, and geldanamycin prevented the Hsp90 association. The drug-enhanced degradation was decreased by lactacystin and other proteasome inhibitors. Therefore, consistent with other examples of countervailing effects of Hsp90 and the proteasome, it would seem that this chaperone may normally contribute to CFTR folding and, when this function is interfered with by an ansamycin, there is a further shift to proteolytic degradation. This is the first direct evidence of a role for Hsp90 in the maturation of a newly synthesized integral membrane protein by interaction with its cytoplasmic domains on the ER surface. PMID:9843494

  12. Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome.

    PubMed

    Loo, M A; Jensen, T J; Cui, L; Hou, Y; Chang, X B; Riordan, J R

    1998-12-01

    Maturation of wild-type CFTR nascent chains at the endoplasmic reticulum (ER) occurs inefficiently; many disease-associated mutant forms do not mature but instead are eliminated by proteolysis involving the cytosolic proteasome. Although calnexin binds nascent CFTR via its oligosaccharide chains in the ER lumen and Hsp70 binds CFTR cytoplasmic domains, perturbation of these interactions alone is without major influence on maturation or degradation. We show that the ansamysin drugs, geldanamycin and herbimycin A, which inhibit the assembly of some signaling molecules by binding to specific sites on Hsp90 in the cytosol or Grp94 in the ER lumen, block the maturation of nascent CFTR and accelerate its degradation. The immature CFTR molecule was detected in association with Hsp90 but not with Grp94, and geldanamycin prevented the Hsp90 association. The drug-enhanced degradation was decreased by lactacystin and other proteasome inhibitors. Therefore, consistent with other examples of countervailing effects of Hsp90 and the proteasome, it would seem that this chaperone may normally contribute to CFTR folding and, when this function is interfered with by an ansamycin, there is a further shift to proteolytic degradation. This is the first direct evidence of a role for Hsp90 in the maturation of a newly synthesized integral membrane protein by interaction with its cytoplasmic domains on the ER surface. PMID:9843494

  13. A test and instrumentation system for the investigation of degradation of electrical insulating materials

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The basic test methods of aging and deterioration mechanisms of electrical insulating materials are discussed. A comprehensive test system developed to study the degradation process is described. This system is completely checked, and calibrated with a few insulating material samples.

  14. Contribution of Accelerated Degradation to Feedback Regulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase and Cholesterol Metabolism in the Liver.

    PubMed

    Hwang, Seonghwan; Hartman, Isamu Z; Calhoun, Leona N; Garland, Kristina; Young, Gennipher A; Mitsche, Matthew A; McDonald, Jeffrey; Xu, Fang; Engelking, Luke; DeBose-Boyd, Russell A

    2016-06-24

    Accumulation of sterols in endoplasmic reticulum membranes stimulates the ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), which catalyzes a rate-limiting step in synthesis of cholesterol. This ubiquitination marks HMGCR for proteasome-mediated degradation and constitutes one of several mechanisms for feedback control of cholesterol synthesis. Mechanisms for sterol-accelerated ubiquitination and degradation of HMGCR have been elucidated through the study of cultured mammalian cells. However, the extent to which these reactions modulate HMGCR and contribute to control of cholesterol metabolism in whole animals is unknown. Here, we examine transgenic mice expressing in the liver the membrane domain of HMGCR (HMGCR (TM1-8)), a region necessary and sufficient for sterol-accelerated degradation, and knock-in mice in which endogenous HMGCR harbors mutations that prevent sterol-induced ubiquitination. Characterization of transgenic mice revealed that HMGCR (TM1-8) is appropriately regulated in the liver of mice fed a high cholesterol diet or chow diet supplemented with the HMGCR inhibitor lovastatin. Ubiquitination-resistant HMGCR protein accumulates in the liver and other tissues disproportionately to its mRNA, indicating that sterol-accelerated degradation significantly contributes to feedback regulation of HMGCR in vivo Results of these studies demonstrate that HMGCR is subjected to sterol-accelerated degradation in the liver through mechanisms similar to those established in cultured cells. Moreover, these studies designate sterol-accelerated degradation of HMGCR as a potential therapeutic target for prevention of atherosclerosis and associated cardiovascular disease. PMID:27129778

  15. Fabrication and testing of Rutherford-type cables for react and wind accelerator magnets

    SciTech Connect

    Bauer, P.; Ambrosio, G.; Andreev, N.; Barzi, E.; Dietderich, D.; Ewald, K.; Fratini, M.; Ghosh, A.K.; Higley, H.C.; Kim, S.W.; Miller, G.; Miller, J.; Ozelis, J.; Scanlan, R.M.

    2000-09-11

    A common coil design for a high-field accelerator dipole magnet using a Nb{sub 3}Sn cable with the React-and-Wind approach is pursued by a collaboration between Fermilab and LBNL. The design requirements for the cable include a high operating current so that a field of 10-11 T can be produced, together with a low critical current degradation due to bending around a 90 mm radius. A program, using ITER strands of the internal tin type, was launched to develop the optimal cable design for React-and-Wind common coil magnets. Three prototype cable designs, all 15 mill wide, were fabricated: a 41-strand cable with 0.7 mm diameter strands; a 57-strand cable with 0.5 mm diameter strands; and a 259 strand multi-level cable with a 6-around-1 sub-element using 0.3 mm diameter wire. Two versions of these cables were fabricated: one with no core and one with a stainless steel core. Additionally, the possibility of a wide (22 mm) cable made from 0.7 mm strand was explored. This paper describes the first results of the cable program including reports on cable fabrication and reaction, first winding tests and first results of the measurement of the critical current degradation due to cabling and bending.

  16. Reactive oxygen species accelerate degradation of anion exchange membranes based on polyphenylene oxide in alkaline environments.

    PubMed

    Parrondo, Javier; Wang, Zhongyang; Jung, Min-Suk J; Ramani, Vijay

    2016-07-20

    Anion exchange membranes (AEM) based on polyphenylene oxide (PPO) suffered quaternary-ammonium-cation-site degradation in alkaline environments. Surprisingly, the degradation rate was considerably faster in the presence of molecular oxygen. We postulated that the AEM cation-site catalyzes the reduction of dioxygen by hydroxide ions to yield the superoxide anion radical and the highly reactive hydroxyl free radical. We substantiated our hypothesis by using a phosphorous-containing spin trap (5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide) to detect the adducts for both free radicals in situ using (31)P-NMR spectroscopy. PMID:27381009

  17. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    SciTech Connect

    Kafka, Gene

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  18. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Kafka, Gene

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with significant flexibility in mind, but without compromising cost efficiency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of different variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of-flight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  19. Degradation Testing of Fluorotelomer-based polymers (FTPs)

    EPA Science Inventory

    Over the last decade, concern about sources of per and polyfluorochemicals (PFCs) have led to an increasing need for information on the microbial and/or abiotic degradation of polymer materials that contain PFC structural fragments that may be released. EPA, OECD, ASTM and other...

  20. Ex-situ tensile fatigue-creep testing: A powerful tool to simulate in-situ mechanical degradation in fuel cells

    NASA Astrophysics Data System (ADS)

    Sadeghi Alavijeh, A.; Venkatesan, S. V.; Khorasany, R. M. H.; Kim, W. H. J.; Kjeang, E.

    2016-04-01

    An ex-situ tensile fatigue and creep based accelerated stress test (TFC-AST) is proposed to evaluate the mechanical stability of catalyst coated membranes (CCMs) used in fuel cells. The fatigue-creep action of the TFC test is analyzed by tensile and hygrothermal expansion measurements on partially degraded specimens supplemented by microstructural characterization using transmission electron microscopy, revealing significant decay in mechanical properties as well as morphological rearrangement due to the combined fatigue and creep loading. Through comparison with in-situ hygrothermally degraded CCMs, the TFC-AST protocol is demonstrated to be an economical alternative to the costly in-situ mechanical accelerated stress tests that can reduce the test duration by more than 99%.

  1. Demonstration recommendations for accelerated testing of concrete decontamination methods

    SciTech Connect

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are {sup 137}Cs, {sup 238}U (and its daughters), {sup 60}Co, {sup 90}Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 {times} 10{sup 8} ft{sup 2}or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling.

  2. Strontium exerts dual effects on calcium phosphate cement: Accelerating the degradation and enhancing the osteoconductivity both in vitro and in vivo.

    PubMed

    Kuang, Guan-Ming; Yau, W P; Wu, Jun; Yeung, Kelvin W K; Pan, Haobo; Lam, W M; Lu, W W; Chiu, K Y

    2015-05-01

    Calcium phosphate cements (CPCs) have long been used as osteoconductive bone substitutes in the treatment of bone defects. However, the degradation rate of CPC is typically too slow to match the new bone growth rate. It is known that strontium increases the solubility of hydroxyapatite as well as exerts both anabolic and anticatabolic effects on bone. Therefore, we hypothesized that the incorporation of strontium would accelerate the degradation rate and enhance the osteoconductivity of CPC. In this study, Three groups, CPC (0% Sr-CPC), 5% Sr-CPC, and 10% Sr-CPC, were prepared, with the total molar ratio for Sr/(Sr+Ca) in the cement powder phase being 0, 5, and 10%, respectively. In the immersion test, less residual weight was observed in both 5% Sr-CPC and 10% Sr-CPC groups than CPC group. In addition, a higher osteoblastic cell proliferation rate and alkaline phosphatase activity were obtained in the strontium groups. In a rat femur bone defect model comparing CPC with 10% Sr-CPC, at 2 weeks postoperation, early endochondral ossification was found in the 10% Sr-CPC group, whereas only fibrous tissue was observed in control group; at 4-16 weeks postoperation, progressive osteoconduction toward the cement was observed in both groups. At 32 weeks, a higher peri-cement bone area and reduced cement area were noted in the 10% Sr-CPC group. In conclusion, in the 10% Sr-CPC group, strontium exerts dual effects on CPC: accelerating degradation rate and enhancing osteoconductivity, as shown here both in vitro and in vivo. PMID:25087971

  3. LeRC rail accelerators - Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1984-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed. Previously announced in STAR as N83-35053

  4. Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures. Final report

    SciTech Connect

    Ellis, P.F. II; Ferguson, A.F.

    1995-04-19

    In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. Phase 1 of the project, Conceptual Design of an accelerated test method and apparatus, was successfully completed in June 1993. The culmination of that effort was the concept of the Simulated Stator Unit (SSU) test. The objective of the Phase 2 limited proof-of-concept demonstration was to: answer specific engineering/design questions; design and construct an analog control sequencer and supporting apparatus; and conduct limited tests to determine the viability of the SSU test concept. This report reviews the SSU test concept, and describes the results through the conclusion of the proof-of-concept prototype tests in March 1995. The technical design issues inherent in transforming any conceptual design to working equipment have been resolved, and two test systems and controllers have been constructed. Pilot tests and three prototype tests have been completed, concluding the current phase of work. One prototype unit was tested without thermal stress loads. Twice daily insulation property measurements (IPMs) on this unit demonstrated that the insulation property measurements themselves did not degrade the SSU.

  5. Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures

    NASA Astrophysics Data System (ADS)

    Ellis, P. F., II; Ferguson, A. F.

    1995-04-01

    In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. Phase 1 of the project, Conceptual Design of an accelerated test method and apparatus, was successfully completed in June 1993. The culmination of that effort was the concept of the Simulated Stator Unit (SSU) test. The objective of the Phase 2 limited proof-of-concept demonstration was to: answer specific engineering/design questions; design and construct an analog control sequencer and supporting apparatus; and conduct limited tests to determine the viability of the SSU test concept. This report reviews the SSU test concept, and describes the results through the conclusion of the proof-of-concept prototype tests in March 1995. The technical design issues inherent in transforming any conceptual design to working equipment have been resolved, and two test systems and controllers have been constructed. Pilot tests and three prototype tests have been completed, concluding the current phase of work. One prototype unit was tested without thermal stress loads. Twice daily insulation property measurements (IPM's) on this unit demonstrated that the insulation property measurements themselves did not degrade the SSU.

  6. Dust accelerator tests of the LDEX laboratory model

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Bugiel, S.; Hofmann, B.; Horanyi, M.; Sternovsky, Z.; Srama, R.

    2015-10-01

    The LDEX (Lunar Dust EXperiment) sensor onboard lunar orbiter LADEE (Lunar Atmosphere and Dust Environment Explorer) was designed to characterize the size and spatial distributions of micron and sub-micron sized dust grains. Recent results of the data analysis showed strong evidence for the existence of a dust cloud around the moon. LDEX performs in situ measurements of dust impacts along the LADEE or-bit. The impact speed of the observed dust grains is close to 1.7 km/s (the speed of the spacecraft), since the dust grains are considered on bound orbits close to the maximum height of their ballistic motion. LDEX is an impact ionization dust detector for in situ measurements. The detection of a dust grains is based on measuring the charge generated by high speed impacts (>1km/s) on a rhodium coated target. The impact charge Q is a function of both the speed v and the mass m of the impacting dust particle. The characteristic values are dependent on the instrument geometry, the impact surface properties (material), the impact geometry (impact angle) and the particle properties (material, density, speed, mass, shape). In our tests we used PPy-coated olivine and PPy-coated ortho-pyroxene with impact speeds around 1.7 km/s. A LDEX laboratory model was designed and manufactured by the University of Stuttgart. The model is used to support calibration activities of the Univ. of Colorado and to perform special tests (impact angle and impact location variations) at the dust accelerator facility at MPI-K (Heidelberg) which is operated by the IRS of the University of Stuttgart.

  7. Accelerated degradation of caspase-8 protein correlates with TRAIL resistance in a DLD1 human colon cancer cell line.

    PubMed

    Zhang, Lidong; Zhu, Hongbo; Teraishi, Fuminori; Davis, John J; Guo, Wei; Fan, Zhen; Fang, Bingliang

    2005-06-01

    The tumor-selective cytotoxic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) makes TRAIL an attractive candidate as an anticancer agent. However, resistance to TRAIL poses a challenge in anticancer therapy with TRAIL. Therefore, characterizing the mechanisms of resistance and developing strategies to overcome the resistance are important steps toward successful TRAIL-mediated cancer therapy. In this study, we investigated mechanisms of acquired TRAIL resistance in a colon cancer DLD1 cell line. Compared with the TRAIL-susceptible DLD1 cell line, TRAIL-resistant DLD1/TRAIL-R cells have a low level of caspase-8 protein, but not its mRNA. Suppression of caspase-8 expression by siRNA in parental DLD1 cells led to TRAIL resistance. Restoration of caspase-8 protein expression by stable transfection rendered the DLD1/TRAIL-R cell line fully sensitive to TRAIL protein, suggesting that the low level of caspase-8 protein expression might be the culprit in TRAIL resistance in DLD1/TRAIL-R cells. Sequencing analysis of the caspase-8 coding region revealed a missense mutation that is present in both TRAIL-sensitive and TRAIL-resistant DLD1 cells. Subsequent study showed that the degradation of caspase-8 protein was accelerated in DLD1/TRAIL-R cells compared to parental DLD1 cells. Thus, accelerated degradation of caspase-8 protein is one of the mechanisms that lead to TRAIL resistance. PMID:16036110

  8. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation.

    PubMed

    Zhuang, Li; Tang, Jia; Wang, Yueqiang; Hu, Min; Zhou, Shungui

    2015-08-15

    Recent studies have suggested that conductive iron oxide minerals can facilitate syntrophic metabolism of the methanogenic degradation of organic matter, such as ethanol, propionate and butyrate, in natural and engineered microbial ecosystems. This enhanced syntrophy involves direct interspecies electron transfer (DIET) powered by microorganisms exchanging metabolic electrons through electrically conductive minerals. Here, we evaluated the possibility that conductive iron oxides (hematite and magnetite) can stimulate the methanogenic degradation of benzoate, which is a common intermediate in the anaerobic metabolism of aromatic compounds. The results showed that 89-94% of the electrons released from benzoate oxidation were recovered in CH4 production, and acetate was identified as the only carbon-bearing intermediate during benzoate degradation. Compared with the iron-free controls, the rates of methanogenic benzoate degradation were enhanced by 25% and 53% in the presence of hematite and magnetite, respectively. This stimulatory effect probably resulted from DIET-mediated methanogenesis in which electrons transfer between syntrophic partners via conductive iron minerals. Phylogenetic analyses revealed that Bacillaceae, Peptococcaceae, and Methanobacterium are potentially involved in the functioning of syntrophic DIET. Considering the ubiquitous presence of iron minerals within soils and sediments, the findings of this study will increase the current understanding of the natural biological attenuation of aromatic hydrocarbons in anaerobic environments. PMID:25827267

  9. Testing of a Loop Heat Pipe Subjected to Variable Accelerating Forces

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kaya, Tarik; Rogers, Paul; Hoff, Craig

    2000-01-01

    This paper presents viewgraphs of the functionality of a loop heat pipe that was subjected to variable accelerating forces. The topics include: 1) Summary of LHP (Loop Heat Pipe) Design Parameters; 2) Picture of the LHP; 3) Schematic of Test Setup; 4) Test Configurations; 5) Test Profiles; 6) Overview of Test Results; 7) Start-up; 8) Typical Start-up without Temperature Overshoot; 9) Start-up with a Large Temperature Overshoot; 10) LHP Operation Under Stationary Condition; 11) LHP Operation Under Continuous Acceleration; 12) LHP Operation Under Periodic Acceleration; 13) Effects of Acceleration on Temperature Oscillation and Hysteresis; 14) Temperature Oscillation/Hysteresis vs Spin Rate; and 15) Summary.

  10. Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization.

    PubMed

    Marco, Iñigo; Feyerabend, Frank; Willumeit-Römer, Regine; Van der Biest, Omer

    2016-05-01

    This work studies the in vitro degradation of Mg alloys for bioabsorbable implant applications under near physiological conditions. For this purpose, the degradation behaviour of Mg alloys in Dulbecco's modified eagle medium (DMEM) which is a commonly used cell culture medium is analysed. Unfortunately, DMEM can be contaminated by microorganisms, acidifying the medium and accelerating the Mg degradation process by dissolution of protective degradation layers, such as (Mgx,Cay)(PO4)z. In this paper the influence of sterilization by applying UV-C radiation and antibiotics (penicillin/streptomycin) is analysed with two implant material candidates: Mg-Gd and Mg-Ag alloys; and pure magnesium as well as Mg-4Y-3RE as a reference. PMID:26952399

  11. Optical system for measurement of pyrotechnic test accelerations

    NASA Astrophysics Data System (ADS)

    Lieberman, Paul; Czajkowski, John; Rehard, John

    1992-12-01

    This effort was directed at comparing the response of several different accelerometer and amplifier combinations to the pyrotechnic pulse simulating the ordnance separation of stages of multistage missiles. These pyrotechnic events can contain peak accelerations in excess of 100,000 G and a frequency content exceeding 100,000 Hz. The main thrust of this work was to compare the several accelerometer systems with each other and with a very accurate laser Doppler displacement meter in order to establish the frequency bands and acceleration amplitudes where the accelerometer systems are in error. The comparisons were made in simple sine-wave and low-acceleration amplitude environments, as well as in very severe pyroshock environments. An optical laser Doppler displacement meter (LDDM) was used to obtain the displacement velocity and acceleration histories, as well as the corresponding shock spectrum.

  12. Durability analysis of composite structures using the accelerated testing methodology

    NASA Astrophysics Data System (ADS)

    Kuraishi, Akira

    The applications of composite materials are increasing significantly due to their excellent properties and design flexibility, and composite materials have completely replaced conventional metals in several applications. However, much larger opportunities will be likely to occur when physical bases for durability characterization become established. Polymeric composite materials are in general viscoelastic, and their stiffness and strength depend on temperature and loading rate. These effects play an important role in the long-term durability of the composite materials, and therefore it is important to develop a durability analysis method for composite structures that considers these effects. The present approach is based on three components, a new accelerated material characterization methodology, statistical analysis of this methodology, and conventional design tools tailored for the temperature and loading rate dependence. The material characterization methodology uses series of short-term tests at elevated temperatures to predict life for wide ranges of temperature and loading conditions. This methodology is based on the empirical relation between the effects of temperature and loading rate on the stiffness and strength of polymeric composite materials. The statistical analysis allows us to create the confidence interval of the prediction, which is essential in generating the design allowables. Common design tools such as failure criteria and cumulative damage laws can be tailored to consider the temperature and loading rate dependence. These components are integrated into the proposed durability analysis and design method for composite structures. The durability design of a composite rotor for the flywheel energy storage system is shown as an example. This example demonstrates that the proposed design method is not significantly different from conventional designs in terms of complexity and required effort.

  13. Structural basis of Ornithine Decarboxylase inactivation and accelerated degradation by polyamine sensor Antizyme1

    PubMed Central

    Wu, Donghui; Kaan, Hung Yi Kristal; Zheng, Xiaoxia; Tang, Xuhua; He, Yang; Vanessa Tan, Qianmin; Zhang, Neng; Song, Haiwei

    2015-01-01

    Ornithine decarboxylase (ODC) catalyzes the first and rate-limiting step of polyamine biosynthesis in humans. Polyamines are essential for cell proliferation and are implicated in cellular processes, ranging from DNA replication to apoptosis. Excessive accumulation of polyamines has a cytotoxic effect on cells and elevated level of ODC activity is associated with cancer development. To maintain normal cellular proliferation, regulation of polyamine synthesis is imposed by Antizyme1 (AZ1). The expression of AZ1 is induced by a ribosomal frameshifting mechanism in response to increased intracellular polyamines. AZ1 regulates polyamine homeostasis by inactivating ODC activity and enhancing its degradation. Here, we report the structure of human ODC in complex with N-terminally truncated AZ1 (cAZ1). The structure shows cAZ1 binding to ODC, which occludes the binding of a second molecule of ODC to form the active homodimer. Consequently, the substrate binding site is disrupted and ODC is inactivated. Structural comparison shows that the binding of cAZ1 to ODC causes a global conformational change of ODC and renders its C-terminal region flexible, therefore exposing this region for degradation by the 26S proteasome. Our structure provides the molecular basis for the inactivation of ODC by AZ1 and sheds light on how AZ1 promotes its degradation. PMID:26443277

  14. Framework for a Comparative Accelerated Testing Standard for PV Modules: Preprint

    SciTech Connect

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.; Miller, D.; Meakin, D.; Monokroussos, C.; TamizhMani, M.; Kempe, M.; Jordan, D.; Bosco, N.; Hacke, P.; Bermudez, V.; Kondo, M.

    2013-08-01

    As the photovoltaic industry has grown, the interest in comparative accelerated testing has also grown. Private test labs offer testing services that apply greater stress than the standard qualification tests as tools for differentiating products and for gaining increased confidence in long-term PV investments. While the value of a single international standard for comparative accelerated testing is widely acknowledged, the development of a consensus is difficult. This paper strives to identify a technical basis for a comparative standard.

  15. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  16. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  17. Development of a 20-MeV Dielectric-Loaded Accelerator Test Facility

    SciTech Connect

    Gold, S.H.; Kinkead, A.K.; Gai, W.; Power, J.G.; Konecny, R.; Jing, C.G.; Tantawi, S.G.; Nantista, C.D.; Hu, Y.; Chen, H.; Tang, C.; Lin, Y.; Bruce, R.W.; Bruce, R.L.; Fliflet, A.W.; Lewis, D.; /Naval Research Lab, Wash., D.C. /LET Corp., Washington /Argonne /SLAC /Tsinghua U., Beijing

    2005-06-22

    This paper describes a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded accelerator (DLA) test facility powered by a high-power 11.424-GHz magnicon amplifier. The magnicon can presently produce 25 MW of output power in a 250-ns pulse at 10 Hz, and efforts are in progress to increase this to 50 MW. The facility will include a 5 MeV electron inector being developed by the Accelerator Laboratory of Tsinghua University in Beijing, China. The DLA test structures are being developed by ANL, and some have undergone testing at NRL at gradients up to {approx} 8 MV/m. SLAC is developing a means to combine the two magnicon output arms, and to drive an injector and accelerator with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRl, is developing a means to join short ceramic sections into a continuous accelerator tube by ceramic brazing using an intense millimeter-wave beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year. The facility will be used for testing DLA structures using a variety of materials and configurations, and also for testing other X-band accelerator concepts. The initial goal is to produce a compact 20 MeV dielectric-loaded test accelerator.

  18. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    SciTech Connect

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  19. Testing Modules for Potential-Induced Degradation - A Status Update of IEC 62804 (Presentation)

    SciTech Connect

    Hacke, P.

    2014-03-01

    Stresses and degradation rates for the 25 degrees C with foil and the 60 degrees C/85% RH damp heat tests are compared, the Illumination factor on PID rate is evaluated, and measurement techniques and stress levels are discussed.

  20. Experimental evaluation of the Battelle accelerated test design for the solar array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Frickland, P. O.; Repar, J.

    1982-01-01

    A previously developed test design for accelerated aging of photovoltaic modules was experimentally evaluated. The studies included a review of relevant field experience, environmental chamber cycling of full size modules, and electrical and physical evaluation of the effects of accelerated aging during and after the tests. The test results indicated that thermally induced fatigue of the interconnects was the primary mode of module failure as measured by normalized power output. No chemical change in the silicone encapsulant was detectable after 360 test cycles.

  1. Experimental evaluation of the Battelle accelerated test design for the solar array at Mead, Nebraska

    NASA Astrophysics Data System (ADS)

    Frickland, P. O.; Repar, J.

    1982-04-01

    A previously developed test design for accelerated aging of photovoltaic modules was experimentally evaluated. The studies included a review of relevant field experience, environmental chamber cycling of full size modules, and electrical and physical evaluation of the effects of accelerated aging during and after the tests. The test results indicated that thermally induced fatigue of the interconnects was the primary mode of module failure as measured by normalized power output. No chemical change in the silicone encapsulant was detectable after 360 test cycles.

  2. Development of an accelerated leach test(s) for low-level waste forms

    SciTech Connect

    Dougherty, D.R.; Fuhrmann, M.; Colombo, P.

    1985-01-01

    An accelerated leach test(s) is being developed to predict long-term leaching behavior of low-level radioactive waste (LLW) forms in their disposal environments. As necessary background, a literature survey of reported leaching mechanisms, available mathematical models and factors that affect leaching of LLW forms has been compiled. Mechanisms which have been identified include diffusion, dissolution, ion exchange, corrosion and surface effects. A computerized data base of LLW leaching data and mathematical models is being developed. The data is being used for model evaluation by curve fitting and statistical analysis according to standard procedures of statistical quality control. Long-term leach tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms. Initial results on the effect of temperature on leachability indicate that the leach rates of cement and VES waste forms increase with increasing temperature, whereas, the leach rate of bitumen is little affected. 10 refs., 5 figs.

  3. Design and Simulation of IOTA - a Novel Concept of Integrable Optics Test Accelerator

    SciTech Connect

    Nagaitsev, S.; Valishev, A.; Danilov, V.V.; Shatilov, D.N.; /Novosibirsk, IYF

    2012-05-01

    The use of nonlinear lattices with large betatron tune spreads can increase instability and space charge thresholds due to improved Landau damping. Unfortunately, the majority of nonlinear accelerator lattices turn out to be nonintegrable, producing chaotic motion and a complex network of stable and unstable resonances. Recent advances in finding the integrable nonlinear accelerator lattices have led to a proposal to construct at Fermilab a test accelerator with strong nonlinear focusing which avoids resonances and chaotic particle motion. This presentation will outline the main challenges, theoretical design solutions and construction status of the Integrable Optics Test Accelerator (IOTA) underway at Fermilab.

  4. Considerations for a Standardized Test for Potential-Induced Degradation of Crystalline Silicon PV Modules (Presentation)

    SciTech Connect

    Hacke, P.

    2012-03-01

    Over the past decade, there have been observations of module degradation and power loss because of the stress that system voltage bias exerts. This results in part from qualification tests and standards note adequately evaluating for the durability of modules to the long-term effects of high voltage bias that they experience in fielded arrays. This talk deals with factors for consideration, progress, and information still needed for a standardized test for degradation due to system voltage stress.

  5. Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-08-01

    Funding is being requested pursuant to the proposals entitled Elliptical Twin Cavity for Accelerator Applications that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). The PAMS proposal identifier number is 0000219731. The proposed new type of superconducting cavity, the Elliptical Twin Cavity, is capable of accelerating or decelerating beams in two separate beam pipes. This configuration is particularly effective for high-current, low energy electron beams that will be used for bunched beam cooling of high-energy protons or ions. Having the accelerated beam physically separated from the decelerated beam, but interacting with the same RF mode, means that the low energy beam from the gun can be injected into to the superconducting cavity without bends enabling a small beam emittance to be maintained. A staff engineer who has been working with non-standard complicated cavity structures replaces the senior engineer (in the original budget) who is moving on to be a project leader. This is reflected in a slightly increased engineer time and in reduced costs. The Indirect costs for FY16 are lower than the previous projection. As a result, there is no scope reduction.

  6. Modelling of Zircaloy-4 accelerated degradation kinetics in nitrogen-oxygen mixtures at 850 °C

    NASA Astrophysics Data System (ADS)

    Lasserre, M.; Peres, V.; Pijolat, M.; Coindreau, O.; Duriez, C.; Mardon, J.-P.

    2015-07-01

    Zirconium-based alloys used in PWR cladding show an acceleration of their oxidation kinetics in air at high temperature compared to their behaviour under oxygen or steam alone. This paper presents an analysis of the oxidation kinetics in order to explain the role of nitrogen during the accelerated corrosion. Isothermal thermogravimetry on alloy thin plates was used to collect kinetic data during the reaction of Zircaloy-4 at 850 °C in oxygen and nitrogen mixtures. The influence of oxygen and nitrogen partial pressure on the degradation kinetics was studied by a jump method. The presence of nitrogen in the reacting gas enables the formation of zirconium nitride near the oxide-metal interface which acts as a catalytic phase. A three steps reaction path composed of nitride oxidation, α-Zr(O) nitridation and oxidation is proposed. A detailed mechanism and the rate-determining step of the overall process are proposed that account for the experimentally observed dependence of the kinetic rate with the oxygen and nitrogen partial pressures; a kinetic model based on surface nucleation and growth of regions attacked by nitrogen was successful in describing the mass variations with time of exposure at 850 °C.

  7. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines.

    PubMed

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A

    2013-12-01

    The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation. PMID:24482775

  8. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines

    PubMed Central

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A.

    2013-01-01

    The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation. PMID:24482775

  9. Application of accelerated tool life tests to machining of titanium

    SciTech Connect

    Stagner, R.T.

    1980-09-01

    The tool life of several commercial C-2 grade cutting tools used in machining titanium was estimated using two experimental techniques, the quick facing test and the multipass facing test. Comparisons among the tools tested were made statistically by analyzing differences in regression equations derived from test data. Tool life end points were determined by operator judgement, tool force analysis, and tool wear measurement. Of the ten tools tested, nine had the same life under the test conditions.

  10. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  11. Accelerated light-induced degradation for detecting copper contamination in p-type silicon

    SciTech Connect

    Inglese, Alessandro Savin, Hele; Lindroos, Jeanette

    2015-08-03

    Copper is a harmful metal impurity that significantly impacts the performance of silicon-based devices if present in active regions. In this contribution, we propose a fast method consisting of simultaneous illumination and annealing for the detection of copper contamination in p-type silicon. Our results show that, within minutes, such method is capable of producing a significant reduction of the minority carrier lifetime. A spatial distribution map of copper contamination can then be obtained through the lifetime values measured before and after degradation. In order to separate the effect of the light-activated copper defects from the other metastable complexes in low resistivity Cz-silicon, we carried out a dark anneal at 200 °C, which is known to fully recover the boron-oxygen defect. Similar to the boron-oxygen behavior, we show that the dark anneal also recovers the copper defects. However, the recovery is only partial and it can be used to identify the possible presence of copper contamination.

  12. Comparison of Recuperator Alloy Degradation in Laboratory and Engine Testing

    SciTech Connect

    Pint, Bruce A; More, Karren Leslie; Trejo, Rosa M; Lara-Curzio, Edgar

    2008-01-01

    In order to increase the efficiency of advanced microturbines, durable alloy foils are needed for their recuperators to operate at 650-700 C. Prior work has demonstrated that water vapor in the exhaust gas causes more rapid consumption of Cr from austenitic alloys, leading to a reduction in lifetime for the thin-walled components in this application. New commercial alloy foils are being tested in both laboratory tests in humid air and in the exhaust gas of a modified 60 kW microturbine. Initial results are presented for a commercial batch of 80 {micro}m alloy 120 foil. The Cr consumption rates in laboratory testing were similar to those observed in previous testing. The initial results from the microturbine indicate a faster Cr consumption rate compared to the laboratory test, but longer term results are needed to quantify the difference. These results will help to verify a Cr consumption model for predicting lifetimes in this environment based on classical gas transport theory.

  13. Pipe degradation investigations for optimization of flow-accelerated corrosion inspection location selection

    SciTech Connect

    Chandra, S.; Habicht, P.; Chexal, B.; Mahini, R.; McBrine, W.; Esselman, T.; Horowitz, J.

    1995-12-01

    A large amount of piping in a typical nuclear power plant is susceptible to Flow-Accelerated Corrosion (FAC) wall thinning to varying degrees. A typical PAC monitoring program includes the wall thickness measurement of a select number of components in order to judge the structural integrity of entire systems. In order to appropriately allocate resources and maintain an adequate FAC program, it is necessary to optimize the selection of components for inspection by focusing on those components which provide the best indication of system susceptibility to FAC. A better understanding of system FAC predictability and the types of FAC damage encountered can provide some of the insight needed to better focus and optimize the inspection plan for an upcoming refueling outage. Laboratory examination of FAC damaged components removed from service at Northeast Utilities` (NU) nuclear power plants provides a better understanding of the damage mechanisms involved and contributing causes. Selected results of this ongoing study are presented with specific conclusions which will help NU to better focus inspections and thus optimize the ongoing FAC inspection program.

  14. Design, fabrication and first beam tests of the C-band RF acceleration unit at SINAP

    NASA Astrophysics Data System (ADS)

    Fang, Wencheng; Gu, Qiang; Sheng, Xing; Wang, Chaopeng; Tong, Dechun; Chen, Lifang; Zhong, Shaopeng; Tan, Jianhao; Lin, Guoqiang; Chen, Zhihao; Zhao, Zhentang

    2016-07-01

    C-band RF acceleration is a crucial technology for the compact Free Electron Laser (FEL) facility at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences. A project focusing on C-band RF acceleration technology was launched in 2008, based on high-gradient accelerating structures powered by klystron and pulse compressor units. The target accelerating gradient is 40 MV/m or higher. Recently one prototype of C-band RF unit, consisting of a 1.8 m accelerating structure and a klystron with a TE0115 mode pulse compressor, has been tested with high-power and electron beam. Stable operation at 40 MV/m was demonstrated and, 50 MV/m approached by the end of the test. This paper introduces the C-band R&D program at SINAP and presents the experiment results of high-power and beam tests.

  15. Mechanism of mark deformation in phase-change media tested in an accelerated environment

    NASA Astrophysics Data System (ADS)

    Hirotsune, Akemi; Terao, Motoyasu; Miyauchi, Yasushi; Tokushuku, Nobuhiro; Tamura, Reiji

    2007-04-01

    Increased jitter caused by recording marks becoming deformed in an accelerated environmental test was investigated and a model where the change in the speed of crystallization is affected by passive oxidation on the amorphous surface of the recording layer was devised. The model clarified the mechanism by which deformation in the marks caused increased jitter in the accelerated environmental test. Adding nitrogen into the gas when sputtering the protective layer adjacent to the recording film was investigated. It was confirmed that a prototype disk with this protective layer has decreased jitter after a 500 h accelerated test and superior power margins.

  16. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    SciTech Connect

    Gold, S.H.; Kinkead, A.K.; Gai, W.; Power, J.G.; Konecny, R.; Jing, C.; Long, J.; Tantawi, S.G.; Nantista, C.D.; Fliflet, A.W.; Lombardi, M.; Lewis, D.; Bruce, R.W.; /Unlisted

    2007-04-13

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to {approx}8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  17. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    SciTech Connect

    Gold, Steven H.; Fliflet, Arne W.; Lombardi, Marcie; Kinkead, Allen K.; Gai, Wei; Power, John G.; Konecny, Richard; Long, Jidong; Jing, Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Bruce, Ralph W.; Lewis, David III

    2006-11-27

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to {approx}8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  18. Numerical Analysis of JNES Seismic Tests on Degraded Combined Piping System

    SciTech Connect

    Zhang T.; Nie J.; Brust, F.; Wilkowski, G.; Hofmayer, C.; Ali, S.; Shim, D-J.

    2012-02-02

    Nuclear power plant safety under seismic conditions is an important consideration. The piping systems may have some defects caused by fatigue, stress corrosion cracking, etc., in aged plants. These cracks may not only affect the seismic response but also grow and break through causing loss of coolant. Therefore, an evaluation method needs to be developed to predict crack growth behavior under seismic excitation. This paper describes efforts conducted to analyze and better understand a series of degraded pipe tests under seismic loading that was conducted by Japan Nuclear Energy Safety Organization (JNES). A special 'cracked-pipe element' (CPE) concept, where the element represented the global moment-rotation response due to the crack, was developed. This approach was developed to significantly simplify the dynamic finite element analysis in fracture mechanics fields. In this paper, model validation was conducted by comparisons with a series of pipe tests with circumferential through-wall and surface cracks under different excitation conditions. These analyses showed that reasonably accurate predictions could be made using the abaqus connector element to model the complete transition of a circumferential surface crack to a through-wall crack under cyclic dynamic loading. The JNES primary loop recirculation piping test was analyzed in detail. This combined-component test had three crack locations and multiple applied simulated seismic block loadings. Comparisons were also made between the ABAQUS finite element (FE) analyses results to the measured displacements in the experiment. Good agreement was obtained, and it was confirmed that the simplified modeling is applicable to a seismic analysis for a cracked pipe on the basis of fracture mechanics. Pipe system leakage did occur in the JNES tests. The analytical predictions using the CPE approach did not predict leakage, suggesting that cyclic ductile tearing with large-scale plasticity was not the crack growth mode for

  19. History of Accelerated and Qualification Testing of Terrestrial Photovoltaic Modules: A Literature Review

    SciTech Connect

    Osterwald, C. R.; McMahon, T. J.

    2009-01-01

    We review published literature from 1975 to the present for accelerated stress testing of flat-plate terrestrial photovoltaic (PV) modules. An important facet of this subject is the standard module test sequences that have been adopted by national and international standards organizations, especially those of the International Electrotechnical Commission (IEC). The intent and history of these qualification tests, provided in this review, shows that standard module qualification test results cannot be used to obtain or infer a product lifetime. Closely related subjects also discussed include: other limitations of qualification testing, definitions of module lifetime, module product certification, and accelerated life testing.

  20. Testing of Composite Fan Vanes With Erosion-Resistant Coating Accelerated

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Sutter, James K.; Otten, Kim D.; Samorezov, Sergey; Perusek, Gail P.

    2004-01-01

    The high-cycle fatigue of composite stator vanes provided an accelerated life-state prior to insertion in a test stand engine. The accelerated testing was performed in the Structural Dynamics Laboratory at the NASA Glenn Research Center under the guidance of Structural Mechanics and Dynamics Branch personnel. Previous research on fixturing and test procedures developed at Glenn determined that engine vibratory conditions could be simulated for polymer matrix composite vanes by using the excitation of a combined slip table and electrodynamic shaker in Glenn's Structural Dynamics Laboratory. Bench-top testing gave researchers the confidence to test the coated vanes in a full-scale engine test.

  1. Collimated focal ratio degradation testing for highly multiplexed fiber systems-an improvement to a standard test.

    PubMed

    Finstad, Daniel; Wishnow, Edward; Poppett, Claire; Sirk, Martin; Edelstein, Jerry; Gibson, Steve; Marcy, Geoff; Howard, Andrew

    2016-09-01

    A simple method for determining the focal ratio degradation of optical fibers has been developed. The method involves splitting the light from the test fiber and recording ring patterns that have traveled over two different, and known, optical paths. This new method will be valuable for testing many fibers as will be needed for new multiobject astronomical spectrographs. PMID:27607255

  2. LWRSP FY09 testing and analysis of reactor metal degradation

    SciTech Connect

    Busby, Jeremy T; Nanstad, Randy K; Odette, G.; Was, Gary

    2009-09-01

    Current regulations require RPV steels to maintain conservative margins of fracture toughness so that postulated flaws do not threaten the integrity of the RPV during either normal operation and maintenance cycles or under accident transients, like pressurized thermal shock. Neutron irradiation degrades fracture toughness, in some cases severely. Thermal aging, while not generally considered a significant issue for a 40-y operating life, must be an additional consideration for operation to 60 or 80 years. Regulations, codified in the ASME Boiler and Pressure Vessel Code, Regulatory Guide 1.99 Rev 2, etc., recognize that embrittlement has a potential for reducing toughness below acceptable levels. The last few decades have seen remarkable progress in developing a mechanistic understanding of irradiation embrittlement. This understanding has been exploited in formulating robust, physically-based and statistically-calibrated models of CVN-indexed transition-temperature shifts (TTS). These semi-empirical models account for key embrittlement variables and variable interactions, including the effects of copper (Cu), nickel (Ni), phosphorous (P), fluence ({phi}t), flux ({phi}), and irradiation temperature (T{sub i}). However, these models and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables and issues. Over the past three decades, developments in fracture mechanics have led to a number of consensus standards and codes for determining the fracture toughness parameters needed for development of databases that are useful for statistical analysis and establishment of uncertainties. The CVN toughness, however, is a qualitative measure, which must be correlated with the fracture toughness and crack-arrest toughness properties, K{sub Ic} and K{sub Ia}, necessary for structural integrity evaluations. Where practicable, direct measurements of the fracture toughness properties are desirable to reduce

  3. Development of a Compact Dielectric-Loaded Test Accelerator at 11.4 GHz

    SciTech Connect

    Gold, S. H.; Fliflet, A. W.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.

    2009-01-22

    This paper presents a progress report on the development of a dielectric-loaded test accelerator in the Magnicon Facility at the Naval Research Laboratory (NRL). The accelerator will be powered by an 11.4-GHz magnicon amplifier that provides up to 25 MW of output power in a {approx}250-ns pulse at up to 10 Hz. The accelerator includes a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate dielectric-loaded accelerating (DLA) structures of up to 0.5 m in length. The DLA structures are being developed by Argonne National Laboratory and Euclid Techlabs, and shorter test structures fabricated from a variety of dielectric materials have undergone rf testing at NRL at accelerating gradients up to 15 MV/m. The first stage of the accelerator, including the 5-MeV injector, has recently begun operation, and initial operation of the complete dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  4. Analysis of Transmitted Optical Spectrum Enabling Accelerated Testing of CPV Designs: Preprint

    SciTech Connect

    Miller, D. C.; Kempe, M. D.; Kennedy, C. E.; Kurtz, S. R.

    2009-07-01

    Reliability of CPV systems' materials is not well known; methods for accelerated UV testing have not been developed. UV and IR spectra transmitted through representative optical systems are evaluated.

  5. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    NASA Technical Reports Server (NTRS)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  6. Tracking MOV operability under degraded voltage condition by periodic test measurements

    SciTech Connect

    Hussain, B.; Behera, A.K.; Alsammarae, A.J.

    1996-12-31

    The purpose of this paper is to develop a methodology for evaluating the operability of Alternating Current (AC) Motor Operated Valve (MOV) under degraded voltage condition, based on the seating parameter measured during surveillance/testing. This approach will help resolve Nuclear Regulatory Commission`s (NRC`s) concern on verifying the AC MOV`s design basis capability through periodic testing.

  7. Verification of force and acceleration specifications for random vibration tests of Cassini spacecraft equipment

    NASA Technical Reports Server (NTRS)

    Chang, Kurng Y.; Scharton, Terry D.

    1996-01-01

    The use of force limiting in the random vibration testing of the Cassini spacecraft's subsystems is reported on. A verification of the Cassini equipment random vibration test acceleration and force specifications is provided by interface acceleration and force data measured in acoustic tests of the Cassini spacecraft development test model (DTM). Acoustic tests were performed on the DTM structure with different structural and equipment configurations. The acceleration and force spectra at the interface between the equipment items and the spacecraft DTM structure were measured in the acoustic tests and compared with the equipment random vibration test specifications. The spacecraft's apparent masses were measured at the equipment mounting points and used in force limit predictions.

  8. Environmental reflectance degradation of Central Receiver Test Facility /CRTF/ heliostats

    NASA Astrophysics Data System (ADS)

    King, D. L.; Myers, J. E.

    1980-01-01

    A study has been performed to examine the effects of environmental exposure and consequent dust buildup on the reflectance of mirrors located in the heliostat field (which included 222 heliostats, composed of 25 1.22 x 1.22 meter glass mirrors) of the Central Receiver Test Facility (CRTF), constructed for evaluating solar central receiver design concepts. Nine sample mirrors were mounted adjacent to the field heliostat mirrors and removed every week for 64 weeks for laboratory reflectance measurements. A field portable reflectometer measured the actual CRTF heliostats for two and one-half years, and made it possible to quantify the rain cleaning effects on the CRTF mirrors. Measurements indicated relatively slow dust buildup rates: annual solar reflectance loss was found to be only three to five percent. Rain was proven to be an effective means for cleaning heliostat mirrors.

  9. Development of an accelerated reliability test schedule for terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Prince, J. L.

    1981-01-01

    An accelerated test schedule using a minimum amount of tests and a minimum number of cells has been developed on the basis of stress test results obtained from more than 1500 cells of seven different cell types. The proposed tests, which include bias-temperature, bias-temperature-humidity, power cycle, thermal cycle, and thermal shock tests, use as little as 10 and up to 25 cells, depending on the test type.

  10. Light-triggered chemical amplification to accelerate degradation and release from polymeric particles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cc06143a Click here for additional data file.

    PubMed Central

    Olejniczak, Jason; Nguyen Huu, Viet Anh; Lux, Jacques; Grossman, Madeleine; He, Sha

    2015-01-01

    We describe a means of chemical amplification to accelerate triggered degradation of a polymer and particles composed thereof. We designed a light-degradable copolymer containing carboxylic acids masked by photolabile groups and ketals. Photolysis allows the unmasked acidic groups in the polymer backbone to accelerate ketal hydrolysis even at neutral pH. PMID:26445896

  11. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    SciTech Connect

    Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

    2012-05-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  12. Accelerated Fatigue Testing of Stent-Like Diamond Specimens

    NASA Astrophysics Data System (ADS)

    Zipse, A.; Schlun, M.; Dreher, G.; Zum Gahr, J.; Rebelo, N.

    2011-07-01

    In this study, we investigated the fatigue behavior of stent-like diamond specimens with particular attention paid to the nature of the test specimen, the constitutive model for the finite element analyses and the displacement condition. A newly designed test rig did enhance the investigation and results with respect to the simulation of the expected in vivo displacement conditions. The excellent performance of the new test method presented within our study provides a good basis for future tests without risk of compromised results due to differing characteristics between test specimens and finished stents, inappropriate displacement conditions or constitutive material model and provides a high reliability and applicability of the results to actual stents.

  13. LIDT test coupled with gamma radiation degraded optics

    NASA Astrophysics Data System (ADS)

    IOAN, M.-R.

    2016-06-01

    A laser can operate in regular but also in nuclear ionizing radiation environments. This paper presents the results of a real time measuring method used to detect the laser induced damage threshold (LIDT) in the optical surfaces/volumes of TEMPAX borosilicate glasses operating in high gamma rays fields. The laser damage quantification technique is applied by using of an automated station intended to measure the damage threshold of optical components, according to the International Standard ISO 21254. Single and multiple pulses laser damage thresholds were determined. For an optical material, life time when it is subjected to multiple pulses of high power laser radiation can be predicted. A few ns pulses shooting laser, operating in regular conditions, inflects damage to a target by its intense electrical component but also in a lower manner by local absorption of its transported thermal energy. When the beam is passing thru optical glass elements affected by ionizing radiation fields, the thermal component is starting to have a more important role, because of the increased thermal absorption in the material's volume caused by the radiation induced color centers. LIDT results on TEMPAX optical glass windows, with the contribution due to the gamma radiation effects (ionization mainly by Compton effect in this case), are presented. This contribution was highlighted and quantified. Energetic, temporal and spatial beam characterizations (according to ISO 11554 standards) and LIDT tests were performed using a high power Nd: YAG laser (1064 nm), before passing the beam through each irradiated glass sample (0 kGy, 1.3 kGy and 21.2 kGy).

  14. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 1; Start-up

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. They are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the first part of the experimental study, i.e. the effects of a centrifugal force on the LHP start-up. Tests were conducted by varying the heat load to the evaporator, sink temperature, magnitude and frequency of centrifugal force, and LHP orientation relative to the direction of the accelerating force. The accelerating force seems to have little effect on the loop start-up in terms of temperature overshoot and superheat at boiling incipience. Changes in these parameters seem to be stochastic with or without centrifugal accelerating forces. The LHP started successfully in all tests.

  15. Prototype of a test bench for applied research on Extracted beams of the nuclotron accelerator complex

    NASA Astrophysics Data System (ADS)

    Baldin, A. A.; Berlev, A. I.; Bradnova, V.; Butenko, A. V.; Fedorov, A. N.; Kudashkin, I. V.

    2016-05-01

    The results of the development and testing of elements of a test bench for investigating the impact of accelerated particle beams on biological objects, electronics, and other targets are presented. The systems for beam monitoring and target positioning were tested on extracted argon beams in the framework of experiments on studying the radiation hardness of electronic components.

  16. Accelerated Desensitization and Adaptive Attitudes Interventions and Test Gains with Academic Probation Students

    ERIC Educational Resources Information Center

    Driscoll, Richard; Holt, Bruce; Hunter, Lori

    2005-01-01

    The study evaluates the test-gain benefits of an accelerated desensitization and adaptive attitudes intervention for test-anxious students. College students were screened for high test anxiety. Twenty anxious students, half of them on academic probation, were assigned to an Intervention or to a minimal treatment Control group. The Intervention was…

  17. Cbl-b accelerates trypsin-induced cell detachment through ubiquitination and degradation of proline-rich tyrosine kinase 2.

    PubMed

    Fan, Yibo; Qu, Xiujuan; Ma, Yanju; Qu, Jinglei; Liu, Yunpeng; Hu, Xuejun

    2014-11-01

    Trypsin is a digestive enzyme that is widely used for cell detachment, which is the first stage of tumor metastasis. Recent studies show that adhesion-related kinases are involved in cell detachment. Proline-rich tyrosine kinase 2 (Pyk2) is a crucial kinase in the regulation of cell adhesion and detachment. However, the effect of Pyk2 on cell detachment is controversial. In the present study, we found that Pyk2 expression was rapidly decreased after trypsin treatment in gastric cancer, breast cancer, colon cancer, lung cancer, and human gastric epithelial cells. Knockdown of Pyk2 accelerated cell detachment. Furthermore, lysosome inhibitor NH4CL suppressed cell detachment and increased ubiquitination of Pyk2. Cbl-b is a type of E3 ubiquitin ligase that interacted with Pyk2, reduced the expression of Pyk2, and promoted trypsin-induced degradation of Pyk2. These findings suggest that Cbl-b promoted cell detachment through mono-ubiquitination of Pyk2. Our data provide a new insight into the role of Cbl-b in cell detachment. PMID:25099615

  18. Design and test of a superconducting magnet in a linear accelerator for an Accelerator Driven Subcritical System

    NASA Astrophysics Data System (ADS)

    Peng, Quanling; Xu, Fengyu; Wang, Ting; Yang, Xiangchen; Chen, Anbin; Wei, Xiaotao; Gao, Yao; Hou, Zhenhua; Wang, Bing; Chen, Yuan; Chen, Haoshu

    2014-11-01

    A batch superconducting solenoid magnet for the ADS proton linear accelerator has been designed, fabricated, and tested in a vertical dewar in Sept. 2013. A total of ten superconducting magnets will be installed into two separate cryomodules. Each cryomodule contains six superconducting spoke RF cavities for beam acceleration and five solenoid magnets for beam focusing. The multifunction superconducting magnet contains a solenoid for beam focusing and two correctors for orbit correction. The design current for the solenoid magnet is 182 A. A quench performance test shows that the operating current of the solenoid magnet can reach above 300 A after natural quenching on three occasions during current ramping (260 A, 268 A, 308 A). The integrated field strength and leakage field at the nearby superconducting spoke cavities all meet the design requirements. The vertical test checked the reliability of the test dewar and the quench detection system. This paper presents the physical and mechanical design of the batch magnets, the quench detection technique, field measurements, and a discussion of the residual field resulting from persistent current effects.

  19. Status and Plans for an SRF Accelerator Test Facility at Fermilab

    SciTech Connect

    Church, M.; Leibfritz, J.; Nagaitsev, S.; /Fermilab

    2011-07-29

    A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  20. High brightness photocathode injector for BNL Accelerator Test Facility

    SciTech Connect

    Parsa, Z.; Young, L.

    1990-01-01

    An analysis of the BNL photocathode (1-1/2 cell) Gun'' operating at 2856 MHZ, is presented. The beam parameters including beam energy, and emittance are calculated. A review of the Gun parameters and full input and output of our analysis with program PARMELA, is given in Section 2, some of our results, are tabulated. The phase plots and the beam parameters, at downstream ends of the elements, from cathode through the cavity, first cell is labeled as element 2; and second cell is labeled as element to the exit of the GUN. The analysis was made for 3 cases, using three different initial values (EO) for the average accelerating gradient (MV/m), for comparison with previous works. For illustration, the field obtained with program SUPERFISH is given, and conclusion including shunt impedances obtained for the cells and the cavity are given in Section 6. PARMELA is used as a standard design program at ATF. At the request of some of the users of program PARMELA, this request of some of the users of program PARMELA, this report include and illustrates some of our data, in the input and output format of the program PARMELA. 5 refs., 7 figs., 3 tabs.

  1. Measurement requirements and techniques for degradation studies and lifetime prediction testing of photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Sliemers, F. A.; Derringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.

    1978-01-01

    Tests of weathering and aging behavior are being developed to characterize the degradation and predict the lifetimes of low-cost photovoltaic arrays. Environmental factors which affect array performance include UV radiation, thermal energy, water, oxygen (generally involved in synergistic effects with UV radiation or high temperatures), physical stress, pollutants (oxides of nitrogen, sulfur dioxide and ozone), abrasives and dirt. A survey of photovoltaic array testing has shown the need to establish quantitative correlations between certain measurable properties (carbonyl formation, glass transition temperature, and molecular weight change) and modes of degradation and failure.

  2. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 2; Temperature Stability

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kaya, Taril; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. LHP's are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that in stationary tests the LHP operating temperature is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled. Results of this test program indicate that any change in the accelerating force will result in a chance in the LHP operating temperature through its influence on the fluid distribution in the evaporator, condenser and compensation chamber. However, the effect is not universal, rather it is a function of other test conditions. A steady, constant acceleration may result in an increase or decrease of the operating temperature, while a periodic spin will lead to a quasi-steady operating temperature over a sufficient time interval. In addition, an accelerating force may lead to temperature hysteresis and changes in the temperature oscillation. In spite of all these effects, the LHP continued to operate without any problems in all tests.

  3. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  4. [Assessment of soil degradation in regions of nuclear power explosions at Semipalatinsk Nuclear Test Site].

    PubMed

    Evseeva, T I; Geras'kin, S A; Maĭstrenko, T A; Belykh, E S

    2011-01-01

    Degree of the soil cover degradation at the "Balapan" and "Experimental field" test sites was assessed based on Allium-test of soil toxicity results and international guidelines on radioactive restriction of solid materials (IAEA, 2004) and environment (Smith, 2005). Soil cover degradation maps of large-scale (1 : 25000) were made. The main part of the area mapped belongs to high-contaminated toxic degraded soil. A relationship between the soil toxicity and the total radionuclide activity concentrations was found to be described by power functions. When the calculated value (equal to 413-415 Bq/kg of air dry soil) increases, the soil becomes toxic for plants. This value is 7.8 times higher than the maximal value for background territories (53 Bq/kg) surrounding SNTS. Russian sanitary and hygienic guidelines (Radiation safety norms, 2009; Sanitary regulations of radioactive waste management, 2003) underestimate the degree of soil radioactive contamination for plants. PMID:21674955

  5. Investigating the feasibility of temperature-controlled accelerated drug release testing for an intravaginal ring.

    PubMed

    Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra

    2013-11-01

    The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non

  6. A facility to test short superconducting accelerator magnets at Fermilab

    SciTech Connect

    Lamm, M.J.; Hess, C.; Lewis, D.; Jaffery, T.; Kinney, W.; Ozelis, J.P.; Strait, J.; Butteris, J.; McInturff, A.D.; Coulter, K.J.

    1992-10-01

    During the past four years the Superconducting Magnet R&D facility at Fermilab (Lab 2) has successfully tested superconducting dipole, quadrupole, and correction coil magnets less than 2 meters in length for the SSC project and the Tevatron D0/B0 Low-{beta} Insertion. During this time several improvements have been made to the facility that have greatly enhanced its magnet testing capabilities. Among the upgrades have been a new rotating coil and data acquisition system for measuring magnetic fields, a controlled flow liquid helium transfer line using an electronically actuated cryo valve, and stand-alone systems for measuring AC loss and training low current Tevatron correction coil packages. A description of the Lab 2 facilities is presented.

  7. A facility to test short superconducting accelerator magnets at Fermilab

    SciTech Connect

    Lamm, M.J.; Hess, C.; Lewis, D.; Jaffery, T.; Kinney, W.; Ozelis, J.P.; Strait, J. ); Butteris, J.; McInturff, A.D. ); Coulter, K.J. )

    1992-10-01

    During the past four years the Superconducting Magnet R D facility at Fermilab (Lab 2) has successfully tested superconducting dipole, quadrupole, and correction coil magnets less than 2 meters in length for the SSC project and the Tevatron D0/B0 Low-[beta] Insertion. During this time several improvements have been made to the facility that have greatly enhanced its magnet testing capabilities. Among the upgrades have been a new rotating coil and data acquisition system for measuring magnetic fields, a controlled flow liquid helium transfer line using an electronically actuated cryo valve, and stand-alone systems for measuring AC loss and training low current Tevatron correction coil packages. A description of the Lab 2 facilities is presented.

  8. Developing an accelerated test of coking tendencies of alternative fuels

    SciTech Connect

    Clevenger, M.D.; Bagby, M.O.; Schwab, A.W.; Goering, C.E.; Savage, L.D.

    1988-07-01

    Burning vegetable oils in direct-injected diesel engines leads to nozzle and combustion chamber coking and eventually to engine damage. Because typical durability tests to detect coking tendencies of fuels are expensive, a one-cylinder diesel engine was instrumented and automated to enable external detection of engine coking in only 5 h. The heat release pattern revealed shifts to later burning as coke accumulated in the engine, but exhaust emissions showed little correlation with coke accumulation.

  9. Design and Factory Test of the E /E- Frascati Linear Accelerator for DAFNE

    SciTech Connect

    Anamkath, H.; Lyons, S.; Nett, D.; Treas, P.; Whitham, K.; Zante, T.; Miller, R.; Boni, R.; Hsieh, H.; Sannibale, F.; Vescovi, M.; Vignola, G.; /Frascati

    2011-11-28

    The electron-positron accelerator for the DAFNE project has been built and is in test at Titan Beta in Dublin, CA. This S-Band RF linac system utilizes four 45 MW sledded klystrons and 16-3 m accelerating structures to achieve the required performance. It delivers a 4 ampere electron beam to the positron converter and accelerates the resulting positrons to 550 MeV. The converter design uses a 4.3T pulsed tapered flux compressor along with a pseudo-adiabatic tapered field to a 5 KG solenoid over the first two positron accelerating sections. Quadrupole focusing is used after 100 MeV. The system performance is given in Table 1. This paper briefly describes the design and development of the various subassemblies in this system and gives the initial factory test data.

  10. Isolation of a piezoresistive accelerometer used in high acceleration tests

    NASA Astrophysics Data System (ADS)

    Bateman, V. I.; Brown, F. A.; Davie, N. T.

    Both uniaxial and triaxial shock isolation techniques for a piezoresistive accelerometer have been developed for pyroshock and impact tests. The uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of -50 to +186 F and a frequency bandwidth of DC to 10 kHz. The triaxial shock isolation technique has demonstrated acceptable results for a temperature range of -50 to 70 F and a frequency bandwidth of DC to 10 kHz. These temperature ranges, that are beyond the accelerometer manufacturer's operational limits of -30 and +150 F, required the calibration of accelerometers at high shock levels and at the temperature extremes of -50 and +160 F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000 - 15,000 g for the temperature extremes of -50 and +160 F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST-traceable accuracy for the standard accelerometer in shock is +\\-5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%.

  11. Using Globular Clusters to Test Gravity in the Weak Acceleration Regime

    NASA Astrophysics Data System (ADS)

    Scarpa, Riccardo; Marconi, Gianni; Gilmozzi, Roberto; Carraro, Giovanni

    2007-06-01

    We report on the results from an ongoing programme aimed at testing Newton's law of gravity in the low acceleration regime using globular clusters. We find that all clusters studied so far behave like galaxies, that is, their velocity dispersion profiles flatten out at large radii where the acceleration of gravity goes below 10 8 cm s 2, instead of following the expected Keplerian fall-off. In galaxies this behaviour is ascribed to the existence of a dark matter halo. Globular clusters, however, are not supposed to contain dark matter, hence this result might indicate that our present understanding of gravity in the weak regime of accelerations is incomplete and possibly incorrect.

  12. Accelerated aging tests on ENEA-ASE solar coating for receiver tube suitable to operate up to 550 °C

    NASA Astrophysics Data System (ADS)

    Antonaia, A.; D'Angelo, A.; Esposito, S.; Addonizio, M. L.; Castaldo, A.; Ferrara, M.; Guglielmo, A.; Maccari, A.

    2016-05-01

    A patented solar coating for evacuated receiver, based on innovative graded WN-AlN cermet layer, has been optically designed and optimized to operate at high temperature with high performance and high thermal stability. This solar coating, being designed to operate in solar field with molten salt as heat transfer fluid, has to be thermally stable up to the maximum temperature of 550 °C. With the aim of determining degradation behaviour and lifetime prediction of the solar coating, we chose to monitor the variation of the solar absorptance αs after each thermal annealing cycle carried out at accelerated temperatures under vacuum. This prediction method was coupled with a preliminary Differential Thermal Analysis (DTA) in order to give evidence for any chemical-physical coating modification in the temperature range of interest before performing accelerated aging tests. In the accelerated aging tests we assumed that the temperature dependence of the degradation processes could be described by Arrhenius behaviour and we hypothesized that a linear correlation occurs between optical parameter variation rate (specifically, Δαs/Δt) and degradation process rate. Starting from Δαs/Δt values evaluated at 650 and 690 °C, Arrhenius plot gave an activation energy of 325 kJ mol-1 for the degradation phenomenon, where the prediction on the coating degradation gave a solar absorptance decrease of only 1.65 % after 25 years at 550 °C. This very low αs decrease gave evidence for an excellent stability of our solar coating, also when employed at the maximum temperature (550 °C) of a solar field operating with molten salt as heat transfer fluid.

  13. Surface degradation of CeO2 stabilized acrylic polyurethane coated thermally treated jack pine during accelerated weathering

    NASA Astrophysics Data System (ADS)

    Saha, Sudeshna; Kocaefe, Duygu; Boluk, Yaman; Pichette, Andre

    2013-07-01

    The thermally treated wood is a new value-added product and is very important for the diversification of forestry products. It drew the attention of consumers due to its attractive dark brown color. However, it loses its color when exposed to outside environment. Therefore, development of a protective coating for this value added product is necessary. In the present study, the efficiency of CeO2 nano particles alone or in combination with lignin stabilizer and/or bark extracts in acrylic polyurethane polymer was investigated by performing an accelerated weathering test. The color measurement results after accelerated weathering demonstrated that the coating containing CeO2 nano particles was the most effective whereas visual assessment suggested the coating containing CeO2 nano particles and lignin stabilizer as the most effective coating. The surface polarity changed for all the coatings during weathering and increase in contact angle after weathering suggested cross linking and reorientation of the polymer chain during weathering. The surface chemistry altered during weathering was evaluated by ATR-FTIR analysis. It suggested formation of different carbonyl byproducts during weathering. The chain scission reactions of the urethane linkages were not found to be significant during weathering.

  14. Technological Issues and High Gradient Test Results on X-Band Molybdenum Accelerating Structures

    SciTech Connect

    Spataro, B.; Alesini, D.; Chimenti, V.; Dolgashev, V.; Haase, A.; Tantawi, S.G.; Higashi, Y.; Marrelli, C.; Mostacci, A.; Parodi, R.; Yeremian, A.D.; /SLAC

    2012-04-24

    Two 11.424 GHz single cell standing wave accelerating structures have been fabricated for high gradient RF breakdown studies. Both are brazed structures: one made from copper and the other from sintered molybdenum bulk. The tests results are presented and compared to those of similar devices constructed at SLAC (Stanford Linear Accelerator Center) and KEK (Ko Enerugi Kasokuki Kenkyu Kiko). The technological issues to build both sections are discussed.

  15. High irradiance UV/condensation testers allow faster accelerated weathering test results

    SciTech Connect

    Brennan, P.J.; Fedor, G.R.

    1993-12-31

    Because outdoor exposures are so time consuming, accelerated laboratory testing is used extensively by industry. One of the more popular laboratory weathering testers is the ASTM G53 UV/Condensation device, also known as the QUV. This paper examines an enhancement to the G53 weather tester that allows precise control of light output and higher than previous light intensity levels. Data is presented on the accelerating effect of higher irradiance on several common polymers.

  16. Atomic oxygen ground-based accelerated tests of spacecraft materials and structures for long-term LEO missions

    NASA Astrophysics Data System (ADS)

    Chernik, Vladimir; Novikov, Lev; Smirnova, Tatyana; Shumov, Andrey

    Spacecraft materials are degradated during long-term low earth orbit (LEO) flight. The Internation Space Station (ISS) is planed to be prolonged the term of action up to 20-25 years. To specify so long life one requires a validation of spacecraft material behaviour conservation for the period. The LEO environment includes atomic oxygen (AO) destructive incident flow. The appropriate AO fluence is proposed to be as high as 10E22-10E23 atom O/sq cm. The simulative ground-based test is evident to be acceptable if its duration is not too long usually under several hundreds of hours. In that case the rate of the test acceleration exceeds 100-200. One way to accelerate test is to increase oxygen particles energy. We test materials under oxygen plasma beam, formed by a magnetoplasmadynamic accelerator, with the oxygen particle energy of 20 -30 eV. In this way we determine an AO effective fluence by a kapton equivalent technique. The beam varies from LEO incident flow by energy, flux and rates of the oxygen dissociation / ionization/ excitation. To evaluate the test adequacy we measured and compared with LEO data erosion yields of a number of polymer materials, applied on spacecraft external surfaces. There were: polyimide (kapton), polyamide (nylon), polyethylene, polyvinyl fluoride (tedlar), polysteren, polymethyl methacrylate, epoxy, polyethylene terephthalate (mylar), graphite. Their relative erosion yields, measured and normalized by polyimide in this way, practically coincide with the data of flight experiments on the ISS. The results ground to use our plasma mode for accelerated tests of spacecraft material durability for long-term LEO flights. We tested quite a number of polymer-based materials and structures usable on ISS and another LEO spacecrafts. The effective AO fluencies ran up to 3,5 10E22 atom O/sq cm corresponding to the ISS flight duration about 20 years. We studied material behaviors like mass and thickness losses, erosion yield, surface morphology

  17. Isolation of a piezoresistive accelerometer used in high acceleration tests

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1992-12-31

    Both uniaxial and triaxial shock isolation techniques for a piezoresistive accelerometer have been developed for pyroshock and impact tests. The uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of {minus}50{degree}F to +186{degree}F and a frequency bandwidth of DC to 10 kHz. The triaxial shock isolation technique has demonstrated acceptable results for a temperature range of {minus}50{degree}F to 70{degree}F and a frequency bandwidth of DC to 10 kHz. These temperature ranges, that are beyond the accelerometer manufacturer`s operational limits of {minus}30{degree}F and +150{degree}F, required the calibration of accelerometers at high shock levels and at the temperature extremes of {minus}50{degree}F and +160{degree}F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000 g - 15,000 g for the temperature extremes of {minus}50{degree}F and +160{degree}F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST-traceable accuracy for the standard accelerometer in shock is {plus_minus}5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%.

  18. ACCELERATORS Control system for the CSNS ion source test stand

    NASA Astrophysics Data System (ADS)

    Lu, Yan-Hua; Li, Gang; Ouyang, Hua-Fu

    2010-12-01

    A penning plasma surface H- ion source test stand for the CSNS has just been constructed at the IHEP. In order to achieve a safe and reliable system, nearly all devices of the ion source are designed to have the capability of both local and remote operation function. The control system consists of PLCs and EPICS real-time software tools separately serving device control and monitoring, PLC integration and OPI support. This paper summarizes the hardware and software implementation satisfying the requirements of the ion source control system.

  19. Mechanical Component Lifetime Estimation Based on Accelerated Life Testing with Singularity Extrapolation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Chuckpaiwong, I.; Liang, S. Y.; Seth, B. B.

    2002-07-01

    Life testing under nominal operating conditions of mechanical parts with high mean lifetime between failure (MTBF) often consumes a significant amount of time and resources, rendering such procedures expensive and impractical. As a result, the technology of accelerated life testing (ALT) has been developed for testing at high stress levels (e.g. temperature, voltage, pressure, corrosive media, load, vibration amplitude, etc.) so that it can be extrapolated—through a physically reasonable statistical model—to obtain estimations of life at lower, normal stress levels or even limit stress levels. However, the issue of prediction accuracy associated with extrapolating data outside the range of testing, or even to a singularity level (no stress), has not yet been fully addressed. In this research, an accelerator factor is introduced into an inverse power law model to estimate the life distribution in terms of time and stresses. Also, a generalized Eyring model is set up for singularity extrapolation in handling limit stress level conditions. The procedure to calibrate the associated shape factors based on the maximum likelihood principle is also formulated. The methodology implementation, based on a one-main-step, multiple-step-stress test scheme, is experimentally illustrated with tapered roller bearing under the stress of environmental corrosion as a case study. The experimental results show that the developed accelerated life test model can effectively evaluate the life probability of a bearing based on accelerated testing data when extrapolating to the stress levels within or outside the range of testing.

  20. Accelerated test program for sealed nickel-cadmium spacecraft batteries/cells

    NASA Technical Reports Server (NTRS)

    Goodman, L. A.

    1976-01-01

    The feasibility was examined of inducing an accelerated test on sealed Nickel-Cadmium batteries or cells as a tool for spacecraft projects and battery users to determine: (1) the prediction of life capability; (2) a method of evaluating the effect of design and component changes in cells; and (3) a means of reducing time and cost of cell testing.

  1. Thermoelectric generator testing and RTG degradation mechanisms evaluation. Progress report No. 35

    SciTech Connect

    Lockwood, A.; Shields, V.

    1980-05-01

    The n-type selenide legs after 14,000 hours continue to show reasonable agreement with the 3M Co. published data. In the ingradient testing after 14,700 hours the n-legs show serious degradation in power to load. Weight loss measurements on the first samples of material produced by G.E. match the results previously obtained on R.C.A. material from the MHW program. The remaining MHW generator on test Q1-A has accumulated 22,519 hours and performance remains stable. The 18 couple modules S/N-1 and -3 previously tested at RCA show no significant change in operation during the current JPL testing. No changes in the trends of degradation of LES 8 and 9 and the Voyager RTGs have been observed.

  2. Kerr black holes as accelerators of spinning test particles

    NASA Astrophysics Data System (ADS)

    Guo, Minyong; Gao, Sijie

    2016-04-01

    It has been shown that ultraenergetic collisions can occur near the horizon of an extremal Kerr black hole. Previous studies mainly focused on geodesic motions of particles. In this paper, we consider spinning test particles whose orbits are nongeodesic. By employing the Mathisson-Papapetrou-Dixon equation, we find the critical angular momentum satisfies J =2 E for extremal Kerr black holes. Although the conserved angular momentum J and energy E have been redefined in the presence of spin, the critical condition remains the same form. If a particle with this angular momentum collides with another particle arbitrarily close to the horizon of the black hole, the center-of-mass energy can be arbitrarily high. We also prove that arbitrarily high energies cannot be obtained for spinning particles near the horizons of nonextremal Kerr black holes.

  3. Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions

    PubMed Central

    Tosin, Maurizio; Weber, Miriam; Siotto, Michela; Lott, Christian; Degli Innocenti, Francesco

    2012-01-01

    In this technology report, three test methods were developed to characterize the degradation of plastic in marine environment. The aim was to outline a test methodology to measure the physical and biological degradation in different habitats where plastic waste can deposit when littered in the sea. Previously, research has focused mainly on the conditions encountered by plastic items when floating in the sea water (pelagic domain). However, this is just one of the possible habitats that plastic waste can be exposed to. Waves and tides tend to wash up plastic waste on the shoreline, which is also a relevant habitat to be studied. Therefore, the degradation of plastic items buried under sand kept wet with sea water has been followed by verifying the disintegration (visual disappearing) as a simulation of the tidal zone. Most biodegradable plastics have higher densities than water and also as a consequence of fouling, they tend to sink and lay on the sea floor. Therefore, the fate of plastic items lying on the sediment has been followed by monitoring the oxygen consumption (biodegradation). Also the effect of a prolonged exposure to the sea water, to simulate the pelagic domain, has been tested by measuring the decay of mechanical properties. The test material (Mater-Bi) was shown to degrade (total disintegration achieved in less than 9 months) when buried in wet sand (simulation test of the tidal zone), to lose mechanical properties but still maintain integrity (tensile strength at break = −66% in 2 years) when exposed to sea water in an aquarium (simulation of pelagic domain), and substantially biodegrade (69% in 236 days; biodegradation relative to paper: 88%) when located at the sediment/sea water interface (simulation of benthic domain). This study is not conclusive as the methodological approach must be completed by also determining degradation occurring in the supralittoral zone, on the deep sea floor, and in the anoxic sediment. PMID:22737147

  4. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    PubMed

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models. PMID:18774136

  5. Space Mechanisms Lessons Learned and Accelerated Testing Studies

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1997-01-01

    A number of mechanism (mechanical moving component) failures and anomalies have recently occurred on satellites. In addition, more demanding operating and life requirements have caused mechanism failures or anomalies to occur even before some satellites were launched (e.g., during the qualification testing of GOES-NEXT, CERES, and the Space Station Freedom Beta Joint Gimbal). For these reasons, it is imperative to determine which mechanisms worked in the past and which have failed so that the best selection of mechanically moving components can be made for future satellites. It is also important to know where the problem areas are so that timely decisions can be made on the initiation of research to develop future needed technology. To chronicle the life and performance characteristics of mechanisms operating in a space environment, a Space Mechanisms Lessons Learned Study was conducted. The work was conducted by the NASA Lewis Research Center and by Mechanical Technologies Inc. (MTI) under contract NAS3-27086. The expectation of the study was to capture and retrieve information relating to the life and performance of mechanisms operating in the space environment to determine what components had operated successfully and what components had produced anomalies.

  6. Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report

    SciTech Connect

    J. Francfort; J. Argueta; M. Wehrey; D. Karner; L. Tyree

    1999-07-01

    This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.

  7. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    SciTech Connect

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-29

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  8. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    NASA Astrophysics Data System (ADS)

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-01

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  9. 3.9 GHz superconducting accelerating 9-cell cavity vertical test results

    SciTech Connect

    Khabiboulline, Timergali; Cooper, Charles; Dhanaraj, Nandhini; Edwards, Helen; Foley, Mike; Harms, Elvin; Mitchell, Donald; Rowe, Allan; Solyak, Nikolay; Moeller, Wolf-Dietrich; /DESY

    2007-06-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve the beam performance of the FLASH (TTF/DESY) facility [1]. In the frame of a collaborative agreement, Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. The first 9-cell Nb cavities were tested in a vertical setup and they didn't reach the designed accelerating gradient [2]. The main problem was a multipactor in the HOM couplers, which lead to overheating and quenching of the HOM couplers. New HOM couplers with improved design are integrated in the next 9-cell cavities. In this paper we present all results of the vertical tests.

  10. Cycle life of nickel-hydrogen cells. II - Accelerated cycle life test

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1986-01-01

    A cycle life test of nickel-hydrogen (Ni/H2) cells containing electrolytes of various KOH concentrations and a sintered-type nickel electrode were carried out at 23 C using a 45-min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. Ten cells containing 21 to 36 percent KOH were tested. Since this accelerated test regime accelerated the cycle life roughly twice as fast as a typical LEO regime, the present results indicate that the cells with 26 percent KOH may last over 5 years in an 80 percent depth-of-discharge cycling in an LEO regime. Cells with lower KOH concentrations (21 to 23.5 percent) also showed longer cycle life than those with KOH concentrations of 31 percent or higher, although the life was shorter than those with 26 percent KOH.

  11. Globular Clusters as a Test for Gravity in the Weak Acceleration Regime

    NASA Astrophysics Data System (ADS)

    Scarpa, Riccardo; Marconi, Gianni; Gilmozzi, Roberto

    2006-03-01

    Non-baryonic Dark Matter (DM) appears in galaxies and other cosmic structures when and only when the acceleration of gravity, as computed considering only baryons, goes below a well defined value a0 = 1.2 × 10-8 cm s-2. This fact is extremely important and suggestive of the possibility of a breakdown of Newton's law of gravity (or inertia) below a0. It is therefore important to verify whether Newton's law of gravity holds in this regime of accelerations. In order to do this, one has to study the dynamics of objects that do not contain significant amounts of DM and therefore should follow Newton's prediction for whatever small accelerations. Globular clusters are believed, even by strong supporters of DM, to contain negligible amounts of DM and therefore are ideal for testing Newtonian dynamics in the low acceleration limit. Here, we discuss the status of an ongoing program aimed to do this test. Compared to other studies of globular clsuters, the novelty is that we trace the velocity dispersion profile of globular clusters far enough from the center to probe gravitational accelerations well below a0. In all three clusters studied so far the velocity dispersion is found to remain constant at large radii rather than follow the Keplerian falloff. On average, the flattening occurs at the radius where the cluster internal acceleration of gravity is 1.8 +/- 0.4 × 10-8 cm s-2, fully consistent with MOND predictions.

  12. Optical characterization of voltage-accelerated degradation in CH3NH3PbI3 perovskite solar cells.

    PubMed

    Handa, Taketo; Tex, David M; Shimazaki, Ai; Aharen, Tomoko; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-05-16

    We investigate the performance degradation mechanism of CH3NH3PbI3 perovskite solar cells under bias voltage in air and nitrogen atmospheres using photoluminescence and electroluminescence techniques. When applying forward bias, the power conversion efficiency of the solar cells decreased significantly in air, but showed no degradation in nitrogen atmosphere. Time-resolved photoluminescence measurements on these devices revealed that the application of forward bias in air accelerates the generation of non-radiative recombination centers in the perovskite layer buried in the device. We found a negative correlation between the electroluminescence intensity and the injected current intensity in air. The irreversible change of the perovskite grain surface in air initiates the degradation of the perovskite solar cells. PMID:27409964

  13. Degradation profile and preliminary clinical testing of a resorbable device for ligation of blood vessels.

    PubMed

    Aminlashgari, Nina; Höglund, Odd V; Borg, Niklas; Hakkarainen, Minna

    2013-06-01

    A resorbable device for ligation of blood vessels was developed and tested in vitro to reveal the degradation profile of the device and to predict the clinical performance in terms of adequate mechanical support during a healing period of 1week. In addition, preliminary clinical testing was performed that showed complete hemostasis and good tissue grip of renal arteries in five pigs. The device was made by injection molding of poly(glycolide-co-trimethylene carbonate) triblock copolymer, and it consisted of a case with a locking mechanism connected to a partly perforated flexible band. A hydrolytic degradation study was carried out for 7, 30 and 60days in water and buffer medium, following the changes in mass, water absorption, pH and mechanical properties. A new rapid matrix-free laser desorption ionization-mass spectrometry (LDI-MS) method was developed for direct screening of degradation products released into the degradation medium. The combination of LDI-MS and electrospray ionization-mass spectrometry analyses enabled the comparison of the degradation product patterns in water and buffer medium. The identified degradation products were rich in trimethylene carbonate units, indicating preferential hydrolysis of amorphous regions where trimethylene units are located. The crystallinity of the material was doubled after 60days of hydrolysis, additionally confirming the preferential hydrolysis of trimethylene carbonate units and the enrichment of glycolide units in the remaining solid matrix. The mechanical performance of the perforated band was followed for the first week of hydrolysis and the results suggest that sufficient strength is retained during the healing time of the blood vessels. PMID:23438863

  14. Tumor necrosis factor-α-induced apoptosis of gastric cancer MKN28 cells: accelerated degradation of the inhibitor of apoptosis family members.

    PubMed

    Kitagawa, Maki; Shiozaki, Atsushi; Ichikawa, Daisuke; Nakashima, Shingo; Kosuga, Toshiyuki; Konishi, Hirotaka; Komatsu, Shuhei; Fujiwara, Hitoshi; Okamoto, Kazuma; Otsuji, Eigo

    2015-01-15

    The role of the inhibitor of apoptosis (IAP) family members in tumor necrosis factor-α (TNF-α)-induced apoptosis of human gastric cancer MKN28 cells was explored. TNF-α induced up-regulation of cIAP2, whereas cycloheximide (CHX) induced down-regulation of XIAP and survivin. Degradation of cIAP1 and XIAP, but not survivin, was accelerated by co-treatment of cells with TNF-α and CHX, and TNF-α-induced up-regulation of cIAP2 was inhibited by BMS-345541 (NF-κB inhibitor). Treatment of MKN28 cells with TNF-α plus CHX induced degradation of survivin and activation of caspase-8 and -3, followed by degradation of cIAP1 and XIAP and apoptosis. Proteasome inhibitors (MG132 and epoxomicin) suppressed TNF-α plus CHX-induced degradation of survivin, cIAP1, and XIAP as well as apoptosis. A caspase inhibitor (z-VAD-fmk) suppressed TNF-α plus CHX-induced apoptosis, but allowed degradation of survivin, cIAP1 and XIAP. TNF-α receptor 1 and 2 were expressed on MKN28 cells. The magnitude of apoptosis induced by TNF-α plus BMS-345541 was much less than that induced by TNF-α plus CHX. These findings suggest that TNF-α plus CHX-induced apoptosis of gastric cancer MKN28 cells may be caused by accelerated degradation of the IAP family members (survivin, cIAP1, and XIAP), in addition to inhibition of NF-κB-dependent synthesis of anti-apoptotic molecules. PMID:25513960

  15. Production and test results of SC 3.9-GHz accelerating cavity at Fermilab

    SciTech Connect

    Khabiboulline, Timergali; Cooper, Charlie; Edwards, Helen; Foley, Mike; Gonin, Ivan; Mitchell, Donald; Olis, D.; Rowe, Allan; Salman, Tariq; Solyak, Nikolay; /Fermilab

    2006-08-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve beam performances for TTF-FEL facility. In the frame of collaboration Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. In this paper we discuss the status of the cavity and coupler production and the first result of cavity tests. It is hoped that this project will be completed during the first half of 2007 and the cryomodule delivered to DESY in this time span.

  16. Development of a photovoltaic module qualification test based on combined-environment accelerated stress data

    NASA Astrophysics Data System (ADS)

    Trenchard, S. E.; Royal, E.; Anderson, R. T.

    The U.S. Coast Guard has developed a qualification test to screen photovoltaic modules for utilization on marine aids to navigation. The test is based on a combined-environment of hot and cold saltwater immersion and air pressurization. The test has demonstrated a very high acceleration factor and excellent correlation of electrical failures with modules in a concurrent real-time marine exposure.

  17. Development of a photovoltaic module qualification test based on combined-environment accelerated stress data

    NASA Technical Reports Server (NTRS)

    Trenchard, S. E.; Royal, E.; Anderson, R. T.

    1982-01-01

    The U.S. Coast Guard has developed a qualification test to screen photovoltaic modules for utilization on marine aids to navigation. The test is based on a combined-environment of hot and cold saltwater immersion and air pressurization. The test has demonstrated a very high acceleration factor and excellent correlation of electrical failures with modules in a concurrent real-time marine exposure.

  18. Testing of vacuum pumps for the Accelerator Production of Tritium/Low Energy Demonstration Accelerator radio frequency quadrupole

    SciTech Connect

    Kishiyama, K.; Shen, S.; Behne, D.; Wilson, N.G.; Schrage, D.; Valdiviez, R.

    1998-12-31

    Two vacuum systems were designed and built for the RFQ (Radio Frequency Quadrupole) cavity in the APT/LEDA (Low Energy Demonstration Accelerator) linac. The gas load from the proton beam required very high hydrogen pump speed and capacity. The gas load from the high power RF windows also required very high hydrogen pump speed for the RF window vacuum system. Cryopumps were chosen for the RFQ vacuum system and ST185 sintered non-evaporable getter (NEG) cartridges were chosen for the RF window vacuum system. Hydrogen pump speed and capacity measurements were carried out for a commercial cryopump and a NEG pump. This paper will discuss the test procedures and the results of the measurements.

  19. Do sediment type and test durations affect results of laboratory-based, accelerated testing studies of permeable pavement clogging?

    PubMed

    Nichols, Peter W B; White, Richard; Lucke, Terry

    2015-04-01

    Previous studies have attempted to quantify the clogging processes of Permeable Interlocking Concrete Pavers (PICPs) using accelerated testing methods. However, the results have been variable. This study investigated the effects that three different sediment types (natural and silica), and different simulated rainfall intensities, and testing durations had on the observed clogging processes (and measured surface infiltration rates) of laboratory-based, accelerated PICP testing studies. Results showed that accelerated simulated laboratory testing results are highly dependent on the type, and size of sediment used in the experiments. For example, when using real stormwater sediment up to 1.18 mm in size, the results showed that neither testing duration, nor stormwater application rate had any significant effect on PICP clogging. However, the study clearly showed that shorter testing durations generally increased clogging and reduced the surface infiltration rates of the models when artificial silica sediment was used. Longer testing durations also generally increased clogging of the models when using fine sediment (<300 μm). Results from this study will help researchers and designers better anticipate when and why PICPs are susceptible to clogging, reduce maintenance and extend the useful life of these increasingly common stormwater best management practices. PMID:25618819

  20. Real-time and accelerated outdoor endurance testing of solar cells

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1977-01-01

    Real-time and accelerated outdoor endurance testing was performed on a variety of samples of interest to the National Photovoltaic Conversion Program. The real-time tests were performed at seven different sites and the accelerated tests were performed at one of those sites in the southwestern United States. The purpose of the tests were to help evaluate the lifetime of photovoltaic systems. Three types of samples were tested; transmission samples of possible cover materials, sub-modules constructed using these materials attached to solar cells, and solar cell modules produced by the manufacturers for the ERDA program. Results indicate that suitable cover materials are glass, FEP-A and PFA. Dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  1. A self-injection acceleration test experiment for the FLAME laser

    NASA Astrophysics Data System (ADS)

    Labate, L.; Anelli, F.; Bacci, A.; Batani, D.; Bellaveglia, M.; Benedetti, C.; Benocci, R.; Cacciotti, L.; Cecchetti, C. A.; Ciricosta, O.; Clozza, A.; Cultrera, L.; Di Pirro, G.; Drenska, N.; Faccini, R.; Ferrario, M.; Filippetto, D.; Gallo, S.; Fioravanti, S.; Gamucci, A.; Gatti, G.; Ghigo, A.; Giulietti, A.; Giulietti, D.; Köster, P.; Levato, T.; Lollo, V.; Pace, E.; Pathak, N.; Rossi, A.; Serafini, L.; Turchetti, G.; Vaccarezza, C.; Valente, P.; Vicario, C.; Gizzi, L. A.

    2010-10-01

    A 250-TW laser system (FLAME - Frascati laser for acceleration and multidisciplinary experiments) is now in its commissioning phase in a new laboratory at LNF-INFN in the framework of the PLASMONX (Plasma acceleration and monochromatic X-ray generation) project. The laser will deliver<25 fs duration pulses with an energy up to 6 J, at a 10 Hz repetition rate. An ad hoc target area has also been designed and is currently being set up, allowing the first test experiments of electron laser wakefield acceleration to be carried out over the next few months in a safe, radiation-protected environment. An overview of the main features of the laser system and target area is given, along with a survey of the design and set-up of the self-injection test experiment, which is expected to reach the production of sub-GeV electron bunches.

  2. Experimental Testing of a Micron-Scale Laser-Powered Accelerator

    SciTech Connect

    Travish, G.; Arab, E.; Lacroix, U. H.; Rosenzweig, J. B.; Vartanian, N.; Yoder, R. B.

    2009-01-22

    An experimental program to develop, perfect, and demonstrate a micron-scale dielectric-based slab-symmetric accelerator is underway at UCLA. The effort includes parallel development of a particle source to be integrated with the accelerator, forming a monolithic radiation source. We present results from first-round cold tests of the structure resonance on a simplified metal-walled device, containing >100 structure periods in an area of 100x20 {mu}m. The resonance frequency and strength can be observed via reflection and transmission measurements on the drive laser. Initial measurements may be consistent with simulation. We also report on the status of the electron source development and on work toward an acceleration test in an all-dielectric structure.

  3. Test-particle acceleration in a hierarchical three-dimensional turbulence model

    SciTech Connect

    Dalena, S.; Rappazzo, A. F.; Matthaeus, W. H.; Dmitruk, P.; Greco, A.

    2014-03-10

    The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares. Nevertheless, acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multiscale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely, from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 10 km (1/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length, and energy scales.

  4. Design and test results of the Low Energy Demonstration Accelerator (LEDA) RF systems

    SciTech Connect

    Rees, D.; Bradley, J. III; Cummings, K.; Lynch, M.; Regan, A.; Rohlev, T.; Roybal, W.; Wang, Y.M.

    1998-12-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos will serve as the prototype for the low energy section of the Accelerator Production of Tritium (APT) accelerator. The APT accelerator requires over 200 RF systems each with a continuous wave output power of 1 MW. The reliability and availability of these RF systems is critical to the successful operation of the APT plant and prototypes of these systems are being developed and demonstrated on LEDA. The RF system design for LEDA includes three, 1.2 MW, 350 MHz continuous wave (CW), RF systems driving a radio frequency quadrupole (RFQ) and one, 1.0 MW, CW, RF system driving a coupled-cavity drift tube linac (CCDTL). This paper presents the design and test results for these RF systems including the klystrons, cathode power supply, circulators, RF vacuum windows, accelerator field and resonance control system, and RF transmission components. The three RF systems driving the RFQ use the accelerating structure as a power combiner, and this places some unique requirements on the RF system. These requirements and corresponding operational implications will be discussed.

  5. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 1: overview

    NASA Astrophysics Data System (ADS)

    Billing, M. G.

    2015-07-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper outlines the motivation, design and conversion of CESR to a test accelerator, CESRTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CESRTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CESRTA is a very flexible storage ring, capable of studying a wide range of accelerator physics and instrumentation questions. This paper contains the outline and the basis for a set of papers documenting the reconfiguration of the storage ring and the associated instrumentation required for the studies described above. Further details may be found in these papers.

  6. Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

    NASA Astrophysics Data System (ADS)

    Dzyuba, A.; Romanenko, A.; Cooley, L. D.

    2010-12-01

    A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration Hpen. Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter κ. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hpen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower Hpen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of κ. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~ 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was

  7. Model for Initiation of Quality Factor Degradation at High Accelerating Fields in Superconducting Radio-Frequency Cavaties

    SciTech Connect

    Dzyuba, A.; Romanenko, A.; Cooley, L.D.; /Fermilab

    2010-07-13

    A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration H{sub pen}. Such defects were argued to be the worst case by Buzdin and Daumens, [1998 Physica C 294 257], whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter {kappa}. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of H{sub pen} when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower H{sub pen} was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice-versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of {kappa}. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by {approx}20%, and that that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model

  8. First Beam and High-Gradient Cryomodule Commissioning Results of the Advanced Superconducting Test Accelerator at Fermilab

    SciTech Connect

    Crawford, Darren; et al.

    2015-06-01

    The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility.

  9. Accelerated Stress Testing of Thin-Film Modules with SnO2:F Transparent Conductors

    SciTech Connect

    Osterwald, C. R.; McMahon, T. J.; del Cueto, J. A.; Adelstein, J.; Puett, J.

    2003-05-01

    This paper reviews a testing program conducted at NREL for the past two years that applied voltage, water vapor, and light stresses to thin-film photovoltaic (PV) modules with SnO2:F transparent conducting oxides (TCOs) deposited on soda-lime glass superstrates. Electrochemical corrosion at the glass-TCO interface was observed to result in delamination of the thin-film layers. Experimental testing was directed toward accelerating the corrosion and understanding the nature of the resulting damage.

  10. BLISTERING AND DEGRADATION OF POLYURETHANE COATINGS UNDER DIFFERENT ACCELERATED WEATHERING TESTS. (R828081E01)

    EPA Science Inventory

    An epoxy primer with a high gloss polyurethane topcoat coating system was exposed either only in a QUV chamber or exposed in a QUV chamber and a Prohesion chamber, alternatively, in this study. AFM studies found that micro blisters formed on the coating surface after both expo...

  11. Accelerated Stress Testing and Diagnostic Analysis of Degradation in CdTe Solar Cells

    SciTech Connect

    Albin, D. S.

    2008-11-01

    The primary goal of this study was to ascertain the presence and types of mechanisms affecting CdS/CdTe device stability in the temperature range of 60 to 120 ..deg..C. It should be noted that the results presented were specific to cells made using the specific growth conditions described.

  12. Planned High-brightness Channeling Radiation Experiment at Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Blomberg, Ben; Mihalcea, Daniel; Panuganti, Harsha; Piot, Philippe; Brau, Charles; Choi, Bo; Gabella, William; Ivanov, Borislav; Mendenhall, Marcus; Lynn, Christopher; Sen, Tanaji; Wagner, Wolfgang

    2014-07-01

    In this contribution we describe the technical details and experimental setup of our study aimed at producing high-brightness channeling radiation (CR) at Fermilab’s new user facility the Advanced Superconducting Test Accelerator (ASTA). In the ASTA photoinjector area electrons are accelerated up to 40-MeV and focused to a sub-micron spot on a ~40 micron thick carbon diamond, the electrons channel through the crystal and emit CR up to 80-KeV. Our study utilizes ASTA’s long pulse train capabilities and ability to preserve ultra-low emittance, to produce the desired high average brightness.

  13. Novel durable bio-photocatalyst purifiers, a non-heterogeneous mechanism: accelerated entrapped dye degradation into structural polysiloxane-shield nano-reactors.

    PubMed

    Dastjerdi, Roya; Montazer, Majid; Shahsavan, Shadi; Böttcher, Horst; Moghadam, M B; Sarsour, Jamal

    2013-01-01

    This research has designed innovative Ag/TiO(2) polysiloxane-shield nano-reactors on the PET fabric to develop novel durable bio-photocatalyst purifiers. To create these very fine nano-reactors, oppositely surface charged multiple size nanoparticles have been applied accompanied with a crosslinkable amino-functionalized polysiloxane (XPs) emulsion. Investigation of photocatalytic dye decolorization efficiency revealed a non-heterogeneous mechanism including an accelerated degradation of entrapped dye molecules into the structural polysiloxane-shield nano-reactors. In fact, dye molecules can be adsorbed by both Ag and XPs due to their electrostatic interactions and/or even via forming a complex with them especially with silver NPs. The absorbed dye and active oxygen species generated by TiO(2) were entrapped by polysiloxane shelter and the presence of silver nanoparticles further attract the negative oxygen species closer to the adsorbed dye molecules. In this way, the dye molecules are in close contact with concentrated active oxygen species into the created nano-reactors. This provides an accelerated degradation of dye molecules. This non-heterogeneous mechanism has been detected on the sample containing all of the three components. Increasing the concentration of Ag and XPs accelerated the second step beginning with an enhanced rate. Further, the treated samples also showed an excellent antibacterial activity. PMID:23010055

  14. Direct Tests of Enzymatic Heme Degradation by the Malaria Parasite Plasmodium falciparum*

    PubMed Central

    Sigala, Paul A.; Crowley, Jan R.; Hsieh, Samantha; Henderson, Jeffrey P.; Goldberg, Daniel E.

    2012-01-01

    Malaria parasites generate vast quantities of heme during blood stage infection via hemoglobin digestion and limited de novo biosynthesis, but it remains unclear if parasites metabolize heme for utilization or disposal. Recent in vitro experiments with a heme oxygenase (HO)-like protein from Plasmodium falciparum suggested that parasites may enzymatically degrade some heme to the canonical HO product, biliverdin (BV), or its downstream metabolite, bilirubin (BR). To directly test for BV and BR production by P. falciparum parasites, we DMSO-extracted equal numbers of infected and uninfected erythrocytes and developed a sensitive LC-MS/MS assay to quantify these tetrapyrroles. We found comparable low levels of BV and BR in both samples, suggesting the absence of HO activity in parasites. We further tested live parasites by targeted expression of a fluorescent BV-binding protein within the parasite cytosol, mitochondrion, and plant-like plastid. This probe could detect exogenously added BV but gave no signal indicative of endogenous BV production within parasites. Finally, we recombinantly expressed and tested the proposed heme degrading activity of the HO-like protein, PfHO. Although PfHO bound heme and protoporphyrin IX with modest affinity, it did not catalyze heme degradation in vivo within bacteria or in vitro in UV absorbance and HPLC assays. These observations are consistent with PfHO's lack of a heme-coordinating His residue and suggest an alternative function within parasites. We conclude that P. falciparum parasites lack a canonical HO pathway for heme degradation and thus rely fully on alternative mechanisms for heme detoxification and iron acquisition during blood stage infection. PMID:22992734

  15. Development of backsheet tests and measurements to improve correlation of accelerated exposures to fielded modules

    NASA Astrophysics Data System (ADS)

    Felder, Thomas C.; Gambogi, William J.; Kopchick, James G.; Amspacher, Lucas; Peacock, R. Scott; Foltz, Benjamin; Stika, Katherine M.; Bradley, Alexander Z.; Hamzavy, Babak; Yu, Bao-Ling; Garreau-iles, Lucie; Fu, Oakland; Hu, Hongjie; Trout, T. John

    2015-09-01

    Matching accelerated test results to field observations is an important objective in the photovoltaic industry. We continue to develop test methods to strengthen correlations. We have previously reported good correlation of FTIR spectra between accelerated tests and field measurements. The availability of portable FTIR spectrometers has made measurement in the field convenient and reliable. Recently, nano-indentation has shown promise to correlate changes in backsheet mechanical properties. A precisely shaped stylus is pressed into a sample, load vs displacement recorded and mechanical properties of interest calculated in a nondestructive test. This test can be done on full size modules, allowing area variations in mechanical properties to be recorded. Finally, we will discuss optical profilometry. In this technique a white light interferogram of a surface is Fourier transformed to produce a three-dimensional image. Height differences from 1 nm to 5 mm can be detected over an area of a few cm. This technique can be used on minimodules, and is useful to determine crack and defect dimensions. Results will be presented correlating accelerated tests with fielded modules covering spectroscopic, mechanical, and morphological changes.

  16. Status and specifications of a Project X front-end accelerator test facility at Fermilab

    SciTech Connect

    Steimel, J.; Webber, R.; Madrak, R.; Wildman, D.; Pasquinelli, R.; Evans-Peoples, E.; /Fermilab

    2011-03-01

    This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility. Fermilab's future involves new facilities to advance the intensity frontier. In the early 2000's, the vision was a pulsed, superconducting, 8 GeV linac capable of injecting directly into the Fermilab Main Injector. Prototyping the front-end of such a machine started in 2005 under a program named the High Intensity Neutrino Source (HINS). While the HINS test facility was being constructed, the concept of a new, more versatile accelerator for the intensity frontier, now called Project X, was forming. This accelerator comprises a 3 GeV CW superconducting linac with an associated experimental program, followed by a pulsed 8 GeV superconducting linac to feed the Main Injector synchrotron. The CW Project X design is now the model for Fermilab's future intensity frontier program. Although CW operation is incompatible with the original HINS front-end design, the installation remains useful for development and testing many Project X components.

  17. Ground Test of the Urine Processing Assembly for Accelerations and Transfer Functions

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Almond, Deborah F. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the ground test of the urine processing assembly for accelerations and transfer functions. Details are given on the test setup, test data, data analysis, analytical results, and microgravity assessment. The conclusions of the tests include the following: (1) the single input/multiple output method is useful if the data is acquired by tri-axial accelerometers and inputs can be considered uncorrelated; (2) tying coherence with the matrix yields higher confidence in results; (3) the WRS#2 rack ORUs need to be isolated; (4) and future work includes a plan for characterizing performance of isolation materials.

  18. Accelerated test techniques for micro-circuits: Evaluation of high temperature (473 k - 573 K) accelerated life test techniques as effective microcircuit screening methods

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The application of high temperature accelerated test techniques was shown to be an effective method of microcircuit defect screening. Comprehensive microcircuit evaluations and a series of high temperature (473 K to 573 K) life tests demonstrated that a freak or early failure population of surface contaminated devices could be completely screened in thirty two hours of test at an ambient temperature of 523 K. Equivalent screening at 398 K, as prescribed by current Military and NASA specifications, would have required in excess of 1,500 hours of test. All testing was accomplished with a Texas Instruments' 54L10, low power triple-3 input NAND gate manufactured with a titanium- tungsten (Ti-W), Gold (Au) metallization system. A number of design and/or manufacturing anomalies were also noted with the Ti-W, Au metallization system. Further study of the exact nature and cause(s) of these anomalies is recommended prior to the use of microcircuits with Ti-W, Au metallization in long life/high reliability applications. Photomicrographs of tested circuits are included.

  19. Degradation of triglycidyl isocyanurate as a cause of false-negative patch test reaction.

    PubMed

    Erikstam, U; Bruze, M; Goossens, A

    2001-01-01

    Triglycidyl isocyanurate (TGIC) is mainly used in polyester-based powder paints, but also in laminates, insulating varnishes, coatings and adhesives. Several cases of contact allergy to TGIC have been reported during the last 10 years. Contact allergy to TGIC has developed in a factory producing the chemical, in a factory producing powder paints containing TGIC, and in industries using powder coating. In this paper, we report a man who developed a work-related dermatitis when working on the painting of metal frames. He was exposed to polyester powder pigments containing TGIC. When patch tested, he was negative to TGIC (prepared in 1988) 3x and positive to polyester powder pigment. Only when a new test preparation of fresh TGIC powder was tested, was a positive reaction obtained. Chemical analyses showed that there was no TGIC in the test preparation from 1988, and that in the TGIC powder from 1988, there was only 30% of the expected amount of TGIC. The investigations, clinical and chemical, strongly indicate degradation of TGIC in the test preparation and powder. Both substances and the test preparations made from them may change over time. Therefore, if a false-negative reaction due to a test preparation is strongly suspected, we recommend a re-test of the patient with a new test preparation of fresh material. As a general rule, patch testing should be performed with fresh substances and test preparations made from them, unless their stability and durability are known. PMID:11156005

  20. System tests with electric thruster beam and accelerator directly powered from laboratory solar arrays

    NASA Technical Reports Server (NTRS)

    Stover, J. B.

    1976-01-01

    Laboratory high voltage solar arrays were operated directly connected to power the beam and accelerator loads of an 8-centimeter ion thruster. The beam array comprised conventional 2 by 2 centimeter solar cells; the accelerator array comprised multiple junction edge-illuminated solar cells. Conventional laboratory power supplies powered the thruster's other loads. Tests were made to evaluate thruster performance and to investigate possible electrical interactions between the solar arrays and the thruster. Thruster performance was the same as with conventional laboratory beam and accelerator power supplies. Most of the thruster beam short circuits that occurred during solar array operation were cleared spontaneously without automatic or manual intervention. No spontaneous clearing occurred during conventional power supply operation.

  1. Technology evaluation of man-rated acceleration test equipment for vestibular research

    NASA Technical Reports Server (NTRS)

    Taback, I.; Kenimer, R. L.; Butterfield, A. J.

    1983-01-01

    The considerations for eliminating acceleration noise cues in horizontal, linear, cyclic-motion sleds intended for both ground and shuttle-flight applications are addressed. the principal concerns are the acceleration transients associated with change in direction-of-motion for the carriage. The study presents a design limit for acceleration cues or transients based upon published measurements for thresholds of human perception to linear cyclic motion. The sources and levels for motion transients are presented based upon measurements obtained from existing sled systems. The approaches to a noise-free system recommends the use of air bearings for the carriage support and moving-coil linear induction motors operating at low frequency as the drive system. Metal belts running on air bearing pulleys provide an alternate approach to the driving system. The appendix presents a discussion of alternate testing techniques intended to provide preliminary type data by means of pendulums, linear motion devices and commercial air bearing tables.

  2. Demonstration of two-beam acceleration and 30 GHz power production in the CLIC Test Facility

    SciTech Connect

    Bossart, R.; Braun, H. H.; Carron, G.; Chanudet, M.; Chautard, F.; Delahaye, J. P.; Godot, J. C.; Hutchins, S.; Martinez, C.; Suberlucq, G.; Tenenbaum, P.; Thorndahl, L.; Trautner, H.; Valentini, M.; Wilson, I.; Wuensch, W.

    1999-05-07

    The Compact Linear Collider (CLIC) Test Facility (CTF II) at CERN has recently demonstrated Two-Beam power production and acceleration at 30 GHz. With 41 MW of 30 GHz power produced in 14 ns pulses at a repetition rate of 5 Hz, the main beam has been accelerated by 28 MeV. The 30 GHz RF power is extracted in low impedance decelerating structures from a low-energy, high-current 'drive beam' which runs parallel to the main beam. The average current in the drive-beam train is 25 A, while the peak current exceeds 2 kA. Crosschecks between measured drive-beam charge, 30 GHz power and main-beam energy gain are in good agreement. In this paper, some relevant experimental and technical issues on drive-beam generation, two-beam power production and acceleration are presented.

  3. Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC and its Radiological Considerations

    SciTech Connect

    Mao, X.S.; Leitner, M.Santana; Vollaire, J.

    2011-08-22

    Facility for Advanced Accelerator Experimental Tests (FACET) in SLAC will be used to study plasma wakefield acceleration. FLUKA Monte Carlo code was used to design a maze wall to separate FACET project and LCLS project to allow persons working in FACET side during LCLS operation. Also FLUKA Monte Carlo code was used to design the shielding for FACET dump to get optimum design for shielding both prompt and residual doses, as well as reducing environmental impact. FACET will be an experimental facility that provides short, intense pulses of electrons and positrons to excite plasma wakefields and study a variety of critical issues associated with plasma wakefield acceleration [1]. This paper describes the FACET beam parameters, the lay-out and its radiological issues.

  4. (De)Grading the Standardized Test: Can Standardized Testing Evaluate Schools?

    ERIC Educational Resources Information Center

    Simmons, Nicola E.

    2004-01-01

    Standardized testing is an assessment strategy that evaluates all students and all schools on the same basic skills and, therefore, might reasonably indicate which schools are high performers and which are not. Standardized testing is not a new strategy for providing this proof. The United States has produced reams of articles criticizing…

  5. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  6. Bayesian Analysis of Step-Stress Accelerated Life Test with Exponential Distribution

    SciTech Connect

    Lee, J.; Pan, R.

    2012-04-01

    In this article, we propose a general Bayesian inference approach to the step-stress accelerated life test with type II censoring. We assume that the failure times at each stress level are exponentially distributed and the test units are tested in an increasing order of stress levels. We formulate the prior distribution of the parameters of life-stress function and integrate the engineering knowledge of product failure rate and acceleration factor into the prior. The posterior distribution and the point estimates for the parameters of interest are provided. Through the Markov chain Monte Carlo technique, we demonstrate a nonconjugate prior case using an industrial example. It is shown that with the Bayesian approach, the statistical precision of parameter estimation is improved and, consequently, the required number of failures could be reduced.

  7. Initial measurements of beam breakup instability in the advanced test accelerator

    SciTech Connect

    Chong, Y.P.; Caporaso, G.J.; Struve, K.W.

    1985-05-13

    This paper reports the measurements of beam breakup (BBU) instability performed on the Advanced Test Accelerator (ATA) up to the end of February, 1984. The main objective was to produce a high current usable electron beam at the ATA output. A well-known instability is BBU which arises from the accelerator cavity modes interacting with the electron beam. The dominant mode is TM/sub 130/ at a frequency of approximately 785 MHz. It couples most strongly to the beam motion and has been observed to grow in the Experimental Test Accelerator (ETA) which has only eight accelerator cavities. ATA has one hundred and seventy cavities and, therefore, the growth of BBU is expected to be more severe. In this paper, BBU measurements are reported for ATA with beam currents of 4 to 7 kA. Analysis showed that the growth of the instability with propagation distance was as expected for the lower currents. However, the high-current data showed an apparent higher growth rate than expected. An explanation for this anomaly is given in terms of a ''corkscrew'' excitation. The injector BBU noise level for a field emission brush cathode was found to be an order of magnitude lower than for a cold plasma discharge cathode. These injector rf amplitudes agree very well with values obtained using the method of differenced B sub solar loops.

  8. Thermoelectric generator testing and RTG degradation mechanisms evaluation. Progress report No. 37

    SciTech Connect

    Lockwood, A.; Shields, V.

    1980-09-01

    The n-type selenide legs after 16,500 hours continue to show reasonable agreement with the 3M Co. published thermal conductivity data. In the ingradient testing after 17,000 hours the 3 surviving n-legs (out of 5) show serious degradation in power to load. Small scale ratcheting has been observed on the four p-legs but no large scale effects. Weight loss for both coated and uncoated material produced by G.E. are reported. No significant discrepancies with the results previously obtained on R.C.A. material from the MHW program have been found. Thermal conductivity measurements are also in agreement. The remaining MHW generator on test, Q1-A, has accumulated 25,600 hours and performance remains stable. The 18 couple modules S/N-1 and -3 previously tested at RCA show no significant change in operation during the current JPL testing. No changes in the trends of degradation of LES 8 and 9 and the Voyager RTGs have been observed.

  9. Thermoelectric generator testing and RTG degradation mechanisms evaluation. Progress report No. 36

    SciTech Connect

    Lockwood, A.; Shields, V.

    1980-07-01

    The n-type selenide legs after 15,000 hours continue to show reasonable agreement with the 3M Co. published thermal conductivity data. In the ingradient testing after 16,500 hours the 3 surviving n-legs (out of 5) show serious degradation in power to load. Weight loss and thermoelectricity property measurements on the first samples of material produced by G.E. continue to correspond to the results previously obtained on R.C.A. material from the MHW program. The remaining MHW generator on test, Q1-A, has accumulated 23,679 hours and performance remains stable. The 18 couple modules S/N-1 and -3 previously tested at RCA show no significant change in operation during the current JPL testing. A comparison of LES 8/9 RTG's with an improved version of DEGRA is shown. No changes in the trends of degradation of LES 8 and 9 and the Voyager RTGs have been observed.

  10. On the Myth and the Reality of the Temporal Validity Degradation of General Mental Ability Test Scores

    ERIC Educational Resources Information Center

    Reeve, Charlie L.; Bonaccio, Silvia

    2011-01-01

    Claims of changes in the validity coefficients associated with general mental ability (GMA) tests due to the passage of time (i.e., temporal validity degradation) have been the focus of an on-going debate in applied psychology. To evaluate whether and, if so, under what conditions this degradation may occur, we integrate evidence from multiple…

  11. ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS

    SciTech Connect

    Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

    2010-05-12

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  12. Advanced X-Band Test Accelerator for High Brightness Electron and Gamma Ray Beams

    SciTech Connect

    Marsh, Roark; Anderson, Scott; Barty, Christopher; Chu, Tak Sum; Ebbers, Chris; Gibson, David; Hartemann, Fred; Adolphsen, Chris; Jongewaard, Erik; Raubenheimer, Tor; Tantawi, Sami; Vlieks, Arnold; Wang, Juwen; /SLAC

    2012-07-03

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  13. 78 FR 76410 - Request for Information on Strategies To Accelerate the Testing and Adoption of Pay for Success...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... Strategies to Accelerate the Testing and Adoption of Pay for Success (PFS) Financing Models (78 FR 60998... Request for Information on Strategies To Accelerate the Testing and Adoption of Pay for Success (PFS... information; reopening of comment period. SUMMARY: The Department of the Treasury is reopening the...

  14. LLRF and timing system for the SCSS test accelerator at SPring-8

    NASA Astrophysics Data System (ADS)

    Otake, Yuji; Ohshima, Takashi; Hosoda, Naoyasu; Maesaka, Hirokazu; Fukui, Toru; Kitamura, Masanobu; Shintake, Tsumoru

    2012-12-01

    The 250 MeV SCSS test accelerator as an extreme-ultra violet (EUV) laser source has been built at SPring-8. The accelerator comprises a 500 kV thermionic gun, a velocity bunching system using multi-sub-harmonic bunchers (SHB) in an injector and a magnetic bunch compressor using a chicane of 4 bending magnets, a 5712 MHz main accelerator to accelerate an electron beam up to 250 MeV, and undulators to radiate the EUV laser. These bunch compression processes make short bunched electrons with a 300 A peak current and a 300 fs pulse width. The pulse width and peak current of an electron beam, which strongly affect the pulse width and intensity of the laser light, are mainly decided by the pulse compression ratio of the velocity bunching and the magnetic bunch compressing processes. The compression ratio is also determined due to an energy chirp along the beam bunch generated by an off-crest rf field at the SHB and cavities before the chicane. To constantly keep the beam pulse-width conducted by rf and timing signals, which are temporally controlled within subpicoseconds of the designed value, the low-level rf and timing system of the test accelerator has been developed. The system comprises a very low-noise and temporally stable reference signal source, in-phase and quadrature (IQ) modulators and demodulators, as well as VME type 12 bits analog-to-digital and digital-to-analog converter modules to manipulate an rf phase and amplitude by IQ functions for the cavity. We achieved that the SSB noise of the 5712 MHz reference signal source was less than -120 dBc/Hz at 1 kHz offset from the reference frequency; the phase setting and detecting resolution of the IQ-modulators and demodulators were within +/-0.5° at 5712 MHz. A master trigger VME module and a trigger delay VME module were also developed to activate the components of the test accelerator. The time jitter of the delay module was less than 0.7 ps, sufficient for our present requirement. As a result, a beam energy

  15. Note: An online testing method for lifetime projection of high power light-emitting diode under accelerated reliability test

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Chen, Quan; Luo, Xiaobing

    2014-09-01

    In recent years, due to the fast development of high power light-emitting diode (LED), its lifetime prediction and assessment have become a crucial issue. Although the in situ measurement has been widely used for reliability testing in laser diode community, it has not been applied commonly in LED community. In this paper, an online testing method for LED life projection under accelerated reliability test was proposed and the prototype was built. The optical parametric data were collected. The systematic error and the measuring uncertainty were calculated to be within 0.2% and within 2%, respectively. With this online testing method, experimental data can be acquired continuously and sufficient amount of data can be gathered. Thus, the projection fitting accuracy can be improved (r2 = 0.954) and testing duration can be shortened.

  16. Cement degradation and the alteration of host rocks. Studies within the Grimsel Test Site Project.

    NASA Astrophysics Data System (ADS)

    Soler, J. M.

    2009-04-01

    Cement is a major component of the engineered barrier system in proposed underground repositories for low- and intermediate-level radioactive waste. Cement grouting of highly-conductive fractures in the vicinity of such repositories is also planned. The interaction between the hyperalkaline solutions derived from the degradation of cement and the rocks hosting such repositories may change the physical and chemical properties of the host rocks. The HPF project (Hyperalkaline Plume in Fractured Rock; ANDRA-FR-, DOE-USA-, JAEA-JP-, NAGRA-CH-, POSIVA-FI-, SKB-SE-) studied the alteration of a fractured granite due to the circulation of a synthetic high-pH solution. A significant decrease in fracture permeability was observed both in the laboratory (core infiltration experiment; decimeter scale) and in the Grimsel Test Site (circulation along a fracture; meter scale), despite the relatively minor mineralogical alteration. Coupling of mineralogical alteration and permeability changes was incorporated into reactive transport modeling of the experiments. The hydration and degradation of cement are being explicitly incorporated into the new LCS (Long-Term Cement Studies; JAEA-JP-, NAGRA-CH-, NDA-GB-, POSIVA-FI-) project at Grimsel. New laboratory and field experiments including a cement source are being designed. Reactive transport modeling of the degradation of cement, causing the formation of hyperalkaline solutions and the alteration of the host rock, will be an essential part of the experiment.

  17. Characterization of wear debris generated in accelerated rolling-element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1978-01-01

    A ferrographic analysis was used to determine the types and quantities of wear debris generated during accelerated rolling contact fatigue tests. The five-ball rolling contact fatigue tester was used. Ball specimens were made of a corrosion resistant, high-temperature bearing steel. The lubricant was a superrefined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear debris were observed: (1) normal rubbing wear particles, (2) fatigue microspall particles, (3) spheres, and (4) friction polymer deposits. The characterization of wear debris as a function of time was of limited use in predicting fatigue failures in these accelerated tests.

  18. Microstructural characterization of bainitic steel submitted to torsion testing and interrupted accelerated cooling

    SciTech Connect

    Cota, A.B.; Santos, D.B.

    2000-03-01

    HSLA low-carbon bainitic steel containing B was submitted to torsion tests to simulate controlled rolling, followed by interrupted accelerated cooling. Microstructural characteristics and the mechanisms for the refinement of structure were evaluated using light microscopy, scanning electron microscopy, transmission electron microscopy, and Vickers hardness testing. The final microstructure was found to contain complex mixture of granular bainite, small islands of MA constituent, bainitic ferrite, and polygonal ferrite. Increasing the cooling rate of decreasing the finish cooling temperature resulted in a decrease in the volume fraction and average size of the MA islands and the polygonal ferrite. A finish cooing temperature of 400 C produced a microstructure consisting of fine laths of bainitic ferrite with an interlath MA constituent. A quantitative relationship between the accelerated cooling variables and the ferrite grain size was developed.

  19. A Doping Lattice of Aluminum and Copper with Accelerated Electron Transfer Process and Enhanced Reductive Degradation Performance

    PubMed Central

    Zhang, Lin; Gao, Xue; Zhang, Zhixuan; Zhang, Mingbo; Cheng, Yiqian; Su, Jixin

    2016-01-01

    Treatment of azo dye effluents has received increasing concerns over the years due to their potential harms to natural environment and human health. The present study described the degrading ability of the as-synthesized crystalline Al-Cu alloys for removal of high-concentration Acid Scarlet 3R in alkaline aqueous solutions and its degradation mechanism. Al-Cu alloy particles with Al/Cu ratios 19:1 were successfully synthesized by high-energy mechanical milling. Characterization results showed that 10 h mechanical alloying process could lead to the formation of crystalline Al(Cu) solid solution. Batch experiment results confirmed the excellent ability of Al-Cu alloy particles for the degradation of 3R in aqueous solution. Under a certain condition ([Al-Cu]0 = 2 g/L, [3R]0 = 200 mg/L, [NaCl]0 = 25 g/L, initial pH = 10.9), the 3R could be completely degraded within only 3 min. It was also found that the degradation reaction followed zero-order kinetics model with respect to the initial dye concentration. The intermediate compounds were identified by UV-vis, FT-IR and HPLC-MS, and a pathway was proposed. Additionally, post-treatment Al-Cu alloy particles were characterized by SEM and TEM, and the results showed that the degradation might be attributed to the corrosion effect of Al-Cu alloys. PMID:27535800

  20. A Doping Lattice of Aluminum and Copper with Accelerated Electron Transfer Process and Enhanced Reductive Degradation Performance.

    PubMed

    Zhang, Lin; Gao, Xue; Zhang, Zhixuan; Zhang, Mingbo; Cheng, Yiqian; Su, Jixin

    2016-01-01

    Treatment of azo dye effluents has received increasing concerns over the years due to their potential harms to natural environment and human health. The present study described the degrading ability of the as-synthesized crystalline Al-Cu alloys for removal of high-concentration Acid Scarlet 3R in alkaline aqueous solutions and its degradation mechanism. Al-Cu alloy particles with Al/Cu ratios 19:1 were successfully synthesized by high-energy mechanical milling. Characterization results showed that 10 h mechanical alloying process could lead to the formation of crystalline Al(Cu) solid solution. Batch experiment results confirmed the excellent ability of Al-Cu alloy particles for the degradation of 3R in aqueous solution. Under a certain condition ([Al-Cu]0 = 2 g/L, [3R]0 = 200 mg/L, [NaCl]0 = 25 g/L, initial pH = 10.9), the 3R could be completely degraded within only 3 min. It was also found that the degradation reaction followed zero-order kinetics model with respect to the initial dye concentration. The intermediate compounds were identified by UV-vis, FT-IR and HPLC-MS, and a pathway was proposed. Additionally, post-treatment Al-Cu alloy particles were characterized by SEM and TEM, and the results showed that the degradation might be attributed to the corrosion effect of Al-Cu alloys. PMID:27535800

  1. Comparison of Accelerated Testing with Modeling to Predict Lifetime of CPV Solder Layers (Presentation)

    SciTech Connect

    Silverman, T. J.; Bosco, N.; Kurtz, S.

    2012-03-01

    Concentrating photovoltaic (CPV) cell assemblies can fail due to thermomechanical fatigue in the die-attach layer. In this presentation, we show the latest results from our computational model of thermomechanical fatigue. The model is used to estimate the relative lifetime of cell assemblies exposed to various temperature histories consistent with service and with accelerated testing. We also present early results from thermal cycling experiments designed to help validate the computational model.

  2. Repeatable electrical measurement instrumentation for use in the accelerated stress testing of thin film solar cells

    NASA Technical Reports Server (NTRS)

    Davis, C. W.; Lathrop, J. W.

    1985-01-01

    Attention is given to the construction, calibration, and performance of a repeatable measurement system for use in conjunction with the accelerated stress testing of a-Si:H cells. A filtered diode array is utilized to approximate the spectral response of any type of solar cell in discrete portions of the spectrum. It is noted that in order to achieve the necessary degree of overall repeatability, it is necessary to pay particular attention to methods of contacting and positioning the cells.

  3. Wake potentials and impedances for the ATA (Advanced Test Accelerator) induction cell

    SciTech Connect

    Craig, G.D.

    1990-09-04

    The AMOS Wakefield Code is used to calculate the impedances of the induction cell used in the Advanced Test Accelerator (ATA) at Livermore. We present the wakefields and impedances for multipoles m = 0, 1 and 2. The ATA cell is calculated to have a maximum transverse impedance of approximately 1000 {Omega}/m at 875 MHz with a quality factor Q = 5. The sensitivity of the impedance spectra to modeling variations is discussed.

  4. Rapid estimation of lives of deficient superpave mixes and laboratory-based accelerated mix testing models

    NASA Astrophysics Data System (ADS)

    Manandhar, Chandra Bahadur

    The engineers from the Kansas Department of Transportation (KDOT) often have to decide whether or not to accept non-conforming Superpave mixtures during construction. The first part of this study focused on estimating lives of deficient Superpave pavements incorporating nonconforming Superpave mixtures. These criteria were based on the Hamburg Wheel-Tracking Device (HWTD) test results and analysis. The second part of this study focused on developing accelerated mix testing models to considerably reduce test duration. To accomplish the first objective, nine fine-graded Superpave mixes of 12.5-mm nominal maximum aggregate size (NMAS) with asphalt grade PG 64-22 from six administrative districts of KDOT were selected. Specimens were prepared at three different target air void levels Ndesign gyrations and four target simulated in-place density levels with the Superpave gyratory compactor. Average number of wheel passes to 20-mm rut depth, creep slope, stripping slope, and stripping inflection point in HWTD tests were recorded and then used in the statistical analysis. Results showed that, in general, higher simulated in-place density up to a certain limit of 91% to 93%, results in a higher number of wheel passes until 20-mm rut depth in HWTD tests. A Superpave mixture with very low air voids Ndesign (2%) level performed very poorly in the HWTD test. HWTD tests were also performed on six 12.5-mm NMAS mixtures with air voids Ndesign of 4% for six projects, simulated in-place density of 93%, two temperature levels and five load levels with binder grades of PG 64-22, PG 64-28, and PG 70-22. Field cores of 150-mm in diameter from three projects in three KDOT districts with 12.5-mm NMAS and asphalt grade of PG 64-22 were also obtained and tested in HWTD for model evaluation. HWTD test results indicated as expected. Statistical analysis was performed and accelerated mix testing models were developed to determine the effect of increased temperature and load on the duration of

  5. Feasibility study of a nonequilibrium MHD accelerator concept for hypersonic propulsion ground testing

    SciTech Connect

    Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L.

    1995-12-31

    A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed.

  6. Bus mathematical model of acceleration threshold limit estimation in lateral rollover test

    NASA Astrophysics Data System (ADS)

    Gauchía, A.; Olmeda, E.; Aparicio, F.; Díaz, V.

    2011-10-01

    Vehicle safety is a major concerns for researchers, governments and vehicle manufacturers, and therefore a special attention is paid to it. Particularly, rollover is one of the types of accidents where researchers have focused due to the gravity of injuries and the social impact it generates. One of the parameters that define bus lateral behaviour is the acceleration threshold limit, which is defined as the lateral acceleration from which the rollover process begins to take place. This parameter can be obtained by means of a lateral rollover platform test or estimated by means of mathematical models. In this paper, the differences between these methods are deeply analysed, and a new mathematical model is proposed to estimate the acceleration threshold limit in the lateral rollover test. The proposed model simulates the lateral rollover test, and, for the first time, it includes the effect of a variable position of the centre of gravity. Finally, the maximum speed at which the bus can travel in a bend without rolling over is computed.

  7. Closeout Report for the Refractory Metal Accelerated Heat Pipe Life Test Activity

    NASA Technical Reports Server (NTRS)

    Martin, J.; Reid, R.; Stewart, E.; Hickman, R.; Mireles, O.

    2013-01-01

    With the selection of a gas-cooled reactor, this heat pipe accelerated life test activity was closed out and its resources redirected. The scope of this project was to establish the long-term aging effects on Mo-44.5%Re sodium heat pipes when subjected to space reactor temperature and mass fluences. To date, investigators have demonstrated heat pipe life tests of alkali metal systems up to .50,000 hours. Unfortunately, resources have not been available to examine the effect of temperature, mass fluence, or impurity level on corrosion or to conduct post-test forensic examination of heat pipes. The key objective of this effort was to establish a cost/time effective method to systematically test alkali metal heat pipes with both practical and theoretical benefits. During execution of the project, a heat pipe design was established, a majority of the laboratory test equipment systems specified, and operating and test procedures developed. Procurements for the heat pipe units and all major test components were underway at the time the stop work order was issued. An extremely important outcome was the successful fabrication of an annular wick from Mo-5%Re screen (the single, most difficult component to manufacture) using a hot isostatic pressing technique. This Technical Publication (TP) includes specifics regarding the heat pipe calorimeter water-cooling system, vendor design for the radio frequency heating system, possible alternative calorimeter designs, and progress on the vanadium equilibration technique. The methods provided in this TP and preceding project documentation would serve as a good starting point to rapidly implement an accelerated life test. Relevant test data can become available within months, not years, and destructive examination of the first life test heat pipe might begin within 6 months of test initiation. Final conclusions could be drawn in less than a quarter of the mission duration for a long-lived, fission-powered, deep space probe.

  8. Comparison of test particle acceleration in torsional spine and fan reconnection regimes

    SciTech Connect

    Hosseinpour, M. Mehdizade, M.; Mohammadi, M. A.

    2014-10-15

    Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as high as 100 MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.

  9. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  10. Accelerated aging and flashover tests on 138 kV nonceramic line post insulators

    SciTech Connect

    Schneider, H.M.; Guidi, W.W. ); Burnham, J.T. ); Gorur, R.S. ); Hall, J.F. )

    1993-01-01

    The behavior of 138 kV nonceramic line post insulators is investigated by means of clean fog tests conducted before and after aging in a specially designed accelerated aging chamber. The laboratory aging cycles are justified on the basis of actual weather in the coastal regions of Florida. Analytical measurements quantifying the degree of artificial aging are discussed and comparisons of artificial aging with service experience are presented. Observations of audible noise and radio influence voltage during the clean fog tests are reported.

  11. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    NASA Technical Reports Server (NTRS)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  12. Seismic-fragility tests of new and accelerated-aged Class 1E battery cells

    SciTech Connect

    Bonzon, L.L.; Janis, W.J.; Black, D.A.; Paulsen, G.A.

    1987-01-01

    The seismic-fragility response of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the potential survivability of a battery given a seismic event. Prior reports in this series discussed the seismic-fragility tests and results for three specific naturally-aged cell types: 12-year old NCX-2250, 10-year old LCU-13, and 10-year old FHC-19. This report focuses on the complementary approach, namely, the seismic-fragility response of accelerated-aged batteries. Of particular interest is the degree to which such approaches accurately reproduce the actual failure modes and thresholds. In these tests the significant aging effects observed, in terms of seismic survivability, were: embrittlement of cell cases, positive bus material and positive plate grids; and excessive sulphation of positive plate active material causing hardening and expansion of positive plates. The IEEE Standard 535 accelerated aging method successfully reproduced seismically significant aging effects in new cells but accelerated grid embrittlement an estimated five years beyond the conditional age of other components.

  13. Development of a quantitative accelerated sulphate attack test for mine backfill

    NASA Astrophysics Data System (ADS)

    Shnorhokian, Shahe

    Mining operations produce large amounts of tailings that are either disposed of in surface impoundments or used in the production of backfill to be placed underground. Their mineralogy is determined by the local geology, and it is not uncommon to come across tailings with a relatively high sulphide mineral content, including pyrite and pyrrhotite. Sulphides oxidize in the presence of oxygen and water to produce sulphate and acidity. In the concrete industry, sulphate is known to produce detrimental effects by reacting with the cement paste to produce the minerals ettringite and gypsum. Because mine backfill uses tailings and binders---including cement---it is therefore prone to sulphate attack where the required conditions are met. Currently, laboratory tests on mine backfill mostly measure mechanical properties such as strength parameters, and the study of the chemical aspects is restricted to the impact of tailings on the environment. The potential of sulphate attack in mine backfill has not been studied at length, and no tests are conducted on binders used in backfill for their resistance to attack. Current ASTM guidelines for sulphate attack tests have been deemed inadequate by several authors due to their measurement of only expansion as an indicator of attack. Furthermore, the tests take too long to perform or are restricted to cement mortars only, and not to mixed binders that include pozzolans. Based on these, an accelerated test for sulphate attack was developed in this work through modifying and compiling procedures that had been suggested by different authors. Small cubes of two different binders were fully immersed in daily-monitored sodium sulphate and sulphuric acid solutions for a total of 28 days, after 7 days of accelerated curing at 50°C. In addition, four binders were partially immersed in the same solutions for 8 days for an accelerated attack process. The two procedures were conducted in tandem with leach tests using a mixed solution of

  14. Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier

    SciTech Connect

    Gold, S. H.; Fliflet, A. W.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Lewis, D. III

    2006-01-03

    The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to {approx}8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.

  15. Blister Test for Measurements of Adhesion and Adhesion Degradation of Organic Polymers on AA2024-T3

    NASA Astrophysics Data System (ADS)

    Rincon Troconis, Brendy Carolina

    A key parameter for the performance of corrosion protective coatings applied to metals is adhesion. Surface preparation prior to coating application is known to be critical, but there is a lack of understanding of what controls adhesion. Numerous techniques have been developed in the last decades to measure the adhesion strength of coatings to metals. Nonetheless, they are generally non-quantitative, non-reproducible, performed in dry conditions, or overestimate adhesion. In this study, a quantitative and reproducible technique, the Blister Test (BT), is used. The BT offers the ability to study the effects of a range of parameters, including the presence or absence of a wetting liquid, and simulates the stress situation in the coating/substrate interface. The effects of roughness and surface topography were studied by the BT and Optical Profilometry, using AA2024-T3 substrates coated with polyvinyl butyral (PVB). Random abrasion generated a surface with lower average roughness than aligned abrasion due to the continual cross abrasion of the grooves. The BT could discern the effects of different mechanical treatments. An adhesion strength indicator was defined and found to be a useful parameter. The effectiveness of standard adhesion techniques such as ASTM D4541 (Pull-off Test) and ASTM D3359 (Tape Test) was compared to the BT. Also, different attempts to measure adhesion and adhesion degradation of organic polymers to AA2024-T3 were tested. The pull-off test does not produce adhesive failure across the entire interface, while the tape test is a very qualitative technique and does not discern between the effects of different coating systems on the adhesion performance. The BT produces adhesive failure of the primer studied, is very reproducible, and is able to rank different coating systems. Therefore, it was found to be superior to the others. The approaches tested for adhesion degradation were not aggressive enough to have a measurable effect. The effects of

  16. Surface roughness and color characteristics of wood treated with preservatives after accelerated weathering test

    NASA Astrophysics Data System (ADS)

    Temiz, Ali; Yildiz, Umit C.; Aydin, Ismail; Eikenes, Morten; Alfredsen, Gry; Çolakoglu, Gürsel

    2005-08-01

    Wood samples treated with ammonium copper quat (ACQ 1900 and ACQ 2200), chromated copper arsenate (CCA), Tanalith E 3491 and Wolmanit CX-8 have been studied in accelerated weathering experiments. The weathering experiment was performed by cycles of 2 h UV-light irradiation followed by water spray for 18 min. The changes on the surface of the weathered samples were characterized by roughness and color measurements on the samples with 0, 200, 400 and 600 h of total weathering. The objective of this study was to investigate the changes created by weathering on impregnated wood with several different wood preservatives. This study was performed on the accelerated weathering test cycle, using UV irradiation and water spray in order to simulate natural weathering. Surface roughness and color measurement was used to investigate the changes after several intervals (0-200-400-600 h) in artificial weathering of treated and untreated wood.

  17. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    PubMed

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  18. Prediction of reliability on thermoelectric module through accelerated life test and Physics-of-failure

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung-Seuk; Seo, Won-Seon; Choi, Duck-Kyun

    2011-09-01

    Thermoelectric cooling module (TEM) which is electric device has a mechanical stress because of temperature gradient in itself. It means that structure of TEM is vulnerable in an aspect of reliability but research on reliability of TEM was not performed a lot. Recently, the more the utilization of thermoelectric cooling devices grows, the more the needs for life prediction and improvement are increasing. In this paper, we investigated life distribution, shape parameter of the TEM through accelerated life test (ALT). And we discussed about how to enhance life of TEM through the Physics-of-failure. Experimental results of ALT showed that the thermoelectric cooling module follows the Weibull distribution, shape parameter of which is 3.6. The acceleration model is coffin Coffin-Manson and material constant is 1.8.

  19. Beam Based HOM Analysis of Accelerating Structures at the TESLA Test Facility Linac

    SciTech Connect

    Wendt, M.; Schreiber, S.; Castro, P.; Gossel, A.; Huning, M.; Devanz, G.; Jablonka, M.; Magne, C.; Napoly, O.; Baboi, N.; /SLAC

    2005-08-09

    The beam emittance in future linear accelerators for high energy physics and SASE-FEL applications depends highly on the field performance in the accelerating structures, i.e. the damping of higher order modes (HOM). Besides theoretical and laboratory analysis, a beam based analysis technique was established [1] at the TESLA Test Facility (TTF) linac. It uses a charge modulated beam of variable modulation frequency to excite dipole modes. This causes a modulation of the transverse beam displacement, which is observed at a downstream BPM and associated with a direct analysis of the modes at the HOM-couplers. A brief introduction of eigenmodes of a resonator and the concept of the wake potential is given. Emphasis is put on beam instrumentation and signal analysis aspects, required for this beam based HOM measurement technique.

  20. Commissioning of the first drift tube linac module in the Ground Test Accelerator

    SciTech Connect

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Cole, R.; Connolly, R.; Denney, P.; Erickson, J.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Kraus, R.; Lysenko, W.P.; McMurry, D.; Mottershead, C.T.; Power, J.; Rose, C.; Rusthoi, D.P.; Sandoval, D.P.; Schneider, J.D.; Smith, M.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1993-06-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam-dynamics design of each major accelerator component as it is brought on-line. The major components are the 35-keV H{sup {minus}} injector, the 2.5-MeV radio-frequency quadrupole (RFQ), the intertank matching section (IMS), the 3.2 MeV first 2{beta}{lambda} drift tube linac (DTL-1) module, and the 24-MeV GTA with 10 DTL modules. Results from the DTL-1 beam experiments will be presented.

  1. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  2. Preliminary results of accelerated exposure testing of solar cell system components

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F.

    1977-01-01

    Plastic samples and solar cell sub modules were exposed to an accelerated outdoor environment in Arizona and an accelerated simulated environment in a cyclic ultraviolet exposure tester which included humidity exposure. These tests were for preliminary screening of materials suitable for use in the manufacture of solar cell modules which are to have a 20-year lifetime. The samples were exposed for various times up to six months, equivalent to a real time exposure of four years. Suitable materials were found to be FEP-A, FEP-C, PFA, acrylic, silicone compounds and adhesives and possibly parylene. The method of packaging the sub modules was also found to be important to their performance.

  3. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator

    SciTech Connect

    Chitarin, G.; Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P.

    2012-02-15

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  4. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    NASA Astrophysics Data System (ADS)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  5. Assessing photovoltaic module degradation and lifetime from long term environmental tests

    NASA Technical Reports Server (NTRS)

    Otth, D. H.; Ross, R. G., Jr.

    1983-01-01

    The photovoltaic module failure mechanisms related to temperature, humidity, and electrical bias are analyzed using the data collected over a period of 20 years from various sites in the U.S. The approach is based on measuring the rate dependence of the mechanisms on site stress levels, and then using the rate data to analytically estimate the field life by means of computer models of the site environment. A correlation is established between the accelerated constant-stress testing and the time-varying field exposures. Test results are presented for two failure mechanisms for a module design featuring polyvinyl butyral encapsulant for the temperature range of 85 to 100 C and 85-percent relative humidity.

  6. Design and testing of a dc ion injector suitable for accelerator-driven transmutation

    SciTech Connect

    Schneider, J.D.; Meyer, E.; Stevens, R.R. Jr.; Hansborough, L.; Sherman, J.

    1994-08-01

    For a number of years, Los Alamos have collaborated with a team of experimentalists at Chalk River Labs who were pursuing the development of the front end of a high power cw proton accelerator. With the help of internal laboratory funding and modest defense conversion funds, we have set up and operated the accelerator at Los Alamos Operational equipment includes a slightly modified Chalk River Injector Test Stand (CRITS) including a 50 keV proton injector and a 1.25 MeV radio-frequency quadrupole (RFQ) with a klystrode rf power system. Many of the challenges involved in operating an rf linear accelerator to provide neutrons for an accelerator-driven reactor are encountered at the front (low energy) end of this system. The formation of the ion beam, the control of the beam parameters, and the focusing and matching of a highly space-charge-dominated beam are major problems. To address the operating problems in this critical front end, the Accelerator Operations and Technology Division at the Los Alamos National Laboratory has designed the APDF (Accelerator Prototype Demonstration Facility). The front end of this facility is a 75 keV, high-current, ion injector which has been assembled and is now being tested. This paper discusses the design modifications required in going from the 50 keV CRITS injector to the higher current, 75 keV injector. Major innovative changes were made in the design of this injector. This design eliminates all the control electronics and most of the ion source equipment at high potential. Also, a new, high-quality, ion-extractor system has been built. A dual-solenoid lens will be used in the low energy beam transport (LEBT) line to provide the capability of matching the extracted beam to a high-current ADTT linac. This new injector is the first piece of hardware in the APDF program and will be used to develop the long-term, reliable cw beam operation required for ADIT applications.

  7. Accelerated life test of sputtering and anode deposit spalling in a small mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1975-01-01

    Tantalum and molybdenum sputtered from discharge chamber components during operation of a 5 centimeter diameter mercury ion thruster adhered much more strongly to coarsely grit blasted anode surfaces than to standard surfaces. Spalling of the sputtered coating did occur from a coarse screen anode surface but only in flakes less than a mesh unit long. The results were obtained in a 200 hour accelerated life test conducted at an elevated discharge potential of 64.6 volts. The test approximately reproduced the major sputter erosion and deposition effects that occur under normal operation but at approximately 75 times the normal rate. No discharge chamber component suffered sufficient erosion in the test to threaten its structural integrity or further serviceability. The test indicated that the use of tantalum-surfaced discharge chamber components in conjunction with a fine wire screen anode surface should cure the problems of sputter erosion and sputtered deposits spalling in long term operation of small mercury ion thrusters.

  8. Methodology to Improve Design of Accelerated Life Tests in Civil Engineering Projects

    PubMed Central

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods. PMID:25111800

  9. Endoplasmic Reticulum Stress Accelerates p53 Degradation by the Cooperative Actions of Hdm2 and Glycogen Synthase Kinase 3β

    PubMed Central

    Pluquet, Olivier; Qu, Li-Ke; Baltzis, Dionissios; Koromilas, Antonis E.

    2005-01-01

    Inactivation of the tumor suppressor p53 by degradation is a mechanism utilized by cells to adapt to endoplasmic reticulum (ER) stress. However, the mechanisms of p53 destabilization by ER stress are not known. We demonstrate here that the E3 ubiquitin-ligase Hdm2 is essential for the nucleocytoplasmic transport and proteasome-dependent degradation of p53 in ER-stressed cells. We also demonstrate that p53 phosphorylation at S315 and S376 is required for its nuclear export and degradation by Hdm2 without interfering with the ubiquitylation process. Furthermore, we show that p53 destabilization in unstressed cells utilizes the cooperative action of Hdm2 and glycogen synthase kinase 3β, a process that is enhanced in cells exposed to ER stress. In contrast to other stress pathways that stabilize p53, our findings further substantiate a negative role of ER stress in p53 activation with important implications for the function of the tumor suppressor in cells with a dysfunctional ER. PMID:16227590

  10. Test of pixel detectors for laser-driven accelerated particle beams

    NASA Astrophysics Data System (ADS)

    Reinhardt, S.; Granja, C.; Krejci, F.; Assmann, W.

    2011-12-01

    Laser-driven accelerated (LDA) particle beams have due to the unique acceleration process very special properties. In particular they are created in ultra-short bunches of high intensity exceeding more than 107 \\frac{particles}{cm^{2} \\cdot ns} per bunch. Characterization of these beams is very limited with conventional particle detectors. Non-electronic detectors such as imaging plates or nuclear track detectors are, therefore, conventionally used at present. Moreover, all these detectors give only offline information about the particle pulse position and intensity as they require minutes to hours to be processed, calling for a new highly sensitive online device. Here, we present tests of different pixel detectors for real time detection of LDA ion pulses. Experiments have been performed at the Munich 14MV Tandem accelerator with 8-20 MeV protons in dc and pulsed beam, the latter producing comparable flux as a LDA ion pulse. For detection tests we chose the position-sensitive quantum-counting semiconductor pixel detector Timepix which also provides per-pixel energy- or time-sensitivity. Additionally other types of commercially available pixel detectors are being evaluated such as the RadEye™1, a large area (25 x 50 mm2) CMOS image sensor. All of these devices are able to resolve individual ions with high spatial- and energy-resolution down to the level of μm and tens of keV, respectively. Various beam delivering parameters of the accelerator were thus evaluated and verified. The different readout modes of the Timepix detector which is operated with an integrated USB-based readout interface allow online visualization of single and time-integrated events. Therefore Timepix offers the greatest potential in analyzing the beam parameters.

  11. The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture.

    PubMed

    Mattison, R G; Taki, H; Harayama, S

    2005-01-01

    The impact of grazing by soil flagellates Heteromita globosa on aerobic biodegradation of benzene by Pseudomonas strain PS+ was examined in batch culture. Growth of H. globosa on these bacteria obeyed Monod kinetics (mu(max), 0.17 +/- 0.03 h(-1); K(s), 1.1 +/- 0.2 x 10(7) bacteria mL(-1)) and was optimal at a bacteria/ flagellate ratio of 2000. Carbon mass balance showed that 5.2% of total [ring-U-(14)C]benzene fed to bacteria was subsequently incorporated into flagellate biomass. Growth-inhibiting concentrations (IC50) of alkylbenzenes (benzene, toluene, ethylbenzene) were inversely related with their octanol/ water partitioning coefficients, and benzene was least toxic for bacteria and flagellates with IC50 values of 4392 (+/- 167) microM and 2770 (+/- 653) microM, respectively. The first-order rate constant for benzene degradation (k1, 0.48 +/- 0.12 day(-1)) was unaffected by the presence or absence of flagellates in cultures. However, the rate of benzene degradation by individual bacteria averaged three times higher in the presence of flagellates (0.73 +/- 0.13 fmol cell(-1) h(-1)) than in their absence (0.26 +/- 0.03 fmol cell(-1) h(-1)). Benzene degradation also coincided with higher levels of dissolved oxygen and a higher rate of nitrate reduction in the presence of flagellates (p < 0.02). Grazing by flagellates may have increased the availability of dissolved oxygen to a smaller surviving population of bacteria engaged in the aerobic reactions initiating benzene degradation. In addition, flagellates may also have increased the rate of nitrate reduction through the excretion of acetate as an additional electron donor for these bacteria. Indeed, acetate was shown to progressively accumulate in cultures where flagellates grazed on heat-killed bacteria. This study provided evidence that grazing flagellates stimulate bacterial degradation of alkylbenzenes and provide a link for carbon cycling to consumers at higher trophic levels. This may have important

  12. A study of erosion in die casting dies by a multiple pin accelerated erosion test

    NASA Astrophysics Data System (ADS)

    Shivpuri, R.; Yu, M.; Venkatesan, K.; Chu, Y.-L.

    1995-04-01

    An accelerated erosion test was developed to evaluate the erosion resistance of die materials and coatings for die casting application. An acceleration in wear was achieved by selecting pyramid-shaped core pins, hypereutectic aluminum silicon casting alloy, high melt temperatures and high gate velocities. Multiple pin design was selected to enable multiple test sites for comparative evaluation. Apilot run was conducted on a 300 ton commercial die casting machine at various sites (pins) to verify the thermal and flow similarities. Subsequently, campaigns were run on two different 300 ton commercial die casting machines to evaluate H13 die material and different coatings for erosive resistance. Coatings and surface treatments evaluated included surface micropeening, titanium nitride, boron carbide, vanadium carbide, and metallic coatings—tungsten, molybdenum, and platinum. Recent campaigns with different melt temperatures have indicated a possible link between soldering phenomena and erosive wear. This paper presents the details of the test set up and the results of the pilot and evaluation tests.

  13. Testing Einstein's time dilation under acceleration using Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Nowik, Israel

    2012-06-01

    The Einstein time dilation formula was tested in several experiments. Many trials have been conducted to measure the transverse second-order Doppler shift by Mössbauer spectroscopy using a rotating absorber, to test the validity of this formula. Such experiments are also able to test if the time dilation depends only on the velocity of the absorber, as assumed by Einstein's clock hypothesis, or whether the present centripetal acceleration contributes to the time dilation. We show here that because the experiment requires γ-ray emission and detection slits of finite size, the absorption line is broadened, by geometric longitudinal first-order Doppler shifts immensely. Moreover, the absorption line is non-Lorentzian. We obtain an explicit expression for the absorption line for any angular velocity of the absorber. The analysis of the experimental results in all previous experiments which did not observe the full absorption line itself were wrong and the conclusions doubtful. The only proper experiment was done by Kündig (1963 Phys. Rev. 129 2371), who observed the broadening, but associated it with random vibrations of the absorber. We establish necessary conditions for the successful measurement of a transverse second-order Doppler shift by Mössbauer spectroscopy. We indicate how the results of such an experiment can be used to verify the existence of a Doppler shift due to acceleration and to test the validity of Einstein's clock hypothesis.

  14. Acceleration of cellulose degradation and shift of product via methanogenic co-culture of a cellulolytic bacterium with a hydrogenotrophic methanogen.

    PubMed

    Sasaki, Daisuke; Morita, Masahiko; Sasaki, Kengo; Watanabe, Atsushi; Ohmura, Naoya

    2012-10-01

    Although the effects of syntrophic relationships between bacteria and methanogens have been reported in some environments, those on cellulose decomposition using cellulolytic bacteria from methanogenic reactors have not yet been examined. The effects of syntrophic co-culture on the decomposition of a cellulosic material were investigated in a co-culture of Clostridium clariflavum strain CL-1 and the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus strain ΔH and a single-culture of strain CL-1 under thermophilic conditions. In this study, strain CL-1 was newly isolated as a cellulolytic bacterium from a thermophilic methanogenic reactor used for degrading garbage slurry. The degradation efficiency and cell density of strain CL-1 were 2.9- and 2.7-fold higher in the co-culture than in the single-culture after 60 h of incubation, respectively. Acetate, lactate and ethanol were the primary products in both cultures, and the concentration of propionate was low. The content of acetate to total organic acids plus ethanol was 59.3% in the co-culture. However, the ratio decreased to 24.9% in the single-culture, although acetate was the primary product. Therefore, hydrogen scavenging by the hydrogenotrophic methanogen strain ΔH could shift the metabolic pathway to the acetate production pathway in the co-culture. Increases in the cell density and the consequent acceleration of cellulose degradation in the co-culture would be caused by increases in adenosine 5'-triphosphate (ATP) levels, as the acetate production pathway includes ATP generation. Syntrophic cellulose decomposition by the cellulolytic bacteria and hydrogenotrophic methanogens would be the dominant reaction in the thermophilic methanogenic reactor degrading cellulosic materials. PMID:22652087

  15. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    NASA Astrophysics Data System (ADS)

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-03-01

    We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.

  16. Protein synthesis and degradation are essential to regulate germline stem cell homeostasis in Drosophila testes.

    PubMed

    Yu, Jun; Lan, Xiang; Chen, Xia; Yu, Chao; Xu, Yiwen; Liu, Yujuan; Xu, Lingna; Fan, Heng-Yu; Tong, Chao

    2016-08-15

    The homeostasis of self-renewal and differentiation in stem cells is controlled by intrinsic signals and their niche. We conducted a large-scale RNA interference (RNAi) screen in Drosophila testes and identified 221 genes required for germline stem cell (GSC) maintenance or differentiation. Knockdown of these genes in transit-amplifying spermatogonia and cyst cells further revealed various phenotypes. Complex analysis uncovered that many of the identified genes are involved in key steps of protein synthesis and degradation. A group of genes that are required for mRNA splicing and protein translation contributes to both GSC self-renewal and early germ cell differentiation. Loss of genes in the protein degradation pathway in cyst cells leads to testis tumors consisting of overproliferated germ cells. Importantly, in the Cullin 4-RING E3 ubiquitin ligase (CRL4) complex, we identified multiple proteins that are crucial to GSC self-renewal: pic/DDB1, a CRL4 linker protein, is not only required for GSC self-renewal in flies but also for maintenance of spermatogonial stem cells (SSCs) in mice. PMID:27471256

  17. Accelerated testing of an optimized closing system for automotive fuel tank

    NASA Astrophysics Data System (ADS)

    Gligor, A.; Ilie, S.; Nicolae, V.; Mitran, G.

    2015-11-01

    Taking into account the legal prescriptions which are in force and the new regulatory requirements that will be mandatory to implement in the near future regarding testing characteristics of automotive fuel tanks, resulted the necessity to develop a new testing methodology which allows to estimate the behaviour of the closing system of automotive fuel tank over a long period of time (10-15 years). Thus, were designed and conducted accelerated tests under extreme assembling and testing conditions (high values for initial tightening torques, extreme values of temperature and pressure). In this paper are presented two of durability tests which were performed on an optimized closing system of fuel tank: (i) the test of exposure to temperature with cyclical variation and (ii) the test of continuous exposure to elevated temperature. In these experimental tests have been used main components of the closing system manufactured of two materials variants, both based on the polyoxymethylene, material that provides higher mechanical stiffness and strength in a wide temperature range, as well as showing increased resistance to the action of chemical agents and fuels. The tested sample included a total of 16 optimized locking systems, 8 of each of 2 versions of material. Over deploying the experiments were determined various parameters such as: the initial tightening torque, the tightening torque at different time points during measurements, the residual tightening torque, defects occurred in the system components (fissures, cracks, ruptures), the sealing conditions of system at the beginning and at the end of test. Based on obtained data were plotted the time evolution diagrams of considered parameter (the residual tightening torque of the system consisting of locking nut and threaded ring), in different temperature conditions, becoming possible to make pertinent assessments on the choice between the two types of materials. By conducting these tests and interpreting the

  18. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  19. An accelerated step test to assess dancer pre-season aerobic fitness.

    PubMed

    Bronner, Shaw; Rakov, Sara

    2014-03-01

    As the technical performance demands of dance increase, professional companies and pre-professional schools are implementing pre-season screenings that require an efficient, cost effective way to measure dancer aerobic fitness. The aim of this study was to assess an accelerated 3-minute step test (112 beats·min(-1)) by comparing it to the well-studied YMCA step test (96 beats·min(-1)) and a benchmark standard, an incremental treadmill test, using heart rate (HR) and oxygen consumption (VO2) as variables. Twenty-six professional and pre- professional dancers (age 20 ± 2.02 years) were fitted with a telemetric gas analysis system and HR monitor. They were tested in the following order: 96 step, 112 step, and treadmill test, with rest to return to baseline heart rate between each test. The step and treadmill tests were compared using Intra-class Correlation Coefficients [ICC (3, k)] calculated with analysis of variance (p < 0.05). To determine whether there was a relationship between peak and recovery HR (HRpeak, HRrecov) and VO2(VO2peak, VO2recov) variables, Pearson product moment correlations were used. Differences due to gender or group (pre- professionals versus professionals) were explored with MANOVAs for HRpeak, VO2peak, HRrecov, VO2recov, and fitness category. The 112 step test produced higher HRpeak and VO2peak values than the 96 step test, reflecting a greater workload (p < 0.001). For HRpeak, there were high correlations (r = 0.71) and for HRrecov, moderate correlations (r = 0.60) between the 112 step test and treadmill test. For VO2peak and VO2recov, there were moderate correlations between the 112 step test and treadmill test (r = 0.65 and 0.73). No differences between genders for VO2peak values were found for either step test, but males displayed lower HRpeak values for both step tests and higher VO2peak values during the treadmill test (p < 0.001). Recovery HR was lower in males for the 96 and 112 step tests (p < 0.05). This was reflected in higher

  20. Using globular clusters to test gravity in the weak acceleration regime: NGC 6171

    NASA Astrophysics Data System (ADS)

    Scarpa, Riccardo; Marconi, Gianni; Gilmozzi, Roberto

    2004-12-01

    As part of an ongoing program to test Newton’s law of gravity in the low acceleration regime using globular clusters, we present here new results obtained for NGC 6171. Combining VLT spectra for 107 stars with data from the literature, we were able to trace the velocity dispersion profile up to 16 pc from the cluster center, probing accelerations of gravity down to 3.5x10-9 cm s-2 . The velocity dispersion is found to remain constant at large radii (with an asymptotic values of 2.7 km s-1 ) rather than follow the Keplerian falloff. Similar results were previously found for the globular clusters ω Centauri and M15. We have now studied three clusters and all three have been found to have a flat dispersion profile beyond the radius where their internal acceleration of gravity is a0 1.2x10-8 cm s-2 . Whether this indicates a failure of Newtonian dynamics or some more conventional dynamical effect (e.g., tidal heating) is still unclear. However, the similarities emerging between globular clusters and elliptical galaxies seem to favor the first of the two possibilities.

  1. Test results of a Nb3Al/Nb3Sn subscale magnet for accelerator application

    DOE PAGESBeta

    Iio, Masami; Xu, Qingjin; Nakamoto, Tatsushi; Sasaki, Ken -ichi; Ogitsu, Toru; Yamamoto, Akira; Kimura, Nobuhiro; Tsuchiya, Kiyosumi; Sugano, Michinaka; Enomoto, Shun; et al

    2015-01-28

    The High Energy Accelerator Research Organization (KEK) has been developing a Nb3Al and Nb3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb3Al cable and the technology acquisition of magnet fabrication with Nb3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in a minimum-gap common-coil configuration with twomore » Nb3Al coils sandwiched between two Nb3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a “bladder and key” technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb3Sn coil and 8.2 T in the Nb3Al coil. The quench characteristics of the magnet were studied.« less

  2. A Test House Study of Pesticides and PesticideDegradation Products Following an Indoor Application

    EPA Science Inventory

    Preexisting pesticide degradates are a concern for pesticide biomonitoring studies as exposure to them may result in overestimation of pesticide exposure. The purpose of this research was to determine whether there was significant formation and movement, of pesticide degradates o...

  3. Preparation of TiO2-ZnO and its activity test in sonophotocatalytic degradation of phenol

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Novitasari

    2016-02-01

    Synthesis of TiO2-ZnO and its activity test in Sono photocatalysis degradation of phenol has been conducted. The synthesis was performed by the sol-gel mechanism by using titanium isopropoxide and zinc acetate as precursors with the Ti: Zn ratio of 5:1. Characterization of material were conducted by x-ray diffraction analysis, surface area analysis and also diffuse reflectance UV-Visible spectrophotometry. The material obtained from the synthesis was tested in photocatalysis, Sono catalysis and Sono photocatalysis degradation of phenol solution. Results showed that material exhibited the activity of varied mechanism o- phenol degradation. In advance, the Sono photocatalysis degradation produced the synergy index of 1.169 compared to both photocatalysis and Sono catalysis.

  4. A justification for the use of data from accelerated leach tests of glass

    SciTech Connect

    Ahn, T.M.; Interrante, C.G.; Weller, R.A.

    1993-12-31

    A case is made for the use of short-term laboratory data in making predictions on the likelihood of significant colloid formation in supersaturated leachates of glass, under long-term repository conditions, using {open_quotes}accelerated tests{close_quotes} with a large ratio of the surface area of the glass to the leachate volume. In the repository conditions in which colloids can form, long-term leaching may be a kinetically-controlled process that involves the continuous formation of colloids. If this kinetic process dominates, it could lead to a significant increase in the predicted rates of radionuclide release. The question is whether or not colloids may form after prolonged times; the delayed formation would make it difficult to use short-term laboratory test results to represent (or predict) the long-term and cumulative effects of radionuclides. In this work, the pertinent long-term kinetic processes are identified in part. Classical nucleation theory for particle formation, as a potential condensation mechanism for colloid formation, is applied to explain pertinent experimental data on colloid formation. The classical theory, which is justified for this discussion, indicates that as supersaturation of a leachate is decreased, the nucleation rate decreases most significantly, while the incubation time increases at a small rate. As a result of this decreased nucleation rate, the significance of colloids tends to vanish, and usefulness of data from {open_quotes}accelerated{close_quotes} laboratory tests may be applicable to long-term behavior.

  5. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    The types and quantities of wear particles generated during accelerated ball rolling contact fatigue tests were determined. Ball specimens were made of AMS 5749, a corrosion resistant, high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.215 times 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed; normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  6. ACCELERATED TESTING OF NEUTRON-ABSORBING ALLOYS FOR NUCLEAR CRITICALITY CONTROL

    SciTech Connect

    Ronald E. Mizia

    2011-10-01

    The US Department of Energy requires nuclear criticality control materials be used for storage of highly enriched spent nuclear fuel used in government programs and the storage of commercial spent nuclear fuel at the proposed High-Level Nuclear Waste Geological Repository located at Yucca Mountain, Nevada. Two different metallic alloys (Ni-Cr-Mo-Gd and borated stainless steel) have been chosen for this service. An accelerated corrosion test program to validate these materials for this application is described and a performance comparison is made.

  7. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    PubMed

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days. PMID:26595777

  8. Simulation and steering in the intertank matching section of the ground test accelerator

    SciTech Connect

    Yuan, V.W.; Bolme, G.O.; Johnson, K.F.; Mottershead, C.T.; Sander, O.R.; Smith, M.T.; Erickson, J.L.

    1994-10-01

    The Intertank Matching Section (IMS) of the Ground Test Accelerator (GTA) is a short (36 cm) beamline designed to match the Radio Frequency Quadrupole (RFQ) exit beam into the first Drift Tube LINAC (DTL) tank. The IMS contains two steering quadrupoles (SMQs) and four variable-field focussing quads (VFQs). The SMQs are fixed strength permanent magnet quadrupoles on mechanical actuators capable of transverse movement for the purpose of steering the beam. The upstream and downstream steering quadrupoles are labelled SMQ1 and SMQ4 respectively. Also contained in the IMS are two RF cavities for longitudinal matching.

  9. Simulation and steering in the Intertank matching section of the ground test accelerator

    NASA Astrophysics Data System (ADS)

    Yuan, V. W.; Bolme, G. O.; Erickson, J. L.; Johnson, K. F.; Mottershead, C. T.; Sander, O. R.; Smith, M. T.

    1995-05-01

    The Intertank Matching Section (IMS) of the Ground Test Accelerator (GTA) is a short (36 cm) beamline designed to match the Radio Frequency Quadrupole (RFQ) exit beam into the first Drift Tube LINAC (DTL) tank. The IMS contains two steering quadrupoles (SMQS) and four variable-field focusing quads (VFQs). The SMQs are fixed strength permanent magnet quadrupoles on mechanical actuators capable of transverse movement for the purpose of steerng the beam. Also contained in the IMS are two RF cavities for longitudinal matching. A comparison of measured to calculated steering coefficients has been made for data aken in 3 different tunes of the IMS transport line. (AIP)

  10. Test simulation of neutron damage to electronic components using accelerator facilities

    NASA Astrophysics Data System (ADS)

    King, D. B.; Fleming, R. M.; Bielejec, E. S.; McDonald, J. K.; Vizkelethy, G.

    2015-12-01

    The purpose of this work is to demonstrate equivalent bipolar transistor damage response to neutrons and silicon ions. We report on irradiation tests performed at the White Sands Missile Range Fast Burst Reactor, the Sandia National Laboratories (SNL) Annular Core Research Reactor, the SNL SPHINX accelerator, and the SNL Ion Beam Laboratory using commercial silicon npn bipolar junction transistors (BJTs) and III-V Npn heterojunction bipolar transistors (HBTs). Late time and early time gain metrics as well as defect spectra measurements are reported.

  11. Accelerator Test Facility for Muon Collider and Neutrino Factory R&d

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2010-06-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture, accelerate and collide high intensity beams of muons. At present, a high-luminosity multi-TeV muon collider presents a viable option for the next generation lepton-lepton collider, which is believed to be needed to fully explore high energy physics in the era following LHC discoveries. This article briefly reviews the needs and possibilities for a Muon Collider beam test facility to carry out the R&D program on the collider front-end and 6D cooling demonstration experiment.

  12. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    SciTech Connect

    Hutton, Andrew; Areti, Hari

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. The second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected conference

  13. Program of thermoelectric generator testing and RTG degradation mechanisms evaluation. Progress report No. 38

    SciTech Connect

    Lockwood, A.; Shields, V.

    1980-11-01

    The n-type gadolinium selenide legs after 17,500 hours continue to show reasonable agreement with the 3M Co. published thermal conductivity data. Weight loss for both coated and uncoated Si-Ge material produced by G.E. are reported. No significant discrepancies with the results previously obtained on R.C.A. material from the MHW program have been found. Thermal conductivity measurements are also in agreement. The remaining MHW generator on test, Q1-A, has accumulated 26,800 hours and performance remains stable. The performance of the 18 couple modules S/N-1, S/N-2, and S/N-3 to date is summarized. Telemetry data indicate no changes in the trends of degradation of LES 8 and 9 and the Voyager RTGs.

  14. Microbial screening test for lignite degradation. Quarterly progress report No. 1, January-March 1985

    SciTech Connect

    Yen, T.F.

    1985-01-01

    Potassium permanganate and sodium hypochlorite oxidation of lignitic coal were performed. Ion chromatography of low molecular weight carboxylic acids - oxalic acid, formic acid, and acetic acid - produced by potassium permanganate and sodium hypochlorite oxidation was executed. Oxalic acid was found to be the most predominant low molecular weight species. It was estimated that about 10% of the carbon present in the chemical structure of lignite was converted to oxalic acid by sodium hypochlorite oxidation. Ion chromatography analysis showed that about 43% of the lignite carbon was converted to carbon dioxide in all experiments. Biological degradation of lignite by P. versicolor, a white-rot fungus, on lignite/agar and lignite slurry was attempted. Apparently, P. versicolor is capable of growing on lignite slurry. Acclimation of P. versicolor to lignite was proceeded. Biochemical reaction test for laccase production of P. versicolor was performed and found to be positive. 15 refs., 5 figs., 6 tabs.

  15. Degradable Magnetic Composites for Minimally Invasive Interventions: Device Fabrication, Targeted Drug Delivery, and Cytotoxicity Tests.

    PubMed

    Peters, Christian; Hoop, Marcus; Pané, Salvador; Nelson, Bradley J; Hierold, Christofer

    2016-01-20

    Superparamagnetic nanoparticles and a functional, degradable polymer matrix based on poly(ethylene glycol) are combined to enable fully degradable magnetic microdevices for minimally invasive biomedical applications. A bioinspired helical microrobot platform mimicking Escherichia coli bacteria is fabricated and actuated using weak rotating magnetic fields. Locomotion based on corkscrew propulsion, targeted drug delivery, and low-degradation-product cytotoxicity are demonstrated. PMID:26603856

  16. Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions.

    PubMed

    Sánchez-García, M; Alburquerque, J A; Sánchez-Monedero, M A; Roig, A; Cayuela, M L

    2015-09-01

    A composting study was performed to assess the impact of biochar addition to a mixture of poultry manure and barley straw. Two treatments: control (78% poultry manure + 22% barley straw, dry weight) and the same mixture amended with biochar (3% dry weight), were composted in duplicated windrows during 19 weeks. Typical monitoring parameters and gaseous emissions (CO2, CO, CH4, N2O and H2S) were evaluated during the process as well as the agronomical quality of the end-products. Biochar accelerated organic matter degradation and ammonium formation during the thermophilic phase and enhanced nitrification during the maturation phase. Our results suggest that biochar, as composting additive, improved the physical properties of the mixture by preventing the formation of clumps larger than 70 mm. It favoured microbiological activity without a relevant impact on N losses and gaseous emissions. It was estimated that biochar addition at 3% could reduce the composting time by 20%. PMID:26038333

  17. Evaluation of reversible and irreversible degradation rates of polymer electrolyte membrane fuel cells tested in automotive conditions

    NASA Astrophysics Data System (ADS)

    Gazdzick, Pawel; Mitzel, Jens; Garcia Sanchez, Daniel; Schulze, Mathias; Friedrich, K. Andreas

    2016-09-01

    This work provides single cell durability tests of membrane electrode assemblies in dynamic operation regularly interrupted by recovery procedures for the removal of reversible voltage losses. Degradation rates at different loads in one single test can be determined from these tests. Hence, it is possible to report degradation rates versus current density instead of a single degradation rate value. A clear discrimination between reversible and irreversible voltage loss rates is provided. The irreversible degradation rate can be described by a linear regression of voltage values after the recovery steps. Using voltage values before refresh is less adequate due to possible impacts of reversible effects. The reversible contribution to the voltage decay is dominated by an exponential decay after restart, eventually turning into a linear one. A linear-exponential function is proposed to fit the reversible voltage degradation. Due to this function, the degradation behavior of an automotive fuel cell can be described correctly during the first hours after restart. The fit parameters decay constant, exponential amplitude and linear slope are evaluated. Eventually, the reasons for the voltage recovery during shutdown are analyzed showing that ionomer effects in the catalyst layer and/or membrane seem to be the key factor in this process.

  18. Long term endurance test and contact degradation of CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Ott, Thomas; Schönberger, Francillina; Walter, Thomas; Hariskos, Dimitrios; Kiowski, Oliver; Schäffler, Raymund

    2013-09-01

    CIGS is the most promising technology for thin-film solar cells with record efficiencies of 20.4 % on laboratory scale and 17.8 % aperture area efficiency on a 900 cm² module. Another important factor besides the cell efficiency is the reliability and long term stability of the manufactured modules, which can be assessed by accelerated ageing. In this contribution the accelerated ageing of CIGS mini modules has been investigated. Therefore, modules were dark annealed under dry heat conditions at different temperatures. During the endurance test a positive or negative bias was applied to the cells. In regular intervals the IV- and CV-characteristics were measured at room temperature. After an overall stress time of 3500 h the IV-characteristics were determined under different illumination conditions (intensity, spectral illumination). Our previous publications suggest a barrier at the back contact to explain the observed parameter drifts. This contribution is focused on the influence of different bias conditions during the endurance test on the generation of a back diode and on the change of the acceptor concentration. These parameter drifts have an impact on the open circuit voltage, fill factor and on the appearance of a cross over between dark and illuminated IV-characteristics. The interpretation of the observed parameter drifts was supported by SCAPS simulations based on the above mentioned back barrier model. As an outcome of the simulations signatures for the existence of a back barrier diode were established. IVmeasurements, temperature dependent Voc measurements and SunsVoc measurements are helpful means to detect such back diodes.

  19. Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Guinea, A.; Acworth, R. I.

    2015-03-01

    Evaluating the possibility of leakage through low permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from strata such as coal beds, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and reliable hydraulic conductivity (K) measurement of aquitard cores using accelerated gravity can inform and constrain larger scale assessments of hydraulic connectivity. Steady state fluid velocity through a low K porous sample is linearly related to accelerated gravity (g-level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. The CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions of 30 to 100 mm diameter and 30 to 200 mm in length, and a maximum total stress of ~2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink-swell phenomena which may alter the permeability. Vertical hydraulic conductivity (Kv) results from CP testing of cores from three sites within the same regional clayey silt formation varied (10-7 to 10-9 m s-1, n = 14). Results at one of these sites (1.1 × 10-10 to 3.5 × 10-9 m s-1, n = 5) that were obtained in < 24 h were similar to in situ Kv values (3 × 10-9 m s-1) from pore pressure responses over several weeks within a 30 m clayey sequence. Core scale and in situ Kv results were compared with vertical connectivity within a regional flow model, and considered in the context of heterogeneity and preferential flow paths at site and formation scale. More reliable assessments of leakage and solute transport though aquitards over multi-decadal timescales can be achieved by accelerated core testing together with advanced geostatistical and numerical methods.

  20. Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command

    NASA Technical Reports Server (NTRS)

    McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.

    1961-01-01

    An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.

  1. Degradation of ZnO-Based Window Layers for Thin-Film CIGS by Accelerated Stress Exposures

    SciTech Connect

    Pern, F. J.; Noufi, R.; To, B.; DeHart, C.; Li, X.; Glick, S. H.

    2008-01-01

    The reliability of ZnO-based window layer for CuInGaSe{sub 2} (CIGS) solar cells was investigated. Samples of RF magnetron-sputtered, single-layer intrinsic and Al-doped ZnO and their combined bilayer on glass substrates were exposed in a weatherometer (WOM) and damp heat (DH) conditions with or without acetic acid vapor. Some preliminary samples of single-layer Al-doped Zn{sub 1-x}Mg{sub x}O (ZMO) alloy, a potential replacement for Al:ZnO with a wider bandgap, were also evaluated in the DH. The Al-doped ZnO and ZMO films showed irreversible loss in the conducting properties, free carrier mobility, and characteristic absorption band feature after <500-h DH exposure, with the originally clear transparent films turned into white hazy insulating films and the degradation rate follows the trend of (DH + acetic acid) > DH > WOM. The degradation rate was also reduced by higher film thickness, higher deposition substrate temperature, and dry-out intervals. The results of X-ray diffraction analysis indicate that the ZnO-based films underwent structural degeneration by losing their highly (002) preferential orientation with possible transformation from hexagonal into cubic and formation of Zn(OH){sub 2}. Periodic optical micro-imaging observations suggested a temporal process that involves initial hydrolysis of the oxides at sporadic weak spots, swelling and popping of the hydrolyzed spots due to volume increase, segregation of hydrolyzed regions causing discontinuity of electrical path, hydrolysis of the oxide-glass interface, and finally, formation of insulating oxides/hydroxides with visible delamination over larger areas.

  2. [6]-Shogaol inhibits α-MSH-induced melanogenesis through the acceleration of ERK and PI3K/Akt-mediated MITF degradation.

    PubMed

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation. PMID:25045707

  3. [6]-Shogaol Inhibits α-MSH-Induced Melanogenesis through the Acceleration of ERK and PI3K/Akt-Mediated MITF Degradation

    PubMed Central

    Huang, Huey-Chun; Chang, Shu-Jen; Wu, Chia-Yin; Ke, Hui-Ju; Chang, Tsong-Min

    2014-01-01

    [6]-Shogaol is the main biologically active component of ginger. Previous reports showed that [6]-shogaol has several pharmacological characteristics, such as antioxidative, anti-inflammatory, antimicrobial, and anticarcinogenic properties. However, the effects of [6]-shogaol on melanogenesis remain to be elucidated. The study aimed to evaluate the potential skin whitening mechanisms of [6]-shogaol. The effects of [6]-shogaol on cell viability, melanin content, tyrosinase activity, and the expression of the tyrosinase and microphthalmia-associated transcription factor (MITF) were measured. The results revealed that [6]-shogaol effectively suppresses tyrosinase activity and the amount of melanin and that those effects are more pronounced than those of arbutin. It was also found that [6]-shogaol decreased the protein expression levels of tyrosinase-related protein 1 (TRP-1) and microphthalmia-associated transcriptional factor (MITF). In addition, the MITF mRNA levels were also effectively decreased in the presence of 20 μM [6]-shogaol. The degradation of MITF protein was inhibited by the MEK 1-inhibitor (U0126) or phosphatidylinositol-3-kinase inhibitor (PI3K inhibitor) (LY294002). Further immunofluorescence staining assay implied the involvement of the proteasome in the downregulation of MITF by [6]-shogaol. Our confocal assay results also confirmed that [6]-shogaol inhibited α-melanocyte stimulating hormone- (α-MSH-) induced melanogenesis through the acceleration of extracellular responsive kinase (ERK) and phosphatidylinositol-3-kinase- (PI3K/Akt-) mediated MITF degradation. PMID:25045707

  4. Application of the EXPERT consultation system to accelerated laboratory testing and interpretation.

    PubMed

    Van Lente, F; Castellani, W; Chou, D; Matzen, R N; Galen, R S

    1986-09-01

    The EXPERT consultation system-building tool, a knowledge-based artificial intelligence program developed at Rutgers University, has been applied to the development of a laboratory consultation system facilitating sequential laboratory testing and interpretation. Depending on the results of a basic panel of laboratory tests, the system requests that specific secondary tests be performed. Input of these secondary findings can result in requests for tertiary testing, to complete the database necessary for interpretation. Interpretation of all results is based upon final inferences from the collected findings through a series of rules, a hierarchical network that yields an efficient production system not easily obtained through conventional programming. The rules included in this model are based upon initial results for total protein, calcium, glucose, total bilirubin, alkaline phosphatase, lactate dehydrogenase, aspartate aminotransferase, thyroxin, hemoglobin, mean corpuscular volume, and the concentrations of four drugs. Pertinent clinical history items included are jaundice, diabetes, thyroid disease, medications, and ethanol. Implementing this system in a laboratory-based accelerated testing program involving outpatients maximized the effective use of laboratory resources, eliminated useless testing, and provided the patient with low-cost laboratory information. PMID:3527478

  5. Lessons from two field tests on pipeline damage detection using acceleration measurement

    NASA Astrophysics Data System (ADS)

    Shinozuka, Masanobu; Lee, Sungchil; Kim, Sehwan; Chou, Pai H.

    2011-04-01

    Early detection of pipeline damages has been highlighted in water supply industry. Water pressure change in pipeline due to a sudden rupture causes pipe to vibrate and the pressure change propagates through the pipeline. From the measurement of pipe vibration the rupture can be detected. In this paper, the field test results and observations are provided for implementing next generation of SCADA system for pipeline rupture detection. Two field tests were performed on real buried plastic and metal pipelines for rupture detection. The rupture was simulated by introducing sudden water pressure drop caused by water blow-off and valve control. The measured acceleration data at the pipe surfaces were analyzed in both time and frequency domain. In time domain, the sudden narrow increase of acceleration amplitude was used as an indication of rupture event. For the frequency domain analysis, correlation function and the short time Fourier Transform technique were adopted to trace the dominant frequency shift. The success of rupture detection was found to be dependent on several factors. From the frequency analysis, the dominant frequency of metal water pipe was shifted by the water pressure drop, however, it was hard to identify from the plastic pipeline. Also the influence of existing facility such as airvac on pipe vibrations was observed. Finally, several critical lessons learned in the viewpoint of field measurement are discussed in this paper.

  6. Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Acworth, R. I.

    2016-01-01

    Evaluating the possibility of leakage through low-permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from coal and other strata, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and realistic vertical hydraulic conductivity (Kv) measurements of aquitard cores using accelerated gravity can constrain and compliment larger-scale assessments of hydraulic connectivity. Steady-state fluid velocity through a low-K porous sample is linearly related to accelerated gravity (g level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. A CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions up to 100 mm diameter and 200 mm length, and a total stress of ˜ 2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink-swell phenomena, which may alter the permeability. Kv results from CP testing of minimally disturbed cores from three sites within a clayey-silt formation varied from 10-10 to 10-7 m s-1 (number of samples, n = 18). Additional tests were focussed on the Cattle Lane (CL) site, where Kv within the 99 % confidence interval (n = 9) was 1.1 × 10-9 to 2.0 × 10-9 m s-1. These Kv results were very similar to an independent in situ Kv method based on pore pressure propagation though the sequence. However, there was less certainty at two other core sites due to limited and variable Kv data. Blind standard 1 g column tests underestimated Kv compared to CP and in situ Kv data, possibly due to deionised water interactions with clay, and were more time-consuming than CP tests. Our Kv results were compared with the set-up of a flow model for the region, and considered in the context of heterogeneity and preferential flow paths at site and

  7. Thalidomide Accelerates the Degradation of Extracellular Matrix in Rat Hepatic Cirrhosis via Down-Regulation of Transforming Growth Factor-β1

    PubMed Central

    Meng, Qingshun; Liu, Jie; Wang, Chuanfang

    2015-01-01

    Purpose The degradation of the extracellular matrix has been shown to play an important role in the treatment of hepatic cirrhosis. In this study, the effect of thalidomide on the degradation of extracellular matrix was evaluated in a rat model of hepatic cirrhosis. Materials and Methods Cirrhosis was induced in Wistar rats by intraperitoneal injection of carbon tetrachloride (CCl4) three times weekly for 8 weeks. Then CCl4 was discontinued and thalidomide (100 mg/kg) or its vehicle was administered daily by gavage for 6 weeks. Serum hyaluronic acid, laminin, procollagen type III, and collagen type IV were examined by using a radioimmunoassay. Matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1), and α-smooth muscle actin (α-SMA) protein in the liver, transforming growth factor β1 (TGF-β1) protein in cytoplasm by using immunohistochemistry and Western blot analysis, and MMP-13, TIMP-1, and TGF-β1 mRNA levels in the liver were studied using reverse transcriptase polymerase chain reaction. Results Liver histopathology was significantly better in rats given thalidomide than in the untreated model group. The levels of TIMP-1 and TGF-β1 mRNA and protein expressions were decreased significantly and MMP-13 mRNA and protein in the liver were significantly elevated in the thalidomide-treated group. Conclusion Thalidomide may exert its effects on the regulation of MMP-13 and TIMP-1 via inhibition of the TGF-β1 signaling pathway, which enhances the degradation of extracellular matrix and accelerates the regression of hepatic cirrhosis in rats. PMID:26446639

  8. Accelerated Thermal-Aging-Induced Degradation of Organometal Triiodide Perovskite on ZnO Nanostructures and Its Effect on Hybrid Photovoltaic Devices.

    PubMed

    Kumar, S; Dhar, A

    2016-07-20

    Organometal halide perovskite materials are presently some of the pacesetters for light harvesting in hybrid photovoltaic devices because of their excellent inherent electrical and optical properties. However, long-term durability of such perovskite materials remains a major bottleneck for their commercialization especially in countries with hot and humid climatic conditions, thus violating the international standards for photovoltaic technology. Albeit, TiO2 as an electron-transport layer has been well investigated for perovskite solar cells; the high-temperature processing makes it unsuitable for low-cost and large-scale roll-to-roll production of flexible photovoltaic devices. Herein, we have chosen low-temperature (<150 °C)-processable nanostructured ZnO as the electron-selective layer and used a two-step method for sensitizing ZnO nanorods with methylammonium lead iodide (MAPbI3) perovskite, which is viable for flexible photovoltaic devices. We have also elaborately addressed the effect of the annealing duration on the conversion of a precursor solution into the required perovskite phase on ZnO nanostructures. The investigations show that the presence of ZnO nanostructures accelerates the rate of degradation of MAPbI3 films under ambient annealing and thus requires proper optimization. The role of ZnO in enhancing the degradation kinetics of the perovskite layer has been investigated by X-ray photoelectron spectroscopy and a buffer layer passivation technique. The effect of the annealing duration of the MAPbI3 perovskite on the optical, morphological, and compositional behavior has been closely studied and correlated with the photovoltaic efficiency. The study captures the degradation behavior of the commercially interesting MAPbI3 perovskite on a ZnO electron-transport layer and thus can provide insight for developing alternative families of perovskite material with better thermal and environmental stability for application in low-cost flexible photovoltaic

  9. Scaled Accelerator Test for the DARHT-II Downstream Transport System

    SciTech Connect

    Chen, Y; Blackfield, D T; Caporaso, G J; Guethlein, G; McCarrick, J F; Paul, A C; Watson, J A; Weir, J T

    2005-10-03

    The second axis of the Dual Axial radiography Hydrodynamic Test (DARHT-II) facility at LANL is currently in the commissioning phase[1]. The beam parameters for the DARHT-II machine will be nominally 18 MeV, 2 kA and 1.6 {micro}s. This makes the DARHT-II downstream system the first system ever designed to transport a high current, high energy and long pulse beam [2]. We will test these physics issues of the downstream transport system on a scaled DARHT-II accelerator with a 7.8-MeV and 660-A beam at LANL before commissioning the machine at its full energy and current. The scaling laws for various physics concerns and the beam parameters selection is discussed in this paper.

  10. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue

    SciTech Connect

    Bosco, Nick; Silverman, Timothy J.; Wohlgemuth, John; Kurtz, Sarah; Inoue, Masanao; Sakurai, Keiichiro; Shioda, Tsuyoshi; Zenkoh, Hirofumi; Hirota, Kusato; Miyashita, Masanori; Tadanori, Tanahashi; Suzuki, Soh; Chen, Yifeng; Verlinden, Pierre J.

    2014-12-31

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours of testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  11. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue: Preprint

    SciTech Connect

    Bosco, N.; Silverman, T. J.; Wohlgemuth, J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shinoda, T.; Zenkoh, H.; Hirota, K.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2015-04-07

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours o testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  12. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    NASA Technical Reports Server (NTRS)

    Broeren, Andy; Riley, Jim

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flow-off characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 deg. angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24% on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3% on the PIWT model at 8 deg. angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2%. Therefore, for cases resulting in PIWT model lift loss from 7.3% to 9.2%, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  13. Long-Term Degradation Testing of High-Temperature Electrolytic Cells

    SciTech Connect

    C.M. Stoots; J.E. O'Brien; J.S. Herring; G.K. Housley; D.G. Milobar; M.S. Sohal

    2009-08-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This report presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  14. Scaling of Lift Degradation Due to Anti-Icing Fluids Based Upon the Aerodynamic Acceptance Test

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Riley, James T.

    2012-01-01

    In recent years, the FAA has worked with Transport Canada, National Research Council Canada (NRC) and APS Aviation, Inc. to develop allowance times for aircraft operations in ice-pellet precipitation. These allowance times are critical to ensure safety and efficient operation of commercial and cargo flights. Wind-tunnel testing with uncontaminated anti-icing fluids and fluids contaminated with simulated ice pellets had been carried out at the NRC Propulsion and Icing Wind Tunnel (PIWT) to better understand the flowoff characteristics and resulting aerodynamic effects. The percent lift loss on the thin, high-performance wing model tested in the PIWT was determined at 8 angle of attack and used as one of the evaluation criteria in determining the allowance times. Because it was unclear as to how performance degradations measured on this model were relevant to an actual airplane configuration, some means of interpreting the wing model lift loss was deemed necessary. This paper describes how the lift loss was related to the loss in maximum lift of a Boeing 737-200ADV airplane through the Aerodynamic Acceptance Test (AAT) performed for fluids qualification. A loss in maximum lift coefficient of 5.24 percent on the B737-200ADV airplane (which was adopted as the threshold in the AAT) corresponds to a lift loss of 7.3 percent on the PIWT model at 8 angle of attack. There is significant scatter in the data used to develop the correlation related to varying effects of the anti-icing fluids that were tested and other factors. A statistical analysis indicated the upper limit of lift loss on the PIWT model was 9.2 percent. Therefore, for cases resulting in PIWT model lift loss from 7.3 to 9.2 percent, extra scrutiny of the visual observations is required in evaluating fluid performance with contamination.

  15. Photodegradation of fluorene in aqueous solution: Identification and biological activity testing of degradation products.

    PubMed

    Kinani, Said; Souissi, Yasmine; Kinani, Aziz; Vujović, Svetlana; Aït-Aïssa, Sélim; Bouchonnet, Stéphane

    2016-04-15

    Degradation of fluorene under UV-vis irradiation in water was investigated and structural elucidation of the main photoproducts was achieved using gas chromatography coupled with mass spectrometry. Twenty-six photoproducts were structurally identified, mainly on the basis of electron ionization mass spectra interpretation. The main generated transformation products are hydroxy derivatives. Some secondary photoproducts including fluorenone, hydroxy fluorenone, 2-biphenyl carboxylic acid, biphenylene, methanol fluorene congeners and hydroxy fluorene dimers were also observed. A photodegradation pathway was suggested on the basis of the chemical structures of photoproducts. Fluorene as well as its main photoproducts for which chemical standards were commercially available were tested for their ability to elicit cytotoxic, estrogenic and dioxin-like activity by using in vitro cell-based bioassays. None of the tested compounds was cytotoxic at concentrations up to 100μM. However, 2-hydroxyfluorene and 3-hydroxyfluorene exerted significant estrogenic and dioxin-like activity on a concentration range of 3-30μM, while fluorene and 9-hydroxyfluorene were weakly or not active, respectively, in our assays. This supports the view that photodegradation processes can generate by-products of higher toxicological concern than the parent compound and strengthens the need to further identify transformation products in the aquatic environment. PMID:26987414

  16. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    NASA Astrophysics Data System (ADS)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110-watt Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  17. ASSESSMENT OF THE PCFBC-EXPOSED AND ACCELERATED LIFE-TESTED CANDLE FILTERS

    SciTech Connect

    M.A. Alvin

    1999-09-30

    Development of the hot gas filtration technology has been the focus of DOE/FETC and Siemens Westinghouse Power Corporation during the past twenty years. Systems development during this time has successfully lead to the generation and implementation of high temperature Siemens Westinghouse particulate filtration systems that are currently installed and are operational at Demonstration Plant sites, and which are ready for installation at commercial plant sites. Concurrently, materials development has advanced the use of commercially available oxide- and nonoxide-based monoliths, and has fostered the manufacture and use of second generation, oxide-based, continuous fiber reinforced ceramic composites and filament wound materials. This report summarizes the material characterization results for commercially available and second generation filter materials tested in Siemens Westinghouse's advanced, high temperature, particulate removal system at the Foster Wheeler, pressurized circulating fluidized-bed combustion, pilot-scale test facility in Karhula, Finland, and subsequent extended accelerated life testing of aged elements in Siemens Westinghouse pressurized fluidized-bed combustion simulator test facility in Pittsburgh, PA. The viability of operating candle filters successfully for over 1 year of service life has been shown in these efforts. Continued testing to demonstrate the feasibility of acquiring three years of service operation on aged filter elements is recommended.

  18. Accelerated in vitro durability testing of nonvascular Nitinol stents based on the electrical potential sensing method

    NASA Astrophysics Data System (ADS)

    Park, Chan-Hee; Tijing, Leonard D.; Pant, Hem Raj; Kim, Tae-Hyung; Amarjargal, Altangerel; Kim, Han Joo; Kim, Cheol Sang

    2013-09-01

    In this paper, we report an evaluation of the performance of a new stent durability tester based on the electrical potential sensing method through accelerated in vitro testing of six different nonvascular Nitinol stents simulating physiological conditions. The stents were subjected to a pulsatile loading of 33 Hz for a total of 62,726,400 cycles, at constant temperature and pressure of 35±0.5 °C and 120±4 mmHg, respectively. The electrical potential of each stent was measured in real-time and monitored for any changes in readings. After conducting test-to-fracture tests, the stents were visually checked, and by scanning electron microscopy. A sudden electrical potential drop in the readings suggests a fracture has occurred, and the only two instances of fracture in our present results were correctly determined by our present device, with the fractures confirmed visually after the test. The excellent performance of our new method shows good potential for a highly reliable and applicable in vitro durability testing for different kinds and sizes of metallic stents.

  19. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    SciTech Connect

    Krause, David L.; Kantzos, Pete T.

    2006-01-20

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110-watt Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  20. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  1. Mechanical Degradation of Aggregate by the Los Angeles-, the Micro-Deval- and the Nordic Test Methods

    NASA Astrophysics Data System (ADS)

    Erichsen, E.; Ulvik, A.; Sævik, K.

    2011-05-01

    The quality of aggregate used as buildings materials is defined by European Standard test methods. According to the agreement within the European Economic Area, each individual country decides test methods of current interest. Among the Nordic countries, the Los Angeles-, micro-Deval- and the Nordic test are the most common methods used to decide the mechanical properties of the aggregate. The three test methods are all drum test where the degradation of the material occur by rotation between the test material and steel balls together with, or without water. The mechanical test methods are empirical and are believed to express either resistance to fragmentation or wearing. The results of this study show that analysing the particle size distribution of a material after the drum testing give indication of which type and degree of degradation the test material is exposed to. Knowledge of the type of degradation for the test methods is important compared to the understanding of the real breakdown of the aggregate for instance used in road construction.

  2. On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.

    2016-08-01

    The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibility effect over the particle dynamics, we performed different numerical experiments: an incompressible case and two weak compressible cases with Mach number M = 0.1 and M = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio m e / m i . For these test particles, we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely, electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.

  3. Performance report on the ground test accelerator radio-frequency quadrupole

    SciTech Connect

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.

    1994-09-01

    The Ground Test Accelerator (GTA) uses a radio-frequency quadrupole (RFQ) to bunch and accelerate a 35 keV input beam to a final energy of 2.5 MeV. Most measured parameters of the GTA RFQ agreed with simulated predictions. The relative shape of the transmission versus the vane-voltage relationship and the Courant-Snyder (CS) parameters of the output beam`s transverse and longitudinal phase spaces agreed well with predictions. However, the transmission of the RFQ was significantly lower than expected. Improved simulation studies included image charges and multipole effects in the RFQ. Most of the predicted properties of the RFQ, such as input matched-beam conditions and output-beam shapes were unaffected by these additional effects. However, the comparison of measured with predicted absolute values of transmitted beam was much improved by the inclusion of these effects in the simulations. The comparison implied a value for the input emittance that is consistent with measurements.

  4. Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ruf, Joe

    2007-01-01

    As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.

  5. Corrosion characterization of durable silver coatings by electrochemical impedance spectroscopy and accelerated environmental testing.

    PubMed

    Chu, Chung-Tse; Fuqua, Peter D; Barrie, James D

    2006-03-01

    Highly reflective front-surface silver mirrors are needed for many optical applications. While various protective dielectric coating schemes have been developed, the long-term durability of Ag mirrors is still of great concern in the optics community for a variety of applications under harsh environments. The corrosion protection behavior of a SiNx-coated silver-mirror coating scheme was tested with electrochemical impedance spectroscopy (EIS) and accelerated environmental testing, including humidity and salt fog tests. The EIS data obtained were fitted with different equivalent circuit models. The results suggested that the 100A thick SiNx coating produced by rf magnetron sputtering was porous and acted as a leaky capacitor on the Ag film, whereas the addition of a NiCrNx interlayer as thin as 3A between SiNx and Ag films resulted in a much denser SiNx coating with a low-frequency impedance value of 2 orders of magnitude higher than that without the interlayer. Humidity and salt fog testing of different silver coatings showed similar results. The 100A SiNx/3A-NiCrNx/Ag coating exhibited excellent corrosion resistance against the corrosive environments used in this study. PMID:16539267

  6. Heated Rack For Weathering Tests

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.; Willis, Paul B.

    1989-01-01

    Outdoor photothermal aging reactor (OPTAR) simple device exposing polymer specimens to both heat and natural sunlight. Intended to provide accelerated aging data for service life of polymers used in outdoor environments. In principle, OPTAR accelerates (but does not initiate) degradation of polymers resulting from sunlight and other weathering effect (eg. rain, wind, ozone). Aging of tested material accelerated, but under almost-natural conditions.

  7. Persistence assessment of cyclohexyl- and norbornyl-derived ketones and their degradation products in different OECD screening tests.

    PubMed

    Seyfried, M; van Ginkel, C G; Boschung, A; Miffon, F; Fantini, P; Tissot, E; Baroux, L; Merle, P; Chaintreau, A

    2015-07-01

    The persistence of synthetic cyclohexyl- and norbornyl-derived ketones was assessed by using OECD 301F and 301D biodegradation tests. While cyclohexyl-derived ketones either reached or came close to the pass level (60%) after 60 d, the corresponding norbornyl derivatives yielded significantly less biodegradation (<40%). By analyzing extracts at 60 d, the key degradation products of four norbornyl derivatives were identified. Consistently, 2-bicyclo[2.2.1]heptane carboxylic acid was found as a principal degradation product with minor quantities of bicyclo[2.2.1]heptan-2-one and 2-bicyclo[2.2.1]heptane acetic acid. When the three degradation products were re-synthesized and tested individually for biodegradability, the former two were found to be ultimately biodegradable after 60 d in OECD 301D tests, thus proving non-persistence. Similarly, 2-bicyclo[2.2.1]heptane acetic acid was found to be degraded significantly, albeit with long lag phases exceeding 60 d in the case of freshwater inoculum, then ultimately reaching the pass level. On the other hand, norbornyl ketones were still only partially biodegradable in the same test. We conclude that despite the potential for ultimate biodegradation of norbornyl-derived ketones, current screening tests yield an incomplete picture of their biodegradability, particularly when applying strict OECD criteria. The appearance of long lag phases when re-testing norbornyl ketone degradation products underlines the importance of extending tests to well beyond 28 and even 60 d in the case of freshwater inocula. PMID:25769113

  8. Fatigue-test acceleration with flight-by-flight loading and heating to simulate supersonic-transport operation

    NASA Technical Reports Server (NTRS)

    Imig, L. A.; Garrett, L. E.

    1973-01-01

    Possibilities for reducing fatigue-test time for supersonic-transport materials and structures were studied in tests with simulated flight-by-flight loading. In order to determine whether short-time tests were feasible, the results of accelerated tests (2 sec per flight) were compared with the results of real-time tests (96 min per flight). The effects of design mean stress, the stress range for ground-air-ground cycles, simulated thermal stress, the number of stress cycles in each flight, and salt corrosion were studied. The flight-by-flight stress sequences were applied to notched sheet specimens of Ti-8Al-1Mo-1V and Ti-6Al-4V titanium alloys. A linear cumulative-damage analysis accounted for large changes in stress range of the simulated flights but did not account for the differences between real-time and accelerated tests. The fatigue lives from accelerated tests were generally within a factor of two of the lives from real-time tests; thus, within the scope of the investigation, accelerated testing seems feasible.

  9. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. I. Fluoropolymer binders

    SciTech Connect

    Hoffman, D.M.; Caley, L.E.

    1981-01-01

    The dynamic mechanical properties and molecular weight distribution of two polymer bonded explosives, LX-10-1 and PBX-9502, maintained at 23, 60, and 74/sup 0/C for 3 years were studied. LX-10-1 is 94.5% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane explosive bonded together with 5.5% Viton A fluoropolymer. PBX-9502 is 95% triaminotrinitrobenzene explosive bonded with 5% Kel-F-800 fluoropolymer. There are two mechanical relaxations in the LX-10-1 in the military temperature range. The relaxation at -10/sup 0/C is associated with the glass transition temperature of the Viton A binder. A second weak relaxation occurs at about 30/sup 0/C in all LX-10-1 samples tested. This relaxation is probably associated with small amounts of crystallinity in the binder although this has not been demonstrated. There is a slight increase in modulus of the LX-10-1 with accelerated aging temperature. Changes in the dynamic mechanical properties of PBX-9502 are ascribed to crystallization of the chlorotrifluoroethylene component of the Kel-F-800 binder. The molecular weight of the Viton A binder decreased slight with increasing aging temperature. Using the kinetics of random scission the activation energy for polymer degradation in the presence of the explosive was 1.19 kcal/mole. The Arrhenius preexponential term and activation energy predict an expected use-life in excess of 60 years for LX-10-1. The Kel-F-800 in PBX-9502 is also extremely stable.

  10. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  11. 600 kV modulator design for the SLAC Next Linear Collider Test Accelerator

    SciTech Connect

    Harris, K.; de Lamare, J.; Nesterov, V.; Cassel, R.

    1992-07-01

    Preliminary design for the SLAC Next Linear Collider Test Accelerator (NLCTA) requires a pulse power source to produce a 600 kV, 600 A, 1.4 {mu}s, 0.1% flat top pulse with rise and fall times of approximately 100 ns to power an X-Band klystron with a microperveance of 1.25 at {approx} 100 MW peak RF power. The design goals for the modulator, including those previously listed, are peak modulator pulse power of 340 MW operating at 120 Hz. A three-stage darlington pulse-forming network, which produces a >100 kV, 1.4 {mu}s pulse, is coupled to the klystron load through a 6:1 pulse transformer. Careful consideration of the transformer leakage inductance, klystron capacitance, system layout, and component choice is necessary to produce the very fast rise and fall times at 600 kV operating continuously at 120 Hz.

  12. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    SciTech Connect

    1994-10-01

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.

  13. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    SciTech Connect

    1994-10-01

    This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report

  14. Simulation and steering in the Intertank matching section of the ground test accelerator

    SciTech Connect

    Yuan, V.W.; Bolme, G.O.; Erickson, J.L.; Johnson, K.F.; Mottershead, C.T.; Sander, O.R.; Smith, M.T.

    1995-05-05

    The Intertank Matching Section (IMS) of the Ground Test Accelerator (GTA) is a short (36 cm) beamline designed to match the Radio Frequency Quadrupole (RFQ) exit beam into the first Drift Tube LINAC (DTL) tank. The IMS contains two steering quadrupoles (SMQS) and four variable-field focusing quads (VFQs). The SMQs are fixed strength permanent magnet quadrupoles on mechanical actuators capable of transverse movement for the purpose of steerng the beam. Also contained in the IMS are two RF cavities for longitudinal matching. A comparison of measured to calculated steering coefficients has been made for data aken in 3 different tunes of the IMS transport line. (AIP) {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. High power testing of the prototype accelerating cavity (352 MHz) for the advanced photon source (APS)

    SciTech Connect

    Bridges, J.F.; Kang, Y.W.; Kustom, R.L.; Primdahl, K.

    1992-07-01

    Measurement of the higher order of modes of a prototype single-cell 352 MHz cavity for the APS 7-Gev storage ring will be presented and discussed. A cavity made from solid copper was built according to dimensions derived from URMEL program runs. The longitudinal and transverse impedances of the first several higher order modes have been measured using various-shaped metal beads. High power ( > 60 kW) testing of the cavity will be described along with design and operation of dampers for those modes with coupled-bunch instability threshold currents under 300 milliamperes, the maximum circulating positron current. Low power level rf circuitry for timing and synchronization of the various APS accelerators and storage ring will be described.

  16. High power testing of the prototype accelerating cavity (352 MHz) for the advanced photon source (APS)

    SciTech Connect

    Bridges, J.F.; Kang, Y.W.; Kustom, R.L.; Primdahl, K.

    1992-01-01

    Measurement of the higher order of modes of a prototype single-cell 352 MHz cavity for the APS 7-Gev storage ring will be presented and discussed. A cavity made from solid copper was built according to dimensions derived from URMEL program runs. The longitudinal and transverse impedances of the first several higher order modes have been measured using various-shaped metal beads. High power ( > 60 kW) testing of the cavity will be described along with design and operation of dampers for those modes with coupled-bunch instability threshold currents under 300 milliamperes, the maximum circulating positron current. Low power level rf circuitry for timing and synchronization of the various APS accelerators and storage ring will be described.

  17. Pitfalls and outcomes from accelerated wear testing of mechanical heart valves.

    PubMed

    Campbell, A; Baldwin, T; Peterson, G; Bryant, J; Ryder, K

    1996-06-01

    In 1990 Sorin Biomedica introduced a new bileaflet heart valve called the Bicarbon valve. This design was reported to eliminate wear in the hinge mechanism. Clinical quality Sorin Bicarbon, CarboMedics, St. Jude Medical, Duromedics and Jyros valves were obtained to test this claim and to compare the wear in the pivot of this new valve to other available heart valves. The valves were visually inspected then subjected to 4,000 cycles at a physiological beat rate in vitro. The valves were re-inspected then subjected to 400 million cycles in a Reul type accelerated wear tester. Scanning electron microscope photographs were taken of all contact areas at 40, 80, 120, 160, 200, 240, 280 and 400 million cycles. Wear marks on the inflow side of the Sorin, CarboMedics and St. Jude leaflets were measured and compared. Orifice wear was not quantified because of difficulty with measuring inside complex depressions. After 4,000 cycles of testing at a physiological beat rate the CarboFilmTM coating on the Sorin orifice showed signs of erosion. The other valve components only exhibited minor burnishing after 4,000 cycles. Following completion of 400 million cycles in an accelerated wear tester, approximately ten years in vivo, all valves showed significant wear. The inflow face of the pivot on the Sorin Bicarbon leaflets exhibited the deepest wear marks. The CarboFilm coating on the Sorin Bicarbon orifices was removed from most areas of leaflet contact. The transition between the remaining coating and the eroded areas created a rough edge. The tips of the Sorin leaflets contacted the bottom of the orifice pivot, in contrast to the St. Jude Medical and CarboMedics designs, which had minimal contact between the leaflet and the orifice. PMID:8803765

  18. EVALUATION AND TESTING OF A PROTOCOL TO DETERMINE THE AEROBIC DEGRADATION POTENTIAL OF HAZARDOUS WASTE CONSTITUENTS IN SOIL

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) in conjunction with the U.S. Department of Agriculture is currently testing a protocol for determine the "Aerobic Degradation Potential of Hazardous Organic Constituents in Soil" to ensure its reliability, accuracy, cost effectivenes...

  19. Prototype 1.75 MV X-band linear accelerator testing for medical CT and industrial nondestructive testing applications

    NASA Astrophysics Data System (ADS)

    Clayton, James; Shedlock, Daniel; Vanderet, Steven; Zentai, George; Star-Lack, Josh; LaFave, Richard; Virshup, Gary

    2015-03-01

    Flat panel imagers based on amorphous silicon technology (a-Si) for digital radiography are accepted by the medical and industrial community as having several advantages over radiographic film-based systems. Use of Mega-voltage x-rays with these flat panel systems is applicable to both portal imaging for radiotherapy and for nondestructive testing (NDT) and security applications. In the medical field, one potential application that has not been greatly explored is to radiotherapy treatment planning. Currently, such conventional computed tomographic (CT) data acquired at kV energies is used to help delineate tumor targets and normal structures that are to be spared during treatment. CT number accuracy is crucial for radiotherapy dose calculations. Conventional CT scanners operating at kV X-ray energies typically exhibit significant image reconstruction artifacts in the presence of metal implants in human body. Using the X-ray treatment beams, having energies typically >=6MV, to acquire the CT data may not be practical if it is desired to maintain contrast sensitivity at a sufficiently low dose. Nondestructive testing imaging systems can expand their application space with the development of the higher energy accelerator for use in pipeline, and casting inspection as well as certain cargo screening applications that require more penetration. A new prototype x-band BCL designed to operate up to 1.75 MV has been designed built and tested. The BCL was tested with a prototype portal imager and medical phantoms to determine artifact reductions and a PaxScan 2530HE industrial imager to demonstrate resolution is maintained and penetration is improved.

  20. Evaluation of stone durability using a combination of ultrasound, mechanical and accelerated aging tests

    NASA Astrophysics Data System (ADS)

    Molina, E.; Cultrone, G.; Sebastián, E.; Alonso, F. J.

    2013-06-01

    The durability of a rock when exposed to decay agents is an important criterion when assessing its quality as a building material. Our study focuses on six varieties of natural stone (two limestones, one dolostone, one travertine and two sandstones) that are widely used in both new and historical buildings. In order to assess their quality, we measured and characterized their dynamic elastic properties using ultrasounds, we measured their compressive strength using the uniaxial compression test and we evaluated their durability by means of accelerated aging tests (freeze-thaw and salt crystallization). In order to get a full picture of the decay suffered by the different stones, we determined the composition and amount of the clay fraction of the six stones. We also observed small fragments subjected to the salt crystallization test under an environmental scanning electron microscope to study any textural change and measured the changes of colour on the surface with a spectrophotometer. Finally, we analysed the pore system of the stones before and after their deterioration using mercury injection porosimetry. We then compared the results for the different stones and found that dolostone obtained the best results, while the two limestones proved to be the least durable and had the lowest compressive strength.

  1. The chloroplast protein LTO1/AtVKOR is involved in the xanthophyll cycle and the acceleration of D1 protein degradation.

    PubMed

    Yu, Zhi-Bo; Lu, Ying; Du, Jia-Jia; Peng, Jun-Jie; Wang, Xiao-Yun

    2014-01-01

    The thylakoid protein LTO1/AtVKOR-DsbA is recently found to be an oxidoreductase involved in disulfide bond formation and the assembly of photosystem II (PSII) in Arabidopsis thaliana. In this study, experimental evidence showed that LTO1 deficiency caused severe photoinhibition which was related to the xanthophyll cycle and D1 protein degradation. The lto1-2 mutant was more sensitive to intense irradiance than wild type. When treated with different concentrations of dithiothreitol (DTT), an inhibitor of violaxanthin de-epoxidase (VDE) in the xanthophyll cycle, there was a larger reduction in NPQ in the wild type than in the lto1-2 mutant under high irradiance, indicating that lto1-2 had a lower sensitivity to DTT gradients than did the wild type. Zeaxanthin in the xanthophyll cycle, which participates in the thermal dissipation of excess absorbed light energy, was much less active in lto1-2 than in the wild type under intense light levels, and the de-epoxidation state of the xanthophyll cycle was consistent with the susceptibility of NPQ. Together these observations indicated that aggravated photoinhibition in lto1-2 was related to a reduction in xanthophyll cycle-associated energy dissipation. When D1 protein synthesis was suppressed by an inhibitor of chloroplast protein synthesis (streptomycin sulfate), the levels of D1 protein decreased more in the lto1-2 mutant than in the wild type when exposed to intense light levels, implying that a deficiency in LTO1 accelerated the degradation of D1 and thus affected D1 turnover. Transgenic complementation of plants with lto1-2 ultimately allowed for the recovery of the photoinhibition properties of leaves. PMID:24300993

  2. Use of thermogravimetric analysis to develop accelerated test methods to investigate long-term environmental effects on fiber-reinforced plastics

    SciTech Connect

    Prian, L.; Pollard, R.; Shan, R.; Mastropietro, C.W.; Barkatt, A.; Gentry, T.R.; Bank, L.C.

    1997-12-31

    The development of accelerated test methods to characterize long-term environmental effects on fiber-reinforced plastics (FRPs) requires the use of physicochemical methods, as well as macromechanical measurements, in order to investigate the degradation processes and predict their course over long periods of time. Thermochemical and mechanical measurements were performed on a large number of FRPs exposed to neutral, basic, and acidic media between 23 and 80 C over periods of 7 to 224 days. The resin matrices used in the present study included vinylester, polyester, and epoxy, and the fiber materials were silicate glass, aramid, and carbon. TGA was used to study the effects of aqueous media on FRPs. In particular, the relative weight loss upon heating the previously exposed material from 150 to 300 C was found to be indicative of the extent of matrix depolymerization. Indications were obtained for correlation between this weight loss and the extent of degradation of various measures of mechanical strength. The measured weight change of the tested materials during exposure was found to reflect the extent of water absorption and could be related to the extent of the weight loss between 150 and 300 C. In basic environments, weight loss, rather than gain, took place as a result of fiber dissolution.

  3. Catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents by accelerating the degradation of p53.

    PubMed

    Bai, Jingxiang; Cederbaum, Arthur I

    2003-02-14

    Oxidants such as H(2)O(2) play a role in the toxicity of certain DNA-damaging agents, a process that often involves the tumor suppressor p53. H(2)O(2) is rapidly degraded by catalase, which protects cells against oxidant injury. To study the effect of catalase on apoptosis induced by DNA-damaging agents, HepG2 cells were infected with adenovirus containing the cDNA of catalase (Ad-Cat). Forty-eight hours after infection, catalase protein and activity was increased 7-10-fold compared with control cells infected with Ad-LacZ. After treatment with Vp16 or mitomycin C, control cells underwent apoptosis in a p53-dependent manner; however, overexpression of catalase inhibited this apoptosis. Basal levels as well as Vp16- or mitomycin C-stimulated levels of p53 and p21 protein were decreased in the catalase-overexpressing cells as compared with control cells; however, p53 mRNA levels were not decreased by catalase. There was no difference in p53 protein synthesis between catalase-overexpressing cells and control cells. However, pulse-chase experiments indicated that p53 protein degradation was enhanced in the catalase-overexpressing cells. Proteasome inhibitors but not calpeptin prevented the catalase-mediated decrease of p53 content. Whereas Vp16 increased, catalase overexpression decreased the phosphorylation of p53. The protein phosphatase inhibitor okadaic acid did not prevent the catalase-mediated down-regulation of p53 or phosphorylated p53. These results demonstrate that catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents in association with decreasing p53 phosphorylation; the latter may lead to an acceleration in the degradation of p53 protein by the proteasome complex. This suggests that the level of catalase may play a critical role in cell-induced resistance to the effects of anti-cancer drugs which up-regulate p53. PMID:12468545

  4. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: electron cloud diagnostics

    NASA Astrophysics Data System (ADS)

    Billing, M. G.; Conway, J. V.; Crittenden, J. A.; Greenwald, S.; Li, Y.; Meller, R. E.; Strohman, C. R.; Sikora, J. P.; Calvey, J. R.; Palmer, M. A.

    2016-04-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to the test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focusses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. While the initial studies of CESRTA focussed on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.

  5. VMAT linear accelerator commissioning and quality assurance: dose control and gantry speed tests.

    PubMed

    Barnes, Michael P; Rowshanfarzad, Pejman; Greer, Peter B

    2016-01-01

    In VMAT treatment delivery the ability of the linear accelerator (linac) to accurately control dose versus gantry angle is critical to delivering the plan correctly. A new VMAT test delivery was developed to specifically test the dose versus gantry angle with the full range of allowed gantry speeds and dose rates. The gantry-mounted IBA MatriXX with attached inclinometer was used in movie mode to measure the instantaneous relative dose versus gantry angle during the plan every 0.54 s. The results were compared to the expected relative dose at each gantry angle calculated from the plan. The same dataset was also used to compare the instantaneous gan-try speeds throughout the delivery compared to the expected gantry speeds from the plan. Measurements performed across four linacs generally show agreement between measurement and plan to within 1.5% in the constant dose rate regions and dose rate modulation within 0.1 s of the plan. Instantaneous gantry speed was measured to be within 0.11°/s of the plan (1 SD). An error in one linac was detected in that the nominal gantry speed was incorrectly calibrated. This test provides a practical method to quality-assure critical aspects of VMAT delivery including dose versus gantry angle and gantry speed control. The method can be performed with any detector that can acquire time-resolved dosimetric information that can be synchronized with a measurement of gantry angle. The test fulfils several of the aims of the recent Netherlands Commission on Radiation Dosimetry (NCS) Report 24, which provides recommendations for comprehensive VMAT quality assurance. PMID:27167282

  6. Accelerated Testing for Long-Term Durability of Various FRP Laminates for Marine Use

    NASA Astrophysics Data System (ADS)

    Miyano, Yasushi; Nakada, Masayuki

    The prediction of long-term fatigue life of various FRP laminates combined with resins, fibers and fabrics for marine use under temperature and water environments were performed by our developed accelerated testing methodology based on the time-temperature superposition principle (TTSP). The base material of five kinds of FRP laminates employed in this study was plain fabric CFRP laminates T300 carbon fibers/vinylester (T300/VE). The first selection of FRP laminate to T300/VE was the combinations of different fabrics, that is flat yarn plain fabric T700 carbon fibers/vinylester (T700/VE-F) and multi-axial knitted T700 carbon fibers/vinylester (T700/VE-K) for marine use and the second selection of FRP laminates to T300/VE was the combinations with different fibers and matrix resin, that is plain fabric T300 carbon fibers/epoxy (T300/EP) and plain fabric E-glass fibers/vinylester (E-glass/VE). These five kinds of FRP laminates were prepared under three water absorption conditions of Dry, Wet and Wet C Dry after molding. The three-point bending constant strain rate (CSR) tests for these FRP laminates at three conditions of water absorption were carried out at various temperatures and strain rates. Furthermore, the three-point bending fatigue tests for these specimens were carried out at various temperatures and frequencies. The flexural CSR and fatigue strengths of these five kinds of FRP laminates strongly depend on water absorption as well as time and temperature. The mater curves of fatigue strength as well as CSR strength for these FRP laminates at three water absorption conditions are constructed by using the test data based on TTSP. It is possible to predict the long term fatigue life for these FRP laminates under an arbitrary temperature and water absorption conditions by using the master curves.

  7. Testing and Qualifying Linear Integrated Circuits for Radiation Degradation in Space

    NASA Technical Reports Server (NTRS)

    Johnston, Allan H.; Rax, Bernard G.

    2006-01-01

    This paper discusses mechanisms and circuit-related factors that affect the degradation of linear integrated circuits from radiation in space. For some circuits there is sufficient degradation to affect performance at total dose levels below 4 krad(Si) because the circuit design techniques require higher gain for the pnp transistors that are the most sensitive to radiation. Qualification methods are recommended that include displacement damage as well as ionization damage.

  8. Testing MOND over a wide acceleration range in x-ray ellipticals.

    PubMed

    Milgrom, Mordehai

    2012-09-28

    The gravitational fields of two isolated ellipticals, NGC 720 and NGC 1521, have been recently measured to very large galactic radii (~100 and ~200 kpc), assuming hydrostatic balance of the hot gas enshrouding them. They afford, for the first time to my knowledge, testing modified Newtonian dynamics (MOND) in ellipticals with force and quality that, arguably, approach those of rotation-curve tests in disk galaxies. In the context of MOND, it is noteworthy that the measured accelerations span a wide range, from more than 10a(0) to about 0.1a(0), unprecedented in individual ellipticals. I find that MOND predicts correctly the measured dynamical mass runs (apart from a possible minor tension in the inner few kpc of NGC 720, which might be due to departure from hydrostatic equilibrium): The predicted mass discrepancy increases outward from none near the center, to ~10 at the outermost radii. The implications for the MOND-versus-dark-matter controversy go far beyond the simple fact of two more galaxies conforming to MOND. PMID:23030078

  9. Accelerated exposure tests of encapsulated Si solar cells and encapsulation materials

    SciTech Connect

    Pern, F.J.; Glick, S.H.

    1999-03-01

    We have conducted a series of accelerated exposure test (AET) studies for various crystalline-Si (c-Si) and amorphous-Si (a-Si) cell samples that were encapsulated with different superstrates, pottants, and substrates. Nonuniform browning patterns of ethylene vinyl acetate (EVA) pottants were observed for glass/EVA/glass-encapsulated c-Si cell samples under solar simulator exposures at elevated temperatures. The polymer/polymer-configured laminates with Tedlar or Tefzel did not discolor because of photobleaching reactions, but yellowed with polyester or nylon top films. Delamination was observed for the polyester/EVE layers on a-Si minimodules and for a polyolefin-based thermoplastic pottant at high temperatures. For all tested c-Si cell samples, irregular changes in the current-voltage parameters were observed that could not be accounted for simply by the transmittance changes of the superstrate/pottant layers. Silicone-type adhesives used under UV-transmitting polymer top films were observed to cause greater cell current/efficiency loss than EVA or polyethylene pottants. {copyright} {ital 1999 American Institute of Physics.}

  10. Accelerated Exposure Tests of Encapsulated Si Solar Cells and Encapsulation Materials

    SciTech Connect

    Pern, F. J.; Glick, S. H.

    1998-10-08

    We have conducted a series of accelerated exposure test (AET) studies for various crystalline-Si (c-Si) and amorphous-Si (a-Si) cell samples that were encapsulated with different superstrates, pottants, and substrates. Nonuniform browning patterns of ethylene vinyl acetate (EVA) pottants were observed for glass/EVA/glass-encapsulated c-Si cell samples under solar simulator exposures at elevated temperatures. The polymer/polymer-configured laminates with Tedlar or Tefzel did not discolor because of photobleaching reactions, but yellowed with polyester or nylon top films. Delamination was observed for the polyester/EVA layers on a-Si minimodules and for a polyolefin-based thermoplastic pottant at high temperatures. For all tested c-Si cell samples, irregular changes in the current-voltage parameters were observed that could not be accounted for simply by the transmittance changes of the superstrate/pottant layers. Silicone-type adhesives used under UV-transmitting polymer top films were observed to cause greater cell current/efficiency loss than EVA or polyethylene pottants.

  11. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    SciTech Connect

    Wright, R.M.; Zander, M.E.; Brown, S.K.; Sandoval, D.P.; Gilpatrick, J.D.; Gibson, H.E.

    1992-09-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development of both software and hardware for imagetool and its integration with the GTA control system (GTACS) will be discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. The current status of the system will be illustrated by samples of experimental data.

  12. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    SciTech Connect

    Wright, R.M.; Zander, M.E.; Brown, S.K.; Sandoval, D.P.; Gilpatrick, J.D.; Gibson, H.E.

    1992-01-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development of both software and hardware for imagetool and its integration with the GTA control system (GTACS) will be discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. The current status of the system will be illustrated by samples of experimental data.

  13. Design and high order optimization of the Accelerator Test Facility lattices

    NASA Astrophysics Data System (ADS)

    Marin, E.; Tomás, R.; Bambade, P.; Kubo, K.; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; Seryi, A.; White, G. R.; Woodley, M.

    2014-02-01

    The Accelerator Test Facility 2 (ATF2) aims to test the novel chromaticity correction scheme which is implemented in the final focus systems of future linear colliders such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC). The ATF2 nominal and ultralow β* lattices are designed to vertically focus the beam at the focal point, or usually referred to as interaction point (IP), down to 37 and 23 nm, respectively. The vertical chromaticities of the nominal and ultralow β* lattices are comparable to those of ILC and CLIC, respectively. When the measured multipole components of the ATF2 magnets are considered in the simulations, the evaluated spot sizes at the IP are well above the design values. In this paper we describe the analysis of the high order aberrations that allows identifying the sources of the observed beam size growth. In order to recover the design spot sizes three solutions are considered, namely final doublet replacement, octupole insertion, and optics modification. Concerning the future linear collider projects, the consequences of magnetic field errors of the focusing quadrupole magnet of the final doublet are also addressed.

  14. Sedimentary organic matter preservation: A test for selective degradation under oxic conditions

    SciTech Connect

    Hedges, J.I.; Hu, F.S.; Devol, A.H.; Hartnett, H.E.; Tsamakis, E.; Kei, R.G.

    1999-07-01

    The authors report here a test of the hypothesis that the extent of organic matter preservation in continental margin sediments is controlled by the average period accumulating particles reside in oxic porewater immediately beneath the water/sediment interface. Oxygen penetration depths, organic element compositions, and mineral surface areas were determined for 16 sediment cores collected along an offshore transect across the Washington continental shelf, slope, and adjacent Cascadia Basin. Individual amino acid, sugar, and pollen distributions were analyzed for a 11 to 12 cm horizon from each core, and {sup 14}C-based sediment accumulation rates and stable carbon isotope compositions were determined from depth profiles within a subset of six cores from representative sites. Sediment accumulation rates decreased, and dissolved O{sub 2} penetration depths increased offshore along the sampling transect. As a result, oxygen exposure times (OET) increased seaward from decades (mid-shelf and upper slope) to more than a thousand years (outer Cascadia Basin). Organic contents and compositions were essentially constant within individual sediment cores but varied consistently with location. In particular, organic carbon/surface area ratios decreased progressively offshore and with increasing OET. Three independent compositional parameters demonstrated that the remnant organic matter in farther offshore sediments is more degraded. Both concentration and compositional patterns indicated that sedimentary organic matter exhibits a distinct and reproducible oxic effect. OET helps integrate and explain organic matter preservation in accumulating continental margin sediments and hence provides a useful tool for assessing transfer of organic matter from the biosphere to the geosphere.

  15. Tests of GNSS receivers for dynamic, high sample rate response using controlled sources of displacement, velocity, and acceleration

    NASA Astrophysics Data System (ADS)

    Langbein, J. O.; Evans, J. R.; Blume, F.; Johanson, I. A.

    2012-12-01

    Global Navigational Satellite Systems (GNSS) are being employed to augment seismic instrumentation to record large, dynamic displacements and accelerations from large earthquakes. To date, however, there have been only a few tests that independently characterize the GNSS at frequencies and displacements that occur during large earthquakes (a number of error sources might influence such GPS result, including loss of lock or bias in signal tracking loops). Many of these tests consist of replaying the observed accelerations for select earthquakes recorded by seismic instruments through a shake-table on which a GNSS antenna is attached. Then the derived displacement from the accelerometer is compared with the displacement estimated from the GNSS system, or the GNSS derived acceleration is compared with the acceleration of the shake table. Neither comparison is optimal since derived quantities are used, and in particular, displacements derived from acceleration data have many sources of error at long periods. Another approach is to test the response of the GNSS receiver using a GNSS-simulator where synthetic GNSS signals are generated that mimic the signals that are actually received. Ebinuma and Kato (Earth Planet Space, 2012) describe a series of controlled tests using this approach with three different GNSS receivers. As a "real world" test, we performed similar experiments using a shake table, in open air with normal views of GNSS satellites, with controlled displacement inputs but, importantly, measured the displacement and acceleration of this table independently. We used a single-axis shake-table having up to 40 cm horizontal displacement and independently measured the position of the stage to better than 0.1 mm (from table servo loop optical reference; accelerations measured by accelerometers attached to moving part of stage). We tested five different GNSS receivers recording both GPS and GLONASS at 50 samples per second (sps), with the exception of the Trimble

  16. Examination of in-service coating degradation in gas turbine blades using a small punch testing method

    SciTech Connect

    Kameda, J.; Bloomer, T.E.; Gold, C.R.; Sugita, Y.; Ito, M.; Sakurai, S.

    1996-12-31

    This paper describes examination of in-service coating degradation in land based gas turbine blades by means of a small punch testing (SP) method and scanning Auger microprobe (SAM). SP tests on coated specimens with unpolished surfaces indicated large variations of the mechanical properties because of the surface roughness and curvature in gas turbine blades. SP tests on polished specimens better characterized the mechanical degradation of blade coatings. The coated specimens greatly softened and the room temperature ductility of the coatings and substrates tended to decrease with increasing operation time. The ductile-brittle transition temperature of the coatings shifted to higher temperatures during the blade operation. From SAM analyses on fracture surfaces of unused and used blades, it has been shown that oxidation and sulfidation near the coating surface, which control the fracture properties, result from high temperature environmental attack.

  17. Microbial adaption to a pesticide in agricultural soils: Accelerated degradation of 14C-atrazine in field soils from Brazil and Belgium

    NASA Astrophysics Data System (ADS)

    Jablonowski, Nicolai David; Martinazzo, Rosane; Hamacher, Georg; Accinelli, Cesare; Köppchen, Stephan; Langen, Ulrike; Linden, Andreas; Krause, Martina; Burauel, Peter

    2010-05-01

    An increasing demand for food, feed and bioenergy, and simultaneously a decline of arable land will require an intensive agricultural production including the use of pesticides. With an increasing use of pesticides the occurrence of an accelerated degradation potential has to be assessed. Atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] is one of the most widely used herbicides in the world. Even though its use was banned in several countries it is still widely used throughout America and the Asia-Pacific region. Atrazine is the most widely used herbicide in maize plantations in Brazil and the US. The use of atrazine in Belgium and all EU member states was banned in September 2004, with the permission to consume existing stocks until October 2005. Atrazine and its residues are still regularly detected in soil, ground and surface waters even years after its prohibition. Its persistence in soil and in association with organic particles might become crucial in terms of erosion due to climate and environmental changes. Due to its potential microbiological accessibility, the microbial mineralization of atrazine competes with chemical/physical interaction such as sorption and binding processes of the chemical molecule in the soil matrix. Binding or intrusion of the chemical on soil components results in a decrease of its accessibility for soil microbes, which does not necessarily exclude the molecule from environmental interactions. In the present study the accelerated atrazine degradation in agriculturally used soils was examined. Soil samples were collected from a Rhodic Ferralsol, Campinas do Sul, South Brazil, and Geric Ferralsol, Correntina, Northeastern Brazil. The sampling site of the Rhodic Ferralsol soil has been under crop rotation (soybean/wheat/maize/oat) since 1990. The Geric Ferralsol site has alternately been cultivated with maize and soybean since 2000. Both areas have been treated biennially with atrazine at recommended doses of 1.5 - 3

  18. Tested by Fire - How two recent Wildfires affected Accelerator Operations at LANL

    SciTech Connect

    Spickermann, Thomas

    2012-08-01

    In a little more than a decade two large wild fires threatened Los Alamos and impacted accelerator operations at LANL. In 2000 the Cerro Grande Fire destroyed hundreds of homes, as well as structures and equipment at the DARHT facility. The DARHT accelerators were safe in a fire-proof building. In 2011 the Las Conchas Fire burned about 630 square kilometers (250 square miles) and came dangerously close to Los Alamos/LANL. LANSCE accelerator operations Lessons Learned during Las Conchas fire: (1) Develop a plan to efficiently shut down the accelerator on short notice; (2) Establish clear lines of communication in emergency situations; and (3) Plan recovery and keep squirrels out.

  19. Dose rate effects on array CCDs exposed by Co-60 γ rays induce saturation output degradation and annealing tests

    SciTech Connect

    Wang, Zujun Chen, Wei; He, Baoping; Yao, Zhibin; Xiao, Zhigang; Sheng, Jiangkun; Liu, Minbo

    2015-10-15

    The experimental tests of dose rate and annealing effects on array charge-coupled devices (CCDs) are presented. The saturation output voltage (V{sub S}) versus the total dose at the dose rates of 0.01, 0.1, 1.0, 10.0 and 50 rad(Si)/s are compared. Annealing tests are performed to eliminate the time-dependent effects. The V{sub S} degradation levels depend on the dose rates. The V{sub S} degradation mechanism induced by dose rate and annealing effects is analyzed. The V{sub S} at 20 krad(Si) with the dose rate of 0.03 rad(Si)/s are supplemented to assure the degradation curves between the dose rates of 0.1 and 0.01 rad(Si)/s. The CCDs are divided into two groups, with one group biased and the other unbiased during {sup 60}Co γ radiation. The V{sub S} degradation levels of the biased CCDs during radiation are more severe than that of the unbiased CCDs.

  20. Accelerated life time testing of fused silica upon ArF laser irradiation

    NASA Astrophysics Data System (ADS)

    Mühlig, Ch.; Triebel, W.; Kufert, S.; Natura, U.

    2008-10-01

    We report on two approaches to strongly shorten life time testing of fused silica's absoption degradation upon 193 nm laser irradiation. Both approaches are based on enhancing the two photon absorption (TPA) induced generation of E' and NBOH defects centers in fused silica compared to common marathon test irradiation parameters. For the first approach the irradiation fluence is increased from typical values H<1 mJ/cm2 to H=10 mJ/cm2, therefore increasing the peak laser power for a more efficient TPA process. To avoid microchannel formation in the samples, being a common break-down criterion in marathon tests based on transmission measurements, a small sample of 10 mm length is irradiated and the absorption is measured directly by the laser induced deflection (LID) technique. For comparing the experimental results with a real marathon test at H=1.3 mJ/cm2, an experimental grade sample with very low hydrogen content, i.e. fast absorption changes due to reduced defect annealing, is choosen. During the fluence dependent absorption measurements after the prolonged irradiation at H=10 mJ/cm2 it is found, that both experiments reveal very comparable absorption data for H=1.3 mJ/cm2. For investigating standard material with high hydrogen content, i.e. slow absorption increase due to effective defect annealing, a sample is cooled down to -180 °C in a special designed experimental setup and irradiated at a laser fluence H=10 mJ/cm2. To control the increase of the defect density and to determine the end of the TPA induced defect generation, the fluorescence at 650 nm of the generated NBOH centers is monitored. Before and after the low temperature experiment, the absorption coefficient is measured directly by LID technique. By applying both, elevated laser fluence and low temperature, the ArF laser induced generation of E' and NBOH centers in the investigated sample is terminated after about 1.2*107 laser pulses. Therefore, a strong reduction of irradiation time is achieved