Sample records for accelerated hydrogen peroxide

  1. [Accelerated senescence of fresh-cut Chinese water chestnut tissues in relation to hydrogen peroxide accumulation].

    PubMed

    Peng, Li-Tao; Jiang, Yue-Ming; Yang, Shu-Zhen; Pan, Si-Yi

    2005-10-01

    Accelerated senescence of fresh-cut Chinese water chestnut (CWC) tissues in relation to active oxygen species (AOS) metabolism was investigated. Fresh-cut CWC (2 mm thick) and intact CWC were stored at 4 degrees C in trays wrapped with plastic films. Changes in superoxide anion production rate, activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were monitored, while contents of hydrogen peroxide, ascorbic acid, MDA as well as electrolyte leakage were measured. Fresh-cutting of CWC induced activities of SOD, CAT and APX to a certain extent (Fig. 2B and Fig. 3), but simultaneously stimulated superoxide anion production markedly (Fig. 2A), enhanced hydrogen peroxide accumulation and accelerated loss in ascorbic acid (Figs. 4 and 5), which resulted in increased lipid peroxidation indicated by malondialdehyde (MDA) content and electrolyte leakage (Fig. 1). Statistics analysis indicated that there was a significantly positive correlation among hydrogen peroxide accumulation, MDA content and electrolyte leakage (Table 1). Histochemical detection with 3, 3'-diaminobenzidine further demonstrated that hydrogen peroxide accumulation increased in fresh-cut CWC during storage (Fig. 5). AOS production rate and activities of SOD, CAT and APX changed little while no obvious hydrogen peroxide accumulation was observed, in intact CWC during storage.

  2. Efficacy of disinfectants containing accelerated hydrogen peroxide against conidial arthrospores and isolated infective spores of Microsporum canis and Trichophyton sp.

    PubMed

    Moriello, Karen A; Hondzo, Hanna

    2014-06-01

    Accelerated hydrogen peroxide is a proprietary disinfectant formulation that is available for both commercial and home use and is labelled as antifungal. To determine the antifungal efficacy of accelerated hydrogen peroxide disinfectants against Microsporum and Trichophyton spp. Three products formulated as ready to use and three concentrates were used. Concentrates were tested at dilutions of 1:8, 1:16 (recommended dilution) and 1:32. One product was a surgical instrument disinfectant. Sterile water, sodium hypochlorite (1:32 dilution) and over-the-counter 3% hydrogen peroxide were used as controls. Conidial suspensions contained ~9.6 × 10(5) /mL Microsporum canis, ~1.0 × 10(7) /mL M. gypseum or ~2.0 × 10(7) /mL Trichophyton sp. and were tested at 1:10 dilution. Isolated infective spore suspensions of M. canis from an untreated cat and T. erinacei from an untreated hedgehog were tested at 1:10, 1:5 and 1:1 spore-to-disinfectant dilutions. Too many colonies to count were present on untreated control plates. Accelerated hydrogen peroxide and household hydrogen peroxide inhibited growth of both pathogens in conidial (1:10 dilution) and spore suspensions (1:10, 1:5 and 1:10 dilution). There was no lack of efficacy of products that were >12 months old. Accelerated hydrogen peroxide products are an option for environmental disinfection of surfaces exposed to M. canis and Trichophyton sp. after appropriate gross decontamination and mechanical cleaning with a detergent. The results from conidial testing were identical to those of isolated infected spore testing, which suggests that accelerated hydrogen peroxide products with label claim as antifungal against Trichophyton mentagrophytes may be suitable as an alternative disinfectant to sodium hypochlorite. © 2014 ESVD and ACVD.

  3. Macrophage Response to UHMWPE Submitted to Accelerated Ageing in Hydrogen Peroxide

    PubMed Central

    Rocha, Magda F.G.; Mansur, Alexandra A.P.; Martins, Camila P.S.; Barbosa-Stancioli, Edel F.; Mansur, Herman S.

    2010-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important properties to extend the longevity of knee prostheses. The present study investigated the accelerated ageing of UHMWPE in hydrogen peroxide highly oxidative chemical environment. The sliced samples of UHMWPE were oxidized in a hydrogen peroxide solution for 120 days with their total level of oxidation (Iox) characterized by Fourier Transformed Infrared Spectroscopy (FTIR). The potential inflammatory response, cell viability and biocompatibility of such oxidized UHMWPE systems were assessed by a novel biological in vitro assay based on the secretion of nitric oxide (NO) by activated murine macrophages with gamma interferon (IFN-γ) cytokine and lipopolysaccharide (LPS). Furthermore, macrophage morphologies in contact with UHMWPE oxidized surfaces were analyzed by cell spreading-adhesion procedure using scanning electron microscopy (SEM). The results have given significant evidence that the longer the period of accelerated aging of UHMWPE the higher was the macrophage inflammatory equivalent response based on NO secretion analysis. PMID:20721321

  4. Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment.

    PubMed

    Gurram, Raghu Nandan; Al-Shannag, Mohammad; Lecher, Nicholas Joshua; Duncan, Shona M; Singsaas, Eric Lawrence; Alkasrawi, Malek

    2015-09-01

    In this study we investigated the technical feasibility of convert paper mill sludge into fuel ethanol. This involved the removal of mineral fillers by using either chemical pretreatment or mechanical fractionation to determine their effects on cellulose hydrolysis and fermentation to ethanol. In addition, we studied the effect of cationic polyelectrolyte (as accelerant) addition and hydrogen peroxide pretreatment on enzymatic hydrolysis and fermentation. We present results showing that removing the fillers content (ash and calcium carbonate) from the paper mill sludge increases the enzymatic hydrolysis performance dramatically with higher cellulose conversion at faster rates. The addition of accelerant and hydrogen peroxide pretreatment further improved the hydrolysis yields by 16% and 25% (g glucose / g cellulose), respectively with the de-ashed sludge. The fermentation process of produced sugars achieved up to 95% of the maximum theoretical ethanol yield and higher ethanol productivities within 9h of fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Hydrogen peroxide and caustic soda: Dancing with a dragon while bleaching

    Treesearch

    Peter W. Hart; Carl Houtman; Kolby Hirth

    2013-01-01

    When hydrogen peroxide is mixed with caustic soda, an auto-accelerating reaction can lead to generation of significant amounts of heat and oxygen. On the basis of experiments using typical pulp mill process concentration and temperatures, a relatively simple kinetic model has been developed. Evaluation of these model results reveals that hydrogen peroxide-caustic soda...

  6. Hydrogen peroxide poisoning.

    PubMed

    Watt, Barbara E; Proudfoot, Alex T; Vale, J Allister

    2004-01-01

    Hydrogen peroxide is an oxidising agent that is used in a number of household products, including general-purpose disinfectants, chlorine-free bleaches, fabric stain removers, contact lens disinfectants and hair dyes, and it is a component of some tooth whitening products. In industry, the principal use of hydrogen peroxide is as a bleaching agent in the manufacture of paper and pulp. Hydrogen peroxide has been employed medicinally for wound irrigation and for the sterilisation of ophthalmic and endoscopic instruments. Hydrogen peroxide causes toxicity via three main mechanisms: corrosive damage, oxygen gas formation and lipid peroxidation. Concentrated hydrogen peroxide is caustic and exposure may result in local tissue damage. Ingestion of concentrated (>35%) hydrogen peroxide can also result in the generation of substantial volumes of oxygen. Where the amount of oxygen evolved exceeds its maximum solubility in blood, venous or arterial gas embolism may occur. The mechanism of CNS damage is thought to be arterial gas embolisation with subsequent brain infarction. Rapid generation of oxygen in closed body cavities can also cause mechanical distension and there is potential for the rupture of the hollow viscus secondary to oxygen liberation. In addition, intravascular foaming following absorption can seriously impede right ventricular output and produce complete loss of cardiac output. Hydrogen peroxide can also exert a direct cytotoxic effect via lipid peroxidation. Ingestion of hydrogen peroxide may cause irritation of the gastrointestinal tract with nausea, vomiting, haematemesis and foaming at the mouth; the foam may obstruct the respiratory tract or result in pulmonary aspiration. Painful gastric distension and belching may be caused by the liberation of large volumes of oxygen in the stomach. Blistering of the mucosae and oropharyngeal burns are common following ingestion of concentrated solutions, and laryngospasm and haemorrhagic gastritis have been

  7. Hydrogen peroxide kinetics in water radiolysis

    NASA Astrophysics Data System (ADS)

    Iwamatsu, Kazuhiro; Sundin, Sara; LaVerne, Jay A.

    2018-04-01

    The kinetics of the formation and reaction of hydrogen peroxide in the long time γ- radiolysis of water is examined using a combination of experiment with model calculations. Escape yields of hydrogen peroxide on the microsecond time scale are easily measured with added radical scavengers even with substantial amounts of initial added hydrogen peroxide. The γ-radiolysis of aqueous hydrogen peroxide solutions without added radical scavengers reach a steady state limiting concentration of hydrogen peroxide with increasing dose, and that limit is directly proportional to the initial concentration of added hydrogen peroxide. The dose necessary to reach that limiting hydrogen peroxide concentration is also proportional to the initial concentration, but dose rate has a very small effect. The addition of molecular hydrogen to aqueous solutions of hydrogen peroxide leads to a decrease in the high dose limiting hydrogen peroxide concentration that is linear with the initial hydrogen concentration, but the amount of decrease is not stoichiometric. Proton irradiations of solutions with added hydrogen peroxide and hydrogen are more difficult to predict because of the decreased yields of radicals; however, with a substantial increase in dose rate there is a sufficient decrease in radical yields that hydrogen addition has little effect on hydrogen peroxide decay.

  8. Efficacy of an accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on metal surfaces.

    PubMed

    Holtkamp, Derald J; Myers, Jacqueline; Thomas, Paul R; Karriker, Locke A; Ramirez, Alejandro; Zhang, Jianqiang; Wang, Chong

    2017-04-01

    In May of 2013, porcine epidemic diarrhea virus (PEDV) was detected in swine for the first time in North America. It spread rapidly, in part due to contaminated livestock trailers. The objective of this study was to test the efficacy of an accelerated hydrogen peroxide disinfectant for inactivating PEDV in the presence of feces on metal surfaces, such as those found in livestock trailers. Three-week-old barrows were inoculated intragastrically with 5 mL of PEDV-negative feces for the negative control, 5 mL of untreated PEDV-positive feces for the positive control, and 5 mL or 10 mL of PEDV-positive feces that was subjected to treatment with a 1:16 or 1:32 concentrations of accelerated hydrogen peroxide disinfectant for a contact time of 30 min at 20°C. These pigs served as a bioassay to determine the infectivity of virus following treatment. Rectal swabs collected from the inoculated pigs on days 3 and 7 post-inoculation were tested by using PEDV-specific real-time reverse transcription polymerase chain reaction and the proportion of pigs in each group that became infected with PEDV was assessed. None of the pigs used for the bioassay in the 4 treatment groups and the negative control group became infected with PEDV, which was significantly different from the positive control group ( P < 0.05) in which all pigs were infected. The results suggest that the application of the accelerated hydrogen peroxide under these conditions was sufficient to inactivate the virus in feces found on metal surfaces.

  9. Efficacy of an accelerated hydrogen peroxide disinfectant to inactivate porcine epidemic diarrhea virus in swine feces on metal surfaces

    PubMed Central

    Holtkamp, Derald J.; Myers, Jacqueline; Thomas, Paul R.; Karriker, Locke A.; Ramirez, Alejandro; Zhang, Jianqiang; Wang, Chong

    2017-01-01

    In May of 2013, porcine epidemic diarrhea virus (PEDV) was detected in swine for the first time in North America. It spread rapidly, in part due to contaminated livestock trailers. The objective of this study was to test the efficacy of an accelerated hydrogen peroxide disinfectant for inactivating PEDV in the presence of feces on metal surfaces, such as those found in livestock trailers. Three-week-old barrows were inoculated intragastrically with 5 mL of PEDV-negative feces for the negative control, 5 mL of untreated PEDV-positive feces for the positive control, and 5 mL or 10 mL of PEDV-positive feces that was subjected to treatment with a 1:16 or 1:32 concentrations of accelerated hydrogen peroxide disinfectant for a contact time of 30 min at 20°C. These pigs served as a bioassay to determine the infectivity of virus following treatment. Rectal swabs collected from the inoculated pigs on days 3 and 7 post-inoculation were tested by using PEDV-specific real-time reverse transcription polymerase chain reaction and the proportion of pigs in each group that became infected with PEDV was assessed. None of the pigs used for the bioassay in the 4 treatment groups and the negative control group became infected with PEDV, which was significantly different from the positive control group (P < 0.05) in which all pigs were infected. The results suggest that the application of the accelerated hydrogen peroxide under these conditions was sufficient to inactivate the virus in feces found on metal surfaces. PMID:28408777

  10. THE PRODUCTION OF HYDROGEN PEROXIDE BY HIGH OXYGEN PRESSURES

    PubMed Central

    Gilbert, Daniel L.; Gerschman, Rebeca; Ruhm, K. Barclay; Price, William E.

    1958-01-01

    Hydrogen peroxide is formed in solutions of glutathione exposed to oxygen. This hydrogen peroxide or its precursors will decrease the viscosity of polymers like desoxyribonucleic acid and sodium alginate. Further knowledge of the mechanism of these chemical effects of oxygen might further the understanding of the biological effects of oxygen. This study deals with the rate of solution of oxygen and with the decomposition of hydrogen peroxide in chemical systems exposed to high oxygen pressures. At 6 atmospheres, the absorption coefficient for oxygen into water was about 1 cm./hour and at 143 atmospheres, it was about 2 cm./hour; the difference probably being due to the modus operandi. The addition of cobalt (II), manganese (II), nickel (II), or zinc ions in glutathione (GSH) solutions exposed to high oxygen pressure decreased the net formation of hydrogen peroxide and also the reduced glutathione remaining in the solution. Studies on hydrogen peroxide decomposition indicated that these ions act probably by accelerating the hydrogen perioxide oxidation of glutathione. The chelating agent, ethylenediaminetetraacetic acid disodium salt, inhibited the oxidation of GSH exposed to high oxygen pressure for 14 hours. However, indication that oxidation still occurred, though at a much slower rate, was found in experiments lasting 10 weeks. Thiourea decomposed hydrogen peroxide very rapidly. When GSH solutions were exposed to high oxygen pressure, there was oxidation of the GSH, which became relatively smaller with increasing concentrations of GSH. PMID:13525677

  11. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    PubMed

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  12. Ocular response to hydrogen peroxide.

    PubMed

    Paugh, J R; Brennan, N A; Efron, N

    1988-02-01

    A controlled, randomized, double-masked study was conducted on eight human subjects to determine the threshold level of hydrogen peroxide, which is toxic when introduced into the eye via a high water content (75%; Durasoft 4) hydrogel contact lens. Subjective comfort, conjunctival hyperemia, corneal and conjunctival epithelial staining, and corneal oxygen uptake were assessed in response to 5-min wear of lenses that were presoaked in isotonic saline solutions of physiologic pH containing 0, 25, 50, 100, 200, 400, and 800 parts per million (ppm) hydrogen peroxide. Higher levels of hydrogen peroxide were associated with greater discomfort (p less than 0.05) and increased conjunctival hyperemia (p less than 0.001). The highest level of hydrogen peroxide tested (800 ppm) did not induce significant corneal or conjunctival epithelial staining or alter the corneal aerobic response. We conclude that residual concentrations of hydrogen peroxide in contact lens care systems should not exceed 100 ppm. Practitioners can use these data to estimate the level of residual hydrogen peroxide to which a patient may have been exposed upon lens application after neutralization.

  13. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis

    PubMed Central

    Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Pavlides, Stephanos; Whitaker-Menezes, Diana; Pestell, Richard G; Howell, Anthony

    2011-01-01

    In 1889, Dr. Stephen Paget proposed the “seed and soil” hypothesis, which states that cancer cells (the seeds) need the proper microenvironment (the soil) for them to grow, spread and metastasize systemically. In this hypothesis, Dr. Paget rightfully recognized that the tumor microenvironment has an important role to play in cancer progression and metastasis. In this regard, a series of recent studies have elegantly shown that the production of hydrogen peroxide, by both cancer cells and cancer-associated fibroblasts, may provide the necessary “fertilizer,” by driving accelerated aging, DNA damage, inflammation and cancer metabolism, in the tumor microenvironment. By secreting hydrogen peroxide, cancer cells and fibroblasts are mimicking the behavior of immune cells (macrophages/neutrophils), driving local and systemic inflammation, via the innate immune response (NFκB). Thus, we should consider using various therapeutic strategies (such as catalase and/or other antioxidants) to neutralize the production of cancer-associated hydrogen peroxide, thereby preventing tumor-stroma co-evolution and metastasis. The implications of these findings for overcoming chemo-resistance in cancer cells are also discussed in the context of hydrogen peroxide production and cancer metabolism. PMID:21734470

  14. Detection of hydrogen peroxide with graphyne

    NASA Astrophysics Data System (ADS)

    Majidi, R.; Karami, A. R.

    2013-12-01

    The effect of hydrogen peroxide on the electronic properties of graphyne has been investigated to explore the possibility of using graphyne based biosensor. We have used density functional theory to study the electronic properties of γ-graphyne in the presence of different number of hydrogen peroxide. The optimal adsorption position, orientation, and distance of hydrogen peroxide adsorbed on the graphyne sheet have been determined by calculating adsorption energy. It is found that γ-graphyne which is an intrinsic semiconductor becomes an n-type semiconductor due to the presence of hydrogen peroxide. The energy band gap of γ-graphyne is decreased by increasing the number of hydrogen peroxide. The results demonstrate that γ-graphyne is a promising candidate for biosensor application because of its electrical sensitivity to hydrogen peroxide.

  15. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... Specific Substances Affirmed as GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No. 7722-84-1) is also referred to as hydrogen dioxide. It is made by the electrolytic oxidation of...

  16. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... Specific Substances Affirmed as GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No. 7722-84-1) is also referred to as hydrogen dioxide. It is made by the electrolytic oxidation of...

  17. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... Specific Substances Affirmed as GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No. 7722-84-1) is also referred to as hydrogen dioxide. It is made by the electrolytic oxidation of...

  18. Electrochemical Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    Tennakoon, Charles L. K.; Singh, Waheguru; Anderson, Kelvin C.

    2010-01-01

    Two-electron reduction of oxygen to produce hydrogen peroxide is a much researched topic. Most of the work has been done in the production of hydrogen peroxide in basic media, in order to address the needs of the pulp and paper industry. However, peroxides under alkaline conditions show poor stabilities and are not useful in disinfection applications. There is a need to design electrocatalysts that are stable and provide good current and energy efficiencies to produce hydrogen peroxide under acidic conditions. The innovation focuses on the in situ generation of hydrogen peroxide using an electrochemical cell having a gas diffusion electrode as the cathode (electrode connected to the negative pole of the power supply) and a platinized titanium anode. The cathode and anode compartments are separated by a readily available cation-exchange membrane (Nafion 117). The anode compartment is fed with deionized water. Generation of oxygen is the anode reaction. Protons from the anode compartment are transferred across the cation-exchange membrane to the cathode compartment by electrostatic attraction towards the negatively charged electrode. The cathode compartment is fed with oxygen. Here, hydrogen peroxide is generated by the reduction of oxygen. Water may also be generated in the cathode. A small amount of water is also transported across the membrane along with hydrated protons transported across the membrane. Generally, each proton is hydrated with 3-5 molecules. The process is unique because hydrogen peroxide is formed as a high-purity aqueous solution. Since there are no hazardous chemicals or liquids used in the process, the disinfection product can be applied directly to water, before entering a water filtration unit to disinfect the incoming water and to prevent the build up of heterotrophic bacteria, for example, in carbon based filters. The competitive advantages of this process are: 1. No consumable chemicals are needed in the process. The only raw materials

  19. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in...)(1) of this section. (a) Identity. For the purpose of this section, hydrogen peroxide solution is an...

  20. 21 CFR 184.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No. 7722-84-1) is also referred to as hydrogen dioxide. It is made by the electrolytic oxidation of sulfuric acid or a sulfate to...

  1. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...

  2. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...

  3. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...

  4. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...

  5. 21 CFR 582.1366 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hydrogen peroxide. 582.1366 Section 582.1366 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1366 Hydrogen peroxide. (a) Product. Hydrogen peroxide. (b) [Reserved] (c) Limitations...

  6. Coating for components requiring hydrogen peroxide compatibility

    NASA Technical Reports Server (NTRS)

    Yousefiani, Ali (Inventor)

    2010-01-01

    The present invention provides a heretofore-unknown use for zirconium nitride as a hydrogen peroxide compatible protective coating that was discovered to be useful to protect components that catalyze the decomposition of hydrogen peroxide or corrode when exposed to hydrogen peroxide. A zirconium nitride coating of the invention may be applied to a variety of substrates (e.g., metals) using art-recognized techniques, such as plasma vapor deposition. The present invention further provides components and articles of manufacture having hydrogen peroxide compatibility, particularly components for use in aerospace and industrial manufacturing applications. The zirconium nitride barrier coating of the invention provides protection from corrosion by reaction with hydrogen peroxide, as well as prevention of hydrogen peroxide decomposition.

  7. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  8. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  9. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  10. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  11. 21 CFR 529.1150 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hydrogen peroxide. 529.1150 Section 529.1150 Food... DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.1150 Hydrogen peroxide. (a) Specifications. Each milliliter of solution contains 396.1 milligrams (mg) hydrogen peroxide...

  12. Detection of hydrogen peroxide with chemiluminescent micelles

    PubMed Central

    Lee, Dongwon; Erigala, Venkata R; Dasari, Madhuri; Yu, Junhua; Dickson, Robert M; Murthy, Niren

    2008-01-01

    The overproduction of hydrogen peroxide is implicated in the progress of numerous life-threatening diseases and there is a great need for the development of contrast agents that can detect hydrogen peroxide in vivo. In this communication, we present a new contrast agent for hydrogen peroxide, termed peroxalate micelles, which detect hydrogen peroxide through chemiluminescence, and have the physical/chemical properties needed for in vivo imaging applications. The peroxalate micelles are composed of amphiphilic peroxalate based copolymers and the fluorescent dye rubrene, they have a ‘stealth’ polyethylene glycol (PEG) corona to evade macrophage phagocytosis, and a diameter of 33 nm to enhance extravasation into permeable tissues. The peroxalate micelles can detect nanomolar concentrations of hydrogen peroxide (>50 nM) and thus have the sensitivity needed to detect physiological concentrations of hydrogen peroxide. We anticipate numerous applications of the peroxalate micelles for in vivo imaging of hydrogen peroxide, given their high sensitivity, small size, and biocompatible PEG corona. PMID:19337415

  13. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... Specific Usage Additives § 173.356 Hydrogen peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may be....C. 552(a) and 1 CFR part 51. You may obtain copies from the United States Pharmacopeial Convention...

  14. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... Specific Usage Additives § 173.356 Hydrogen peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may be....C. 552(a) and 1 CFR part 51. You may obtain copies from the United States Pharmacopeial Convention...

  15. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... Specific Usage Additives § 173.356 Hydrogen peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may be....C. 552(a) and 1 CFR part 51. You may obtain copies from the United States Pharmacopeial Convention...

  16. Efficacy, efficiency and safety aspects of hydrogen peroxide vapour and aerosolized hydrogen peroxide room disinfection systems.

    PubMed

    Fu, T Y; Gent, P; Kumar, V

    2012-03-01

    This was a head-to-head comparison of two hydrogen-peroxide-based room decontamination systems. To compare the efficacy, efficiency and safety of hydrogen peroxide vapour (HPV; Clarus R, Bioquell, Andover, U.K.) and aerosolized hydrogen peroxide (aHP; SR2, Sterinis, now supplied as Glosair, Advanced Sterilization Products (ASP), Johnson & Johnson Medical Ltd, Wokingham, U.K.) room disinfection systems. Efficacy was tested using 4- and 6-log Geobacillus stearothermophilus biological indicators (BIs) and in-house prepared test discs containing approximately 10(6) meticillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile and Acinetobacter baumannii. Safety was assessed by detecting leakage of hydrogen peroxide using a hand-held detector. Efficiency was assessed by measuring the level of hydrogen peroxide using a hand-held sensor at three locations inside the room, 2 h after the start of the cycles. HPV generally achieved a 6-log reduction, whereas aHP generally achieved less than a 4-log reduction on the BIs and in-house prepared test discs. Uneven distribution was evident for the aHP system but not the HPV system. Hydrogen peroxide leakage during aHP cycles with the door unsealed, as per the manufacturer's operating manual, exceeded the short-term exposure limit (2 ppm) for more than 2 h. When the door was sealed with tape, as per the HPV system, hydrogen peroxide leakage was <1 ppm for both systems. The mean concentration of hydrogen peroxide in the room 2 h after the cycle started was 1.3 [standard deviation (SD) 0.4] ppm and 2.8 (SD 0.8) ppm for the four HPV and aHP cycles, respectively. None of the readings were <2 ppm for the aHP cycles. The HPV system was safer, faster and more effective for biological inactivation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  17. Hydrogen peroxide stabilization in one-dimensional flow columns

    NASA Astrophysics Data System (ADS)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  18. Hydrogen peroxide stabilization in one-dimensional flow columns.

    PubMed

    Schmidt, Jeremy T; Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J

    2011-09-25

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H(2)O(2) propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO. Copyright © 2011. Published by Elsevier B.V.

  19. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric food...

  20. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric food...

  1. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric food...

  2. 21 CFR 178.1005 - Hydrogen peroxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogen peroxide solution. 178.1005 Section 178... SANITIZERS Substances Utilized To Control the Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in this section may be safely used to sterilize polymeric food...

  3. Isothermal Decomposition of Hydrogen Peroxide Dihydrate

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Baragiola, R. A.

    2011-01-01

    We present a new method of growing pure solid hydrogen peroxide in an ultra high vacuum environment and apply it to determine thermal stability of the dihydrate compound that forms when water and hydrogen peroxide are mixed at low temperatures. Using infrared spectroscopy and thermogravimetric analysis, we quantified the isothermal decomposition of the metastable dihydrate at 151.6 K. This decomposition occurs by fractional distillation through the preferential sublimation of water, which leads to the formation of pure hydrogen peroxide. The results imply that in an astronomical environment where condensed mixtures of H2O2 and H2O are shielded from radiolytic decomposition and warmed to temperatures where sublimation is significant, highly concentrated or even pure hydrogen peroxide may form.

  4. Preliminary study of a hydrogen peroxide rocket for use in moving source jet noise tests

    NASA Technical Reports Server (NTRS)

    Plencner, R. M.

    1977-01-01

    A preliminary investigation was made of using a hydrogen peroxide rocket to obtain pure moving source jet noise data. The thermodynamic cycle of the rocket was analyzed. It was found that the thermodynamic exhaust properties of the rocket could be made to match those of typical advanced commercial supersonic transport engines. The rocket thruster was then considered in combination with a streamlined ground car for moving source jet noise experiments. When a nonthrottlable hydrogen peroxide rocket was used to accelerate the vehicle, propellant masses and/or acceleration distances became too large. However, when a throttlable rocket or an auxiliary system was used to accelerate the vehicle, reasonable propellant masses could be obtained.

  5. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  6. Systems and methods for generation of hydrogen peroxide vapor

    DOEpatents

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  7. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  8. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2011-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  9. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2005-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  10. High Temperature Decomposition of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  11. Hydrogen Peroxide Probes Directed to Different Cellular Compartments

    PubMed Central

    Malinouski, Mikalai; Zhou, You; Belousov, Vsevolod V.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular compartments, HyPer occurred in the reduced state in the nucleus, cytosol, peroxisomes, mitochondrial intermembrane space and mitochondrial matrix, but low levels of the oxidized form of the biosensor were also observed in each of these compartments, consistent with a low peroxide tone in mammalian cells. In contrast, HyPer was mostly oxidized in the endoplasmic reticulum. Using this system, we characterized control of hydrogen peroxide in various cell systems, such as cells deficient in thioredoxin reductase, sulfhydryl oxidases or subjected to selenium deficiency. Generation of hydrogen peroxide could also be monitored in various compartments following signaling events. Conclusions We found that HyPer can be used as a valuable tool to monitor hydrogen peroxide generated in different cellular compartments. The data also show that hydrogen peroxide generated in one compartment could translocate to other compartments. Our data provide information on compartmentalization, dynamics and homeostatic control of hydrogen peroxide in mammalian cells. PMID:21283738

  12. 21 CFR 173.356 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogen peroxide. 173.356 Section 173.356 Food... peroxide. Hydrogen peroxide (CAS Reg. No. 7722-84-1) may be safely used to treat food in accordance with... approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may...

  13. Another Unprecedented Wieland Mechanism Confirmed: Hydrogen Formation from Hydrogen Peroxide, Formaldehyde, and Sodium Hydroxide.

    PubMed

    Czochara, Robert; Litwinienko, Grzegorz; Korth, Hans-Gert; Ingold, Keith U

    2018-03-26

    In 1923, Wieland and Wingler reported that in the molecular hydrogen producing reaction of hydrogen peroxide with formaldehyde in basic solution, free hydrogen atoms (H . ) are not involved. They postulated that bis(hydroxymethyl)peroxide, HOCH 2 OOCH 2 OH, is the intermediate, which decomposes to yield H 2 and formate, proposing a mechanism that would nowadays be considered as a "concerted process". Since then, several other (conflicting) "mechanisms" have been suggested. Our NMR and Raman spectroscopic and kinetic studies, particularly the determination of the deuterium kinetic isotope effect (DKIE), now confirm that in this base-dependent reaction, both H atoms of H 2 derive from the CH 2 hydrogen atoms of formaldehyde, and not from the OH groups of HOCH 2 OOCH 2 OH or from water. Quantum-chemical CBS-QB3 and W1BD computations show that H 2 release proceeds through a concerted process, which is strongly accelerated by double deprotonation of HOCH 2 OOCH 2 OH, thereby ruling out a free radical pathway. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fundamentals of ISCO Using Hydrogen Peroxide

    EPA Science Inventory

    Hydrogen peroxide is a common oxidant that has been applied extensively with in situ chemical oxidation (ISCO). Because of its widespread use in this and other fields, it has been extensively researched. This research has revealed that hydrogen peroxide has very complex chemistry...

  15. Hydrogen peroxide on the surface of Europa

    USGS Publications Warehouse

    Carlson, R.W.; Anderson, M.S.; Johnson, R.E.; Smythe, W.D.; Hendrix, A.R.; Barth, C.A.; Soderblom, L.A.; Hansen, G.B.; McCord, T.B.; Dalton, J.B.; Clark, R.N.; Shirley, J.H.; Ocampo, A.C.; Matson, D.L.

    1999-01-01

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  16. Hydrogen peroxide on the surface of Europa.

    PubMed

    Carlson, R W; Anderson, M S; Johnson, R E; Smythe, W D; Hendrix, A R; Barth, C A; Soderblom, L A; Hansen, G B; McCord, T B; Dalton, J B; Clark, R N; Shirley, J H; Ocampo, A C; Matson, D L

    1999-03-26

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  17. Hydrogen peroxide catalytic decomposition

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2010-01-01

    Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated through the use of concentrated hydrogen peroxide fed as a monopropellant into a catalyzed thruster assembly. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50%-70% by volume, and may be increased in concentration in a continuous process preceding decomposition in the thruster assembly. The exhaust of the thruster assembly, rich in hydroxyl and/or hydroperoxy radicals, may be fed into a stream containing oxidizable components, such as nitric oxide, to facilitate their oxidation.

  18. Simple, field portable colorimetric detection device for organic peroxides and hydrogen peroxide

    DOEpatents

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie; Reynolds, John G.; Nunes, Peter; Shields, Sharon J.

    2010-11-09

    A simple and effective system for the colorimetric determination of organic peroxides and hydrogen peroxide. A peroxide pen utilizing a swipe material attached to a polyethylene tube contains two crushable vials. The two crushable vials contain a colorimetric reagent separated into dry ingredients and liquid ingredients. After swiping a suspected substance or surface the vials are broken, the reagent is mixed thoroughly and the reagent is allowed to wick into the swipe material. The presence of organic peroxides or hydrogen peroxide is confirmed by a deep blue color.

  19. Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide

    PubMed Central

    Rocha, Magda; Mansur, Alexandra; Mansur, Herman

    2009-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important mechanical properties to extend the longevity of knee prostheses. Though accelerated in vitro protocols have been developed to test the relative oxidation resistance of various types of UHMWPE, its mechanism is not accurately understood yet. Thus, in the present study an accelerated ageing of UHMWPE in hydrogen peroxide solution was performed and relative oxidation was extensively characterized by Fourier Transformed Infrared Spectroscopy (FTIR) spectroscopy and the morphological changes were analyzed by Scanning Electron Microscopy (SEM). Different chemical groups of UHMWPE associated with the degradation reaction were monitored for over 120 days in order to evaluate the possible oxidation mechanism(s) which may have occurred. The results have provided strong evidence that the oxidation mechanism is rather complex, and two stages with their own particular first-order kinetics reaction patterns have been clearly identified. Furthermore, hydrogen peroxide has proven to be an efficient oxidative medium to accelerate ageing of UHMWPE.

  20. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  1. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  2. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  3. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  4. 7 CFR 58.431 - Hydrogen peroxide.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hydrogen peroxide. 58.431 Section 58.431 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Material § 58.431 Hydrogen peroxide. The solution shall comply with the specification of the U.S...

  5. NASA Hydrogen Peroxide Propellant Hazards Technical Manual

    NASA Technical Reports Server (NTRS)

    Baker, David L.; Greene, Ben; Frazier, Wayne

    2005-01-01

    The Fire, Explosion, Compatibility and Safety Hazards of Hydrogen Peroxide NASA technical manual was developed at the NASA Johnson Space Center White Sands Test Facility. NASA Technical Memorandum TM-2004-213151 covers topics concerning high concentration hydrogen peroxide including fire and explosion hazards, material and fluid reactivity, materials selection information, personnel and environmental hazards, physical and chemical properties, analytical spectroscopy, specifications, analytical methods, and material compatibility data. A summary of hydrogen peroxide-related accidents, incidents, dose calls, mishaps and lessons learned is included. The manual draws from art extensive literature base and includes recent applicable regulatory compliance documentation. The manual may be obtained by United States government agencies from NASA Johnson Space Center and used as a reference source for hazards and safe handling of hydrogen peroxide.

  6. Stabilized aqueous hydrogen peroxide solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malin, M.J.; Sciafani, L.D.

    1988-05-17

    This patent describes a stabilized aqueous hydrogen peroxide solution having a pH below 7 and an amount of Ferric ion up to about 2 ppm comprising hydrogen peroxide, acetanilide having a concentration which ranges between 0.74 M Mol/L and 2.22 mMol/L, and o-benzene disulfonic acid or salt thereof at a concentration between about 0.86 mMol/L to about 1.62 mMol/L.

  7. Hydrogen peroxide mechanosynthesis in siloxane-hydrogel contact lenses.

    PubMed

    Tavazzi, Silvia; Ferraro, Lorenzo; Cozza, Federica; Pastori, Valentina; Lecchi, Marzia; Farris, Stefano; Borghesi, Alessandro

    2014-11-26

    Drug-loaded contact lenses are emerging as the preferred treatment method for several ocular diseases, and efforts are being directed to promote extended and controlled delivery. One strategy is based on delivery induced by environmental triggers. One of these triggers can be hydrogen peroxide, since many platforms based on drug-loaded nanoparticles were demonstrated to be hydrogen-peroxide responsive. This is particularly interesting when hydrogen peroxide is the result of a specific pathophysiological condition. Otherwise, an alternative route to induce drug delivery is here proposed, namely the mechano-synthesis. The present work represents the proof-of-concept of the mechanosynthesis of hydrogen peroxide in siloxane-hydrogel contact lenses as a consequence of the cleavage of siloxane bonds at the interface between the polymer and water in aqueous phase. Their spongy morphology makes contact lenses promising systems for mechanical-to-chemical energy conversion, since the amount of hydrogen peroxide is expected to scale with the interfacial area between the polymer and water. The eyelid pressure during wear is sufficient to induce the hydrogen peroxide synthesis with concentrations which are biocompatible and suitable to trigger the drug release through hydrogen-peroxide-responsive platforms. For possible delivery on demand, the integration of piezoelectric polymers in the siloxane-hydrogel contact lenses could be designed, whose mechanical deformation could be induced by an applied wireless-controlled voltage.

  8. Progress toward hydrogen peroxide micropulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, J C; Dittman, M D; Ledebuhr, A G

    1999-07-08

    A new self-pressurizing propulsion system has liquid thrusters and gas jet attitude control without heavy gas storage vessels. A pump boosts the pressure of a small fraction of the hydrogen peroxide, so that reacted propellant can controllably pressurize its own source tank. The warm decomposition gas also powers the pump and is supplied to the attitude control jets. The system has been incorporated into a prototype microsatellite for terrestrial maneuvering tests. Additional progress includes preliminary testing of a bipropellant thruster, and storage of unstabilized hydrogen peroxide in small sealed tanks.

  9. Molecular Association and Structure of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Giguere, Paul A.

    1983-01-01

    The statement is sometimes made in textbooks that liquid hydrogen peroxide is more strongly associated than water, evidenced by its higher boiling point and greater heat of vaporization. Discusses these and an additional factor (the nearly double molecular mass of the peroxide), focusing on hydrogen bonds and structure of the molecule. (JN)

  10. Catalyst Development for Hydrogen Peroxide Rocket Engines

    NASA Technical Reports Server (NTRS)

    Morlan, P. W.; Wu, P.-K.; Ruttle, D. W.; Fuller, R. P.; Nejad, A. S.; Anderson, W. E.

    1999-01-01

    The development of various catalysts of hydrogen peroxide was conducted for the applications of liquid rocket engines. The catalyst development includes silver screen technology, solid catalyst technology, and homogeneous catalyst technology. The silver screen technology development was performed with 85% (by weight) hydrogen peroxide. The results of this investigation were used as the basis for the catalyst design of a pressure-fed liquid-fueled upper stage engine. Both silver-plated nickel 200 screens and pure silver screens were used as the active metal catalyst during the investigation, The data indicate that a high decomposition efficiency (greater than 90%) of 85% hydrogen peroxide can be achieved at a bed loading of 0.5 lbm/sq in/sec with both pure silver and silver plated screens. Samarium oxide coating, however, was found to retard the decomposition process and the catalyst bed was flooded at lower bed loading. A throughput of 200 lbm of hydrogen peroxide (1000 second run time) was tested to evaluate the catalyst aging issue and performance degradation was observed starting at approximately 400 seconds. Catalyst beds of 3.5 inch in diameter was fabricated using the same configuration for a 1,000-lbf rocket engine. High decomposition efficiency was obtained with a low pressure drop across the bed. Solid catalyst using precious metal was also developed for the decomposition of hydrogen peroxide from 85% to 98% by weight. Preliminary results show that the catalyst has a strong reactivity even after 15 minutes of peroxide decomposition. The development effort also includes the homogeneous catalyst technology. Various non-toxic catalysts were evaluated with 98% peroxide and hydrocarbon fuels. The results of open cup drop tests indicate an ignition delay around 11 ms.

  11. Hazard Assessment of Personal Protective Clothing for Hydrogen Peroxide Service

    NASA Technical Reports Server (NTRS)

    Greene, Ben; McClure, Mark B.; Johnson, Harry T.

    2004-01-01

    Selection of personal protective equipment (PPE) for hydrogen peroxide service is an important part of the hazard assessment process. But because drip testing of chemical protective clothing for hydrogen peroxide service has not been reported for about 40 years, it is of great interest to test new protective clothing materials with new, high-concentration hydrogen peroxide following similar procedures. The suitability of PPE for hydrogen peroxide service is in part determined by observations made when hydrogen peroxide is dripped onto swatches of protective clothing material. Protective clothing material was tested as received, in soiled condition, and in grossly soiled condition. Materials were soiled by pretreating the material with potassium permanganate (KMnO4) solution then drying to promote a reaction. Materials were grossly soiled with solid KMnO4 to greatly promote reaction. Observations of results including visual changes to the hydrogen peroxide and materials, times to ignition, and self-extinguishing characteristics of the materials are reported.

  12. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used...

  13. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used...

  14. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Silver nitrate and hydrogen peroxide solution. 172... Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used in accordance with the following...

  15. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Silver nitrate and hydrogen peroxide solution. 172... FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.167 Silver nitrate and hydrogen peroxide solution. An aqueous solution containing a mixture of silver nitrate and hydrogen peroxide may be safely used...

  16. Boronate-Based Fluorescent Probes: Imaging Hydrogen Peroxide in Living Systems

    PubMed Central

    Lin, Vivian S.; Dickinson, Bryan C.; Chang, Christopher J.

    2014-01-01

    Hydrogen peroxide, a reactive oxygen species with unique chemical properties, is produced endogenously in living systems as a destructive oxidant to ward off pathogens or as a finely tuned second messenger in dynamic cellular signaling pathways. In order to understand the complex roles that hydrogen peroxide can play in biological systems, new tools to monitor hydrogen peroxide in its native settings, with high selectivity and sensitivity, are needed. Knowledge of organic synthetic reactivity provides the foundation for the molecular design of selective, functional hydrogen peroxide probes. A palette of fluorescent and luminescent probes that react chemoselectively with hydrogen peroxide has been developed, utilizing a boronate oxidation trigger. These indicators offer a variety of colors and in cellulo characteristics and have been used to examine hydrogen peroxide in a number of experimental setups, including in vitro fluorometry, confocal fluorescence microscopy, and flow cytometry. In this chapter, we provide an overview of the chemical features of these probes and information on their behavior to help researchers select the optimal probe and application. PMID:23791092

  17. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  18. Hydrogen Peroxide - Material Compatibility Studied by Microcalorimetry

    NASA Technical Reports Server (NTRS)

    Homung, Steven D.; Davis, Dennis D.; Baker, David; Popp, Christopher G.

    2003-01-01

    Environmental and toxicity concerns with current hypergolic propellants have led to a renewed interest in propellant grade hydrogen peroxide (HP) for propellant applications. Storability and stability has always been an issue with HP. Contamination or contact of HP with metallic surfaces may cause decomposition, which can result in the evolution of heat and gas leading to increased pressure or thermal hazards. The NASA Johnson Space Center White Sands Test Facility has developed a technique to monitor the decompositions of hydrogen peroxide at temperatures ranging from 25 to 60 C. Using isothermal microcalorimetry we have measured decomposition rates at the picomole/s/g level showing the catalytic effects of materials of construction. In this paper we will present the results of testing with Class 1 and 2 materials in 90 percent hydrogen peroxide.

  19. Evaluating different concentrations of hydrogen peroxide in an automated room disinfection system.

    PubMed

    Murdoch, L E; Bailey, L; Banham, E; Watson, F; Adams, N M T; Chewins, J

    2016-09-01

    A comparative study was made on the efficacy of 5, 10 and 35% weight by weight (w/w) hydrogen peroxide solutions when applied using an automated room disinfection system. Six-log biological indicators of methicillin-resistant Staphylococcus aureus (MRSA) and Geobacillus stearothermophilus were produced on stainless steel coupons and placed within a large, sealed, environmentally controlled enclosure. Five percent hydrogen peroxide was distributed throughout the enclosure using a Bioquell hydrogen peroxide vapour generator (BQ-50) for 40 min and left to reside for a further 200 min. Biological indicators were removed at 10-min intervals throughout the first 120 min of the process. The experiment was repeated for 10 and 35% hydrogen peroxide solutions. Five percent and 10% hydrogen peroxide solutions failed to achieve any reduction of MRSA, but achieved full kill of G. stearothermophilus spores at 70 and 40 min respectively. Thirty-five percent hydrogen peroxide achieved a 6-log reduction of MRSA after 30 min and full kill of G. stearothermophilus at 20 min. The concentration of 5% hydrogen peroxide within the enclosure after the 200-min dwell was measured at 9·0 ppm. This level exceeds the 15-min Short Term Exposure Limit (STEL) for hydrogen peroxide of 2·0 ppm. Users of automated hydrogen peroxide disinfection systems should review system efficacy and room re-entry protocols in light of these results. This research allows hospital infection control teams to consider the impact and risks of using low concentrations of hydrogen peroxide for disinfection within their facilities, and to question automated room disinfection system providers on the efficacy claims they make. The evidence that low concentration hydrogen peroxide solutions do not rapidly, autonomously break down, is in contradiction to the claims made by some hydrogen peroxide equipment providers and raises serious health and safety concerns. Facilities using hydrogen peroxide systems that

  20. Demonstration of the Catalytic Decomposition of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Conklin, Alfred R. Jr.; Kessinger, Angela

    1996-01-01

    Describes a demonstration known as Elephant's Toothpaste in which the decomposition of hydrogen peroxide is catalyzed by iodide. Oxygen is released and soap bubbles are produced. The foam produced is measured, and results show a good relationship between the amount of foam and the concentration of the hydrogen peroxide. (DDR)

  1. Improved Electrolytic Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  2. Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors.

    PubMed

    Bohrer, Forest I; Colesniuc, Corneliu N; Park, Jeongwon; Schuller, Ivan K; Kummel, Andrew C; Trogler, William C

    2008-03-26

    The use of hydrogen peroxide as a precursor to improvised explosives has made its detection a topic of critical importance. Chemiresistor arrays comprised of 50 nm thick films of metallophthalocyanines (MPcs) are redox selective vapor sensors of hydrogen peroxide. Hydrogen peroxide is shown to decrease currents in cobalt phthalocyanine sensors while it increases currents in nickel, copper, and metal-free phthalocyanine sensors; oxidation and reduction of hydrogen peroxide via catalysis at the phthalocyanine surface are consistent with the pattern of sensor responses. This represents the first example of MPc vapor sensors being oxidized and reduced by the same analyte by varying the metal center. Consequently, differential analysis by redox contrast with catalytic amplification using a small array of sensors may be used to uniquely identify peroxide vapors. Metallophthalocyanine chemiresistors represent an improvement over existing peroxide vapor detection technologies in durability and selectivity in a greatly decreased package size.

  3. A Modified Demonstration of the Catalytic Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Trujillo, Carlos Alexander

    2005-06-01

    A safer and cheaper version of the popular catalyzed decomposition of hydrogen peroxide demonstration commonly called the “Elephants’ Toothpaste” is presented. Hydrogen peroxide is decomposed in the presence of a surfactant by the enzyme catalase producing foam. Catalase has a higher activity compared with the traditional iodide and permits the use of diluted hydrogen peroxide solutions. The demonstration can be made with household products with similar amazing effects.

  4. Different Modes of Hydrogen Peroxide Action During Seed Germination

    PubMed Central

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-01-01

    Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging. PMID:26870076

  5. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...

  6. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...

  7. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...

  8. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...

  9. 40 CFR 415.90 - Applicability; description of the hydrogen peroxide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen peroxide production subcategory. 415.90 Section 415.90 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Peroxide Production Subcategory § 415.90 Applicability; description of the hydrogen peroxide production subcategory. The provisions of this subpart are applicable to discharges...

  10. Selective electrochemical generation of hydrogen peroxide from water oxidation

    DOE PAGES

    Viswanathan, Venkatasubramanian; Hansen, Heine A.; Norskov, Jens K.

    2015-10-08

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, wemore » show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e– water oxidation to H 2O 2 and the 4e– oxidation to O 2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO 2, can activate hydrogen peroxide evolution. Furthermore, we present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H 2O 2 evolution selectively.« less

  11. Demonstration of the Catalytic Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Conklin, Alfred R., Jr.; Kessinger, Angela

    1996-09-01

    Catalytic decomposition is demonstrated by placing hydrogen peroxide solutions in a one liter graduated cylinder and adding soap, food coloring, and potassium iodide. Released oxygen is trapped by the soap producing bubbles. The volume of bubbles is proportional to the concentration of hydrogen peroxide. Chloride and bromide do not cause decomposition. Increased reactant temperature increases the volume of bubbles formed.

  12. A biosensor for hydrogen peroxide detection based on electronic properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Majidi, Roya

    2013-01-01

    Density functional theory has been used to study the effect of hydrogen peroxide on the electronic properties of single walled carbon nanotubes. The metallic and semiconducting carbon nanotubes have been considered in the presence of different number of hydrogen peroxide. The results indicate that hydrogen peroxide has no significant effect on the metallic nanotube and these nanotubes remain to be metallic. In contrast, the electronic properties of the semiconducting nanotubes are so sensitive to hydrogen peroxide. The energy band gap of these nanotubes is decreased by increasing the number of hydrogen peroxide. The electronic sensivity of the carbon nanotubes to hydrogen peroxide opens new insights into developing biosensors based on the single walled carbon nanotubes.

  13. Electrochemical Visualization of Intracellular Hydrogen Peroxide at Single Cells.

    PubMed

    He, Ruiqin; Tang, Huifen; Jiang, Dechen; Chen, Hong-yuan

    2016-02-16

    In this Letter, the electrochemical visualization of hydrogen peroxide inside one cell was achieved first using a comprehensive Au-luminol-microelectrode and electrochemiluminescence. The capillary with a tip opening of 1-2 μm was filled with the mixture of chitosan and luminol, which was coated with the thin layers of polyvinyl chloride/nitrophenyloctyl ether (PVC/NPOE) and gold as the microelectrode. Upon contact with the aqueous hydrogen peroxide, hydrogen peroxide and luminol in contact with the gold layer were oxidized under the positive potential resulting in luminescence for the imaging. Due to the small diameter of the electrode, the microelectrode tip was inserted into one cell and the bright luminescence observed at the tip confirmed the visualization of intracellular hydrogen peroxide. The further coupling of oxidase on the electrode surface could open the field in the electrochemical imaging of intracellular biomolecules at single cells, which benefited the single cell electrochemical detection.

  14. Hydrogen peroxide inhibits iodide uptake and iodine organification in cultured porcine thyroid follicles.

    PubMed

    Fukayama, H; Murakami, S; Nasu, M; Sugawara, M

    1991-01-01

    We investigated the effect of hydrogen peroxide on the process of thyroid hormone formation in a physiologic culture system of porcine thyroid follicles that we recently established. Porcine thyroid follicles cultured in medium containing 1 mU/mL TSH were exposed to 0 to 500 microM hydrogen peroxide in the presence of 0.1 microCi carrier-free Na125 and sodium iodide for 2 h. Iodide uptake and iodine organification were measured in this incubation system. The kinetics of iodide uptake were used to explain the action of hydrogen peroxide. In addition, cAMP content and Na+,K(+)-ATPase activity (an enzyme necessary for iodide uptake) were measured to investigate the mechanism of hydrogen peroxide action. Hydrogen peroxide at concentrations of 100, 200, and 500 microM inhibited iodide uptake in a dose-dependent manner. Iodide organification was inhibited only when the concentration of hydrogen peroxide was greater than 200 microM. The kinetics of iodide uptake indicated that hydrogen peroxide was a noncompetitive inhibitor with iodide. Inhibition of iodide uptake and iodine organification by hydrogen peroxide were not mediated by alteration of cAMP content of Na+,K(+)-ATPase activity, since exposure to even 500 microM hydrogen peroxide did not change these parameters in the follicle when compared with those of control samples. Our results suggest that the iodide transport system in the thyroid follicle is inhibited at 200 microM hydrogen peroxide or greater.

  15. Hydrogen peroxide oxidant fuel cell systems for ultra-portable applications

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2001-01-01

    This paper will address the issues of using hydrogen peroxide as an oxidant fuel in a miniature DMFC system. Cell performance for DMFC based fuel cells operating on hydrogen peroxide will be presented and discussed.

  16. Hydrogen peroxide generated by xanthine/xanthine oxidase system represses the proliferation of colorectal cancer cell line Caco-2.

    PubMed

    Sakuma, Satoru; Abe, Muneyuki; Kohda, Tetsuya; Fujimoto, Yohko

    2015-01-01

    The twin character of reactive oxygen species is substantiated by a growing body of evidence that reactive oxygen species within cells act as inducers and accelerators of the oncogenic phenotype of cancer cells, while reactive oxygen species can also induce cancer cell death and can therefore function as anti-tumorigenic species. The aim of this study was to assess a possible influence of xanthine/xanthine oxidase on the proliferation of colorectal cancer cell line Caco-2. xanthine/xanthine oxidase (2.5 µM/0.25 mU/ml-25 µM/2.5 mU/ml) dose-dependently inhibited the proliferation of Caco-2 cells. Experiments utilizing reactive oxygen species scavengers (superoxide dismutase, catalase and mannitol) and exogenous hydrogen peroxide revealed a major role of hydrogen peroxide in the xanthine/xanthine oxidase effect. Investigations utilizing annexin V-fluorescein/PI assay using flow cytometry, and the lactate dehydrogenase extracellular release assay indicated that hydrogen peroxide induced necrosis, but not apoptosis, in Caco-2 cells. These results suggest that hydrogen peroxide generated by xanthine/xanthine oxidase has the potential to suppress colorectal cancer cell proliferation.

  17. An upper limit for stratospheric hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Chance, K. V.; Traub, W. A.

    1984-01-01

    It has been postulated that hydrogen peroxide is important in stratospheric chemistry as a reservoir and sink for odd hydrogen species, and for its ability to interconvert them. The present investigation is concerned with an altitude dependent upper limit curve for stratospheric hydrogen peroxide, taking into account an altitude range from 21.5 to 38.0 km for January 23, 1983. The data employed are from balloon flight No. 1316-P, launched from the National Scientific Balloon Facility (NSBF) in Palestine, Texas. The obtained upper limit curve lies substantially below the data reported by Waters et al. (1981), even though the results are from the same latitude and are both wintertime measurements.

  18. Hyperbaric oxygen therapy for systemic gas embolism after hydrogen peroxide ingestion.

    PubMed

    Byrne, Brendan; Sherwin, Robert; Courage, Cheryl; Baylor, Alfred; Dolcourt, Bram; Brudzewski, Jacek R; Mosteller, Jeffrey; Wilson, Robert F

    2014-02-01

    Hydrogen peroxide is a commonly available product and its ingestion has been demonstrated to produce in vivo gas bubbles, which can embolize to devastating effect. We report two cases of hydrogen peroxide ingestion with resultant gas embolization, one to the portal system and one cerebral embolus, which were successfully treated with hyperbaric oxygen therapy (HBO), and review the literature. Two individuals presented to our center after unintentional ingestion of concentrated hydrogen peroxide solutions. Symptoms were consistent with portal gas emboli (Patient A) and cerebral gas emboli (Patient B), which were demonstrated on imaging. They were successfully treated with HBO and recovered without event. As demonstrated by both our experience as well as the current literature, HBO has been used to successfully treat gas emboli associated with hydrogen peroxide ingestion. We recommend consideration of HBO in any cases of significant hydrogen peroxide ingestion with a clinical picture compatible with gas emboli. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zonios, George; Dimou, Aikaterini; Galaris, Dimitrios

    2008-01-01

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H2O2 solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  20. Chemiluminescent Nanomicelles for Imaging Hydrogen Peroxide and Self-Therapy in Photodynamic Therapy

    PubMed Central

    Chen, Rui; Zhang, Luzhong; Gao, Jian; Wu, Wei; Hu, Yong; Jiang, Xiqun

    2011-01-01

    Hydrogen peroxide is a signal molecule of the tumor, and its overproduction makes a higher concentration in tumor tissue compared to normal tissue. Based on the fact that peroxalates can make chemiluminescence with a high efficiency in the presence of hydrogen peroxide, we developed nanomicelles composed of peroxalate ester oligomers and fluorescent dyes, called peroxalate nanomicelles (POMs), which could image hydrogen peroxide with high sensitivity and stability. The potential application of the POMs in photodynamic therapy (PDT) for cancer was also investigated. It was found that the PDT-drug-loaded POMs were sensitive to hydrogen peroxide, and the PDT drug could be stimulated by the chemiluminescence from the reaction between POMs and hydrogen peroxide, which carried on a self-therapy of the tumor without the additional laser light resource. PMID:21765637

  1. Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Rhodes, Christopher P. (Inventor); Anderson, Kelvin C. (Inventor)

    2011-01-01

    A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.

  2. Hydrogen Peroxide Accidents and Incidents: What We Can Learn From History

    NASA Technical Reports Server (NTRS)

    Greene, Ben; Baker, David L.; Frazier, Wayne

    2005-01-01

    Historical accidents and incidents involving hydrogen peroxide are reviewed and presented. These hydrogen peroxide events are associated with storage, transportation, handling, and disposal and they include exposures, fires, and explosions. Understanding the causes and effects of these accident and incident examples may aid personnel currently working with hydrogen peroxide to mitigate and perhaps avoid similar situations. Lessons learned, best practices, and regulatory compliance information related to the cited accidents and incidents are also discussed.

  3. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress.

    PubMed

    Spencer, Jennifer; Phister, Trevor G; Smart, Katherine A; Greetham, Darren

    2014-03-17

    Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress.

  4. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress

    PubMed Central

    2014-01-01

    Background Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Results Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Conclusions Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress. PMID:24636079

  5. Distillation Kinetics of Solid Mixtures of Hydrogen Peroxide and Water and the Isolation of Pure Hydrogen Peroxide in Ultrahigh Vacuum

    NASA Technical Reports Server (NTRS)

    Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We present results of the growth of thin films of crystalline H2O2 and H2O2.2H2O (dihydrate) in ultrahigh vacuum by distilling an aqueous solution of hydrogen peroxide. We traced the process using infrared reflectance spectroscopy, mass loss on a quartz crystal microbalance, and in a few cases ultraviolet-visible reflectance. We find that the different crystalline phases-water, dihydrate, and hydrogen peroxide-have very different sublimation rates, making distillation efficient to isolate the less volatile component, crystalline H2O2.

  6. Hydrogen Peroxide Sensing and Signaling by Protein Kinases in the Cardiovascular System

    PubMed Central

    Burgoyne, Joseph R.; Oka, Shin-ichi; Ale-Agha, Niloofar

    2013-01-01

    Abstract Significance: Oxidants were once principally considered perpetrators of injury and disease. However, this has become an antiquated view, with cumulative evidence showing that the oxidant hydrogen peroxide serves as a signaling molecule. Hydrogen peroxide carries vital information about the redox state of the cell and is crucial for homeostatic regulation during health and adaptation to stress. Recent Advances: In this review, we examine the contemporary concepts for how hydrogen peroxide is sensed and transduced into a biological response by introducing post-translational oxidative modifications on select proteins. Oxidant sensing and signaling by kinases are of particular importance as they integrate oxidant signals into phospho-regulated pathways. We focus on CAMKII, PKA, and PKG, kinases whose redox regulation has notable impact on cardiovascular function. Critical Issues: In addition, we examine the mechanism for regulating intracellular hydrogen peroxide, considering the net concentrations that may accumulate. The effects of endogenously generated oxidants are often modeled by applying exogenous hydrogen peroxide to cells or tissues. Here we consider whether model systems exposed to exogenous hydrogen peroxide have relevance to systems where the oxidant is generated endogenously, and if so, what concentration can be justified in terms of relevance to health and disease. Future Directions: Improving our understanding of hydrogen peroxide signaling and the sensor proteins that it can modify will help us develop new strategies to regulate intracellular signaling to prevent disease. Antioxid. Redox Signal. 18, 1042–1052. PMID:22867279

  7. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on all...

  8. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on all...

  9. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on all...

  10. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on all...

  11. 40 CFR 180.1197 - Hydrogen peroxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Hydrogen peroxide; exemption from the... Exemptions From Tolerances § 180.1197 Hydrogen peroxide; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of hydrogen peroxide in or on all...

  12. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... agent in bottled water. (b) Hydrogen peroxide meets the specifications of the “Food Chemicals Codex... information on the availability of this material at NARA, call 202-741-6030 or go to: http://www.archives.gov... exceed 17 micrograms per kilogram in the treated bottled water, and the amount of hydrogen peroxide will...

  13. [The origin of hydrogen peroxide in oral cavity and its role in oral microecology balance].

    PubMed

    Keke, Zhang; Xuedong, Zhou; Xin, Xu

    2017-04-01

    Hydrogen peroxide, an important antimicrobial agent in oral cavity, plays a significant role in the balance of oral microecology. At the early stage of biofilm formation, about 80% of the detected initial colonizers belong to the genus Streptococcus. These oral streptococci use different oxidase to produce hydrogen peroxide. Recent studies showed that the produced hydrogen peroxide plays a critical role in modulating oral microecology. Hydrogen peroxide modulates biofilm development attributed to its growth inhibitory nature. Hydrogen peroxide production is closely associated with extracellular DNA(eDNA) release from microbe and the development of its competent cell which are critical for biofilm development and also serves as source for horizontal gene transfer. Microbe also can reduce the damage to themselves through several detoxification mechanisms. Moreover, hydrogen peroxide is also involved in the regulation of interactions between oral microorganisms and host. Taken together, hydrogen peroxide is an imperative ecological factor that contributes to the microbial equilibrium in the oral cavity. Here we will give a brief review of both the origin and the function in the oral microecology balance of hydrogen peroxide.

  14. Hydrogen peroxide as a new defensive compound in "benzoyl cyanide" producing polydesmid millipedes

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yasumasa; Yamaguchi, Takuya; Ichiki, Yayoi; Tanabe, Tsutomu; Asano, Yasuhisa

    2017-04-01

    Hydrogen peroxide was newly and simultaneously demonstrated with well-known hydrogen cyanide as a component of defensive secretions of "benzoyl cyanide" producing polydesmid millipedes. Presence of hydrogen peroxide was successively evidenced by Trinder reagent's spray with colorless as well as oily smears of defensive secretions containing benzoyl cyanide and hydrogen cyanide by alkaline picrate paper treatment. Linear correlation was demonstrated between quantities of hydrogen peroxide and benzoyl cyanide. By qualitative assay, seven benzoyl cyanide containing polydesmidans (six species of adults and one species of a nymph at stadium I) tested positive to Trinder reagent, indicative of the presence of hydrogen peroxide (together with hydrogen cyanide), while two cyanogenic species without benzoyl cyanide exhibited negative responses to the reagent. Two types of millipedes were elucidated as species of cyanogenic Polydesmida.

  15. Hydrogen peroxide as a new defensive compound in "benzoyl cyanide" producing polydesmid millipedes.

    PubMed

    Kuwahara, Yasumasa; Yamaguchi, Takuya; Ichiki, Yayoi; Tanabe, Tsutomu; Asano, Yasuhisa

    2017-04-01

    Hydrogen peroxide was newly and simultaneously demonstrated with well-known hydrogen cyanide as a component of defensive secretions of "benzoyl cyanide" producing polydesmid millipedes. Presence of hydrogen peroxide was successively evidenced by Trinder reagent's spray with colorless as well as oily smears of defensive secretions containing benzoyl cyanide and hydrogen cyanide by alkaline picrate paper treatment. Linear correlation was demonstrated between quantities of hydrogen peroxide and benzoyl cyanide. By qualitative assay, seven benzoyl cyanide containing polydesmidans (six species of adults and one species of a nymph at stadium I) tested positive to Trinder reagent, indicative of the presence of hydrogen peroxide (together with hydrogen cyanide), while two cyanogenic species without benzoyl cyanide exhibited negative responses to the reagent. Two types of millipedes were elucidated as species of cyanogenic Polydesmida.

  16. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  17. Material Demand Studies: Materials Sorption of Vaporized Hydrogen Peroxide

    DTIC Science & Technology

    2010-06-01

    SORPTION OF VAPORIZED HYDROGEN PEROXIDE Lawrence R. Procell Zoe A. Hess David G. Gehring Joseph T. Lynn Philip W. Bartram Teri Lalain RESEARCH AND...2010 2. REPORT TYPE Final 3. DATES COVERED (From - To) Nov 2003 - Jul 2005 4. TITLE AND SUBTITLE Material Demand Studies: Materials Sorption of...of office surfaces 33 \\i MATERIAL DEMAND STUDIES: MATERIALS SORPTION OF VAPORIZED HYDROGEN PEROXIDE 1. BACKGROUND The Material Demand effort was

  18. Hydrogen peroxide as a fungicide for fish culture

    USGS Publications Warehouse

    Dawson, V.K.; Rach, J.J.; Schreier, Theresa M.

    1994-01-01

    Antifungal agents are needed to maintain healthy stocks of fish in the intensive culture systems currently employed in fish hatcheries. Malachite green has been the most widely used antifungal agent; however, its potential for producing teratology in animals and fish precludes further use in fish culture. Preliminary studies at the National Fisheries Research Center, La Crosse, WI, USA (La Crosse Center) indicate that hydrogen peroxide is effective for control of Saprolegnia sp. fungus on incubating eggs of rainbow trout. It is also effective against a wide variety of other organisms such as bacteria, yeasts, viruses, and spores, and has been proposed as a treatment for sea lice on salmon. Hydrogen peroxide and its primary decomposition products, oxygen and water, are not systemic poisons and are considered environmentally compatible. In response to a petition from the La Crosse Center, the U.S. Food and Drug Administration (FDA) recently classified hydrogen peroxide as a 'low regulatory priority' when used for control of fungus on fish and fish eggs. Preliminary tests conducted at the La Crosse Center suggest that prophylactic treatments of 250 to 500 ppm (based on 100% active ingredient) for 15 minutes every other day will inhibit fungal infections on healthy rainbow trout (Oncorhynchus mykiss) eggs. This treatment regime also seems to inhibit fungal development and increase hatching success among infected eggs. Efficacy and safety of hydrogen peroxide as a fungicide for fish are currently being evaluated.

  19. High levels of hydrogen peroxide in overnight tooth-whitening formulas: effects on enamel and pulp.

    PubMed

    Pugh, George; Zaidel, Lynette; Lin, Nora; Stranick, Michael; Bagley, Daniel

    2005-01-01

    Limited data are available to assess the safety of high levels of hydrogen peroxide in overnight tooth-whitening formulas. The purpose of this study was to assess the effects of hydrogen peroxide on enamel microhardness, pulp penetration, and enamel morphology. Colgate Platinum Professional Overnight Whitening System (Colgate Oral Pharmaceuticals, Inc., Canton, MA, USA) (10% carbamide peroxide, equivalent to 3.5% hydrogen peroxide) was compared with two prototype formulations containing either 7.0% or 12.0% hydrogen peroxide. In the pulp chamber studies, human extracted teeth were exposed to 3.5%, 7.0%, or 12.0% hydrogen peroxide for 30 minutes, 4 hours, or 7 hours. Microhardness, electron spectroscopy for chemical analysis, and atomic force microscopy evaluations were made from enamel blocks cut from human extracted molars. The enamel blocks were evaluated following 14 7-hour treatments (98 h total). At 7 hours' post-treatment, hydrogen peroxide penetrated the pulp chamber at 23.12 +/- 10.09, 24.58 +/- 6.90, and 26.39 +/- 5.43 microg for 3.5%, 7.0%, and 12.0% hydrogen peroxide, respectively. With regard to enamel morphology, pulp penetration, microhardness, and elemental composition, no statistically significant differences were observed between treatment groups following 98 hours of treatment. Hydrogen peroxide does not adversely affect enamel morphology or microhardness. The levels recovered in pulp indicate that hydrogen peroxide is not expected to inhibit pulpal enzymes. Overnight tray products containing levels of hydrogen peroxide of 3.5%, 7.0%, and 12.0% are not expected to adversely affect the enamel or pulpal enzymes. Additional safety studies are needed to assess the potential for tooth sensitivity and gingival irritation.

  20. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells.

    PubMed

    Fukuzumi, Shunichi

    2016-05-01

    The reducing power released from photosystem I (PSI) via ferredoxin enables the reduction of NADP(+) to NADPH, which is essential in the Calvin-Benson cycle to make sugars in photosynthesis. Alternatively, PSI can reduce O2 to produce hydrogen peroxide as a fuel. This article describes the artificial version of the photocatalytic production of hydrogen peroxide from water and O2 using solar energy. Hydrogen peroxide is used as a fuel in hydrogen peroxide fuel cells to make electricity. The combination of the photocatalytic H2O2 production from water and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising solar fuel than hydrogen. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Glycyl-alanyl-histidine protects PC12 cells against hydrogen peroxide toxicity.

    PubMed

    Shimura, Hideki; Tanaka, Ryota; Shimada, Yoshiaki; Yamashiro, Kazuo; Hattori, Nobutaka; Urabe, Takao

    2017-11-22

    Peptides with cytoprotective functions, including antioxidants and anti-infectives, could be useful therapeutics. Carnosine, β-alanine-histidine, is a dipeptide with anti-oxidant properties. Tripeptides of Ala-His-Lys, Pro-His-His, or Tyr-His-Tyr are also of interest in this respect. We synthesized several histidine-containing peptides including glycine or alanine, and tested their cytoprotective effects on hydrogen peroxide toxicity for PC12 cells. Of all these peptides (Gly-His-His, Ala-His-His, Ala-His-Ala, Ala-Ala-His, Ala-Gly-His, Gly-Ala-His (GAH), Ala-His-Gly, His-Ala-Gly, His-His-His, Gly-His-Ala, and Gly-Gly-His), GAH was found to have the strongest cytoprotective activity. GAH decreased lactate dehydrogenase (LDH) leakage, apoptosis, morphological changes, and nuclear membrane permeability changes against hydrogen peroxide toxicity in PC12 cells. The cytoprotective activity of GAH was superior to that of carnosine against hydrogen peroxide toxicity in PC12 cells. GAH also protected PC12 cells against damage caused by actinomycin D and staurosporine. Additionally, it was found that GAH also protected SH-SY5Y and Jurkat cells from damage caused by hydrogen peroxide, as assessed by LDH leakage. Thus, a novel tripeptide, GAH, has been identified as having broad cytoprotective effects against hydrogen peroxide-induced cell damage.

  2. Silver-palladium catalysts for the direct synthesis of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Khan, Zainab; Dummer, Nicholas F.; Edwards, Jennifer K.

    2017-11-01

    A series of bimetallic silver-palladium catalysts supported on titania were prepared by wet impregnation and assessed for the direct synthesis of hydrogen peroxide, and its subsequent side reactions. The addition of silver to a palladium catalyst was found to significantly decrease hydrogen peroxide productivity and hydrogenation, but crucially increase the rate of decomposition. The decomposition product, which is predominantly hydroxyl radicals, can be used to decrease bacterial colonies. The interaction between silver and palladium was characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results of the TPR and XPS indicated the formation of a silver-palladium alloy. The optimal 1% Ag-4% Pd/TiO2 bimetallic catalyst was able to produce approximately 200 ppm of H2O2 in 30 min. The findings demonstrate that AgPd/TiO2 catalysts are active for the synthesis of hydrogen peroxide and its subsequent decomposition to reactive oxygen species. The catalysts are promising for use in wastewater treatment as they combine the disinfectant properties of silver, hydrogen peroxide production and subsequent decomposition. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  3. Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clausen, Christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending therebetween. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  4. APPARATUS AND METHOD FOR TREATING POLLUTANTS IN A GAS USING HYDROGEN PEROXIDE AND UV LIGHT

    NASA Technical Reports Server (NTRS)

    Cooper, Charles David (Inventor); Clauseu, christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending there between. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  5. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Čeřovský, M.; Khun, J.; Rusová, K.; Scholtz, V.; Soušková, H.

    2013-09-01

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  6. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    ERIC Educational Resources Information Center

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  7. Effect of species, life stage, and water temperature on the toxicity of hydrogen peroxide to fish

    USGS Publications Warehouse

    Rach, J.J.; Schreier, Theresa M.; Howe, G.E.; Redman, S.D.

    1997-01-01

    Hydrogen peroxide is a drug of low regulatory priority status that is effective in treating fish and fish eggs infected by fungi. However, only limited information is available to guide fish culturists in administering hydrogen peroxide to diseased fish. Laboratory tests were conducted to determine (1) the sensitivity of brown trout Salmo trutta, lake trout Salvelinus namaycush, fathead minnow Pimephales promelas, walleye Stizostedion vitreum, channel catfish Ictalurus punctatus, and bluegill Lepomis, machrochirus to hydrogen peroxide treatments; (2) the sensitivity of various life stages of rainbow trout Oncorhynchus mykiss to hydrogen peroxide treatments; and (3) the effect of water temperature on the acute toxicity of hydrogen peroxide to three fish species. Fish were exposed to hydrogen peroxide concentrations ranging from 100 to 5,000 mu L/L (ppm) for 15-min or 45-min treatments every other day for four consecutive treatments to determine the sensitivity of various species and life stages of fish. Except for walleye, most species of fish tested (less than or equal to 2 g) tolerated hydrogen peroxide of 1,000 mu L/L or greater. Walleyes were sensitive to hydrogen peroxide concentrations as low as 100 mu L/L. A correlation was found between the toxicity of hydrogen peroxide and the life stages of rainbow trout; larger fish were more sensitive. Generally, the toxicity of hydrogen peroxide increased for all species as water temperature increased. The results of these experiments demonstrate that it is important to consider the effects of species, life stage, and water temperature when conducting hydrogen peroxide treatments.

  8. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina

    2013-04-12

    Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1more » μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.« less

  9. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Čeřovský, M., E-mail: scholtz@aldebaran.cz; Khun, J.; Rusová, K.

    2013-09-15

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperaturemore » plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.« less

  10. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract.

    PubMed

    Okoko, Tebekeme; Ere, Diepreye

    2012-06-01

    To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes.

  11. Arsenic oxidation by UV radiation combined with hydrogen peroxide.

    PubMed

    Sorlini, S; Gialdini, F; Stefan, M

    2010-01-01

    Arsenic is a widespread contaminant in the environment around the world. The most abundant species of arsenic in groundwater are arsenite [As(III)] and arsenate [As(V)]. Several arsenic removal processes can reach good removal yields only if arsenic is present as As(V). For this reason it is often necessary to proceed with a preliminary oxidation of As(III) to As(V) prior to the removal technology. Several studies have focused on arsenic oxidation with conventional reagents and advanced oxidation processes. In the present study the arsenic oxidation was evaluated using hydrogen peroxide, UV radiation and their combination in distilled and in real groundwater samples. Hydrogen peroxide and UV radiation alone are not effective at the arsenic oxidation. Good arsenic oxidation yields can be reached in presence of hydrogen peroxide combined with a high UV radiation dose (2,000 mJ/cm(2)). The quantum efficiencies for As(III) oxidation were calculated for both the UV photolysis and the UV/H(2)O(2) processes.

  12. Novel aqueous dual-channel aluminum-hydrogen peroxide battery

    NASA Astrophysics Data System (ADS)

    Marsh, Catherine; Licht, Stuart

    1994-06-01

    A dual-channel aluminum hydrogen peroxide battery is introduced with an open-circuit voltage of 1.9 volts, polarization losses of 0.9 mV cm(exp 2) mA(exp -1), and power densities of 1 W/cm(exp 2). Catholyte and anolyte cell compartments are separated by an Ir/Pd modified porous nickel cathode. Separation of catholyte and anolyte chambers prevents hydrogen peroxide poisoning of the aluminum anode. The battery is expressed by aluminum oxidation and aqueous solution phase hydrogen peroxide reduction for an overall battery discharge consisting of 2Al + 3H2O2 + 2OH(-) yields 2AlO2(-) + 4H2O E = 2.3 V. The search for electrical propulsion sources which fit the requirements for electrically powered vehicles has blurred the standard characteristics associated with electrochemical storage systems. Presently, electrochemical systems comprised of mechanically rechargeable primary batteries, secondary batteries, and fuel cells are candidates for electrochemical propulsion sources. While important advances in energy and power density continue for nonaqueous and molten electrolytes, aqueous electrolyte batteries often have an advantage in simplicity, conductivity, cost effectiveness, and environmental impact. Systems coupling aluminum anodes and aqueous electrolytes have been investigated. These systems include: aluminum/silver oxide, aluminum/manganese dioxide, aluminum air, aluminum/hydrogen peroxide aqueous batteries, and the recently introduced aluminum/ferricyanide and aluminum sulfur aqueous batteries. Conventional aqueous systems such as the nickel cadmium and lead-acid batteries are characterized by their relatively low energy densities and adverse environmental impact. Other systems have substantially higher theoretical energy capacities. While aluminum-silver oxide has demonstrated the highest steady-state power density, its high cost is an impediment for widespread utilization for electric propulsion.

  13. PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES

    DOEpatents

    Barrick, J.G.; Fries, B.A.

    1960-09-27

    A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.

  14. Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound.

    PubMed

    González-García, José; Banks, Craig E; Sljukić, Biljana; Compton, Richard G

    2007-04-01

    The electrosynthesis of hydrogen peroxide using the oxygen reduction reaction has been studied in the absence and presence of power ultrasound in a non-optimized sono-electrochemical flow reactor (20 cm cathodic compartment length with 6.5 cm inner diameter) with reticulated vitreous glassy carbon electrode (30 x 40 x 10 mm, 10 ppi, 7 cm(2)cm(-3)) as the cathode. The effect of several electrochemical operational variables (pH, volumetric flow, potential) and of the sono-electrochemical parameters (ultrasound amplitude and horn-to-electrode distance) on the cumulative concentration of hydrogen peroxide and current efficiency of the electrosynthesis process have been explored. The application of power ultrasound was found to increase both the cumulative concentration of hydrogen peroxide and the current efficiency. The application of ultrasound is therefore a promising approach to the increased efficiency of production of hydrogen peroxide by electrosynthesis, even in the solutions of lower pH (<12). The results demonstrate the feasibility of at-site-of-use green synthesis of hydrogen peroxide.

  15. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    PubMed Central

    Okoko, Tebekeme; Ere, Diepreye

    2012-01-01

    Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948

  16. Influence of calcium on glucose biosensor response and on hydrogen peroxide detection.

    PubMed

    Labat-Allietta, N; Thévenot, D R

    1998-01-01

    Of small species capable of reaching a platinum working electrode from biological samples, calcium cations have been found to inhibit significantly glucose biosensor responses. The sensitivities to glucose of sensors immersed in carbonate buffer saline solutions decreased when 0.5 mM calcium chloride was added. The degree of inhibition was proportional to the glucose response in the absence of calcium (0-17% of the normalized current). Likewise, sensor sensitivities to hydrogen peroxide decreased, in the 5-90% range, in the presence of 0.5 mM calcium. Bare Pt-lr wires show a reversible inhibition of hydrogen peroxide sensitivity. This reversible inhibition is directly related to the decrease of hydrogen peroxide oxidation rate at the platinum anode: this has been evidenced, using rotating disk electrodes, by plotting Koutecky-Levich plots. Such inhibition has been found both for free and chelated calcium cations at levels below 1 mM. Several hypotheses for possible reactions between platinum, hydrogen peroxide and calcium are discussed.

  17. Development of vapor phase hydrogen peroxide sterilization process for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Rohatgi, N.; Schubert, W.; Knight, J.; Quigley, M.; Forsberg, G.; Ganapathi, G.; Yarbrough, C.; Koukol, R.

    2001-01-01

    This paper will present test data and discussion on the work we are conducting at JPL to address the following issues: 1) efficacy of sterilization process; 2) diffusion of hydrogen peroxide under sterilization process conditions into hard to reach places; 3) materials and components compatibility with the sterilization process and 4) development of methodology to protect sensitive components from hydrogen peroxide vapor.

  18. Fluorescent Probes Used for Detection of Hydrogen Peroxide under Biological Conditions.

    PubMed

    Żamojć, Krzysztof; Zdrowowicz, Magdalena; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Chmurzyński, Lech

    2016-05-03

    Hydrogen peroxide is a well-established precursor of reactive oxygen and nitrogen species that are known to contribute to oxidative stress-the crucial factor responsible for the course of a wide range of phy-sicochemical processes as well as the genesis of various diseases, such as cancer and neurodegenerative disorders. Thus, the development of sensitive and selective methods for the detection and quantitative determination of hydrogen peroxide is of great importance in monitoring the in vivo production of that species and elucidating its biological functions. This review highlights the progress that has been made in the development of fluorescent and luminescent probes (excluding nanoparticles) employed to monitor hydrogen peroxide under biological conditions. Attention was focused on probes developed in the past 10 years.

  19. A study of hydrogen peroxide chemistry and photochemistry in tea stain solution with relevance to clinical tooth whitening.

    PubMed

    Young, Nigel; Fairley, Peter; Mohan, Veena; Jumeaux, Coline

    2012-12-01

    Tooth whitening using hydrogen peroxide is a complex process, and there is still some controversy about the roles of pH, temperature, chemical activators, and the use of light irradiation. In this work the basic interactions between whitening agents and stain molecules are studied in simple solutions, thus avoiding the physics of diffusion and light penetration in the tooth to give clarity on the basic chemistry which is occurring. The absorbance of tea stain solution at 450 nm was measured over a period of 40 min, with various compositions of whitening agent added (including hydrogen peroxide, ferrous gluconate and potassium hydroxide) and at the same time the samples were subjected to blue light (465 nm) or infra-red light (850 nm) irradiation, or alternatively they were heated to 37°C. It is shown that the reaction rates between chromogens in the tea solution and hydrogen peroxide can be accelerated significantly using ferrous gluconate activator and blue light irradiation. Infra red irradiation does not increase the reaction rate through photochemistry, it serves only to increase the temperature. Raising the temperature leads to inefficiency through the acceleration of exothermic decomposition reactions which produce only water and oxygen. By carrying out work in simple solution it was possible to show that ferrous activators and blue light irradiation significantly enhance the whitening process, whereas infra red irradiation has no significant effect over heating. The importance of controlling the pH within the tooth structure during whitening is also demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Developing Planetary Protection Technology: Recurrence of Hydrogen Peroxide Resistant Microbes from Spacecraft Assembly Facilities

    NASA Astrophysics Data System (ADS)

    Kempf, M. J.; Chen, F.; Quigley, M. S.; Pillai, S.; Kern, R.; Venkateswaran, K.

    2001-12-01

    Hydrogen peroxide vapor is currently the sterilant-of-choice for flight hardware because it is a low-heat sterilization process suitable for use with various spacecraft components. Hydrogen peroxide is a strong oxidizing agent that produces hydroxyl free radicals ( .OH) which attack essential cell components, including lipids, proteins, and DNA. Planetary protection research efforts at the Jet Propulsion Laboratory (JPL) are focused on developing cleaning and sterilization technologies for spacecraft preparation prior to launch. These efforts include research to assess the microbial diversity of spacecraft assembly areas and any extreme characteristics these microbes might possess. Previous studies have shown that some heat-tolerant Bacillus species isolated from the JPL Spacecraft Assembly Facility (SAF) are resistant to recommended hydrogen peroxide vapor sterilization exposures. A Bacillus species, which was related to a hydrogen peroxide resistant strain, was repeatedly isolated from various locations in the JPL-SAF. This species was found in both unclassified (entrance floors, ante-room, and air-lock) and classified (class 100K) (floors, cabinet tops, and air) areas. The phylogenetic affiliation of these strains was carried out using biochemical tests and 16S rDNA sequencing. The 16S rDNA analysis showed >99% sequence similarity to Bacillus pumilus. In order to understand the epidemiology of these strains, a more highly evolved gene (topoisomerase II β -subunit, gyrB) was also sequenced. Among 4 clades, one cluster, comprised of 3 strains isolated from the air-lock area, tightly aligned with the B. pumilus ATCC 7061 type strain (97%). The gyrB sequence similarity of this clade was only 91% with the 3 other clades. The genetic relatedness of these strains, as per pulse field gel electrophoresis patterns, will be presented. The vegetative cells and spores of a number of isolates were tested for their hydrogen peroxide resistance. Cells and spores were

  1. Hydrogen peroxide stimulates cell motile activity through LPA receptor-3 in liver epithelial WB-F344 cells.

    PubMed

    Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-04-12

    Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA3 on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA3 may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Functional analysis of a novel hydrogen peroxide resistance gene in Lactobacillus casei strain Shirota.

    PubMed

    Serata, Masaki; Kiwaki, Mayumi; Iino, Tohru

    2016-11-01

    Lactic acid bacteria have a variety of mechanisms for tolerance to oxygen and reactive oxygen species, and these mechanisms differ among species. Lactobacillus casei strain Shirota grows well under aerobic conditions, indicating that the various systems involved in oxidative stress resistance function in this strain. To elucidate the mechanism of oxidative stress resistance in L. casei strain Shirota, we examined the transcriptome response to oxygen or hydrogen peroxide exposure. We then focused on an uncharacterized gene that was found to be up-regulated by both oxygen and hydrogen peroxide stress; we named the gene hprA1 (hydrogen peroxide resistance gene). This gene is widely distributed among lactobacilli. We investigated the involvement of this gene in oxidative stress resistance, as well as the mechanism of tolerance to hydrogen peroxide. Growth of L. casei MS105, an hprA1-disrupted mutant, was not affected by oxygen stress, whereas the survival rate of MS105 after hydrogen peroxide treatment was markedly reduced compared to that of the wild-type. However, the activity of MS105 in eliminating hydrogen peroxide was similar to that of the wild-type. We cloned hprA1 from L. caseiShirota and purified recombinant HprA1 protein from Escherichia coli. We demonstrated that the recombinant HprA1 protein bound to iron and prevented the formation of a hydroxyl radical in vitro. Thus, HprA1 protein probably contributes to hydrogen peroxide tolerance in L. casei strain Shirota by binding to iron in the cells and preventing the formation of a hydroxyl radical.

  3. Engineering bacterial motility towards hydrogen-peroxide.

    PubMed

    Virgile, Chelsea; Hauk, Pricila; Wu, Hsuan-Chen; Shang, Wu; Tsao, Chen-Yu; Payne, Gregory F; Bentley, William E

    2018-01-01

    Synthetic biologists construct innovative genetic/biological systems to treat environmental, energy, and health problems. Many systems employ rewired cells for non-native product synthesis, while a few have employed the rewired cells as 'smart' devices with programmable function. Building on the latter, we developed a genetic construct to control and direct bacterial motility towards hydrogen peroxide, one of the body's immune response signaling molecules. A motivation for this work is the creation of cells that can target and autonomously treat disease, the latter signaled by hydrogen peroxide release. Bacteria naturally move towards a variety of molecular cues (e.g., nutrients) in the process of chemotaxis. In this work, we engineered bacteria to recognize and move towards hydrogen peroxide, a non-native chemoattractant and potential toxin. Our system exploits oxyRS, the native oxidative stress regulon of E. coli. We first demonstrated H2O2-mediated upregulation motility regulator, CheZ. Using transwell assays, we showed a two-fold increase in net motility towards H2O2. Then, using a 2D cell tracking system, we quantified bacterial motility descriptors including velocity, % running (of tumble/run motions), and a dynamic net directionality towards the molecular cue. In CheZ mutants, we found that increased H2O2 concentration (0-200 μM) and induction time resulted in increased running speeds, ultimately reaching the native E. coli wild-type speed of ~22 μm/s with a ~45-65% ratio of running to tumbling. Finally, using a microfluidic device with stable H2O2 gradients, we characterized responses and the potential for "programmed" directionality towards H2O2 in quiescent fluids. Overall, the synthetic biology framework and tracking analysis in this work will provide a framework for investigating controlled motility of E. coli and other 'smart' probiotics for signal-directed treatment.

  4. The hydrogen peroxide impact on larval settlement and metamorphosis of abalone Haliotis diversicolor supertexta

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangjing; Yang, Zhihui; Cai, Zhonghua

    2008-08-01

    Abalone Haliotis diversicolor supertexta is an important economic mollusk. The settlement and metamorphosis are two critical stages during its development period, which has direct influence on abalone survival and production. The influence of reactive oxygen species (hydrogen peroxide) on abalone embryo and juvenile development were examined in this study. Larvae of Haliotis diversicolor supertexta were induced to settlement and metamorphose by exposure to seawater supplemented with hydrogen peroxide. They had the best performance at 800 μmol/L. The concentration of 1 000 μmol/L or higher was toxic to the larvae, as the larvae could settle down only at benthic diatom plates without complete metamorphosis. In addition, H2O2 adding time was critical to the larval performance. 24h after two-day post-fertilization was proved to be the optimal adding time. In this paper, two action mechanisms of hydrogen peroxide are discussed: (1) hydrogen peroxide has direct toxicity to ciliated cells, thus cause apoptosis; (2) hydrogen peroxide, as a product from catecholamines’ autoxidation process in vivo, can reverse this process to produce neuro-transmitters to induce abalone metamorphosis.

  5. Hydrogen peroxide bleaching of cotton in ultrasonic energy.

    PubMed

    Mistik, S Ilker; Yükseloglu, S Müge

    2005-12-01

    It is well known that, conventional hydrogen peroxide bleaching process is an important and a specific step for wet processors; however it has some problems such as long time, high energy consumption. On the other hand, using ultrasonic energy in bleaching is an alternative method for the conventional processes. In this work, 100% cotton materials of different forms such as raw fibre, ring-spun yarns and knitted fabrics produced from these cottons, were treated with hydrogen peroxide in two different concentrations (5 mL/L and 10 mL/L), at three different temperatures (20 degrees C, 30 degrees C, 40 degrees C) and times (20 min, 30 min, 60 min). Whiteness Index of the samples were then measured spectrophotometrically and the overall results were compared.

  6. Surface Passivation of CdZnTe Detector by Hydrogen Peroxide Solution Etching

    NASA Technical Reports Server (NTRS)

    Hayes, M.; Chen, H.; Chattopadhyay, K.; Burger, A.; James, R. B.

    1998-01-01

    The spectral resolution of room temperature nuclear radiation detectors such as CdZnTe is usually limited by the presence of conducting surface species that increase the surface leakage current. Studies have shown that the leakage current can be reduced by proper surface preparation. In this study, we try to optimize the performance of CdZnTe detector by etching the detector with hydrogen peroxide solution as function of concentration and etching time. The passivation effect that hydrogen peroxide introduces have been investigated by current-voltage (I-V) measurement on both parallel strips and metal-semiconductor-metal configurations. The improvements on the spectral response of Fe-55 and 241Am due to hydrogen peroxide treatment are presented and discussed.

  7. Hydrogen peroxide prevents vascular calcification induced ROS production by regulating Nrf-2 pathway.

    PubMed

    Zhang, Wensong; Li, Yi; Ding, Hanlu; Du, Yaqin; Wang, Li

    2016-08-01

    Although vascular calcification in end-stage renal disease (ESRD) represents a ubiquitous human health problem, effective therapies with limited side effects are still lacking, and the precise mechanisms are not fully understood. The Nrf-2/ARE pathway is a pivotal to regulate anti-oxidative responses in vascular calcification upon ESRD. Although Nrf-2 plays a crucial role in atherosclerosis, pulmonary fibrosis, and brain ischemia, the effect of Nrf-2 and oxidative stress on vascular calcification in ESRD patients is still unclear. The aim of this research was to study the protective role of hydrogen peroxide in vascular calcification and the mechanism of Nrf-2 and oxidative stress on vascular calcification. Here we used the rat vascular smooth muscle cell model of β-glycerophosphate-induced calcification resembling vascular calcification in ESRD to investigate the therapeutic effect of 0.01 mM hydrogen peroxide on vascular calcification and further explores the possible underlying mechanisms. Our current report shows the in vitro role of 0.01 mM hydrogen peroxide in protecting against intracellular ROS accumulation upon vascular calcification. Both hydrogen peroxide and sulforaphane pretreatment reduced ROS production, increased the expression of Nrf-2, and decreased the expression of Runx2 following calcification. Our study demonstrates that 0.01 mM hydrogen peroxide can effectively protect rat aortic vascular smooth muscle cells against oxidative stress by preventing vascular calcification induced ROS production through Nrf-2 pathway. These data might define an antioxidant role of hydrogen peroxide in vascular calcification upon ESRD.

  8. Evaluation of a hydrogen peroxide-based system for high-level disinfection of vaginal ultrasound probes.

    PubMed

    Johnson, Stephen; Proctor, Matthew; Bluth, Edward; Smetherman, Dana; Baumgarten, Katherine; Troxclair, Laurie; Bienvenu, Michele

    2013-10-01

    Because of the complex process and the risk of errors associated with the glutaraldehyde-based solutions previously used at our institution for disinfection, our department has implemented a new method for high-level disinfection of vaginal ultrasound probes: the hydrogen peroxide-based Trophon system (Nanosonics, Alexandria, New South Wales, Australia). The aim of this study was to compare the time difference, safety, and sonographers' satisfaction between the glutaraldehyde-based Cidex (CIVCO Medical Solutions, Kalona, IA) and the hydrogen peroxide-based Trophon disinfection systems. The Institutional Review Board approved a 14-question survey administered to the 13 sonographers in our department. Survey questions addressed a variety of aspects of the disinfection processes with graded responses over a standardized 5-point scale. A process diagram was developed for each disinfection method with segmental timing analysis, and a cost analysis was performed. Nonvariegated analysis of the survey data with the Wilcoxon signed rank test showed a statistical difference in survey responses in favor of the hydrogen peroxide-based system over the glutaraldehyde-based system regarding efficiency (P = .0013), ease of use (P = .0013), ability to maintain work flow (P = .026), safety (P = .0026), fixing problems (P = .0158), time (P = .0011), and overall satisfaction (P = .0018). The glutaraldehyde-based system took 32 minutes versus 14 minutes for the hydrogen peroxide-based system; the hydrogen peroxide-based system saved on average 7.5 hours per week. The cost of the hydrogen peroxide-based system and weekly maintenance pays for itself if 1.5 more ultrasound examinations are performed each week. The hydrogen peroxide-based disinfection system was proven to be more efficient and viewed to be easier and safer to use than the glutaraldehyde-based system. The adoption of the hydrogen peroxide-based system led to higher satisfaction among sonographers.

  9. Trends in Selective Hydrogen Peroxide Production on Transition Metal Surfaces from First Principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankin, Rees B.; Greeley, Jeffrey P.

    2012-10-19

    We present a comprehensive, Density Functional Theory-based analysis of the direct synthesis of hydrogen peroxide, H2O2, on twelve transition metal surfaces. We determine the full thermodynamics and selected kinetics of the reaction network on these metals, and we analyze these energetics with simple, microkinetically motivated rate theories to assess the activity and selectivity of hydrogen peroxide production on the surfaces of interest. By further exploiting Brønsted-Evans-Polanyi relationships and scaling relationships between the binding energies of different adsorbates, we express the results in the form of a two dimensional contour volcano plot, with the activity and selectivity being determined as functionsmore » of two independent descriptors, the atomic hydrogen and oxygen adsorption free energies. We identify both a region of maximum predicted catalytic activity, which is near Pt and Pd in descriptor space, and a region of selective hydrogen peroxide production, which includes Au. The optimal catalysts represent a compromise between activity and selectivity and are predicted to fall approximately between Au and Pd in descriptor space, providing a compact explanation for the experimentally known performance of Au-Pd alloys for hydrogen peroxide synthesis, and suggesting a target for future computational screening efforts to identify improved direct hydrogen peroxide synthesis catalysts. Related methods of combining activity and selectivity analysis into a single volcano plot may be applicable to, and useful for, other aqueous phase heterogeneous catalytic reactions where selectivity is a key catalytic criterion.« less

  10. Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor

    NASA Astrophysics Data System (ADS)

    Moozarm Nia, Pooria; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    For several decades, hydrogen peroxide has exhibited to be an extremely significant analyte as an intermediate in several biological devices as well as in many industrial systems. A straightforward and novel one-step technique was employed to develop a sensitive non-enzymatic hydrogen peroxide (H2O2) sensor by simultaneous electrodeposition of copper nanoparticles (CuNPs) and reduced graphene oxide (rGO). The electroreduction performance of the CuNPs-rGO for hydrogen peroxide detection was studied by cyclic voltammetry (CV) and chronoamperometry (AMP) methods The CuNPs-rGO showed a synergistic effect of reduced graphene oxide and copper nanoparticles towards the electroreduction of hydrogen peroxide, indicating high reduction current. At detection potential of -0.2 V, the CuNPs-rGO sensor demonstrated a wide linear range up to 18 mM with a detection limit of 0.601 mM (S/N = 3). Furthermore, with addition of hydrogen peroxide, the sensor responded very quickly (<3 s). The CuNPs-rGO presents high selectivity, sensitivity, stability and fast amperometric sensing towards hydrogen peroxide which makes it favorable for the development of non-enzymatic hydrogen peroxide sensor.

  11. PROPULSE 980: A Hydrogen Peroxide Enrichment System

    NASA Technical Reports Server (NTRS)

    Boxwell, Robert; Bromley, G.; Wanger, Robert; Pauls, Dan; Maynard, Bryon; McNeal, Curtis; Dumbacher, D. L. (Technical Monitor)

    2000-01-01

    The PROPULSE 980 unit is a transportable processing plant that enriches aerospace grade hydrogen peroxide from 90% to 98% final concentration. The unit was developed by Degussa-H Is, in cooperation with Orbital, NASA Marshall Space Center, and NASA Stennis Space Center. The system is a self-contained unit that houses all of the process equipment, instrumentation and controls to perform the concentration operation nearly autonomously. It is designed to produce non-bulk quantities of 98% hydrogen peroxide. The enrichment unit design also maintains system, personnel and environmental safety during all aspects of the enrichment process and final product storage. As part of the Propulse 980 checkout and final buyoff, it will be disassembled at the Degussa-H Is Corporation plant in Theodore, AL, transported to the Stennis Space Center, reassembled and subjected to a series of checkout tests to verify design objectives have been met. This paper will summarize the basic project elements and provide an update on the present status of the project.

  12. Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses.

    PubMed

    Gupta, Kamala; Sengupta, Atreyee; Chakraborty, Mayukh; Gupta, Bhaskar

    2016-01-01

    The specific genetic changes through which plants adapt to the multitude of environmental stresses are possible because of the molecular regulations in the system. These intricate regulatory mechanisms once unveiled will surely raise interesting questions. Polyamines and hydrogen peroxide have been suggested to be important signaling molecules during biotic and abiotic stresses. Hydrogen peroxide plays a versatile role from orchestrating physiological processes to stress response. It helps to achieve acclimatization and tolerance to stress by coordinating intra-cellular and systemic signaling systems. Polyamines, on the other hand, are low molecular weight polycationic aliphatic amines, which have been implicated in various stress responses. It is quite interesting to note that both hydrogen peroxide and polyamines have a fine line of inter-relation between them since the catabolic pathways of the latter releases hydrogen peroxide. In this review we have tried to illustrate the roles and their multifaceted functions of these two important signaling molecules based on current literature. This review also highlights the fact that over accumulation of hydrogen peroxide and polyamines can be detrimental for plant cells leading to toxicity and pre-mature cell death.

  13. Speeding up solar disinfection (SODIS): effects of hydrogen peroxide, temperature, pH, and copper plus ascorbate on the photoinactivation of E. coli.

    PubMed

    Fisher, Michael B; Keenan, Christina R; Nelson, Kara L; Voelker, Bettina M

    2008-03-01

    Solar disinfection, or SODIS, shows tremendous promise for point-of-use drinking water treatment in developing countries, but can require 48 h or more for adequate disinfection in cloudy weather. In this research, we show that a number of low-cost additives are capable of accelerating SODIS. These additives included 100-1000 muM hydrogen peroxide, both at room temperature and at elevated temperatures, 0.5 - 1% lemon and lime juice, and copper metal or aqueous copper plus ascorbate, with or without hydrogen peroxide. Laboratory and field experiments indicated that additives might make SODIS more rapid and effective in both sunny and cloudy weather, developments that could help make the technology more effective and acceptable to users.

  14. Comparison of hydrogen peroxide and peracetic acid as isolator sterilization agents in a hospital pharmacy.

    PubMed

    Bounoure, Frederic; Fiquet, Herve; Arnaud, Philippe

    2006-03-01

    The efficacy of hydrogen peroxide and peracetic acid as isolator sterilization agents was compared. Sterilization and efficacy tests were conducted in a flexible 0.8-m3 transfer isolator using a standard load of glass bottles and sterile medical devices in their packing paper. Bacillus stearothermophilus spores were placed in six critical locations of the isolator and incubated at 55 degrees C in a culture medium for 14 days. Sterilization by 4.25 mL/m3 of 33% vapor-phase hydrogen peroxide and 12.5 mL/m3 of 3.5% peracetic acid was tested in triplicate. Sterility was validated for hydrogen peroxide and peracetic acid at 60, 90, 120, and 180 minutes and at 90, 120, 150, 180, 210, and 240 minutes, respectively. In an efficacy test conducted with an empty isolator, the sterilization time required to destroy B. stearothermophilus spores was 90 minutes for both sterilants, indicating that they have comparable bactericidal properties. During the validation test with a standard load, the sterilization time using hydrogen peroxide was 150 minutes versus 120 minutes with peracetic acid. The glove cuff was particularly difficult for hydrogen peroxide to sterilize, likely due to its slower diffusion time than that of peracetic acid. Hydrogen peroxide is an environmentally safer agent than peracetic acid; however, its bacteriostatic properties, lack of odor, and poor diffusion time may limit its use in sterilizing some materials. Hydrogen peroxide is a useful alternative to peracetic acid for isolator sterilization in a hospital pharmacy or parenteral nutrition preparation unit.

  15. Effect of ultrasonic pre-treatment of thermomechanical pulp on hydrogen peroxide bleaching

    NASA Astrophysics Data System (ADS)

    Loranger, E.; Charles, A.; Daneault, C.

    2012-12-01

    Ultrasound pre-treatments of softwood TMP had been carried to evaluate its impact on the efficiency of hydrogen peroxide bleaching. The trials were performed after a factorial design of experiment using frequency, power and time as variables. The experiments were conducted in an ultrasonic bath and then bleached with hydrogen peroxide. Measurements such as brightness, L*A*B* color system coordinate, residual hydrogen peroxide and metal content were evaluated on bleached pulp. The results indicate that the effect of ultrasonic treatment on brightness was dependent on the ultrasound frequency used; the brightness increased slightly at 68 kHz and decreased at 40 and 170 kHz. These results were correlated to the ultrasound effect on the generation of transition metals (copper, iron and manganese) which are responsible for catalytic decomposition of hydrogen peroxide. The influence of metal interference was minimized by using a chelating agent such as diethylene triamine pentaacetic acid (DTPA). With the results obtained in this study we have identified a set of option conditions, e.g. 1000 W, 40 kHz, 1.5 % consistency and 0.2% addition of DTPA prior to the bleaching stage (after ultrasonic pre-treatment) who improve brightness by 2.5 %ISO.

  16. Safety issues of high-concentrated hydrogen peroxide production used as rocket propellant

    NASA Astrophysics Data System (ADS)

    Romantsova, O. V.; Ulybin, V. B.

    2015-04-01

    The article dwells on the possibility of production of high-concentrated hydrogen peroxide with the Russian technology of isopropyl alcohol autoxidation. Analysis of fire/explosion hazards and reasons of insufficient quality is conducted for the technology. Modified technology is shown. Non-standard fire/explosion characteristics required for integrated fire/explosion hazards rating for modified hydrogen peroxide production based on the autoxidation of isopropyl alcohol are defined.

  17. Hydrogen peroxide toxicity induces Ras signaling in human neuroblastoma SH-SY5Y cultured cells.

    PubMed

    Chetsawang, Jirapa; Govitrapong, Piyarat; Chetsawang, Banthit

    2010-01-01

    It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.

  18. Glycerophosphate-dependent hydrogen peroxide production by rat liver mitochondria.

    PubMed

    Jesina, P; Kholová, D; Bolehovská, R; Cervinková, Z; Drahota, Z; Houstek, J

    2004-01-01

    We studied the extent to which hormonally-induced mitochondrial glycerophosphate dehydrogenase (mGPDH) activity contributes to the supply of reducing equivalents to the mitochondrial respiratory chain in the rat liver. The activity of glycerophosphate oxidase was compared with those of NADH oxidase and/or succinate oxidase. It was found that triiodothyronine-activated mGPDH represents almost the same capacity for the saturation of the respiratory chain as Complex II. Furthermore, the increase of mGPDH activity induced by triiodothyronine correlated with an increase of capacity for glycerophosphate-dependent hydrogen peroxide production. As a result of hormonal treatment, a 3-fold increase in glycerophosphate-dependent hydrogen peroxide production by liver mitochondria was detected by polarographic and luminometric measurements.

  19. Bactericidal Efficacy of Hydrogen Peroxide-Based Disinfectants Against Gram-Positive and Gram-Negative Bacteria on Stainless Steel Surfaces.

    PubMed

    Ríos-Castillo, Abel G; González-Rivas, Fabián; Rodríguez-Jerez, José J

    2017-10-01

    In order to develop disinfectant formulations that leverage the effectiveness of hydrogen peroxide (H 2 O 2 ), this study evaluated the bactericidal efficacy of hydrogen peroxide-based disinfectants against Gram-positive and Gram-negative bacteria on stainless steel surfaces. Low concentration of hydrogen peroxide as 0.5% with a cationic polymer, ethoxylated fatty alcohol, and ethyl alcohol had bactericidal efficacy (reductions ≥ 4 log 10 CFU/mL) against Escherichia coli, Staphylococcus aureus, Enterococcus hirae, and Pseudomonas aeruginosa. Hydrogen peroxide-based disinfectants were more effective against E. hirae and P. aeruginosa than to S. aureus. However, the efficacy of hydrogen peroxide against catalase positive bacteria such as S. aureus was increased when this compound was formulated with low concentrations of benzalkonium chloride or ethyl alcohol, lactic acid, sodium benzoate, cationic polymer, and salicylic acid. This study demonstrates that the use of hydrogen peroxide with other antimicrobial products, in adequate concentrations, had bactericidal efficacy in Gram-positive and Gram-negative bacteria on stainless steel surfaces, enabling to reduce the effective concentration of hydrogen peroxide. In the same way, the use of hydrogen peroxide-based disinfectants could reduce the concentrations of traditional disinfectants as quaternary ammonium compounds and therefore a reduction of their chemical residues in the environment after being used. The study of the bactericidal properties of environmentally nontoxic disinfectants such as hydrogen peroxide, sole or in formulations with other disinfectants against Gram-positive and Gram-negative bacteria can enhance the efficacy of various commonly used disinfectant formulations with the hygiene benefits that it entails. Also, the use of hydrogen peroxide formulations can reduce the concentration levels of products that generate environmental residues. © 2017 Institute of Food Technologists®.

  20. Efficacy of hydrogen peroxide in controlling mortality associated with saprolegniasis on walleye, white sucker, and paddlefish eggs

    USGS Publications Warehouse

    Gaikowski, M.P.; Rach, J.J.; Drobish, M.; Hamilton, J.; Harder, T.; Lee, L.A.; Moen, C.; Moore, A.

    2003-01-01

    The efficacy of hydrogen peroxide in controlling saprolegniasis on eggs of walleye Stizostedion vitreum, white sucker Catostomus commersoni, and paddlefish Polyodon spathula was evaluated at four private, state, and federal production hatcheries participating in an Investigational New Animal Drug efficacy study (experiment 1; walleyes) and in a laboratory-based miniature egg jar incubation system (experiment 2; walleyes, white suckers, and paddlefish). Naturally occurring fungal infestations (saprolegniasis) were observed on eggs in both experiments. Confirmatory diagnosis of infested eggs from one hatchery in experiment 1 identified the pathogen as Saprolegnia parasitica. During experiment 1, eggs were treated daily for 15 min with either 0, 500, or 750 mg/L of hydrogen peroxide, and one trial compared a 500-mg/L hydrogen peroxide treatment with a formalin treatment at 1,667 mg/L. Saprolegniasis infestation was observed in control egg jars, whereas treatment with either formalin or hydrogen peroxide virtually eliminated the infestation. Hydrogen peroxide treatments of 500 mg/L either increased egg hatch or were as effective as physical removal of infested eggs in controlling mortality. Although treatment with formalin at 1,667 mg/L significantly increased the percent eye-up of walleye eggs compared with that of those treated with hydrogen peroxide at 500 mg/L, the difference was only 1.9-2.6%. In experiment 2, noneyed eggs were treated for 15 min every other day with 0, 283, 565, or 1,130 mg/L of hydrogen peroxide until the viable eggs hatched. Saprolegniasis infestation engulfed most control eggs, whereas infestation of treated eggs was either reduced or not visible. Hydrogen peroxide significantly increased egg hatch for all three species tested in experiment 2. Although hydrogen peroxide treatments as low as 283 mg/L significantly increased walleye and white sucker hatch, treatments between 500 and 1,000 mg/L are more likely to be effective in production egg

  1. An Experimental Investigation of Hypergolic Ignition Delay of Hydrogen Peroxide with Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Gostowski, Rudy; Chianese, Silvio

    2003-01-01

    An experimental evaluation of decomposition and ignition delay of hydrogen peroxide at concentrations of 80% to 98% with combinations of hydrocarbon fuels, tertiary amines and transition metal chelates will be presented in the proposed paper. The results will be compared to hydrazine ignition delays with hydrogen peroxide and nitric acid mixtures using the same test apparatus.

  2. Quantification of peroxide ion passage in dentin, enamel, and cementum after internal bleaching with hydrogen peroxide.

    PubMed

    Palo, R M; Bonetti-Filho, I; Valera, M C; Camargo, C H R; Camargo, Sea; Moura-Netto, C; Pameijer, C

    2012-01-01

    The aim of this study was to evaluate the amount of peroxide passage from the pulp chamber to the external enamel surface during the internal bleaching technique. Fifty bovine teeth were sectioned transversally 5 mm below the cemento-enamel junction (CEJ), and the remaining part of the root was sealed with a 2-mm layer of glass ionomer cement. The external surface of the samples was coated with nail varnish, with the exception of standardized circular areas (6-mm diameter) located on the enamel, exposed dentin, or cementum surface of the tooth. The teeth were divided into three experimental groups according to exposed areas close to the CEJ and into two control groups (n=10/group), as follows: GE, enamel exposure area; GC, cementum exposed area; GD, dentin exposed area; Negative control, no presence of internal bleaching agent and uncoated surface; and Positive control, pulp chamber filled with bleaching agent and external surface totally coated with nail varnish. The pulp chamber was filled with 35% hydrogen peroxide (Opalescence Endo, Ultradent). Each sample was placed inside of individual flasks with 1000 μL of acetate buffer solution, 2 M (pH 4.5). After seven days, the buffer solution was transferred to a glass tube, in which 100 μL of leuco-crystal violet and 50 μL of horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to Kruskal-Wallis and Dunn-Bonferroni tests (α=0.05). All experimental groups presented passage of peroxide to the external surface that was statistically different from that observed in the control groups. It was verified that the passage of peroxide was higher in GD than in GE (p<0.01). The GC group presented a significantly lower peroxide passage than did GD and GE (p<0.01). It can be concluded that the hydrogen peroxide placed into the pulp chamber passed through the

  3. Use of hydrogen peroxide during incubation of landlocked fall Chinook salmon eggs in vertical-flow incubators

    USGS Publications Warehouse

    Barnes, M.E.; Gaikowski, M.P.

    2004-01-01

    Six different hydrogen peroxide treatment regimes were evaluated in a series of three trials with landlocked fall Chinook salmon Oncorhynchus tshawytscha eggs incubated in vertical-flow incubators. Six daily 15-min hydrogen peroxide treatment regimes (1,000 mg/L; 1,000 mg/L with a decrease to 500 mg/L during estimated blastopore formation; 2,000 mg/L; 2,000 mg/L with a decrease to 500 mg/L during estimated blastopore formation; 2,500 mg/L; and 2,500 mg/L with a decrease to 500 mg/L during estimated blastopore formation) were compared with daily 15-min treatments of 1,667 mg/L of formalin. Mortality at egg eye-up and fry hatch and from eye-up to hatch was significantly greater in eggs receiving the 2,500-mg/L hydrogen peroxide treatments throughout incubation and in those receiving 2,500 mg/L hydrogen peroxide with a decrease to 500 mg/L during blastopore formation than in either of the 1,000-mg/L hydrogen peroxide treatment regimes or the formalin-treated eggs in the first trial. No significant differences in mortality were observed among any of the treatments in the subsequent two trials with maximum hydrogen peroxide concentrations of 2,000 mg/L. Fungal infestations were observed primarily in the incubation trays treated at either of the 1,000-mg/L hydrogen peroxide regimens, as well as in those trays whose treatment concentrations were dropped to 500 mg/L during blastopore formation. Infestations were not observed in any of the formalin-treated trays. If minor fungal infestation is acceptable, then daily hydrogen peroxide treatments of 1,000 mg/L for 15 min would probably provide adequate fungal control compared with formalin usage.

  4. Power generation in fuel cells using liquid methanol and hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor); Chun, William (Inventor)

    2002-01-01

    The invention is directed to an encapsulated fuel cell including a methanol source that feeds liquid methanol (CH.sub.3 OH) to an anode. The anode is electrical communication with a load that provides electrical power. The fuel cell also includes a hydrogen peroxide source that feeds liquid hydrogen peroxide (H.sub.2 O.sub.2) to the cathode. The cathode is also in communication with the electrical load. The anode and cathode are in contact with and separated by a proton-conducting polymer electrolyte membrane.

  5. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture.

    PubMed

    Maddalena, Lucas A; Selim, Shehab M; Fonseca, Joao; Messner, Holt; McGowan, Shannon; Stuart, Jeffrey A

    2017-11-04

    Although oxygen levels in the extracellular space of most mammalian tissues are just a few percent, under standard cell culture conditions they are not regulated and are often substantially higher. Some cellular sources of reactive oxygen species, like NADPH oxidase 4, are sensitive to oxygen levels in the range between 'normal' physiological (typically 1-5%) and standard cell culture (up to 18%). Hydrogen peroxide in particular participates in signal transduction pathways via protein redox modifications, so the potential increase in its production under standard cell culture conditions is important to understand. We measured the rates of cellular hydrogen peroxide production in some common cell lines, including C2C12, PC-3, HeLa, SH-SY5Y, MCF-7, and mouse embryonic fibroblasts (MEFs) maintained at 18% or 5% oxygen. In all instances the rate of hydrogen peroxide production by these cells was significantly greater at 18% oxygen than at 5%. The increase in hydrogen peroxide production at higher oxygen levels was either abolished or substantially reduced by treatment with GKT 137831, a selective inhibitor of NADPH oxidase subunits 1 and 4. These data indicate that oxygen levels experienced by cells in culture influence hydrogen peroxide production via NADPH oxidase 1/4, highlighting the importance of regulating oxygen levels in culture near physiological values. However, we measured pericellular oxygen levels adjacent to cell monolayers under a variety of conditions and with different cell lines and found that, particularly when growing at 5% incubator oxygen levels, pericellular oxygen was often lower and variable. Together, these observations indicate the importance, and difficulty, of regulating oxygen levels experienced by cells in culture. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Development of biological and nonbiological explanations for the Viking label release data. [hydrogen peroxide theory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The plausibility that hydrogen peroxide, widely distributed within the Mars surface material, was responsible for the evocative response obtained by the Viking Labeled Release (LR) experiment on Mars was investigated. Although a mixture of gamma Fe2O3 and silica sand stimulated the LR nutrient reaction with hydrogen peroxide and reduced the rate of hydrogen decomposition under various storage conditions, the Mars analog soil prepared by the Viking Inorganic Analysis Team to match the Mars analytical data does not cause such effects. Nor is adequate resistance to UV irradiation shown. On the basis of the results and consideration presented while the hydrogen peroxide theory remains the most, if not only, attractive chemical explanation of the LR data, it remains unconvincing on critical points. Until problems concerning the formation and stabilization of hydrogen peroxide on the surface of Mars can be overcome, adhere to the scientific evidence requires serious consideration of the biological theory.

  7. Glutamine Deprivation Causes Hydrogen Peroxide-induced Interleukin-8 Expression via Jak1/Stat3 Activation in Gastric Epithelial AGS Cells

    PubMed Central

    Lee, Yun Mi; Kim, Mi Jung; Kim, Youngha; Kim, Hyeyoung

    2015-01-01

    Background: The Janus kinase (Jak)/Signal transducers of activated transcription (Stat) pathway is an upstream signaling pathway for NF-κB activation in Helicobacter pylori-induced interleukin (IL)-8 production in gastric epithelial AGS cells. H. pylori activates NADPH oxidase and produces hydrogen peroxide, which activates Jak1/Stat3 in AGS cells. Therefore, hydrogen peroxide may be critical for IL-8 production via Jak/Stat activation in gastric epithelial cells. Glutamine is depleted during severe injury and stress and contributes to the formation of glutathione (GSH), which is involved in conversion of hydrogen peroxide into water as a cofactor for GSH peroxidase. Methods: We investigated whether glutamine deprivation induces hydrogen peroxide-mediated IL-8 production and whether hydrogen peroxide activates Jak1/Stat3 to induce IL-8 in AGS cells. Cells were cultured in the presence or absence of glutamine or hydrogen peroxide, with or without GSH or a the Jak/Stat specific inhibitor AG490. Results: Glutamine deprivation decreased GSH levels, but increased levels of hydrogen peroxide and IL-8, an effect that was inhibited by treatment with GSH. Hydrogen peroxide induced the activation of Jak1/Stat3 time-dependently. AG490 suppressed hydrogen peroxide- induced activation of Jak1/Stat3 and IL-8 expression in AGS cells, but did not affect levels of reactive oxygen species in AGS cells. Conclusions: In gastric epithelial AGS cells, glutamine deprivation increases hydrogen peroxide levels and IL-8 expression, which may be mediated by Jak1/Stat3 activation. Glutamine supplementation may be beneficial for preventing gastric inflammation by suppressing hydrogen peroxide-mediated Jak1/Stat3 activation and therefore, reducing IL-8 production. Scavenging hydrogen peroxide or targeting Jak1/Stat3 may also prevent oxidant-mediated gastric inflammation. PMID:26473156

  8. A reaction-diffusion model of cytosolic hydrogen peroxide.

    PubMed

    Lim, Joseph B; Langford, Troy F; Huang, Beijing K; Deen, William M; Sikes, Hadley D

    2016-01-01

    As a signaling molecule in mammalian cells, hydrogen peroxide (H2O2) determines the thiol/disulfide oxidation state of several key proteins in the cytosol. Localization is a key concept in redox signaling; the concentrations of signaling molecules within the cell are expected to vary in time and in space in manner that is essential for function. However, as a simplification, all theoretical studies of intracellular hydrogen peroxide and many experimental studies to date have treated the cytosol as a well-mixed compartment. In this work, we incorporate our previously reported reduced kinetic model of the network of reactions that metabolize hydrogen peroxide in the cytosol into a model that explicitly treats diffusion along with reaction. We modeled a bolus addition experiment, solved the model analytically, and used the resulting equations to quantify the spatiotemporal variations in intracellular H2O2 that result from this kind of perturbation to the extracellular H2O2 concentration. We predict that micromolar bolus additions of H2O2 to suspensions of HeLa cells (0.8 × 10(9)cells/l) result in increases in the intracellular concentration that are localized near the membrane. These findings challenge the assumption that intracellular concentrations of H2O2 are increased uniformly throughout the cell during bolus addition experiments and provide a theoretical basis for differing phenotypic responses of cells to intracellular versus extracellular perturbations to H2O2 levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Monolithic Hydrogen Peroxide Catalyst Bed Development

    NASA Technical Reports Server (NTRS)

    Ponzo, J. B.

    2003-01-01

    With recent increased industry and government interest in rocket grade hydrogen peroxide as a viable propellant, significant effort has been expended to improve on earlier developments. This effort has been predominately centered in improving heterogeneous. typically catalyst beds; and homogeneous catalysts, which are typically solutions of catalytic substances. Heterogeneous catalyst beds have traditionally consisted of compressed wire screens plated with a catalytic substance, usually silver, and were used m many RCS applications (X-1, Mercury, and Centaur for example). Aerojet has devised a heterogeneous catalyst design that is monolithic (single piece), extremely compact, and has pressure drops equal to or less than traditional screen beds. The design consists of a bonded stack of very thin, photoetched metal plates, silver coated. This design leads to a high surface area per unit volume and precise flow area, resulting in high, stable, and repeatable performance. Very high throughputs have been demonstrated with 90% hydrogen peroxide. (0.60 lbm/s/sq in at 1775-175 psia) with no flooding of the catalyst bed. Bed life of over 900 seconds has also been demonstrated at throughputs of 0.60 lbm/s/sq in across varying chamber pressures. The monolithic design also exhibits good starting performance, short break-in periods, and will easily scale to various sizes.

  10. Hydrogen peroxide sensing using ultrathin platinum-coated gold nanoparticles with core@shell structure.

    PubMed

    Li, Yongxin; Lu, Qiufang; Wu, Shengnan; Wang, Lun; Shi, Xianming

    2013-03-15

    Ultrathin platinum-coated gold (Pt@Au) nanoparticles with core@shell structure have been developed by under-potential deposition (UPD) redox replacement technique. A single UPD Cu replacement with Pt(2+) produced a uniform Pt monolayer on the surface of gold nanoparticles, which are immobilized on glassy carbon electrode (GCE) surface based on electrostatic interaction. The ultrathin Pt@Au nanoparticles were confirmed by cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). Voltammetry and amperometric methodologies were used to evaluate the electrocatalytic activity of the Pt@Au nanoparticles modified electrode towards the reduction of hydrogen peroxide under the physiological condition. The present results show that ultrathin Pt coating greatly enhances the electrocatalytic activity towards the reduction of hydrogen peroxide, which can be utilized to fabricate the hydrogen peroxide sensor. Chronoamperometric experiments showed that at an applied potential of 0.08 V (vs. Ag/AgCl), the current reduction of hydrogen peroxide was linear to its concentration in the range of 1-450 μΜ, and the detection limit was found to be 0.18 μM (signal-to-noise ratio, S/N=3). Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A novel procedure to assess the non-enzymatic hydrogen-peroxide antioxidant capacity of metabolites with high UV absorption.

    PubMed

    Csepregi, Kristóf; Hideg, Éva

    2016-12-01

    Assays assessing non-enzymatic hydrogen peroxide antioxidant capacities are often hampered by the high UV absorption of the sample itself. This is a typical problem in studies using plant extracts with high polyphenol content. Our assay is based on comparing the 405 nm absorption of the product of potassium iodine and hydrogen peroxide in the presence and absence of a putative hydrogen peroxide reactive antioxidant. This method is free of interference with either hydrogen peroxide or antioxidant self-absorption and it is also suitable for high-throughput plate reader applications.

  12. Hydrogen peroxide-dependent antibacterial action of Melilotus albus honey.

    PubMed

    Sowa, P; Grabek-Lejko, D; Wesołowska, M; Swacha, S; Dżugan, M

    2017-07-01

    Honey originating from different floral sources exhibits the broad spectrum of antibacterial activity as a result of the presence of hydrogen peroxide as well as nonperoxide bioactive compounds. The mechanisms of antibacterial activity of Polish melilot honey were investigated for the first time. Polish melilot honey samples (Melilotus albus biennial = 3 and annual = 5, Melilotus officinalis = 1) were collected directly from beekeepers and analysed for pollen profile, basic physicochemical parameters, antioxidant capacity, radical scavenging activity, total phenolic contents as well as antibacterial properties against pathogenic bacteria Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella spp. The physicochemical properties of melilot honey were specific for light-coloured unifloral honey samples and were not dependent on its botanical and geographical origin (P > 0·05). All tested honey samples exhibited inhibitory activity (above 90%) against Gram-positive bacteria at the concentration of 12·5-25%. Above 30-50% of antibacterial activity of melilot honey was connected with glucose oxidase enzyme action and was destroyed in the presence of catalase. Hydrogen peroxide-dependent antibacterial activity of honey was inversely correlated with its radical scavenging activity (r = -0·67) and phenolic compounds (r = -0·61). Antibacterial action of melilot honey depends not only on hydrogen peroxide produced by glucose oxidase, but also on other nonperoxide bioactive components of honey. Melilot honey is used in traditional medicine as an anticoagulant agent due to the possibility of the presence of the coumarin compounds which are specific for Melilotus plant. Melilotus albus is rarely used to produce honey, and antibacterial properties of this variety of honey had not been studied yet. Nine samples of melilot honey produced in different regions of Poland were analysed according to their antibacterial activity which was correlated

  13. Effects of Vaporized Decontamination Systems on Selected Building Interior Materials: Vaporized Hydrogen Peroxide

    DTIC Science & Technology

    2009-01-01

    surfaces in buildings following a terrorist attack using CB agents. Vaporized hydrogen peroxide ( VHP ) and Cl02 are decontamination technologies that...decontaminant. The focus of this technical report is the evaluation of the building interior materials and the Steris VHP technology. 15. SUBJECT...TERMS Material Compatibility VHP vaporized hydrogen peroxide 16. SECURITY CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS PAGE U 17

  14. Free standing graphene oxide film for hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Ranjan, Pranay; Balakrishnan, Jayakumar; Thakur, Ajay D.

    2018-05-01

    We report hydrogen peroxide (H2O2)sensing using free standing graphene oxide thin films prepared using a cost effective scalable approach. Such sensors may find application in pharmaceutical and food processing industries.

  15. Simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewater by zero-valent iron.

    PubMed

    Yoshino, Hiroyuki; Tokumura, Masahiro; Kawase, Yoshinori

    2014-01-01

    The zero-valent iron (ZVI) wastewater treatment has been applied to simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewaters. The simultaneous removal occurs by the reactions performed due to the sequential transformation of ZVI under the acidic condition. Fortunately the solution pH of semiconductor acidic wastewaters is low which is effective for the sequential transformation of ZVI. Firstly the reduction of nitrate is taken place by electrons generated by the corrosion of ZVI under acidic conditions. Secondly the ferrous ion generated by the corrosion of ZVI reacts with hydrogen peroxide and generates ·OH radical (Fenton reaction). The Fenton reaction consists of the degradation of hydrogen peroxide and the generation of ferric ion. Finally phosphate precipitates out with iron ions. In the simultaneous removal process, 1.6 mM nitrate, 9.0 mM hydrogen peroxide and 1.0 mM phosphate were completely removed by ZVI within 100, 15 and 15 min, respectively. The synergy among the reactions for the removal of nitrate, hydrogen peroxide and phosphate was found. In the individual pollutant removal experiment, the removal of phosphate by ZVI was limited to 80% after 300 min. Its removal rate was considerably improved in the presence of hydrogen peroxide and the complete removal of phosphate was achieved after 15 min.

  16. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored within an intraline distance. 420.66 Section 420.66 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION...

  17. 14 CFR 420.66 - Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Separation distance requirements for storage of hydrogen peroxide, hydrazine, and liquid hydrogen and any incompatible energetic liquids stored within an intraline distance. 420.66 Section 420.66 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION...

  18. Oxygen venous embolism after the use of hydrogen peroxide during lumbar discectomy.

    PubMed

    Despond, O; Fiset, P

    1997-04-01

    The knee-prone position is commonly used for patients undergoing spinal surgery. Venous air embolism in such a position may be produced by the negative venous pressure gradient between the ambient air and the venous plexuses of the spinous process. When hydrogen peroxide is used to cleanse the wound, oxygen is produced. We report a case of suspected oxygen venous embolism during lumbar discectomy in the knee-prone position after use of H2O2. Immediately after irrigation of a discectomy wound with H2O2, a dramatic decrease of the PETCO2, blood pressure and oxygen saturation coincident with ST segment elevation occurred suggesting a coronary gas embolism. Symptomatic treatment was initiated immediately and the patient recovered without any sequelae. Although hydrogen peroxide has an innocuous reputation, cases of accidental ingestion or massive gas embolism after wound irrigation leading to death have been reported. A review of the literature suggests that many of the clinical and physiopathological features of air and oxygen emboli are similar. For both, measures of prevention and treatment of complications are similar. We argue that the use of hydrogen peroxide should be avoided during procedures where the position of the patient (sitting, knee-prone) increases the risk of gas embolism and that hydrogen peroxide is a potentially dangerous solution.

  19. Fiber post etching with hydrogen peroxide: effect of concentration and application time.

    PubMed

    de Sousa Menezes, Murilo; Queiroz, Ellyne Cavalcanti; Soares, Paulo Vinícius; Faria-e-Silva, André Luis; Soares, Carlos José; Martins, Luis Roberto Marcondes

    2011-03-01

    Etching is necessary to expose the fibers and enable both mechanical and chemical bonding of the resin core to the fiber post. This study evaluated the effect of concentration and application time of hydrogen peroxide on the surface topography and bond strength of glass fiber posts to resin cores. Fiber posts were etched with 24% or 50% hydrogen peroxide for 1, 5, or 10 min (n = 10). Posts without any treatment were used as a control. After etching, the posts were silanated and adhesive resin was applied. The posts were positioned into a mold to allow a self-cured resin core to be inserted. The post/resin assembly was serially sectioned into five beams that were subjected to a tensile bond strength test. Data were subjected to two-way ANOVA and Tukey test (α = 0.05). The surface topography was analyzed using scanning electronic microscopy. Non-etched post presents a relatively smooth surface without fiber exposure. Application of hydrogen peroxide increased the surface roughness and exposed the fibers. All experimental conditions yielded similar bond strength values that were higher than those obtained in the control group. Both 24% and 50% hydrogen peroxide exposure increased the bond strength of resin to the posts, irrespective of the application time. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Hydroxy acetone and lactic acid synthesis from aqueous propylene glycol/hydrogen peroxide catalysis on Pd-black

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disselkamp, Robert S.; Harris, Benjamin D.; Hart, Todd R.

    2008-07-20

    The production of polyol chemicals is of increasing interest as they are obtained from the catalytic processing of biological feedstock materials, which also is becoming more prevalent. A case in point is glycerol production, formed as a byproduct in biodiesel catalytic processing. Here we report the reaction of a simple 1,2-diol, propylene glycol, with hydrogen peroxide and a Pd-black catalyst under reflux conditions at 368 K. The experiments were performed by either co-addition of hydrogen peroxide with air sparging, or addition of hydrogen peroxide alone, each yielding hydroxy acetone (HA) and acetic acid (AA) products, with a lesser amount ofmore » lactic acid (LA) formed. Product conversion data at near neutral pH versus hydrogen peroxide equivalents added relative to substrate is presented. Hydrogen peroxide addition without air sparging at 5 equivalents resulted in 65% conversion with an HA:AA molar ratio of 2:1. Conversely, hydrogen peroxide addition with air sparging at only 0.75 equivalents resulted in 40% conversion with an HA:AA ratio of 3:1. From this it is concluded that although the product distribution in these chemistries is somewhat unchanged by air sparging, it is surprising that the amount of reactive oxygen is greatly enhanced with co-addition of O2/H2O2. Additional studies have revealed the amount of LA formed can be enhanced under acidic conditions (pH=1.5 compared to pH=8.5), such that 26% of total product formation is LA. Since hydrogen peroxide is an environmentally clean reagent and becoming more cost effective to use, this work may guide future applied investigations into polyol chemical syntheses.« less

  1. Effect of hydrogen peroxide on antibacterial activities of Canadian honeys.

    PubMed

    Brudzynski, Katrina

    2006-12-01

    Honey is recognized as an efficacious topical antimicrobial agent in the treatment of burns and wounds. The antimicrobial activity in some honeys depends on the endogenous hydrogen peroxide content. This study was aimed to determine whether honey's hydrogen peroxide level could serve as a honey-specific, activity-associated biomarker that would allow predicting and assessing the therapeutic effects of honey. Using a broth microdilution assay, I analyzed antibacterial activities of 42 Canadian honeys against two bacterial strains: Escherichia coli (ATCC 14948) and Bacillus subtilis (ATCC 6633). The MIC90 and MIC50 were established from the dose-response relationship between antibacterial activities and honey concentrations. The impact of H2O2 on antibacterial activity was determined (i) by measuring the levels of H2O2 before and after its removal by catalase and (ii) by correlating the results with levels of antibacterial activities. Canadian honeys demonstrated moderate to high antibacterial activity against both bacterial species. Both MIC90 and MIC50 revealed that the honeys exhibited a selective growth inhibitory activity against E. coli, and this activity was strongly influenced by endogenous H2O2 concentrations. Bacillus subtilis activity was marginally significantly correlated with H2O2 content. The removal of H2O2 by catalase reduced the honeys' antibacterial activity, but the enzyme was unable to completely decompose endogenous H2O2. The 25%-30% H2O2 "leftover" was significantly correlated with the honeys' residual antibacterial activity against E. coli. These data indicate that all Canadian honeys exhibited antibacterial activity, with higher selectivity against E. coli than B. subtilis, and that these antibacterial activities were correlated with hydrogen peroxide production in honeys. Hydrogen peroxide levels in honey, therefore, is a strong predictor of the honey's antibacterial activity.

  2. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts

    PubMed Central

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  3. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    PubMed Central

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-01-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ∼3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries. PMID:28585527

  4. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    NASA Astrophysics Data System (ADS)

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-06-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ~3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries.

  5. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction.

    PubMed

    García-Santamarina, Sarela; Boronat, Susanna; Hidalgo, Elena

    2014-04-29

    Activation of redox cascades through hydrogen peroxide-mediated reversible cysteine oxidation is a major mechanism for intracellular signaling. Understanding why some cysteine residues are specifically oxidized, in competition with other proximal cysteine residues and in the presence of strong redox buffers, is therefore crucial for understanding redox signaling. In this review, we explore the recent advances in thiol-redox chemistry linked to signaling. We describe the last findings in the field of redox sensors, those that are naturally present in different model organisms as well as those that have been engineered to quantify intracellular hydrogen peroxide concentrations. Finally, we provide a summary of the newest approaches developed to study reversible cysteine oxidation at the proteomic level.

  6. Quantifying intracellular hydrogen peroxide perturbations in terms of concentration

    PubMed Central

    Huang, Beijing K.; Sikes, Hadley D.

    2014-01-01

    Molecular level, mechanistic understanding of the roles of reactive oxygen species (ROS) in a variety of pathological conditions is hindered by the difficulties associated with determining the concentration of various ROS species. Here, we present an approach that converts fold-change in the signal from an intracellular sensor of hydrogen peroxide into changes in absolute concentration. The method uses extracellular additions of peroxide and an improved biochemical measurement of the gradient between extracellular and intracellular peroxide concentrations to calibrate the intracellular sensor. By measuring peroxiredoxin activity, we found that this gradient is 650-fold rather than the 7–10-fold that is widely cited. The resulting calibration is important for understanding the mass-action kinetics of complex networks of redox reactions, and it enables meaningful characterization and comparison of outputs from endogenous peroxide generating tools and therapeutics across studies. PMID:25460730

  7. Evaluation of the toxicity and efficacy of hydrogen peroxide treatments on eggs of warm and cool water fishes

    USGS Publications Warehouse

    Rach, J.J.; Gaikowski, M.P.; Howe, G.E.; Schreier, Theresa M.

    1998-01-01

    The use of hydrogen peroxide in aquaculture is growing and there is a need to develop fundamental guidelines to effectively treat diseased fish. The safety (toxicity) of hydrogen peroxide treatments was determined on eggs of representative warm- and coolwater fish species. Eggs of northern pike (Esox lucius), walleye (Stizostedion vitreum), yellow perch (Pel ca flavescens), white sucker (Catostomus commersoni), lake sturgeon (Acipenser fulvescens), paddlefish (Polyodon spathula), common carp (Cyprinus carpio), and channel catfish (Ictalurus punctatus) were cultured in egg jars or aquaria. Treatments were initiated with non-eyed eggs and continued until all viable eggs had hatched. Eggs were treated daily for 15 min Monday through Friday with either 0, 500, 1000, 3000, or 6000 mu l l(-1) of hydrogen peroxide. For all species, the mean percent hatch was greater in eggs treated with 1000 mu l l(-1) hydrogen peroxide for 15 min than in the untreated controls. Common carp, lake sturgeon, and paddlefish were the least sensitive to hydrogen peroxide with percent hatch ranging from 40 to 48% in the 6000 mu l l(-1) hydrogen peroxide treatment. Fungal infections reduced or eliminated the hatch in most controls whereas nearly all treated eggs remained free of infection; hydrogen peroxide inhibited fungal infections on fish eggs. (C) 1998 Elsevier Science B.V. All rights reserved.

  8. Hydrogen peroxide and methylhydroperoxide variations in Houston urban air during May 2009

    NASA Astrophysics Data System (ADS)

    Golovko, J.; Rappenglueck, B.; Jobson, B. T.

    2010-12-01

    Formation and destruction of peroxides along with OH and ozone cycles plays a significant role in the oxidizing capacity of the troposphere. Measurements of hydrogen peroxide and methylhydroperoxide (MHP) were carried out as a part of the Study of Houston Atmospheric Radical Precursors (SHARP) campaign during late spring 2009. The purpose of this study was to investigate peroxides variations in Houston urban atmosphere and factors controlling their distribution. Diurnal variation of hydrogen peroxide show typical pattern with the broad maximum in the afternoon for the whole period of time, with an exception on May 19th when the second maximum was determined after the sunrise. Less abundant in the atmosphere and possibly originating from different sources methylhydroperoxide demonstrated similar diurnal pattern of elevated mixing ratios in the afternoon. Elevated values of hydrogen peroxide in Houston area are associated with warm, moderately humid air, while southerly winds from the Gulf of Mexico result in H2O2 mixing ratio decrease. Some selected VOCs were analyzed in order to evaluate possible sources for both peroxides. Meteorological conditions significantly control H2O2 mixing ratios, showing elevated values primarily related to easterly and to a lesser extent to southeasterly winds. Similar pattern with the significant role of the easterly winds was observed for VOCs and was more pronounced during nighttime, pointing into industrial sector (Houston Ship Channel) influence. Increased values of H2O2/MHP ratio are mostly associated with drier northerly and northeasterly air masses, pointing out different solubility and origin of H2O2 and MHP.

  9. Transenamel and transdentinal penetration of hydrogen peroxide applied to cracked or microabrasioned enamel.

    PubMed

    Briso, A L F; Lima, A P B; Gonçalves, R S; Gallinari, M O; dos Santos, P H

    2014-01-01

    The present study evaluated transenamel and transdentinal penetration of hydrogen peroxide during tooth whitening recognized in altered enamel by the presence of cracks or microabrasion. We used 72 experimental units (n=20) obtained from bovine incisors: GI-sound enamel; GII-teeth showing visible enamel cracks (4 mm to 5.7 mm in length); and GIII-microabrasioned enamel. The 12 remaining specimens were used to analyze the enamel surface morphology using scanning electron microscopy. The specimens were cylindrical and 5.7 mm in diameter and 3.5 mm thick. A product based on 35% hydrogen peroxide was used for bleaching, following the manufacturer's recommendations for use. To quantify the H2O2 penetration, the specimens were placed in artificial pulp chambers containing an acetate buffer solution. After bleaching, the solution was collected and adequately proportioned with leucocrystal violet, peroxidase enzyme, and deionized water. The resulting solution was evaluated using ultraviolet visible reflectance spectrophotometer equipment. The data were analyzed by analysis of variance (ANOVA) and Fisher's PLSD at a significance level of 0.05, and significant differences in the penetration of peroxide in different substrate conditions were observed (p<0.0001). The penetration of hydrogen peroxide was more intense in cracked teeth. The group in which the enamel was microabraded showed intermediate values when compared to the control group. Microabrasion and the presence of cracks in the enamel make this substrate more susceptible to penetration of hydrogen peroxide during in-office whitening.

  10. Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film.

    PubMed

    Safavi, Afsaneh; Farjami, Fatemeh

    2010-07-01

    The composite film based on Nafion and hydrophilic room temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium chloride ([bmim]Cl) was used as an immobilization matrix to entrap myoglobin (Mb). The study of ionic liquid (IL)-Mb interaction by ultraviolet-visible (UV-vis) spectroscopy showed that Mb retains its native conformation in the presence of IL. The immobilized Mb displayed a pair of well-defined cyclic voltammetric peaks with a formal potential (E(o)(')) of -0.35 V in a 0.1 M phosphate buffer solution (PBS) of pH 7.0. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide, based on which a mediator-free amperometric biosensor for hydrogen peroxide was designed. The linear range for the determination of hydrogen peroxide was from 1.0 to 180 microM with a detection limit of 0.14 microM at a signal/noise ratio of 3. The apparent Michaelis constant (K(m)(app)) for the electrocatalytic reaction was 22.6 microM. The stability, repeatability, and selectivity of the sensor were evaluated. The proposed biosensor has a lower detection limit than many other IL-heme protein-based biosensors and is free from common interference in hydrogen peroxide biosensors. 2010 Elsevier Inc. All rights reserved.

  11. Simulated afterburner performance with hydrogen peroxide injection for thrust augmentation

    NASA Technical Reports Server (NTRS)

    Metzler, Allen J; Grobman, Jack S

    1956-01-01

    Combustion performance of three afterburner configurations was evaluated at simulated altitude flight conditions with liquid augmentation to the primary combustor. Afterburner combustion efficiency and stability were better with injection of high-strength hydrogen peroxide than with no injection or with water injection. Improvements were observed in afterburner configurations with and without flameholders and in a short-length afterburner. At a peroxide-air ratio of 0.3, combustion was stable and 85 to 90 percent efficient in all configurations tested. Calculated augmented net-thrust ratios for peroxide injection with afterburning were approximately 60 percent greater than those for water injection.

  12. Results of a Multicenter, Randomized, Controlled Trial of a Hydrogen Peroxide-based Kit versus a Benzoyl Peroxide-based Kit in Mild-to-moderate Acne

    PubMed Central

    Micali, Giuseppe; Berardesca, Enzo; Dall’Oglio, Federica; Sinagra, Jo Linda; Guanziroli, Elena

    2016-01-01

    Objective:To evaluate the efficacy and tolerability of a novel hydrogen peroxide-based regimen versus a benzoyl peroxide-based regimen in mild-to-moderate acne. Methods: In this eight-week multicenter study, patients were randomized to either a hydrogen peroxide-based or a benzoyl peroxide-based regimen.The primary outcome measure of clinical response was assessed using the Global Acne Grading System (GAGS) at baseline,four weeks, and eight weeks. At Week 8, a patient self-satisfaction questionnaire was administered. Investigators were also queried at that time regarding assessment of tolerability and cosmetic acceptability. Tolerability was also measured at each visit. Results: Both treatment regimens were associated with improvement of GAGS score at Week 8 compared to baseline (p<0.0001). GAGS score did not differ significantly between the two regimens over the same period (p=0.7765). No significant adverse events were reported or observed in either treatment arm. Both patients and investigators found both regimens to be similarly effective and cosmetically acceptable. Conclusion: A novel hydrogen peroxide-based regimen was shown to be comparable in efficacy, safety, and cosmetic acceptability to a benzoyl peroxide-based regimen in the treatment of mild-to-moderate acne. PMID:27847549

  13. Considerations for Storage of High Test Hydrogen Peroxide (HTP) Utilizing Non-Metal Containers

    NASA Technical Reports Server (NTRS)

    Moore, Robin E.; Scott, Joseph P.; Wise, Harry

    2005-01-01

    When working with high concentrations of hydrogen peroxide, it is critical that the storage container be constructed of the proper materials, those which will not degrade to the extent that container breakdown or dangerous decomposition occurs. It has been suggested that the only materials that will safely contain the peroxide for a significant period of time are metals of stainless steel construction or aluminum use as High Test Hydrogen Peroxide (HTP) Containers. The stability and decomposition of HTP will be also discussed as well as various means suggested in the literature to minimize these problems. The dangers of excess oxygen generation are also touched upon.

  14. The study of hydrogen peroxide level under cisplatin action using genetically encoded sensor hyper

    NASA Astrophysics Data System (ADS)

    Belova, A. S.; Orlova, A. G.; Maslennikova, A. V.; Brilkina, A. A.; Balalaeva, I. V.; Antonova, N. O.; Mishina, N. M.; Shakhova, N. M.; Belousov, V. V.

    2014-03-01

    The aim of the work was to study the participation of hydrogen peroxide in reaction of cervical cancer cell line HeLa Kyoto on cisplatin action. Determination of hydrogen peroxide level was performed using genetically encoded fluorescent sensor HyPer2. The dependence of cell viability on cisplatin concentration was determined using MTT assay. Mechanisms of cell death as well as HyPer2 reaction was revealed by flow cytometry after 6-hours of incubation with cisplatin in different concentrations. Cisplatin used in low concentrations had no effect on hydrogen peroxide level in HeLa Kyoto cells. Increase of HyPer2 fluorescence was detected only after exposure with cisplatin in high concentration. The reaction was not the consequence of cell death.

  15. Hydrogen peroxide modified sodium titanates with improved sorption capabilities

    DOEpatents

    Nyman, May D [Albuquerque, NM; Hobbs, David T [North Augusta, SC

    2009-02-24

    The sorption capabilities (e.g., kinetics, selectivity, capacity) of the baseline monosodium titanate (MST) sorbent material currently being used to sequester Sr-90 and alpha-emitting radioisotopes at the Savannah River Site are significantly improved when treated with hydrogen peroxide; either during the original synthesis of MST, or, as a post-treatment step after the MST has been synthesized. It is expected that these peroxide-modified MST sorbent materials will have significantly improved sorption capabilities for non-radioactive cations found in industrial processes and waste streams.

  16. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    PubMed

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Hormetic concentrations of hydrogen peroxide but not ethanol induce cross-adaptation to different stresses in budding yeast.

    PubMed

    Semchyshyn, Halyna M

    2014-01-01

    The biphasic-dose response of microorganisms to hydrogen peroxide is a phenomenon of particular interest in hormesis research. In different animal models, the dose-response curve for ethanol is also nonlinear showing an inhibitory effect at high doses but a stimulatory effect at low doses. In this study, we observed the hormetic-dose response to ethanol in budding yeast S. cerevisiae. Cross-protection is a phenomenon in which exposure to mild stress results in the acquisition of cellular resistance to lethal stress induced by different factors. Since both hydrogen peroxide and ethanol at low concentrations were found to stimulate yeast colony growth, we evaluated the role of one substance in cell cross-adaptation to the other substance as well as some weak organic acid preservatives. This study demonstrates that, unlike ethanol, hydrogen peroxide at hormetic concentrations causes cross-resistance of S. cerevisiae to different stresses. The regulatory protein Yap1 plays an important role in the hormetic effects by low concentrations of either hydrogen peroxide or ethanol, and it is involved in the yeast cross-adaptation by low sublethal doses of hydrogen peroxide.

  18. Erythrocyte membrane stability to hydrogen peroxide is decreased in Alzheimer disease.

    PubMed

    Gilca, Marilena; Lixandru, Daniela; Gaman, Laura; Vîrgolici, Bogdana; Atanasiu, Valeriu; Stoian, Irina

    2014-01-01

    The brain and erythrocytes have similar susceptibility toward free radicals. Therefore, erythrocyte abnormalities might indicate the progression of the oxidative damage in Alzheimer disease (AD). The aim of this study was to investigate erythrocyte membrane stability and plasma antioxidant status in AD. Fasting blood samples (from 17 patients with AD and 14 healthy controls) were obtained and erythrocyte membrane stability against hydrogen peroxide and 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH), serum Trolox equivalent antioxidant capacity (TEAC), residual antioxidant activity or gap (GAP), erythrocyte catalase activity (CAT), erythrocyte superoxide dismutase (SOD) activity, erythrocyte nonproteic thiols, and total plasma thiols were determined. A significant decrease in erythrocyte membrane stability to hydrogen peroxide was found in AD patients when compared with controls (P<0.05). On the contrary, CAT activity (P<0.0001) and total plasma thiols (P<0.05) were increased in patients with AD compared with controls. Our results indicate that the most satisfactory measurement of the oxidative stress level in the blood of patients with AD is the erythrocyte membrane stability to hydrogen peroxide. Reduced erythrocyte membrane stability may be further evaluated as a potential peripheral marker for oxidative damage in AD.

  19. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    NASA Astrophysics Data System (ADS)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M.

    2015-09-01

    Liquid natural rubber (LNR) with molecular weight of lower than 105 and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristics of HLNR were analyzed with Termogravimetric Analysis (TGA).

  20. Efficacy of accelerated hydrogen peroxide® disinfectant on foot-and-mouth disease virus, swine vesicular disease virus and Senecavirus A.

    PubMed

    Hole, K; Ahmadpour, F; Krishnan, J; Stansfield, C; Copps, J; Nfon, C

    2017-03-01

    In a laboratory, disinfectants used to inactivate pathogens on contaminated surfaces and to prevent spread of diseases often have adverse side effects on personnel and the environment. It is, therefore, essential to find safer, fast-acting and yet effective disinfectants. The objective of this study was to evaluate an accelerated hydrogen peroxide ® (AHP ® )-based disinfectant against high consequence foreign animal disease pathogens such as foot-and-mouth disease virus (FMDV) and swine vesicular disease virus (SVDV), as well as Senecavirus A (SVA), which causes similar lesions as FMDV and SVDV. We tested varying dilutions and contact times of AHP against FMDV, SVDV and SVA by the standard US EPA and modified methods. AHP was effective against all three viruses, albeit at a higher concentration and double the manufacturer recommended contact time when testing wet films of SVDV. AHP is an effective disinfectant against FMDV, SVDV and SVA. AHP-based disinfectant can, therefore, be used in high containment laboratories working with FMDV, SVDV and related pathogens. © 2016 The Canadian Food Inspection Agency. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  1. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    NASA Astrophysics Data System (ADS)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  2. Effects of Martian Surface Materials on the Thermal Decomposition of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Archer, P. D., Jr.

    2017-01-01

    While hydrogen peroxide (H2O2) has been detected in the martian atmosphere, it has not been detected in surface materials. Since the Viking lander mission, we have sent instruments to Mars with the capability to detect H2O2. The Sample Analysis at Mars (SAM) instrument onboard the Curiosity Rover and Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander both detected water and oxygen releases from analyzed sediments but whether or not peroxide could be the source of these gases has not been investigated. We are investigating the possible presence of H2O2 in martian materials by analyzing Mars-relevant minerals that have been mixed with hydrogen peroxide using lab instruments configured as analogs to Mars mission instruments. The object of this research is to use lab instruments to find the effects of Mars analog minerals on hydrogen peroxide gas release temperatures, specifically gas releases of water and oxygen and also determine the effect of the peroxide on the minerals. Data that we get from the lab can then be compared to the data collected from Mars. The minerals hematite, siderite, San Carlos olivine, magnetite and nontronite were chosen as our Mars analog minerals. 20 mg of analog Mars minerals with 5µl of 50% H2O2, and were either run immediately or placed in a sealed tube for 2, 4, or 9 days to look for changes over time with two reps being done at each time step to determine repeatability. Each sample was heated from -60 degC to 500 degC at 20 degC/min and the evolved gases were monitored with a mass spectrometer. Each sample was also analyzed with an X-ray diffraction instrument to look for changes in mineralogy. Preliminary results show three potential outcomes: 1) peroxide has no effect on the sample (e.g., hematite), 2) the mineral is unaffected but catalyzes peroxide decomposition (magnetite, siderite), or 3) peroxide alters the mineral (pyrrhotite, San Carlos olivine).

  3. Effects of Martian Surface Materials on the Thermal Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Dame, Rudger H.; Archer, Paul Douglas; Hogancamp, Joanna C.

    2017-10-01

    While hydrogen peroxide (H2O2) has been detected in the martian atmosphere, it has not been detected in surface materials. Since the Viking lander mission, we have sent instruments to Mars with the capability to detect H2O2. The Sample Analysis at Mars (SAM) instrument onboard the Curiosity Rover and Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander both detected water and oxygen releases from analyzed sediments but whether or not peroxide could be the source of these gases has not been investigated. We are investigating the possible presence of H2O2 in martian materials by analyzing Mars-relevant minerals that have been mixed with hydrogen peroxide using lab instruments configured as analogs to Mars mission instruments.The object of this research is to use lab instruments to find the effects of Mars analog minerals on hydrogen peroxide gas release temperatures, specifically gas releases of water and oxygen and also determine the effect of the peroxide on the minerals. Data that we get from the lab can then be compared to the data collected from Mars.The minerals hematite, siderite, San Carlos olivine, magnetite and nontronite were chosen as our Mars analog minerals. ~20 mg of analog Mars minerals with 5µl of 50% H2O2, and were either run immediately or placed in a sealed tube for 2, 4, or 9 days to look for changes over time with two reps being done at each time step to determine repeatability. Each sample was heated from -60 °C to 500 °C at 20 °C/min and the evolved gases were monitored with a mass spectrometer. Each sample was also analyzed with an X-ray diffraction instrument to look for changes in mineralogy.Preliminary results show three potential outcomes: 1) peroxide has no effect on the sample (e.g., hematite), 2) the mineral is unaffected but catalyzes peroxide decomposition (magnetite, siderite), or 3) peroxide alters the mineral (pyrrhotite, San Carlos olivine).

  4. Fluorescence hydrogen peroxide probe based on a microstructured polymer optical fiber modified with a titanium dioxide film.

    PubMed

    Li, Dongdong; Wang, Lili

    2010-05-01

    A highly sensitive microstructured polymer optical fiber (MPOF) probe for hydrogen peroxide was made by forming a rhodamine 6G-doped titanium dioxide film on the side walls of array holes in an MPOF. It was found that hydrogen peroxide only has a response to the MPOF probe in a certain concentration of potassium iodide in sulfuric acid solution. The calibration graph of fluorescence intensity versus hydrogen peroxide concentration is linear in the range of 1.6 x 10(-7) mol/L to 9.6 x 10(-5) mol/L. The method, with high sensitivity and a wide linear range, has been applied to the determination of trace amounts of hydrogen peroxide in a few real samples, such as rain water and contact lens disinfectant, with satisfactory results.

  5. Low-Temperature Decontamination with Hydrogen Peroxide or Chlorine Dioxide for Space Applications

    PubMed Central

    Macken, S.; Giri, K.; Walker, J. T.; Bennett, A. M.

    2012-01-01

    The currently used microbial decontamination method for spacecraft and components uses dry-heat microbial reduction at temperatures of >110°C for extended periods to prevent the contamination of extraplanetary destinations. This process is effective and reproducible, but it is also long and costly and precludes the use of heat-labile materials. The need for an alternative to dry-heat microbial reduction has been identified by space agencies. Investigations assessing the biological efficacy of two gaseous decontamination technologies, vapor hydrogen peroxide (Steris) and chlorine dioxide (ClorDiSys), were undertaken in a 20-m3 exposure chamber. Five spore-forming Bacillus spp. were exposed on stainless steel coupons to vaporized hydrogen peroxide and chlorine dioxide gas. Exposure for 20 min to vapor hydrogen peroxide resulted in 6- and 5-log reductions in the recovery of Bacillus atrophaeus and Geobacillus stearothermophilus, respectively. However, in comparison, chlorine dioxide required an exposure period of 60 min to reduce both B. atrophaeus and G. stearothermophilus by 5 logs. Of the three other Bacillus spp. tested, Bacillus thuringiensis proved the most resistant to hydrogen peroxide and chlorine dioxide with D values of 175.4 s and 6.6 h, respectively. Both low-temperature decontamination technologies proved effective at reducing the Bacillus spp. tested within the exposure ranges by over 5 logs, with the exception of B. thuringiensis, which was more resistant to both technologies. These results indicate that a review of the indicator organism choice and loading could provide a more appropriate and realistic challenge for the sterilization procedures used in the space industry. PMID:22492450

  6. Oxygen embolism after hydrogen peroxide irrigation of a vulvar abscess.

    PubMed

    Haller, G; Faltin-Traub, E; Faltin, D; Kern, C

    2002-04-01

    We report a case of venous oxygen embolism in a 33-yr-old healthy woman after irrigation of a vulvar abscess with 25 ml of 3% hydrogen peroxide. Venous oxygen embolism was diagnosed by the development of sudden hypoxia associated with a decrease in end-tidal carbon dioxide concentration from 5.3 kPa to 3.2 kPa, and a 'mill-wheel' sound on cardiac auscultation soon after injection of the solution. The patient responded to corrective treatment including the Trendelenburg position and 100% oxygen. She made an uneventful recovery. We discuss the possible causative mechanism of this embolism, the different diagnostic methods, and the controversial aspects of available treatments. We emphasize that hydrogen peroxide is a dangerous and unsuitable agent for routine wound irrigation and debridement.

  7. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    NASA Astrophysics Data System (ADS)

    Locke, Bruce R.; Shih, Kai-Yuan

    2011-06-01

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  8. An enzyme-chromogenic surface plasmon resonance biosensor probe for hydrogen peroxide determination using a modified Trinder's reagent.

    PubMed

    Nakamura, Hideaki; Mogi, Yotaro; Akimoto, Takuo; Naemura, Kiyoshi; Kato, Teru; Yano, Kazuyoshi; Karube, Isao

    2008-11-15

    An absorption-based surface plasmon resonance (SPR(Abs)) biosensor probe has been developed for simple and reproducible measurements of hydrogen peroxide using a modified Trinder's reagent (a chromogenic reagent). The reagent enabled the determination of the hydrogen peroxide concentration by the development of deep color dyes (lambda(max)=630 nm) through the oxidative coupling reaction with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethylaniline sodium salt monohydrate (MAOS; C(13)H(20)NNaO(4)S.H(2)O) and 4-aminoantipyrine (4-AA) in the presence of hydrogen peroxide and horseradish peroxidase (HRP). In the present study, urea as an adduct of hydrogen peroxide for color development could be omitted from the measurement solution. The measurement solution containing 5mM hydrogen peroxide was deeply colored at a high absorbance value calculated as 46.7cm(-1) and was directly applied to the SPR(Abs) biosensing without dilution. The measurement was simply performed by dropping the measurement solution onto the surface of the SPR sensor probe, and the SPR(Abs) biosensor response to hydrogen peroxide was obtained as a reflectivity change in the SPR spectrum. After investigation of the pH profiles in the SPR(Abs) biosensor probe, a linear calibration curve was obtained between 1.0 and 50mM hydrogen peroxide (r=0.991, six points, average of relative standard deviation; 0.152%, n=3) with a detection limit of 0.5mM. To examine the applicability of this SPR(Abs) biosensor probe, 20mM glucose detection using glucose oxidase was also confirmed without influence of the refractive index in the measurement solution. Thus, the SPR(Abs) biosensor probe employing the modified Trinder's reagent demonstrated applicability to other analyte biosensing tools.

  9. Melatonin protects against clomiphene citrate-induced generation of hydrogen peroxide and morphological apoptotic changes in rat eggs.

    PubMed

    Tripathi, Anima; PremKumar, Karuppanan V; Pandey, Ashutosh N; Khatun, Sabana; Mishra, Surabhi Kirti; Shrivastav, Tulsidas G; Chaube, Shail K

    2011-09-30

    The present study was aimed to determine whether clomiphene citrate-induces generation of hydrogen peroxide in ovary, if so, whether melatonin could scavenge hydrogen peroxide and protect against clomiphene citrate-induced morphological apoptotic changes in rat eggs. For this purpose, forty five sexually immature female rats were given single intramuscular injection of 10 IU pregnant mare's serum gonadotropin for 48 h followed by single injections of 10 IU human chorionic gonadotropin and clomiphene citrate (10 mg/kg bw) with or without melatonin (20 mg/kg bw) for 16 h. The histology of ovary, ovulation rate, hydrogen peroxide concentration and catalase activity in ovary and morphological changes in ovulated eggs were analyzed. Co-administration of clomiphene citrate along with human chorionic gonadotropin significantly increased hydrogen peroxide concentration and inhibited catalase activity in ovary, inhibited ovulation rate and induced egg apoptosis. Supplementation of melatonin reduced hydrogen peroxide concentration and increased catalase activity in the ovary, delayed meiotic cell cycle progression in follicular oocytes as well as in ovulated eggs since extrusion of first polar body was still in progress even after ovulation and protected against clomiphene citrate-induced egg apoptosis. These results clearly suggest that the melatonin reduces oxidative stress by scavenging hydrogen peroxide produced in the ovary after clomiphene citrate treatment, slows down meiotic cell cycle progression in eggs and protects against clomiphene citrate-induced apoptosis in rat eggs. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A high-throughput microtiter plate based method for the determination of peracetic acid and hydrogen peroxide.

    PubMed

    Putt, Karson S; Pugh, Randall B

    2013-01-01

    Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution.

  11. A High-Throughput Microtiter Plate Based Method for the Determination of Peracetic Acid and Hydrogen Peroxide

    PubMed Central

    Putt, Karson S.; Pugh, Randall B.

    2013-01-01

    Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution. PMID:24260173

  12. Determination of berberine in pharmaceutical preparations using acidic hydrogen peroxide-nitrite chemiluminescence system.

    PubMed

    Liang, Yao-Dong; Yu, Chun-Xia

    2013-03-01

    A stronger chemiluminescence (CL) was observed when hydrogen peroxide was mixed with nitrite and berberine in sulfuric acid solution. The stronger CL originated from peroxidation of berberine by peroxynitrous acid that was synthesized online by the mixing of acidic hydrogen peroxide solution with nitrite solution in a flow system. The emitting species was excited state oxyberberine, a peroxidized product of berberine. Based on the stronger CL, a flow injection CL method for the determination of berberine was proposed. Under optimum experimental conditions, the stronger CL intensity was linearly related to the concentration of berberine over the range of 2.0 × 10(-7) -2.0 × 10(-5) mol L(-1) . The limit of detection (s/n = 3) was 6.2 × 10(-8) mol L(-1) . The proposed method has been evaluated by analyzing berberine in pharmaceutical preparations. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Hydrogenation of liquid natural rubber via diimide reduction in hydrazine hydrate/hydrogen peroxide system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, Muhammad Jefri Mohd; Jamaluddin, Naharullah; Abdullah, Ibrahim

    Liquid natural rubber (LNR) with molecular weight of lower than 10{sup 5} and shorter polymeric chain than natural rubber was prepared. LNR was then hydrogenated via diimide reduction by oxidation of hydrazine hydrate with hydrogen peroxide. The unsaturated units of the rubber were converted into saturated hydrocarbon to strengthen the backbone of the polymer so it was able to resist thermal degradation. The results indicated that hydrogenation degree of the product (HLNR) could be extended to 91.2% conversion under appropriate conditions. The hydrogenated LNR (HLNR) was characterized using Fourier-Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. The physical characteristicsmore » of HLNR were analyzed with Termogravimetric Analysis (TGA)« less

  14. Methods and apparatus for the on-site production of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Buschmann, Wayne E. (Inventor); James, Patrick I. (Inventor)

    2010-01-01

    Methods, apparatus, and applications for the on-site production of hydrogen peroxide are described. An embodiment of the apparatus comprises at least one anolyte chamber coupled to at least one anode, at least one catholyte chamber, wherein the at least one catholyte chamber is coupled to at least one cathode, at least one anode membrane and at least one cathode membrane, wherein the anode membrane is adjacent to the at least one anode, wherein the cathode membrane is adjacent to the at least one cathode, at least one central chamber disposed between the at least one anolyte chamber and the at least one catholyte chamber. Hydrogen peroxide is produced by reduction of an oxygen-containing gas at the cathode.

  15. Oxidizer Selection for the ISTAR Program (Liquid Oxygen versus Hydrogen Peroxide)

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene; Koelbl, Mary E. (Technical Monitor)

    2002-01-01

    This paper discusses a study of two alternate oxidizers, liquid oxygen and hydrogen peroxide, for use in a rocket based combined cycle (RBCC) demonstrator vehicle. The flight vehicle is baselined as an airlaunched self-powered Mach 0.7 to 7 demonstration of an RBCC engine through all or its air breathing propulsion modes. Selection of an alternate oxidizer has the potential to lower overall vehicle size, system complexity/ cost and ultimately the total program risk. This trade study examined the oxidizer selection effects upon the overall vehicle performance, safety and operations. After consideration of all the technical and programmatic details available at this time, 90% hydrogen peroxide was selected over liquid oxygen for use in this program.

  16. Reinvestigation of the Henry's law constant for hydrogen peroxide with temperature and acidity variation.

    PubMed

    Huang, Daoming; Chen, Zhongming

    2010-01-01

    Hydrogen peroxide is not only an important oxidant in itself; it also serves as both sink and temporary reservoir for other important oxidants including HOx (OH and HO2) radicals and O3 in the atmosphere. Its partitioning between gas and aqueous phases in the atmosphere, usually described by its Henry's law constant (K(H)), significantly influences its role in atmospheric processes. Large discrepancies between the K(H) values reported in previous work, however, have created uncertainty for atmospheric modelers. Based on our newly developed online instrumentation, we have re-determined the temperature and acidity dependence of K(H) for hydrogen peroxide at an air pressure of (0.960 +/- 0.013) atm (1 atm = 1.01325 x 10(5) Pa). The results indicated that the temperature dependence of K(H) for hydrogen peroxide fits to the Van't Hoff equation form, expressed as lnK(H) = a/T - b, and a = -deltaH/R, where K(H) is in M/atm (M is mol/L), T is in degrees Kelvin, R is the ideal gas constant, and deltaH is the standard heat of solution. For acidity dependence, results demonstrated that the K(H) value of hydrogen peroxide appeared to have no obvious dependence on decreasing pH level (from pH 7 to pH 1). Combining the dependence of both temperature and acidity, the obtained a and b were 7024 +/- 138 and 11.97 +/- 0.48, respectively, deltaH was (58.40 +/- 1.15) kJ/(K x mol), and the uncertainties represent sigma. Our determined K(H) values for hydrogen peroxide will therefore be of great use in atmospheric models.

  17. Chronic toxicity of hydrogen peroxide to Daphnia magna in a continuous exposure, flow-through test system

    USGS Publications Warehouse

    Meinertz, J.R.; Greseth, Shari L.; Gaikowski, M.P.; Schmidt, L.J.

    2008-01-01

    A flow-through, continuous exposure test system was developed to expose Daphnia magna to an unstable compound. 35% Perox-Aid?? is a specially formulated hydrogen peroxide (a highly oxidative chemical) product approved for use in U.S. aquaculture and therefore has the potential to be released from aquaculture facilities and pose a risk to aquatic invertebrates. The study objective was to assess the effects of 35% Perox-Aid?? on an aquatic invertebrate by evaluating the survival, growth, production, and gender ratio of progeny from a representative aquatic invertebrate continuously exposed to 35% Perox-Aid??. The study design consisted of 6 treatment groups (10 test chambers each) with target hydrogen peroxide concentrations of 0.0, 0.32, 0.63, 1.25, 2.5, and 5.0??mg L- 1. The study was initiated with < 24-h-old Daphnia (1 daphnid per chamber) that were exposed to hydrogen peroxide for 21??days. Hydrogen peroxide concentrations ??? 1.25??mg L- 1 had no significant effect on Daphnia time to death compared to controls and no significant effect on the time to first brood production and the number of broods produced. Concentrations ??? 0.63??mg L- 1 had no significant effect on the total number of young produced. Concentrations ??? 0.32??mg L- 1 had a negative effect on Daphnia growth. Hydrogen peroxide had no significant effect on the gender ratio of young produced. All second generation Daphnia were female. A continuous discharge of hydrogen peroxide into aquatic ecosystems is not likely to affect cladocerans if the concentration is maintained at ??? 0.63??mg L- 1 for less than 21??days.

  18. Sonochemical and hydrodynamic cavitation reactors for laccase/hydrogen peroxide cotton bleaching.

    PubMed

    Gonçalves, Idalina; Martins, Madalena; Loureiro, Ana; Gomes, Andreia; Cavaco-Paulo, Artur; Silva, Carla

    2014-03-01

    The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase-hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz). The optimal operating conditions for bleaching were chosen considering the highest levels of hydroxyl radical production and the lowest energy input. The capacity to produce hydroxyl radicals by hydrodynamic cavitation was also assessed in two homogenizers, EmulsiFlex®-C3 and APV-2000. Laccase nanoemulsions were produced by high pressure homogenization using BSA (bovine serum albumin) as emulsifier. The bleaching efficiency of these formulations was tested and the results showed higher whiteness values when compared to free laccase. The combination of laccase-hydrogen peroxide process with ultrasound energy produced higher whiteness levels than those obtained by conventional methods. The amount of hydrogen peroxide was reduced 50% as well as the energy consumption in terms of temperature (reduction of 40 °C) and operating time (reduction of 90 min). Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Effects of Hydrogen Peroxide on Common Aviation Textiles

    DTIC Science & Technology

    2009-08-01

    efficacious (complete kill of 106 CFU of the spore forming Geobacillus stearothermophilus ) in a narrow-body aircraft fuselage (3), as well as wide-body...disinfectant/ sterilant for transportation vehicles like aircraft, buses, subway trains, ambulances, etc. Although the biological efficacy of STERIS...hydrogen peroxide (VHP)1 technology is of particular interest due to rapid sterilization , easy usage, intrinsic environmental friendliness (i .e

  20. [PLASMALEMMAL ION TRANSPORT IN POLLEN TUBES IS REGULATED BY HYDROGEN PEROXIDE].

    PubMed

    Maksimov, N M; Breygina, M A; Yermakov, I P

    2015-01-01

    Pollen tube growth is a key step in the life cycle of seed plants, which defines the success of sexual reproduction. One of the most important contributions to this process is made by ion transport through plasmalemma, which is tightly coordinated in time and space. Different classes of signaling molecules are involved in the regulation of transmembrane ion transport including reactive oxygen species as it has been recently demonstrated. Here, using subprotoplasts isolated from pollen tubes, we have demonstrated a connection between hydrogen peroxide, on one side, and two groups of targets on the plasma membrane, on the other side: nifedipine-sensitive Ca(2+)-permeable channels and transport systems controlling membrane potential. H2O2 interaction with these targets causes the increase in cytoplasmic Ca2+ concentration and plasmalemma hyperpolarization. One of the consequences of target modification was acceleration of cell wall regeneration.

  1. Development of a sterilizing in-place application for a production machine using Vaporized Hydrogen Peroxide.

    PubMed

    Mau, T; Hartmann, V; Burmeister, J; Langguth, P; Häusler, H

    2004-01-01

    The use of steam in sterilization processes is limited by the implementation of heat-sensitive components inside the machines to be sterilized. Alternative low-temperature sterilization methods need to be found and their suitability evaluated. Vaporized Hydrogen Peroxide (VHP) technology was adapted for a production machine consisting of highly sensitive pressure sensors and thermo-labile air tube systems. This new kind of "cold" surface sterilization, known from the Barrier Isolator Technology, is based on the controlled release of hydrogen peroxide vapour into sealed enclosures. A mobile VHP generator was used to generate the hydrogen peroxide vapour. The unit was combined with the air conduction system of the production machine. Terminal vacuum pumps were installed to distribute the gas within the production machine and for its elimination. In order to control the sterilization process, different physical process monitors were incorporated. The validation of the process was based on biological indicators (Geobacillus stearothermophilus). The Limited Spearman Karber Method (LSKM) was used to statistically evaluate the sterilization process. The results show that it is possible to sterilize surfaces in a complex tube system with the use of gaseous hydrogen peroxide. A total microbial reduction of 6 log units was reached.

  2. Vapor Hydrogen Peroxide Sterilization Certification

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Chung, Shirley; Barengoltz, Jack

    For interplanetary missions landing on a planet of potential biological interest, United States NASA planetary protection currently requires that the flight system must be assembled, tested and ultimately launched with the intent of minimizing the bioload taken to and deposited on the planet. Currently the only NASA approved microbial reduction method is dry heat sterilization process. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements. The VHP sterilization technology is widely used by the medical industry, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal of our study is determine the minimum VHP process conditions for PP acceptable microbial reduction levels. A series of experiments were conducted using Geobacillus stearothermophilus to determine VHP process parameters that provided significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters -hydrogen peroxide concentration, number of pulses, and exposure duration -the investigation also considered the possible effect of environmental pa-rameters. Temperature, relative humidity, and material substrate effects on lethality were also studied. Based on the results, a most conservative D value was recommended. This recom-mended D value was also validated using VHP "hardy" strains that were isolated from clean-rooms and environmental populations collected from spacecraft relevant areas. The efficiency of VHP at ambient condition as well as VHP material compatibility will also be

  3. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass.

    PubMed

    Li, Yinping; Cui, Jiefen; Zhang, Gaoli; Liu, Zhengkun; Guan, Huashi; Hwang, Hueymin; Aker, Winfred G; Wang, Peng

    2016-08-01

    The seaweed Ulva prolifera, distributed in inter-tidal zones worldwide, contains a large percentage of cellulosic materials. The technical feasibility of using U. prolifera residue (UPR) obtained after extraction of polysaccharides as a renewable energy resource was investigated. An environment-friendly and economical pretreatment process was conducted using hydrogen peroxide. The hydrogen peroxide pretreatment improved the efficiency of enzymatic hydrolysis. The resulting yield of reducing sugar reached a maximum of 0.42g/g UPR under the optimal pretreatment condition (hydrogen peroxide 0.2%, 50°C, pH 4.0, 12h). The rate of conversion of reducing sugar in the concentrated hydrolysates to bioethanol reached 31.4% by Saccharomyces cerevisiae fermentation, which corresponds to 61.7% of the theoretical maximum yield. Compared with other reported traditional processes on Ulva biomass, the reducing sugar and bioethanol yield are substantially higher. Thus, hydrogen peroxide pretreatment is an effective enhancement of the process of bioethanol production from the seaweed U. prolifera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A PORTABLE MICROREACTOR SYSTEM TO SYNTHESIZE HYDROGEN PEROXIDE - PHASE I

    EPA Science Inventory

    In the event that vehicles of buildings become contaminated by hazardous chemical or biological materials, a well-studied and effective decontaminant is hydrogen peroxide vapor (HPV).  Unfortunately, the current technology for generating HPV requires 35 weight percent hydro...

  5. The impact of iron on the bleaching efficacy of hydrogen peroxide in liquid whey systems.

    PubMed

    Jervis, Suzanne M; Drake, MaryAnne

    2013-02-01

    Whey is a value-added product that is utilized in many food and beverage applications for its nutritional and functional properties. Whey and whey products are generally utilized in dried ingredient applications. One of the primary sources of whey is from colored Cheddar cheese manufacture that contains the pigment annatto resulting in a characteristic yellow colored Cheddar cheese. The colorant is also present in the liquid cheese whey and must be bleached so that it can be used in ingredient applications without imparting a color. Hydrogen peroxide and benzoyl peroxide are 2 commercially approved chemical bleaching agents for liquid whey. Concerns regarding bleaching efficacy, off-flavor development, and functionality changes have been previously reported for whey bleached with hydrogen peroxide and benzoyl peroxide. It is very important for the dairy industry to understand how bleaching can impact flavor and functionality of dried ingredients. Currently, the precise mechanisms of off-flavor development and functionality changes are not entirely understood. Iron reactions in a bleached liquid whey system may play a key role. Reactions between iron and hydrogen peroxide have been widely studied since the reaction between these 2 relatively stable species can cause great destruction in biological and chemical systems. The actual mechanism of the reaction of iron with hydrogen peroxide has been a controversy in the chemistry and biological community. The precise mechanism for a given reaction can vary greatly based upon the concentration of reactants, temperature, pH, and addition of biological material. In this review, some hypotheses for the mechanisms of iron reactions that may occur in fluid whey that may impact bleaching efficacy, off-flavor development, and changes in functionality are presented. Cheese whey is bleached to remove residual carotenoid cheese colorant. Concerns regarding bleaching efficacy, off-flavor development, and functionality changes have

  6. Decontamination assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen peroxide gas generator.

    PubMed

    Rogers, J V; Sabourin, C L K; Choi, Y W; Richter, W R; Rudnicki, D C; Riggs, K B; Taylor, M L; Chang, J

    2005-01-01

    To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Bacillus anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to > or =1000 ppm hydrogen peroxide gas for 20 min. Hydrogen peroxide exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials except G. stearothermophilus on industrial carpet. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with both surrogates. The effectiveness of gaseous hydrogen peroxide on the growth of biological indicators and spore strips was evaluated in parallel as a qualitative assessment of decontamination. At 1 and 7 days postexposure, decontaminated biological indicators and spore strips exhibited no growth, while the nondecontaminated samples displayed growth. Significant differences in decontamination efficacy of hydrogen peroxide gas on porous and nonporous surfaces were observed when comparing the mean log reduction in B. anthracis spores with B. subtilis and G. stearothermophilus spores. These results provide comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using hydrogen peroxide gas.

  7. Sensory and Functionality Differences of Whey Protein Isolate Bleached by Hydrogen or Benzoyl Peroxide.

    PubMed

    Smith, Tucker J; Foegeding, E Allen; Drake, MaryAnne

    2015-10-01

    Whey protein is a highly functional food ingredient used in a wide variety of applications. A large portion of fluid whey produced in the United States is derived from Cheddar cheese manufacture and contains annatto (norbixin), and therefore must be bleached. The objective of this study was to compare sensory and functionality differences between whey protein isolate (WPI) bleached by benzoyl peroxide (BP) or hydrogen peroxide (HP). HP and BP bleached WPI and unbleached controls were manufactured in triplicate. Descriptive sensory analysis and gas chromatography-mass spectrometry were conducted to determine flavor differences between treatments. Functionality differences were evaluated by measurement of foam stability, protein solubility, SDS-PAGE, and effect of NaCl concentration on gelation relative to an unbleached control. HP bleached WPI had higher concentrations of lipid oxidation and sulfur containing volatile compounds than both BP and unbleached WPI (P < 0.05). HP bleached WPI was characterized by high aroma intensity, cardboard, cabbage, and fatty flavors, while BP bleached WPI was differentiated by low bitter taste. Overrun and yield stress were not different among WPI (P < 0.05). Soluble protein loss at pH 4.6 of WPI decreased by bleaching with either hydrogen peroxide or benzoyl peroxide (P < 0.05), and the heat stability of WPI was also distinct among WPI (P < 0.05). SDS PAGE results suggested that bleaching of whey with either BP or HP resulted in protein degradation, which likely contributed to functionality differences. These results demonstrate that bleaching has flavor effects as well as effects on many of the functionality characteristics of whey proteins. Whey protein isolate (WPI) is often used for its functional properties, but the effect of oxidative bleaching chemicals on the functional properties of WPI is not known. This study identifies the effects of hydrogen peroxide and benzoyl peroxide on functional and flavor characteristics of WPI

  8. 'No touch' technologies for environmental decontamination: focus on ultraviolet devices and hydrogen peroxide systems.

    PubMed

    Weber, David J; Kanamori, Hajime; Rutala, William A

    2016-08-01

    This article reviews 'no touch' methods for disinfection of the contaminated surface environment of hospitalized patients' rooms. The focus is on studies that assessed the effectiveness of ultraviolet (UV) light devices, hydrogen peroxide systems, and self-disinfecting surfaces to reduce healthcare-associated infections (HAIs). The contaminated surface environment in hospitals plays an important role in the transmission of several key nosocomial pathogens including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., Clostridium difficile, Acinetobacter spp., and norovirus. Multiple clinical trials have now demonstrated the effectiveness of UV light devices and hydrogen peroxide systems to reduce HAIs. A limited number of studies have suggested that 'self-disinfecting' surfaces may also decrease HAIs. Many studies have demonstrated that terminal cleaning and disinfection with germicides is often inadequate and leaves environmental surfaces contaminated with important nosocomial pathogens. 'No touch' methods of room decontamination (i.e., UV devices and hydrogen peroxide systems) have been demonstrated to reduce key nosocomial pathogens on inoculated test surfaces and on environmental surfaces in actual patient rooms. Further UV devices and hydrogen peroxide systems have been demonstrated to reduce HAI. A validated 'no touch' device or system should be used for terminal room disinfection following discharge of patients on contact precautions. The use of a 'self-disinfecting' surface to reduce HAI has not been convincingly demonstrated.

  9. A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide.

    PubMed

    Guascito, M R; Filippo, E; Malitesta, C; Manno, D; Serra, A; Turco, A

    2008-12-01

    A new amperometric, nanostructured sensor for the analytical determination of hydrogen peroxide is proposed. This sensor was constructed by immobilizing silver nanoparticles in a polyvinyl alcohol (PVA) film on a platinum electrode, which was performed by direct drop-casting silver nanoparticles that were capped in a PVA colloidal suspension. UV-vis spectroscopy, X-ray diffraction and transmission electron microscopy were used to give a complete characterization of the nanostructured film. Cyclic voltammetry experiments yielded evidence that silver nanoparticles facilitate hydrogen peroxide reduction, showing excellent catalytic activity. Moreover, the cronoamperometric response of modified sensors was dependent on nanoparticle lifetime. Experiments were performed, using freshly prepared solutions, after 4 and 8 days. Results concerning the quantitative analysis of hydrogen peroxide, in terms of detection limit, linear range, sensitivity and standard deviation (STD), are discussed for each tested sensor type. Utilization of two different linear ranges (40 microM to 6mM and 1.25 microM to 1.0mM) enabled the assessment of concentration intervals having up to three orders of magnitude. Moreover, the electrode made using a 4-day-old solution showed the maximal sensitivity of 128 nA microM(-1)(4090 nA microM(-1)cm(-2)), yielding a limit of detection of 1 microuM and STD of 2.5 microAmM(-1). All of these analytical parameters make the constructed sensors suitable for peroxide determination in aqueous solution.

  10. Methyltrioxorhenium-catalyzed epoxidation of homoallylic alcohols with hydrogen peroxide.

    PubMed

    Yamazaki, Shigekazu

    2012-11-02

    Homoallylic alcohols were efficiently converted to the corresponding 3,4-epoxy alcohols in excellent yields by methyltrioxorhenium (MTO)-catalyzed epoxidation with aqueous hydrogen peroxide as the terminal oxidant and 3-methylpyrazole (10 mol %) as an additive. The epoxidations of homoallylic alcohols proceeded under organic solvent-free conditions faster than those in dichloromethane.

  11. A novel amperometric biosensor based on artichoke (Cynara scolymus L.) tissue homogenate immobilized in gelatin for hydrogen peroxide detection.

    PubMed

    Oztürk, G; Ertaş, F N; Akyilmaz, E; Dinçkaya, E; Tural, H

    2004-01-01

    A biosensor for specific determination of hydrogen peroxide was developed by using homogenized artichoke (Cynara scolymus L.) tissue in combination with a dissolved oxygen probe and applied in determination of hydrogen peroxide in milk samples. Artichoke tissue, which has catalase activity, was immobilized with gelatine by means of glutaraldehyde and fixed on a pretreated teflon membrane. The electrode response was maximum when 0.05 M phosphate buffer was used at pH 7.0 and at 30 degrees C. Upon addition of hydrogen peroxide, the electrode gives a linear response in a concentration range of 5.0-50 x 10(-5) M with a response time of 3 min. The method was also applied to the determination of hydrogen peroxide in milk samples.

  12. Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum.

    PubMed

    Flores-Cruz, Zomary; Allen, Caitilyn

    2011-09-01

    The plant pathogen Ralstonia solanacearum, which causes bacterial wilt disease, is exposed to reactive oxygen species (ROS) during tomato infection and expresses diverse oxidative stress response (OSR) genes during midstage disease on tomato. The R. solanacearum genome predicts that the bacterium produces multiple and redundant ROS-scavenging enzymes but only one known oxidative stress response regulator, OxyR. An R. solanacearum oxyR mutant had no detectable catalase activity, did not grow in the presence of 250 μM hydrogen peroxide, and grew poorly in the oxidative environment of solid rich media. This phenotype was rescued by the addition of exogenous catalase, suggesting that oxyR is essential for the hydrogen peroxide stress response. Unexpectedly, the oxyR mutant strain grew better than the wild type in the presence of the superoxide generator paraquat. Gene expression studies indicated that katE, kaG, ahpC1, grxC, and oxyR itself were each differentially expressed in the oxyR mutant background and in response to hydrogen peroxide, suggesting that oxyR is necessary for hydrogen peroxide-inducible gene expression. Additional OSR genes were differentially regulated in response to hydrogen peroxide alone. The virulence of the oxyR mutant strain was significantly reduced in both tomato and tobacco host plants, demonstrating that R. solanacearum is exposed to inhibitory concentrations of ROS in planta and that OxyR-mediated responses to ROS during plant pathogenesis are important for R. solanacearum host adaptation and virulence.

  13. Efficacy of hydrogen-peroxide-based mouthwash in altering enamel color.

    PubMed

    Jaime, Ivone Maria de Lima; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany; Turssi, Cecilia Pedroso; Amaral, Flávia Lucisano Botelho

    2014-02-01

    To analyze the efficacy of Colgate Plax Whitening mouthwash containing 1.5% hydrogen peroxide. 30 enamel fragments, obtained from the proximal surfaces of human third molars were darkened with Orange II methyl orange. The fragments were divided into three groups according to the type of bleaching agent applied (n = 10): (1) 10% carbamide peroxide gel (positive control, PC) was applied for 2 hours/day for 28 days; (2) a solution containing 1.5% hydrogen peroxide (Plax) was applied for 4 minutes once a day for 28 days, and (3) no bleaching agent, kept in artificial saliva (negative control, AS). The specimens were kept in artificial saliva between treatment intervals. The specimens were photographed before darkening (baseline), after darkening and before lightening and on the 28th day of whitening. Afterwards, they were analyzed with color measurement software using the CIELab system. The data for the L*, a* and b* parameters were submitted to two-way ANOVA with repeated measures. The values of deltaL *, deltaa *, deltab * and deltaE* were calculated using two procedures: (1) darkened versus original, and (2) bleached versus darkened. This data was submitted to the one-way ANOVA test. Multiple comparisons were conducted using the Tukey test (alpha = 0.05). When the specimens were subjected to bleaching agents, there was a significant increase in the brightness (L* parameter) of the enamel exposed to the gel and also to the bleaching solution. However, higher brightness was observed for the PC (gel) group. As for the axis a* parameters, there were no significant differences between the bleaching products. Regarding the axis b* parameters, the PC group underwent major changes (indicating a color change toward blue chroma), statistically greater than those of the Plax group. After bleaching, there was a significantly greater color change (deltaE*) in the PC group. Although the Plax solution caused a color change, it was less than that produced by the gel. The slightest

  14. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    PubMed

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effect of ethanol on hydrogen peroxide-induced AMPK phosphorylation.

    PubMed

    Liangpunsakul, Suthat; Wou, Sung-Eun; Zeng, Yan; Ross, Ruth A; Jayaram, Hiremagalur N; Crabb, David W

    2008-12-01

    AMP-activated protein kinase (AMPK) responds to oxidative stress. Previous work has shown that ethanol treatment of cultured hepatoma cells and of mice inhibited the activity of AMPK and reduced the amount of AMPK protein. Ethanol generates oxidative stress in the liver. Since AMPK is activated by reactive oxygen species, it seems paradoxical that ethanol would inhibit AMPK in the hepatoma cells. In an attempt to understand the mechanism whereby ethanol inhibits AMPK, we studied the effect of ethanol on AMPK activation by exogenous hydrogen peroxide. The effects of ethanol, hydrogen peroxide, and inhibitors of protein phosphatase 2A (PP2A) [either okadaic acid or PP2A small interference RNA (siRNA)] on AMPK phosphorylation and activity were examined in rat hepatoma cells (H4IIEC3) and HeLa cells. In H4IIEC3 cells, hydrogen peroxide (H(2)O(2), 1 mM) transiently increased the level of phospho-AMPK to 1.5-fold over control (P < 0.05). Similar findings were observed in HeLa cells, which do not express the upstream AMPK kinase, LKB1. H(2)O(2) markedly increased the phosphorylation of LKB1 in H4IIEC3 cells. Ethanol significantly inhibited the phosphorylation of PKC-zeta, LKB1, and AMPK caused by exposure to H(2)O(2). This inhibitory effect of ethanol required its metabolism. More importantly, the inhibitory effects of ethanol on H(2)O(2)-induced AMPK phosphorylation were attenuated by the presence of the PP2A inhibitor, okadaic acid, or PP2A siRNA. The inhibitory effect of ethanol on AMPK phosphorylation is exerted through the inhibition of PKC-zeta and LKB1 phosphorylation and the activation of PP2A.

  16. Efficacy of hydrogen peroxide for treating saprolegniasis in channel catfish

    USGS Publications Warehouse

    Howe, G.E.; Gingerich, W.H.; Dawson, V.K.; Olson, J.J.

    1999-01-01

    Hatchery-reared fish and their eggs are commonly afflicted with saprolegniasis, a fungal disease that can cause significant losses in production. Fish culturists need safe and effective fungicides to minimize losses and meet production demands. The efficacy of hydrogen peroxide was evaluated for preventing or controlling mortality associated with saprolegniasis in channel catfish Ictalurus punctatus. Saprolegniasis was systematically induced in channel catfish so various therapies could be evaluated in a controlled laboratory environment. Both prophylactic and therapeutic hydrogen peroxide bath treatments of 50, 100, and 150 ??L/L for 1 h were administered every other day for seven total treatments. All untreated positive control fish died of saprolegniasis during the prophylactic and therapeutic tests. Hydrogen peroxide treatments of 150 ??L/L were harmful (relative to lower concentrations) to test fish and resulted in 73-95% mortality. Mortality was attributed to a combination of abrasion, temperature, chemical treatment, and disease stressors. Treatments of 100 ??L/L were less harmful (relatively) but also appeared to contribute to mortality (60-79%). These treatments, however, significantly reduced the incidence of mortality and infection compared with those observed for fish of the positive control or 150-??L/L treatment groups. Overall, treatments of 50 ??L/L were found to be the most safe and effective of those tested. Mortality with this concentration ranged from 16% in therapeutic tests to 41% in prophylactic tests. The statistical model employed estimated that the optimum treatment concentration for preventing or controlling mortality, reducing the incidence of infections, and enhancing the recovery of infected fish was 75 ??L H2O2/L.

  17. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide

    ERIC Educational Resources Information Center

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen

    2014-01-01

    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  18. Kinetics of the Bicarbonate-Assisted Oxidation of Diethyl Sulfide by Hydrogen Peroxide and Sodium Peroxoborate

    NASA Astrophysics Data System (ADS)

    Dyatlenko, L. M.; Lobachev, V. L.; Bezbozhnaya, T. V.

    2018-07-01

    The kinetics of oxidation of diethyl sulfide (Et2S) is studied in aqueous solutions of hydrogen peroxide and sodium peroxoborate (Na2[B2(O2)2(OH)4]) in the presence of bicarbonate ions by means of gas-liquid distribution. The kinetics is investigated in a broad range of pH. Data show that the oxidation of Et2S by sodium peroxoborate in the range of pH 6-12 is mediated by such reactive species as hydrogen peroxide, hydrogen peroxide anions, and mono (B(O2H)(OH)3^{ - }) and diperoxoborate (B(O2H)2(OH)2^{ - }) anions. The rate of Et2S oxidation increases in the presence of bicarbonate, due to the additional reaction pathways mediated by monoperoxocarbonate species.

  19. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death.

    PubMed

    Dunning, Sandra; Ur Rehman, Atta; Tiebosch, Marjolein H; Hannivoort, Rebekka A; Haijer, Floris W; Woudenberg, Jannes; van den Heuvel, Fiona A J; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    2013-12-01

    In chronic liver disease, hepatic stellate cells (HSCs) are activated, highly proliferative and produce excessive amounts of extracellular matrix, leading to liver fibrosis. Elevated levels of toxic reactive oxygen species (ROS) produced during chronic liver injury have been implicated in this activation process. Therefore, activated hepatic stellate cells need to harbor highly effective anti-oxidants to protect against the toxic effects of ROS. To investigate the protective mechanisms of activated HSCs against ROS-induced toxicity. Culture-activated rat HSCs were exposed to hydrogen peroxide. Necrosis and apoptosis were determined by Sytox Green or acridine orange staining, respectively. The hydrogen peroxide detoxifying enzymes catalase and glutathione-peroxidase (GPx) were inhibited using 3-amino-1,2,4-triazole and mercaptosuccinic acid, respectively. The anti-oxidant glutathione was depleted by L-buthionine-sulfoximine and repleted with the GSH-analogue GSH-monoethylester (GSH-MEE). Upon activation, HSCs increase their cellular glutathione content and GPx expression, while MnSOD (both at mRNA and protein level) and catalase (at the protein level, but not at the mRNA level) decreased. Hydrogen peroxide did not induce cell death in activated HSCs. Glutathione depletion increased the sensitivity of HSCs to hydrogen peroxide, resulting in 35% and 75% necrotic cells at 0.2 and 1mmol/L hydrogen peroxide, respectively. The sensitizing effect was abolished by GSH-MEE. Inhibition of catalase or GPx significantly increased hydrogen peroxide-induced apoptosis, which was not reversed by GSH-MEE. Activated HSCs have increased ROS-detoxifying capacity compared to quiescent HSCs. Glutathione levels increase during HSC activation and protect against ROS-induced necrosis, whereas hydrogen peroxide-detoxifying enzymes protect against apoptotic cell death. © 2013.

  20. Comparison of chemiluminescence methods for analysis of hydrogen peroxide and hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Pehrman, R.; Amme, M.; Cachoir, C.

    2006-01-01

    Assessment of alpha radiolysis influence on the chemistry of geologically disposed spent fuel demands analytical methods for radiolytic product determination at trace levels. Several chemiluminescence methods for the detection of radiolytic oxidants hydrogen peroxide and hydroxyl radicals are tested. Two of hydrogen peroxide methods use luminol, catalyzed by either μ-peroxidase or hemin, one uses 10-methyl-9-(p-formylphenyl)-acridinium carboxylate trifluoromethanesulfonate and one potassium periodate. All recipes are tested as batch systems in basic conditions. For hydroxyl radical detection luminophores selected are 3-hydroxyphthalic hydrazide and rutin. Both methods are tested as batch systems. The results are compared and the applicability of the methods for near-field dissolution studies is discussed.

  1. Massive gas embolism secondary in the use of intraoperative hydrogen peroxide: still use to lavage with this liquid?

    PubMed Central

    Benali, Zine El Abidine; Abdedaim, Hatim; Omari, Driss

    2013-01-01

    Cases of embolism after using hydrogen peroxide have been described in many circumstances in the operating room. Hydrogen peroxide is not more effective than other antiseptics; its potentially serious risk should not be unrecognized. The alternative use of saline seems very reasonable. The widespread use of hydrogen peroxide by practitioners is explained mainly by its antiseptic effect associated with effervescent backlash visual and auditory, but sometimes the liquid hiding behind a black hole that absorbs the life of the patient in case of inappropriate use. Diagnosis is based on clinical variations in a conscious patient at the time of use, confirmed by echocardiology if available. We related the case of a massive embolism after hydrogen peroxide use in the cleaning of infected wound with osteosynthesis material left femoral done under spinal anesthesia in a young girl of 17 years admitted after to the ICU intubated ventilated. PMID:24839532

  2. Certification of vapor phase hydrogen peroxide sterilization process for spacecraft application

    NASA Technical Reports Server (NTRS)

    Rohatgi, N.; Schubert, W.; Koukol, R.; Foster, T. L.; Stabekis, P. D.

    2002-01-01

    This paper describes the selection process and research activities JPL is planning to conduct for certification of hydrogen peroxide as a NASA approved technique for sterilization of various spacecraft parts/components and entire modern spacecraft.

  3. Hyperbaric oxygen therapy for the prevention of arterial gas embolism in food grade hydrogen peroxide ingestion.

    PubMed

    Hendriksen, Stephen M; Menth, Nicholas L; Westgard, Bjorn C; Cole, Jon B; Walter, Joseph W; Masters, Thomas C; Logue, Christopher J

    2017-05-01

    Food grade hydrogen peroxide ingestion is a relatively rare presentation to the emergency department. There are no defined guidelines at this time regarding the treatment of such exposures, and providers may not be familiar with the potential complications associated with high concentration hydrogen peroxide ingestions. In this case series, we describe four patients who consumed 35% hydrogen peroxide, presented to the emergency department, and were treated with hyperbaric oxygen therapy. Two of the four patients were critically ill requiring intubation. All four patients had evidence on CT or ultrasound of venous gas emboli and intubated patients were treated as if they had an arterial gas embolism since an exam could not be followed. After hyperbaric oxygen therapy each patient was discharged from the hospital neurologically intact with no other associated organ injuries related to vascular gas emboli. Hyperbaric oxygen therapy is an effective treatment for patients with vascular gas emboli after high concentration hydrogen peroxide ingestion. It is the treatment of choice for any impending, suspected, or diagnosed arterial gas embolism. Further research is needed to determine which patients with portal venous gas emboli should be treated with hyperbaric oxygen therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Fully-reversible optical sensor for hydrogen peroxide with fast response.

    PubMed

    Ding, Longjiang; Chen, Siyu; Zhang, Wei; Zhang, Yinglu; Wang, Xu-Dong

    2018-05-09

    A fully reversible optical sensor for hydrogen peroxide with fast response is presented. The sensor was fabricated by in-situ growing ultra-small platinum nanoparticles (PtNPs) inside the pores of fibrous silica particles (KCC-1). The nanocomposite was then embedded into a hydrogel matrix and form a sensor layer, the immobilized PtNPs can catalytically convert hydrogen peroxide into molecular oxygen, which is measured via luminescent quenching based oxygen sensor underneath. Owing to the high porosity and permeability of KCC-1 and high local concentration of PtNPs, the sensor exhibits fast response (less than 1 min) and full reversibility. The measurement range of the sensor covers 1.0 μM to 10.0 mM, and very small amount of sample is required during measurement (200 μL). Because of its high stability, excellent reversibility and selectivity, and extremely fast response, the sensor could fulfill all industry requirements for real-time measurement, and fill market vacancy.

  5. Wind-Eroded Silicate as a Source of Hydrogen Peroxide on Mars

    NASA Astrophysics Data System (ADS)

    Bak, E. N.; Merrison, J. P.; Jensen, S. K.; Nørnberg, P.; Finster, K.

    2014-07-01

    Laboratory simulations show that wind-eroded silicate can be a source of hydrogen peroxide. The ubiquitous, fine-grained silicate dust might thus explain the oxidizing properties of the martian soil and affect the preservation of organic compounds.

  6. Effects of alcohols, povidone-iodine and hydrogen peroxide on biofilms of Staphylococcus epidermidis.

    PubMed

    Presterl, Elisabeth; Suchomel, Miranda; Eder, Michaela; Reichmann, Sonja; Lassnigg, Andrea; Graninger, Wolfgang; Rotter, Manfred

    2007-08-01

    To test the effects of several biocides [N-propanol, a commercially available propanol/ethanol/chlorhexidine mixture, polyvinylpyrolidone (povidone-iodine) and hydrogen peroxide] on established biofilms of Staphylococcus epidermidis isolated from patients with cardiac implant infections and catheter-related bacteraemia. Biofilms were grown in microtitre plates for 24 h, dyed and stained with Crystal Violet. The mean optical density (OD) and the OD ratio (ODr=OD of the treated biofilm/OD of the untreated biofilm) were used for quantification. Biofilms were incubated with 60% (v/v) N-propanol, the mixture of propanol/ethanol/chlorhexidine, hydrogen peroxide at three concentrations (0.5%, 3% and 5%, v/v) and povidone-iodine for 1, 5, 15, 30 and 60 min. Unstained biofilms were sonicated and plated on Columbia agar for time-kill curves. S. epidermidis skin isolates from healthy volunteers were used as controls. Biofilm ODs of the clinical S. epidermidis isolates and the isolates from the healthy volunteers were significantly different (1.17+/-0.512 versus 0.559+/-0.095, respectively; mean+/-SD) (P<0.01). No viable S. epidermidis was detected in biofilms treated with the alcohols, N-propanol or the propanol/ethanol/chlorhexidine mixture. Incubation with povidone-iodine and hydrogen peroxide 3% and 5% led to a log reduction of the viable cells of >5 after incubation for 5 min, however, up to 10(3) viable cells were detected in four isolates after 30 min of incubation with povidone-iodine. S. epidermidis obtained from infected implants forms thicker biofilms than that of healthy volunteers. Hydrogen peroxide, at a concentration of 3% and 5%, and alcohols rapidly eradicate S. epidermidis biofilms, whereas povidone-iodine is less effective.

  7. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling.

    PubMed

    Brand, Martin D

    2016-11-01

    This review examines the generation of reactive oxygen species by mammalian mitochondria, and the status of different sites of production in redox signaling and pathology. Eleven distinct mitochondrial sites associated with substrate oxidation and oxidative phosphorylation leak electrons to oxygen to produce superoxide or hydrogen peroxide: oxoacid dehydrogenase complexes that feed electrons to NAD + ; respiratory complexes I and III, and dehydrogenases, including complex II, that use ubiquinone as acceptor. The topologies, capacities, and substrate dependences of each site have recently clarified. Complex III and mitochondrial glycerol 3-phosphate dehydrogenase generate superoxide to the external side of the mitochondrial inner membrane as well as the matrix, the other sites generate superoxide and/or hydrogen peroxide exclusively in the matrix. These different site-specific topologies are important for redox signaling. The net rate of superoxide or hydrogen peroxide generation depends on the substrates present and the antioxidant systems active in the matrix and cytosol. The rate at each site can now be measured in complex substrate mixtures. In skeletal muscle mitochondria in media mimicking muscle cytosol at rest, four sites dominate, two in complex I and one each in complexes II and III. Specific suppressors of two sites have been identified, the outer ubiquinone-binding site in complex III (site III Qo ) and the site in complex I active during reverse electron transport (site I Q ). These suppressors prevent superoxide/hydrogen peroxide production from a specific site without affecting oxidative phosphorylation, making them excellent tools to investigate the status of the sites in redox signaling, and to suppress the sites to prevent pathologies. They allow the cellular roles of mitochondrial superoxide/hydrogen peroxide production to be investigated without catastrophic confounding bioenergetic effects. They show that sites III Qo and I Q are active in cells

  8. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions.

    PubMed

    Wang, Yang; Hernandez, Rose M; Bartlett, David J; Bingham, Julia M; Kline, Timothy R; Sen, Ayusman; Mallouk, Thomas E

    2006-12-05

    Bimetallic nanorods are propelled in aqueous solutions by the catalytic decomposition of hydrogen peroxide to oxygen and water. Several mechanisms (interfacial tension gradients, bubble recoil, viscous Brownian ratchet, self-electrophoresis) have been proposed for the transduction of chemical to mechanical energy in this system. From Tafel plots of anodic and cathodic hydrogen peroxide reactions at various metal (Au, Pt, Rh, Ni, Ru, and Pd) ultramicroelectrodes, we determine the potential at which the anodic and cathodic reaction rates are equal for each metal. These measurements allow one to predict the direction of motion of all possible bimetallic combinations according to the bipolar electrochemical (or self-electrophoretic) mechanism. These predictions are consistent with the observed direction of motion in all cases studied, providing strong support for the mechanism. We also find that segmented nanorods with one Au end and one poly(pyrrole) end containing catalase, an enzyme that decomposes hydrogen peroxide nonelectrochemically, perform the overall catalytic reaction at a rate similar to that of nanorods containing Au and Pt segments. However, in this case there is no observed axial movement, again supporting the bipolar electrochemical propulsion mechanism for bimetallic nanorods.

  9. Coupling of Solar Energy to Hydrogen Peroxide Production in the Cyanobacterium Anacystis nidulans

    PubMed Central

    Roncel, Mercedes; Navarro, José A.; De la Rosa, Miguel A.

    1989-01-01

    Hydrogen peroxide production by blue-green algae (cyanobacteria) under photoautotrophic conditions is of great interest as a model system for the bioconversion of solar energy. Our experimental system was based on the photosynthetic reduction of molecular oxygen with electrons from water by Anacystis nidulans 1402-1 as the biophotocatalyst and methyl viologen as a redox intermediate. It has been demonstrated that the metabolic conditions of the algae in their different growth stages strongly influence the capacity for hydrogen peroxide photoproduction, and so the initial formation rate and net peroxide yield became maximum in the mid-log phase of growth. The overall process can be optimized in the presence of certain metabolic inhibitors such as iodoacetamide and p-hydroxymercuribenzoate, as well as by permeabilization of the cellular membrane after drastic temperature changes and by immobilization of the cells in inert supports such as agar and alginate. PMID:16347855

  10. Treatment of oily port wastewater effluents using the ultraviolet/hydrogen peroxide photodecomposition system.

    PubMed

    Siedlecka, Ewa Maria; Stepnowski, Piotr

    2006-08-01

    This paper presents the nonselective degradation of mechanically pretreated oily wastewater by hydrogen peroxide (H2O2) in the presence and absence of UV irradiation. The effect of chemical oxidation on wastewater biodegradability was also examined. The exclusive use of H2O2 photolyzed by daylight results in quite efficient degradation rates for the low peroxide concentrations used. Higher hydrogen peroxide concentrations inhibit degradation of organic contaminants in the wastewater. The degradation rates of all contaminants are relatively high with an advanced oxidation system (UV/H2O2), but degradation efficiencies are not distinguishably different when 20 or 45 minutes of UV irradiation is used. The excess of H2O2 used in the process can inhibit phenolic degradation and may lead to the formation of a new phenolic fraction. The biodegradability of port wastewater did not increase significantly following the application of the advanced oxidation process.

  11. Development of a green bipropellant hydrogen peroxide thruster for attitude control on satellites

    NASA Astrophysics Data System (ADS)

    Woschnak, A.; Krejci, D.; Schiebl, M.; Scharlemann, C.

    2013-03-01

    This document describes the selection assessment of propellants for a 1-newton green bipropellant thruster for attitude control on satellites. The development of this thruster was conducted as a part of the project GRASP (Green Advanced Space Propellants) within the European FP7 research program. The green propellant combinations hydrogen peroxide (highly concentrated with 87.5 %(wt.)) with kerosene or hydrogen peroxide (87.5 %(wt.)) with ethanol were identified as interesting candidates and were investigated in detail with the help of an experimental combustion chamber in the chemical propulsion laboratory at the Forschungsund Technologietransfer GmbH ― Fotec. Based on the test results, a final selection of propellants was performed.

  12. Vapor hydrogen peroxide as alternative to dry heat microbial reduction

    NASA Astrophysics Data System (ADS)

    Chung, S.; Kern, R.; Koukol, R.; Barengoltz, J.; Cash, H.

    2008-09-01

    The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process. The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal for this study was to determine the minimum VHP process conditions for planetary protection acceptable microbial reduction levels. Experiments were conducted by the STERIS Corporation, under contract to JPL, to evaluate the effectiveness of vapor hydrogen peroxide for the inactivation of the standard spore challenge, Geobacillus stearothermophilus. VHP process parameters were determined that provide significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters of interest: hydrogen peroxide concentration, number of injection cycles, and exposure duration, the investigation also considered the possible effect on lethality of environmental parameters: temperature, absolute humidity, and material substrate. This study delineated a range of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D-value may be imposed, a process humidity range for which the worst case D-value may be imposed, and the dependence on selected spacecraft material substrates. The derivation of D-values from the lethality data permitted conservative planetary protection recommendations.

  13. Alkaline hydrogen peroxide pretreatment of cashew apple bagasse for ethanol production: study of parameters.

    PubMed

    Correia, Jessyca Aline da Costa; Júnior, José Edvan Marques; Gonçalves, Luciana Rocha B; Rocha, Maria Valderez Ponte

    2013-07-01

    The alkaline hydrogen peroxide (AHP) pretreatment of cashew apple bagasse (CAB) was evaluated based on the conversion of the resultant cellulose into glucose. The effects of the concentration of hydrogen peroxide at pH 11.5, the biomass loading and the pretreatment duration performed at 35°C and 250 rpm were evaluated after the subsequent enzymatic saccharification of the pretreated biomass using a commercial cellulase enzyme. The CAB used in this study contained 20.56 ± 2.19% cellulose, 10.17 ± 0.89% hemicellulose and 35.26 ± 0.90% lignin. The pretreatment resulted in a reduced lignin content in the residual solids. Increasing the H2O2 concentration (0-4.3% v/v) resulted in a higher rate of enzymatic hydrolysis. Lower biomass loadings gave higher glucose yields. In addition, no measurable furfural and hydroxymethyl furfural were produced in the liquid fraction during the pretreatment. The results show that alkaline hydrogen peroxide is effective for the pretreatment of CAB. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Hydrogen peroxide as sustainable fuel: electrocatalysts for production with a solar cell and decomposition with a fuel cell.

    PubMed

    Yamada, Yusuke; Fukunishi, Yurie; Yamazaki, Shin-ichi; Fukuzumi, Shunichi

    2010-10-21

    Hydrogen peroxide was electrochemically produced by reducing oxygen in an aqueous solution with [Co(TCPP)] as a catalyst and photovoltaic solar cell operating at 0.5 V. Hydrogen peroxide thus produced is utilized as a fuel for a one-compartment fuel cell with Ag-Pb alloy nanoparticles as the cathode.

  15. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  16. Bacillus pumilus KatX2 confers enhanced hydrogen peroxide resistance to a Bacillus subtilis PkatA::katX2 mutant strain.

    PubMed

    Handtke, Stefan; Albrecht, Dirk; Zühlke, Daniela; Otto, Andreas; Becher, Dörte; Schweder, Thomas; Riedel, Kathrin; Hecker, Michael; Voigt, Birgit

    2017-04-26

    Bacillus pumilus cells exhibit a significantly higher resistance to hydrogen peroxide compared to closely related Bacilli like Bacillus subtilis. In this study we analyzed features of the catalase KatX2 of B. pumilus as one of the most important parts of the cellular response to hydrogen peroxide. KatX2, the vegetative catalase expressed in B. pumilus, was compared to the vegetative catalase KatA of B. subtilis. Data of our study demonstrate that B. pumilus can degrade toxic concentrations of hydrogen peroxide faster than B. subtilis. By replacing B. subtilis katA gene by katX2 we could significantly enhance its resistance to H 2 O 2 and its potential to eliminate this toxic compound. Mutant cells showed a 1.5- to 2-fold higher survival to toxic concentrations of hydrogen peroxide compared to wild type cells. Furthermore, we found reversible but also irreversible oxidations of the KatX2 protein which, in contrast to KatA, contains several cysteine residues. Our study indicates that the catalase KatX2 plays a major role in the increased resistance of B. pumilus to oxidative stress caused by hydrogen peroxide. Resistance to hydrogen peroxide of other Bacilli can be enhanced by exchanging the native catalase in the cells with katX2.

  17. Hydrogen peroxide contributes to the ultraviolet-B (280-315 nm) induced oxidative stress of plant leaves through multiple pathways.

    PubMed

    Czégény, Gyula; Wu, Min; Dér, András; Eriksson, Leif A; Strid, Åke; Hideg, Éva

    2014-06-27

    Solar UV-B (280-315 nm) radiation is a developmental signal in plants but may also cause oxidative stress when combined with other environmental factors. Using computer modeling and in solution experiments we show that UV-B is capable of photosensitizing hydroxyl radical production from hydrogen peroxide. We present evidence that the oxidative effect of UV-B in leaves is at least twofold: (i) it increases cellular hydrogen peroxide concentrations, to a larger extent in pyridoxine antioxidant mutant pdx1.3-1 Arabidopsis and; (ii) is capable of a partial photo-conversion of both 'natural' and 'extra' hydrogen peroxide to hydroxyl radicals. As stress conditions other than UV can increase cellular hydrogen peroxide levels, synergistic deleterious effects of various stresses may be expected already under ambient solar UV-B. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase.

    PubMed

    Prasad, Ajit Kumar; Mishra, P C

    2015-06-25

    The mechanism of action of sulforaphane as a scavenger of superoxide radical anion (O2(•-)) and hydrogen peroxide (H2O2) was investigated using density functional theory (DFT) in both gas phase and aqueous media. Iron superoxide dismutase (Fe-SOD) involved in scavenging superoxide radical anion from biological media was modeled by a complex consisting of the ferric ion (Fe(3+)) attached to three histidine rings. Reactions related to scavenging of superoxide radical anion by sulforaphane were studied using DFT in the presence and absence of Fe-SOD represented by this model in both gas phase and aqueous media. The scavenging action of sulforaphane toward both superoxide radical anion and hydrogen peroxide was found to involve the unusual mechanism of double hydrogen transfer. It was found that sulforaphane alone, without Fe-SOD, cannot scavenge superoxide radical anion in gas phase or aqueous media efficiently as the corresponding reaction barriers are very high. However, in the presence of Fe-SOD represented by the above-mentioned model, the scavenging reactions become barrierless, and so sulforaphane scavenges superoxide radical anion by converting it to hydrogen peroxide efficiently. Further, sulforaphane was found to scavenge hydrogen peroxide also very efficiently by converting it into water. Thus, the mechanism of action of sulforaphane as an excellent antioxidant has been unravelled.

  19. A head-to-head comparison of hydrogen peroxide vapor and aerosol room decontamination systems.

    PubMed

    Holmdahl, T; Lanbeck, P; Wullt, M; Walder, M H

    2011-09-01

    New technologies have emerged in recent years for the disinfection of hospital rooms and equipment that may not be disinfected adequately using conventional methods. There are several hydrogen peroxide-based area decontamination technologies on the market, but no head-to-head studies have been performed. We conducted a head-to-head in vitro comparison of a hydrogen peroxide vapor (HPV) system (Bioquell) and an aerosolized hydrogen peroxide (aHP) system (Sterinis). The tests were conducted in a purpose-built 136-m(3) test room. One HPV generator and 2 aHP machines were used, following recommendations of the manufacturers. Three repeated tests were performed for each system. The microbiological efficacy of the 2 systems was tested using 6-log Tyvek-pouched Geobacillus stearothermophilus biological indicators (BIs). The indicators were placed at 20 locations in the first test and 14 locations in the subsequent 2 tests for each system. All BIs were inactivated for the 3 HPV tests, compared with only 10% in the first aHP test and 79% in the other 2 aHP tests. The peak hydrogen peroxide concentration was 338 ppm for HPV and 160 ppm for aHP. The total cycle time (including aeration) was 3 and 3.5 hours for the 3 HPV tests and the 3 aHP tests, respectively. Monitoring around the perimeter of the enclosure with a handheld sensor during tests of both systems did not identify leakage. One HPV generator was more effective than 2 aHP machines for the inactivation of G. stearothermophilus BIs, and cycle times were faster for the HPV system.

  20. Hydrogen-peroxide-modified egg albumen for transparent and flexible resistive switching memory

    NASA Astrophysics Data System (ADS)

    Zhou, Guangdong; Yao, Yanqing; Lu, Zhisong; Yang, Xiude; Han, Juanjuan; Wang, Gang; Rao, Xi; Li, Ping; Liu, Qian; Song, Qunliang

    2017-10-01

    Egg albumen is modified by hydrogen peroxide with concentrations of 5%, 10%, 15% and 30% at room temperature. Compared with devices without modification, a memory cell of Ag/10% H2O2-egg albumen/indium tin oxide exhibits obviously enhanced resistive switching memory behavior with a resistance ratio of 104, self-healing switching endurance for 900 cycles and a prolonged retention time for a 104 s @ 200 mV reading voltage after being bent 103 times. The breakage of massive protein chains occurs followed by the recombination of new protein chain networks due to the oxidation of amidogen and the synthesis of disulfide during the hydrogen peroxide modifying egg albumen. Ions such as Fe3+, Na+, K+, which are surrounded by protein chains, are exposed to the outside of protein chains to generate a series of traps during the egg albumen degeneration process. According to the fitting results of the double logarithm I-V curves and the current-sensing atomic force microscopy (CS-AFM) images of the ON and OFF states, the charge transfer from one trap center to its neighboring trap center is responsible for the resistive switching memory phenomena. The results of our work indicate that hydrogen- peroxide-modified egg albumen could open up a new avenue of biomaterial application in nanoelectronic systems.

  1. Construction of a horseradish peroxidase resistant toward hydrogen peroxide by saturation mutagenesis.

    PubMed

    Asad, Sedigheh; Dastgheib, Seyed Mohammad Mehdi; Khajeh, Khosro

    2016-11-01

    Horseradish peroxidase (HRP) with a variety of potential biotechnological applications is still isolated from the horseradish root as a mixture of different isoenzymes with different biochemical properties. There is an increasing demand for preparations of high amounts of pure enzyme but its recombinant production is limited because of the lack of glycosylation in Escherichia coli and different glycosylation patterns in yeasts which affects its stability parameters. The goal of this study was to increase the stability of non-glycosylated enzyme, which is produced in E. coli, toward hydrogen peroxide via mutagenesis. Asparagine 268, one of the N-glycosylation sites of the enzyme, has been mutated via saturation mutagenesis using the megaprimer method. Modification and miniaturization of previously described protocols enabled screening of a library propagated in E. coli XJb (DE3). The library of mutants was screened for stability toward hydrogen peroxide with azinobis (ethylbenzthiazoline sulfonate) as a reducing substrate. Asn268Gly mutant, the top variant from the screening, exhibited 18-fold increased stability toward hydrogen peroxide and twice improved thermal stability compared with the recombinant HRP. Moreover, the substitution led to 2.5-fold improvement in the catalytic efficiency with phenol/4-aminoantipyrine. Constructed mutant represents a stable biocatalyst, which may find use in medical diagnostics, biosensing, and bioprocesses. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  2. Effectiveness and adverse effects of the use of apomorphine and 3% hydrogen peroxide solution to induce emesis in dogs.

    PubMed

    Khan, Safdar A; McLean, Mary Kay; Slater, Margaret; Hansen, Steven; Zawistowski, Stephen

    2012-11-01

    To determine the effectiveness and adverse effects of apomorphine and 3% hydrogen peroxide solution used for emesis in dogs. Prospective observational study. 147 dogs that received apomorphine (IV or placed in the conjunctival sac) or 3% hydrogen peroxide solution (PO) to induce emesis after exposure to toxic agents. Data regarding signalment; agent information; type, dose, route, and number of emetic administrations; whether emesis was successful; number of times emesis occurred; percentage of ingested agent recovered; and adverse effects were collected via telephone during American Society for the Prevention of Cruelty to Animals Animal Poison Control Center operations and stored in a database for analysis. Mann-Whitney and Fisher exact tests were used to evaluate emetic success rates. Apomorphine and 3% hydrogen peroxide solution successfully induced emesis in 59 of 63 (94%) and 76 of 84 (90%) of dogs, respectively. Mean time to onset of emesis after the first dose of emetic was 14.5 and 18.6 minutes when hydrogen peroxide (n = 37) and apomorphine (31) were used, respectively, with mean durations of 42 and 27 minutes, respectively. Mean estimates for recovery of ingested agents were 48% for hydrogen peroxide and 52% for apomorphine. Adverse effects were reported in 16 of 112 (14%) dogs for which information was available. 3% hydrogen peroxide solution and apomorphine effectively induced emesis in dogs when used as directed. Emesis occurred within minutes after administration and helped recover substantial amounts of ingested agents. Adverse effects of both emetics were considered mild and self-limiting.

  3. A HIGHLY EFFICIENT OXIDATION OF CYCLOHEXANE OVER VPO CATALYSTS USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An unprecedented and highly efficient oxidation of cyclohexane to cyclohexanol and cyclohexanone is accomplished over calcined vanadium phosphorus oxide (VPO) catalysts in a relatively mild condition using hydrogen peroxide under a nitrogen atmosphere.

  4. Compatibility Studies of Hydrogen Peroxide and a New Hypergolic Fuel Blend

    NASA Technical Reports Server (NTRS)

    Baldridge, Jennifer; Villegas, Yvonne

    2002-01-01

    Several preliminary materials compatibility studies have been conducted to determine the practicality of a new hypergolic fuel system. Hypergolic fuel ignites spontaneously as the oxidizer decomposes and releases energy in the presence of the fuel. The bipropellant system tested consists of high-test hydrogen peroxide (HTP) and a liquid fuel blend consisting of a hydrocarbon fuel, an ignition enhancer and a transition metal catalyst. In order for further testing of the new fuel blend to take place, some basic materials compatibility and HTP decomposition studies must be accomplished. The thermal decomposition rate of HTP was tested using gas evolution and isothermal microcalorimetry (IMC). Materials were analyzed for compatibility with hydrogen peroxide including a study of the affect welding has on stainless steel elemental composition and its relation to HTP decomposition. Compatibility studies of valve materials in the fuel blend were performed to determine the corrosion resistance of the materials.

  5. Mathematical modeling of static layer crystallization for propellant grade hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Hao, Lin; Chen, Xinghua; Sun, Yaozhou; Liu, Yangyang; Li, Shuai; Zhang, Mengqian

    2017-07-01

    Hydrogen peroxide (H2O2) is an important raw material widely used in many fields. In this work a mathematical model of heat conduction with a moving boundary was proposed to study the melt crystallization process of hydrogen peroxide which was carried out outside a cylindrical crystallizer. Considering the effects of the temperature of the cooling fluid on the thermal conductivity of crude crystal, the model is an improvement of Guardani's research and can be solved by analytic iteration method. An experiment was designed to measure the thickness of crystal layer with time under different conditions. A series of analysis, including the effects of different refrigerant temperature on crystal growth rate, the effects of different cooling rates on crystal layer growth rate, the effects of crystallization temperature on heat transfer and the model's application scope were conducted based on the comparison between experimental results and simulation results of the model.

  6. Caspase activation, hydrogen peroxide production and Akt dephosphorylation occur during stallion sperm senescence.

    PubMed

    Gallardo Bolaños, J M; Balao da Silva, C; Martín Muñoz, P; Plaza Dávila, M; Ezquerra, J; Aparicio, I M; Tapia, J A; Ortega Ferrusola, C; Peña, F J

    2014-08-01

    To investigate the mechanisms inducing sperm death after ejaculation, stallion ejaculates were incubated in BWW media during 6 h at 37°C. At the beginning of the incubation period and after 1, 2, 4 and 6 h sperm motility and kinematics (CASA), mitochondrial membrane potential and membrane permeability and integrity were evaluated (flow cytometry). Also, at the same time intervals, active caspase 3, hydrogen peroxide, superoxide anion (flow cytometry) and Akt phosphorylation (flow cytometry) were evaluated. Major decreases in sperm function occurred after 6 h of incubation, although after 1 h decrease in the percentages of motile and progressive motile sperm occurred. The decrease observed in sperm functionality after 6 h of incubation was accompanied by a significant increase in the production of hydrogen peroxide and the greatest increase in caspase 3 activity. Additionally, the percentage of phosphorylated Akt reached a minimum after 6 h of incubation. These results provide evidences that sperm death during in vitro incubation is largely an apoptotic phenomena, probably stimulated by endogenous production of hydrogen peroxide and the lack of prosurvival factors maintaining Akt in a phosphorylated status. Disclosing molecular mechanisms leading to sperm death may help to develop new strategies for stallion sperm conservation. © 2014 Blackwell Verlag GmbH.

  7. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide

    PubMed Central

    Martin, Nancy L.; Bass, Paul; Liss, Steven N.

    2015-01-01

    Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8mg/L-1) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K+) and divalent (Ca+2) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of ionic

  8. On copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    The action of hydrogen superoxide on copper salts in alcoholic solutions is studied. The action of hydrogen peroxide on copper hydroxide in alcoholic suspensions, and the action of ethereal hydrogen peroxide on copper hydroxide are discussed. It is concluded that using the procedure proposed excludes almost entirely the harmful effect of hydrolysis.

  9. Efficacy of formalin, hydrogen-peroxide, and sodium-chloride on fungal-infected rainbow-trout eggs

    USGS Publications Warehouse

    Schreier, Theresa M.; Rach, J.J.; Howe, G.E.

    1996-01-01

    Antifungal agents are essential for the maintenance of healthy stocks of fish and their eggs in intensive aquaculture operations. In the usa, formalin is the only fungicide approved for use in fish culture, however, hydrogen peroxide and sodium chloride have been granted low regulatory priority drug status by the united states food and drug administration (fda) and their use is allowed. We evaluated the efficacy of these fungicides for controlling fungal infections on rainbow trout eggs. A pilot study was conducted to determine the minimum water flow rate required to administer test chemicals accurately in heath incubators. A minimum water flow rate of 7.6 1 min(-1) was necessary to maintain treatment concentrations during flow-through chemical exposures, the antifungal activity of formalin, hydrogen peroxide, and sodium chloride was evaluated by treating uninfected and 10% fungal-infected (saprolegnia parasitica) rainbow trout eggs (oncorhynchus mykiss) for 15 min every other day until hatch. There were no significant differences among treatments in percent hatch or final infection for uninfected eggs receiving prophylactic chemical treatments, eggs of the negative control group (uninfected and untreated) had a mean hatch exceeding 86%, all chemical treatments conducted on the infected egg groups controlled the spread of fungus and improved hatching success compared with the positive control groups (infected and untreated), formalin treatments of 1000 and 1500 mu l 1(-1) and hydrogen peroxide treatments of 500 and 1000 mu l 1(-1) were the most effective. Sodium chloride treatments of 30000 mg 1(-1) improved fry hatch, but the compound was less effective at inhibiting fungal growths compared with hydrogen peroxide and formalin treatments.

  10. ENAMEL SUSCEPTIBILITY TO RED WINE STAINING AFTER 35% HYDROGEN PEROXIDE BLEACHING

    PubMed Central

    Berger, Sandrine Bittencourt; Coelho, Alessandra Sanchez; Oliveira, Valéria Aparecida Pessatti; Cavalli, Vanessa; Giannini, Marcelo

    2008-01-01

    Concern has been expressed regarding the staining of enamel surface by different beverages after bleaching. This study investigated the influence of 35% hydrogen peroxide bleaching agents on enamel surface stained with wine after whitening treatments. Flat and polished bovine enamel surfaces were submitted to two commercially available 35% hydrogen peroxide bleaching agents or kept in 100% humidity, as a control group (n = 10). Specimens of all groups were immersed in red wine for 48 h at 37°C, immediately, 24 h or 1 week after treatments. All specimens were ground into powder and prepared for the spectrophotometric analysis. Data were subjected to two-way analysis of variance and Fisher's PLSD test at 5% significance level. The amount of wine pigments uptake by enamel submitted to bleaching treatments was statistically higher than that of control group, independently of the evaluation time. Results suggested that wine staining susceptibility was increased by bleaching treatments. PMID:19089218

  11. Paper-based membraneless hydrogen peroxide fuel cell prepared by micro-fabrication

    NASA Astrophysics Data System (ADS)

    Mousavi Ehteshami, Seyyed Mohsen; Asadnia, Mohsen; Tan, Swee Ngin; Chan, Siew Hwa

    2016-01-01

    A paper-based membraneless single-compartment hydrogen peroxide power source prepared by micro-electromechanical systems (MEMS) technology is reported. The cell utilizes hydrogen peroxide as both fuel and oxidant in a low volume cell fabricated on paper. The fabrication method used is a simple method where precise, small-sized patterns are produced which include the hydrophilic paper bounded by hydrophobic resin. Open circuit potentials of 0.61 V and 0.32 V are achieved for the cells fabricated with Prussian Blue as the cathode and aluminium/nickel as the anode materials, respectively. The power produced by the cells is 0.81 mW cm-2 at 0.26 V and 0.38 mW cm-2 at 0.14 V, respectively, even after the cell is bent or distorted. Such a fuel cell provides an easily fabricated, environmentally friendly, flexible and cost saving power source. The cell may be integrated within a self-sustained diagnostic system to provide the on-demand power for future bio-sensing applications.

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BIOQUELL, INC. CLARIS C HYDROGEN PEROXIDE GAS GENERATOR

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Clarus C Hydrogen Peroxide Gas Generator, a biological decontamination device manufactured by BIOQUELL, Inc. The unit was tested by evaluating its ability to decontaminate seven types...

  13. Activity of a dry mist hydrogen peroxide system against environmental Clostridium difficile contamination in elderly care wards.

    PubMed

    Shapey, S; Machin, K; Levi, K; Boswell, T C

    2008-10-01

    Clostridium difficile causes serious healthcare-associated infections. Infection control is difficult, due in part to environmental contamination with C. difficile spores. These spores are relatively resistant to cleaning and disinfection. The activity of a dry mist hydrogen peroxide decontamination system (Sterinis) against environmental C. difficile contamination was assessed in three elderly care wards. Initial sampling for C. difficile was performed in 16 rooms across a variety of wards and specialties, using Brazier's CCEY (cycloserine-cefoxitin-egg yolk) agar. Ten rooms for elderly patients (eight isolation and two sluice rooms) were then resampled following dry mist hydrogen peroxide decontamination. Representative isolates of C. difficile were typed by polymerase chain reaction ribotyping. C. difficile was recovered from 3%, 11% and 26% of samples from low, medium and high risk rooms, respectively. In 10 high risk elderly care rooms, 24% (48/203) of samples were positive for C. difficile, with a mean of 6.8 colony-forming units (cfu) per 10 samples prior to hydrogen peroxide decontamination. Ribotyping identified the presence of the three main UK epidemic strains (ribotypes 001, 027 and 106) and four rooms contained mixed strains. After a single cycle of hydrogen peroxide decontamination, only 3% (7/203) of samples were positive (P<0.001), with a mean of 0.4 cfu per 10 samples ( approximately 94% reduction). The Sterinis hydrogen peroxide system significantly reduced the extent of environmental contamination with C. difficile in these elderly care rooms. This relatively quick and user-friendly technology might be a more reliable method of terminally disinfecting isolation rooms, following detergent cleaning, compared to the manual application of other disinfectants.

  14. Hydrogen peroxide concentration by pervaporation of a ternary liquid solution in microfluidics.

    PubMed

    Ziemecka, Iwona; Haut, Benoît; Scheid, Benoit

    2015-01-21

    Pervaporation in a microfluidic device is performed on liquid ternary solutions of hydrogen peroxide-water-methanol in order to concentrate hydrogen peroxide (H2O2) by removing methanol. The quantitative analysis of the pervaporation of solutions with different initial compositions is performed, varying the operating temperature of the microfluidic device. Experimental results together with a mathematical model of the separation process are used to understand the effect of the operating conditions on the microfluidic device efficiency. The parameters influencing significantly the performance of pervaporation in the microfluidic device are determined and the limitations of the process are discussed. For the analysed system, the operating temperature of the chip has to be below the temperature at which H2O2 decomposes. Therefore, the choice of an adequate reduced operating pressure is required, depending on the expected separation efficiency.

  15. Use of ozone and hydrogen peroxide in the post-treatment of UASB treated alkaline fruit cannery effluent.

    PubMed

    Sigge, G O; Britz, T J; Fouri, P C; Barnardt, C A; Strydom, R

    2001-01-01

    UASB treatment of cannery effluents was shown to be feasible. However, the treated effluent still does not allow direct discharge to a water system and a further form of post-treatment is necessary to reduce the COD to lower than the legal limit of 75 mg/l. The use of ozone, hydrogen peroxide and granular activated carbon were used singly or in combination to assess the effectiveness as post-treatment options for the UASB treated alkaline fruit cannery effluent. Colour reduction in the effluent ranged from 15% to 92% and COD reductions of 26-91% were achieved. Combinations of ozone and hydrogen peroxide gave better results than either oxidant singly. The best results were achieved by combining ozone, hydrogen peroxide and granular activated carbon, and COD levels were reduced to levels sufficiently below the 75 mg/l limit.

  16. Conversion of aryl iodides into aryliodine(III) dichlorides by an oxidative halogenation strategy using 30% aqueous hydrogen peroxide in fluorinated alcohol.

    PubMed

    Podgorsek, Ajda; Iskra, Jernej

    2010-04-20

    Oxidative chlorination with HCl/H2O2 in 1,1,1-trifluoroethanol was used to transform aryl iodides into aryliodine(III) dihalides. In this instance 1,1,1-trifluoroethanol is not only the reaction medium, but is also an activator of hydrogen peroxide for the oxidation of hydrochloric acid to molecular chlorine. Aryliodine(III) dichlorides were formed in 72-91% isolated yields in the reaction of aryl iodides with 30% aqueous hydrogen peroxide and hydrochloric acid at ambient temperature. A study of the effect that substituents on the aromatic ring have on the formation and stability of aryliodine(III) dichlorides shows that the transformation is easier to achieve in the presence of the electron-donating groups (i.e. methoxy), but in this case the products rapidly decompose under the reported reaction conditions to form chlorinated arenes. The results suggest that oxidation of hydrogen chloride with hydrogen peroxide is the initial reaction step, while direct oxidation of aryl iodide with hydrogen peroxide is less likely to occur.

  17. The effects of metal ions on the DNA damage induced by hydrogen peroxide.

    PubMed

    Kobayashi, S; Ueda, K; Komano, T

    1990-01-01

    The effects of metal ions on DNA damage induced by hydrogen peroxide were investigated using two methods, agarose-gel electrophoretic analysis of supercoiled DNA and sequencing-gel analysis of single end-labeled DNA fragments of defined sequences. Hydrogen peroxide induced DNA damage when iron or copper ion was present. At least two classes of DNA damage were induced, one being direct DNA-strand cleavage, and the other being base modification labile to hot piperidine. The investigation of the damaged sites and the inhibitory effects of radical scavengers revealed that hydroxyl radical was the species which attacked DNA in the reaction of H2O2/Fe(II). On the other hand, two types of DNA damage were induced by H2O2/Cu(II). Type I damage was predominant and inhibited by potassium iodide, but type II was not. The sites of the base-modification induced by type I damage were similar to those by lipid peroxidation products and by ascorbate in the presence of Cu(II), suggesting the involvement of radical species other than free hydroxyl radical in the damaging reactions.

  18. Enhanced hydrogen peroxide release from macrophages stimulated with streptococcal preparation OK-432.

    PubMed Central

    Saito, H; Tomioka, H

    1979-01-01

    Wheat germ lectin was found to be a potent triggering agent for hydrogen peroxide release from mouse peritoneal macrophages. Macrophages stimulated by intraperitoneal injection of OK-432, a lyophilized attenuated streptococcal preparation, were highly responsive to wheat germ lectin. PMID:546795

  19. The influences of shape and structure of MnO2 nanomaterials over the non-enzymatic sensing ability of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Babu, K. Justice; Zahoor, Awan; Nahm, Kee Suk; Ramachandran, R.; Rajan, M. A. Jothi; Gnana kumar, G.

    2014-02-01

    The different morphologies of MnO2 nanomaterials such as rod, belt, and flower were synthesized through a facile hydrothermal method, and their phases were also effectively controlled without employing any organic surfactants. The growth mechanisms of prepared nanostructures has been rationalized through the observed morphologic and structural characterizations. The prepared MnO2 nanostructures improved the electron transfer kinetics and minimized the overpotential and exhibited good electrocatalytic activities in detecting the hydrogen peroxide. Among the studied nanostructures, r-MnO2 exhibited an excellent sensing behavior toward hydrogen peroxide, and a linear current response was observed for the hydrogen peroxide, ranging from 1 micromolar to 1.5 mM with a high-sensitivity and low-level detection limit of 62.9 μAmM-1 cm-2 and 0.1 μM, respectively. Moreover, r-MnO2-modified electrode exhibited high selectivity toward hydrogen peroxide and interference-free phenomenon for the other electroactive species.

  20. High-performance liquid chromatography method for the determination of hydrogen peroxide present or released in teeth bleaching kits and hair cosmetic products.

    PubMed

    Gimeno, Pascal; Bousquet, Claudine; Lassu, Nelly; Maggio, Annie-Françoise; Civade, Corinne; Brenier, Charlotte; Lempereur, Laurent

    2015-03-25

    This manuscript presents an HPLC/UV method for the determination of hydrogen peroxide present or released in teeth bleaching products and hair products. The method is based on an oxidation of triphenylphosphine into triphenylphosphine oxide by hydrogen peroxide. Triphenylphosphine oxide formed is quantified by HPLC/UV. Validation data were obtained using the ISO 12787 standard approach, particularly adapted when it is not possible to make reconstituted sample matrices. For comparative purpose, hydrogen peroxide was also determined using ceric sulfate titrimetry for both types of products. For hair products, a cross validation of both ceric titrimetric method and HPLC/UV method using the cosmetic 82/434/EEC directive (official iodometric titration method) was performed. Results obtained for 6 commercialized teeth whitening products and 5 hair products point out similar hydrogen peroxide contain using either the HPLC/UV method or ceric sulfate titrimetric method. For hair products, results were similar to the hydrogen peroxide content using the cosmetic 82/434/EEC directive method and for the HPLC/UV method, mean recoveries obtained on spiked samples, using the ISO 12787 standard, ranges from 100% to 110% with a RSD<3.0%. To assess the analytical method proposed, the HPLC method was used to control 35 teeth bleaching products during a market survey and highlight for 5 products, hydrogen peroxide contents higher than the regulated limit. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effect of pH on whitening efficacy of 35% hydrogen peroxide and enamel microhardness.

    PubMed

    Jurema, Ana Luiza Barbosa; de Souza, Mauricio Yugo; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler; Caneppele, Taciana Marco Ferraz

    2018-03-01

    This study aimed to evaluate the effect of 35% hydrogen peroxide at different pH values and the degree of tooth staining on whitening efficacy and enamel microhardness. 90 enamel-dentin specimens were obtained from bovine incisors. They were randomly divided into 2 groups (n = 45), 1 group was immersed in a staining broth for 14 days, and another group was not stained and kept in distilled water at 37°C. Twenty-four hours after the staining procedure, each group was distributed into 3 subgroups that were whitened by 35% hydrogen peroxide with different pH values (5, 7, and 8.4) for 30 minutes. The color was measured at baseline and 7 days after whitening. Microhardness was measured at baseline, immediate, 24 hours, and 1 month after the whitening procedure. Data were submitted to 2-way analysis of variance (ANOVA) and the Tukey test for multiple comparisons for color analysis. Repeated measures ANOVA and the Tukey test were used to analyze microhardness data. The color change of the stained groups (ΔE 00  = 4.6) was significantly higher than that of the nonstained groups (ΔE 00  = 3.7). Microhardness value decreased significantly immediately after whitening for all subgroups and did not return to initial values. For each measurement time, microhardness was not significantly different among subgroups with different pH values. Despite the effectiveness of 35% hydrogen peroxide, changes on gel pH did not affect the whitening efficacy, and the enamel was superficially demineralized, regardless of pH values. Independently of the pH value of whitening gel, enamel undergoes superficial demineralization and with a reduction in superficial microhardness that does not return to the initial values. However, using hydrogen peroxide with different pH values does not alter the whitening effect. © 2018 Wiley Periodicals, Inc.

  2. Treatment of portal venous gas embolism with hyperbaric oxygen after accidental ingestion of hydrogen peroxide: a case report and review of the literature.

    PubMed

    Papafragkou, Sotirios; Gasparyan, Anna; Batista, Richard; Scott, Paul

    2012-07-01

    It is well known that hydrogen peroxide ingestion can cause gas embolism. To report a case illustrating that the definitive, most effective treatment for gas embolism is hyperbaric oxygen therapy. We present a case of a woman who presented to the Emergency Department with acute abdominal pain after an accidental ingestion of concentrated hydrogen peroxide. Complete recovery from her symptoms occurred quickly with hyperbaric oxygen therapy. This is a case report of the successful use of hyperbaric oxygen therapy to treat portal venous gas embolism caused by hydrogen peroxide ingestion. Hyperbaric oxygen therapy can be considered for the treatment of symptomatic hydrogen peroxide ingestion. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Influence of Hydrogen Peroxide, Lactic Acid, and Surfactants from Vaginal Lactobacilli on the Antibiotic Sensitivity of Opportunistic Bacteria.

    PubMed

    Sgibnev, Andrey; Kremleva, Elena

    2017-06-01

    We studied as hydrogen peroxide, lactic acid, or surfactants from clinical isolates of vaginal lactobacilli and cell-free supernatants from probiotic strain LCR35 can influence on the sensitivity of opportunistic bacteria to antibiotics. We found that the most effective in increasing sensitivity to antibiotics were hydrogen peroxide and surfactants or their combination but no lactic acid. In some cases, the effect of the composition of hydrogen peroxide and surfactants was clearly higher than the sum of effects of these substances alone. With using of the supernatant of LCR35 was shown that the combination of surfactant and lactate has greater effect compared with surfactants alone. In concluding, metabolites of vaginal lactobacilli are suitable for the role of "antibiotic assistants" and it can help solve the problems the antibiotic resistance.

  4. Necrotic cell death by hydrogen peroxide in immortal DF-1 chicken embryo fibroblast cells expressing deregulated MnSOD and catalase.

    PubMed

    Kim, H; You, S; Kong, B W; Foster, L K; Farris, J; Foster, D N

    2001-08-22

    The reactive oxygen species are known as endogenous toxic oxidant damaging factors in a variety of cell types, and in response, the antioxidant genes have been implicated in cell proliferation, senescence, immortalization, and tumorigenesis. The expression of manganese superoxide dismutase mRNA was shown to increase in most of the immortal chicken embryo fibroblast (CEF) cells tested, while expression of catalase mRNA appeared to be dramatically decreased in all immortal CEF cells compared to their primary counterparts. The expression of copper-zinc superoxide dismutase mRNA was shown to increase slightly in some immortal CEF cells. The glutathione peroxidase expressed relatively similar levels in both primary and immortal CEF cells. As primary and immortal DF-1 CEF cells were treated with 10-100 microM of hydrogen peroxide (concentrations known to be sublethal in human diploid fibroblasts), immortal DF-1 CEF cells were shown to be more sensitive to hydrogen peroxide, and total cell numbers were dramatically reduced when compared with primary cell counterparts. This increased sensitivity to hydrogen peroxide in immortal DF-1 cells occurred without evident changes in either antioxidant gene expression, mitochondrial membrane potential, cell cycle distribution or chromatin condensation. However, the total number of dead cells without chromatin condensation was dramatically elevated in immortal DF-1 CEFs treated with hydrogen peroxide, indicating that the inhibition of immortal DF-1 cell growth by low concentrations of hydrogen peroxide is due to increased necrotic cell death, but not apoptosis. Taken together, our observation suggests that the balanced antioxidant function might be important for cell proliferation in response to toxic oxidative damage by hydrogen peroxide.

  5. SELECTIVE OXIDATION OF ALCOHOLS OVER VANADIUM PHOSPHORUS OXIDE CATALYST USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various alcohols is studied in liquid phase under nitrogen atmosphere over vanadium phosphorus oxide catalyst in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method are found to be suitable for the selective oxidation of a variet...

  6. Antifungal efficacy of hydrogen peroxide in dental unit waterline disinfection.

    PubMed

    Szymańska, Jolanta

    2006-01-01

    The concentration and composition of fungal flora in dental unit waterlines (DUWL) were evaluated. For this purpose, water samples from unit reservoirs and high-speed handpieces, and biofilm samples from the waterline walls from units were collected. Subsequently, analogous samples from DUWL were taken before and after disinfection using agent containing hydrogen peroxide. In the examined samples, the yeast-like fungi Candida albicans and Candida curvata were found. The following species of mould were also identified: Aspergillus amstelodami, Aspergillus fumigatus, Aspergillus glaucus group, Aspergillus (=Eurotium herbariorum) repens, Citromyces spp., Geotrichum candidum, Penicillium (glabrum) frequentans, Penicillium pusillum, Penicillium turolense and Sclerotium sclerotiorum (Sclerotinia sclerotiorum). Before disinfection, Candida curvata and Candida albicans constituted the greatest proportion of the total fungi in the reservoirs water; in the water of handpieces--Candida albicans and Aspergillus glaucus group; and in the biofilm samples--Aspergillus glaucus group and Candida albicans. After disinfection, in all 3 kinds of samples, Candida albicans prevailed, constituting from 31.2-85.7 % of the total fungi. The application of agent containing hydrogen peroxide caused a significant decrease both in the number of total fungi and individual fungal species, which confirms the product effectiveness in fungal decontamination of DUWL.

  7. Inactivation of aflatoxin B1 by using the synergistic effect of hydrogen peroxide and gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, U.D.; Govindarajan, P.; Dave, P.J.

    Inactivation of aflatoxin B1 was studied by using gamma radiation and hydrogen peroxide. A 100-krad dose of gamma radiation was sufficient to inactivate 50 micrograms of aflatoxin B1 in the presence of 5% hydrogen peroxide, and 400 krad was required for total degradation of 100 micrograms of aflatoxin in the same system. Degradation of aflatoxin B1 was confirmed by high-pressure liquid chromatographic and thin-layer chromatographic analysis. Ames microsomal mutagenicity test showed loss of aflatoxin activity. This method of detoxification also reduces the toxin levels effectively in artificially contaminated groundnuts.

  8. Exogenous Melatonin Confers Cadmium Tolerance by Counterbalancing the Hydrogen Peroxide Homeostasis in Wheat Seedlings.

    PubMed

    Ni, Jun; Wang, Qiaojian; Shah, Faheem Afzal; Liu, Wenbo; Wang, Dongdong; Huang, Shengwei; Fu, Songling; Wu, Lifang

    2018-03-30

    Melatonin has emerged as a research highlight regarding its important role in regulating plant growth and the adaptation to the environmental stresses. In this study, we investigated how melatonin prevented the cadmium toxicity to wheat seedlings. The results demonstrated that cadmium induced the expression of melatonin biosynthesis-related genes and cause a significant increase of endogenous melatonin level. Melatonin treatment drastically alleviated the cadmium toxicity, resulting in increased plant height, biomass accumulation, and root growth. Cadmium and senescence treatment significantly increased the endogenous level of hydrogen peroxide, which was strictly counterbalanced by melatonin. Furthermore, melatonin treatment caused a significant increase of GSH (reduced glutathione) content and the GSH/GSSG (oxidized glutathione) ratio. The activities of two key antioxidant enzymes, ascorbate peroxidase (APX) and superoxide dismutase (SOD), but not catalase (CAT) and peroxidase (POD), were specifically improved by melatonin. Additionally, melatonin not only promoted the primary root growth, but also drastically enhanced the capacity of the seedling roots to degrade the exogenous hydrogen peroxide. These results suggested that melatonin played a key role in maintaining the hydrogen peroxide homeostasis, via regulation of the antioxidant systems. Conclusively, this study revealed a crucial protective role of melatonin in the regulation of cadmium resistance in wheat.

  9. Effect of hydrogen peroxide on the three-dimensional polymer network in composites.

    PubMed

    Durner, Jürgen; Stojanovic, Marija; Urcan, Ebru; Spahl, Werner; Haertel, Ursula; Hickel, Reinhard; Reichl, Franx-Xaver

    2011-06-01

    Less data are available about the effects of hydrogen peroxide on the three-dimensional polymer network of polymerized composites. Therefore the study was performed to test the effects of hydrogen peroxide on the three-dimensional polymer network in composites. Polymerized specimens from Tetric Flow®, Tetric Ceram® and Filtek™ Supreme XT were bleached with Opalescence® PF 15% for 5h or PF 35% for 0.5h, respectively, and then stored in methanol for 1d and 7d. Controls were unbleached specimens. The eluates were analyzed by gas chromatography/mass spectrometry. More methacrylic acid (MAA), bisphenol-A (BPA), ethoxylated bisphenol-A-dimethacrylate (BisEMA), hydroquinone monomethyl ether (HQME), 1,10-decanediol dimethacrylate (DDDMA) and/or triethylene glycol dimethacrylate (TEGDMA) were eluted from bleached specimens compared with non bleached controls (1d). The highest DDDMA amount of 419.8 μmol/l was found in the eluates after 7d in Tetric Flow® specimens treated with PF 15. The highest HQME amount of 159.6 μmol/l was found in eluates from Tetric Ceram® specimens treated with PF after 7d. The highest TEGDMA amount of 178.7 μmol/l was found in eluates from Filtek™ Supreme XT specimens treated with PF 35 after 7d. Bleaching with hydrogen peroxide has an effect on the three-dimensional polymer network in polymerized composites leading to an increase in the release of unpolymerized monomers, additives and unspecific oxidative products. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Synergism between hydrogen peroxide and seventeen acids against five agri-food-borne fungi and one yeast strain.

    PubMed

    Martin, H; Maris, P

    2012-12-01

    The objective of this study was to evaluate fungicidal efficacy of hydrogen peroxide administered in combination with 17 mineral and organic acids authorized for use in the food industry. The assays were performed on a 96-well microplate using a microdilution technique based on the checkerboard titration method. The six selected strains (one yeast and five fungi) were reference strains and strains representative of contaminating fungi found in the food industry. Each synergistic hydrogen peroxide/acid combination found after fifteen minutes contact time at 20 °C in distilled water was then tested in conditions simulating four different use conditions. Twelve combinations were synergistic in distilled water, eleven of these remained synergistic with one or more of the four mineral and organic interfering substances selected. Hydrogen peroxide/formic acid combination remained effective against four strains and was never antagonistic against the other two fungi. Combinations with propionic acid and acetic acid stayed synergistic against two strains. Those with oxalic acid and lactic acid kept their synergism only against Candida albicans. No synergism was detected against Penicillium cyclopium. Synergistic combinations of disinfectants were revealed, among them the promising hydrogen peroxide/formic acid combination. A rapid screening method developed in our laboratory for bacteria was adapted to fungi and used to reveal the synergistic potential of disinfectants and/or sanitizers combinations. © 2012 The Society for Applied Microbiology.

  11. Hydrogen peroxide propulsion for smaller satellites (SSC98-VIII-1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, J C

    1998-07-13

    As satellite designs shrink, providing maneuvering and control capability falls outside the realm of available propulsion technology. While cold gas has been used on the smallest satellites, hydrogen peroxide propellant is suggested as the next step in performance and cost before hydrazine. Minimal toxicity and a small scale enable benchtop propellant preparation and development testing. Progress toward low-cost thrusters and self-pressurizing tank systems is described.

  12. Inactivation of biologically active dna by gamma ray induced superoxide radicals and their dismutation products singlet molecular oxygen and hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanhemmen, J.J.; Meuling, W.J.A.

    1975-01-01

    The reactivity of gamma ray induced superoxide radicals and dismutation products (singlet molecular oxygen and hydrogen peroxide) with DNA were studied. Superoxide dismutase, which removes superoxide radicals and inhibits the formation of singlet oxygen, protects biologically active DNA (OX174 RF) against inactivation by ionizing radiation. Catalase, which removes hydrogen peroxide, also protects the DNA. Attempts with various chemical sources of singlet oxygen to determine whether this species inactivates DNA did not yield an unequivocal answer. It was concluded that a combination of the protonated form of the superoxide radical and hydrogen peroxide inactivates DNA. (Author) (GRA)

  13. Analysis of the Color and Fluorescence Alterations of Enamel and Dentin Treated With Hydrogen Peroxide.

    PubMed

    Caneppele, Taciana Marco Ferraz; Rocha Gomes Torres, Carlos; Bresciani, Eduardo

    2015-10-01

    The aim of this study was to evaluate the effect of hydrogen peroxide whitening on fluorescence and color of bovine enamel and dentin. Twenty five dentin discs and 25 enamel discs, with 6 mm diameter and 1 mm thick, were obtained. Direct fluorescence (spectrofluorophotometry) and color (spectrophotometry) were assessed. After fluorescence and color baseline measurements, specimens were immersed in a 35% hydrogen peroxide (HP) solution for 1 h. This procedure was repeated after 7 days. Final fluorescence and color measurements were performed after the second immersion. Chemical characterization of 5 additional specimens was also performed. Data were submitted to repeated analysis of variance and Tukey's test for fluorescence and unpaired t-test for color and chemical components (p<0.05). Fluorescence decreased significantly in dentin specimens after whitening. Enamel presented lower fluorescence than dentin at baseline, but this parameter did not decrease after whitening. Color changes were observed for both substrates, with significantly greater whitening effect in dentin (ΔE=10.37) (p<0.001). Whitening by hydrogen peroxide induced significant decrease in fluorescence of tooth dentin and promoted significant color changes in dentin and enamel with more accentuated outcomes in dentin.

  14. Hydrogen-bearing iron peroxide and its implications to the deep Earth

    NASA Astrophysics Data System (ADS)

    Liu, J.; Hu, Q.; Kim, D. Y.; Wu, Z.; Wang, W.; Alp, E. E.; Yang, L.; Xiao, Y.; Meng, Y.; Chow, P.; Greenberg, E.; Prakapenka, V. B.; Mao, H. K.; Mao, W. L.

    2017-12-01

    Hydrous materials subducted into the deep mantle may play a significant role in the geophysical and geochemical processes of the lower mantle through geological time, but their roles have not become clear yet in the region. Hydrogen-bearing iron peroxide (FeO2Hx) was recently discovered to form through dehydrogenation of goethite (e.g., FeOOH) and the reaction between hematite (Fe2O3) and water under deep lower mantle conditions. We conducted synchrotron Mössbauer, X-ray absorption, and X-ray emission spectroscopy measurements to investigate the electronic spin and valence states of iron in hydrogen-bearing iron peroxide (FeO2Hx) in-situ at high pressures. Combined with theoretical calculations and other high-pressure experiments (i.e., nuclear resonant inelastic x-ray scattering spectroscopy and X-ray diffraction coupled with laser-heated diamond-anvil cell techniques), we find that the intriguing properties of FeO2Hx could shed light on the origin of a number of the observed geochemical and geophysical anomalies in the deep Earth.

  15. Inhibitory effects of LPA1 on cell motile activities stimulated by hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone in fibroblast 3T3 cells.

    PubMed

    Hirane, Miku; Araki, Mutsumi; Dong, Yan; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2013-11-08

    Reactive oxygen species (ROS) are known to mediate a variety of biological responses, including cell motility. Recently, we indicated that lysophosphatidic acid (LPA) receptor-3 (LPA3) increased cell motile activity stimulated by hydrogen peroxide. In the present study, we assessed the role of LPA1 in the cell motile activity mediated by ROS in mouse fibroblast 3T3 cells. 3T3 cells were treated with hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) at concentrations of 0.1 and 1 μM for 48 h. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3 cells treated with hydrogen peroxide and DMNQ were significantly higher than those of untreated cells. 3T3 cells treated with hydrogen peroxide and DMNQ showed elevated expression levels of the Lpar3 gene, but not the Lpar1 and Lpar2 genes. To investigate the effects of LPA1 on the cell motile activity induced by hydrogen peroxide and DMNQ, Lpar1-overexpressing (3T3-a1) cells were generated from 3T3 cells and treated with hydrogen peroxide and DMNQ. The cell motile activities stimulated by hydrogen peroxide and DMNQ were markedly suppressed in 3T3-a1 cells. These results suggest that LPA signaling via LPA1 inhibits the cell motile activities stimulated by hydrogen peroxide and DMNQ in 3T3 cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Cu-ZSM-5 catalyzed low-temperature hydrogen peroxide-induced methane-to-methanol conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Li, Zhenglong; Allard, Jr., Lawrence Frederick

    2017-01-01

    We report that Cu-ZSM-5 is an effective catalyst for methane oxidation with hydrogen peroxide. We find that synthesis via ion-exchage and reaction conditions are important factors for the observed efficiency of Cu-ZSM-5.

  17. Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action*

    NASA Astrophysics Data System (ADS)

    Piatnytskyi, Dmytro V.; Zdorevskyi, Oleksiy O.; Perepelytsya, Sergiy M.; Volkov, Sergey N.

    2015-11-01

    Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long-lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counterion, were considered. The counterions have been taken into consideration insofar as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counterions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2-Na+-PO4- may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene

  18. Flow cytometric HyPer-based assay for hydrogen peroxide.

    PubMed

    Lyublinskaya, O G; Antonov, S A; Gorokhovtsev, S G; Pugovkina, N A; Kornienko, Ju S; Ivanova, Ju S; Shatrova, A N; Aksenov, N D; Zenin, V V; Nikolsky, N N

    2018-05-30

    HyPer is a genetically encoded fluorogenic sensor for hydrogen peroxide which is generally used for the ratiometric imaging of H 2 O 2 fluxes in living cells. Here, we demonstrate the advantages of HyPer-based ratiometric flow cytometry assay for H 2 O 2 , by using K562 and human mesenchymal stem cell lines expressing HyPer. We show that flow cytometry analysis is suitable to detect HyPer response to submicromolar concentrations of extracellularly added H 2 O 2 that is much lower than concentrations addressed previously in the other HyPer-based assays (such as cell imaging or fluorimetry). Suggested technique is also much more sensitive to hydrogen peroxide than the widespread flow cytometry assay exploiting H 2 O 2 -reactive dye H 2 DCFDA and, contrary to the H 2 DCFDA-based assay, can be employed for the kinetic studies of H 2 O 2 utilization by cells, including measurements of the rate constants of H 2 O 2 removal. In addition, flow cytometry multi-parameter ratiometric measurements enable rapid and high-throughput detection of endogenously generated H 2 O 2 in different subpopulations of HyPer-expressing cells. To sum up, HyPer can be used in multi-parameter flow cytometry studies as a highly sensitive indicator of intracellular H 2 O 2 . Copyright © 2018. Published by Elsevier Inc.

  19. OXIDATION OF ALCOHOLS OVER FE3+/MONTMORILLONITE-K10 USING HYDROGEN PEROXIDE

    EPA Science Inventory

    Oxidation of various primary and secondary alcohols is studied in liquid phase at atmospheric pressure over Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a pH of 4 in an environmentally friendly protocol using hydrogen peroxide. The catalyst and the method ...

  20. Effect of exogenous hydrogen peroxide on biophoton emission from radish root cells.

    PubMed

    Rastogi, Anshu; Pospísil, Pavel

    2010-01-01

    Biophotons spontaneously emitted from radish root cells were detected using highly sensitive photomultiplier tube. Freshly isolated radish root cells exhibited spontaneous photon emission of about 4 counts s(-1). Addition of hydrogen peroxide to the cells caused significant enhancement in biophoton emission to about 500 counts s(-1). Removal of molecular oxygen using glucose/glucose oxidase system and scavengering of reactive oxygen species by reducing agents such are sodium ascorbate and cysteine completely diminished biophoton emission. Spectral analysis of the hydrogen peroxide-induced biophoton emission indicates that biophotons are emitted mainly in green-red region of the spectra. The data provided by electron paramagnetic resonance spin-trapping technique showed that formation of singlet oxygen observed after addition of H2O2 correlates with enhancement in biophoton emission. These observations provide direct evidence that singlet oxygen is involved in biophoton emission from radish root cells. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  1. A Hydrogen Peroxide Hot-Jet Simulator for Wind-Tunnel Tests of Turbojet-Exit Models

    NASA Technical Reports Server (NTRS)

    Runckel, Jack F.; Swihart, John M.

    1959-01-01

    A turbojet-engine-exhaust simulator which utilizes a hydrogen peroxide gas generator has been developed for powered-model testing in wind tunnels with air exchange. Catalytic decomposition of concentrated hydrogen peroxide provides a convenient and easily controlled method of providing a hot jet with characteristics that correspond closely to the jet of a gas turbine engine. The problems associated with simulation of jet exhausts in a transonic wind tunnel which led to the selection of a liquid monopropellant are discussed. The operation of the jet simulator consisting of a thrust balance, gas generator, exit nozzle, and auxiliary control system is described. Static-test data obtained with convergent nozzles are presented and shown to be in good agreement with ideal calculated values.

  2. Iodine oxidation by hydrogen peroxide and Bray-Liebhafsky oscillating reaction: effect of the temperature.

    PubMed

    Schmitz, Guy

    2011-04-21

    This work presents a new experimental kinetic study at 39° and 50° of the iodine oxidation by hydrogen peroxide. The results allow us to obtain the temperature effect on the rate constants previously proposed at 25° for our model of the Bray-Liebhafsky oscillating reaction (G. Schmitz, Phys. Chem. Chem. Phys. 2010, 12, 6605.). The values calculated with the model are in good agreement with many experimental results obtained under very different experimental conditions. Numerical simulations of the oscillations observed formerly by different authors are presented, including the evolutions of the iodine, hydrogen peroxide, iodide ions and oxygen concentrations. Special attention is paid to the perturbing effects of oxygen and of the iodine loss to the gas phase.

  3. Penetration of 35% hydrogen peroxide into the pulp chamber in bovine teeth after LED or Nd:YAG laser activation.

    PubMed

    Camargo, Samira Esteves Afonso; Cardoso, Paula Elaine; Valera, Marcia Carneiro; de Araújo, Maria Amélia Máximo; Kojima, Alberto Noriyuki

    2009-01-01

    This aim of the present study was to evaluate the pulp chamber penetration of 35% hydrogen peroxide activated by LED (light-emitting diode) or Nd:YAG laser in bovine teeth, after an in-office bleaching technique. Forty-eight bovine lateral incisors were divided into four groups, acetate buffer was placed into the pulp chamber and bleaching agent was applied as follows: for group A (n = 12), activation was performed by LED; for group B (n = 12), activation was performed by Nd:YAG laser (60 mJ, 20 Hz); group C (n = 12) received no light or laser activation; and the control group (n = 12) received no bleaching gel application or light or laser activation. The acetate buffer solution was transferred to a glass tube and Leuco Crystal Violet and horseradish peroxidase were added, producing a blue solution. The optical density of this solution was determined spectrophotometrically and converted into microgram equivalents of hydrogen peroxide. The results were analysed using ANOVA and Tukey's test (5%). It was verified that the effect of activation was significant, as groups activated by LED or laser presented greater hydrogen peroxide penetration into the pulp chamber (0.499 +/- 0.622 microg) compared with groups that were not (0.198 +/- 0.218 microg). There was no statistically significant difference in the penetration of hydrogen peroxide into the pulp chamber between the two types of activation (LED or laser). The results suggest that activation by laser or LED caused an increase in hydrogen peroxide penetration into the pulp chamber.

  4. Nanoparticles based on quantum dots and a luminol derivative: implications for in vivo imaging of hydrogen peroxide by chemiluminescence resonance energy transfer.

    PubMed

    Lee, Eun Sook; Deepagan, V G; You, Dong Gil; Jeon, Jueun; Yi, Gi-Ra; Lee, Jung Young; Lee, Doo Sung; Suh, Yung Doug; Park, Jae Hyung

    2016-03-18

    Overproduction of hydrogen peroxide is involved in the pathogenesis of inflammatory diseases such as cancer and arthritis. To image hydrogen peroxide via chemiluminescence resonance energy transfer in the near-infrared wavelength range, we prepared quantum dots functionalized with a luminol derivative.

  5. Identification of Clostridium difficile Reservoirs in The Patient Environment and Efficacy of Aerial Hydrogen Peroxide Decontamination.

    PubMed

    Yui, Samuel; Ali, Shanom; Muzslay, Monika; Jeanes, Annette; Wilson, A Peter R

    2017-12-01

    OBJECTIVE To identify, using a novel enhanced method of recovery, environmental sites where spores of Clostridium difficile persist despite cleaning and hydrogen peroxide aerial decontamination. DESIGN Cohort study. SETTING Tertiary referral center teaching hospital. METHODS In total, 16 sites representing high-frequency contact or difficult-to-clean surfaces in a single-isolation room or bed area in patient bed bays were sampled before and after terminal or hydrogen peroxide disinfection using a sponge swab. In some rooms, individual sites were not present (eg, there were no en-suite rooms in the ICU). Swab contents were homogenized, concentrated by membrane-filtration, and plated onto selective media. Results of C. difficile sampling were used to focus cleaning. RESULTS Over 1 year, 2,529 sites from 146 rooms and 44 bays were sampled. Clostridium difficile was found on 131 of 572 surfaces (22.9%) before terminal cleaning, on 105 of 959 surfaces (10.6%) after terminal cleaning, and on 43 of 967 surfaces (4.4%) after hydrogen peroxide disinfection. Clostridium difficile persisted most frequently on floor corners (97 of 334; 29.0%) after disinfection. Between the first and third quarters, we observed a significant decrease in the number of positive sites (25 of 390 vs 6 of 256). However, no similar change in the number of isolates before terminal cleaning was observed. CONCLUSION Persistence of C. difficile in the clinical environment was widespread. Although feedback of results did not improve the efficacy of manual disinfection, numbers of C. difficile following hydrogen peroxide gradually declined. Infect Control Hosp Epidemiol 2017;38:1487-1492.

  6. Effect of hydrogen peroxide pretreatment on the structural features and the enzymatic hydrolysis of rice straw.

    PubMed

    Wei, C J; Cheng, C Y

    1985-10-01

    Assessment was made to evaluate the effect of hydrogen peroxide pretreatment on the change of the structural features and the enzymatic hydrolysis of rice straw. Changes in the lignin content, weight loss, accessibility for Cadoxen, water holding capacity, and crystallinity of straw were measured during pretreatment to express the modification of the lignocellulosic structure of straw. The rates and the extents of enzymatic hydrolysis, cellulase adsorption, and cellobiose accumulation in the initial stage of hydrolysis were determined to study the pretreatment effect on hydrolysis. Pretreatment at 60 degrees C for 5 h in a solution with 1% (w/w) H(2)O(2) and NaOH resulted in 60% delignification, 40% weight loss, a fivefold increase in the accessibility for Cadoxen, an one times increase in the water-holding capacity, and only a slight decrease in crystallinity as compared with that of the untreated straw. Improvement on the pretreatment effect could be made by increasing the initial alkalinity and the pretreatment temperature of hydrogen peroxide solution. A saturated improvement on the structural features was found when the weight ratio of hydrogen peroxide to straw was above 0.25 g H(2)O(2)/g straw in an alkaline H(2)O(2) solution with 1% (w/w) NaOH at 32 degrees C. The initial rates and extents of hydrolysis, cellulase adsorption, and cellobiose accumulation in hydrolysis were enhanced in accordance with the improved structural features of straw pretreated. A four times increase in the extent of the enzymatic hydrolysis of straw for 24 h was attributed to the alkaline hydrogen peroxide pretreatment.

  7. Urea Hydrogen Peroxide Reduces the Numbers of Lactobacilli, Nourishes Yeast, and Leaves No Residues in the Ethanol Fermentation

    PubMed Central

    Narendranath, N. V.; Thomas, K. C.; Ingledew, W. M.

    2000-01-01

    Urea hydrogen peroxide (UHP) at a concentration of 30 to 32 mmol/liter reduced the numbers of five Lactobacillus spp. (Lactobacillus plantarum, L. paracasei, Lactobacillus sp. strain 3, L. rhamnosus, and L. fermentum) from ∼107 to ∼102 CFU/ml in a 2-h preincubation at 30°C of normal-gravity wheat mash at ∼21 g of dissolved solids per ml containing normal levels of suspended grain particles. Fermentation was completed 36 h after inoculation of Saccharomyces cerevisiae in the presence of UHP, even when wheat mash was deliberately contaminated (infected) with L. paracasei at ∼107 CFU/ml. There were no significant differences in the maximum ethanol produced between treatments when urea hydrogen peroxide was used to kill the bacteria and controls (in which no bacteria were added). However, the presence of L. paracasei at ∼107 CFU/ml without added agent resulted in a 5.84% reduction in the maximum ethanol produced compared to the control. The bactericidal activity of UHP is greatly affected by the presence of particulate matter. In fact, only 2 mmol of urea hydrogen peroxide per liter was required for disinfection when mashes had little or no particulate matter present. No significant differences were observed in the decomposition of hydrogen peroxide in normal-gravity wheat mash at 30°C whether the bactericidal agent was added as H2O2 or as urea hydrogen peroxide. NADH peroxidase activity (involved in degrading H2O2) increased significantly (P = 0.05) in the presence of 0.75 mM hydrogen peroxide (sublethal level) in all five strains of lactobacilli tested but did not persist in cells regrown in the absence of H2O2. H2O2-resistant mutants were not expected or found when lethal levels of H2O2 or UHP were used. Contaminating lactobacilli can be effectively managed by UHP, a compound which when used at ca. 30 mmol/liter happens to provide near-optimum levels of assimilable nitrogen and oxygen that aid in vigorous fermentation performance by yeast. PMID:11010858

  8. Disinfection of wastewater by hydrogen peroxide or peracetic acid: development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent.

    PubMed

    Wagner, Monika; Brumelis, Daina; Gehr, Ronald

    2002-01-01

    The Montreal Urban Community Wastewater Treatment Plant (MUCWTP) located in Montreal. Quebec, Canada, uses physicochemical treatment processes prior to discharging wastewater into the St. Lawrence River via an outfall tunnel of 2 hours retention time. Although chlorination facilities exist, they are not being used, and the MUCWTP is seeking alternative methods for disinfection to achieve a 2- to 3-log fecal coliform reduction. Liquid chemical disinfectants were attractive options because of their low capital costs. This led to an investigation of the feasibility of using hydrogen peroxide or peracetic acid. A method for measuring peroxycompounds (hydrogen peroxide or peracetic acid plus hydrogen peroxide) was developed using the peroxidase-based oxidation of 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfuric acid) diammonium salt (ABTS) with hydrogen peroxide. The validity of the method was confirmed using effluent from the MUCWTP. Recovery was higher than 90% for peracetic acid levels as low as 1.0 mg/L. Quenching of hydrogen peroxide was achieved with 50-mg/L catalase; quenching of peracetic acid was achieved with 100 mg/L of sodium thiosulfate, followed by 50 mg/L of catalase. Batch disinfection tests were conducted on MUCWTP effluent. Hydrogen peroxide and peracetic acid in wastewater over time could be modeled as a second-order decay, with the decay "constant" being a function of the initial concentration of peroxycompounds. This function was the same for both hydrogen peroxide and peracetic acid, possibly indicating similar decomposition pathways in wastewater matrices. Disinfection was modeled using a modified Hom equation. Required doses of hydrogen peroxide to reach the target fecal coliform levels ranged from 106 to 285 mg/L, with the higher doses occurring when ferric chloride instead of alum was used as the coagulant. Hence, hydrogen peroxide was infeasible as a disinfectant for this application. On the other hand, the peracetic acid dose needed to

  9. A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production.

    PubMed

    Rabelo, Sarita C; Filho, Rubens Maciel; Costa, Aline C

    2008-01-01

    Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2(3) factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse, as it comes from an alcohol/sugar factory and bagasse, in the size, range from 0.248 to 1.397 mm (12-60 mesh). The results show that, when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for non-screened bagasse using 0.40 g lime/g dry biomass at 70 degrees C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of non-screened bagasse are not very different.

  10. A Comparison between Lime and Alkaline Hydrogen Peroxide Pretreatments of Sugarcane Bagasse for Ethanol Production

    NASA Astrophysics Data System (ADS)

    Rabelo, Sarita C.; Filho, Rubens Maciel; Costa, Aline C.

    Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2 × 2 × 2 factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/ sugar factory and bagasse in the size range of 0.248 to 1.397 mm (12-60 mesh). The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 °C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of nonscreened bagasse are not very different.

  11. A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production.

    PubMed

    Rabelo, Sarita C; Maciel Filho, Rubens; Costa, Aline C

    2008-03-01

    Pretreatment procedures of sugarcane bagasse with lime (calcium hydroxide) or alkaline hydrogen peroxide were evaluated and compared. Analyses were performed using 2 x 2 x 2 factorial designs, with pretreatment time, temperature, and lime loading and hydrogen peroxide concentration as factors. The responses evaluated were the yield of total reducing sugars (TRS) and glucose released from pretreated bagasse after enzymatic hydrolysis. Experiments were performed using the bagasse as it comes from an alcohol/sugar factory and bagasse in the size range of 0.248 to 1.397 mm (12-60 mesh). The results show that when hexoses and pentoses are of interest, lime should be the pretreatment agent chosen, as high TRS yields are obtained for nonscreened bagasse using 0.40 g lime/g dry biomass at 70 degrees C for 36 h. When the product of interest is glucose, the best results were obtained with lime pretreatment of screened bagasse. However, the results for alkaline peroxide and lime pretreatments of nonscreened bagasse are not very different.

  12. Hydrogen Peroxide-Dependent Uptake of Iodine by Marine Flavobacteriaceae Bacterium Strain C-21▿

    PubMed Central

    Amachi, Seigo; Kimura, Koh; Muramatsu, Yasuyuki; Shinoyama, Hirofumi; Fujii, Takaaki

    2007-01-01

    The cells of the marine bacterium strain C-21, which is phylogenetically closely related to Arenibacter troitsensis, accumulate iodine in the presence of glucose and iodide (I−). In this study, the detailed mechanism of iodine uptake by C-21 was determined using a radioactive iodide tracer, 125I−. In addition to glucose, oxygen and calcium ions were also required for the uptake of iodine. The uptake was not inhibited or was only partially inhibited by various metabolic inhibitors, whereas reducing agents and catalase strongly inhibited the uptake. When exogenous glucose oxidase was added to the cell suspension, enhanced uptake of iodine was observed. The uptake occurred even in the absence of glucose and oxygen if hydrogen peroxide was added to the cell suspension. Significant activity of glucose oxidase was found in the crude extracts of C-21, and it was located mainly in the membrane fraction. These findings indicate that hydrogen peroxide produced by glucose oxidase plays a key role in the uptake of iodine. Furthermore, enzymatic oxidation of iodide strongly stimulated iodine uptake in the absence of glucose. Based on these results, the mechanism was considered to consist of oxidation of iodide to hypoiodous acid by hydrogen peroxide, followed by passive translocation of this uncharged iodine species across the cell membrane. Interestingly, such a mechanism of iodine uptake is similar to that observed in iodine-accumulating marine algae. PMID:17933915

  13. Necroulcerative hemorrhagic gastritis in a cat secondary to the administration of 3% hydrogen peroxide as an emetic agent.

    PubMed

    Obr, Teresa D; Fry, Joanna K; Lee, Justine A; Hottinger, Heidi A

    2017-09-01

    To describe a case of necroulcerative gastritis in a cat secondary to administration of 3% hydrogen peroxide as an emetic agent. A 10-year-old neutered male domestic shorthair was evaluated for hematemesis less than 24 hours following ingestion of a piece of foam. The pet owner had administered 2 doses of 0.5-1.0 tablespoons (7.5-15 mL) of 3% hydrogen peroxide in an attempt to induce emesis at home; emesis was achieved and produced the foam foreign body. Due to the presence of protracted vomiting and hematemesis, the patient was then presented to an emergency facility for further diagnostics and treatment. Initial blood work was normal on presentation, and advanced imaging of the abdomen was performed. An exploratory laparotomy revealed no foreign material in the gastrointestinal tract; however, severe ulceration of approximately 60% of the gastric mucosa was observed around the cardia and extended from the fundus down through the body of the stomach to the lesser curvature. Due to the severity of ulceration and presumed poor prognosis, the patient was euthanized intraoperatively. Histopathology of the stomach wall was consistent with severe confluent necroulcerative and hemorrhagic pleocellular gastritis, presumed to be secondary to administration of 3% hydrogen peroxide, which was used as the primary emetic agent in this case. The oral administration of 3% hydrogen peroxide solution in cats can result in necroulcerative gastritis as a possible sequel. While hydrogen peroxide is considered a safe emetic agent in dogs, its use in cats is not recommended. As a result, the use of emetic agents in cats should be limited to veterinary administration, using alternative, safer emetic agents such as alpha-adrenergic agonists. © Veterinary Emergency and Critical Care Society 2017.

  14. Production of hydrogen peroxide in the atmosphere of a Snowball Earth and the origin of oxygenic photosynthesis

    PubMed Central

    Liang, Mao-Chang; Hartman, Hyman; Kopp, Robert E.; Kirschvink, Joseph L.; Yung, Yuk L.

    2006-01-01

    During Proterozoic time, Earth experienced two intervals with one or more episodes of low-latitude glaciation, which are probable “Snowball Earth” events. Although the severity of the historical glaciations is debated, theoretical “hard Snowball” conditions are associated with the nearly complete shutdown of the hydrological cycle. We show here that, during such long and severe glacial intervals, a weak hydrological cycle coupled with photochemical reactions involving water vapor would give rise to the sustained production of hydrogen peroxide. The photochemical production of hydrogen peroxide has been proposed previously as the primary mechanism for oxidizing the surface of Mars. During a Snowball, hydrogen peroxide could be stored in the ice; it would then be released directly into the ocean and the atmosphere upon melting and could mediate global oxidation events in the aftermath of the Snowball, such as that recorded in the Fe and Mn oxides of the Kalahari Manganese Field, deposited after the Paleoproterozoic low-latitude Makganyene glaciation. Low levels of peroxides and molecular oxygen generated during Archean and earliest Proterozoic non-Snowball glacial intervals could have driven the evolution of oxygen-mediating and -using enzymes and thereby paved the way for the eventual appearance of oxygenic photosynthesis. PMID:17138669

  15. AMBIENT AIR MEASUREMENTS OF HYDROGEN PEROXIDE IN THE CALIFORNIA SOUTH COAST AIR BASIN

    EPA Science Inventory

    Hydrogen peroxide (H2O2) concentrations have been measured at two locations (Claremont and Riverside) in the California South Coast Air Basin during the months of July and August 1977. Three different analytical methods were employed: a chemiluminescent method and two colorimetri...

  16. Kinetic Modeling of Methionine Oxidation in Monoclonal Antibodies from Hydrogen Peroxide Spiking Studies.

    PubMed

    Hui, Ada; Lam, Xanthe M; Kuehl, Christopher; Grauschopf, Ulla; Wang, Y John

    2015-01-01

    When isolator technology is applied to biotechnology drug product fill-finish process, hydrogen peroxide (H2O2) spiking studies for the determination of the sensitivity of protein to residual peroxide in the isolator can be useful for assessing a maximum vapor phase hydrogen peroxide (VPHP) level. When monoclonal antibody (mAb) drug products were spiked with H2O2, an increase in methionine (Met 252 and Met 428) oxidation in the Fc region of the mAbs with a decrease in H2O2 concentration was observed for various levels of spiked-in peroxide. The reaction between Fc-Met and H2O2 was stoichiometric (i.e., 1:1 molar ratio), and the reaction rate was dependent on the concentrations of mAb and H2O2. The consumption of H2O2 by Fc-Met oxidation in the mAb followed pseudo first-order kinetics, and the rate was proportional to mAb concentration. The extent of Met 428 oxidation was half of that of Met 252, supporting that Met 252 is twice as reactive as Met 428. Similar results were observed for free L-methionine when spiked with H2O2. However, mAb formulation excipients may affect the rate of H2O2 consumption. mAb formulations containing trehalose or sucrose had faster H2O2 consumption rates than formulations without the sugars, which could be the result of impurities (e.g., metal ions) present in the excipients that may act as catalysts. Based on the H2O2 spiking study results, we can predict the amount Fc-Met oxidation for a given protein concentration and H2O2 level. Our kinetic modeling of the reaction between Fc-Met oxidation and H2O2 provides an outline to design a H2O2 spiking study to support the use of VPHP isolator for antibody drug product manufacture. Isolator technology is increasing used in drug product manufacturing of biotherapeutics. In order to understand the impact of residual vapor phase hydrogen peroxide (VPHP) levels on protein product quality, hydrogen peroxide (H2O2) spiking studies may be performed to determine the sensitivity of monoclonal antibody

  17. Development and Lab-Scale Testing of a Gas Generator Hybrid Fuel in Support of the Hydrogen Peroxide Hybrid Upper Stage Program

    NASA Technical Reports Server (NTRS)

    Lund, Gary K.; Starrett, William David; Jensen, Kent C.; McNeal, Curtis (Technical Monitor)

    2001-01-01

    As part of a NASA funded contract to develop and demonstrate a gas generator cycle hybrid rocket motor for upper stage space motor applications, the development and demonstration of a low sensitivity, high performance fuel composition was undertaken. The ultimate goal of the development program was to demonstrate successful hybrid operation (start, stop, throttling) of the fuel with high concentration (90+%) hydrogen peroxide. The formulation development and lab-scale testing of a simple DOT Class 1.4c gas generator propellant is described. Both forward injected center perforated and aft injected end burner hybrid combustion behavior were evaluated with gaseous oxygen and catalytically decomposed 90% hydrogen peroxide. Cross flow and static environments were found to yield profoundly different combustion behaviors, which were further governed by binder type, oxidizer level and, significantly, oxidizer particle size. Primary extinguishment was accomplished via manipulation of PDL behavior and oxidizer turndown, which is enhanced with the hydrogen peroxide system. Laboratory scale combustor results compared very well with 11-inch and 24-inch sub-scale test results with 90% hydrogen peroxide.

  18. Electrodeposited nanostructured MnO{sub 2} for non-enzymatic hydrogen peroxide sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, B., E-mail: barnamala.saha@gmail.com; Jana, S. K.; Banerjee, S.

    2015-06-24

    Electrodeposited MnO{sub 2} nanostructure was synthesized on indium tin oxide coated glass electrode by cyclic voltammetry. The as obtained samples were subsequently characterized by atomic force microscopy and their electro-catalytic response towards hydrogen peroxide in alkaline medium of 0.1M NaOH was studied using cyclic voltammetry and amperometry.

  19. The Feasibility of Using Hydrogen Peroxide Decomposition Studies for High School Chemistry.

    ERIC Educational Resources Information Center

    Carter, Gillian E.

    1986-01-01

    Highlights difficulties that occur when teachers attempt to devise new experiments (use of hydrogen peroxide decomposition) and how seemingly useless results can be turned into productive student projects. Considers effects of ions present in tap water, pH, dust, and nature of vessel's surface. Reaction order and safety precautions are noted. (JN)

  20. Experimental study of combustion in hydrogen peroxide hybrid rockets

    NASA Astrophysics Data System (ADS)

    Wernimont, Eric John

    Combustion behavior in a hydrogen peroxide oxidized hybrid rocket motor is investigated with a series of experiments. Hybrid chemical rocket propulsion is presently of interest due to reduced system complexity compared to classical chemical propulsion systems. Reduced system complexity, by use of a storable oxidizer and a hybrid configuration, is expected to reduce propulsive costs. The fuel in this study is polyethylene which has the potential of continuous manufacture leading to further reduced system costs. The study investigated parameters of interest for nominal design of a full scale hydrogen peroxide oxidized hybrid rocket. Amongst these parameters is the influence of chamber pressure, mass flux, fuel molecular weight and fuel density on fuel regression rate. Effects of chamber pressure and aft combustion length on combustion efficiency and non-acoustic combustion oscillations are also examined. The fuel regression behavior is found to be strongly influenced by both chamber pressure and mass flux. Combustion efficiencies in the upper 90% range are attained by simple changes to the aft combustion chamber length as well as increased combustion pressure. Fuel burning surface is found to be influenced by the density of the polyethylene polymer as well as molecular weight. The combustion is observed to be exceptionally smooth (oscillations less than 5% zero-to-peak of mean) in all motors tested in this program. Tests using both a single port fuel gain and a novel radial flow hybrid are also performed.

  1. MEMS-Based Satellite Micropropulsion Via Catalyzed Hydrogen Peroxide Decomposition

    NASA Technical Reports Server (NTRS)

    Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Micro-electromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of "micro-scale" satellites being designed by NASA and Department of Defense agencies. More commonly referred to as "nanosats", these miniature satellites feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the article focuses the progress being made at NASA Goddard Space Flight Center towards the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a micro-scale converging/diverging supersonic nozzle which produces the thrust vector; the targeted thrust level approximately 500 N with a specific impulse of 140-180 seconds. Macro-scale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on a MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.

  2. Simultaneous high-resolution measurement of mitochondrial respiration and hydrogen peroxide production.

    PubMed

    Krumschnabel, Gerhard; Fontana-Ayoub, Mona; Sumbalova, Zuzana; Heidler, Juliana; Gauper, Kathrin; Fasching, Mario; Gnaiger, Erich

    2015-01-01

    Mitochondrial respiration is associated with the formation of reactive oxygen species, primarily in the form of superoxide (O2 (•-)) and particularly hydrogen peroxide (H2O2). Since H2O2 plays important roles in physiology and pathology, measurement of hydrogen peroxide has received considerable attention over many years. Here we describe how the well-established Amplex Red assay can be used to detect H2O2 production in combination with the simultaneous assessment of mitochondrial bioenergetics by high-resolution respirometry. Fundamental instrumental and methodological parameters were optimized for analysis of the effects of various substrate, uncoupler, and inhibitor titrations (SUIT) on respiration versus H2O2 production. The sensitivity of the H2O2 assay was strongly influenced by compounds contained in different mitochondrial respiration media, which also exerted significant effects on chemical background fluorescence changes. Near linearity of the fluorescence signal was restricted to narrow ranges of accumulating resorufin concentrations independent of the nature of mitochondrial respiration media. Finally, we show an application example using isolated mouse brain mitochondria as an experimental model for the simultaneous measurement of mitochondrial respiration and H2O2 production in SUIT protocols.

  3. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity

    PubMed Central

    Cuypers, Ann; Hendrix, Sophie; Amaral dos Reis, Rafaela; De Smet, Stefanie; Deckers, Jana; Gielen, Heidi; Jozefczak, Marijke; Loix, Christophe; Vercampt, Hanne; Vangronsveld, Jaco; Keunen, Els

    2016-01-01

    Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide (O2•-), hydrogen peroxide (H2O2) and the hydroxyl radical (•OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils. PMID:27199999

  4. Evaluating the virucidal efficacy of hydrogen peroxide vapour.

    PubMed

    Goyal, S M; Chander, Y; Yezli, S; Otter, J A

    2014-04-01

    Surface contamination has been implicated in the transmission of certain viruses, and surface disinfection can be an effective measure to interrupt the spread of these agents. To evaluate the in-vitro efficacy of hydrogen peroxide vapour (HPV), a vapour-phase disinfection method, for the inactivation of a number of structurally distinct viruses of importance in the healthcare, veterinary and public sectors. The viruses studied were: feline calicivirus (FCV, a norovirus surrogate); human adenovirus type 1; transmissible gastroenteritis coronavirus of pigs (TGEV, a severe acute respiratory syndrome coronavirus [SARS-CoV] surrogate); avian influenza virus (AIV); and swine influenza virus (SwIV). The viruses were dried on stainless steel discs in 20- or 40-μL aliquots and exposed to HPV produced by a Clarus L generator (Bioquell, Horsham, PA, USA) in a 0.2-m(3) environmental chamber. Three vaporized volumes of hydrogen peroxide were tested in triplicate for each virus: 25, 27 and 33 mL. No viable viruses were identified after HPV exposure at any of the vaporized volumes tested. HPV was virucidal (>4-log reduction) against FCV, adenovirus, TGEV and AIV at the lowest vaporized volume tested (25 mL). For SwIV, due to low virus titre on the control discs, >3.8-log reduction was shown for the 25-mL vaporized volume and >4-log reduction was shown for the 27-mL and 33-mL vaporized volumes. HPV was virucidal for structurally distinct viruses dried on surfaces, suggesting that HPV can be considered for the disinfection of virus-contaminated surfaces. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  5. Development of hydrogen peroxide technique for bioburden reduction

    NASA Astrophysics Data System (ADS)

    Rohatgi, N.; Schwartz, L.; Stabekis, P.; Barengoltz, J.

    In order to meet the National Aeronautics and Space Administration (NASA) Planetary Protection microbial reduction requirements for Mars in-situ life detection and sample return missions, entire planetary spacecraft (including planetary entry probes and planetary landing capsules) may have to be exposed to a qualified sterilization process. Presently, dry heat is the only NASA approved sterilization technique available for spacecraft application. However, with the increasing use of various man-made materials, highly sophisticated electronic circuit boards, and sensors in a modern spacecraft, compatibility issues may render this process unacceptable to design engineers and thus impractical to achieve terminal sterilization of the entire spacecraft. An alternative vapor phase hydrogen peroxide sterilization process, which is currently used in various industries, has been selected for further development. Strategic Technology Enterprises, Incorporated (STE), a subsidiary of STERIS Corporation, under a contract from the Jet Propulsion Laboratory (JPL) is developing systems and methodologies to decontaminate spacecraft using vaporized hydrogen peroxide (VHP) technology. The VHP technology provides an effective, rapid and low temperature means for inactivation of spores, mycobacteria, fungi, viruses and other microorganisms. The VHP application is a dry process affording excellent material compatibility with many of the components found in spacecraft such as polymers, paints and electronic systems. Furthermore, the VHP process has innocuous residuals as it decomposes to water vapor and oxygen. This paper will discuss the approach that is being used to develop this technique and will present lethality data that have been collected to establish deep vacuum VHP sterilization cycles. In addition, the application of this technique to meet planetary protection requirements will be addressed.

  6. [Heat-shock protein HSP70 protects neuroblastoma cells SK-N-SH from the neurotoxic effects hydrogen peroxide and the β-amyloid peptide].

    PubMed

    Yurinskaya, M M; Mit'kevich, V A; Barykin, E P; Garbuz, D G; Evgen'ev, M B; Makarov, A A; Vinokurov, M G

    2015-01-01

    Neuronal cell death in Alzheimer's disease is associated with the development of oxidative stress caused by the reactive oxygen species (ROS), which can be generated as a result of the effect of beta-amyloid peptides. One of the sources of ROS is hydrogen peroxide, inducing the apoptosis and necrosis of neural tissue cells. The mechanism of hydrogen peroxide apoptotic action includes launching signaling pathways that involve protein kinases PI3K, p38MAPK, JNK and ERK. Oxidative stress leads to increased synthesis of heat-shock proteins in the cells including HSP70. It was shown that the exogenous HSP70 could reduce generation of ROS in cells. In this study, we determined how HSP70 affected apoptosis and necrosis in human neuroblastoma cells SK-N-SH, induced by hydrogen peroxide and β-amyloid peptide Aβ(1-42). It was shown that HSP70 reduces the cytotoxic effects of hydrogen peroxide and beta-amyloid, and protein kinases PI3K and JNK play an important role in the mechanism of HSP70 protective effect on the peroxide induced apoptosis in SK-N-SH cells.

  7. Exposure to disinfectants (soap or hydrogen peroxide) increases tolerance to permethrin in Anopheles gambiae populations from the city of Yaoundé, Cameroon

    PubMed Central

    2014-01-01

    Background The rapid expansion of insecticide resistance is limiting the efficiency of malaria vector control interventions. However, current knowledge of factors inducing pyrethroid resistance remains incomplete. In the present study, the role of selection at the larval stage by disinfectants, such as soap and hydrogen peroxide (H2O2), on adult mosquito resistance to permethrin was investigated. Methods Field Anopheles gambiae sensu lato larvae, were exposed to variable concentrations of soap and H2O2. Larvae surviving to acute toxicity assays after 24 hours were reared to the adult stage and exposed to permethrin. The susceptibility level of adults was compared to the untreated control group. The effect of soap or hydrogen peroxide selection on the length of larval development and emergence rate was assessed. Result Larval bioassays analysis showed a more acute effect of hydrogen peroxide on mosquito larvae compared to soap. The regression lines describing the dose mortality profile showed higher mean and variance to hydrogen peroxide than to soap. The duration of larval development (<5 days) and adults emergence rates (1 to 77%) were shorter and lower compare to control. Anopheles gambiae s.l. larvae surviving to selection with either soap or hydrogen peroxide or both, produced adults who were up to eight-times more resistant to permethrin than mosquitoes from the untreated control group. Conclusion The present study shows that selective pressure exerted by non-insecticidal compounds such as soap and hydrogen peroxide affect An. gambiae s.l. tolerance to pyrethroids. This requires further studies with regard to the adaptation of An. gambiae s.l. to polluted habitats across sub-Saharan Africa cities. PMID:25086741

  8. Exposure to disinfectants (soap or hydrogen peroxide) increases tolerance to permethrin in Anopheles gambiae populations from the city of Yaoundé, Cameroon.

    PubMed

    Antonio-Nkondjio, Christophe; Youmsi-Goupeyou, Marlene; Kopya, Edmond; Tene-Fossog, Billy; Njiokou, Flobert; Costantini, Carlo; Awono-Ambene, Parfait

    2014-08-03

    The rapid expansion of insecticide resistance is limiting the efficiency of malaria vector control interventions. However, current knowledge of factors inducing pyrethroid resistance remains incomplete. In the present study, the role of selection at the larval stage by disinfectants, such as soap and hydrogen peroxide (H2O2), on adult mosquito resistance to permethrin was investigated. Field Anopheles gambiae sensu lato larvae, were exposed to variable concentrations of soap and H2O2. Larvae surviving to acute toxicity assays after 24 hours were reared to the adult stage and exposed to permethrin. The susceptibility level of adults was compared to the untreated control group. The effect of soap or hydrogen peroxide selection on the length of larval development and emergence rate was assessed. Larval bioassays analysis showed a more acute effect of hydrogen peroxide on mosquito larvae compared to soap. The regression lines describing the dose mortality profile showed higher mean and variance to hydrogen peroxide than to soap. The duration of larval development (<5 days) and adults emergence rates (1 to 77%) were shorter and lower compare to control. Anopheles gambiae s.l. larvae surviving to selection with either soap or hydrogen peroxide or both, produced adults who were up to eight-times more resistant to permethrin than mosquitoes from the untreated control group. The present study shows that selective pressure exerted by non-insecticidal compounds such as soap and hydrogen peroxide affect An. gambiae s.l. tolerance to pyrethroids. This requires further studies with regard to the adaptation of An. gambiae s.l. to polluted habitats across sub-Saharan Africa cities.

  9. Historical Survey: German Research on Hydrogen Peroxide/Alcohol Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmeter, John E.

    Discussion of HP/fuel explosives in the scientific literature dates back to at least 1927. A paper was published that year in a German journal entitled On Hydrogen Peroxide Explosives [Bamberger and Nussbaum 1927]. The paper dealt with HP/cotton/Vaseline formulations, specifically HP89/cotton/Vaseline (76/15/9) and (70/8.5/12.5). The authors performed experiments with charge masses of 250-750 g and charge diameters of 35-45 mm. This short paper provides brief discussion on the observed qualitative effects of detonations but does not report detonation velocities.

  10. Direct synthesis of hydrogen peroxide and benzyl alcohol oxidation using Au-Pd catalysts prepared by sol immobilization.

    PubMed

    Pritchard, James; Kesavan, Lokesh; Piccinini, Marco; He, Qian; Tiruvalam, Ramchandra; Dimitratos, Nikolaos; Lopez-Sanchez, Jose A; Carley, Albert F; Edwards, Jennifer K; Kiely, Christopher J; Hutchings, Graham J

    2010-11-02

    We report the preparation of Au-Pd nanocrystalline catalysts supported on activated carbon prepared via a sol-immobilization technique and explore their use for the direct synthesis of hydrogen peroxide and the oxidation of benzyl alcohol. In particular, we examine the synthesis of a systematic set of Au-Pd colloidal nanoparticles having a range of Au/Pd ratios. The catalysts have been structurally characterized using a combination of UV-visible spectroscopy, transmission electron microscopy, STEM HAADF/XEDS, and X-ray photoelectron spectroscopy. The Au-Pd nanoparticles are found in the majority of cases to be homogeneous alloys, although some variation is observed in the AuPd composition at high Pd/Au ratios. The optimum performance for the synthesis of hydrogen peroxide is observed for a catalyst having a Au/Pd 1:2 molar ratio. However, the competing hydrogenation reaction of hydrogen peroxide increases with increasing Pd content, although Pd alone is less effective than when Au is also present. Investigation of the oxidation of benzyl alcohol using these materials also shows that the optimum selective oxidation to the aldehyde occurs for the Au/Pd 1:2 molar ratio catalyst. These measured activity trends are discussed in terms of the structure and composition of the supported Au-Pd nanoparticles.

  11. The Hog1 MAP Kinase Promotes the Recovery from Cell Cycle Arrest Induced by Hydrogen Peroxide in Candida albicans

    PubMed Central

    Correia, Inês; Alonso-Monge, Rebeca; Pla, Jesús

    2017-01-01

    Eukaryotic cell cycle progression in response to environmental conditions is controlled via specific checkpoints. Signal transduction pathways mediated by MAPKs play a crucial role in sensing stress. For example, the canonical MAPKs Mkc1 (of the cell wall integrity pathway), and Hog1 (of the HOG pathway), are activated upon oxidative stress. In this work, we have analyzed the effect of oxidative stress induced by hydrogen peroxide on cell cycle progression in Candida albicans. Hydrogen peroxide was shown to induce a transient arrest at the G1 phase of the cell cycle. Specifically, a G1 arrest was observed, although phosphorylation of Mkc1 and Hog1 MAPKs can take place at all stages of the cell cycle. Interestingly, hog1 (but not mkc1) mutants required a longer time compared to wild type cells to resume growth after hydrogen peroxide challenge. Using GFP-labeled cells and mixed cultures of wild type and hog1 cells we were able to show that hog1 mutants progress faster through the cell cycle under standard growth conditions in the absence of stress (YPD at 37°C). Consequently, hog1 mutants exhibited a smaller cell size. The altered cell cycle progression correlates with altered expression of the G1 cyclins Cln3 and Pcl2 in hog1 cells compared to the wild type strain. In addition, Hgc1 (a hypha-specific G1 cyclin) as well as Cln3 displayed a different kinetics of expression in the presence of hydrogen peroxide in hog1 mutants. Collectively, these results indicate that Hog1 regulates the expression of G1 cyclins not only in response to oxidative stress, but also under standard growth conditions. Hydrogen peroxide treated cells did not show fluctuations in the mRNA levels for SOL1, which are observed in untreated cells during cell cycle progression. In addition, treatment with hydrogen peroxide prevented degradation of Sol1, an effect which was enhanced in hog1 mutants. Therefore, in C. albicans, the MAPK Hog1 mediates cell cycle progression in response to oxidative

  12. Effect of vital bleaching with solutions containing different concentrations of hydrogen peroxide and pineapple extract as an additive on human enamel using reflectance spectrophotometer: An in vitro study.

    PubMed

    Vejai Vekaash, Chitra Janardhanan; Kumar Reddy, Tripuravaram Vinay; Venkatesh, Kondas Vijay

    2017-01-01

    This study aims to evaluate the color change in human enamel bleached with three different concentrations of hydrogen peroxide, containing pineapple extract as an additive in two different timings, using reflectance spectrophotometer. The study aimed to investigate the bleaching efficacy on natural teeth using natural enzymes. Baseline color values of 10 randomly selected artificially stained incisors were obtained. The specimens were divided into three groups of 20 teeth each: Group 1 - 30% hydrogen peroxide, Group II - 20% hydrogen peroxide, and Group III - 10% hydrogen peroxide. One half of the tooth was bleached with hydrogen peroxide, and other was bleached with hydrogen peroxide and pineapple extract for 20 min (Subgroup A) and 10 min (Subgroup B). The results were statistically analyzed using student's t -test. The mean ΔE values of Group IA (31.62 ± 0.9), Group IIA (29.85 ± 1.2), and Group IIIA (28.65 ± 1.2) showed statistically significant higher values when compared to the mean Δ E values of Group 1A (25.02 ± 1.2), Group IIA (22.86 ± 1.1), and Group IIIA (16.56 ± 1.1). Identical results were obtained in Subgroup B. The addition of pineapple extract to hydrogen peroxide resulted in effective bleaching.

  13. In-situ synthesis of hydrogen peroxide in a novel Zn-CNTs-O2 system

    NASA Astrophysics Data System (ADS)

    Gong, Xiao-bo; Yang, Zhao; Peng, Lin; Zhou, An-lan; Liu, Yan-lan; Liu, Yong

    2018-02-01

    A novel strategy of in-situ synthesis of hydrogen peroxide (H2O2) was formulated and evaluated. Oxygen was selectively reduced to H2O2 combined with electrochemical corrosion of zinc in the Zn-CNTs-O2 system. The ratio of zinc and CNTs, heat treatment temperature, and operational parameters such as composite dosage, initial pH, solution temperature, oxygen flow rate were systematically investigated to improve the efficiency of H2O2 generation. The Zn-CNTs composite (weight ratio of 2.5:1) prepared at 500 °C showed the maximum H2O2 accumulation concentration of 293.51 mg L-1 within 60 min at the initial pH value of 3.0, Zn-CNTs dosage of 0.4 g and oxygen flow rate of 400 mL min-1. The oxygen was reduced through two-electron pathway to hydrogen peroxide on CNTs while the zinc was oxidized in the system and the dissolved zinc ions convert to zinc hydroxide and depositing on the surface of CNTs. It was proposed that the increment of direct H2O2 production was caused by the improvement of the formed Zn/CNTs corrosion cell. This provides promising strategy for in-situ synthesis and utilization of hydrogen peroxide in the novel Zn-CNTs-O2 system, which enhances the environmental and economic attractiveness of the use of H2O2 as green oxidant for wastewater treatments.

  14. Antioxidant lactobacilli could protect gingival fibroblasts against hydrogen peroxide: a preliminary in vitro study.

    PubMed

    Mendi, Ayşegül; Aslım, Belma

    2014-12-01

    Oxidative stress and tissue destruction are at the heart of periodontal diseases. The dental research area is geared toward the prevention of free radicals by nutrient antioxidants. Lactic acid bacteria (LAB) have recently attracted attention in alternative dental therapies. We aimed at highlighting the antioxidative property of Lactobacilli and Bifidobacterium strains and at determining their protective effect on gingival fibroblasts (GFs). Two Lactobacilli and 2 Bifidobacterium strains were screened for their exopolysaccharide (EPSs) production. Antioxidative assays were conducted by spectrophotometer analysis. Resistance to different concentrations of hydrogen peroxide (H2O2) was determined by the serial dilution technique. The protective effect of strains on GFs on hydrogen peroxide exposure was also examined by a new trypan blue exclusion assay method. Bifidobacterium breve A28 showed the highest EPS production (122 mg/l) and remarkable antioxidant activity, which were demonstrated by its ability to scavenge 72% α,α-diphenyl-1-picrylhydrazyl free radical and chelate 88% of iron ion, respectively. Inhibition of lipid peroxidation was determined as 71% for the A28 strain. We suggest that LAB with antioxidative activity could be a good natural therapy agent for periodontal disorders.

  15. Effects of hydrogen peroxide feeding strategies on the photochemical degradation of polyvinyl alcohol.

    PubMed

    Hamad, Dina; Dhib, Ramdhane; Mehrvar, Mehrab

    2016-11-01

    The performance of batch and fed-batch photoreactors with that of continuous photoreactor for the treatment of aqueous polyvinyl alcohol (PVA) solutions is compared. Hydrogen peroxide feeding strategies, residence time, and [H2O2]/[PVA] mass ratio are examined for their impacts on the molecular weight distribution (MWD) of PVA and the total organic carbon (TOC) removal. The results prove that a continuous addition of H2O2 during the degradation reaction ensures the utilization of the produced radicals to minimize the oxidant consumption and maximize the TOC removal and the PVA degradation in a short irradiation time. Also, the MWD of PVA is found to be bimodal and shifted towards lower molecular weights with small shoulder peak indicating a progressive disappearance of the higher molecular weight fractions that is in accordance with the random chains scission mechanism. Besides, the hydrogen peroxide feeding strategies are found to have a great effect on the reduction in H2O2 residuals in the effluent.

  16. Placebo-controlled clinical trial of use of 10% hydrogen peroxide whitening strips for medication-induced xerostomia.

    PubMed

    Papas, Athena S; Kugel, Gerard; Singh, Mabi; Barker, Matthew L; Gerlach, Robert W

    2009-01-01

    A randomized, double-blind, placebo-controlled clinical trial was conducted to evaluate the effectiveness and safety of peroxide-containing strip-based tooth whitening among subjects with medication-induced hyposalivation. Eligibility for this tooth whitening study was limited to dentate adults taking xerogenic medications with an unstimulated salivary flow < or = 0.2 ml/min. After giving informed consent, 42 subjects were randomized using a 2:1 ratio to 10% hydrogen peroxide whitening strips (Crest Whitestrips Premium) or placebo strips without peroxide. Strips were used for 30 min twice daily for a 14-day period. Usage was unsupervised, and only the maxillary arch was treated. On days 8 and 15, efficacy was assessed from standard digital images of the anterior dentition and quantified using the Cielab color system, while safety was assessed from interviews and clinical examinations. At day 8, the peroxide group experienced significant (p < 0.001) color improvement relative to baseline and placebo. Adjusted means +/- standard errors for yellowness reduction were -1.65 +/- 0.115 units for the peroxide group and -0.32 +/- 0.170 units for the placebo group. For the increase in lightness, adjusted means +/- standard errors on day 8 were 1.53 +/- 0.130 units for the peroxide group and 0.37 +/- 0.191 units for the controls. Continued strip use through day 15 yielded incremental color improvement for the peroxide group. Mild and transient tooth sensitivity represented the most common adverse events. No subject discontinued treatment due to a product-related adverse event. Twice daily use of 10% hydrogen peroxide whitening strips by adults with medication-induced xerostomia was well tolerated, with significant tooth color improvement evident within 7 days. Copyright 2009 S. Karger AG, Basel.

  17. Targeting mitochondria with small molecules: the preparation of MitoB and MitoP as exomarkers of mitochondrial hydrogen peroxide.

    PubMed

    Cairns, Andrew G; McQuaker, Stephen J; Murphy, Michael P; Hartley, Richard C

    2015-01-01

    Small molecules can be physicochemically targeted to mitochondria using the lipophilic alkyltriphenylphosphonium (TPP) group. Once in the mitochondria the TPP-conjugate can detect or influence processes within the mitochondrial matrix directly. Alternatively, the conjugate can behave as a prodrug, which is activated by release from the TPP group either using an internal or external instruction. Small molecules can be designed that can be used in any cell line, tissue or whole organism, allow temporal control, and be applied in a reversible dose-dependent fashion. An example is the detection and quantification of hydrogen peroxide in mitochondria of whole living organisms by MitoB. Hydrogen peroxide produced within the mitochondrial matrix is involved in signalling and implicated in the oxidative damage associated with aging and a wide range of age-associated conditions including cardiovascular disease, neurodegeneration, and cancer. MitoB accumulates in mitochondria and is converted into the exomarker, MitoP, by hydrogen peroxide in the mitochondrial matrix. The hydrogen peroxide concentration is determined from the ratio of MitoP to MitoB after a period of incubation, and this ratio is determined by mass spectrometry using d15-MitoP and d15-MitoB as standard. Here we describe the synthesis of MitoB and MitoP and the deuterated standards necessary for this method of quantification.

  18. HYDROGEN PEROXIDE FORMATION FROM THE PHOTOOXIDATION OF FORMALDEHYDE AND ITS PRESENCE IN RAINWATER

    EPA Science Inventory

    The photooxidation of formaldehyde with sunlamps (E(max) = 3100 A) produces hydrogen peroxide (H2O2) at varying concentrations depending upon the amount of water vapor present. It is postulated that the variable production of H2O2 is a result of condensation on the reactor surfac...

  19. Time-course diffusion of hydrogen peroxide using modern technologies

    NASA Astrophysics Data System (ADS)

    Florez, F. L. E.; Vollet-Filho, J. D.; Oliveira-Junior, O. B.; Bagnato, V. S.

    2009-02-01

    The concern with the hydrogen penetration towards the pulp can be observed on the literature by the great number of papers published on this topic; Those measurements often uses chemical agents to quantify the concentration of the bleaching agent that cross the enamel and dentin. The objective of this work was the quantification of oxygen free radicals by fluorescence that are located in the interface between enamel and dentin. It was used to accomplish our objectives a Ruthenium probe (FOXY R - Ocean Optics) a 405nm LED, a bovine tooth and a portable diagnostic system (Science and support LAB - LAT - IFSC/USP). The fluorescence of the probe is suppressed in presence of oxygen free radicals in function of time. The obtained results clearly shows that the hydrogen peroxide when not catalyzed should be kept in contact with the tooth for longer periods of time.

  20. Increased Production of Hydrogen Peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon Aeration: Involvement of an NADH Oxidase in Oxidative Stress

    PubMed Central

    Marty-Teysset, C.; de la Torre, F.; Garel, J.-R.

    2000-01-01

    The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H2O2 oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen. PMID:10618234

  1. Combustion Characteristics of Nanoaluminum, Liquid Water, and Hydrogen Peroxide Mixtures

    DTIC Science & Technology

    2008-01-01

    Sabourin a, Richard A. Yetter a, Grant A. Risha b, Steven F. Son c and B. C. Tappan d a The Pennsylvania State University, University Park, PA, USA b...www.elsevier.com/locate/combustflame Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures J.L. Sabourin a,∗, G.A. Risha b...Efficiency* Corresponding author. Fax: +1 (814) 865 3389. E-mail address: jls861@psu.edu (J.L. Sabourin ).0010-2180/$ – see front matter © 2008 The Combustion

  2. The inhibitory effect of 3-amino-1,2,4-triazole on relaxation induced by hydroxylamine and sodium azide but not hydrogen peroxide or glyceryl trinitrate in rat aorta.

    PubMed Central

    Mian, K. B.; Martin, W.

    1995-01-01

    1. In this study we investigated the role of catalase in relaxation induced by hydroxylamine, sodium azide, glyceryl trinitrate and hydrogen peroxide in isolated rings of rat aorta. 2. Hydrogen peroxide (1 microM-1 mM)-induced concentration-dependent relaxation of phenylephrine (PE)-induced tone in endothelium-containing rings. In endothelium-denuded rings, however, higher concentrations (30 microM-1 mM) of hydrogen peroxide were required to produce relaxation. The endothelium-dependent component of hydrogen peroxide-induced relaxation was abolished following pretreatment with N(O)-nitro-L-arginine methyl ester (L-NAME, 30 microM). L-NAME (30 microM) had no effect, however, on hydrogen peroxide-induced relaxation in endothelium-denuded rings. 3. Pretreatment of endothelium-denuded rings with catalase (1000 u ml-1) blocked relaxation induced by hydrogen peroxide (10 microM-1 mM). The ability of catalase to inhibit hydrogen peroxide-induced relaxation was partially blocked following incubation with 3-amino-1,2, 4-triazole (AT, 50 mM) for 30 min and completely blocked at 90 min. 4. Pretreatment of endothelium-denuded rings with methylene blue (MeB, 30 microM) inhibited relaxation induced by hydrogen peroxide (10 microM-1 mM), sodium azide (1-300 nM), hydroxylamine (1-300 nM) and glyceryl trinitrate (1-100 nM) suggesting that each acted by stimulation of soluble guanylate cyclase. 5. Pretreatment of endothelium-denuded rings with AT (1-50 mM, 90 min) to inhibit endogenous catalase blocked relaxation induced by sodium azide (1-300 nM) and hydroxylamine (1-300 nM) but had no effect on relaxation induced by hydrogen peroxide (10 microM-1 mM) or glyceryl trinitrate (1-100 nM). 6. In a cell-free system, incubation of sodium azide (10 microM-3 mM) and hydroxylamine (10 microM-30 mM) but not glyceryl trinitrate (10 microM-1 mM) with catalase (1000 u ml-1) in the presence of hydrogen peroxide (1 mM) led to production of nitrite, a major breakdown product of nitric oxide. AT (1

  3. Assessing the effects of hydrogen peroxide bleaching agent on the shear bond strength of orthodontic brackets.

    PubMed

    Andrighetto, Augusto Ricardo; de Leão Withers, Eduardo Henrique; Grando, Karlos Giovani; Ambrosio, Aldrieli Regina; Shimizu, Roberto Hideo; Melo, Ana Cláudia

    2016-01-01

    Tooth bleaching is, today, one of the most widespread cosmetic treatments in dental practice,  so it is important to determine whether it can interfere with orthodontic bonding or not. The aim of this study was to assess the in vitro effects of 35% hydrogen peroxide bleaching agent on the shear bond strength of orthodontic brackets. Forty-five upper bicuspids were divided into three groups (n = 15). In the control Group (C), the brackets were bonded without previous bleaching treatment. Group 1 (G1) was treated with 35% hydrogen peroxide bleaching agent 24 h before bracket bonding. Group 2 was also bleached, and the brackets were bonded after 30 days. The shear bond strength of the brackets was measured using an EMIC machine, and the results were analyzed by ANOVA. There were no statistically significant differences between the three groups (P > 0.05), with Group C showing a mean bond strength of 9.72 ± 2.63 MPa, G1 of 8.09 ± 2.63 MPa, and G2 of 11.15 ± 4.42 MPa. It was possible to conclude that 35% hydrogen peroxide bleaching agent does not affect the shear strength of orthodontic brackets bonded 24 h and 30 days after bleaching.

  4. Long-term acclimatory response to excess excitation energy: evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size.

    PubMed

    Borisova-Mubarakshina, Maria M; Ivanov, Boris N; Vetoshkina, Daria V; Lubimov, Valeriy Y; Fedorchuk, Tatyana P; Naydov, Ilya A; Kozuleva, Marina A; Rudenko, Natalia N; Dall'Osto, Luca; Cazzaniga, Stefano; Bassi, Roberto

    2015-12-01

    Higher plants possess the ability to trigger a long-term acclimatory response to different environmental light conditions through the regulation of the light-harvesting antenna size of photosystem II. The present study provides an insight into the molecular nature of the signal which initiates the high light-mediated response of a reduction in antenna size. Using barley (Hordeum vulgare) plants, it is shown (i) that the light-harvesting antenna size is not reduced in high light with a low hydrogen peroxide content in the leaves; and (ii) that a decrease in the antenna size is observed in low light in the presence of an elevated concentration of hydrogen peroxide in the leaves. In particular, it has been demonstrated that the ability to reduce the antenna size of photosystem II in high light is restricted to photosynthetic apparatus with a reduced level of the plastoquinone pool and with a low hydrogen peroxide content. Conversely, the reduction of antenna size in low light is induced in photosynthetic apparatus possessing elevated hydrogen peroxide even when the reduction level of the plastoquinone pool is low. Hydrogen peroxide affects the relative abundance of the antenna proteins that modulate the antenna size of photosystem II through a down-regulation of the corresponding lhcb mRNA levels. This work shows that hydrogen peroxide contributes to triggering the photosynthetic apparatus response for the reduction of the antenna size of photosystem II by being the molecular signal for the long-term acclimation of plants to high light. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Effect of vital bleaching with solutions containing different concentrations of hydrogen peroxide and pineapple extract as an additive on human enamel using reflectance spectrophotometer: An in vitro study

    PubMed Central

    Vejai Vekaash, Chitra Janardhanan; Kumar Reddy, Tripuravaram Vinay; Venkatesh, Kondas Vijay

    2017-01-01

    Aim: This study aims to evaluate the color change in human enamel bleached with three different concentrations of hydrogen peroxide, containing pineapple extract as an additive in two different timings, using reflectance spectrophotometer. Background: The study aimed to investigate the bleaching efficacy on natural teeth using natural enzymes. Materials and Methods: Baseline color values of 10 randomly selected artificially stained incisors were obtained. The specimens were divided into three groups of 20 teeth each: Group 1 – 30% hydrogen peroxide, Group II – 20% hydrogen peroxide, and Group III – 10% hydrogen peroxide. One half of the tooth was bleached with hydrogen peroxide, and other was bleached with hydrogen peroxide and pineapple extract for 20 min (Subgroup A) and 10 min (Subgroup B). Statistical Analysis: The results were statistically analyzed using student's t-test. Results: The mean ΔE values of Group IA (31.62 ± 0.9), Group IIA (29.85 ± 1.2), and Group IIIA (28.65 ± 1.2) showed statistically significant higher values when compared to the mean Δ E values of Group 1A (25.02 ± 1.2), Group IIA (22.86 ± 1.1), and Group IIIA (16.56 ± 1.1). Identical results were obtained in Subgroup B. Conclusion: The addition of pineapple extract to hydrogen peroxide resulted in effective bleaching. PMID:29386782

  6. Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores.

    PubMed

    Barbut, F; Menuet, D; Verachten, M; Girou, E

    2009-06-01

    To compare a hydrogen peroxide dry-mist system and a 0.5% hypochlorite solution with respect to their ability to disinfect Clostridium difficile-contaminated surfaces in vitro and in situ. Prospective, randomized, before-after trial. Two French hospitals affected by C. difficile. In situ efficacy of disinfectants was assessed in rooms that had housed patients with C. difficile infection. A prospective study was performed at 2 hospitals that involved randomization of disinfection processes. When a patient with C. difficile infection was discharged, environmental contamination in the patient's room was evaluated before and after disinfection. Environmental surfaces were sampled for C. difficile by use of moistened swabs; swab samples were cultured on selective plates and in broth. Both disinfectants were tested in vitro with a spore-carrier test; in this test, 2 types of material, vinyl polychloride (representative of the room's floor) and laminate (representative of the room's furniture), were experimentally contaminated with spores from 3 C. difficile strains, including the epidemic clone ribotype 027-North American pulsed-field gel electrophoresis type 1. There were 748 surface samples collected (360 from rooms treated with hydrogen peroxide and 388 from rooms treated with hypochlorite). Before disinfection, 46 (24%) of 194 samples obtained in the rooms randomized to hypochlorite treatment and 34 (19%) of 180 samples obtained in the rooms randomized to hydrogen peroxide treatment showed environmental contamination. After disinfection, 23 (12%) of 194 samples from hypochlorite-treated rooms and 4 (2%) of 180 samples from hydrogen peroxide treated rooms showed environmental contamination, a decrease in contamination of 50% after hypochlorite decontamination and 91% after hydrogen peroxide decontamination (P < .005). The in vitro activity of 0.5% hypochlorite was time dependent. The mean (+/-SD) reduction in initial log(10) bacterial count was 4.32 +/- 0.35 log(10

  7. Release of oxygen radicals by articular chondrocytes: a study of luminol-dependent chemiluminescence and hydrogen peroxide secretion.

    PubMed

    Rathakrishnan, C; Tiku, K; Raghavan, A; Tiku, M L

    1992-10-01

    We previously established that normal articular chondrocytes, like macrophages, express class II major histocompatibility antigens, present antigen, and induce mixed and autologous lymphocyte stimulation. In a recent study using the trapped indicator 2',7'-dichlorofluorescein diacetate, we were able to measure levels of intracellular hydrogen peroxide within normal articular chondrocytes (J Immunol 245:690-696, 1990). In the present study, we utilized the technique of chemiluminescence and the biochemical method of quantitating hydrogen peroxide release to measure the production of reactive oxygen intermediates by articular chondrocytes. Chondrocytes, in suspension or adherent to coverslips, showed luminol-dependent chemiluminescence that was dependent on the number and viability of cells. There was a dose-dependent increase in chemiluminescence in response to soluble stimuli, such as phorbol myristate acetate (PMA), concanavalin A (ConA), and f-Met-Leu-Phe (FMLP). Azide inhibited chemiluminescence, suggesting that the light emission in chondrocytes is myeloperoxidase dependent. The antioxidant, catalase, inhibited chemiluminescence but superoxide dismutase had no effect, suggesting that luminol-dependent chemiluminescence in chondrocytes mostly measured hydrogen peroxide. Chemiluminescence was also observed in fragments of live cartilage tissue, indicating that chondrocytes that are cartilage matrix bound can generate the respiratory burst response. Using the scopoletin oxidation assay, we confirmed the release of increasing amounts of hydrogen peroxide by chondrocytes exposed to interleukin-1, rabbit interferon, and tumor necrosis factor alpha. Tumor necrosis factor alpha had both priming and enhancing effects on reactive oxygen intermediate production by chondrocytes. Reactive oxygen intermediates have been shown to play a significant role in matrix degradation. We suggest that reactive oxygen intermediates produced by chondrocytes play an important role in the

  8. CATALYTIC OXIDATION OF ALCOHOLS AND EPOXIDATION OF OLEFINS WITH HYDROGEN PEROXIDE AS OXIDANT

    EPA Science Inventory

    Hydrogen peroxide (H2O2) is an ideal oxidant of choice for these oxidations due to economic and environmental reasons by giving water as a by-product. Two catalysts used are vanadium phosphorus oxide (VPO) and Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a...

  9. FIELD STUDY: IN SITU OXIDATION OF 1,4-DIOXANE WITH OZONE AND HYDROGEN PEROXIDE

    EPA Science Inventory

    A pilot-scale field evaluation is underway to assess the effectiveness of in situ oxidation (using ozone with and without hydrogen peroxide) for remediation of 1,4-dioxane and chlorinated volatile organic compounds in groundwater at the Cooper Drum Company Superfund Site located ...

  10. Oxidation catalysis of Nb(salan) complexes: asymmetric epoxidation of allylic alcohols using aqueous hydrogen peroxide as an oxidant.

    PubMed

    Egami, Hiromichi; Oguma, Takuya; Katsuki, Tsutomu

    2010-04-28

    Several optically active Nb(salan) complexes were synthesized, and their oxidation catalysis was examined. A dimeric mu-oxo Nb(salan) complex that was prepared from Nb(OiPr)(5) and a salan ligand was found to catalyze the asymmetric epoxidation of allylic alcohols using a urea-hydrogen peroxide adduct as an oxidant with good enantioselectivity. However, subsequent studies of the time course of this epoxidation and of the relationship between the ee of the ligand and the ee of the product indicated that the mu-oxo dimer dissociates into a monomeric species prior to epoxidation. Moreover, monomeric Nb(salan) complexes prepared in situ from Nb(OiPr)(5) and salan ligands followed by water treatment were found to catalyze the epoxidation of allylic alcohols better using aqueous hydrogen peroxide in CHCl(3)/brine or toluene/brine solution with high enantioselectivity ranging from 83 to 95% ee, except for the reaction of cinnamyl alcohol that showed a moderate ee of 74%. This is the first example of the highly enantioselective epoxidation of allylic alcohols using aqueous hydrogen peroxide as an oxidant.

  11. Hydrogen peroxide in the marine boundary layer over the South Atlantic during the OOMPH cruise in March 2007

    NASA Astrophysics Data System (ADS)

    Fischer, H.; Pozzer, A.; Schmitt, T.; Jöckel, P.; Klippel, T.; Taraborrelli, D.; Lelieveld, J.

    2015-06-01

    In the OOMPH (Ocean Organics Modifying Particles in both Hemispheres) project a ship measurement cruise took place in the late austral summer from 01 to 23 March 2007. The French research vessel Marion Dufresne sailed from Punta Arenas, Chile (70.85° W, 53.12° S), to Réunion island (55.36° E, 21.06° S) across the South Atlantic Ocean. In situ measurements of hydrogen peroxide, methylhydroperoxide and ozone were performed and are compared to simulations with the atmospheric chemistry global circulation model EMAC (ECHAM/MESSy Atmospheric Chemistry). The model generally reproduces the measured trace gas levels, but it underestimates hydrogen peroxide mixing ratios at high wind speeds, indicating too-strong dry deposition to the ocean surface. An interesting feature during the cruise is a strong increase of hydrogen peroxide, methylhydroperoxide and ozone shortly after midnight off the west coast of Africa due to an increase in the boundary layer height, leading to downward transport from the free troposphere, which is qualitatively reproduced by the model.

  12. ON-SITE APPLICABILITY OF HYDROGEN PEROXIDE PRODUCING MICROBIAL ELECTROCHEMICAL CELLS COUPLED WITH UV IN WASTEWATER DISINFECTION STUDY

    EPA Science Inventory

    There is an increased interest in the application of microbial electrochemical cell (MEC) for the recovery of value-added products such as hydrogen gas and hydrogen peroxide (H2O2) from wastewater. H2O2 has strong oxidation capability and produces hydroxyl radicals when coupled w...

  13. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests

    USDA-ARS?s Scientific Manuscript database

    Experimental and modeling investigations were conducted to examine the effect of hydrogen peroxide treatment on hydrothermally produced biochar (hydrochar) from peanut hull to remove aqueous heavy metals. Characterization measurements showed that hydrogen peroxide modification increased the oxygen-c...

  14. Isothermal Calorimetric Observations of the Effect of Welding on Compatibility of Stainless Steels with High-Test Hydrogen Peroxide Propellant

    NASA Technical Reports Server (NTRS)

    Gostowski, Rudy

    2003-01-01

    High-Test Hydrogen Peroxide (HTP) is receiving renewed interest as a monopropellant and as the oxidizer for bipropellant systems. HTP is hydrogen peroxide having concentrations ranging from 70 to 98%. In these applications the energy and oxygen released during decomposition of HTP is used for propulsion. In propulsion systems components must be fabricated and connected using available joining processes. Welding is a common joining method for metallic components. The goal of this study was to compare the HTP compatibility of welded vs. unwelded stainless steel.

  15. Flow injection analysis of organic peroxide explosives using acid degradation and chemiluminescent detection of released hydrogen peroxide.

    PubMed

    Mahbub, Parvez; Zakaria, Philip; Guijt, Rosanne; Macka, Mirek; Dicinoski, Greg; Breadmore, Michael; Nesterenko, Pavel N

    2015-10-01

    The applicability of acid degradation of organic peroxides into hydrogen peroxide in a pneumatically driven flow injection system with chemiluminescence reaction with luminol and Cu(2+) as a catalyst (FIA-CL) was investigated for the fast and sensitive detection of organic peroxide explosives (OPEs). The target OPEs included hexamethylene triperoxide diamine (HMTD), triacetone triperoxide (TATP) and methylethyl ketone peroxide (MEKP). Under optimised conditions maximum degradations of 70% and 54% for TATP and HMTD, respectively were achieved at 162 µL min(-1), and 9% degradation for MEKP at 180 µL min(-1). Flow rates were precisely controlled in this single source pneumatic pressure driven multi-channel FIA system by model experiments on mixing of easily detectable component solutions. The linear range for detection of TATP, HMTD and H2O2 was 1-200 µM (r(2)=0.98-0.99) at both flow rates, while that for MEKP was 20-200 µM (r(2)=0.97) at 180 µL min(-1). The detection limits (LODs) obtained were 0.5 µM for TATP, HMTD and H2O2 and 10 µM for MEKP. The detection times varied from 1.5 to 3 min in this FIA-CL system. Whilst the LOD for H2O2 was comparable with those reported by other investigators, the LODs and analysis times for TATP and HMTD were superior, and significantly, this is the first time the detection of MEKP has been reported by FIA-CL. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Glycerophosphate-dependent peroxide production by brown fat mitochondria from newborn rats.

    PubMed

    Drahota, Z; Rauchova, H; Jesina, P; Vojtísková, A; Houstek, J

    2003-03-01

    Glycerophosphate (GP)-dependent, ferricyanide-induced hydrogen peroxide production was studied in brown adipose tissue mitochondria from newborn rats. Relations between the rate of hydrogen peroxide production and total amount of hydrogen peroxide produced at different GP and ferricyanide concentrations were determined. It was found that the rate of hydrogen peroxide production increases with increasing GP concentration and decreases with increasing ferricyanide concentration. Total amount of hydrogen peroxide produced increases with increasing ferricyanide concentration, however, not proportionally, and the efficiency of this process (oxygen/ferricyanide ratio) strongly declines. Data presented provide further information on the character and kinetics of hydrogen peroxide production by mammalian mitochondrial glycerophosphate dehydrogenase.

  17. Library of electrocatalytic sites in nano-structured domains: electrocatalysis of hydrogen peroxide.

    PubMed

    Pandey, Prem C; Singh, Bhupendra

    2008-12-01

    Electrochemical detection of hydrogen peroxide at eight types of ormosil-modified electrodes, referred as hexacyanoferrate-system; Prussian blue systems (PB-1, PB-2, and PB-3), palladium (Pd-) system, graphite (Gr-) system, gold nanoparticle (AuNPs) system and palladium-gold nanoparticle (Pd-AuNPs) system were studied. The results on electrochemical detection suggested that hydrogen peroxide does not undergo homogeneous electrochemical mediation; however, the presence of redox mediator within nano-structured domains facilitates the electro-analysis of the same via redox electrocatalysis. Four approaches causing manipulation in nano-structured domains are described: (a) increase in the molecular size of the components generating nano-structured domains; (b) modulation via chemical reactivity; (c) modulation by non-reactive moieties and known nanoparticles; and (d) modulation by mixed approaches (a-c), all leading to decrease in a nano-structured domains. The results demonstrated that an increase in the size of nano-structured domains or decrease in micro-porous geometry increases the efficiency of electrocatalysis. The basic reaction protocol adopted in generating nano-structured domains, followed by manipulation protocols, supported the introduction of a library for creating electrocatalytic sites with varying electrocatalytic efficiency within the same basic nano-structured platform.

  18. Hydrogen peroxide yields mechanistic insights into human mRNA capping enzyme function

    PubMed Central

    Mullen, Nicholas J.

    2017-01-01

    Capping of nascent RNA polymerase II (Pol II) transcripts is required for gene expression and the first two steps are catalyzed by separate 5′ triphosphatase and guanylyltransferase activities of the human capping enzyme (HCE). The cap is added co-transcriptionally, but how the two activities are coordinated is unclear. Our previous in vitro work has suggested that an unidentified factor modulates the minimum length at which nascent transcripts can be capped. Using the same well-established in vitro system with hydrogen peroxide as a capping inhibitor, we show that this unidentified factor targets the guanylyltransferase activity of HCE. We also uncover the mechanism of HCE inhibition by hydrogen peroxide, and by using mass spectrometry demonstrate that the active site cysteine residue of the HCE triphosphatase domain becomes oxidized. Using recombinant proteins for the two separated HCE domains, we provide evidence that the triphosphatase normally acts on transcripts shorter than can be acted upon by the guanylyltransferase. Our further characterization of the capping reaction dependence on transcript length and its interaction with the unidentified modulator of capping raises the interesting possibility that the capping reaction could be regulated. PMID:29028835

  19. Copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    A number of oxidizing agents, including chlorine, bromine, ozone and other peroxides, were allowed to act on copper solutions with the intention of forming copper peroxide. The only successful agent appears to be hydrogen peroxide. It must be used in a neutral 50 to 30 percent solution at a temperature near zero. Other methods described in the literature apparently do not work. The excess of hydrogen must be quickly sucked out of the brown precipitate, which it is best to wash with alcohol and ether. The product, crystalline under a microscope, can be analyzed only approximately. It approaches the formula CuO2H2O. In alkaline solution it appears to act catalytically in causing the decomposition of other peroxides, so that Na2O2 cannot be used to prepare it. On the addition of acids the H2O2 is regenerated. The dry substance decomposes much more slowly than the moist but is not very stable.

  20. Measurement of hydrogen peroxide and organic hydroperoxide concentrations during autumn in Beijing, China.

    PubMed

    Zhang, Qingyu; Liu, Jiaoyu; He, Youjiang; Yang, Jiaying; Gao, Jian; Liu, Houfeng; Tang, Wei; Chen, Yizhen; Fan, Wenhao; Chen, Xuan; Chai, Fahe; Hatakeyama, Shiro

    2018-02-01

    Gaseous peroxides play important roles in atmospheric chemistry. To understand the pathways of the formation and removal of peroxides, atmospheric peroxide concentrations and their controlling factors were measured from 7:00 to 20:00 in September, October, and November 2013 at a heavily trafficked residential site in Beijing, China, with average concentrations of hydrogen peroxide (H 2 O 2 ) and methyl hydroperoxide (MHP) at 0.55ppb and 0.063ppb, respectively. H 2 O 2 concentrations were higher in the afternoon and lower in the morning and evening, while MHP concentrations did not exhibit a regular diurnal pattern. Both H 2 O 2 and MHP concentrations increased at dusk in most cases. Both peroxides displayed monthly variations with higher concentrations in September. These results suggested that photochemical activity was the main controlling factor on variations of H 2 O 2 concentrations during the measurement period. Increasing concentrations of volatile organic compounds emitted by motor vehicles were important contributors to H 2 O 2 and MHP enrichment. High levels of H 2 O 2 and MHP concentrations which occurred during the measurement period probably resulted from the transport of a polluted air mass with high water vapor content passing over the Bohai Bay, China. Copyright © 2017. Published by Elsevier B.V.

  1. Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels

    PubMed Central

    Chaplin, Nathan L.; Nieves-Cintrón, Madeline; Fresquez, Adriana M.; Navedo, Manuel F.; Amberg, Gregory C.

    2015-01-01

    Rationale Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. Objective To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. Methods and Results Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. Conclusions From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases. PMID:26390880

  2. Biodegradable poly(vinyl alcohol)/polyoxalate electrospun nanofibers for hydrogen peroxide-triggered drug release.

    PubMed

    Phromviyo, Nutthakritta; Lert-Itthiporn, Aurachat; Swatsitang, Ekaphan; Chompoosor, Apiwat

    2015-01-01

    Release of drugs in a controlled and sustainable manner is of great interest for treating some inflammatory diseases, drug delivery, and cosmetics. In this work, we demonstrated the control release of a drug from composite nanofibers mediated by hydrogen peroxide. Composite nanofibers of polyvinyl alcohol (PVA)/polyoxalate (PVA/POX NFs) blended at various weight ratios were successfully prepared by electrospinning. Rhodamine B (RB) was used as a model of drug and was initially loaded into the POX portion. The morphology of NFs was characterized using scanning electron microscopy (SEM). The functional groups presented in the NFs were characterized using IR spectroscopy. In vitro release behavior and cell toxicity of nanofibers were also investigated using the MTT assay. The results indicated that POX content had a significant effect on the size and release profiles of nanofibers. Microstructure analysis revealed that sizes of PVA/POX NFs increased with increasing POX content, ranging from 214 to 422 nm. Release profiles of RB at 37 °C were non-linear and showed different release mechanisms. The mechanism of drug release depended on the chemical composition of the NFs. RB release from the NFs with highest POX content was caused by the degradation of the nanofiber matrix, whereas the RB release in lower POX content NFs was caused by diffusion. The NFs with POX showed a loss of structural integrity in the presence of hydrogen peroxide as seen using SEM. The MTT assay showed that composite nanofibers had minimal cytotoxicity. We anticipate that nanofibrous PVA/POX can potentially be used to target numerous inflammatory diseases that overproduce hydrogen peroxide and may become a potential candidate for use as a local drug delivery vehicle.

  3. Effect of hydrogen peroxide concentration on enamel color and microhardness.

    PubMed

    Borges, A B; Zanatta, R F; Barros, A C S M; Silva, L C; Pucci, C R; Torres, C R G

    2015-01-01

    The aim of this study was to investigate the effect of hydrogen peroxide gels with different concentrations (20%, 25%, 30%, and 35%) on enamel Knoop microhardness (KNH) as well as on changes in dental color (C). Cylindrical specimens of enamel/dentin (3-mm diameter and 2-mm thickness) were obtained from bovine incisors and randomly divided into six groups (n=20), according to the concentration of the whitening gel (20%, 25%, 30%, 35%, control, thickener). After polishing, initial values of KNH0 and color measurement, assessed by spectrophotometry using the CIE L*a*b* system, were taken from the enamel surface. The gels were applied on the enamel surface for 30 minutes, and immediate values of KNHi were taken. After seven days of being stored in artificial saliva, new measures of KNH7 and color (L7* a7* b7*, for calculating ΔE, ΔL, and Δb) were made. Data were submitted to statistical analysis of variance, followed by Tukey test (p<0.05). Differences in gel concentration and time did not influence the microhardness (p=0.54 and p=0.29, respectively). In relation to color changes, ΔE data showed that the 35% gel presented a higher color alteration than the 20% gel did (p=0.006). Bleaching with 35% hydrogen peroxide gel was more effective than with the 20% gel, without promoting significant adverse effects on enamel surface microhardness.

  4. Augmented reality experimentation on oxygen gas generation from hydrogen peroxide and bleach reaction.

    PubMed

    Gan, Hong Seng; Tee, Nicholas Yee Kwang; Bin Mamtaz, Mohammad Raziun; Xiao, Kevin; Cheong, Brandon Huey-Ping; Liew, Oi Wah; Ng, Tuck Wah

    2018-05-01

    The appreciation and understanding of gas generation through processes is vital in biochemical education. In this work, an augmented reality tool is reported to depict the redox reaction between hydrogen peroxide and sodium hypochlorite solutions, two ubiquitous oxidizing agents, to create oxygen, a combustible gas. As it operates out of smartphones or tablets, students are able to conduct the exercise collaboratively, respond in a manner similar to an actual physical experiment, and able to depict the oxygen volume changes in relation to the volume of hydrogen peroxide of different concentrations used. The tool offers to help students acquire bench skills by limiting handing risks and to mitigate possible student anxiety on handling chemical materials and implements in the laboratory. The feedback received from Year 11 and 12 high school student participants in an outreach exercise indicate the overall effectiveness of this tool. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):245-252, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  5. Evaluation of the Effects of Hydrogen Peroxide on Common Aviation Structural Materials

    DTIC Science & Technology

    2009-12-01

    population of Geobacillus stearothermophilus . Once the sanitization/ decontamination phase is completed, the enclosure is 1 VHP is a registered...disinfection and/or decon- tamination technologies available, vaporized hydrogen peroxide (VHP)1 is of particular interest because it can be rapidly sterilized ...decontamination Unit (STERIS Corporation, Mentor, OH, USA) using VAPROX®2 as the sterilant in an enclosed chamber for 1, 10, or 25 VHP cycles . The exposure

  6. Polymer membrane based electrolytic cell and process for the direct generation of hydrogen peroxide in liquid streams

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Schwartz, Michael (Inventor); Sammells, Anthony F. (Inventor)

    1997-01-01

    An electrolytic cell for generating hydrogen peroxide is provided including a cathode containing a catalyst for the reduction of oxygen, and an anode containing a catalyst for the oxidation of water. A polymer membrane, semipermeable to either protons or hydroxide ions is also included and has a first face interfacing to the cathode and a second face interfacing to the anode so that when a stream of water containing dissolved oxygen or oxygen bubbles is passed over the cathode and a stream of water is passed over the anode, and an electric current is passed between the anode and the cathode, hydrogen peroxide is generated at the cathode and oxygen is generated at the anode.

  7. On-site applicability of hydrogen peroxide producing microbial electrochemical cells (MECs) coupled with UV in wastewater disinfection study

    EPA Science Inventory

    Background: There is an increased interest in the application of microbial electrochemical cell (MEC) for the recovery of value-added products such as hydrogen gas and hydrogen peroxide (H2O2) from wastewater. H2O2 has strong oxidation capability and produces hydroxyl radicals wh...

  8. Penetration of 38% hydrogen peroxide into the pulp chamber in bovine and human teeth submitted to office bleach technique.

    PubMed

    Camargo, Samira Esteves Afonso; Valera, Marcia Carneiro; Camargo, Carlos Henrique Ribeiro; Gasparoto Mancini, Maria Nadir; Menezes, Marcia Maciel

    2007-09-01

    This study evaluated the pulp chamber penetration of peroxide bleaching agent in human and bovine teeth after office bleach technique. All the teeth were sectioned 3 mm apical of the cement-enamel junction and were divided into 2 groups, A (70 third human molars) and B (70 bovine lateral incisors), that were subdivided into A1 and B1 restored by using composite resin, A2 and B2 by using glass ionomer cement, and A3 and B3 by using resin-modified glass ionomer cement; A4, A5, B4, and B5 were not restored. Acetate buffer was placed in the pulp chamber, and the bleaching agent was applied for 40 minutes as follows: A1-A4 and B1-B4, 38% hydrogen peroxide exposure and A5 and B5, immersion into distilled water. The buffer solution was transferred to a glass tube in which leuco crystal violet and horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to analysis of variance and Dunnett, Kruskal-Wallis, and Tukey tests (5%). A higher level of hydrogen peroxide penetrated into the pulp chamber in resin-modified glass ionomer cements in bovine (0.79 +/- 0.61 microg) and human (2.27 +/- 0.41 microg) groups. The bleaching agent penetration into the pulp chamber was higher in human teeth for any experimental situation. The penetration of the hydrogen peroxide depends on restorative materials, and under the conditions of this study human teeth are more susceptible to penetration of bleaching agent into the pulp chamber than bovine teeth.

  9. EXPOXIDATION OF OLEFINS AND α,β-UNSATURATED KEYTONES OVER SONOCHEMICALLY PREPARED HYDROXYAPATITES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An effective and environmentally friendly protocol for the epoxidation of olefins and α,β-unsaturated ketones in the presence of hydroxyapatite as catalyst using hydrogen peroxide is described. The catalyst is active and reusable for the selective epoxidation of a variety...

  10. Combined treatment of toxic cyanobacteria Microcystis aeruginosa with hydrogen peroxide and microcystin biodegradation agents results in quick toxin elimination.

    PubMed

    Dziga, Dariusz; Maksylewicz, Anna; Maroszek, Magdalena; Marek, Sylwia

    2018-01-01

    Under some conditions the growth of toxic cyanobacteria must be controlled by treatment with algicidal compounds. Hydrogen peroxide has been proposed as an efficient and relatively safe chemical which can remove cyanobacteria from the environment selectively, without affecting other microorganisms. However, the uncontrolled release of secondary metabolites, including toxins may occur after such a treatment. Our proposal presented in this paper concerns fast biodegradation of microcystin released after cell lysis induced by hydrogen peroxide. The effectiveness of both, Sphingomonas sp. and heterologously expressed MlrA enzyme, in the removal of the toxin from Microcystis aeruginosa culture was investigated. The results indicate that neither Sphingomonas cells nor MlrA are affected by hydrogen peroxide at the concentrations which stop the growth of cyanobacteria. A several-fold reduction in microcystin levels was documented in the presence of these agents with biodegradation ability. Our results provide evidence that such a combined treatment of water reservoirs dominated by microcystin-producing cyanobacteria may be a promising alternative which allows fast elimination of both, the bloom forming species and toxins, from the environment.

  11. Antagonistic potential against pathogenic microorganisms and hydrogen peroxide production of indigenous lactobacilli isolated from vagina of Chinese pregnant women.

    PubMed

    Xu, Heng-Yi; Tian, Wan-Hong; Wan, Cui-Xiang; Jia, Li-Jun; Wang, Lan-Yin; Yuan, Jing; Liu, Chun-Mei; Zeng, Ming; Wei, Hua

    2008-10-01

    To investigate the indigenous lactobacilli from the vagina of pregnant women and to screen the isolates with antagonistic potential against pathogenic microorganisms. The strains were isolated from pregnant women's vagina and identified using the API50CH system. The ability of the isolates to produce hydrogen peroxide was analyzed semi-quantitatively using the TMB-HRP-MRS agar. The antagonistic effects of the isolates on pathogenic microorganisms were determined with a double layer agar plate. One hundred and three lactobacilli strains were isolated from 60 samples of vaginal secretion from healthy pregnant women. Among them, 78 strains could produce hydrogen peroxide, in which 68%, 80%, 80%, and 88% had antagonistic effects against Candida albicans CMCC98001, Staphylococcus aureus CMCC26003, Escherichia coli CMCC44113, and Pseudomonas aeruginosa CMCC10110, respectively. The recovery of hydrogen peroxide-producing lactobacilli decreases with the increasing pregnant age and time. The most commonly isolated species from vagina of Chinese pregnant women are Lactobacillus acidophilus and Lactobacillus crispatus. Most of L. acidophilus and L. crispatus produce a high H2O2 level.

  12. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Hu, Qingyang; Young Kim, Duck; Wu, Zhongqing; Wang, Wenzhong; Xiao, Yuming; Chow, Paul; Meng, Yue; Prakapenka, Vitali B.; Mao, Ho-Kwang; Mao, Wendy L.

    2017-11-01

    Ultralow-velocity zones (ULVZs) at Earth’s core-mantle boundary region have important implications for the chemical composition and thermal structure of our planet, but their origin has long been debated. Hydrogen-bearing iron peroxide (FeO2Hx) in the pyrite-type crystal structure was recently found to be stable under the conditions of the lowermost mantle. Using high-pressure experiments and theoretical calculations, we find that iron peroxide with a varying amount of hydrogen has a high density and high Poisson ratio as well as extremely low sound velocities consistent with ULVZs. Here we also report a reaction between iron and water at 86 gigapascals and 2,200 kelvin that produces FeO2Hx. This would provide a mechanism for generating the observed volume occupied by ULVZs through the reaction of about one-tenth the mass of Earth’s ocean water in subducted hydrous minerals with the effectively unlimited reservoir of iron in Earth’s core. Unlike other candidates for the composition of ULVZs, FeO2Hx synthesized from the superoxidation of iron by water would not require an extra transportation mechanism to migrate to the core-mantle boundary. These dense FeO2Hx-rich domains would be expected to form directly in the core-mantle boundary region and their properties would provide an explanation for the many enigmatic seismic features that are observed in ULVZs.

  13. Synthesis and radiosensitization properties of hydrogen peroxide and sodium hyaluronate complex

    NASA Astrophysics Data System (ADS)

    Rosli, Nur Ratasha Alia Md.; Mohamed, Faizal; Heng, Cheong Kai; Rahman, Irman Abdul; Ahmad, Ainee Fatimah; Mohamad, Hur Munawar Kabir

    2014-09-01

    Cancer cells which are large in size are resistant towards radiation therapy due to the presence of large amount of anti-oxidative enzymes and hypoxic cancer cells. Thus radiosensitizer agents have been developed to enhance the therapeutic effect of radiotherapy by increasing the sensitivity of these cancer cells towards radiation. This study is conducted to investigate the radiosensitization properties of radiosensitizer complex containing hydrogen peroxide and sodium hyaluronate. Combination with sodium hyaluronate may decrease reactivity of hydrogen peroxide but maintain the oxygen concentration needed for radiosensitizing effect. HepG2 cancer cells are cultured as the mean of test subject. Cancer cell samples which are targeted and not targeted with these radiosensitizers are irradiated with 2Gy single fractionated dose. Results obtained shows that the cancer cells which are not targeted with radiosensitizers has a cell viability of 98.80±0.37% after a time interval of 48 hours and has even repopulated over 100% after a 72 hour time interval. This shows that the cancer cells are resistant towards radiation. However, when the cancer cells are targeted with radiosensitizers prior to irradiation, there is a reduction of cell viability by 25.50±10.81% and 10.30±5.10% at time intervals of 48 and 72 hours respectively. This indicates that through the use of these radiosensitizers, cancer cells are more sensitive towards radiation.

  14. Specific limb abnormalities induced by hydrogen peroxide in tadpoles of Indian jumping frog, Polypedates maculatus.

    PubMed

    Mahapatra, P K; Mohanty-Hejmadi, P; Chainy, G B

    2001-11-01

    Hydrogen peroxide (H2O2), one of the reactive oxygen intermediates (ROI) and a potential inducer of nuclear transcription factors induces consistent type of abnormal limb development (truncated with bent skeletal elements) in the tadpoles of Indian jumping frog, Polypedates maculatus.

  15. ULTRASOUND-ASSISTED EPOXIDATION OF OLEFINS AND A,B-UNSATURATED KETONES OVER HYDROTALCITES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An efficient ultrasound-assisted epoxidation of olefins and a,B-unsaturated ketones over hydrotacite catalysts in the presence of hydrogen peroxide and acetonitrile is described. This general and selective protocol is relatively fast and is applicable to a wide variety of substra...

  16. Coupled laboratory experiments and numerical models for generating ice-depth profiles of steady-state hydrogen peroxide concentrations on radiolytically processed icy worlds.

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Carlson, R. W.

    2007-12-01

    The presence of hydrogen peroxide and condensed phase molecular oxygen on the surface of Europa is now well established [1,2] and laboratory experiments have repeatedly demonstrated the viability of various radiolytic processes for explaining the observations [see e.g. 3, 4]. To date, however, both the Europa observations and the laboratory work have been limited to only the upper few, or few tens of microns, of ice. The spectrum of charged particles incident on the surface of Europa penetrates deeper, and deposits energy over a much greater range, than any laboratory experiment has aimed to replicate [5, 6]. Here we present results from laboratory work on hydrogen peroxide production using energetic electrons (4 keV - 16 keV) and couple these results with a numerical model for the integrated steady-state density of hydrogen peroxide as a function of depth into the ice. Production rates and steady-state peroxide levels for a range of initial electron energies are used to generate functions for the number of peroxide molecules produced per initial electron as it penetrates through the ice. We examined the electron energy spectrum from 0.01 MeV to 10 MeV and accounted for electrons incident to the surface over the solid angle from cosine(theta) = 0.3-1.0, where theta is the angle from the normal to the surface. We found that, accounting for production and destruction as a function of energy deposition, steady-state hydrogen peroxide concentrations resulting from electron radiolysis likely increases by a factor of a few to an order of magnitude at a depth of a few hundred microns. In other words, the 0.13 percent by number abundance of peroxide observed by NIMS [1] may be a low-end value; at depth the peroxide concentration could increase to a few percent by number relative to water. [1] Carlson et al. 1999. [2] Spencer and Calvin, 2002. [3] Moore and Hudson, 2000. [4] Loeffler et al., 2006. [5] Cooper et al., 2001 [6] Paranicas et al., 2001.

  17. Simultaneous determination of superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection.

    PubMed

    Li, Hongmin; Li, Qingling; Wang, Xu; Xu, Kehua; Chen, Zhenzhen; Gong, Xiaocong; Liu, Xin; Tong, Lili; Tang, Bo

    2009-03-15

    A method for the first time to simultaneously determine superoxide and hydrogen peroxide in macrophage RAW 264.7 cell extracts by microchip electrophoresis with laser-induced fluorescence detection (MCE-LIF) was developed. 2-Chloro-1,3-dibenzothiazolinecyclohexene (DBZTC) and bis(p-methylbenzenesulfonyl) dichlorofluorescein (FS), two probes that can be specifically derivatized by superoxide and hydrogen peroxide, respectively, were synthesized and used. Parameters influencing the derivatization and on-chip separation were optimized. With the use of a HEPES (20 mM, pH 7.4) running buffer, a 50 mm long separation channel, and a separation voltage of 1800 V, baseline separation was achieved within 48 s for the two derivatization products, DBZTC-oxide (DBO) and 2,7-dichlorofluorescein (DCF). The linearity ranges of the method were 0.08-5.0 and 0.02-5.0 microM with detection limits (signal-to-noise ratio = 3) of 10 nM (1.36 amol) and 5.6 nM (0.76 amol) for superoxide and hydrogen peroxide, respectively. The relative standard deviations (RSDs) of migration time and peak area were less than 2.0% and 5.0%, respectively. The recoveries of the cell extract samples spiked with 1.0 microM standard solutions were 96.1% and 93.0% for superoxide and hydrogen peroxide, respectively. With the use of this method, superoxide and hydrogen peroxide in phorbol myristate acetate (PMA)-stimulated macrophage RAW 264.7 cell extracts were found to be 0.78 and 1.14 microM, respectively. The method has paved a way for simultaneously determining two or more reactive oxygen species (ROS) in a biological system with high resolution.

  18. Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power.

    PubMed

    Taormina, P J; Niemira, B A; Beuchat, L R

    2001-09-28

    Antimicrobial activity of honey has been attributed to hydrogen peroxide, which is produced by naturally occurring glucose oxidase, and phenolic compounds, although lethality of and inhibition by these and other components against microorganisms vary greatly, depending on the floral source of nectar. This study was undertaken to compare honeys from six floral sources for their inhibitory activity against Escherichia coli O157:H7, Salmonella typhimurium, Shigella sonnei, Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus. A disc assay revealed that development of zones of inhibition of growth depends on the type and concentration of honey, as well as the test pathogen. Growth of B. cereus was least affected. The inhibition of growth of S. sonnei, L. monocytogenes, and S. aureus in 25% solutions of honeys was reduced by treating solutions with catalase, indicating that hydrogen peroxide contributes to antimicrobial activity. Darker colored honeys were generally more inhibitory than light colored honeys. Darker honeys also contained higher antioxidant power. Since antimicrobial activity of the darker colored test honeys was not eliminated by catalase treatment, non-peroxide components such as antioxidants may contribute to controlling the growth of some foodborne pathogens. The antibacterial properties of honeys containing hydrogen peroxide and characterized by a range of antioxidant power need to be validated using model food systems.

  19. Automatic environmental disinfection with hydrogen peroxide and silver ions versus manual environmental disinfection with sodium hypochlorite: a multicentre randomized before-and-after trial.

    PubMed

    Mosci, D; Marmo, G W; Sciolino, L; Zaccaro, C; Antonellini, R; Accogli, L; Lazzarotto, T; Mongardi, M; Landini, M P

    2017-10-01

    New technologies for automated disinfection have been developed, including the use of hydrogen peroxide atomized by specific equipment, with associated silver compounds. To compare the effectiveness of an automated disinfection system with hydrogen peroxide <8% and silver ion versus a manual method with 0.5% sodium hypochlorite solution when evaluating the reduction of microbial mesophilic contamination and Clostridium difficile presence; and to evaluate the time required for both of these processes. This was a randomized multicentre trial performed in different hospital wards that had been occupied previously by patients with Clostridium difficile infection. When patients were discharged their rooms were randomized to one of two decontamination arms. The surfaces where sampled using swabs, before and after disinfection. Swab samples were cultured for quantitative detection of microbial mesophilic contamination and qualitative detection of C. difficile. Before disinfection, 13% of surfaces decontaminated with hydrogen peroxide and silver ions and 20% of surfaces decontaminated with sodium hypochlorite showed presence of C. difficile spores. After disinfection, the samples containing C. difficile were 0% (P < 0.001) in the group decontaminated with hydrogen peroxide and silver ions, and were 3% (P < 0.001) in the group decontaminated with sodium hypochlorite. This difference was not statistically significant; nor was the difference in the reduction of the microbial mesophilic contamination. The differences between the groups were not statistically significant; however, the disinfection with hydrogen peroxide and silver ions is preferable due to less dependence on operators. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  20. First Principles Modeling of the Performance of a Hydrogen-Peroxide-Driven Chem-E-Car

    ERIC Educational Resources Information Center

    Farhadi, Maryam; Azadi, Pooya; Zarinpanjeh, Nima

    2009-01-01

    In this study, performance of a hydrogen-peroxide-driven car has been simulated using basic conservation laws and a few numbers of auxiliary equations. A numerical method was implemented to solve sets of highly non-linear ordinary differential equations. Transient pressure and the corresponding traveled distance for three different car weights are…

  1. PED/PEA-15 inhibits hydrogen peroxide-induced apoptosis in Ins-1E pancreatic beta-cells via PLD-1.

    PubMed

    Fiory, Francesca; Parrillo, Luca; Raciti, Gregory Alexander; Zatterale, Federica; Nigro, Cecilia; Mirra, Paola; Falco, Roberta; Ulianich, Luca; Di Jeso, Bruno; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2014-01-01

    The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from Tg(PED/PEA-15) mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1E(PED/PEA-15)). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1E(PED/PEA-15) cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1E(PED/PEA-15). These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.

  2. Converting Chemical Energy to Electricity through a Three-Jaw Mini-Generator Driven by the Decomposition of Hydrogen Peroxide.

    PubMed

    Xiao, Meng; Wang, Lei; Ji, Fanqin; Shi, Feng

    2016-05-11

    Energy conversion from a mechanical form to electricity is one of the most important research advancements to come from the horizontal locomotion of small objects. Until now, the Marangoni effect has been the only propulsion method to produce the horizontal locomotion to induce an electromotive force, which is limited to a short duration because of the specific property of surfactants. To solve this issue, in this article we utilized the decomposition of hydrogen peroxide to provide the propulsion for a sustainable energy conversion from a mechanical form to electricity. We fabricated a mini-generator consisting of three parts: a superhydrophobic rotator with three jaws, three motors to produce a jet of oxygen bubbles to propel the rotation of the rotator, and three magnets integrated into the upper surface of the rotator to produce the magnet flux. Once the mini-generator was placed on the solution surface, the motor catalyzed the decomposition of hydrogen peroxide. This generated a large amount of oxygen bubbles that caused the generator and integrated magnets to rotate at the air/water interface. Thus, the magnets passed under the coil area and induced a change in the magnet flux, thus generating electromotive forces. We also investigated experimental factors, that is, the concentration of hydrogen peroxide and the turns of the solenoid coil, and found that the mini-generator gave the highest output in a hydrogen peroxide solution with a concentration of 10 wt % and under a coil with 9000 turns. Through combining the stable superhydrophobicity and catalyst, we realized electricity generation for a long duration, which could last for 26 000 s after adding H2O2 only once. We believe this work provides a simple process for the development of horizontal motion and provides a new path for energy reutilization.

  3. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  4. A novel copper-hydrogen peroxide formulation for prion decontamination.

    PubMed

    Solassol, Jerome; Pastore, Manuela; Crozet, Carole; Perrier, Veronique; Lehmann, Sylvain

    2006-09-15

    With the appearance of variant Creutzfeldt-Jakob disease (CJD) and the detection of infectious prions in the peripheral organs of persons with sporadic CJD, the development of decontamination methods that are compatible with medical equipment has become a major issue. Here, we show that a formulation of copper metal ions in combination with hydrogen peroxide dramatically reduces the level of prion protein (PrP)(Sc) (the scrapie isoform of PrP) present in homogenates of samples from prion-infected brains, including brain samples from humans with CJD. An animal bioassay confirmed the reduction in prion infectivity, indicating that this novel Cu(2+)-H(2)O(2) formulation has great potential for prion decontamination.

  5. Development of a Hydrogen Peroxide Sensor Based on Screen-Printed Electrodes Modified with Inkjet-Printed Prussian Blue Nanoparticles

    PubMed Central

    Cinti, Stefano; Arduini, Fabiana; Moscone, Danila; Palleschi, Giuseppe; Killard, Anthony J.

    2014-01-01

    A sensor for the simple and sensitive measurement of hydrogen peroxide has been developed which is based on screen printed electrodes (SPEs) modified with Prussian blue nanoparticles (PBNPs) deposited using piezoelectric inkjet printing. PBNP-modified SPEs were characterized using physical and electrochemical techniques to optimize the PBNP layer thickness and electroanalytical conditions for optimum measurement of hydrogen peroxide. Sensor optimization resulted in a limit of detection of 2 × 10−7 M, a linear range from 0 to 4.5 mM and a sensitivity of 762 μA·mM−1·cm−2 which was achieved using 20 layers of printed PBNPs. Sensors also demonstrated excellent reproducibility (<5% rsd). PMID:25093348

  6. ENHANCED BIOREMEDIATION UTILIZING HYDROGEN PEROXIDE AS A SUPPLEMENTAL SOURCE OF OXYGEN: A LABORATORY AND FIELD STUDY

    EPA Science Inventory

    Laboratory and field scale studies were conducted to investigate the feasibility of using hydrogen peroxide as a supplemental source of oxygen for bioremediation of an aviation gasoline fuel spill. Field samples of aviation gasoline contaminated aquifer material were artificially...

  7. Homolytic cleavage of both heme-bound hydrogen peroxide and hydrogen sulfide leads to the formation of sulfheme

    DOE PAGES

    Arbelo-Lopez, Hector D.; Simakov, Nikolay A.; Smith, Jeremy C.; ...

    2016-06-29

    Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H 2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H 2S to enter the solvent-excluded active sitemore » through a hydrophobic channel to ultimately form a hydrogen bond with H 2O 2 bound to Fe(III). Proton transfer from H 2O 2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H 2S to the Fe(III) H 2O 2 complex, results in homolytic cleavage of the O–O and S–H bonds to form a reactive thiyl radical (HS*), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer N B–Fe(III) bonds compared with other pyrrole nitrogen–Fe(III) bonds, which would lead to decreased oxygen binding. Altogether, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H 2S on cell signaling and reactivity.« less

  8. Homolytic cleavage of both heme-bound hydrogen peroxide and hydrogen sulfide leads to the formation of sulfheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbelo-Lopez, Hector D.; Simakov, Nikolay A.; Smith, Jeremy C.

    Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H 2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H 2S to enter the solvent-excluded active sitemore » through a hydrophobic channel to ultimately form a hydrogen bond with H 2O 2 bound to Fe(III). Proton transfer from H 2O 2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H 2S to the Fe(III) H 2O 2 complex, results in homolytic cleavage of the O–O and S–H bonds to form a reactive thiyl radical (HS*), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer N B–Fe(III) bonds compared with other pyrrole nitrogen–Fe(III) bonds, which would lead to decreased oxygen binding. Altogether, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H 2S on cell signaling and reactivity.« less

  9. An in vivo study of the effect of a 38 percent hydrogen peroxide in-office whitening agent on enamel.

    PubMed

    Cadenaro, Milena; Navarra, Chiara Ottavia; Mazzoni, Annalisa; Nucci, Cesare; Matis, Bruce A; Di Lenarda, Roberto; Breschi, Lorenzo

    2010-04-01

    In an in vivo study, the authors tested the hypothesis that no difference in enamel surface roughness is detectable either during or after bleaching with a high-concentration in-office whitening agent. The authors performed profilometric and scanning electron microscopic (SEM) analyses of epoxy resin replicas of the upper right incisors of 20 participants at baseline (control) and after each bleaching treatment with a 38 percent hydrogen peroxide whitening agent, applied four times, at one-week intervals. The authors used analysis of variance for repeated measures to analyze the data statistically. The profilometric analysis of the enamel surface replicas after the in vivo bleaching protocol showed no significant difference in surface roughness parameters (P > .05) compared with those at baseline, irrespective of the time interval. Results of the correlated SEM analysis showed no relevant alteration on the enamel surface. Results of this in vivo study support the tested hypothesis that the application of a 38 percent hydrogen peroxide in-office whitening agent does not alter enamel surface roughness, even after multiple applications. The use of a 38 percent hydrogen peroxide in-office whitening agent induced no roughness alterations of the enamel surface, even after prolonged and repeated applications.

  10. The principal phenolic and alcoholic components of wine protect human lymphocytes against hydrogen peroxide- and ionizing radiation-induced DNA damage in vitro.

    PubMed

    Greenrod, William; Fenech, Michael

    2003-03-01

    We have tested the hypothesis that the alcoholic and phenolic components of wine are protective against the DNA-damaging and cytotoxic effects of hydrogen peroxide and gamma-radiation in vitro. The components of wine tested were ethanol, glycerol, a mixture of the phenolic compounds catechin and caffeic acid and tartaric acid, all at concentrations that were 2.5 or 10.0% of the concentration in a typical Australian white wine (Riesling). These components were tested individually or combined as a mixture and compared to a white wine stripped of polyphenols, as well as a Hanks balanced salt solution control, which was the diluent for the wine components. The effect of the components was tested in lymphocytes, using the cytokinesis-block micronucleus assay, after 30 min incubation in plasma or whole blood for the hydrogen peroxide or gamma-radiation challenge, respectively. The results obtained showed that ethanol, glycerol, the catechin-caffeic acid mixture, the mixture of all components and the stripped white wine significantly reduced the DNA-damaging effects of hydrogen peroxide and gamma-radiation (P = 0.043-0.001, ANOVA). The strongest protective effect against DNA damage by gamma-irradiation was observed for the catechin-caffeic acid mixture and the mixture of all components (30 and 32% reduction, respectively). These two treatments as well as ethanol produced the strongest protective effects against DNA damage by hydrogen peroxide (24, 25 and 18%, respectively). The protection provided by the mixture did not account for the expected additive protective effects of the individual components. Ethanol was the only component that significantly increased baseline DNA damage rate, however, this effect was negated in the mixture. In conclusion, our results suggest that the main phenolic and alcoholic components of wine can reduce the DNA-damaging effects of two important oxidants, i.e. hydrogen peroxide and ionizing radiation, in this physiologically relevant in vitro

  11. Influence of in-office whitening gel pH on hydrogen peroxide diffusion through enamel and color changes in bovine teeth.

    PubMed

    Pignoly, Christian; Camps, Lila; Susini, Guy; About, Imad; Camps, Jean

    2012-04-01

    To assess the influence of in-office whitening gel pH on whitening efficiency. Hydrogen peroxide diffusion and color changes on bovine teeth were assessed. Three gels with close hydrogen peroxide concentrations but with various pH levels were tested: Zoom 2 (Discus Dental), Opalescence Endo and Opalescence Boost (Ultradent). The pH levels were respectively: 3.0, 5.0 and 7.0. Thirty enamel slices and tooth crowns were used for both studies (n = 10 per group per study). Hydrogen peroxide diffusion through the enamel slices and the tooth crowns was spectrophotometrically recorded every 10 minutes for 1 hour to calculate the diffusion coefficients. Color changes were spectrophotometrically recorded every 10 minutes for 1 hour and quantified in term of CIE-Lab. The hydrogen peroxide diffusion coefficient through enamel ranged from 5.12 +/- 0.82 x 10(-9) cm2 s(-1) for pH 3 to 5.19 +/- 0.92 x 10(-9) cm2 S(-1) for pH 7. Through tooth crowns it ranged from 4.80 +/- 1.75 x 10(-10) cm2 s(-1) for pH 5 to 4.85 +/- 1.82 x 10(-10) cm2 s(-1) for pH 3. After 1 hour, the deltaE varied from 5.6 +/- 4.0 for pH 7 to 7.0 +/- 5.0 for pH 3 on enamel slices and from 3.9 +/- 2.5 for pH 5 to 4.9 +/- 3.5 for pH 7 on tooth crowns. There was no statistically significant difference between groups for both parameters.

  12. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots

    PubMed Central

    Hernandez, Mercedes; Fernandez-Garcia, Nieves; Diaz-Vivancos, Pedro; Olmos, Enrique

    2010-01-01

    Salinity affects normal growth and development of plants depending on their capacity to overcome the induced stress. The present study was focused on the response and regulation of the antioxidant defence system in Brassica oleracea roots under short and long salt treatments. The function and the implications of hydrogen peroxide as a stressor or as a signalling molecule were also studied. Two different zones were analysed—the elongation and differentiation zone and the fully differentiated root zone—in order to broaden the knowledge of the different effects of salt stress in root. In general, an accumulation of hydrogen peroxide was observed in both zones at the highest (80 mM NaCl) concentration. A higher accumulation of hydrogen peroxide was observed in the stele of salt-treated roots. At the subcellular level, mitochondria accumulated hydrogen peroxide in salt-treated roots. The results confirm a drastic decrease in the antioxidant enzymes catalase, ascorbate peroxidase, and peroxidases under short salt treatments. However, catalase and peroxidase activities were recovered under long salt stress treatments. The two antioxidant molecules analysed, ascorbate and glutathione, showed a different trend during salt treatments. Ascorbate was progressively accumulated and its redox state maintained, but glutathione was highly accumulated at 24 h of salt treatment, but then its concentration and redox state progressively decreased. Concomitantly, the antioxidant enzymes involved in ascorbate and glutathione regeneration were modified under salt stress treatments. In conclusion, the increase in ascorbate levels and the maintenance of the redox state seem to be critical for root growth and development under salt stress. PMID:19906795

  13. Synthesis and radiosensitization properties of hydrogen peroxide and sodium hyaluronate complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Nur Ratasha Alia Md.; Mohamed, Faizal; Heng, Cheong Kai

    2014-09-03

    Cancer cells which are large in size are resistant towards radiation therapy due to the presence of large amount of anti-oxidative enzymes and hypoxic cancer cells. Thus radiosensitizer agents have been developed to enhance the therapeutic effect of radiotherapy by increasing the sensitivity of these cancer cells towards radiation. This study is conducted to investigate the radiosensitization properties of radiosensitizer complex containing hydrogen peroxide and sodium hyaluronate. Combination with sodium hyaluronate may decrease reactivity of hydrogen peroxide but maintain the oxygen concentration needed for radiosensitizing effect. HepG2 cancer cells are cultured as the mean of test subject. Cancer cell samplesmore » which are targeted and not targeted with these radiosensitizers are irradiated with 2Gy single fractionated dose. Results obtained shows that the cancer cells which are not targeted with radiosensitizers has a cell viability of 98.80±0.37% after a time interval of 48 hours and has even repopulated over 100% after a 72 hour time interval. This shows that the cancer cells are resistant towards radiation. However, when the cancer cells are targeted with radiosensitizers prior to irradiation, there is a reduction of cell viability by 25.50±10.81% and 10.30±5.10% at time intervals of 48 and 72 hours respectively. This indicates that through the use of these radiosensitizers, cancer cells are more sensitive towards radiation.« less

  14. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Mahmud, Maznah; Naziri, Muhammad Ihsan; Yacob, Norzita; Talip, Norhashidah; Abdullah, Zahid

    2014-02-01

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H2O2), 1%-5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H2O2 enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H2O2based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.

  15. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones

    DOE PAGES

    Liu, Jin; Hu, Qingyang; Young Kim, Duck; ...

    2017-11-22

    Ultralow-velocity zones (ULVZs) at Earth’s core–mantle boundary region have important implications for the chemical composition and thermal structure of our planet, but their origin has long been debated. Hydrogen-bearing iron peroxide (FeO 2H x) in the pyrite-type crystal structure was recently found to be stable under the conditions of the lowermost mantle. Using high-pressure experiments and theoretical calculations, we find that iron peroxide with a varying amount of hydrogen has a high density and high Poisson ratio as well as extremely low sound velocities consistent with ULVZs. Here in this paper we also report a reaction between iron and watermore » at 86 gigapascals and 2,200 kelvin that produces FeO 2H x. This would provide a mechanism for generating the observed volume occupied by ULVZs through the reaction of about one-tenth the mass of Earth’s ocean water in subducted hydrous minerals with the effectively unlimited reservoir of iron in Earth’s core. Unlike other candidates for the composition of ULVZs, FeO 2H x synthesized from the superoxidation of iron by water would not require an extra transportation mechanism to migrate to the core–mantle boundary. These dense FeO2Hx-rich domains would be expected to form directly in the core–mantle boundary region and their properties would provide an explanation for the many enigmatic seismic features that are observed in ULVZs« less

  16. Evaluation of cotton-fabric bleaching using hydrogen peroxide and Blue LED

    NASA Astrophysics Data System (ADS)

    de Oliveira, Bruno P.; Moriyama, Lilian T.; Bagnato, Vanderlei S.

    2015-06-01

    The raw cotton production requires multiple steps being one of them the removal of impurities acquired during previous processes. This procedure is widely used by textile industries around the world and is called bleaching. The raw cotton is composed by cellulosic and non-cellulosic materials like waxes, pectins and oils, which are responsible for its characteristic yellowish color. The bleaching process aims to remove the non-cellulosic materials concentration in the fabric, increasing its whiteness degree. The most used bleaching method utilizes a bath in an alkali solution of hydrogen peroxide, stabilizers and buffer solutions under high temperature. In the present study we evaluated the possibility of using a blue illumination for the bleaching process. We used blue LEDs (450 nm) to illuminate an acid hydrogen peroxide solution at room temperature. The samples treated by this method were compared with the conventional bleaching process through a colorimetric analysis and by a multiple comparison visual inspection by volunteers. The samples were also studied by a tensile test in order to verify the integrity of the cloth after bleaching. The results of fabric visual inspection and colorimetric analysis showed a small advantage for the sample treated by the standard method. The tensile test showed an increasing on the yield strength of the cloth after blue light bleaching. The presented method has great applicability potential due to the similar results compared to the standard method, with relative low cost and reduced production of chemical waste.

  17. Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton's reagent).

    PubMed

    Bissey, Lauren L; Smith, Jeffrey L; Watts, Richard J

    2006-07-01

    The interactions between catalyzed H(2)O(2) propagations (CHP-i.e. modified Fenton's reagent) and soil organic matter (SOM) during the treatment of contaminated soils and groundwater was studied in a well-characterized surface soil. The fate of two fractions of SOM, particulate organic matter (POM) and nonparticulate organic matter (NPOM), during CHP reactions was evaluated using concentrations of hydrogen peroxide from 0.5 to 3M catalyzed by soluble iron (III), an iron (III)-ethylenediamine tetraacetic acid (EDTA) chelate, or naturally-occurring soil minerals. The destruction of total SOM in CHP systems was directly proportional to the hydrogen peroxide dosage, and was significantly greater at pH 3 than at neutral pH; furthermore, SOM destruction occurred predominantly in the NPOM fraction. At pH 3, SOM did not affect hydrogen peroxide decomposition rates or hydroxyl radical activity in CHP reactions. However, at neutral pH, increasing the mass of SOM decreased the hydrogen peroxide decomposition rate and increased the rate of hydroxyl radical generation in CHP systems. These results show that, while CHP reactions destroy some of the organic carbon pools, SOM does not have a significant effect on the CHP treatment of soils and groundwater.

  18. NOX4-dependent Hydrogen peroxide promotes shear stress-induced SHP2 sulfenylation and eNOS activation.

    PubMed

    Sánchez-Gómez, Francisco J; Calvo, Enrique; Bretón-Romero, Rosa; Fierro-Fernández, Marta; Anilkumar, Narayana; Shah, Ajay M; Schröder, Katrin; Brandes, Ralf P; Vázquez, Jesús; Lamas, Santiago

    2015-12-01

    Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm(2)) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Enzyme-free Detection of Hydrogen Peroxide from Cerium Oxide Nanoparticles Immobilized on Poly(4-vinylpyridine) Self-Assembled Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaynor, James D.; Karakoti, Ajay S.; Inerbaev, Talgat

    2013-05-02

    A single layer of oxygen-deficient cerium oxide nanoparticles (CNPs) are immobilized on microscopic glass slide using poly(4-vinylpyridine) (PVP) self-assembled monolayers (SAMs). A specific colorimetric property of CNPs when reacted with hydrogen peroxide allows for the direct, single-step peroxide detection which can be used in medical diagnosis and explosives detection. Multiple PVP-CNP immobilized layers improve sensitivity of detection and the sensor can be regenerated for reuse.

  20. Correlation between Raman spectroscopy and electrical conductivity of graphite/polyaniline composites reacted with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Aymen, Mannai; Sami, Saidi; Ahmed, Souissi; Fethi, Gmati; Abdellatif, Belhadj Mohamed

    2013-08-01

    The aim of this work is to correlate the Raman spectroscopic studies to the electrical properties of graphite/polyaniline composites (G/PANI) reacted with hydrogen peroxide. Raman spectroscopic studies have been performed for G/PANI composites with different graphite weight concentrations (y% = 0, 10, 20, 50). As expected, Raman bands situated at 1350 and 1580 cm-1 coming from graphite lattice appear, and their intensity increases with increasing graphite concentrations. The measured Raman region (1170-1800 cm-1) of PANI reacted with hydrogen peroxide was convoluted and fitted with seven Lorentzian curves. Three Lorentzian curves centred at 1609, 1578 and 1336 cm-1 are investigated. We find that the band at 1578 cm-1 attributed to the C=C stretching vibration in the quinonoid ring (Q) is slightly shifted to 1584 cm-1 and its intensity increases during the reaction with hydrogen peroxide. However, the peaks at 1609 and 1336 cm-1 attributed respectively to the C-C stretching of the benzenoid ring (B) and C-N+. vibration of delocalized polaronic structures (protonation band—PB), keep the same position and their intensities decrease. This could be interpreted as a deprotonation of imines nitrogen atoms in PANI. These results were correlated with the electrical percolation behaviour which occurs in the composite. Indeed, the electrical conductivity of G/PANI composites treated with H2O2 increases with increasing G weight concentration, only when this later becomes higher than a critical concentration yc known as the percolation threshold. We find that the percolation behaviour is linked to the intensity decrease of B and PB bands and to the intensity increase of Q band.

  1. Characterization of hydrogen peroxide-resistant Acinetobacter species isolated during the Mars Phoenix spacecraft assembly.

    PubMed

    Derecho, I; McCoy, K B; Vaishampayan, P; Venkateswaran, K; Mogul, R

    2014-10-01

    The microbiological inventory of spacecraft and the associated assembly facility surfaces represent the primary pool of forward contaminants that may impact the integrity of life-detection missions. Herein, we report on the characterization of several strains of hydrogen peroxide-resistant Acinetobacter, which were isolated during the Mars Phoenix lander assembly. All Phoenix-associated Acinetobacter strains possessed very high catalase specific activities, and the specific strain, A. gyllenbergii 2P01AA, displayed a survival against hydrogen peroxide (no loss in 100 mM H2O2 for 1 h) that is perhaps the highest known among Gram-negative and non-spore-forming bacteria. Proteomic characterizations reveal a survival mechanism inclusive of proteins coupled to peroxide degradation (catalase and alkyl hydroperoxide reductase), energy/redox management (dihydrolipoamide dehydrogenase), protein synthesis/folding (EF-G, EF-Ts, peptidyl-tRNA hydrolase, DnaK), membrane functions (OmpA-like protein and ABC transporter-related protein), and nucleotide metabolism (HIT family hydrolase). Together, these survivability and biochemical parameters support the hypothesis that oxidative tolerance and the related biochemical features are the measurable phenotypes or outcomes for microbial survival in the spacecraft assembly facilities, where the low-humidity (desiccation) and clean (low-nutrient) conditions may serve as selective pressures. Hence, the spacecraft-associated Acinetobacter, due to the conferred oxidative tolerances, may ultimately hinder efforts to reduce spacecraft bioburden when using chemical sterilants, thus suggesting that non-spore-forming bacteria may need to be included in the bioburden accounting for future life-detection missions.

  2. Formation of hydrogen peroxide in the silver reductor: A micro-analytical method for iron

    USGS Publications Warehouse

    Fryling, C.F.; Tooley, F.V.

    1936-01-01

    1. An attempt to determine small quantities of iron by reduction with silver followed by titration with eerie sulfate revealed an error attributable to the formation of hydrogen peroxide in the reductor. 2. By conducting the reduction in an atmosphere of hydrogen, thereby decreasing the reductor correction, and applying a correction for the indicator, it was possible to determine quantities of iron of the order of 1.5 mg. with a high degree of accuracy. 3. The method was found to be relatively rapid and not to require the use of large platinum dishes, thus possessing advantages of practical value.

  3. Protective effect of ursolic acid from Cornus officinalis on the hydrogen peroxide-induced damage of HEI-OC1 auditory cells.

    PubMed

    Yu, Hyeon-Hee; Hur, Jong-Moon; Seo, Se-Jeong; Moon, Hae-Dalma; Kim, Hyun-Jin; Park, Rae-Kil; You, Yong-Ouk

    2009-01-01

    The fruits of Cornus officinalis have been used in traditional oriental medicine for treatment of inner ear diseases, such as tinnitus and hearing loss. In the present study, we investigated the protective effect of C. officinalis on hydrogen peroxide-induced cytotoxicity in HEI-OC1 auditory cells. The results from bioassay-guided fractionation of methanol extract of C. officinalis fruits showed that ursolic acid is a major active component. Ursolic acid (0.05-2 microg/ml) had protective effect against the HEI-OC1 cell damage and reduced lipid peroxidation in a dose-dependent manner. In addition, pre-treatment with ursolic acid significantly attenuated the decrease of activities of catalase (CAT) and glutathione peroxidase (GPX), but superoxide dismutase (SOD) activity was not significantly affected by ursolic acid. These results indicate that ursolic acid protects hydrogen peroxide-induced HEI-OC1 cell damage through inhibition of lipid peroxidation and induction of antioxidant enzymes, CAT and GPX, and may be one of the active components responsible for these effects of C. officinalis fruits.

  4. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in dough conditioning. (c) It is used or intended for...

  5. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in dough conditioning. (c) It is used or intended for...

  6. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in dough conditioning. (c) It is used or intended for...

  7. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in dough conditioning. (c) It is used or intended for...

  8. Effectiveness of ultraviolet devices and hydrogen peroxide systems for terminal room decontamination: Focus on clinical trials.

    PubMed

    Weber, David J; Rutala, William A; Anderson, Deverick J; Chen, Luke F; Sickbert-Bennett, Emily E; Boyce, John M

    2016-05-02

    Over the last decade, substantial scientific evidence has accumulated that indicates contamination of environmental surfaces in hospital rooms plays an important role in the transmission of key health care-associated pathogens (eg, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, Clostridium difficile, Acinetobacter spp). For example, a patient admitted to a room previously occupied by a patient colonized or infected with one of these pathogens has a higher risk for acquiring one of these pathogens than a patient admitted to a room whose previous occupant was not colonized or infected. This risk is not surprising because multiple studies have demonstrated that surfaces in hospital rooms are poorly cleaned during terminal cleaning. To reduce surface contamination after terminal cleaning, no touch methods of room disinfection have been developed. This article will review the no touch methods, ultraviolet light devices, and hydrogen peroxide systems, with a focus on clinical trials which have used patient colonization or infection as an outcome. Multiple studies have demonstrated that ultraviolet light devices and hydrogen peroxide systems have been shown to inactivate microbes experimentally plated on carrier materials and placed in hospital rooms and to decontaminate surfaces in hospital rooms naturally contaminated with multidrug-resistant pathogens. A growing number of clinical studies have demonstrated that ultraviolet devices and hydrogen peroxide systems when used for terminal disinfection can reduce colonization or health care-associated infections in patients admitted to these hospital rooms. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores.

    PubMed

    Ali, Mubarak; Ahmed, Ishtiaq; Nasir, Saima; Ramirez, Patricio; Niemeyer, Christof M; Mafe, Salvador; Ensinger, Wolfgang

    2015-09-09

    We describe the fabrication of a chemical-sensitive nanofluidic device based on asymmetric nanopores whose transport characteristics can be modulated upon exposure to hydrogen peroxide (H2O2). We show experimentally and theoretically that the current-voltage curves provide a suitable method to monitor the H2O2-mediated change in pore surface characteristics from the electronic readouts. We demonstrate also that the single pore characteristics can be scaled to the case of a multipore membrane whose electric outputs can be readily controlled. Because H2O2 is an agent significant for medical diagnostics, the results should be useful for sensing nanofluidic devices.

  10. Fluorometric method for the determination of gas-phase hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Kok, Gregory L.; Lazrus, Allan L.

    1986-01-01

    The fluorometric gas-phase hydrogen peroxide procedure is based on the technique used by Lazrus et. al. for the determination of H2O2 in the liquid phase. The analytical method utilizes the reaction of H2O2 with horseradish peroxidase and p-hydroxphenylacetic acid (POPHA) to form the fluorescent dimer of POPHA. The analytical reaction responds stoichiometrically to both H2O2 and some organic hydroperoxides. To discriminate H2O2 from organic hydroperoxides, catalase is used to preferentially destroy H2O2. Using a dual-channel flow system the H2O2 concentration is determined by difference.

  11. Effect of hydrodynamic cavitation on the rate of OH-radical formation in the presence of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Aseev, D. G.; Batoeva, A. A.

    2014-01-01

    It is shown experimentally that hydrogen peroxide is the source of OH-radicals at low-pressure hydrodynamic cavitation. Major preconditions for the intensification of oxidative destruction processes in organic pollutants with an added cavitation stimulus are determined.

  12. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  13. Local Wound Care for Primary Cleft Lip Repair: Treatment and Outcomes With use of Topical Hydrogen Peroxide.

    PubMed

    Strong, Amy L; Nauta, Allison C; Kuang, Anna A

    2015-12-01

    This study highlights and validates a peroxide-based wound healing strategy for treatment of surgically closed facial wounds in a pediatric population. The authors identified pediatric patients undergoing primary cleft lip repair as a specific population to evaluate the outcomes of such a protocol. Through analysis of defined outcome measures, a reliable and reproducible protocol for postoperative wound care following primary cleft lip repair with favorable results is described. This retrospective study analyzes wound healing outcomes in pediatric patients undergoing primary cleft lip repair from 2006 to 2011 at a tertiary academic center. The wound healing protocol was used in both primary unilateral and bilateral repairs. One hundred fortysix patients between the ages of 0 and 4 years underwent primary cleft lip repair and cleft rhinoplasty by a single, fellowship-trained craniofacial surgeon. Postoperatively, wounds were treated with half-strength hydrogen peroxide and bacitracin, as well as scar massage. Incisional dehiscence, hypertrophic scar formation, discoloration, infection, and reoperation were studied. Outcomes were evaluated in light of parent compliance, demographics, preoperative nasoalveolar molding (PNAM), and diagnosis. The authors identified 146 patients for inclusion in this study. There was no wound or incisional dehiscence. One hundred twenty-four patients demonstrated favorable cosmetic outcome. Only 3 (2%) of patients who developed suboptimal outcomes underwent secondary surgical revision (> 1 year after surgery). Demographic differences were not statistically significant, and PNAM treatment did not influence outcomes. These data validate the use of halfstrength hydrogen peroxide and bacitracin as part of a wound healing strategy in pediatric incisional wounds. The use of hydrogen peroxide produced comparable outcomes to previously published studies utilizing other wound healing strategies and, therefore, these study findings support the

  14. 21 CFR 172.802 - Acetone peroxides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... may be mixed with an edible carrier to give a concentration of: (1) 3 grams to 10 grams of hydrogen peroxide equivalent per 100 grams of the additive, plus carrier, for use in flour maturing and bleaching; or (2) approximately 0.75 gram of hydrogen peroxide equivalent per 100 grams of the additive, plus...

  15. Solid hydrogen target for laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  16. Determination of concentration and molar absorptivity of hypochlorous acid and hypobromous acid species by hydrogen peroxide titration

    NASA Astrophysics Data System (ADS)

    Uehara, H.; Arakaki, T.

    2017-12-01

    Hypochlorous acid and hypobromous acid (abbreviated as "HypoX acids") are the main ingredients of bleaching and bactericides. The HypoX acids change their chemical forms depending on environmental factors such as pH and various chemical reactions. For example, it has been reported that hypobromite ion in water changes to carcinogenic bromate by photochemical reaction with ultraviolet light. In this study, concentrations of HypoX acids were determined by UV-VIS absorbance measurement utilizing the fact that HypoX acids react with hydrogen peroxide and do not co-exist in the solution. The method for determining the concentration by titration with hydrogen peroxide can be carried out simpler and more efficiently than the DPD method or the current titration method generally used for chlorine concentration measurement. Molar absorptivity between 250 - 500 nm of HypoX acids, including their conjugate base species, was determined by solving theoretical acid-base formula including molar fraction of each chemical species at various pHs. Molar absorptivity of OCl- and OBr- between 250 - 500 nm was determined based on the concentrations obtained from titration with hydrogen peroxide and absorbance at pH > 10, where OCl- and OBr- dominate. Furthermore, the HypoX acids solutions were irradiated with a solar simulator, and the photolysis rate constants were obtained. Based on those values, the half-lives were calculated and the behavior of HypoX acids in the environment was elucidated.

  17. [Determination of peracetic acid and hydrogen peroxide in a preparation].

    PubMed

    Bodiroga, Milanka; Ognjanović, Jasminka

    2002-01-01

    Iodometric and permanganometric titrations were used for determination of peracetic acid and hydrogen peroxide (H2O2) in the mixture. Two procedures were described and compared. Titrations could be done in only one vessel, in the same reaction mixture, when iodometric titration of peracetic acid was continued after the permanganometric titration of H2O2, (procedure A). Peracetic acid and H2O2, as oxidizing agents, reacted with potassium iodide in an acid medium, evolving iodine. This reaction was used for the quantitative iodometric determination of total peroxide in procedure B. H2O2 reacted with potassium permanganate in acid medium, but peracetic acid did not react under the same conditions. That made possible the selective permanganometric determination of H2O2 in the presence of peracetic acid. The procedure B was performed in two titration vessels (KV = 3.4% for peracetic acid, 0.6% for H2O2). The procedure A for iodometric determination of peracetic acid in one titration vessel after permanganometric titration of H2O2 was recommended (KV = 2.5% for peracetic acid, 0.45% for H2O2).

  18. EFFECTS OF AQUATIC HUMIC SUBSTANCES ON ANALYSIS FOR HYDROGEN PEROXIDE USING PEROXIDASE-CATALYZED OXIDATIONS OF TRIARYLMETHANES OR P-HYDROXYPENYLACETIC ACID (JOURNAL VERSION)

    EPA Science Inventory

    A sensitive procedure is described for trace analysis of hydrogen peroxide in water. The process involves the peroxide-catalyzed oxidation of the leuco forms of two dyes, crystal violet and malachite green. The sensitivity of this procedure, as well as of another procedure based ...

  19. Oxidation and Destruction of Polyvinyl Alcohol under the Combined Action of Ozone-Oxygen Mixture and Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Zimin, Yu. S.; Kutlugil'dina, G. G.; Mustafin, A. G.

    2018-03-01

    The oxidative transformations of a polyvinyl alcohol in aqueous solutions are studied under the simultaneous action of the two oxidizing agents, an ozone-oxygen mixture and a hydrogen peroxide. Effective parameters a and b, which characterize the first and second channels of carboxyl group accumulation, respectively, grow linearly upon an increase in the initial concentration of H2O2. After the temperature dependence of a and b parameters (331-363 K) in a PVA + O3 + O2 + H2O2 + H2O reaction system is studied, the parameters of the activation of COOH group accumulation are found (where PVA is a polyvinyl alcohol). New data on the effect process conditions (length of oxidation, temperature, and hydrogen peroxide concentration) have on the degree of destructive transformations of polyvinyl alcohol in the investigated reaction system are obtained.

  20. Ultrafast shock compression of an oxygen-balanced mixture of nitromethane and hydrogen peroxide.

    PubMed

    Armstrong, Michael R; Zaug, Joseph M; Grant, Christian D; Crowhurst, Jonathan C; Bastea, Sorin

    2014-08-14

    We apply ultrafast optical interferometry to measure the Hugoniot of an oxygen-balanced mixture of nitromethane and hydrogen peroxide (NM/HP) and compare with Hugoniot data for pure nitromethane (NM) and a 90% hydrogen peroxide/water mixture (HP), as well as theoretical predictions. We observe a 2.1% percent mean pairwise difference between the measured shockwave speed (at the measured piston speed) in unreacted NM/HP and the corresponding "universal" liquid Hugoniot, which is larger than the average standard deviation of our data, 1.4%. Unlike the Hugoniots of both HP and NM, in which measured shock speeds deviate to values greater than the unreacted Hugoniot for piston speeds larger than the respective reaction thresholds, in the NM/HP mixture we observe shock speed deviations to values lower than the unreacted Hugoniot well below the von Neumann pressure (≈28 GPa). Although the trend should reverse for high enough piston speeds, the initial behavior is unexpected. Possible explanations range from mixing effects to a complex index of refraction in the reacted solution. If this is indeed a signature of chemical initiation, it would suggest that the process may not be kinetically limited (on a ~100 ps time scale) between the initiation threshold and the von Neumann pressure.

  1. Effects of hydrogen peroxide on the light reflectance and morphology of bovine enamel.

    PubMed

    Kwon, Y H; Huo, M S; Kim, K H; Kim, S K; Kim, Y J

    2002-05-01

    The purpose of this study was to examine the effects of a bleaching agent (30% hydrogen peroxide) on the surface of bovine enamel using a scanning electron microscope and a UV-VIS-NIR spectrophotometer. Five non-carious bovine incisors were bleached for 0, 1, 2 and 3 days using 30% hydrogen peroxide. The light reflectance spectrum was measured using a spectrophotometer with diffuse reflectance mode. Colour values and colour differences in the teeth were evaluated from the reflectance measurements with the CIE L*a*b* colour coordinate system. Surface alterations in the bleached and unbleached teeth were studied using a scanning electron microscope. The change of reflectance in the teeth was related to the change of colour. Most reflectance change occurred within a 1-day bleaching, and this result was confirmed by a CIE L*a*b* colour coordinate system. The colour differences in the bleached teeth were significant enough to be perceived by the observer's eye. The comparison of bleached to unbleached bovine enamel revealed that the bleached surface showed non-uniform slight morphological alterations, and it developed varying degrees of surface porosity. This study indicates that the bleached bovine teeth showed apparent colour differences as well as slight morphological alterations after bleaching.

  2. [Mechanism of oxidation reaction of NADH models and phynylglyoxal with hydrogen peroxide. Hypothesis on separate transport of hydrogen and electron atom in certain enzymatic reactions with the participation of NADH and NADPH].

    PubMed

    Iasnikov, A A; Ponomarenko, S P

    1976-05-01

    Kinetics of co-oxidation of 1-benzen-3-carbamido-1,4-dihydropyridine (BDN) and phenylglyoxal (PG) with hydrogen peroxide is studied. Dimeric product (di-e11-benzen-5-carbamido-1,2-dihydropyridyl-2]) is found to be formed at pH 9, and quaternal pyridinium salt (BNA)--at pH 7. Molecular oxigen is determined to participate in the reaction at pH 7. Copper (II) ions catalyze this process. Significant catalytic effect of p-dinitrobenzen (p-DNB) is found. The reaction mechanism is postulated to form hydroperoxide from PG and hydrogen peroxide which are capable to split the hydrogen attom from dihydropyridine, molecular oxigen or p-DNB being an acceptor of the electrone. Hypothesis on separate transfer of hydrogen atom and electrone in biological systems are proposed.

  3. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-08-01

    In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  4. Measurement of formic acid, acetic acid and hydroxyacetaldehyde, hydrogen peroxide, and methyl peroxide in air by chemical ionization mass spectrometry: airborne method development

    NASA Astrophysics Data System (ADS)

    Treadaway, Victoria; Heikes, Brian G.; McNeill, Ashley S.; Silwal, Indira K. C.; O'Sullivan, Daniel W.

    2018-04-01

    A chemical ionization mass spectrometry (CIMS) method utilizing a reagent gas mixture of O2, CO2, and CH3I in N2 is described and optimized for quantitative gas-phase measurements of hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HCOOH), and the sum of acetic acid (CH3COOH) and hydroxyacetaldehyde (HOCH2CHO; also known as glycolaldehyde). The instrumentation and methodology were designed for airborne in situ field measurements. The CIMS quantification of formic acid, acetic acid, and hydroxyacetaldehyde used I- cluster formation to produce and detect the ion clusters I-(HCOOH), I-(CH3COOH), and I-(HOCH2CHO), respectively. The CIMS also produced and detected I- clusters with hydrogen peroxide and methyl peroxide, I-(H2O2) and I-(CH3OOH), though the sensitivity was lower than with the O2- (CO2) and O2- ion clusters, respectively. For that reason, while the I- peroxide clusters are presented, the focus is on the organic acids. Acetic acid and hydroxyacetaldehyde were found to yield equivalent CIMS responses. They are exact isobaric compounds and indistinguishable in the CIMS used. Consequently, their combined signal is referred to as the acetic acid equivalent sum. Within the resolution of the quadrupole used in the CIMS (1 m/z), ethanol and 1- and 2-propanol were potential isobaric interferences to the measurement of formic acid and the acetic acid equivalent sum, respectively. The CIMS response to ethanol was 3.3 % that of formic acid and the response to either 1- or 2-propanol was 1 % of the acetic acid response; therefore, the alcohols were not considered to be significant interferences to formic acid or the acetic acid equivalent sum. The multi-reagent ion system was successfully deployed during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) in 2014. The combination of FRAPPÉ and laboratory calibrations allowed for the post-mission quantification of formic acid and the acetic acid equivalent sum observed during

  5. Photocatalytic activity and reusability of ZnO layer synthesised by electrolysis, hydrogen peroxide and heat treatment.

    PubMed

    Akhmal Saadon, Syaiful; Sathishkumar, Palanivel; Mohd Yusoff, Abdull Rahim; Hakim Wirzal, Mohd Dzul; Rahmalan, Muhammad Taufiq; Nur, Hadi

    2016-08-01

    In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment. The synthesised ZnO layers were characterised using scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance and photoluminescence spectroscopy. The photocatalytic activity of the ZnO layer was further assessed against methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB was achieved up to 84%, 79% and 65% within 1 h for ZnO layers synthesised by electrolysis, heat and hydrogen peroxide treatment, respectively. The reusability results show that electrolysis and heat-treated ZnO layers have considerable photocatalytic stability. Furthermore, the results confirmed that the photocatalytic efficiency of ZnO was directly associated with the thickness and enlarged surface area of the layer. Finally, this study proved that the ZnO layers synthesised by electrolysis and heat treatment had shown better operational stability and reusability.

  6. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jin; Hu, Qingyang; Young Kim, Duck

    Ultralow-velocity zones (ULVZs) at Earth’s core–mantle boundary region have important implications for the chemical composition and thermal structure of our planet, but their origin has long been debated1,2,3. Hydrogen-bearing iron peroxide (FeO2Hx) in the pyrite-type crystal structure was recently found to be stable under the conditions of the lowermost mantle4,5,6. Using high-pressure experiments and theoretical calculations, we find that iron peroxide with a varying amount of hydrogen has a high density and high Poisson ratio as well as extremely low sound velocities consistent with ULVZs. Here we also report a reaction between iron and water at 86 gigapascals and 2,200more » kelvin that produces FeO2Hx. This would provide a mechanism for generating the observed volume occupied by ULVZs through the reaction of about one-tenth the mass of Earth’s ocean water in subducted hydrous minerals with the effectively unlimited reservoir of iron in Earth’s core. Unlike other candidates for the composition of ULVZs7,8,9,10,11,12, FeO2Hx synthesized from the superoxidation of iron by water would not require an extra transportation mechanism to migrate to the core–mantle boundary. These dense FeO2Hx-rich domains would be expected to form directly in the core–mantle boundary region and their properties would provide an explanation for the many enigmatic seismic features that are observed in ULVZs.« less

  7. Thermometric titration of cadmium with sodium diethyldithiocarbamate, with oxidation by hydrogen peroxide as indicator reaction.

    PubMed

    Hattori, T; Yoshida, H

    1987-08-01

    A new method of end-point indication is described for thermometric titration of cadmium with sodium diethyldithiocarbamate (DDTC). It is based on the redox reaction between hydrogen peroxide added to the system before titration, and the first excess of DDTC. Amounts of cadmium in the range 10-50 mumoles are titrated within 1% error.

  8. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment.

    PubMed

    Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella

    2018-01-01

    A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H 2 O 2 ) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H 2 O 2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Light-activated regulation of cofilin dynamics using a photocaged hydrogen peroxide generator.

    PubMed

    Miller, Evan W; Taulet, Nicolas; Onak, Carl S; New, Elizabeth J; Lanselle, Julie K; Smelick, Gillian S; Chang, Christopher J

    2010-12-08

    Hydrogen peroxide (H2O2) can exert diverse signaling and stress responses within living systems depending on its spatial and temporal dynamics. Here we report a new small-molecule probe for producing H2O2 on demand upon photoactivation and its application for optical regulation of cofilin-actin rod formation in living cells. This chemical method offers many potential opportunities for dissecting biological roles for H2O2 as well as remote control of cell behavior via H2O2-mediated pathways.

  10. Materials Compatibility Testing in Concentrated Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Boxwell, R.; Bromley, G.; Mason, D.; Crockett, D.; Martinez, L.; McNeal, C.; Lyles, G. (Technical Monitor)

    2000-01-01

    Materials test methods from the 1960's have been used as a starting point in evaluating materials for today's space launch vehicles. These established test methods have been modified to incorporate today's analytical laboratory equipment. The Orbital test objective was to test a wide range of materials to incorporate the revolution in polymer and composite materials that has occurred since the 1960's. Testing is accomplished in 3 stages from rough screening to detailed analytical tests. Several interesting test observations have been made during this testing and are included in the paper. A summary of the set-up, test and evaluation of long-term storage sub-scale tanks is also included. This sub-scale tank test lasted for a 7-month duration prior to being stopped due to a polar boss material breakdown. Chemical evaluations of the hydrogen peroxide and residue left on the polar boss surface identify the material breakdown quite clearly. The paper concludes with recommendations for future testing and a specific effort underway within the industry to standardize the test methods used in evaluating materials.

  11. Locating bomb factories by detecting hydrogen peroxide.

    PubMed

    Romolo, Francesco Saverio; Connell, Samantha; Ferrari, Carlotta; Suarez, Guillaume; Sauvain, Jean-Jacques; Hopf, Nancy B

    2016-11-01

    The analytical capability to detect hydrogen peroxide vapour can play a key role in localizing a site where a H2O2 based Improvised Explosive (IE) is manufactured. In security activities it is very important to obtain information in a short time. For this reason, an analytical method to be used in security activity needs portable devices. The authors have developed the first analytical method based on a portable luminometer, specifically designed and validated to locate IE manufacturing sites using quantitative on-site vapour analysis for H2O2. The method was tested both indoor and outdoor. The results demonstrate that the detection of H2O2 vapours could allow police forces to locate the site, while terrorists are preparing an attack. The collected data are also very important in developing new sensors, able to give an early alarm if located at a proper distance from a site where an H2O2 based IE is prepared. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. MINERALIZATION OF A SORBED POLYCYCLIC AROMATIC HYDROCARBON IN TWO SOILS USING CATALYZED HYDROGEN PEROXIDE. (R826163)

    EPA Science Inventory

    Hydrogen peroxide (H2O2) catalyzed by soluble iron or naturally occurring soil minerals, (i.e., modified Fenton's reagent) was investigated as a basis for mineralizing sorbed and NAPL-phase benzo[a]pyrene (BaP), a hydrophobic and toxic polycyclic a...

  13. Increased cutaneous oxygen availability by topical application of hydrogen peroxide cream enhances the photodynamic reaction to topical 5-aminolevulinic acid-methyl ester.

    PubMed

    Manifold, R N; Anderson, C D

    2011-05-01

    Topical 5-aminolevulinic acid (ALA) and methyl aminolevulinate (MAL) photodynamic therapy (PDT) of skin lesions is an accepted treatment for skin tumours but success rates need improvement. The effectiveness of PDT is influenced by availability of oxygen. The aim of this study was to demonstrate, in normal skin, whether a decrease in skin oxygen tension reduces the photodynamic reaction (PDR); and whether the addition of topical hydrogen peroxide can reverse the effect. Topical MAL and red light were administered to the inner forearms of 40 healthy volunteers. Skin oxygen availability was lowered during the illumination phase of the PDT, by applying blanching pressure with a plastic slide. Topical hydrogen peroxide was applied under the pressure slide, immediately prior to illumination, to reverse the effect. Erythema was assessed by naked eye and laser Doppler perfusion imaging (LDPI), at baseline and at 1, 5, 24 and 48 h following illumination. Decreasing oxygen availability by pressure altered the PDR with a larger number of subjects (17.5%) not demonstrating any visible erythema at any time point after plastic slide pressure compared to a PDR Control site (7.5%). The addition of topical hydrogen peroxide during pressure application, restored the number of subjects showing no visible erythema compared to that of PDR Control. LDPI data showed that there was a decrease in mean perfusion after plastic slide pressure when comparing the change from baseline to 24 h (P < 0.05) with the PDR Control. The addition of hydrogen peroxide not only restored but also increased the mean perfusion compared to that of PDR Control when comparing the change from baseline to 5 h and the change from baseline to 24 h (P < 0.001). Increasing oxygen availability increased the PDR in normal skin. The possibility that addition of topical hydrogen peroxide to PDT protocols for non-melanoma skin cancer may increase reactivity and, thus, be relevant for outcomes warrants further study.

  14. Protective effects of nicergoline against hydrogen peroxide toxicity in rat neuronal cell line.

    PubMed

    Iwata, E; Miyazaki, I; Asanuma, M; Iida, A; Ogawa, N

    1998-07-17

    We examined the effects of nicergoline on hydrogen peroxide (H2O2)-induced neurotoxicity in cultured rat neuronal cell line (B50). H2O2 induced death of B50 cells in a dose-dependent manner. The H2O2-induced neuronal cell death was significantly decreased in B50 cells maintained in the presence of nicergoline. We compared the levels of antioxidants (glutathione, catalase and superoxide dismutase) in nicergoline-treated and untreated B50 cells. Lipid peroxidation products (thiobarbituric acid reactive substances, TBARS) levels were also measured. Cultures treated with nicergoline had higher levels of catalase activity. TBARS level was significantly lower in nicergoline-treated cells than in untreated cells. Our results suggest that nicergoline may induce the up-regulation of intracellular antioxidant defences and protect the neuronal cells against oxidative stress.

  15. Effect of laser irradiation on crystalline structure of enamel surface during whitening treatment with hydrogen peroxide.

    PubMed

    Son, Jung-Hyun; An, Ji-Hae; Kim, Byung-Kuk; Hwang, In-Nam; Park, Yeong-Joon; Song, Ho-Jun

    2012-11-01

    This study is to evaluate the effect of laser activation on the whitening and crystalline structure of enamel surface during whitening treatment with hydrogen peroxide. Bovine teeth were treated with whitening gel containing 35% hydrogen peroxide. A whitening gel was applied on the enamel surface for a period of 5 min, and then irradiated using a diode laser (740 nm) during whitening treatment for 0, 30, 60, 120 and 180s for the GL0-W, GL30-W, GL60-W, GL120-W and GL180-W groups, respectively. The total whitening application time was 30 min for all groups. Laser-irradiated enamel groups showed a similar lightness compared to the GL0-W group. The thickness of porous layer observed on the enamel surface of GL0-W group was decreased by increasing the laser irradiation time. While the Ca and P contents of the GL0-W group were lower than those of the non-whitening treated group (GL0-C), the Ca and P contents of the GL180-W group were similar to those of the GL180-C group. The enamel crystallinity was dramatically decreased by whitening treatment without laser irradiation. However, the decrease of crystallinity was protected by laser irradiation during whitening treatment. Raman measurement verified that laser irradiation could prevent the loss of mineral compositions on enamel and maintain its crystalline structure. The professional whitening treatment with hydrogen peroxide and diode laser activation improves not only the whitening effect but also protects the change of enamel structure compared to the treatment with only gel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Singlet oxygen production by chloroperoxidase-hydrogen peroxide-halide systems.

    PubMed

    Kanofsky, J R

    1984-05-10

    Singlet oxygen production in the chloroperoxidase-hydrogen peroxide-halide system was studied using 1268 nm chemiluminescence. With chloride or bromide ions, singlet oxygen is produced by the mechanism (formula; see text) (formula; see text) where X- is chloride or bromide ion. Under conditions where there is high enzyme activity and when Reaction B is fast relative to Reaction A, singlet oxygen is produced in near stoichiometric amounts. In contrast, when Reaction A is fast relative to Reaction B, oxidized halogen species (chlorine and hypochlorous acid for chloride ion; bromide, tribromide ion, and hypobromous acid for bromide ion) are the principle reaction products. With iodide ion, no 1268 nm chemiluminescence was detected. Past studies have shown that iodine and iodate ion are the major end products of this system.

  17. Povidone-iodine and hydrogen peroxide mixture soaked gauze pack: a novel hemostatic technique.

    PubMed

    Arakeri, Gururaj; Brennan, Peter A

    2013-11-01

    Persistent oozing of blood is a common occurrence in maxillofacial surgery, and occasionally it hampers visibility and delays or even prevents continuation of the procedure. This report describes a novel method of controlling blood ooze using swabs soaked with povidone-iodine and hydrogen peroxide (PI-HP pack) that is particularly useful in relatively inaccessible areas of the maxillofacial region. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. A novel sodium iodide and ammonium molybdate co-catalytic system for the efficient synthesis of 2-benzimidazoles using hydrogen peroxide under ultrasound irradiation.

    PubMed

    Bai, Guo-Yi; Lan, Xing-Wang; Chen, Guo-Feng; Liu, Xiao-Fang; Li, Tian-Yu; Shi, Ling-Juan

    2014-03-01

    The reaction of aldehydes and o-phenylenediamine for the preparation of 2-benzimidazoles has been studied using hydrogen peroxide as an oxidant under ultrasound irradiation at room temperature in this paper. The combination of substoichiometric sodium iodide and ammonium molybdate as co-catalysts, together with using small amounts of hydrogen peroxide, makes this transformation very efficient and attractive under ultrasound. Thus, a mild, green and efficient method is established to carry out this reaction in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Effects of mulberry ethanol extracts on hydrogen peroxide-induced oxidative stress in pancreatic β-cells.

    PubMed

    Kim, Young Rae; Lee, Jong Seok; Lee, Ki Rim; Kim, Young Eon; Baek, Nam In; Hong, Eock Kee

    2014-01-01

    Reactive oxygen species (ROS) are key mediators of mammalian cellular damage and are associated with diseases such as aging, arteriosclerosis, inflammation, rheumatoid arthritis and diabetes. Type 1 diabetes develops upon the destruction of pancreatic β-cells, which is partly due to ROS activity. In this study, we investigated the cytoprotective and anti-oxidative effects of fractionated mulberry extracts in mouse insulin-producing pancreatic β-cells (MIN6N cells). Treatment with hydrogen peroxide (H2O2) induced significant cell death and increased intracellular ROS levels, lipid peroxidation and DNA fragmentation in the MIN6N cells. Fractionated mulberry extracts significantly reduced the H2O2-dependent production of intracellular ROS, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and lipid peroxidation. In addition, mulberry extracts inhibited DNA fragmentation induced by H2O2. Thus, the antioxidant properties of mulberry extracts in pancreatic β-cells may be exploited for the prevention or treatment of type 1 diabetes.

  20. [Oxidative stress experimental model of rat with stria vascularis marginal cells injury induced by hydrogen peroxide in vitro].

    PubMed

    Li, Jun; Kong, Wei-jia; Zhao, Xue-yan; Hu, Yu-juan

    2008-11-01

    To set up the oxidative stress experimental model of rat cochlea with stria vascularis marginal cells injury induced by hydrogen peroxide in vitro. Cultured marginal cells of rat were treated by 200, 300, 400, 600 and 800 micromol/L hydrogen peroxide (H(2)O(2)) for 0.5, 1, 2, 4, 16 and 24 hours, respectively. Cell viability was assessed by the CCK-8 assay. The content of the lipid peroxidation production malondialdehyde (MDA) were detected in H(2)O(2) induced marginal cells injury with different concentration H(2)O(2). Apoptosis was assessed by flow cytometry by propidium sodium staining. The expression of the cleaved-caspase-3 was assessed by Western blot. Being exposed to H(2)O(2), marginal cells displayed nuclear pyknosis and margination, cytoplasmic condensation, cell shrinkage and formation of membrane and bounded apoptotic bodies. A time-dependent and dose-dependent decrease of cellular viability was detected with the treatment of H(2)O(2). Cellular maleic dialdehyde was generated in proportion to the concentration of H(2)O(2) at 2 hours and the number of apoptotic cells increased significantly (P < 0. 05). Western blot showed the expression of the cleaved-caspase-3 increased when 200 micromol/L, 300 micromol/L and 400 micromol/L H(2)O(2) treated cultured marginal cells. Thereafter the expression of the cleaved-caspase-3 decreased with 600 micromol/L H(2)O(2) and with 800 micromol/L H(2)O(2) the expression of cleaved-caspase-3 was weak. The findings indicated that the experimental model can be established successfully using cultured cells exposed to H(2)O(2) and activation of caspase-3 is associated with hydrogen peroxide induced rat marginal cells the oxidative stress injury.

  1. Assessment and classification of fistula-in-ano in patients with Crohn's disease by hydrogen peroxide enhanced transanal ultrasound.

    PubMed

    Sloots, C E; Felt-Bersma, R J; Poen, A C; Cuesta, M A; Meuwissen, S G

    2001-09-01

    Crohn's disease is well known for its perianal complications, among which fistulas-in-ano are the most common abnormalities. Fistulas-in-ano in Crohn's disease tend to be complex and have a high recurrence rate. Therefore the role of surgery is generally more conservative. Hydrogen peroxide enhanced transanal ultrasound has proven superior to physical examination, fistulography, computed tomography, and conventional ultrasound in demonstrating the fistula tract. This study examined the fistula tracks in patients with Crohn's disease. Forty-one patients with Crohn's disease and fistula-in-ano were investigated using physical examination, sondage of the fistula, proctoscopy and transanal ultrasound. Hydrogen peroxide was infused via a small catheter into the fistula. The main track and the ramification of the fistula were classified according to the anatomical Parks' classification. Only 9 (22%) patients had a single inter- or transsphincteric fistula. In 5 (12%) patients a single supra- or extrasphincteric fistula (high fistula) was found, in 14 (34%) more than one fistula track (ramified), and in 13 (32%) an anovaginal fistula. Thus 78% of patients had a surgically difficult to treat fistula. In the ramified fistula the main track follows the Parks' classification, but ramifications can have a bizarre pattern which is not in agreement with this classification. Optimal documentation by means of hydrogen peroxide enhanced transanal ultrasound is therefore mandatory before surgery or before other therapies such as anti-tumor necrosis factor treatment.

  2. Peroxotantalate-Based Ionic Liquid Catalyzed Epoxidation of Allylic Alcohols with Hydrogen Peroxide.

    PubMed

    Ma, Wenbao; Chen, Chen; Kong, Kang; Dong, Qifeng; Li, Kun; Yuan, Mingming; Li, Difan; Hou, Zhenshan

    2017-05-29

    The efficient and environmentally benign epoxidation of allylic alcohols has been attained by using new kinds of monomeric peroxotantalate anion-functionalized ionic liquids (ILs=[P 4,4,4,n ] 3 [Ta(O) 3 (η-O 2 )], P 4,4,4,n =quaternary phosphonium cation, n=4, 8, and 14), which have been developed and their structures determined accordingly. This work revealed the parent anions of the ILs underwent structural transformation in the presence of H 2 O 2 . The formed active species exhibited excellent catalytic activity, with a turnover frequency for [P 4,4,4,4 ] 3 [Ta(O) 3 (η-O 2 )] of up to 285 h -1 , and satisfactory recyclability in the epoxidation of various allylic alcohols under very mild conditions by using only one equivalent of hydrogen peroxide as an oxidant. NMR studies showed the reaction was facilitated through a hydrogen-bonding mechanism, in which the peroxo group (O-O) of the peroxotantalate anion served as the hydrogen-bond acceptor and hydroxyl group in the allylic alcohols served as the hydrogen-bond donor. This work demonstrates that simple monomeric peroxotantalates can catalyze epoxidation of allylic alcohols efficiently. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Using a Hands-On Hydrogen Peroxide Decomposition Activity to Teach Catalysis Concepts to K-12 Students

    ERIC Educational Resources Information Center

    Cybulskis, Viktor J.; Ribeiro, Fabio H.; Gounder, Rajamani

    2016-01-01

    A versatile and transportable laboratory apparatus was developed for middle and high school (6th-12th grade) students as part of a hands-on outreach activity to estimate catalytic rates of hydrogen peroxide decomposition from oxygen evolution rates measured by using a volumetric displacement method. The apparatus was constructed with inherent…

  4. Induction of low-level hydrogen peroxide generation by unbleached cotton nonwovens as potential or wound healing applications

    USDA-ARS?s Scientific Manuscript database

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H2O2) generation during cotton fiber development. The compon...

  5. SN-EXCHANGED HYDROTALCITES AS CATALYSTS FOR CLEAN AND SELECTIVE BAEYER-VILLIGER OXIDATION OF KETONES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    A Sn-doped hydrotalcite (Sn/HT) catalyst prepared by ion-exchange is found to be an active and selective catalyst for the liquid phase Baeyer-Villiger (BV) oxidation of cyclic ketones in acetonitrile using hydrogen peroxide (H2O2) as oxidant. Different reaction perameters such as...

  6. Fibrous Catalyst-Enhanced Acanthamoeba Disinfection by Hydrogen Peroxide.

    PubMed

    Kilvington, Simon; Winterton, Lynn

    2017-11-01

    Hydrogen peroxide (H2O2) disinfection systems are contact-lens-patient problem solvers. The current one-step, criterion-standard version has been widely used since the mid-1980s, without any significant improvement. This work identifies a potential next-generation, one-step H2O2, not based on the solution formulation but rather on a case-based peroxide catalyst. One-step H2O2 systems are widely used for contact lens disinfection. However, antimicrobial efficacy can be limited because of the rapid neutralization of the peroxide from the catalytic component of the systems. We studied whether the addition of an iron-containing catalyst bound to a nonfunctional propylene:polyacryonitrile fabric matrix could enhance the antimicrobial efficacy of these one-step H2O2 systems. Bausch + Lomb PeroxiClear and AOSept Plus (both based on 3% H2O2 with a platinum-neutralizing disc) were the test systems. These were tested with and without the presence of the catalyst fabric using Acanthamoeba cysts as the challenge organism. After 6 hours' disinfection, the number of viable cysts was determined. In other studies, the experiments were also conducted with biofilm formed by Stenotrophomonas maltophilia and Elizabethkingia meningoseptica bacteria. Both control systems gave approximately 1-log10 kill of Acanthamoeba cysts compared with 3.0-log10 kill in the presence of the catalyst (P < .001). In the biofilm studies, no viable bacteria were recovered following disinfection in the presence of the catalyst compared with ≥3.0-log10 kill when it was omitted. In 30 rounds' recurrent usage, the experiments, in which the AOSept Plus system was subjected to 30 rounds of H2O2 neutralization with or without the presence of catalytic fabric, showed no loss in enhanced biocidal efficacy of the material. The catalytic fabric was also shown to not retard or increase the rate of H2O2 neutralization. We have demonstrated the catalyst significantly increases the efficacy of one-step H2O2

  7. Pd nanoparticle-modified electrodes for nonenzymatic hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Chen, Xue-jiao; Liao, Kai-ming; Wang, Guang-hou; Han, Min

    2015-08-01

    A hydrogen peroxide (H2O2) sensor based on Pd nanoparticles (NPs) and glassy carbon electrodes (GCEs) is fabricated. Pd NPs are deposited on GCEs by using a gas phase cluster beam deposition technique. The NP-deposited electrodes show enhanced electrocatalytic activity in reduction of H2O2. The electrode with an optimized NP coverage of 85 % has a high selective and stable nonenzymatic sensing ability of H2O2 with a low detection limit (3.4 × 10-7 M), high sensitivity (50.9 μA mM-1), and a wide linear range (from 1.0 × 10-6 to 6.0 × 10-3 M). The reduction peak potential of the electrode is close to -0.12 V, which enables high selective amperometric detection of H2O2 at a low applied potential.

  8. PdCo alloy nanoparticle-embedded carbon nanofiber for ultrasensitive nonenzymatic detection of hydrogen peroxide and nitrite.

    PubMed

    Liu, Dong; Guo, Qiaohui; Zhang, Xueping; Hou, Haoqing; You, Tianyan

    2015-07-15

    PdCo alloy nanoparticle-embedded carbon nanofiber (PdCo/CNF) prepared by electrospinning and thermal treatment was employed as a high-performance platform for the determination of hydrogen peroxide and nitrite. The as-obtained PdCo/CNF were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were employed to investigate the electrochemical behaviors of the resultant biosensor. The proposed PdCo/CNF-based biosensor showed excellent analytical performances toward hydrogen peroxide (detection limit: 0.1 μM; linear range: 0.2 μM-23.5 mM) and nitrite (detection limit: 0.2 μM; linear range: 0.4-30 μM and 30-400 μM). The superior analytical properties could be attributed to the synergic effect and firmly embedment of well-dispersed PdCo alloy nanoparticles. These attractive electrochemical properties make this robust electrode material promising for the development of effective electrochemical sensors. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Kinetic release of hydrogen peroxide from different whitening products.

    PubMed

    da Silva Marques, Duarte Nuno; Silveira, Joao Miguel; Marques, Joana Rita; Amaral, Joao Almeida; Guilherme, Nuno Marques; da Mata, António Duarte

    2012-01-01

    The objective of this in vitro study was to evaluate the kinetics of hydrogen peroxide (HP) release from five different bleaching products: VivaStyle® 10% fitted tray gel, VivaStyle® 30% in-office bleaching gel, VivaStyle® Paint-On Plus paint-on bleaching varnish, Opalescence PF® 10% carbamide peroxide gel and Trèswhite Supreme™ 10% HP gel. Each product was firstly titrated for its HP content by a described method. HP release kinetics was assessed by a modified spectrophotometric technique. One sample t test was performed to test for differences between the manufacturers' claimed HP concentrations and the titrated HP content in the whitening products. Analysis of variance plus Tamhane's post hoc tests and Pearson correlation analysis were used as appropriate. Values of P < 0.05 were taken as significant. Titrated HP revealed an increased content when compared to the manufacturer's specifications for all the products tested (P < 0.05), although only products from one manufacturer produced significantly higher results. All products presented a significant (P < 0.05) and sustained release of HP. However, the product with paint-on cellulose-based matrix resulted in significantly (P < 0.05) faster kinetics when compared to other products tested. These results are consistent with manufacturers' reduced recommended application times. The results of this study suggest that modifying the matrix composition may be a viable alternative to HP concentration increase, since this may result in faster release kinetics without exposure to high HP concentrations.

  10. Protein degradation following treatment with hydrogen peroxide.

    PubMed Central

    Fligiel, S. E.; Lee, E. C.; McCoy, J. P.; Johnson, K. J.; Varani, J.

    1984-01-01

    Pretreatment of hemoglobin with 50-5000 nmol hydrogen peroxide (H2O2) increased its susceptibility to proteolysis by a number of purified enzymes, including trypsin, chymotrypsin, elastase, and plasmin, and by the neutral protease of rat peritoneal leukocytes. Pretreatment of the protein substrate with catalase-inactivated H2O2 had no effect. Separation of the proteolytic fragments by G-75 Sephadex gel filtration indicated no apparent differences in the size distribution of the fragments produced by treatment with the H2O2/proteolytic enzyme combination as compared with enzyme treatment alone. A partially purified preparation of rat glomerular basement membrane was also treated with proteolytic enzyme alone or in combination with H2O2. As with the hemoglobin, pretreatment of the glomerular basement membrane with H2O2 increased its susceptibility to subsequent proteolytic attack. In addition, treatment of a basement membrane glycoprotein, fibronectin, with H2O2 also increased its sensitivity to subsequent proteolysis. These results suggest that in addition to their other proinflammatory activities, oxygen-derived metabolites may contribute to tissue destruction by altering the susceptibility of proteins to hydrolytic enzymes. Images Figure 1 PMID:6375392

  11. [Hydrogen peroxide, chloramine T and chlorhexidrine in the disinfection of acrylic resin].

    PubMed

    Czerwińska, W; Kedzia, A; Kałowski, M

    1978-01-01

    The effectiveness of 3% h drogen peroxide, 5% chloramine T and 0,5% chlorhexidine gluconate solutions in disinfection of acrylic resine plates massively infected with oral flora was analysed. The acrylic resine plates used for investigations, were infected in vitro with mixed salivary flora characterized by small numbers of yeast-like fungi (1st group), or great number of these microorganisms (2nd group). Infected plates were exposed to solutions of analysed disinfectants during various time periods. After rinsing or inactivation of disinfectant residues, acrylic plates were put into bacteriological medium and incubated during 7 days period in 37 degrees C. The results of this study indicated the effectiveness of acrylic plates disinfection to be dependent on used disinfectant, time of exposition, and microorganisms present on the surface of acrylic resine. The solutions of disinfectants were less active in the cases of plates infected with material containing great numbers of yeast-like microorganisms. Among analysed disinfectants 0,5% solution of chlorhexidine was characterized by most effective and rapid activity, whereas 3% solution of hydrogen peroxide was found to be the least effective.

  12. Optimisation of the enzyme-based determination of hydrogen peroxide using the quartz crystal microbalance.

    PubMed

    Martin, S P; Lynch, J M; Reddy, S M

    2002-09-01

    The benzidines, 3,3'-diaminobenzidine (DAB), 3,3'-dimethoxybenzidine (DMOB) and 3,3',5,5'-tetramethylbenzidine (TMB) were enzymatically oxidised to detect hydrogen peroxide, using the quartz crystal. The oxidised product mainly remains in suspension, resulting in a limited quartz sensor signal. We have used two non-ionic surfactants, Tween 80 and Triton X-100 to interact with the oxidised amphiphilic products to increase their solubility and surface activity, and their ability to adsorb to the crystal surface. Tween 80 exhibits optimised response effects for DAB, DMOB and TMB at 0.012, 0.005, and 0.002% (v/v), respectively, whereas Triton X-100 is optimum at 0.1, 0.2, and 0.006% (v/v), respectively. As a result, we have improved the quartz crystal sensor sensitivity to peroxide. The use of Triton X-100 gave an improved response time.

  13. Hydrogen peroxide plasma sterilization of a waterproof, high-definition video camera case for intraoperative imaging in veterinary surgery.

    PubMed

    Adin, Christopher A; Royal, Kenneth D; Moore, Brandon; Jacob, Megan

    2018-06-13

    To evaluate the safety and usability of a wearable, waterproof high-definition camera/case for acquisition of surgical images by sterile personnel. An in vitro study to test the efficacy of biodecontamination of camera cases. Usability for intraoperative image acquisition was assessed in clinical procedures. Two waterproof GoPro Hero4 Silver camera cases were inoculated by immersion in media containing Staphylococcus pseudointermedius or Escherichia coli at ≥5.50E+07 colony forming units/mL. Cases were biodecontaminated by manual washing and hydrogen peroxide plasma sterilization. Cultures were obtained by swab and by immersion in enrichment broth before and after each contamination/decontamination cycle (n = 4). The cameras were then applied by a surgeon in clinical procedures by using either a headband or handheld mode and were assessed for usability according to 5 user characteristics. Cultures of all poststerilization swabs were negative. One of 8 cultures was positive in enrichment broth, consistent with a low level of contamination in 1 sample. Usability of the camera was considered poor in headband mode, with limited battery life, inability to control camera functions, and lack of zoom function affecting image quality. Handheld operation of the camera by the primary surgeon improved usability, allowing close-up still and video intraoperative image acquisition. Vaporized hydrogen peroxide sterilization of this camera case was considered effective for biodecontamination. Handheld operation improved usability for intraoperative image acquisition. Vaporized hydrogen peroxide sterilization and thorough manual washing of a waterproof camera may provide cost effective intraoperative image acquisition for documentation purposes. © 2018 The American College of Veterinary Surgeons.

  14. Field-rugged sensitive hydrogen peroxide sensor based on tunable diode laser absorption spectroscopy (TDLAS)

    NASA Astrophysics Data System (ADS)

    Frish, M. B.; Morency, J. R.; Laderer, M. C.; Wainner, R. T.; Parameswaran, K. R.; Kessler, W. J.; Druy, M. A.

    2010-04-01

    This paper reports the development and initial testing of a field-portable sensor for monitoring hydrogen peroxide (H2O2) and water (H2O) vapor concentrations during building decontamination after accidental or purposeful exposure to hazardous biological materials. During decontamination, a sterilization system fills ambient air with water and peroxide vapor to near-saturation. The peroxide concentration typically exceeds several hundred ppm for tens of minutes, and subsequently diminishes below 1 ppm. The H2O2/ H2O sensor is an adaptation of a portable gas-sensing platform based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology. By capitalizing on its spectral resolution, the TDLAS analyzer isolates H2O2 and H2O spectral lines to measure both vapors using a single laser source. It offers a combination of sensitivity, specificity, fast response, dynamic range, linearity, ease of operation and calibration, ruggedness, and portability not available in alternative H2O2 detectors. The H2O2 range is approximately 0- 5,000 ppm. The autonomous and rugged instrument provides real-time data. It has been tested in a closed-loop liquid/vapor equilibrium apparatus and by comparison against electrochemical sensors.

  15. Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew

    2009-09-12

    Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 inmore » 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.« less

  16. Intermediate-level disinfection with accelerated hydrogen peroxide prevents accumulation of bacteria in Versajet™ tubing during repeated daily debridement using simulated-use testing with an inoculated pork hock.

    PubMed

    Gawaziuk, J P; Alfa, M J; Olson, N; Logsetty, S

    2014-05-01

    This study assesses the feasibility of using the Versajet™ system (VJS) on an inoculated pork hock (PH) skin surface sequentially for 8 days with daily cleaning and intermediate-level disinfection (ILD). Daily, PHs were inoculated with bacteria suspended in artificial test soil (ATS). An ILD protocol with accelerated hydrogen peroxide (AHP, OxivirTB(®)) was employed to clean and disinfect the VJS between debridements. PH skin contains 6.1-6.8×10(6)cfu/cm(2) bacteria. Bacterial counts in the handpiece and discharge hoses immediately after debridement of the PHs, and before cleaning, increased throughout the study period (5.19-6.43log10cfu/mL). Cleaning with the ILD protocol was reduced bacterial counts on the VJS by 6-log. Protein, a surrogate marker of organic contamination, was also reduced post-cleaning and ILD. Compared to a maximum post-debridement level of protein (57.9 μg/mL) obtained before ILD, VJS protein levels dropped to 9.8 (handpiece) and 13.8 μg/mL (discharge hose). Disinfection of the handpiece and discharge hose after debridement with AHP resulted in a 6-log reduction in bacterial count and 4.2 fold reduction in protein. An ILD protocol with an AHP may be a feasible method for serial skin surface debridements with the VJS for up to eight days. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  17. Micro structure processing on plastics by accelerated hydrogen molecular ions

    NASA Astrophysics Data System (ADS)

    Hayashi, H.; Hayakawa, S.; Nishikawa, H.

    2017-08-01

    A proton has 1836 times the mass of an electron and is the lightest nucleus to be used for accelerator in material modification. We can setup accelerator with the lowest acceleration voltage. It is preferable characteristics of Proton Beam Writer (PBW) for industrial applications. On the contrary ;proton; has the lowest charge among all nuclei and the potential impact to material is lowest. The object of this research is to improve productivity of the PBW for industry application focusing on hydrogen molecular ions. These ions are generated in the same ion source by ionizing hydrogen molecule. There is no specific ion source requested and it is suitable for industrial use. We demonstrated three dimensional (3D) multilevel micro structures on polyester base FPC (Flexible Printed Circuits) using proton, H2+ and H3+. The reactivity of hydrogen molecular ions is much higher than that of proton and coincident with the level of expectation. We can apply this result to make micro devices of 3D multilevel structures on FPC.

  18. Depletion Rate of Hydrogen Peroxide from Sodium Perborate Bleaching Agent.

    PubMed

    Tran, Liliann; Orth, Rebecca; Parashos, Peter; Tao, Ying; Tee, Calvin W J; Thomas, Vineet Thenalil; Towers, Georgina; Truong, Diem Thuy; Vinen, Cynthia; Reynolds, Eric C

    2017-03-01

    Internal bleaching of discolored teeth uses sodium perborate reacting with water to form the active agent, hydrogen peroxide (H 2 O 2 ). Sodium perborate is replaced at varying time intervals depending on clinician preference and until esthetically acceptable results are achieved, but this is done without scientific basis. This study measured the depletion rate of hydrogen peroxide from sodium perborate as a bleaching agent. Two sodium perborate bleaching products (Odontobleach [Australian Dental Manufacturing, Kenmore Hills, Queensland, Australia] and Endosure Perborate Micro [Dentalife, Ringwood, Victoria, Australia]) and distilled deionized water mixtures at ratios of 25 μg/mL, 50 μg/mL, and 100 μg/mL were placed into sealed microtubes and incubated at 37°C. H 2 O 2 concentrations were measured at 23 time points over 4 weeks. Quantification of H 2 O 2 concentrations was obtained using a ferrothiocyanate oxidation reduction reaction followed by spectrophotometry readings. The H 2 O 2 concentration rapidly peaked within 27 hours and reached a plateau by about 3 days (75 hours). Low levels of H 2 O 2 were evident beyond 3 days and for at least 28 days. No significant differences were found between the 2 sodium perborate products. There was also no significant difference in the depletion rate between the different ratios. Based on the chemistry of H 2 O 2 depletion, the minimum replacement interval for the bleaching agent is 3 days. Frequent replacements of the perborate clinically may be unnecessary because of the continued presence of low H 2 O 2 levels for at least 28 days. Although these data cannot be extrapolated to the clinical situation, they set a baseline for further studies to address the many clinical variables influencing internal bleaching. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Controllable pneumatic generator based on the catalytic decomposition of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Rok; Kim, Kyung-Soo; Kim, Soohyun

    2014-07-01

    This paper presents a novel compact and controllable pneumatic generator that uses hydrogen peroxide decomposition. A fuel micro-injector using a piston-pump mechanism is devised and tested to control the chemical decomposition rate. By controlling the injection rate, the feedback controller maintains the pressure of the gas reservoir at a desired pressure level. Thermodynamic analysis and experiments are performed to demonstrate the feasibility of the proposed pneumatic generator. Using a prototype of the pneumatic generator, it takes 6 s to reach 3.5 bars with a reservoir volume of 200 ml at the room temperature, which is sufficiently rapid and effective to maintain the repetitive lifting of a 1 kg mass.

  20. Controllable pneumatic generator based on the catalytic decomposition of hydrogen peroxide.

    PubMed

    Kim, Kyung-Rok; Kim, Kyung-Soo; Kim, Soohyun

    2014-07-01

    This paper presents a novel compact and controllable pneumatic generator that uses hydrogen peroxide decomposition. A fuel micro-injector using a piston-pump mechanism is devised and tested to control the chemical decomposition rate. By controlling the injection rate, the feedback controller maintains the pressure of the gas reservoir at a desired pressure level. Thermodynamic analysis and experiments are performed to demonstrate the feasibility of the proposed pneumatic generator. Using a prototype of the pneumatic generator, it takes 6 s to reach 3.5 bars with a reservoir volume of 200 ml at the room temperature, which is sufficiently rapid and effective to maintain the repetitive lifting of a 1 kg mass.

  1. Organic-Solvent-Free Phase-Transfer Oxidation of Alcohols Using Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Hulce, Martin; Marks, David W.

    2001-01-01

    Organic-solvent-free oxidations of alcohols using aqueous hydrogen peroxide in the presence of sodium tungstate and phase-transfer catalysts provide a general, safe, simple, and cost-effective means to prepare ketones. Six representative alcohols, 1-phenylethanol, 1-phenylpropanol, benzhydrol, 4-methylbenzhydrol, cis,trans-4-tert-butylcyclohexanol, and benzyl alcohol are oxidized to the corresponding aldehyde or ketone over 1-3 hours in 81-99% yields. Purities are very high, with only small to trace amounts of starting alcohol remaining. Experiments can be readily designed for one or two 3-hour laboratory periods, integrating the various techniques of extraction, drying, filtration, column chromatography, gas chromatography, NMR and IR spectroscopy, and reaction kinetics.

  2. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    PubMed

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  3. Peroxiredoxin 2 and peroxide metabolism in the erythrocyte.

    PubMed

    Low, Felicia M; Hampton, Mark B; Winterbourn, Christine C

    2008-09-01

    Peroxiredoxin 2 (Prx2) is an antioxidant enzyme that uses cysteine residues to decompose peroxides. Prx2 is the third most abundant protein in erythrocytes, and competes effectively with catalase and glutathione peroxidase to scavenge low levels of hydrogen peroxide, including that derived from hemoglobin autoxidation. Low thioredoxin reductase activity in the erythrocyte is able to keep up with this basal oxidation and maintain the Prx2 in its reduced form, but exposure to exogenous hydrogen peroxide causes accumulation of the disulfide-linked dimer. The high cellular concentration means that although turnover is slow, erythrocyte Prx2 can act as a noncatalytic scavenger of hydrogen peroxide and a sink for hydrogen peroxide before turnover becomes limiting. The consequences of Prx2 oxidation for the erythrocyte are not well characterized, but mice deficient in this protein develop severe hemolytic anemia associated with Heinz body formation. Prx2, also known as calpromotin, regulates ion transport by associating with the membrane and activating the Gárdos channel. How Prx2 redox transformations are linked to membrane association and channel activation is yet to be established. In this review, we discuss the functional properties of Prx2 and its role as a major component of the erythrocyte antioxidant system.

  4. Isolation and polyphasic characterization of a novel hyper catalase producing thermophilic bacterium for the degradation of hydrogen peroxide.

    PubMed

    Sooch, Balwinder Singh; Kauldhar, Baljinder Singh; Puri, Munish

    2016-11-01

    A newly isolated microbial strain of thermophilic genus Geobacillus has been described with emphasis on polyphasic characterization and its application for degradation of hydrogen peroxide. The validation of this thermophilic strain of genus Geobacillus designated as BSS-7 has been demonstrated by polyphasic taxonomy approaches through its morphological, biochemical, fatty acid methyl ester profile and 16S rDNA sequencing. This thermophilic species of Geobacillus exhibited growth at broad pH and temperature ranges coupled with production of extraordinarily high quantities of intracellular catalase, the latter of which as yet not been reported in any member of this genus. The isolated thermophilic bacterial culture BSS-7 exhibited resistance against a variety of organic solvents. The immobilized whole cells of the bacterium successfully demonstrated the degradation of hydrogen peroxide (H2O2) in a packed bed reactor. This strain has potential application in various analytical and diagnostic methods in the form of biosensors and biomarkers in addition to applications in the textile, paper, food and pharmaceutical industries.

  5. Hydrogen peroxide-induced Akt phosphorylation regulates Bax activation.

    PubMed

    Sadidi, Mahdieh; Lentz, Stephen I; Feldman, Eva L

    2009-05-01

    Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) are involved in many cellular processes that positively and negatively regulate cell fate. H(2)O(2), acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H(2)O(2) was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H(2)O(2)-induced activation of PI3K/Akt influences post-translational modification of Bax and inactivates a key component of the cell death machinery.

  6. Cyanobacterial and microcystins dynamics following the application of hydrogen peroxide to waste stabilisation ponds

    NASA Astrophysics Data System (ADS)

    Barrington, D. J.; Ghadouani, A.; Ivey, G. N.

    2013-02-01

    Cyanobacteria and cyanotoxins are a risk to human and ecological health, and a hindrance to biological wastewater treatment. This study investigated the use of hydrogen peroxide (H2O2) for the removal of cyanobacteria and cyanotoxins from within waste stabilization ponds (WSPs). The daily dynamics of cyanobacteria and microcystins (a commonly occurring cyanotoxin) were examined following the addition of H2O2 to wastewater within both the laboratory and at the full-scale within a WSP. Hydrogen peroxide treatment at concentrations ≥ 10-4 g H2O2 μg-1 of total phytoplankton chlorophyll a led to the death of cyanobacteria, in turn releasing intracellular microcystins to the dissolved state. In the full-scale trial, dissolved microcystins were then degraded to negligible concentrations by H2O2 and environmental processes within five days. A shift in the phytoplankton assemblage towards beneficial chlorophyta species was also observed within days of H2O2 addition. However, within weeks, the chlorophyta population was significantly reduced by the re-establishment of toxic cyanobacterial species. This re-establishment was likely due to the inflow of cyanobacteria from ponds earlier in the treatment train, suggesting that whilst H2O2 may be a suitable short-term management technique, it must be coupled with control over inflows if it is to improve WSP performance in the longer term.

  7. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized in a silica cavity array electrode.

    PubMed

    Tian, Shu; Zhou, Qun; Gu, Zhuomin; Gu, Xuefang; Zhao, Lili; Li, Yan; Zheng, Junwei

    2013-03-30

    Hydrogen peroxide biosensor based on the silica cavity array modified indium-doped tin oxide (ITO) electrode was constructed. An array of silica microcavities was fabricated by electrodeposition using the assembled polystyrene particles as template. Due to the resistance gradient of the silica cavity structure, the silica cavity exhibits a confinement effect on the electrochemical reactions, making the electrode function as an array of "soft" microelectrodes. The covalently immobilized microperoxidase-11(MP-11) inside these SiO2 cavities can keep its physiological activities, the electron transfer between the MP-11 and electrode was investigated through electrochemical method. The cyclic voltammetric curve shows a quasi-reversible electrochemical redox behavior with a pair of well-defined redox peaks, the cathodic and anodic peaks are located at -0.26 and -0.15V. Furthermore, the modified electrode exhibits high electrocatalytic activity toward the reduction of hydrogen peroxide and also shows good analytical performance for the amperometric detection of H2O2 with a linear range from 2×10(-6) to 6×10(-4)M. The good reproducibility and long-term stability of this novel electrode not only offer an opportunity for the detection of H2O2 in low concentration, but also provide a platform to construct various biosensors based on many other enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Effect of 10% sodium ascorbate on the calcium: Phosphorus ratio of enamel bleached with 35% hydrogen peroxide: an in vitro quantitative energy-dispersive X-ray analysis.

    PubMed

    Poorni, Saravanan; Kumar, R Anil; Shankar, P; Indira, Rajamani; Ramachandran, S

    2010-10-01

    The study assessed quantitatively the calcium and phosphorous loss from the enamel surface following bleaching with 35% hydrogen peroxide and reversal with 10% sodium ascorbate using energy-dispersive X-ray analysis (EDAX). Eight non-carious, freshly extracted human permanent maxillary central incisors without any visible defects were used. Each specimen was bleached with 35% hydrogen peroxide activated by light and reversed with sodium ascorbate antioxidant gel. The calcium and phosphorous content in weight percent of sound, bleached and reversed enamel was acquired using EDAX. The Ca/P ratio was calculated from the obtained data. One-way ANOVA followed by Post Hoc Tukey test was used for comparing the Ca/P ratio of sound, bleached and reversed enamel. All the samples subjected to bleaching using 35% hydrogen peroxide showed a statistically significant decrease in the Ca/P ratio as compared with samples in which no bleaching procedure was performed (P-value < 0.01). The striking finding was that there was a significant increase in the Ca/P ratio on application of sodium ascorbate antioxidant gel when compared with the bleached enamel (P-value < 0.01). The authors concluded that 35% hydrogen peroxide causes a significant decrease in the Ca/P ratio. This decrease in the Ca/P ratio can be restored by the application of 10% sodium ascorbate antioxidant gel.

  9. Biosensing hydrogen peroxide utilizing carbon paste electrodes containing peroxidases naturally immobilized on coconut (Cocus nucifera L.) fibers.

    PubMed

    Kozan, J V B; Silva, R P; Serrano, S H P; Lima, A W O; Angnes, L

    2007-05-22

    A novel unmediated hydrogen peroxide biosensor based on the incorporation of fibrous tissue of coconut fruit in carbon paste matrix is presented. Cyclic voltammetry and amperometry were utilized to characterize the main electrochemical parameters and the performance of this new biosensor under different preparation and operation conditions. The resulting H2O2-sensitive biosensors respond rapidly (7 s to attain 90% of the signal), was operated at -0.15 V, presented linear response between 2.0x10(-4) and 3.4x10(-3) mol L(-1), the detection limit was estimated as 4.0x10(-5) mol L(-1). Its operation potential was situated between -0.2 and 0.1 V and the best pH was determined as 5.2. Electrodes containing 5% (w/w) of coconut fiber presented the best signal and their lifetime was extended to 3 months. The apparent Michaelis-Menten constant KM(app) and Vmax were estimated to be 8.90 mmol L(-1) and 6.92 mmol L(-1) microA(-1), respectively. The results obtained for determination of hydrogen peroxide in four pharmaceutical products (antiseptic solution, contact lenses cleaning solution, hair coloring cream and antiseptic dental rinse solution) were in agreement with those obtained by the spectrophotometric method. An additional advantage of these biosensors is the capacity to measure hydrogen peroxide even in samples with relatively low pH. To demonstrate the enzymatic activity of the coconut tissue, a very simple way was created during this work. Coconut fibers were immersed in H2O2 solution between two glass slides. Sequential images were taken to show the rapid generation of O2, attesting the high activity of the enzymes.

  10. Effect of exogenous hydrogen peroxide on iodide transport and iodine organification in FRTL-5 rat thyroid cells.

    PubMed

    Chen, G; Pekary, A E; Sugawara, M; Hershman, J M

    1993-07-01

    Hydrogen peroxide plays an important role in the regulation of iodination and thyroid hormone formation. In the present study, the effect of exogenous H2O2 on 125I transport and organification was investigated in FRTL-5 rat thyroid cells. Less than 20 passages after subcloning, cells in 24-well plates (6 x 10(4) cells/well) were maintained in a thyrotropin (TSH)-containing medium (6H) for 3 days. A TSH-free medium (5H) was then used for the next 7 days. A 1-h exposure to H2O2 stimulated 125I transport and 125I organification at 0.1-0.5 mmol/l H2O2 and had a toxic effect on FRTL-5 cell at 5 mmol/l. Hydrogen peroxide (0.5 mmol/l) augmented the iodide transport and iodine organification induced by TSH (333 U/l) by two- and threefold, respectively. The biphasic effect of H2O2 was blocked totally by 5-200 micrograms/l of catalase. Catalase by itself did not influence TSH-mediated 125I transport and 125I organification. Hydrogen peroxide (0.5 mmol/l) added to cells in 5H medium increased Na+K(+)-ATPase activity twofold. Ouabain (1 mmol/l), an inhibitor of Na+K(+)-ATPase, completely inhibited the twofold increase in 125I transport induced by 0.5 mmol/l H2O2 but only inhibited H2O2-induced 125I organification by 28%. Methimazole (1 mmol/l), an inhibitor of thyroid peroxidase, had no effect on H2O2-mediated 125I transport but totally blocked the fivefold rise in 125I organification induced by 0.5 mmol/l H2O2. The effect of H2O2 on intracellular cyclic adenosine monophosphate (cAMP) levels also was studied.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Effects on gastric mucosa induced by dental bleaching--an experimental study with 6% hydrogen peroxide in rats.

    PubMed

    Paula, Anabela Baptista; Dias, Maria Isabel; Ferreira, Manuel Marques; Carrilho, Teresa; Marto, Carlos Miguel; Casalta, João; Cabrita, António Silvério; Carrilho, Eunice

    2015-10-01

    The value of aesthetic dentistry has precipitated several developments in the investigation of dental materials related to this field. The free marketing of these products is a problem and it is subject to various interpretations regarding its legality. There are several techniques for tooth whitening, the most used one being the external bleaching. It is the later version of such technique that poses the greatest danger of ingesting the product. The present study analysed the systemic effect of these products when they are swallowed. This experimental study aimed to observe the effects of a tooth whitening product, whose active agent is 6% hydrogen peroxide, on the gastric mucosa of healthy and non-tumour gastric pathology animals. Fifty Wistar-Han rats were used and then distributed into 5 groups, one for control and four test groups in which the bleaching product was administered in animals with and without non-tumour gastric pathology (induced by the administration of 1 sample of 50% ethanol and 5% of drinking water during 6 days) at different times of study by gavage. There was a decrease in body weight in animals of groups handled during the study period, which was most pronounced in IV and VA groups. Changes in spleen weight relative to body weight revealed no statistically significant changes. An analysis of the frequency was performed on the results of macroscopic observation of the gastric mucosa. The gastric mucosa revealed lesions in all manipulated groups, being more frequent in groups III and IV. It appears that there is a synergism when using hydrogen peroxide and 50% ethanol in the same group. Therefore, it seems that there are some signs of toxicity 3 to 4 days after administration of 6% hydrogen peroxide. The prescription of these therapies must be controlled by the clinician and the risks must be minimized.

  12. Functional, structural, and chemical changes in myosin associated with hydrogen peroxide treatment of skeletal muscle fibers.

    PubMed

    Prochniewicz, Ewa; Lowe, Dawn A; Spakowicz, Daniel J; Higgins, LeeAnn; O'Conor, Kate; Thompson, LaDora V; Ferrington, Deborah A; Thomas, David D

    2008-02-01

    To understand the molecular mechanism of oxidation-induced inhibition of muscle contractility, we have studied the effects of hydrogen peroxide on permeabilized rabbit psoas muscle fibers, focusing on changes in myosin purified from these fibers. Oxidation by 5 mM peroxide decreased fiber contractility (isometric force and shortening velocity) without significant changes in the enzymatic activity of myofibrils and isolated myosin. The inhibitory effects were reversed by treating fibers with dithiothreitol. Oxidation by 50 mM peroxide had a more pronounced and irreversible inhibitory effect on fiber contractility and also affected enzymatic activity of myofibrils, myosin, and actomyosin. Peroxide treatment also affected regulation of contractility, resulting in fiber activation in the absence of calcium. Electron paramagnetic resonance of spin-labeled myosin in muscle fibers showed that oxidation increased the fraction of myosin heads in the strong-binding structural state under relaxing conditions (low calcium) but had no effect under activating conditions (high calcium). This change in the distribution of structural states of myosin provides a plausible explanation for the observed changes in both contractile and regulatory functions. Mass spectroscopy analysis showed that 50 mM but not 5 mM peroxide induced oxidative modifications in both isoforms of the essential light chains and in the heavy chain of myosin subfragment 1 by targeting multiple methionine residues. We conclude that 1) inhibition of muscle fiber contractility via oxidation of myosin occurs at high but not low concentrations of peroxide and 2) the inhibitory effects of oxidation suggest a critical and previously unknown role of methionines in myosin function.

  13. Detection of hydrogen peroxide based on long-path absorption spectroscopy using a CW EC-QCL

    NASA Astrophysics Data System (ADS)

    Sanchez, N. P.; Yu, Y.; Dong, L.; Griffin, R.; Tittel, F. K.

    2016-02-01

    A sensor system based on a CW EC-QCL (mode-hop-free range 1225-1285 cm-1) coupled with long-path absorption spectroscopy was developed for the monitoring of gas-phase hydrogen peroxide (H2O2) using an interference-free absorption line located at 1234.055 cm-1. Wavelength modulation spectroscopy (WMS) with second harmonic detection was implemented for data processing. Optimum levels of pressure and modulation amplitude of the sensor system led to a minimum detection limit (MDL) of 25 ppb using an integration time of 280 sec. The selected absorption line for H2O2, which exhibits no interference from H2O, makes this sensor system suitable for sensitive and selective monitoring of H2O2 levels in decontamination and sterilization processes based on Vapor Phase Hydrogen Peroxide (VPHP) units, in which a mixture of H2O and H2O2 is generated. Furthermore, continuous realtime monitoring of H2O2 concentrations in industrial facilities employing this species can be achieved with this sensing system in order to evaluate average permissible exposure levels (PELs) and potential exceedances of guidelines established by the US Occupational Safety and Health Administration for H2O2.

  14. Solubilities of Some Strong Electrolytes in the Hydrogen Peroxide-Water System. II. Rubidium and Cesium Nitrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everhard, Martin E.; Gross, Paul M.

    1962-03-01

    Solubilities of RbNO/sub 3/ and CsNO/sub 3/ were examined as well as the nature of the solid phases in equilibrium with these systems in order to study the possible role of cation size. The formation of hydroperoxidates and the increase in solibility of the salts with larger cations in hydrogen peroxide- rich solutions indicate preferential solvation of the ions by H/sub 2/O/sub 2/ rather than by H/sub 2/O. Conversely, the formation of hydrates and lower solubility in hydrogen peroxide-rich solutions of the smaller cation salts indicate preferential solvation of the ions by water. The deviation of the molal solubility, M',more » of the alkali nitrates in H/sub 2/O/sub 2/ from that in H/sub 2/O (M/sub H /sub 2/O/sub 2/) at ' =33.5r - 39.7 ( plus or minus 0.03 in M'), where r is the radius of the cation. CsNO/sub 3/, however, did not fall on the line, which probably is due to the lower charge density of the cesium ion. (P.C.H.)« less

  15. Ultrasound augmented leaching of nickel sulfate in sulfuric acid and hydrogen peroxide media.

    PubMed

    Li, Haoyu; Li, Shiwei; Peng, Jinhui; Srinivasakannan, Chandrasekar; Zhang, Libo; Yin, Shaohua

    2018-01-01

    A new method of preparation high purity nickel sulfate assisted by ultrasonic was studied. The process mechanism was analyzed by Inductively Coupled Plasma (ICP), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive X-ray spectrometry (EDS).The reaction mechanisms of oxidizing leaching and ultrasonic leaching were explored, respectively. Results showed that ultrasonic treatment peel off the oxide film on the surface of nickel. The leachate under strongly agitated, the yield rate of nickel sulfate was accelerate. And the reaction area was increased by the cavitation effect, the liquid-solid reaction was promoted, and the activation energy was reduced. The leaching rate of nickel reached 46.29% by conventional leaching, which takes about 5h. Under the same conditions, the ultrasonic leaching rate reached 40%, only half of the conventional leaching time. Concentration of leaching agent, reaction temperature, ultrasonic power, leaching time had significant effect on the enhancement of the leaching reaction with ultrasonic radiation. The leaching rate of 60.41% under the optimum experiment conditions as follows: sulfuric acid concentration 30%, hydrogen peroxide 10%, leaching temperature 333K, ultrasonic power 200W and leaching time 4h. The kinetic study of the system was investigated, and the reaction rates of conventional leaching and ultrasonic leaching were controlled by diffusion, and the apparent activation energies were 16.2kJ/mol and 11.83kJ/mol. Copyright © 2017. Published by Elsevier B.V.

  16. Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof

    DOEpatents

    Snyder, Seth W [Lincolnwood, IL; Lin, Yupo J [Naperville, IL; Hestekin', Jamie A [Fayetteville, AR; Henry, Michael P [Batavia, IL; Pujado, Peter [Kildeer, IL; Oroskar, Anil [Oak Brook, IL; Kulprathipanja, Santi [Inverness, IL; Randhava, Sarabjit [Evanston, IL

    2010-09-21

    The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

  17. Direct synthesis of hydrogen peroxide from plasma-water interactions

    PubMed Central

    Liu, Jiandi; He, Bangbang; Chen, Qiang; Li, Junshuai; Xiong, Qing; Yue, Guanghui; Zhang, Xianhui; Yang, Size; Liu, Hai; Liu, Qing Huo

    2016-01-01

    Hydrogen peroxide (H2O2) is usually considered to be an important reagent in green chemistry since water is the only by-product in H2O2 involved oxidation reactions. Early studies show that direct synthesis of H2O2 by plasma-water interactions is possible, while the factors affecting the H2O2 production in this method remain unclear. Herein, we present a study on the H2O2 synthesis by atmospheric pressure plasma-water interactions. The results indicate that the most important factors for the H2O2 production are the processes taking place at the plasma-water interface, including sputtering, electric field induced hydrated ion emission, and evaporation. The H2O2 production rate reaches ~1200 μmol/h when the liquid cathode is purified water or an aqueous solution of NaCl with an initial conductivity of 10500 μS cm−1. PMID:27917925

  18. Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Ermakova, Yulia G.; Bilan, Dmitry S.; Matlashov, Mikhail E.; Mishina, Natalia M.; Markvicheva, Ksenia N.; Subach, Oksana M.; Subach, Fedor V.; Bogeski, Ivan; Hoth, Markus; Enikolopov, Grigori; Belousov, Vsevolod V.

    2014-10-01

    Reactive oxygen species (ROS) are conserved regulators of numerous cellular functions, and overproduction of ROS is a hallmark of various pathological processes. Genetically encoded fluorescent probes are unique tools to study ROS production in living systems of different scale and complexity. However, the currently available recombinant redox sensors have green emission, which overlaps with the spectra of many other probes. Expanding the spectral range of recombinant in vivo ROS probes would enable multiparametric in vivo ROS detection. Here we present the first genetically encoded red fluorescent sensor for hydrogen peroxide detection, HyPerRed. The performance of this sensor is similar to its green analogues. We demonstrate the utility of the sensor by tracing low concentrations of H2O2 produced in the cytoplasm of cultured cells upon growth factor stimulation. Moreover, using HyPerRed we detect local and transient H2O2 production in the mitochondrial matrix upon inhibition of the endoplasmic reticulum Ca2+ uptake.

  19. Can perchlorates be transformed to hydrogen peroxide (H2O2) products by cosmic rays on the Martian surface?

    NASA Astrophysics Data System (ADS)

    Crandall, Parker B.; Góbi, Sándor; Gillis-Davis, Jeffrey; Kaiser, Ralf I.

    2017-09-01

    Due to their oxidizing properties, perchlorates (ClO4-) are suggested by the planetary science community to play a vital role in the scarcity of organics on the Martian surface. However, alternative oxidation agents such as hydrogen peroxide (H2O2) have received surprisingly little attention. In this study, samples of magnesium perchlorate hexahydrate (Mg(ClO4)2 · 6H2O) were exposed to monoenergetic electrons and D2+ ions separately, sequentially, and simultaneously to probe the effects of galactic cosmic ray exposure of perchlorates and the potential incorporation of hydrogen (deuterium) into these minerals. The experiments were carried out under ultrahigh-vacuum conditions at 50 K, after which the samples were slowly heated to 300 K while the subliming products were monitored by a quadrupole mass spectrometer. In all cases, molecular oxygen (O2) was detected upon the onset of irradiation and also during the warmup phase. In case of a simultaneous D2+-electron exposure, deuterated water (D2O) and deuterium peroxide (D2O2) were also detected in the warmup phase, whereas only small amounts of D2O2 were found after an exclusive D2+ irradiation. These experiments yield the first data identifying hydrogen peroxide as a potential product in the interaction of cosmic rays with perchlorates in the Martian regolith revealing that perchlorates are capable of producing multiple oxidizing agents (O2 and D2O2) that may account for the destruction of organics on the Martian surface.

  20. A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H(2) and O(2).

    PubMed

    Yamanaka, Ichiro; Onisawa, Takeshi; Hashimoto, Toshikazu; Murayama, Toru

    2011-04-18

    The effects of the type of fuel-cell reactors (undivided or divided by cation- and anion-exchange membranes), alkaline electrolytes (LiOH, NaOH, KOH), vapor-grown carbon fiber (VGCF) cathode components (additives: none, activated carbon, Valcan XC72, Black Pearls 2000, Seast-6, and Ketjen Black), and the flow rates of anolyte (0, 1.5, 12 mL h(-1)) and catholyte (0, 12 mL h(-1)) on the formation of hydrogen peroxide were studied. A divided fuel-cell system, O(2) (g)|VGCF-XC72 cathode|2 M NaOH catholyte|cation-exchange membrane (Nafion-117)|Pt/XC72-VGCF anode|2 M NaOH anolyte at 12 mL h(-1) flow|H(2) (g), was effective for the selective formation of hydrogen peroxide, with 130 mA cm(-2) , a 2 M aqueous solution of H(2)O(2)/NaOH, and a current efficiency of 95 % at atmospheric pressure and 298 K. The current and formation rate gradually decreased over a long period of time. The cause of the slow decrease in electrocatalytic performance was revealed and the decrease was stopped by a flow of catholyte. Cyclic voltammetry studies at the VGCF-XC72 electrode indicated that fast diffusion of O(2) from the gas phase to the electrode, and quick desorption of hydrogen peroxide from the electrode to the electrolyte were essential for the efficient formation of solutions of H(2)O(2)/NaOH. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Discoloration of titanium alloy in acidic saline solutions with peroxide.

    PubMed

    Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The objective of this study was to compare corrosion behavior in several titanium alloys with immersion in acidulated saline solutions containing hydrogen peroxide. Seven types of titanium alloy were immersed in saline solutions with varying levels of pH and hydrogen peroxide content, and resulting differences in color and release of metallic elements determined in each alloy. Some alloys were characterized using Auger electron spectroscopy. Ti-55Ni alloy showed a high level of dissolution and difference in color. With immersion in solution containing hydrogen peroxide at pH 4, the other alloys showed a marked difference in color but a low level of dissolution. The formation of a thick oxide film was observed in commercially pure titanium showing discoloration. The results suggest that discoloration in titanium alloys immersed in hydrogen peroxide-containing acidulated solutions is caused by an increase in the thickness of this oxide film, whereas discoloration of Ti-55Ni is caused by corrosion.

  2. New considerations on hydrogen peroxide and related substances as food additives in view of carcinogenicity.

    PubMed

    Ito, R

    1982-01-01

    The use of hydrogen peroxide as a labile and safe food preservative in fish cake and boiled noodles has recently been restricted by the Japanese government, since hyperplasia has been found in the duodenum of mice after long-term peroral study. The action of compounds with resembling mode of action, potassium bromate as an improving agent in bread, and sodium chlorate as a weed killer are discussed in this paper in view of developmental and environmental pharmacology.

  3. Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide.

    PubMed

    Yuan, Jipei; Guo, Weiwei; Wang, Erkang

    2008-02-15

    In this paper, we attempt to construct a simple and sensitive detection method for both phenolic compounds and hydrogen peroxide, with the successful combination of the unique property of quantum dots and the specificity of enzymatic reactions. In the presence of H2O2 and horseradish peroxidase, phenolic compounds can quench quantum dots' photoluminescence efficiently, and the extent of quenching is severalfold to more than 100-fold increase. Quinone intermediates produced from the enzymatic catalyzed oxidation of phenolic compounds were believed to play the main role in the photoluminescence quenching. Using a quantum dots-enzyme system, the detection limits for phenolic compounds and hydrogen peroxide were detected to be approximately 10(-7) mol L(-1). The coupling of efficient quenching of quantum dot photoluminescence by quinone and the effective enzymatic reactions make this a simple and sensitive method for phenolic compound detection and great potential in the development of H2O2 biosensors for various analytes.

  4. Direct and Selective Synthesis of Hydrogen Peroxide over Palladium-Tellurium Catalysts at Ambient Pressure.

    PubMed

    Tian, Pengfei; Xu, Xingyan; Ao, Can; Ding, Doudou; Li, Wei; Si, Rui; Tu, Weifeng; Xu, Jing; Han, Yi-Fan

    2017-09-11

    Highly selective hydrogen peroxide (H 2 O 2 ) synthesis directly from H 2 and O 2 is a strongly desired reaction for green processes. Herein a highly efficient palladium-tellurium (Pd-Te/TiO 2 ) catalyst with a selectivity of nearly 100 % toward H 2 O 2 under mild conditions (283 K, 0.1 MPa, and a semi-batch continuous flow reactor) is reported. The size of Pd particles was remarkably reduced from 2.1 nm to 1.4 nm with the addition of Te. The Te-modified Pd surface could significantly weaken the dissociative activation of O 2 , leading to the non-dissociative hydrogenation of O 2 . Density functional theory calculations illuminated the critical role of Te in the selective hydrogenation of O 2 , in that the active sites composed of Pd and Te could significantly restrain side reactions. This work has made significant progress on the development of high-selectivity catalysts for the direct synthesis of H 2 O 2 at ambient pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. SK-N-MC cell death occurs by distinct molecular mechanisms in response to hydrogen peroxide and superoxide anions: involvements of JAK2-STAT3, JNK, and p38 MAP kinases pathways.

    PubMed

    Moslehi, Maryam; Yazdanparast, Razieh

    2013-07-01

    Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer's disease.

  6. Cyanobacterial and microcystins dynamics following the application of hydrogen peroxide to waste stabilisation ponds

    NASA Astrophysics Data System (ADS)

    Barrington, D. J.; Ghadouani, A.; Ivey, G. N.

    2013-06-01

    Cyanobacteria and cyanotoxins are a risk to human and ecological health, and a hindrance to biological wastewater treatment. This study investigated the use of hydrogen peroxide (H2O2) for the removal of cyanobacteria and cyanotoxins from within waste stabilization ponds (WSPs). The daily dynamics of cyanobacteria and microcystins (commonly occurring cyanotoxins) were examined following the addition of H2O2 to wastewater within both the laboratory and at the full scale within a maturation WSP, the final pond in a wastewater treatment plant. Hydrogen peroxide treatment at concentrations ≥ 0.1 mg H2O2 μg-1 total phytoplankton chlorophyll a led to the lysis of cyanobacteria, in turn releasing intracellular microcystins to the dissolved state. In the full-scale trial, dissolved microcystins were then degraded to negligible concentrations by H2O2 and environmental processes within five days. A shift in the phytoplankton assemblage towards beneficial Chlorophyta species was also observed within days of H2O2 addition. However, within weeks, the Chlorophyta population was significantly reduced by the re-establishment of toxic cyanobacterial species. This re-establishment was likely due to the inflow of cyanobacteria from ponds earlier in the treatment train, suggesting that whilst H2O2 may be a suitable short-term management technique, it must be coupled with control over inflows if it is to improve WSP performance in the longer term.

  7. [Effect of Residual Hydrogen Peroxide on Hydrolysis Acidification of Sludge Pretreated by Microwave -H2O2-Alkaline Process].

    PubMed

    Jia, Rui-lai; Liu, Ji-bao; Wei, Yuan-song; Cai, Xing

    2015-10-01

    Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline (MW-H2O2-OH, pH = 10) pretreatment had an acid production lag due to the residual hydrogen peroxide. In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH = 10 or pH = 11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments. Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min. During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased. The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group. The optimized hydrolysis acidification time for MW-H2O2-OH (pH = 11) group was 4 d. Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH = 10) pretreatment, resulting in a lag in acidification stage. Compared with MW-H2O2-OH ( pH = 10) pretreatment, MW-H2O2-OH (pH = 11 ) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH = 11) group could shorten the lag time slightly. Dosing catalase (100 mg x -L(-1)) after the MW-H2O2-OH (pH = 10 or pH = 11) pretreatment not only significantly shortened the lag time (0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group, compared with MW-H2O2-OH (pH = 10) group at 3d of hydrolysis acidification time. For MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and

  8. Structural Basis for Inhibitor-Induced Hydrogen Peroxide Production by Kynurenine 3-Monooxygenase.

    PubMed

    Kim, Hyun Tae; Na, Byeong Kwan; Chung, Jiwoung; Kim, Sulhee; Kwon, Sool Ki; Cha, Hyunju; Son, Jonghyeon; Cho, Joong Myung; Hwang, Kwang Yeon

    2018-04-19

    Kynurenine 3-monooxygenase (KMO) inhibitors have been developed for the treatment of neurodegenerative disorders. The mechanisms of flavin reduction and hydrogen peroxide production by KMO inhibitors are unknown. Herein, we report the structure of human KMO and crystal structures of Saccharomyces cerevisiae (sc) and Pseudomonas fluorescens (pf) KMO with Ro 61-8048. Proton transfer in the hydrogen bond network triggers flavin reduction in p-hydroxybenzoate hydroxylase, but the mechanism triggering flavin reduction in KMO is different. Conformational changes via π-π interactions between the loop above the flavin and substrate or non-substrate effectors lead to disorder of the C-terminal α helix in scKMO and shifts of domain III in pfKMO, stimulating flavin reduction. Interestingly, Ro 61-8048 has two different binding modes. It acts as a competitive inhibitor in scKMO and as a non-substrate effector in pfKMO. These findings provide understanding of the catalytic cycle of KMO and insight for structure-based drug design of KMO inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The Correlation Between Urinary 8-Iso-Prostaglandin F2α and Hydrogen Peroxide Toward Renal Function in T2DM Patients Consuming Sulfonylurea and Combination of Metformin-Sulfonylurea.

    PubMed

    Sauriasari, Rani; Wulandari, Fitri; Nurifahmi, Rahmaningtyas; Sekar, Andisyah P; Susilo, Veronika Y

    2018-01-01

    Renal dysfunction is a common complication in type 2 diabetes mellitus patients associated with oxidative damage which could be characterized by 8-iso-prostaglandin F2α and hydrogen peroxide level as oxidative stress markers. The aim of our study is to determine if there is a difference in 8-iso-prostaglandin F2α and hydrogen peroxide levels between sulfonylurea and combination of metformin-sulfonylurea in diabetic patients. We also wanted to determine if these oxidative stress markers correlate with the estimated Glomerular Filtration Rate (eGFR). We conducted a cross-sectional study with inclusion of 55 patients with type 2 diabetes mellitus in Dr. Sitanala Tangerang Hospital, Indonesia with purposive sampling. The value of eGFR was obtained by serum creatinine levels, while the level of 8-iso-prostaglandin F2α was measured by ELISA and urinary hydrogen peroxide using FOX-1 (Ferrous Ion Oxidation Xylenol Orange 1). There was no difference in 8-iso-prostaglandin F2α and hydrogen peroxide level between the two groups (p=0.088 and p=0.848). Moreover, there was no difference in eGFR values between the two groups, measured by Cockroft-Gault, MDRD, and CKD-EPI. 8-iso-prostaglandin F2α (n=55) was positively correlated with eGFR based on Cockroft-Gault (r=0.382; p=0.009), whereas urinary hydrogen peroxide (n=47) also generate significant positive correlation with eGFR based on the MDRD equation (r=0.326; p=0.021). Linear regression analysis showed that 8-iso-prostaglandin F2α is the most predictive factor and the only significant factor for eGFR in Cockroft-Gault, MDRD and also CKDEPI, even after controlled by gender, age, BMI, HbA1c, systole, and H2O2. The two treatments did not have any significant differences in antioxidant activity. However, an increase of urinary 8-iso-prostaglandin F2. and hydrogen peroxide which correlates with eGFR in the total sample may play a significant role in the pathophysiology of diabetic nephropathy. Copyright© Bentham Science

  10. Dental resin curing blue light induces vasoconstriction through release of hydrogen peroxide.

    PubMed

    Oktay, Elif Aybala; Tort, Huseyin; Yıldız, Oguzhan; Ulusoy, Kemal Gokhan; Topcu, Fulya Toksoy; Ozer, Cigdem

    2018-05-26

    Dental resin curing blue light (BL) is frequently used during treatments in dental clinics. However, little is known about the influence of BL irradiation on pulpal blood vessels. The aim of the present study was to investigate the mechanism of effect of BL irradiation on vascular tone. Rat aorta (RA) rings were irradiated with a BL source in organ baths, and the responses were recorded isometrically. Effect of BL irradiation on phenylephrine (PE) -precontraction and acetylcholine (ACh) -induced relaxation after PE -precontraction were obtained and compared in BL -irradiated and control RA rings. Effect of 20 min preincubation with catalase (enzyme that breaks down hydrogene peroxide, 1200 u/ml) on PE -precontraced and BL-irradiated rings was also evaluated. Total oxidative stress (TOS) and total antioxidant capacity (TAC) in BL-irradiated and control RA preparations were measured with special assay kits and spectrophotometry. BL slightly decreased ACh -induced endothelium -dependent relaxations in PE (1 μM) -precontracted RA rings (n = 6, p > 0.05 vs. control). BL induced marked contraction 23.88 + 3.10% of PE (maximum contraction) in isolated RA ring segments precontracted with PE (p < 0.05 vs. control). The contractile effect of BL was inhibited by 1200 u/ml catalase (n = 6, p < 0.05 vs. control). BL irradiation increased the level of TOS in RA rings (n = 6, p < 0.05 vs. control). TAC levels were similar in BL-irradiated and control preparations. These results suggest that BL induces contraction in RA, and the mechanism of this effect may to be through release of hydrogen peroxide. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effects on gastric mucosa induced by dental bleaching – an experimental study with 6% hydrogen peroxide in rats

    PubMed Central

    PAULA, Anabela Baptista; DIAS, Maria Isabel; FERREIRA, Manuel Marques; CARRILHO, Teresa; MARTO, Carlos Miguel; CASALTA, João; CABRITA, António Silvério; CARRILHO, Eunice

    2015-01-01

    The value of aesthetic dentistry has precipitated several developments in the investigation of dental materials related to this field. The free marketing of these products is a problem and it is subject to various interpretations regarding its legality. There are several techniques for tooth whitening, the most used one being the external bleaching. It is the later version of such technique that poses the greatest danger of ingesting the product. The present study analysed the systemic effect of these products when they are swallowed. Objective This experimental study aimed to observe the effects of a tooth whitening product, whose active agent is 6% hydrogen peroxide, on the gastric mucosa of healthy and non-tumour gastric pathology animals. Material and Methods Fifty Wistar-Han rats were used and then distributed into 5 groups, one for control and four test groups in which the bleaching product was administered in animals with and without non-tumour gastric pathology (induced by the administration of 1 sample of 50% ethanol and 5% of drinking water during 6 days) at different times of study by gavage. There was a decrease in body weight in animals of groups handled during the study period, which was most pronounced in IV and VA groups. Changes in spleen weight relative to body weight revealed no statistically significant changes. An analysis of the frequency was performed on the results of macroscopic observation of the gastric mucosa. Results The gastric mucosa revealed lesions in all manipulated groups, being more frequent in groups III and IV. It appears that there is a synergism when using hydrogen peroxide and 50% ethanol in the same group. Conclusion Therefore, it seems that there are some signs of toxicity 3 to 4 days after administration of 6% hydrogen peroxide. The prescription of these therapies must be controlled by the clinician and the risks must be minimized. PMID:26537721

  12. Comparative Study on Oxidative Treatments of NAPL Containing Chlorinated Ethanes and Ethenes using Hydrogen Peroxide and Persulfate in Soils

    EPA Science Inventory

    The goal of this study was to assess the oxidation of NAPL in soil, 30% of which were composed of chlorinated ethanes and ethenes, using catalyzed hydrogen peroxide (CHP), activated persulfate (AP), and H2O2–persulfate (HP) co-amendment systems. Citrate, a buffer and iron ligand,...

  13. Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide

    PubMed Central

    Chang, Wook; Small, David A; Toghrol, Freshteh; Bentley, William E

    2005-01-01

    Background Pseudomonas aeruginosa, a pathogen infecting those with cystic fibrosis, encounters toxicity from phagocyte-derived reactive oxidants including hydrogen peroxide during active infection. P. aeruginosa responds with adaptive and protective strategies against these toxic species to effectively infect humans. Despite advances in our understanding of the responses to oxidative stress in many specific cases, the connectivity between targeted protective genes and the rest of cell metabolism remains obscure. Results Herein, we performed a genome-wide transcriptome analysis of the cellular responses to hydrogen peroxide in order to determine a more complete picture of how oxidative stress-induced genes are related and regulated. Our data reinforce the previous conclusion that DNA repair proteins and catalases may be among the most vital antioxidant defense systems of P. aeruginosa. Our results also suggest that sublethal oxidative damage reduces active and/or facilitated transport and that intracellular iron might be a key factor for a relationship between oxidative stress and iron regulation. Perhaps most intriguingly, we revealed that the transcription of all F-, R-, and S-type pyocins was upregulated by oxidative stress and at the same time, a cell immunity protein (pyocin S2 immunity protein) was downregulated, possibly leading to self-killing activity. Conclusion This finding proposes that pyocin production might be another novel defensive scheme against oxidative attack by host cells. PMID:16150148

  14. Controlled-release Hydrogen Peroxide for On-site Treatment of Organic Pollutants in Urban Storm Runoff

    NASA Astrophysics Data System (ADS)

    Lee, E.; Sun, S.; Kim, Y.

    2011-12-01

    Nonpoint source (NPS) pollutants are the remaining cause of the environment problems, significantly impairing the hydrologic and biologic function of urban water systems and human health. Managing the NPS loads to urban aquatic systems remains a challenge because of ubiquitous contaminant sources and large pollutants loads in the first flush. Best management practices (BMPs) exist for reducing the NPS pollutants in urban storm waters, but the remedial efficiencies of these passive schemes are unpredictable. This study aims to develop a controlled-release system as part of an in situ chemical oxidation scheme designed for on-site treatment of organic pollutants in urban runoff. Controlled-release hydrogen peroxide (CR-HP) solids were manufactured by dispersing fine sodium percarbonate granules in paraffin wax matrices. Release kinetics and treatment efficiencies of CR-HP for BTEX and MTBE were investigated through a series of column tests. Release data indicated that the CR-HP could continually release hydrogen peroxide (H2O2) in flowing water at controlled rates over 276-1756 days, and the release rates could be adjusted by changing the mixing ratios of sodium percarbonate and wax matrices. Additional column tests and model calculations demonstrated that CR-HP/UV systems can provide low-cost, target-specific, and persistent source of oxidants for efficient treatment of organic compounds in urban storm runoff.

  15. Reduction of pollutants and disinfection of industrial wastewater by an integrated system of copper electrocoagulation and electrochemically generated hydrogen peroxide.

    PubMed

    Barrera-Díaz, Carlos E; Frontana-Uribe, Bernardo A; Roa-Morales, Gabriela; Bilyeu, Bryan W

    2015-01-01

    The objective of this study was to evaluate the effect of copper electrocoagulation and hydrogen peroxide on COD, color, turbidity, and bacterial activity in a mixed industry wastewater. The integrated system of copper electrocoagulation and hydrogen peroxide is effective at reducing the organic and bacterial content of industrial wastewater. The copper electrocoagulation alone reduces COD by 56% in 30 min at pH 2.8, but the combined system reduces COD by 78%, biochemical oxygen demand (BOD5) by 81%, and color by 97% under the same conditions. Colloidal particles are flocculated effectively, as shown by the reduction of zeta potential and the 84% reduction in turbidity and 99% reduction in total solids. Additionally, the total coliforms, fecal coliforms, and bacteria are all reduced by 99%. The integrated system is effective and practical for the reduction of both organic and bacterial content in industrial wastewater.

  16. Advanced oxidation process using hydrogen peroxide/microwave system for solubilization of phosphate.

    PubMed

    Liao, Ping Huang; Wong, Wayne T; Lo, Kwang Victor

    2005-01-01

    An advanced oxidation process (AOP) combining hydrogen peroxide and microwave heating was used for the solubilization of phosphate from secondary municipal sludge from an enhanced biological phosphorus removal process. The microwave irradiation is used as a generator agent of oxidizing radicals as well as a heating source in the process. This AOP process could facilitate the release of a large amount of the sludge-bound phosphorus from the sewage sludge. More than 84% of the total phosphorous could be released at a microwave heating time of 5 min at 170 degrees C. This innovative process has the potential of being applied to simple sludge treatment processes in domestic wastewater treatment and to the recovery of phosphorus from the wastewater.

  17. Study of the temporal evolution of Whitening Teeth immersed in Peroxide of hydrogen (H2O2) Using Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Díaz, L.; Morales, Y.; Torres, C.

    2015-01-01

    The esthetic dentistry reference in our society is determined by several factors, including one that produces more dissatisfaction is abnormal tooth color or that does not meet the patient's expectations. For this reason it has been designed and implemented an algorithm in MATLAB that captures, digitizes, pre-processing and analyzed dental imaging by allowing to evaluate the degree of bleaching caused by the use of peroxide of hidrogen. The samples analyzed were human teeth extracted, which were subjected to different concentrations of peroxide of hidrogen and see if they can teeth whitening when using these products, was used different concentrations and intervals of time to analysis or study of the whitening of the teeth with the hydrogen peroxide.

  18. Preparation of Pt/polypyrrole-para toluene sulfonate hydrogen peroxide sensitive electrode for the utilizing as a biosensor.

    PubMed

    Çete, Servet; Bal, Özgür

    2013-12-01

    A film electrode with electropolymerization of pyrrole (Py) and para-toluene sulfonate (pTS) as a anionic dopant is prepared and its sensitivity to hydrogen peroxide is investigated. The polypyrrole is deposited on a 0.5 cm(2) Pt plate an electrochemically prepared pTS ion-doped polypyrrole film by scanning the electrode potential between - 0.8 and + 0.8 V at a scan rate of 20 mV/s. The electrode's sensitivity to hydrogen peroxide is investigated at room temperature using 0.1 M phosphate buffer at pH 7.5. The working potential is found as a 0.3 V. The concentrations of pyrrole and pTS are 50mM M and 25 mM. Polypyrrole was coated on the electrode surface within 10 cycles. İmmobilization of glucose oxidase carried out on Pt/polypyrrole-para toluene sulfonate (Pt/PPy-pTS) film by cross-linking with glutaraldehyde. The morphology of electrodes was characterized by SEM and AFM. Moreover, contact angle measurements were made with 1 μL water of polymer film and enzyme electrode. It has shown that enzyme electrode is very sensitive against to glucose.

  19. Hydrogen Peroxide-Reducing Factor Released by PC12D Cells Increases Cell Tolerance against Oxidative Stress.

    PubMed

    Muraishi, Asami; Haneta, Emi; Saito, Yoshiro; Hitomi, Yutaka; Sano, Mamoru; Noguchi, Noriko

    2018-01-01

    PC12D cells, a subline of rat adrenal pheochromocytoma PC12 cells, extend neurites rapidly in response to differentiation stimuli and are used to investigate the molecular mechanisms of neurite extension. In the present study, we found significant tolerance of PC12D cells against Parkinson's disease-related stimuli such as dopamine and 6-hydroxydopamine; this tolerance was significantly decreased by a change in the medium. Conditioned medium from PC12D cells induced tolerance against oxidative stress, which suggests that cytoprotective factor may be released by PC12D cells into the culture medium. Conditioned medium-induced tolerance was not found for PC12 cells or human neuroblastoma SH-SY5Y cells. A cytoprotective factor generated by PC12D cells exhibited hydrogen peroxide-reducing activity. Chemical characterization showed that this cytoprotective factor is water soluble and has a molecular weight about 1000 Da, and that its activity is inhibited by sodium cyanide. Release of this cytoprotective factor was increased by differentiation stimuli and oxidative stress. Taken together, these results suggest that release of a hydrogen peroxide-reducing factor by PC12D cells increases cell tolerance against oxidative stress. This study provides new insights into the antioxidative properties of factors in extracellular fluid.

  20. Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.

    PubMed

    Changala, P Bryan; Nguyen, T Lam; Baraban, Joshua H; Ellison, G Barney; Stanton, John F; Bross, David H; Ruscic, Branko

    2017-11-22

    The adiabatic ionization energy of hydrogen peroxide (HOOH) is investigated, both by means of theoretical calculations and theoretically assisted reanalysis of previous experimental data. Values obtained by three different approaches: 10.638 ± 0.012 eV (purely theoretical determination), 10.649 ± 0.005 eV (reanalysis of photoelectron spectrum), and 10.645 ± 0.010 eV (reanalysis of photoionization spectrum) are in excellent mutual agreement. Further refinement of the latter two values to account for asymmetry of the rotational profile of the photoionization origin band leads to a reduction of 0.007 ± 0.006 eV, which tends to bring them into even closer alignment with the purely theoretical value. Detailed analysis of this fundamental quantity by the Active Thermochemical Tables approach, using the present results and extant literature, gives a final estimate of 10.641 ± 0.006 eV.