Sample records for accelerated life testing

  1. Accelerated life testing of spacecraft subsystems

    NASA Technical Reports Server (NTRS)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  2. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The 250 C, 200C and 125C accelerated tests are described. The wear-out distributions from the 250 and 200 C tests were used to estimate the activation energy between the two test temperatures. The duration of the 125 C test was not sufficient to bring the test devices into the wear-out region. It was estimated that, for the most complex of the three devices types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment is assessed. Guidlines for the development of accelerated life-test conditions are proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life-test characteristics of CMOS microcircuits is described.

  3. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This report covers the time period from May 1976 to December 1979 and encompasses the three phases of accelerated testing: Phase 1, the 250 C testing; Phase 2, the 200 C testing; and Phase 3, the 125 C testing. The duration of the test in Phase 1 and Phase 2 was sufficient to take the devices into the wear out region. The wear out distributions were used to estimate the activation energy between the 250 C and the 200 C test temperatures. The duration of the 125 C test, 20,000 hours, was not sufficient to bring the test devices into the wear out region; consequently the third data point at 125 C for determining the consistency of activation energy could not be obtained. It was estimated that, for the most complex of the three device types, the activation energy between 200 C and 125 C should be at least as high as that between 250 C and 200 C. The practicality of the use of high temperature for the accelerated life tests from the point of view of durability of equipment was assessed. Guidelines for the development of accelerated life test conditions were proposed. The use of the silicon nitride overcoat to improve the high temperature accelerated life test characteristics of CMOS microcircuits was explored in Phase 4 of this study and is attached as an appendix to this report.

  4. Accelerated test design

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1980-01-01

    The design of an accelerated life test program for electric batteries is discussed. A number of observations and suggestions on the procedures and objectives for conducting an accelerated life test program are presented. Equations based on nonlinear regression analysis for predicting the accelerated life test parameters are discussed.

  5. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Accelerated life tests were performed on CMOS microcircuits to predict their long term reliability. The consistency of the CMOS microcircuit activation energy between the range of 125 C to 200 C and the range 200 C to 250 C was determined. Results indicate CMOS complexity and the amount of moisture detected inside the devices after testing influences time to failure of tested CMOS devices.

  6. NWSC nickel cadmium spacecraft cell accelerated life test program data analysis

    NASA Technical Reports Server (NTRS)

    Lander, J.

    1980-01-01

    An analysis of the data leading to a proposed accelerated life test scheme to test a nickel cadmium cell under spacecraft usage conditions is described. The amount and concentration of electrolyte and the amount of precharge in the cell are discussed in relation to the design of the cell and the accelerated test design. A failure analysis of the cell is summarized. The analysis included such environmental test variables as the depth of discharge, the temperature, the amount of recharge and the charge and discharge rate.

  7. Quantitative Accelerated Life Testing of MEMS Accelerometers.

    PubMed

    Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul

    2007-11-20

    Quantitative Accelerated Life Testing (QALT) is a solution for assessing thereliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shownin this paper and an attempt to assess the reliability level for a batch of MEMSaccelerometers is reported. The testing plan is application-driven and contains combinedtests: thermal (high temperature) and mechanical stress. Two variants of mechanical stressare used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tiltingand high temperature is used. Tilting is appropriate as application-driven stress, because thetilt movement is a natural environment for devices used for automotive and aerospaceapplications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The testresults demonstrated the excellent reliability of the studied devices, the failure rate in the"worst case" being smaller than 10 -7 h -1 .

  8. Quantitative Accelerated Life Testing of MEMS Accelerometers

    PubMed Central

    Bâzu, Marius; Gălăţeanu, Lucian; Ilian, Virgil Emil; Loicq, Jerome; Habraken, Serge; Collette, Jean-Paul

    2007-01-01

    Quantitative Accelerated Life Testing (QALT) is a solution for assessing the reliability of Micro Electro Mechanical Systems (MEMS). A procedure for QALT is shown in this paper and an attempt to assess the reliability level for a batch of MEMS accelerometers is reported. The testing plan is application-driven and contains combined tests: thermal (high temperature) and mechanical stress. Two variants of mechanical stress are used: vibration (at a fixed frequency) and tilting. Original equipment for testing at tilting and high temperature is used. Tilting is appropriate as application-driven stress, because the tilt movement is a natural environment for devices used for automotive and aerospace applications. Also, tilting is used by MEMS accelerometers for anti-theft systems. The test results demonstrated the excellent reliability of the studied devices, the failure rate in the “worst case” being smaller than 10-7h-1. PMID:28903265

  9. Shelf life prediction of canned fried-rice using accelerated shelf life testing (ASLT) arrhenius method

    NASA Astrophysics Data System (ADS)

    Kurniadi, M.; Bintang, R.; Kusumaningrum, A.; Nursiwi, A.; Nurhikmat, A.; Susanto, A.; Angwar, M.; Triwiyono; Frediansyah, A.

    2017-12-01

    Research on shelf-life prediction of canned fried rice using Accelerated Shelf-life Test (ASLT) of Arrhenius model has been conducted. The aim of this research to predict shelf life of canned-fried rice products. Lethality value of 121°C for 15 and 20 minutes and Total Plate count methods are used to determine time and temperatures of sterilization process.Various storage temperatures of ASLT Arrhenius method were 35, 45 and 55°C during 35days. Rancidity is one of the derivation quality of canned fried rice. In this research, sample of canned fried rice is tested using rancidity value (TBA). TBA value was used as parameter which be measured once a week periodically. The use of can for fried rice without any chemical preservative is one of the advantage of the product, additionaly the use of physicalproperties such as temperature and pressure during its process can extend the shelf life and reduce the microbial contamination. The same research has never done before for fried rice as ready to eat meal. The result showed that the optimum conditions of sterilization process were 121°C,15 minutes with total plate count number of 9,3 × 101 CFU/ml. Lethality value of canned fried rice at 121°C,15 minutes was 3.63 minutes. The calculated Shelf-life of canned fried rice using Accelerated Shelf-life Test (ASLT) of Arrhenius method was 10.3 months.

  10. Accelerated life testing effects on CMOS microcircuit characteristics, phase 1

    NASA Technical Reports Server (NTRS)

    Maximow, B.

    1976-01-01

    An accelerated life test of sufficient duration to generate a minimum of 50% cumulative failures in lots of CMOS devices was conducted to provide a basis for determining the consistency of activation energy at 250 C. An investigation was made to determine whether any thresholds were exceeded during the high temperature testing, which could trigger failure mechanisms unique to that temperature. The usefulness of the 250 C temperature test as a predictor of long term reliability was evaluated.

  11. Study on constant-step stress accelerated life tests in white organic light-emitting diodes.

    PubMed

    Zhang, J P; Liu, C; Chen, X; Cheng, G L; Zhou, A X

    2014-11-01

    In order to obtain reliability information for a white organic light-emitting diode (OLED), two constant and one step stress tests were conducted with its working current increased. The Weibull function was applied to describe the OLED life distribution, and the maximum likelihood estimation (MLE) and its iterative flow chart were used to calculate shape and scale parameters. Furthermore, the accelerated life equation was determined using the least squares method, a Kolmogorov-Smirnov test was performed to assess if the white OLED life follows a Weibull distribution, and self-developed software was used to predict the average and the median lifetimes of the OLED. The numerical results indicate that white OLED life conforms to a Weibull distribution, and that the accelerated life equation completely satisfies the inverse power law. The estimated life of a white OLED may provide significant guidelines for its manufacturers and customers. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Accelerated life testing and reliability of high K multilayer ceramic capacitors

    NASA Technical Reports Server (NTRS)

    Minford, W. J.

    1981-01-01

    The reliability of one lot of high K multilayer ceramic capacitors was evaluated using accelerated life testing. The degradation in insulation resistance was characterized as a function of voltage and temperature. The times to failure at a voltage-temperature stress conformed to a lognormal distribution with a standard deviation approximately 0.5.

  13. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    NASA Technical Reports Server (NTRS)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  14. Closeout Report for the Refractory Metal Accelerated Heat Pipe Life Test Activity

    NASA Technical Reports Server (NTRS)

    Martin, J.; Reid, R.; Stewart, E.; Hickman, R.; Mireles, O.

    2013-01-01

    With the selection of a gas-cooled reactor, this heat pipe accelerated life test activity was closed out and its resources redirected. The scope of this project was to establish the long-term aging effects on Mo-44.5%Re sodium heat pipes when subjected to space reactor temperature and mass fluences. To date, investigators have demonstrated heat pipe life tests of alkali metal systems up to .50,000 hours. Unfortunately, resources have not been available to examine the effect of temperature, mass fluence, or impurity level on corrosion or to conduct post-test forensic examination of heat pipes. The key objective of this effort was to establish a cost/time effective method to systematically test alkali metal heat pipes with both practical and theoretical benefits. During execution of the project, a heat pipe design was established, a majority of the laboratory test equipment systems specified, and operating and test procedures developed. Procurements for the heat pipe units and all major test components were underway at the time the stop work order was issued. An extremely important outcome was the successful fabrication of an annular wick from Mo-5%Re screen (the single, most difficult component to manufacture) using a hot isostatic pressing technique. This Technical Publication (TP) includes specifics regarding the heat pipe calorimeter water-cooling system, vendor design for the radio frequency heating system, possible alternative calorimeter designs, and progress on the vanadium equilibration technique. The methods provided in this TP and preceding project documentation would serve as a good starting point to rapidly implement an accelerated life test. Relevant test data can become available within months, not years, and destructive examination of the first life test heat pipe might begin within 6 months of test initiation. Final conclusions could be drawn in less than a quarter of the mission duration for a long-lived, fission-powered, deep space probe.

  15. Shelf Life Prediction for Canned Gudeg using Accelerated Shelf Life Testing (ASLT) Based on Arrhenius Method

    NASA Astrophysics Data System (ADS)

    Nurhayati, R.; Rahayu NH, E.; Susanto, A.; Khasanah, Y.

    2017-04-01

    Gudeg is traditional food from Yogyakarta. It is consist of jackfruit, chicken, egg and coconut milk. Gudeg generally have a short shelf life. Canning or commercial sterilization is one way to extend the shelf life of gudeg. This aims of this research is to predict the shelf life of Andrawinaloka canned gudeg with Accelerated Shelf Life Test methods, Arrhenius model. Canned gudeg stored at three different temperature, there are 37, 50 and 60°C for two months. Measuring the number of Thio Barbituric Acid (TBA), as a critical aspect, were tested every 7 days. Arrhenius model approach is done with the equation order 0 and order 1. The analysis showed that the equation of order 0 can be used as an approach to estimating the shelf life of canned gudeg. The storage of Andrawinaloka canned gudeg at 30°C is predicted untill 21 months and 24 months for 25°C.

  16. Selected topics in railroad tank car safety. Volume 2 : test plan for accelerated life testing of thermally shielded tank cars

    DOT National Transportation Integrated Search

    1978-08-01

    A test plan for the accelerated life testing of thermally shielded tank cars is described. The test program would be conducted at the DOT Transportation Test Center in Pueblo, Colorado. Eighteen tank cars would be included in the program. Five cars w...

  17. PREDICTING CHRONIC LETHALITY OF CHEMICALS TO FISHES FROM ACUTE TOXICITY TEST DATA: THEORY OF ACCELERATED LIFE TESTING

    EPA Science Inventory

    A method for modeling aquatic toxicity date based on the theory of accelerated life testing and a procedure for maximum likelihood fitting the proposed model is presented. he procedure is computerized as software, which can predict chronic lethality of chemicals using data from a...

  18. A Statistical Perspective on Highly Accelerated Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Edward V.

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use ofmore » highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning

  19. High Pressure Hydrogen Pressure Relief Devices: Accelerated Life Testing and Application Best Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Robert M.; Post, Matthew B.; Buttner, William J.

    Pressure relief devices (PRDs ) are used to protect high pressure systems from burst failure caused by overpressurization. Codes and standards require the use of PRDs for the safe design of many pressurized systems. These systems require high reliability due to the risks associated with a burst failure. Hydrogen service can increase the risk of PRD failure due to material property degradation caused by hydrogen attack. The National Renewable Energy Laboratory (NREL) has conducted an accelerated life test on a conventional spring loaded PRD. Based on previous failures in the field, the nozzles specific to these PRDs are of particularmore » interest. A nozzle in a PRD is a small part that directs the flow of fluid toward the sealing surface to maintain the open state of the valve once the spring force is overcome. The nozzle in this specific PRD is subjected to the full tensile force of the fluid pressure. These nozzles are made from 440C material, which is a type of hardened steel that is commonly chosen for high pressure applications because of its high strength properties. In a hydrogen environment, however, 440C is considered a worst case material since hydrogen attack results in a loss of almost all ductility and thus 440C is prone to fatigue and material failure. Accordingly, 440C is not recommended for hydrogen service. Conducting an accelerated life test on a PRD with 440C material provides information on necessary and sufficient conditions required to produce crack initiation and failure. The accelerated life test also provides information on other PRD failure modes that are somewhat statistically random in nature.« less

  20. Accelerated life assessment of coating on the radar structure components in coastal environment.

    PubMed

    Liu, Zhe; Ming, ZhiMao

    2016-07-04

    This paper aimed to build an accelerated life test scheme and carry out quantitative analysis between accelerated life test in the laboratory and actual service for the coating composed of epoxy primer and polyurethane paint on structure components of some kind of radar served in the coastal environment of South China Sea. The accelerated life test scheme was built based on the service environment and failure analysis of the coating. The quantitative analysis between accelerated life test and actual service was conducted by comparing the gloss loss, discoloration, chalking, blistering, cracking and electrochemical impedance spectroscopy of the coating. The main factors leading to the coating failure were ultraviolet radiation, temperature, moisture, salt fog and loads, the accelerated life test included ultraviolet radiation, damp heat, thermal shock, fatigue and salt spray. The quantitative relationship was that one cycle of the accelerated life test was equal to actual service for one year. It was established that one cycle of the accelerated life test was equal to actual service for one year. It provided a precise way to predict actual service life of newly developed coatings for the manufacturer.

  1. Development of an Accelerated Test Design for Predicting the Service Life of the Solar Array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.

    1979-01-01

    An accelerated life test is described which was developed to predict the life of the 25 kW photovoltaic array installed near Mead, Nebraska. A quantitative model for accelerating testing using multiple environmental stresses was used to develop the test design. The model accounts for the effects of thermal stress by a relation of the Arrhenius form. This relation was then corrected for the effects of nonthermal environmental stresses, such as relative humidity, atmospheric pollutants, and ultraviolet radiation. The correction factors for the nonthermal stresses included temperature-dependent exponents to account for the effects of interactions between thermal and nonthermal stresses on the rate of degradation of power output. The test conditions, measurements, and data analyses for the accelerated tests are presented. Constant-temperature, cyclic-temperature, and UV types of tests are specified, incorporating selected levels of relative humidity and chemical contamination and an imposed forward-bias current and static electric field.

  2. Overview of RICOR's reliability theoretical analysis, accelerated life demonstration test results and verification by field data

    NASA Astrophysics Data System (ADS)

    Vainshtein, Igor; Baruch, Shlomi; Regev, Itai; Segal, Victor; Filis, Avishai; Riabzev, Sergey

    2018-05-01

    The growing demand for EO applications that work around the clock 24hr/7days a week, such as in border surveillance systems, emphasizes the need for a highly reliable cryocooler having increased operational availability and optimized system's Integrated Logistic Support (ILS). In order to meet this need, RICOR developed linear and rotary cryocoolers which achieved successfully this goal. Cryocoolers MTTF was analyzed by theoretical reliability evaluation methods, demonstrated by normal and accelerated life tests at Cryocooler level and finally verified by field data analysis derived from Cryocoolers operating at system level. The following paper reviews theoretical reliability analysis methods together with analyzing reliability test results derived from standard and accelerated life demonstration tests performed at Ricor's advanced reliability laboratory. As a summary for the work process, reliability verification data will be presented as a feedback from fielded systems.

  3. Accelerated test techniques for micro-circuits: Evaluation of high temperature (473 k - 573 K) accelerated life test techniques as effective microcircuit screening methods

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The application of high temperature accelerated test techniques was shown to be an effective method of microcircuit defect screening. Comprehensive microcircuit evaluations and a series of high temperature (473 K to 573 K) life tests demonstrated that a freak or early failure population of surface contaminated devices could be completely screened in thirty two hours of test at an ambient temperature of 523 K. Equivalent screening at 398 K, as prescribed by current Military and NASA specifications, would have required in excess of 1,500 hours of test. All testing was accomplished with a Texas Instruments' 54L10, low power triple-3 input NAND gate manufactured with a titanium- tungsten (Ti-W), Gold (Au) metallization system. A number of design and/or manufacturing anomalies were also noted with the Ti-W, Au metallization system. Further study of the exact nature and cause(s) of these anomalies is recommended prior to the use of microcircuits with Ti-W, Au metallization in long life/high reliability applications. Photomicrographs of tested circuits are included.

  4. Role of failure-mechanism identification in accelerated testing

    NASA Technical Reports Server (NTRS)

    Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.

    1993-01-01

    Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.

  5. Analysis of lead-acid battery accelerated testing data

    NASA Astrophysics Data System (ADS)

    Clifford, J. E.; Thomas, R. E.

    1983-06-01

    Battelle conducted an independent review and analysis of the accelerated test procedures and test data obtained by Exide in the 3 year Phase 1 program to develop advanced lead acid batteries for utility load leveling. Of special importance is the extensive data obtained in deep discharge cycling tests on 60 cells at elevated temperatures over a 2-1/2 year period. The principal uncertainty in estimating cell life relates to projecting cycle life data at elevated temperature to the lower operating temperatures. The accelerated positive grid corrosion test involving continuous overcharge at 500C provided some indication of the degree of grid corrosion that might be tolerable before failure. The accelerated positive material shedding test was not examined in any detail. Recommendations are made for additional studies.

  6. Accelerated battery-life testing - A concept

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.

    1971-01-01

    Test program, employing empirical, statistical and physical methods, determines service life and failure probabilities of electrochemical cells and batteries, and is applicable to testing mechanical, electrical, and chemical devices. Data obtained aids long-term performance prediction of battery or cell.

  7. Results of Accelerated Life Testing of LCLS-II Cavity Tuner Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huque, Naeem; Daly, Edward; Pischalnikov, Yuriy

    An Accelerated Life Test (ALT) of the Phytron stepper motor used in the LCLS-II cavity tuner has been conducted at JLab. Since the motor will reside inside the cryomodule, any failure would lead to a very costly and arduous repair. As such, the motor was tested for the equivalent of 30 lifetimes before being approved for use in the production cryomodules. The 9-cell LCLS-II cavity is simulated by disc springs with an equivalent spring constant. Plots of the motor position vs. tuner position ' measured via an installed linear variable differential transformer (LVDT) ' are used to measure motor motion.more » The titanium spindle was inspected for loss of lubrication. The motor passed the ALT, and is set to be installed in the LCLS-II cryomodules.« less

  8. RESULTS OF ACCELERATED LIFE TESTING OF LCLS-II CAVITY TUNER MOTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huque, Naeem; Daly, Edward F.; Pischalnikov, Yuriy

    An Accelerated Life Test (ALT) of the Phytron stepper motor used in the LCLS-II cavity tuner has been conducted at JLab. Since the motor will reside inside the cryomodule, any failure would lead to a very costly and arduous repair. As such, the motor was tested for the equivalent of 30 lifetimes before being approved for use in the production cryomodules. The 9-cell LCLS-II cavity is simulated by disc springs with an equivalent spring constant. Plots of the motor position vs. tuner position ' measured via an installed linear variable differential transformer (LVDT) ' are used to measure motor motion.more » The titanium spindle was inspected for loss of lubrication. The motor passed the ALT, and is set to be installed in the LCLS-II cryomodules.« less

  9. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    NASA Technical Reports Server (NTRS)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  10. Voltage stress effects on microcircuit accelerated life test failure rates

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The applicability of Arrhenius and Eyring reaction rate models for describing microcircuit aging characteristics as a function of junction temperature and applied voltage was evaluated. The results of a matrix of accelerated life tests with a single metal oxide semiconductor microcircuit operated at six different combinations of temperature and voltage were used to evaluate the models. A total of 450 devices from two different lots were tested at ambient temperatures between 200 C and 250 C and applied voltages between 5 Vdc and 15 Vdc. A statistical analysis of the surface related failure data resulted in bimodal failure distributions comprising two lognormal distributions; a 'freak' distribution observed early in time, and a 'main' distribution observed later in time. The Arrhenius model was shown to provide a good description of device aging as a function of temperature at a fixed voltage. The Eyring model also appeared to provide a reasonable description of main distribution device aging as a function of temperature and voltage. Circuit diagrams are shown.

  11. Design of the fiber optic support system and fiber bundle accelerated life test for VIRUS

    NASA Astrophysics Data System (ADS)

    Soukup, Ian M.; Beno, Joseph H.; Hayes, Richard J.; Heisler, James T.; Mock, Jason R.; Mollison, Nicholas T.; Good, John M.; Hill, Gary J.; Vattiat, Brian L.; Murphy, Jeremy D.; Anderson, Seth C.; Bauer, Svend M.; Kelz, Andreas; Roth, Martin M.; Fahrenthold, Eric P.

    2010-07-01

    The quantity and length of optical fibers required for the Hobby-Eberly Telescope* Dark Energy eXperiment (HETDEX) create unique fiber handling challenges. For HETDEX‡, at least 33,600 fibers will transmit light from the focal surface of the telescope to an array of spectrographs making up the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). Up to 96 Integral Field Unit (IFU) bundles, each containing 448 fibers, hang suspended from the telescope's moving tracker located more than 15 meters above the VIRUS instruments. A specialized mechanical system is being developed to support fiber optic assemblies onboard the telescope. The discrete behavior of 448 fibers within a conduit is also of primary concern. A life cycle test must be conducted to study fiber behavior and measure Focal Ratio Degradation (FRD) as a function of time. This paper focuses on the technical requirements and design of the HETDEX fiber optic support system, the electro-mechanical test apparatus for accelerated life testing of optical fiber assemblies. Results generated from the test will be of great interest to designers of robotic fiber handling systems for major telescopes. There is concern that friction, localized contact, entanglement, and excessive tension will be present within each IFU conduit and contribute to FRD. The test apparatus design utilizes six linear actuators to replicate the movement of the telescope over 65,000 accelerated cycles, simulating five years of actual operation.

  12. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  13. Accelerated testing of space batteries

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  14. Methodology to improve design of accelerated life tests in civil engineering projects.

    PubMed

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  15. Methodology to Improve Design of Accelerated Life Tests in Civil Engineering Projects

    PubMed Central

    Lin, Jing; Yuan, Yongbo; Zhou, Jilai; Gao, Jie

    2014-01-01

    For reliability testing an Energy Expansion Tree (EET) and a companion Energy Function Model (EFM) are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods. PMID:25111800

  16. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  17. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  18. Some practical observations on the accelerated testing of Nickel-Cadmium Cells

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1979-01-01

    A large scale test of 6.0 Ah Nickel-Cadmium Cells conducted at the Naval Weapons Support Center, Crane, Indiana has demonstrated a methodology for predicting battery life based on failure data from cells cycled in an accelerated mode. After examining eight variables used to accelerate failure, it was determined that temperature and depth of discharge were the most reliable and efficient parameters for use in accelerating failure and for predicting life.

  19. Earth Scanner Bearing Accelerated Life Test

    NASA Technical Reports Server (NTRS)

    Dietz, Brian J.; VanDyk, Steven G.; Predmore, Roamer E.

    2000-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) optical instrument for NASA Goddard will measure biological and physical processes on the Earth's surface and in the lower atmosphere. A key component of the instrument is an extremely accurate scan mirror motor/encoder assembly. Of prime concern in the performance and reliability of the scan motor/encoder is bearing selection and lubrication. This paper describes life testing of the bearings and lubrication selected for the program.

  20. Shelf life prediction of apple brownies using accelerated method

    NASA Astrophysics Data System (ADS)

    Pulungan, M. H.; Sukmana, A. D.; Dewi, I. A.

    2018-03-01

    The aim of this research was to determine shelf life of apple brownies. Shelf life was determined with Accelerated Shelf Life Testing method and Arrhenius equation. Experiment was conducted at 25, 35, and 45°C for 30 days. Every five days, the sample was analysed for free fatty acid (FFA), water activity (Aw), and organoleptic acceptance (flavour, aroma, and texture). The shelf life of the apple brownies based on FFA were 110, 54, and 28 days at temperature of 25, 35, and 45°C, respectively.

  1. Instrumentation for accelerated life tests of concentrator solar cells.

    PubMed

    Núñez, N; Vázquez, M; González, J R; Jiménez, F J; Bautista, J

    2011-02-01

    Concentrator photovoltaic is an emergent technology that may be a good economical and efficient alternative for the generation of electricity at a competitive cost. However, the reliability of these new solar cells and systems is still an open issue due to the high-irradiation level they are subjected to as well as the electrical and thermal stresses that they are expected to endure. To evaluate the reliability in a short period of time, accelerated aging tests are essential. Thermal aging tests for concentrator photovoltaic solar cells and systems under illumination are not available because no technical solution to the problem of reaching the working concentration inside a climatic chamber has been available. This work presents an automatic instrumentation system that overcomes the aforementioned limitation. Working conditions have been simulated by forward biasing the solar cells to the current they would handle at the working concentration (in this case, 700 and 1050 times the irradiance at one standard sun). The instrumentation system has been deployed for more than 10 000 h in a thermal aging test for III-V concentrator solar cells, in which the generated power evolution at different temperatures has been monitored. As a result of this test, the acceleration factor has been calculated, thus allowing for the degradation evolution at any temperature in addition to normal working conditions to be obtained.

  2. Shortening tobacco life cycle accelerates functional gene identification in genomic research.

    PubMed

    Ning, G; Xiao, X; Lv, H; Li, X; Zuo, Y; Bao, M

    2012-11-01

    Definitive allocation of function requires the introduction of genetic mutations and analysis of their phenotypic consequences. Novel, rapid and convenient techniques or materials are very important and useful to accelerate gene identification in functional genomics research. Here, over-expression of PmFT (Prunus mume), a novel FT orthologue, and PtFT (Populus tremula) lead to shortening of the tobacco life cycle. A series of novel short life cycle stable tobacco lines (30-50 days) were developed through repeated self-crossing selection breeding. Based on the second transformation via a gusA reporter gene, the promoter from BpFULL1 in silver birch (Betula pendula) and the gene (CPC) from Arabidopsis thaliana were effectively tested using short life cycle tobacco lines. Comparative analysis among wild type, short life cycle tobacco and Arabidopsis transformation system verified that it is optional to accelerate functional gene studies by shortening host plant material life cycle, at least in these short life cycle tobacco lines. The results verified that the novel short life cycle transgenic tobacco lines not only combine the advantages of economic nursery requirements and a simple transformation system, but also provide a robust, effective and stable host system to accelerate gene analysis. Thus, shortening tobacco life cycle strategy is feasible to accelerate heterologous or homologous functional gene identification in genomic research. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing

    NASA Astrophysics Data System (ADS)

    Petchsang, S.; Phung-on, I.; Poopat, B.

    2016-12-01

    Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.

  4. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  5. Accelerated life test of sputtering and anode deposit spalling in a small mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1975-01-01

    Tantalum and molybdenum sputtered from discharge chamber components during operation of a 5 centimeter diameter mercury ion thruster adhered much more strongly to coarsely grit blasted anode surfaces than to standard surfaces. Spalling of the sputtered coating did occur from a coarse screen anode surface but only in flakes less than a mesh unit long. The results were obtained in a 200 hour accelerated life test conducted at an elevated discharge potential of 64.6 volts. The test approximately reproduced the major sputter erosion and deposition effects that occur under normal operation but at approximately 75 times the normal rate. No discharge chamber component suffered sufficient erosion in the test to threaten its structural integrity or further serviceability. The test indicated that the use of tantalum-surfaced discharge chamber components in conjunction with a fine wire screen anode surface should cure the problems of sputter erosion and sputtered deposits spalling in long term operation of small mercury ion thrusters.

  6. Failure modes and effects criticality analysis and accelerated life testing of LEDs for medical applications

    NASA Astrophysics Data System (ADS)

    Sawant, M.; Christou, A.

    2012-12-01

    While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, Al

  7. Geometry of the q-exponential distribution with dependent competing risks and accelerated life testing

    NASA Astrophysics Data System (ADS)

    Zhang, Fode; Shi, Yimin; Wang, Ruibing

    2017-02-01

    In the information geometry suggested by Amari (1985) and Amari et al. (1987), a parametric statistical model can be regarded as a differentiable manifold with the parameter space as a coordinate system. Note that the q-exponential distribution plays an important role in Tsallis statistics (see Tsallis, 2009), this paper investigates the geometry of the q-exponential distribution with dependent competing risks and accelerated life testing (ALT). A copula function based on the q-exponential function, which can be considered as the generalized Gumbel copula, is discussed to illustrate the structure of the dependent random variable. Employing two iterative algorithms, simulation results are given to compare the performance of estimations and levels of association under different hybrid progressively censoring schemes (HPCSs).

  8. Testing of Composite Fan Vanes With Erosion-Resistant Coating Accelerated

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Sutter, James K.; Otten, Kim D.; Samorezov, Sergey; Perusek, Gail P.

    2004-01-01

    The high-cycle fatigue of composite stator vanes provided an accelerated life-state prior to insertion in a test stand engine. The accelerated testing was performed in the Structural Dynamics Laboratory at the NASA Glenn Research Center under the guidance of Structural Mechanics and Dynamics Branch personnel. Previous research on fixturing and test procedures developed at Glenn determined that engine vibratory conditions could be simulated for polymer matrix composite vanes by using the excitation of a combined slip table and electrodynamic shaker in Glenn's Structural Dynamics Laboratory. Bench-top testing gave researchers the confidence to test the coated vanes in a full-scale engine test.

  9. Accelerated Creep Testing of High Strength Aramid Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  10. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  11. EOS--AM1 Nickel Hydrogen Cell Interim Life Test Report

    NASA Technical Reports Server (NTRS)

    Bennett, C. W.; Keys, D. J.; Rao, G. M.; Wannemacher, H. E.; Vaidyanathan H.

    1999-01-01

    This paper reports the interim results of the Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missiles and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of the tests is to verify that the EOS-AM-1 cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 18202 LEO cycles completed as of September 1, 1997. Each cycle consists of a 64 minute charge (VT at 1.507 volts per cell. 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5% DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60% DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 amperes (VT at 1.54 volts per cell to 1.09 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three. 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battery, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (-5 C) cold plate. The entire assembly is located in a thermal chamber operatina at +30 C. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at +10 C. The real-time LEO life test battery has met all performance requirements throuch the first 18

  12. EOS-AM1 Nickel Hydrogen Cell Interim Life Test Report

    NASA Technical Reports Server (NTRS)

    Bennett, Charles W.; Keys, D. J.; Rao, G. M.; Wannemacher, H. E.; Vaidyanathan, Hari

    1998-01-01

    This paper reports the interim results Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missiles and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of the tests is to verify that the EOS-AM-1 cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 18202 LEO cycles completed as of September 1, 1997. Each cycle consists of a 64-minute charge (VT at 1,507 volts per cell, 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5 percent DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60 percent DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 amperes (VT at 1.54 volts per cell to 1.90 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three, 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battery, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (minus 5 deg) cold plate. The entire assembly is located in a thermal chamber operating at plus 3 deg. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at plus 10 deg. The real-time LEO life test battery has met all performance requirements

  13. Testing relativistic electron acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Green, Janet Carol

    2002-09-01

    This dissertation tests models of relativistic electron acceleration in the earth's outer radiation belt. The models fall into two categories: external and internal. External acceleration models transport and accelerate electrons from a source region in the outer magnetosphere to the inner magnetosphere. Internal acceleration models accelerate a population of electrons already present in the inner magnetosphere. In this dissertation, we test one specific external acceleration mechanism, perform a general test that differentiates between internal and external acceleration models, and test one promising internal acceleration model. We test the models using Polar-HIST data that we transform into electron phase space density (PSD) as a function of adiabatic invariants. We test the ultra low frequency (ULF) wave enhanced radial diffusion external acceleration mechanism by looking for a causal relationship between increased wave power and increased electron PSD at three L* values. One event with increased wave power at two L* values and no subsequent PSD increase does not support the model suggesting that ULF wave power alone is not sufficient to cause an electron response. Excessive loss of electrons and the duration of wave power do not explain the lack of a PSD enhancement at low L*. We differentiate between internal and external acceleration mechanisms by examining the radial profile of electron PSD. We observe PSD profiles that depend on local time. Nightside profiles are highly dependent on the magnetic field model used to calculate PSD as a function of adiabatic invariants and are not reliable. Dayside PSD profiles are more robust and consistent with internal acceleration of electrons. We test one internal acceleration model, the whistler/electromagnetic ion cyclotron wave model, by comparing observed pitch angle distributions to those predicted by the model using a superposed epoch analysis. The observations show pitch angle distributions corresponding to

  14. An Accelerated Method for Soldering Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Qingyou; Xu, Hanbing; Ried, Paul

    2007-01-01

    An accelerated method for testing die soldering has been developed. High intensity ultrasonic vibrations have been applied to simulate the die casting conditions such as high pressure and high molten metal velocity on the pin. The soldering tendency of steels and coated pins has been examined. The results suggest that in the low carbon steel/Al system, the onset of soldering is 60 times faster with ultrasonic vibration than that without ultrasonic vibration. In the H13/A380 system, the onset of soldering reaction is accelerated to between 30-60 times. Coatings significantly reduce the soldering tendency. For purposes of this study, several commercialmore » coatings from Balzers demonstrated the potential for increasing the service life of core pins between 15 and 180 times.« less

  15. Accelerated life-test methods and results for implantable electronic devices with adhesive encapsulation.

    PubMed

    Huang, Xuechen; Denprasert, Petcharat May; Zhou, Li; Vest, Adriana Nicholson; Kohan, Sam; Loeb, Gerald E

    2017-09-01

    We have developed and applied new methods to estimate the functional life of miniature, implantable, wireless electronic devices that rely on non-hermetic, adhesive encapsulants such as epoxy. A comb pattern board with a high density of interdigitated electrodes (IDE) could be used to detect incipient failure from water vapor condensation. Inductive coupling of an RF magnetic field was used to provide DC bias and to detect deterioration of an encapsulated comb pattern. Diodes in the implant converted part of the received energy into DC bias on the comb pattern. The capacitance of the comb pattern forms a resonant circuit with the inductor by which the implant receives power. Any moisture affects both the resonant frequency and the Q-factor of the resonance of the circuitry, which was detected wirelessly by its effects on the coupling between two orthogonal RF coils placed around the device. Various defects were introduced into the comb pattern devices to demonstrate sensitivity to failures and to correlate these signals with visual inspection of failures. Optimized encapsulation procedures were validated in accelerated life tests of both comb patterns and a functional neuromuscular stimulator under development. Strong adhesive bonding between epoxy and electronic circuitry proved to be necessary and sufficient to predict 1 year packaging reliability of 99.97% for the neuromuscular stimulator.

  16. Accelerated test program for sealed nickel-cadmium spacecraft batteries/cells

    NASA Technical Reports Server (NTRS)

    Goodman, L. A.

    1976-01-01

    The feasibility was examined of inducing an accelerated test on sealed Nickel-Cadmium batteries or cells as a tool for spacecraft projects and battery users to determine: (1) the prediction of life capability; (2) a method of evaluating the effect of design and component changes in cells; and (3) a means of reducing time and cost of cell testing.

  17. Preloading To Accelerate Slow-Crack-Growth Testing

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.; Choi, Sung R.; Pawlik, Ralph J.

    2004-01-01

    An accelerated-testing methodology has been developed for measuring the slow-crack-growth (SCG) behavior of brittle materials. Like the prior methodology, the accelerated-testing methodology involves dynamic fatigue ( constant stress-rate) testing, in which a load or a displacement is applied to a specimen at a constant rate. SCG parameters or life prediction parameters needed for designing components made of the same material as that of the specimen are calculated from the relationship between (1) the strength of the material as measured in the test and (2) the applied stress rate used in the test. Despite its simplicity and convenience, dynamic fatigue testing as practiced heretofore has one major drawback: it is extremely time-consuming, especially at low stress rates. The present accelerated methodology reduces the time needed to test a specimen at a given rate of applied load, stress, or displacement. Instead of starting the test from zero applied load or displacement as in the prior methodology, one preloads the specimen and increases the applied load at the specified rate (see Figure 1). One might expect the preload to alter the results of the test and indeed it does, but fortunately, it is possible to account for the effect of the preload in interpreting the results. The accounting is done by calculating the normalized strength (defined as the strength in the presence of preload the strength in the absence of preload) as a function of (1) the preloading factor (defined as the preload stress the strength in the absence of preload) and (2) a SCG parameter, denoted n, that is used in a power-law crack-speed formulation. Figure 2 presents numerical results from this theoretical calculation.

  18. An integrated fingerprinting and kinetic approach to accelerated shelf-life testing of chemical changes in thermally treated carrot puree.

    PubMed

    Kebede, Biniam T; Grauwet, Tara; Magpusao, Johannes; Palmers, Stijn; Michiels, Chris; Hendrickx, Marc; Loey, Ann Van

    2015-07-15

    To have a better understanding of chemical reactions during shelf-life, an integrated analytical and engineering toolbox: "fingerprinting-kinetics" was used. As a case study, a thermally sterilised carrot puree was selected. Sterilised purees were stored at four storage temperatures as a function of time. Fingerprinting enabled selection of volatiles clearly changing during shelf-life. Only these volatiles were identified and studied further. Next, kinetic modelling was performed to investigate the suitability of these volatiles as quality indices (markers) for accelerated shelf-life testing (ASLT). Fingerprinting enabled selection of terpenoids, phenylpropanoids, fatty acid derivatives, Strecker aldehydes and sulphur compounds as volatiles clearly changing during shelf-life. The amount of Strecker aldehydes increased during storage, whereas the rest of the volatiles decreased. Out of the volatiles, based on the applied kinetic modelling, myristicin, α-terpinolene, β-pinene, α-terpineol and octanal were identified as potential markers for ASLT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Electrophoretic characterization of protein interactions suggesting limited feasibility of accelerated shelf-life testing of ultra-high temperature milk.

    PubMed

    Grewal, Manpreet Kaur; Chandrapala, Jayani; Donkor, Osaana; Apostolopoulos, Vasso; Vasiljevic, Todor

    2017-01-01

    Accelerated shelf-life testing is applied to a variety of products to estimate keeping quality over a short period of time. The industry has not been successful in applying this approach to ultra-high temperature (UHT) milk because of chemical and physical changes in the milk proteins that take place during processing and storage. We investigated these protein changes, applying accelerated shelf-life principles to UHT milk samples with different fat levels and using native- and sodium dodecyl sulfate-PAGE. Samples of UHT skim and whole milk were stored at 20, 30, 40, and 50°C for 28d. Irrespective of fat content, UHT treatment had a similar effect on the electrophoretic patterns of milk proteins. At the start of testing, proteins were bonded mainly through disulfide and noncovalent interactions. However, storage at and above 30°C enhanced protein aggregation via covalent interactions. The extent of aggregation appeared to be influenced by fat content; whole milk contained more fat than skim milk, implying aggregation via melted or oxidized fat, or both. Based on reduction in loss in absolute quantity of individual proteins, covalent crosslinking in whole milk was facilitated mainly by products of lipid oxidation and increased access to caseins for crosslinking reactions. Maillard and dehydroalanine products were the main contributors involved in protein changes in skim milk. Protein crosslinking appeared to follow a different pathway at higher temperatures (≥40°C) than at lower temperatures, making it very difficult to extrapolate these changes to protein interactions at lower temperatures. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Accelerated cycle life performance for ovonic nickel-metal hydride cells

    NASA Technical Reports Server (NTRS)

    Otzinger, Burton M.

    1991-01-01

    Nickel-Metal Hydride (Ni-MH) rechargeable batteries have emerged as the leading candidate for commercial replacement of nickel-cadmium (Ni-Cd) batteries. An important incentive is that the Ni-MH cell provides approximately twice the capacity of a Ni-Cd cell for a given size. A six-cell battery was committed to an accelerated cycle life test to determine the effect of separation type on performance. Results of the test may also show the Ni-MH battery to be a replacement candidate for the aerospace Ni-Cd battery.

  1. EOS-AM1 Nickel Hydrogen Cell Interim Life Test Report

    NASA Technical Reports Server (NTRS)

    Bennett, C. W.; Keys, D. J.; Rao, G. M.; Wannemacher, H. E.; Vaidyanathan, H.

    1997-01-01

    This paper reports the interim results of the Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missiles and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of the tests is to verify that the EOS-AM-l cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 13000 LEO cycles completed as of September 2, 1996. Each cycle consists of a 64 minute charge (VT at 1.507 volts per cell, 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5% DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60% DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 ampercs (VT at 1.54 volts per cell to 1.09 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three, 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battely, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (-5 C) cold plate. The entire assembly is located in a thermal chamber operating at +3 C. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at +10 C. The real-time LEO life test battery has met all performance requirements through the first 13

  2. Accelerated Life Testing and Service Lifetime Prediction for PV Technologies in the Twenty-First Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czanderna, A. W.; Jorgensen, G. J.

    The purposes of this paper are to (1) discuss the necessity for conducting accelerated life testing (ALT) in the early stages of developing new photovoltaic (PV) technologies, (2) elucidate the crucial importance for combining ALT with real-time testing (RTT) in terrestrial environments for promising PV technologies for the 21st century, and (3) outline the essential steps for making a service lifetime prediction (SLP) for any PV technology. The specific objectives are to (a) illustrate the essential need for ALT of complete, encapsulated multilayer PV devices, (b) indicate the typical causes of degradation in PV stacks, (c) elucidate the complexity associatedmore » with quantifying the durability of the devices, (d) explain the major elements that constitute a generic SLP methodology, (e) show how the introduction of the SLP methodology in the early stages of new device development can reduce the cost of technology development, and (f) outline the procedure for combining the results of ALT and RTT, establishing degradation mechanisms, using sufficient numbers of samples, and applying the SLP methodology to produce a SLP for existing or new PV technologies.« less

  3. FERTILITY INTENTIONS AND EARLY LIFE HEALTH STRESS AMONG WOMEN IN EIGHT INDIAN CITIES: TESTING THE REPRODUCTIVE ACCELERATION HYPOTHESIS.

    PubMed

    Kulathinal, Sangita; Säävälä, Minna

    2015-09-01

    In life history theory, early life adversity is associated with an accelerated reproductive tempo. In harsh and unpredictable conditions in developing societies fertility is generally higher and the reproductive tempo faster than in more secure environments. This paper examines whether differences in female anthropometry, particularly adult height, are associated with fertility intentions of women in urban environments in India. The study population consists of women aged 15-29 (N=4485) in slums and non-slums of eight Indian cities in the National Family Health Survey (NFHS) of 2005-2006. Adult height is taken as a proxy for early childhood health and nutritional condition. Fertility intentions are examined by using two variables: the desire to have a child or another child, and to have it relatively soon, as indicative of accelerated reproductive scheduling. Evidence supporting the acceleration hypothesis is found in two urban frames out of 26 examined in a two-staged multinomial logistic model. In three cases, the relationship between fertility intentions and height is the opposite than expected by the acceleration hypothesis: taller women have a higher predictive probability of desiring a(nother) child and/or narrower birth spacing. Potential explanations for the partly contradictory relationship between the childhood health indicator and fertility intentions are discussed.

  4. Modeling Reliability Growth in Accelerated Stress Testing

    DTIC Science & Technology

    2013-12-01

    MODELING RELIABILITY GROWTH IN ACCELERATED STRESS TESTING DISSERTATION Jason K. Freels Major...Defense, or the United States Government. AFIT-ENS-DS-13-D-02 MODELING RELIABILITY GROWTH IN ACCELERATED STRESS TESTING ...DISTRIBUTION UNLIMITED AFIT-ENS-DS-13-D-02 MODELING RELIABILITY GROWTH IN ACCELERATED STRESS TESTING Jason K. Freels

  5. Design considerations and test facilities for accelerated radiation effects testing

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Miller, C. G.; Parker, R. H.

    1972-01-01

    Test design parameters for accelerated dose rate radiation effects tests for spacecraft parts and subsystems used in long term mission (years) are detailed. A facility for use in long term accelerated and unaccelerated testing is described.

  6. Accelerated vacuum testing of long life ball bearings and sliprings

    NASA Technical Reports Server (NTRS)

    Meeks, C. R.; Christy, R. I.; Cunningham, A. C.

    1971-01-01

    Extensive analytical studies and testing have been conducted on bearings and sliprings in vacuum at temperatures from 30 to 130 F. Thirty-six bearings lubricated with two types of oil were tested in vacuum of less than 10 to the minus 8th power torr at speeds from 55 to 180 rpm. Temperatures, load, speed, and oil viscosity were varied to evaluate the effects on life and wear. All bearings performed successfully during a 7-month test, and the potential merits of the two oils were compared. Over 25 different, dry-lubricated brush/slipring material combinations have been tested, with variations of brush and ring design and surface speed. Test results indicate the probability of 10 years or more of slipring and brush lifetime with properly designed brushes for 1-in.-diameter ring rotating at 60 rpm.

  7. Accelerated test program

    NASA Technical Reports Server (NTRS)

    Ford, F. E.; Harkness, J. M.

    1977-01-01

    A brief discussion on the accelerated testing of batteries is given. The statistical analysis and the various aspects of the modeling that was done and the results attained from the model are also briefly discussed.

  8. The Clouds and the Earth's Radiant Energy System Elevation Bearing Assembly Life Test

    NASA Technical Reports Server (NTRS)

    Brown, Phillip L.; Miller, James B.; Jones, William R., Jr.; Rasmussen, Kent; Wheeler, Donald R.; Rana, Mauro; Peri, Frank

    1999-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) elevation scan bearings lubricated with Pennzane SHF X2000 and 2% lead naphthenate (PbNp) were life tested for a seven-year equivalent Low Earth Orbit (LEO) operation. The bearing life assembly was tested continuously at an accelerated and normal rate using the scanning patterns developed for the CERES Earth Observing System AM-1 mission. A post-life-test analysis was performed on the collected data, bearing wear, and lubricant behavior.

  9. Accelerator Test of an Imaging Calorimeter

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; hide

    2001-01-01

    The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.

  10. Accelerated testing of module-level power electronics for long-term reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flicker, Jack David; Tamizhmani, Govindasamy; Moorthy, Mathan Kumar

    This work has applied a suite of long-term-reliability accelerated tests to a variety of module-level power electronics (MLPE) devices (such as microinverters and optimizers) from five different manufacturers. This dataset is one of the first (only the paper by Parker et al. entitled “Dominant factors affecting reliability of alternating current photovoltaic modules,” in Proc. 42nd IEEE Photovoltaic Spec. Conf., 2015, is reported for reliability testing in the literature), as well as the largest, experimental sets in public literature, both in the sample size (five manufacturers including both dc/dc and dc/ac units and 20 units for each test) and the numbermore » of experiments (six different experimental test conditions) for MLPE devices. The accelerated stress tests (thermal cycling test per IEC 61215 profile, damp heat test per IEC 61215 profile, and static temperature tests at 100 and 125 °C) were performed under powered and unpowered conditions. The first independent long-term experimental data regarding damp heat and grid transient testing, as well as the longest term (>9 month) testing of MLPE units reported in the literature for thermal cycling and high-temperature operating life, are included in these experiments. Additionally, this work is the first to show in situ power measurements, as well as periodic efficiency measurements over a series of experimental tests, demonstrating whether certain tests result in long-term degradation or immediate catastrophic failures. Lastly, the result of this testing highlights the performance of MLPE units under the application of several accelerated environmental stressors.« less

  11. Accelerated testing of module-level power electronics for long-term reliability

    DOE PAGES

    Flicker, Jack David; Tamizhmani, Govindasamy; Moorthy, Mathan Kumar; ...

    2016-11-10

    This work has applied a suite of long-term-reliability accelerated tests to a variety of module-level power electronics (MLPE) devices (such as microinverters and optimizers) from five different manufacturers. This dataset is one of the first (only the paper by Parker et al. entitled “Dominant factors affecting reliability of alternating current photovoltaic modules,” in Proc. 42nd IEEE Photovoltaic Spec. Conf., 2015, is reported for reliability testing in the literature), as well as the largest, experimental sets in public literature, both in the sample size (five manufacturers including both dc/dc and dc/ac units and 20 units for each test) and the numbermore » of experiments (six different experimental test conditions) for MLPE devices. The accelerated stress tests (thermal cycling test per IEC 61215 profile, damp heat test per IEC 61215 profile, and static temperature tests at 100 and 125 °C) were performed under powered and unpowered conditions. The first independent long-term experimental data regarding damp heat and grid transient testing, as well as the longest term (>9 month) testing of MLPE units reported in the literature for thermal cycling and high-temperature operating life, are included in these experiments. Additionally, this work is the first to show in situ power measurements, as well as periodic efficiency measurements over a series of experimental tests, demonstrating whether certain tests result in long-term degradation or immediate catastrophic failures. Lastly, the result of this testing highlights the performance of MLPE units under the application of several accelerated environmental stressors.« less

  12. Accelerated aging test results for aerospace wire insulation constructions

    NASA Technical Reports Server (NTRS)

    Dunbar, William G.

    1995-01-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  13. Accelerated aging test results for aerospace wire insulation constructions

    NASA Astrophysics Data System (ADS)

    Dunbar, William G.

    1995-11-01

    Several wire insulation constructions were evaluated with and without continuous glow discharges at low pressure and high temperature to determine the aging characteristics of acceptable wire insulation constructions. It was known at the beginning of the test program that insulation aging takes several years when operated at normal ambient temperature and pressure of 20 C and 760 torr. Likewise, it was known that the accelerated aging process decreases insulation life by approximately 50% for each 10 C temperature rise. Therefore, the first phases of the program, not reported in these test results, were to select wire insulation constructions that could operate at high temperature and low pressure for over 10,000 hours with negligible shrinkage and little materials' deterioration.The final phase of the program was to determine accelerated aging characteristics. When an insulation construction is subjected to partial discharges the insulation is locally heated by the bombardment of the discharges, the insulation is also subjected to ozone and other deteriorating gas particles that may significantly increase the aging process. Several insulation systems using either a single material or combinations of teflon, kapton, and glass insulation constructions were tested. All constructions were rated to be partial discharge and/or corona-free at 240 volts, 400 Hz and 260 C (500 F) for 50, 000 hours at altitudes equivalent to the Paschen law. Minimum partial discharge aging tests were preceded by screening tests lasting 20 hours at 260 C. The aging process was accelerated by subjecting the test articles to temperatures up to 370 C (700 F) with and without partial discharges. After one month operation with continuous glow discharges surrounding the test articles, most insulation systems were either destroyed or became brittle, cracked, and unsafe for use. Time with space radiation as with partial discharges is accumulative.

  14. Do sediment type and test durations affect results of laboratory-based, accelerated testing studies of permeable pavement clogging?

    PubMed

    Nichols, Peter W B; White, Richard; Lucke, Terry

    2015-04-01

    Previous studies have attempted to quantify the clogging processes of Permeable Interlocking Concrete Pavers (PICPs) using accelerated testing methods. However, the results have been variable. This study investigated the effects that three different sediment types (natural and silica), and different simulated rainfall intensities, and testing durations had on the observed clogging processes (and measured surface infiltration rates) of laboratory-based, accelerated PICP testing studies. Results showed that accelerated simulated laboratory testing results are highly dependent on the type, and size of sediment used in the experiments. For example, when using real stormwater sediment up to 1.18 mm in size, the results showed that neither testing duration, nor stormwater application rate had any significant effect on PICP clogging. However, the study clearly showed that shorter testing durations generally increased clogging and reduced the surface infiltration rates of the models when artificial silica sediment was used. Longer testing durations also generally increased clogging of the models when using fine sediment (<300 μm). Results from this study will help researchers and designers better anticipate when and why PICPs are susceptible to clogging, reduce maintenance and extend the useful life of these increasingly common stormwater best management practices. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Predictive Service Life Tests for Roofing Membranes

    NASA Astrophysics Data System (ADS)

    Bailey, David M.; Cash, Carl G.; Davies, Arthur G.

    2002-09-01

    The average service life of roofing membranes used in low-slope applications on U.S. Army buildings is estimated to be considerably shorter than the industry-presumed 20-year design life, even when installers carefully adhere to the latest guide specifications. This problem is due in large part to market-driven product development cycles, which do not include time for long-term field testing. To reduce delivery costs, contractors may provide untested, interior membranes in place of ones proven satisfactory in long-term service. Federal procurement regulations require that roofing systems and components be selected according to desired properties and generic type, not brand name. The problem is that a material certified to have satisfactory properties at installation time will not necessarily retain those properties in service. The overall objective of this research is to develop a testing program that can be executed in a matter of weeks to adequately predict a membrane's long-term performance in service. This report details accelerated aging tests of 12 popular membrane materials in the laboratory, and describes outdoor experiment stations set up for long-term exposure tests of those same membranes. The laboratory results will later be correlated with the outdoor test results to develop performance models and predictive service life tests.

  16. Accelerated Testing and Analysis | Photovoltaic Research | NREL

    Science.gov Websites

    & Engineering pages: Real-Time PV & Solar Resource Testing Systems Engineering Systems PV standards. Each year, NCPV researchers, along with solar companies and other national lab Accelerated Testing and Analysis Accelerated Testing and Analysis PV Research Other Reliability

  17. Accelerated Solar-UV Test Chamber

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Laue, E. G.

    1984-01-01

    Medium-pressure mercury-vapor lamps provide high ratio of ultraviolet to total power. Chamber for evaluating solar-ultraviolet (UV) radiation damage permits accelerated testing without overheating test specimens.

  18. Accelerated Stress-Corrosion Testing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  19. Methodology for designing accelerated aging tests for predicting life of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Derringer, G. C.; Kistler, C. W.; Bigg, D. M.; Carmichael, D. C.

    1977-01-01

    A methodology for designing aging tests in which life prediction was paramount was developed. The methodology builds upon experience with regard to aging behavior in those material classes which are expected to be utilized as encapsulant elements, viz., glasses and polymers, and upon experience with the design of aging tests. The experiences were reviewed, and results are discussed in detail.

  20. Accelerated stress testing of terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.

    1982-01-01

    The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.

  1. Improvement of bench life-tests for automotive batteries

    NASA Astrophysics Data System (ADS)

    Richter, G.

    A common method for rating the endurance of automotive batteries is the bench life-test according to DIN, IEC, SAE or JIS. With an increasing number of maintenance-free batteries on the market, the application of these tests becomes more problematic. This is due to a step-by-step capacity decline during cycling if the content of autimony in the grid-alloy is decreased. The degradation in performance is caused by the phenomenon of acid stratification. Because this debilitating effect occurs only rarely in service (vehicle movement) if charging and discharging is well balanced, there is a need for a new bench life-test with conditions that are more representative of practical conditions. Research has shown that the main changes should be: (i) an accelerated (moved) battery during cycling; (ii) slightly lower charging or discharging capacity amplitude, also with a lower mean value.

  2. Accelerated test plan for nickel cadmium spacecraft batteries

    NASA Technical Reports Server (NTRS)

    Hennigan, T. J.

    1973-01-01

    An accelerated test matrix is outlined that includes acceptance, baseline and post-cycling tests, chemical and physical analyses, and the data analysis procedures to be used in determining the feasibility of an accelerated test for sealed, nickel cadmium cells.

  3. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, M.; Edwards, H.; Harms, E.

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the

  4. Subjective acceleration of time experience in everyday life across adulthood.

    PubMed

    John, Dennis; Lang, Frieder R

    2015-12-01

    Most people believe that time seems to pass more quickly as they age. Building on assumptions of socioemotional selectivity theory, we investigated whether awareness that one's future lifetime is limited is associated with one's experience of time during everyday activities across adulthood in 3 studies. In the first 2 studies (Study 1: N = 608; Study 2: N = 398), participants completed a web-based version of the day reconstruction method. In Study 3 (N = 392) participants took part in a newly developed tomorrow construction method, a web-based experimental method for assessing everyday life plans. Results confirmed that older adults' subjective interpretation of everyday episodes is that these episodes pass more quickly compared with younger adults. The subjective acceleration of time experience in old age was more pronounced during productive activities than during regenerative-consumptive activities. The age differences were partly related to limited time remaining in life. In addition, subjective acceleration of time experience was associated with positive evaluations of everyday activities. Findings suggest that subjective acceleration of time in older adults' daily lives reflects an adaptation to limitations in time remaining in life. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  5. Life Cycle Testing of Viscoelastic Material for Hubble Space Telescope Solar Array 3 Damper

    NASA Technical Reports Server (NTRS)

    Maly, Joseph R.; Reed, Benjamin B.; Viens, Michael J.; Parker, Bradford H.; Pendleton, Scott C.

    2003-01-01

    During the March 2002 Servicing Mission by Space Shuttle (STS 109), the Hubble Space Telescope (HST) was refurbished with two new solar arrays that now provide all of its power. These arrays were built with viscoelastic/titanium dampers, integral to the supporting masts, which reduce the interaction of the wing bending modes with the Telescope. Damping of over 3% of critical was achieved. To assess the damper s ability to maintain nominal performance over the 10-year on-orbit design goal, material specimens were subjected to an accelerated life test. The test matrix consisted of scheduled events to expose the specimens to pre-determined combinations of temperatures, frequencies, displacement levels, and numbers of cycles. These exposure events were designed to replicate the life environment of the damper from fabrication through testing to launch and life on-orbit. To determine whether material degradation occurred during the exposure sequence, material performance was evaluated before and after the accelerated aging with complex stiffness measurements. Based on comparison of pre- and post-life-cycle measurements, the material is expected to maintain nominal performance through end of life on-orbit. Recent telemetry from the Telescope indicates that the dampers are performing nominally.

  6. Evaluation of accelerated UV and thermal testing for benzene formation in beverages containing benzoate and ascorbic acid.

    PubMed

    Nyman, Patricia J; Wamer, Wayne G; Begley, Timothy H; Diachenko, Gregory W; Perfetti, Gracia A

    2010-04-01

    Under certain conditions, benzene can form in beverages containing benzoic and ascorbic acids. The American Beverage Assn. (ABA) has published guidelines to help manufacturers mitigate benzene formation in beverages. These guidelines recommend accelerated testing conditions to test product formulations, because exposure to ultraviolet (UV) light and elevated temperature over the shelf life of the beverage may result in benzene formation in products containing benzoic and ascorbic acids. In this study, the effects of UVA exposure on benzene formation were determined. Benzene formation was examined for samples contained in UV stabilized and non-UV stabilized packaging. Additionally, the usefulness of accelerated thermal testing to simulate end of shelf-life benzene formation was evaluated for samples containing either benzoic or ascorbic acid, or both. The 24 h studies showed that under intense UVA light benzene levels increased by as much as 53% in model solutions stored in non-UV stabilized bottles, whereas the use of UV stabilized polyethylene terephthalate bottles reduced benzene formation by about 13% relative to the non-UV stabilized bottles. Similar trends were observed for the 7 d study. Retail beverages and positive and negative controls were used to study the accelerated thermal testing conditions. The amount of benzene found in the positive controls and cranberry juice suggests that testing at 40 degrees C for 14 d may more reliably simulate end of shelf-life benzene formation in beverages. Except for cranberry juice, retail beverages were not found to contain detectable amounts of benzene (<0.05 ng/g) at the end of their shelf lives.

  7. Comparison of real-life accidental falls in older people with experimental falls in middle-aged test subjects.

    PubMed

    Kangas, M; Vikman, I; Nyberg, L; Korpelainen, R; Lindblom, J; Jämsä, T

    2012-03-01

    Falling is a common accident among older people. Automatic fall detectors are one method of improving security. However, in most cases, fall detectors are designed and tested with data from experimental falls in younger people. This study is one of the first to provide fall-related acceleration data obtained from real-life falls. Wireless sensors were used to collect acceleration data during a six-month test period in older people. Data from five events representing forward falls, a sideways fall, a backwards fall, and a fall out of bed were collected and compared with experimental falls performed by middle-aged test subjects. The signals from real-life falls had similar features to those from intentional falls. Real-life forward, sideways and backward falls all showed a pre impact phase and an impact phase that were in keeping with the model that was based on experimental falls. In addition, the fall out of bed had a similar acceleration profile as the experimental falls of the same type. However, there were differences in the parameters that were used for the detection of the fall phases. The beginning of the fall was detected in all of the real-life falls starting from a standing posture, whereas the high pre impact velocity was not. In some real-life falls, multiple impacts suggested protective actions. In conclusion, this study demonstrated similarities between real-life falls of older people and experimental falls of middle-aged subjects. However, some fall characteristics detected from experimental falls were not detectable in acceleration signals from corresponding heterogeneous real-life falls. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Miniature penetrator (MinPen) acceleration recorder development test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, R.J.; Platzbecker, M.R.

    1998-08-01

    The Telemetry Technology Development Department at Sandia National Laboratories actively develops and tests acceleration recorders for penetrating weapons. This new acceleration recorder (MinPen) utilizes a microprocessor-based architecture for operational flexibility while maintaining electronics and packaging techniques developed over years of penetrator testing. MinPen has been demonstrated to function in shock environments up to 20,000 Gs. The MinPen instrumentation development has resulted in a rugged, versatile, miniature acceleration recorder and is a valuable tool for penetrator testing in a wide range of applications.

  9. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  10. Neural Network Models of Simple Mechanical Systems Illustrating the Feasibility of Accelerated Life Testing

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Jones, Steven P.; Jansen, Ralph

    1996-01-01

    A complete evaluation of the tribological characteristics of a given material/mechanical system is a time-consuming operation since the friction and wear process is extremely systems sensitive. As a result, experimental designs (i.e., Latin Square, Taguchi) have been implemented in an attempt to not only reduce the total number of experimental combinations needed to fully characterize a material/mechanical system, but also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experimental designs still require a great deal of experimental testing and the output does not always produce meaningful information. In order to further reduce the amount of experimental testing required, this study employs a computer neural network model to investigate different material/mechanical systems. The work focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict life data. The model is capable of defining which input variables will influence the tribological behavior of the particular material/mechanical system being studied based on the specifications of the overall system.

  11. Accelerated Test Method for Corrosion Protective Coatings Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  12. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  13. Improved protocol and data analysis for accelerated shelf-life estimation of solid dosage forms.

    PubMed

    Waterman, Kenneth C; Carella, Anthony J; Gumkowski, Michael J; Lukulay, Patrick; MacDonald, Bruce C; Roy, Michael C; Shamblin, Sheri L

    2007-04-01

    To propose and test a new accelerated aging protocol for solid-state, small molecule pharmaceuticals which provides faster predictions for drug substance and drug product shelf-life. The concept of an isoconversion paradigm, where times in different temperature and humidity-controlled stability chambers are set to provide a critical degradant level, is introduced for solid-state pharmaceuticals. Reliable estimates for temperature and relative humidity effects are handled using a humidity-corrected Arrhenius equation, where temperature and relative humidity are assumed to be orthogonal. Imprecision is incorporated into a Monte-Carlo simulation to propagate the variations inherent in the experiment. In early development phases, greater imprecision in predictions is tolerated to allow faster screening with reduced sampling. Early development data are then used to design appropriate test conditions for more reliable later stability estimations. Examples are reported showing that predicted shelf-life values for lower temperatures and different relative humidities are consistent with the measured shelf-life values at those conditions. The new protocols and analyses provide accurate and precise shelf-life estimations in a reduced time from current state of the art.

  14. Significance of acceleration period in a dynamic strength testing study.

    PubMed

    Chen, W L; Su, F C; Chou, Y L

    1994-06-01

    The acceleration period that occurs during isokinetic tests may provide valuable information regarding neuromuscular readiness to produce maximal contraction. The purpose of this study was to collect the normative data of acceleration time during isokinetic knee testing, to calculate the acceleration work (Wacc), and to determine the errors (ERexp, ERwork, ERpower) due to ignoring Wacc during explosiveness, total work, and average power measurements. Seven male and 13 female subjects attended the test by using the Cybex 325 system and electronic stroboscope machine for 10 testing speeds (30-300 degrees/sec). A three-way ANOVA was used to assess gender, direction, and speed factors on acceleration time, Wacc, and errors. The results indicated that acceleration time was significantly affected by speed and direction; Wacc and ERexp by speed, direction, and gender; and ERwork and ERpower by speed and gender. The errors appeared to increase when testing the female subjects, during the knee flexion test, or when speed increased. To increase validity in clinical testing, it is important to consider the acceleration phase effect, especially in higher velocity isokinetic testing or for weaker muscle groups.

  15. Accelerated stress testing of terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Prince, J. L.; Lathrop, J. W.

    1979-01-01

    A program to investigate the reliability characteristics of unencapsulated low-cost terrestrial solar cells using accelerated stress testing is described. Reliability (or parametric degradation) factors appropriate to the cell technologies and use conditions were studied and a series of accelerated stress tests was synthesized. An electrical measurement procedure and a data analysis and management system was derived, and stress test fixturing and material flow procedures were set up after consideration was given to the number of cells to be stress tested and measured and the nature of the information to be obtained from the process. Selected results and conclusions are presented.

  16. Comparison of online and offline tests in LED accelerated reliability tests under temperature stress.

    PubMed

    Ke, Hong-Liang; Jing, Lei; Gao, Qun; Wang, Yao; Hao, Jian; Sun, Qiang; Xu, Zhi-Jun

    2015-11-20

    Accelerated aging tests are the main method used in the evaluation of LED reliability, and can be performed in either online or offline modes. The goal of this study is to provide the difference between the two test modes. In the experiments, the sample is attached to different heat sinks to acquire the optical parameters under different junction temperatures of LEDs. By measuring the junction temperature in the aging process (Tj1), and the junction temperature in the testing process (Tj2), we achieve consistency with an online test of Tj1 and Tj2 and a difference with an offline test of Tj1 and Tj2. Experimental results show that the degradation rate of the luminous flux rises as Tj2 increases, which yields a difference of projected life L(70%) of 8% to 13%. For color shifts over 5000 h of aging, the online test shows a larger variation of the distance from the Planckian locus, about 40% to 50% more than the normal test at an ambient temperature of 25°C.

  17. An accelerated calendar and cycle life study of Li-ion cells.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, I.; Cole, B. W.; Sohn, J. J.

    2001-10-15

    The accelerated calendar and cycle life of lithium-ion cells was studied. Useful cell life was strongly affected by temperature, time, state-of-charge (SOC) and change in state-of-charge ({Delta}SOC). In calendar life experiments, useful cell life was strongly affected by temperature and time. Temperature accelerated cell performance degradation. The rates of area specific impedance (ASI) increase and power fade followed simple laws based on a power of time and Arrhenius kinetics. The data have been modeled using these two concepts and the calculated data agree well with the experimental values. The calendar life ASI increase and power fade data follow (time){sup 1/2}more » kinetics. This behavior may be due to solid electrolyte interface layer growth. From the cycle life experiments, the ASI increase data follow (time){sup 1/2} kinetics also, but there is an apparent change in overall power fade mechanism when going from 3 to 6% {Delta}SOC. Here, the power of time drops to below 1/2, which indicates that the power fade mechanism is more complex than layer growth.« less

  18. Evaluation of tilting disc valves after fatigue life testing: preliminary results within a comparison program.

    PubMed

    Barbaro, V; Boccanera, G; Daniele, C; Grigioni, M; Palombo, A

    1995-09-01

    A fatigue life test, by accelerating the beat rate, simulates several years of virtual life of a prosthetic heart valve in a short period of time. The correlation between the in vivo life of a valve and in vitro testing expectations is as yet not well established, but reproducible test conditions yield precious information about wear and failure. The paper reports a qualitative analysis of mechanical valve wear as part of a comparison program designed to investigate the significance of fatigue testing with the ultimate aim of defining standard guidelines for these type of tests. Two tilting disc valves (29 mm) were subjected to 16 years of fatigue life simulated by means of a Rowan Ash fatigue tester (accelerated rate of 1,200 bpm). Fatigue-induced effects on valve disc and ring surfaces were observed under a monitor microscope to identify wear sites and patterns. A high speed cinematographic system was used to investigate the mechanisms responsible for the wear (wear modes). Valve closure was inspected at a 6,000 frame/s rate. Because of disc rotation during the tilting movement, the points of contact between disc and ring are distributed all around the disc edge but focally on the ring. On both sides of the disc, the surfaces present ring-like concentric grooves. After 16 years of fatigue life the valves showed neither severe wear nor alteration of their fluidodynamic behavior in the pulsatile flow test.

  19. Accelerated testing technique for evaluating performance of chemical air filters for DUV photolithographic equipment

    NASA Astrophysics Data System (ADS)

    Kishkovich, Oleg P.; Bolgov, Dennis; Goodwin, William

    1999-06-01

    In this paper, the authors discuss the requirements for chemical air filtration system used in conjunction with modern DUV photolithography equipment. Among the topics addressed are the scope of pollutants, their respective internal and external sources, and an overview of different types of filtration technologies currently in use. Key filtration parameters, including removal efficiency, service life, and spill protection capacity, are discussed and supported by actual data, reflection the total molecular base concentration in operational IC manufacturing facilities. The authors also describe a time-accelerated testing procedure for comparing and evaluating different filtration technologies and designs, and demonstrate how this three-day test procedure can reliably predict an effective filter service life up to ten years.

  20. High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Yu-Seok

    2015-10-01

    The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  1. Accelerated and real-time geosynchronous life cycling test performance of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Green, R. S.

    1985-01-01

    RCA Astro-Electronics currently has four nickel-hydrogen storage battery modules (11 cells each) on test in simulated geosynchronous life cycle regimes. These battery modules are of identical design to those used on the GSTAR (GTE Satellite Corp.) and Spacenet (GTE Spacenet Corp.) communications satellites. The batteries are being tested using an automated test station equipped with computer-controlled environmental chambers and recording equipment. The two battery types, 30 ampere-hours and 40 ampere-hours (GSTAR and Spacenet, respectively), are being electrically cycled using identical 44-day eclipse sequences at 5 C and vary with respect to depth of discharge, recharge ratio, duration of accumulated suntime, and the use of a reconditioning sequence. The test parameters are outlined and the preliminary test data and results are presented.

  2. Investigating the feasibility of temperature-controlled accelerated drug release testing for an intravaginal ring.

    PubMed

    Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra

    2013-11-01

    The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non

  3. Accelerated Testing Of Photothermal Degradation Of Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  4. An experimental demonstration that early-life competitive disadvantage accelerates telomere loss.

    PubMed

    Nettle, Daniel; Monaghan, Pat; Gillespie, Robert; Brilot, Ben; Bedford, Thomas; Bateson, Melissa

    2015-01-07

    Adverse experiences in early life can exert powerful delayed effects on adult survival and health. Telomere attrition is a potentially important mechanism in such effects. One source of early-life adversity is the stress caused by competitive disadvantage. Although previous avian experiments suggest that competitive disadvantage may accelerate telomere attrition, they do not clearly isolate the effects of competitive disadvantage from other sources of variation. Here, we present data from an experiment in European starlings (Sturnus vulgaris) that used cross-fostering to expose siblings to divergent early experience. Birds were assigned either to competitive advantage (being larger than their brood competitors) or competitive disadvantage (being smaller than their brood competitors) between days 3 and 12 post-hatching. Disadvantage did not affect weight gain, but it increased telomere attrition, leading to shorter telomere length in disadvantaged birds by day 12. There were no effects of disadvantage on oxidative damage as measured by plasma lipid peroxidation. We thus found strong evidence that early-life competitive disadvantage can accelerate telomere loss. This could lead to faster age-related deterioration and poorer health in later life.

  5. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    NASA Astrophysics Data System (ADS)

    Gold, Steven H.; Kinkead, Allen K.; Gai, Wei; Power, John G.; Konecny, Richard; Jing, Chunguang; Long, Jidong; Tantawi, Sami G.; Nantista, Christopher D.; Bruce, Ralph W.; Fliflet, Arne W.; Lombardi, Marcie; Lewis, David

    2006-11-01

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a ˜250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to ˜8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.

  6. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice.

    PubMed

    Bath, K; Manzano-Nieves, G; Goodwill, H

    2016-06-01

    Early life stress (ELS) increases the risk for later cognitive and emotional dysfunction. ELS is known to truncate neural development through effects on suppressing cell birth, increasing cell death, and altering neuronal morphology, effects that have been associated with behavioral profiles indicative of precocious maturation. However, how earlier silencing of growth drives accelerated behavioral maturation has remained puzzling. Here, we test the novel hypothesis that, ELS drives a switch from growth to maturation to accelerate neural and behavioral development. To test this, we used a mouse model of ELS, fragmented maternal care, and a cross-sectional dense sampling approach focusing on hippocampus and measured effects of ELS on the ontogeny of behavioral development and biomarkers of neural maturation. Consistent with previous work, ELS was associated with an earlier developmental decline in expression of markers of cell proliferation (Ki-67) and differentiation (doublecortin). However, ELS also led to a precocious arrival of Parvalbumin-positive cells, led to an earlier switch in NMDA receptor subunit expression (marker of synaptic maturity), and was associated with an earlier rise in myelin basic protein expression (key component of the myelin sheath). In addition, in a contextual fear-conditioning task, ELS accelerated the timed developmental suppression of contextual fear. Together, these data provide support for the hypothesis that ELS serves to switch neurodevelopment from processes of growth to maturation and promotes accelerated development of some forms of emotional learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Using accelerated life testing procedures to compare the relative sensitivity of rainbow trout and the federally listed threatened bull trout to three commonly used rangeland herbicides (picloram, 2,4-D, and clopyralid).

    PubMed

    Fairchild, James F; Allert, Ann; Sappington, Linda S; Nelson, Karen J; Valle, Janet

    2008-03-01

    We conducted 96-h static acute toxicity studies to evaluate the relative sensitivity of juveniles of the threatened bull trout (Salvelinus confluentus) and the standard cold-water surrogate rainbow trout (Onchorhyncus mykiss) to three rangeland herbicides commonly used for controlling invasive weeds in the northwestern United States. Relative species sensitivity was compared using three procedures: standard acute toxicity testing, fractional estimates of lethal concentrations, and accelerated life testing chronic estimation procedures. The acutely lethal concentrations (ALC) resulting in 50% mortality at 96 h (96-h ALC50s) were determined using linear regression and indicated that the three herbicides were toxic in the order of picloram acid > 2,4-D acid > clopyralid acid. The 96-h ALC50 values for rainbow trout were as follows: picloram, 41 mg/L; 2.4-D, 707 mg/L; and clopyralid, 700 mg/L. The 96-h ALC50 values for bull trout were as follows: picloram, 24 mg/L; 2.4-D, 398 mg/L; and clopyralid, 802 mg/L. Fractional estimates of safe concentrations, based on 5% of the 96-h ALC50, were conservative (overestimated toxicity) of regression-derived 96-h ALC5 values by an order of magnitude. Accelerated life testing procedures were used to estimate chronic lethal concentrations (CLC) resulting in 1% mortality at 30 d (30-d CLC1) for the three herbicides: picloram (1 mg/L rainbow trout, 5 mg/L bull trout), 2,4-D (56 mg/L rainbow trout, 84 mg/L bull trout), and clopyralid (477 mg/L rainbow trout; 552 mg/L bull trout). Collectively, the results indicated that the standard surrogate rainbow trout is similar in sensitivity to bull trout. Accelerated life testing procedures provided cost-effective, statistically defensible methods for estimating safe chronic concentrations (30-d CLC1s) of herbicides from acute toxicity data because they use statistical models based on the entire mortality:concentration:time data matrix.

  8. Using accelerated life testing procedures to compare the relative sensitivity of rainbow trout and the federally listed threatened bull trout to three commonly used rangeland herbicides (picloram, 2,4-D, and clopyralid)

    USGS Publications Warehouse

    Fairchild, J.F.; Allert, A.; Sappington, L.S.; Nelson, K.J.; Valle, J.

    2008-01-01

    We conducted 96-h static acute toxicity studies to evaluate the relative sensitivity of juveniles of the threatened bull trout (Salvelinus confluentus) and the standard cold-water surrogate rainbow trout (Onchorhyncus mykiss) to three rangeland herbicides commonly used for controlling invasive weeds in the northwestern United States. Relative species sensitivity was compared using three procedures: standard acute toxicity testing, fractional estimates of lethal concentrations, and accelerated life testing chronic estimation procedures. The acutely lethal concentrations (ALC) resulting in 50% mortality at 96 h (96-h ALC50s) were determined using linear regression and indicated that the three herbicides were toxic in the order of picloram acid > 2,4-D acid > clopyralid acid. The 96-h ALC50 values for rainbow trout were as follows: picloram, 41 mg/L; 2.4-D, 707 mg/L; and clopyralid, 700 mg/L. The 96-h ALC50 values for bull trout were as follows: picloram, 24 mg/L; 2.4-D, 398 mg/L; and clopyralid, 802 mg/L. Fractional estimates of safe concentrations, based on 5% of the 96-h ALC50, were conservative (overestimated toxicity) of regression-derived 96-h ALC5 values by an order of magnitude. Accelerated life testing procedures were used to estimate chronic lethal concentrations (CLC) resulting in 1% mortality at 30 d (30-d CLC1) for the three herbicides: picloram (1 mg/L rainbow trout, 5 mg/L bull trout), 2,4-D (56 mg/L rainbow trout, 84 mg/L bull trout), and clopyralid (477 mg/L rainbow trout; 552 mg/L bull trout). Collectively, the results indicated that the standard surrogate rainbow trout is similar in sensitivity to bull trout. Accelerated life testing procedures provided cost-effective, statistically defensible methods for estimating safe chronic concentrations (30-d CLC1s) of herbicides from acute toxicity data because they use statistical models based on the entire mortality:concentration: time data matrix. ?? 2008 SETAC.

  9. Half-life of Si-32 from tandem-accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Elmore, D.; Anantaraman, N.; Fulbright, H. W.; Gove, H. E.; Nishiizumi, K.; Murrell, M. T.; Honda, M.; Hans, H. S.

    1980-01-01

    A newly developed mass-spectrometry technique employing a tandem Van de Graaff accelerator together with a special beam-transport system and heavy-ion detector has been used to determine the half-life of Si-32. The result obtained, 108 plus or minus 18 yr, disagrees with the accepted value of 330 plus or minus 40 yr. The implications of the new half-life of Si-32, which is used for dating studies, are discussed.

  10. Note: An online testing method for lifetime projection of high power light-emitting diode under accelerated reliability test.

    PubMed

    Chen, Qi; Chen, Quan; Luo, Xiaobing

    2014-09-01

    In recent years, due to the fast development of high power light-emitting diode (LED), its lifetime prediction and assessment have become a crucial issue. Although the in situ measurement has been widely used for reliability testing in laser diode community, it has not been applied commonly in LED community. In this paper, an online testing method for LED life projection under accelerated reliability test was proposed and the prototype was built. The optical parametric data were collected. The systematic error and the measuring uncertainty were calculated to be within 0.2% and within 2%, respectively. With this online testing method, experimental data can be acquired continuously and sufficient amount of data can be gathered. Thus, the projection fitting accuracy can be improved (r(2) = 0.954) and testing duration can be shortened.

  11. Results of Long Term Life Tests of Large Scale Lithium-Ion Cells

    NASA Astrophysics Data System (ADS)

    Inoue, Takefumi; Imamura, Nobutaka; Miyanaga, Naozumi; Yoshida, Hiroaki; Komada, Kanemi

    2008-09-01

    High energy density Li-ion cells have been introduced to latest satellites and another space usage. We have started development of large scale Li-ion cells for space applications in 1997. The chemical design was fixed in 1999.It is very important to confirm life performance to apply satellite applications because it requires long mission life such as 15 years for GEO and 5 to 7 years for LEO. Therefore we started life test at various conditions. And the tests have reached 8 to 9 years in actual calendar time. Semi - accelerated GEO tests which gives both calendar and cycle loss have been reached 42 season that corresponds 21 years in orbit. The specific energy range is 120 - 130 Wh/kg at EOL. According to the test results, we have confirmed that our Li-ion cell meets general requirements for space application such as GEO and LEO with quite high specific energy.

  12. Accelerated testing of an optimized closing system for automotive fuel tank

    NASA Astrophysics Data System (ADS)

    Gligor, A.; Ilie, S.; Nicolae, V.; Mitran, G.

    2015-11-01

    obtained results, it can be created a clear picture of the capacity of closing system of fuel tank to fulfil the functional requirements following the exposure to values of testing parameters significantly above the values that may appear throughout the entire service life of the vehicle. The proposed accelerated testing method shows the main advantage of simulation in a limited time all the situations which may be encountered in a much longer period of time, namely the service life of the vehicle.

  13. An experimental demonstration that early-life competitive disadvantage accelerates telomere loss

    PubMed Central

    Nettle, Daniel; Monaghan, Pat; Gillespie, Robert; Brilot, Ben; Bedford, Thomas; Bateson, Melissa

    2015-01-01

    Adverse experiences in early life can exert powerful delayed effects on adult survival and health. Telomere attrition is a potentially important mechanism in such effects. One source of early-life adversity is the stress caused by competitive disadvantage. Although previous avian experiments suggest that competitive disadvantage may accelerate telomere attrition, they do not clearly isolate the effects of competitive disadvantage from other sources of variation. Here, we present data from an experiment in European starlings (Sturnus vulgaris) that used cross-fostering to expose siblings to divergent early experience. Birds were assigned either to competitive advantage (being larger than their brood competitors) or competitive disadvantage (being smaller than their brood competitors) between days 3 and 12 post-hatching. Disadvantage did not affect weight gain, but it increased telomere attrition, leading to shorter telomere length in disadvantaged birds by day 12. There were no effects of disadvantage on oxidative damage as measured by plasma lipid peroxidation. We thus found strong evidence that early-life competitive disadvantage can accelerate telomere loss. This could lead to faster age-related deterioration and poorer health in later life. PMID:25411450

  14. Failure Engineering Study and Accelerated Stress Test Results for the Mars Global Surveyor Spacecraft's Power Shunt Assemblies

    NASA Technical Reports Server (NTRS)

    Gibbel, Mark; Larson, Timothy

    2000-01-01

    An Engineering-of-Failure approach to designing and executing an accelerated product qualification test was performed to support a risk assessment of a "work-around" necessitated by an on-orbit failure of another piece of hardware on the Mars Global Surveyor spacecraft. The proposed work-around involved exceeding the previous qualification experience both in terms of extreme cold exposure level and in terms of demonstrated low cycle fatigue life for the power shunt assemblies. An analysis was performed to identify potential failure sites, modes and associated failure mechanisms consistent with the new use conditions. A test was then designed and executed which accelerated the failure mechanisms identified by analysis. Verification of the resulting failure mechanism concluded the effort.

  15. Update of the NEXT Ion Thruster Service Life Assessment with Post-Test Correlation to the Long Duration Test

    NASA Technical Reports Server (NTRS)

    Yim, John T.; Soulas, George C.; Shastry, Rohit; Choi, Maria; Mackey, Jonathan A.; Sarver-Verhey, Timothy R.

    2017-01-01

    The service life assessment for NASA's Evolutionary Xenon Thruster is updated to incorporate the results from the successful and voluntarily early completion of the 51,184 hour long duration test which demonstrated 918 kg of total xenon throughput. The results of the numerous post-test investigations including destructive interrogations have been assessed against all of the critical known and suspected failure mechanisms to update the life and throughput expectations for each major component. Analysis results of two of the most acute failure mechanisms, namely pit-and-groove erosion and aperture enlargement of the accelerator grid, are not updated in this work but will be published at a future time after analysis completion.

  16. Paratransit Vehicle Test and Evaluation : Volume 2. Acceleration and Interior Measurement Tests.

    DOT National Transportation Integrated Search

    1978-06-01

    A series of tests and evaluations of two prototype vehicles for paratransit were conducted. This volume (Volume II) presents the test procedure and results of the acceleration and interior measurement test series. The tests determined the acceleratio...

  17. Accelerated testing of composites

    NASA Technical Reports Server (NTRS)

    Papazian, H. A.

    1983-01-01

    It is shown that the Zhurkov method for testing the strength of solids can be applied to dynamic tension and to cyclic loading and provides a viable approach to accelerated testing of composites. Data from the literature are used to demonstrate a straightforward application of the method to dynamic tension of glass fiber and cyclic loading for glass/polymer, metal matrix, and graphite/epoxy composites. Zhurkov's equation can be used at relatively high loads to obtain failure times at any temperature of interest. By taking a few data points at one or two other temperatures the spectrum of failure times can be expanded to temperatures not easily accessible.

  18. Measurement Techniques and Instruments Suitable for Life-prediction Testing of Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Wood, V. E.; Mcginniss, V. D.; Hassell, J. A.; Richard, N. A.; Gaines, G. B.; Carmichael, D. C.

    1979-01-01

    The validation of a 20-year service life for low-cost photovoltaic arrays is a critical requirement in the Low-Cost Solar Array (LSA) Project. The validation is accomplished through accelerated life-prediction tests. A two-phase study was conducted to address the needs before such tests are carried out. The results and recommended techniques from the Phase 1 investigation are summarized in the appendix. Phase 2 of the study is covered in this report and consisted of experimental evaluations of three techniques selected from these recommended as a results of the Phase 1 findings. The three techniques evaluated were specular and nonspecular optical reflectometry, chemiluminescence measurements, and electric current noise measurements.

  19. Testing of a Loop Heat Pipe Subjected to Variable Accelerating Forces

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kaya, Tarik; Rogers, Paul; Hoff, Craig

    2000-01-01

    This paper presents viewgraphs of the functionality of a loop heat pipe that was subjected to variable accelerating forces. The topics include: 1) Summary of LHP (Loop Heat Pipe) Design Parameters; 2) Picture of the LHP; 3) Schematic of Test Setup; 4) Test Configurations; 5) Test Profiles; 6) Overview of Test Results; 7) Start-up; 8) Typical Start-up without Temperature Overshoot; 9) Start-up with a Large Temperature Overshoot; 10) LHP Operation Under Stationary Condition; 11) LHP Operation Under Continuous Acceleration; 12) LHP Operation Under Periodic Acceleration; 13) Effects of Acceleration on Temperature Oscillation and Hysteresis; 14) Temperature Oscillation/Hysteresis vs Spin Rate; and 15) Summary.

  20. Cycle life test of secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1980-01-01

    The results of the life cycling program on rechargeable calls are reported. Information on required data, the use of which the data will be put, application details, including orbital description, charge control methods, load rquirements, etc., are given. Cycle tests were performed on 660 sealed, nickel cadmium cells. The cells consisted of seven sample classifications ranging form 3.0 to 20 amp. hours. Nickel cadmium, silver cadmium, and silver zinc sealed cells, excluding synchronous orbit and accelerated test packs were added. The capacities of the nickel cadmium cells, the silver cadmium and the silver zinc cells differed in range of amp hrs. The cells were cylced under different load, charge control, and temperature conditions. All cell packs are recharged by use of a pack voltage limit. All charging is constant current until the voltage limit is reached.

  1. High gradient tests of metallic mm-wave accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2017-05-10

    This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less

  2. High gradient tests of metallic mm-wave accelerating structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon

    This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less

  3. Accelerated stress testing of thin film solar cells: Development of test methods and preliminary results

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1985-01-01

    If thin film cells are to be considered a viable option for terrestrial power generation their reliability attributes will need to be explored and confidence in their stability obtained through accelerated testing. Development of a thin film accelerated test program will be more difficult than was the case for crystalline cells because of the monolithic construction nature of the cells. Specially constructed test samples will need to be fabricated, requiring committment to the concept of accelerated testing by the manufacturers. A new test schedule appropriate to thin film cells will need to be developed which will be different from that used in connection with crystalline cells. Preliminary work has been started to seek thin film schedule variations to two of the simplest tests: unbiased temperature and unbiased temperature humidity. Still to be examined are tests which involve the passage of current during temperature and/or humidity stress, either by biasing in the forward (or reverse) directions or by the application of light during stress. Investigation of these current (voltage) accelerated tests will involve development of methods of reliably contacting the thin conductive films during stress.

  4. Magnetic Shielding of the Acceleration Channel Walls in a Long-Life Hall Thruster

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.; de Grys, Kristi; Mathers, Alex

    2010-01-01

    In a Qualification Life Test (QLT) of the BPT-4000 Hall thruster that recently accumulated greater than 10,000 h it was found that the erosion of the acceleration channel practically stopped after approximately 5,600 h. Numerical simulations of this thruster using a 2-D axisymmetric, magnetic field-aligned-mesh (MFAM) plasma solver reveal that the process that led to this significant reduction of the erosion was multifaceted. It is found that when the channel receded from its early-in-life geometry to its steady-state configuration several changes in the near-wall plasma and sheath were induced by the magnetic field that, collectively, constituted an effective shielding of the walls from any significant ion bombardment. Because all such changes in the behavior of the ionized gas near the eroding surfaces were caused by the topology of the magnetic field there, we term this process "magnetic shielding."

  5. Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging?

    PubMed

    Shalev, Idan; Belsky, Jay

    2016-05-01

    Two seemingly independent bodies of research suggest a two-hit model of accelerated aging, one highlighting early-life stress and the other reproduction. The first, informed by developmental models of early-life stress, highlights reduced longevity effects of early adversity on telomere erosion, whereas the second, informed by evolutionary theories of aging, highlights such effects with regard to reproductive cost (in females). The fact that both early-life adversity and reproductive effort are associated with shorter telomeres and increased oxidative stress raises the prospect, consistent with life-history theory, that these two theoretical frameworks currently informing much research are tapping into the same evolutionary-developmental process of increased senescence and reduced longevity. Here we propose a mechanistic view of a two-hit model of accelerated aging in human females through (a) early-life adversity and (b) early reproduction, via a process of telomere erosion, while highlighting mediating biological embedding mechanisms that might link these two developmental aging processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Benchmark Calibration Tests Completed for Stirling Convertor Heater Head Life Assessment

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2005-01-01

    A major phase of benchmark testing has been completed at the NASA Glenn Research Center (http://www.nasa.gov/glenn/), where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive experimentation to aid the development of an analytical life-prediction methodology. Two special-purpose test rigs subjected SRG heater-head pressure-vessel test articles to accelerated creep conditions, using the standard design temperatures to stay within the wall material s operating creep-response regime, but increasing wall stresses up to 7 times over the design point. This resulted in well-controlled "ballooning" of the heater-head hot end. The test plan was developed to provide critical input to analytical parameters in a reasonable period of time.

  7. Accelerated pavement testing of low-volume paved roads with geocell reinforcement.

    DOT National Transportation Integrated Search

    2015-03-01

    The Midwest States Accelerated Pavement Testing Pooled-Fund Program, financed by the highway : departments of Kansas, Iowa, Missouri, and New York, has supported an accelerated pavement testing (APT) project : to study the rehabilitation of low-volum...

  8. Testing of a Plasmadynamic Hypervelocity Dust Accelerator

    NASA Astrophysics Data System (ADS)

    Ticos, Catalin M.; Wang, Zhehui; Dorf, Leonid A.; Wurden, G. A.

    2006-10-01

    A plasmadynamic accelerator for microparticles (or dust grains) has been designed, built and tested at Los Alamos National laboratory. The dust grains are expected to be accelerated to hypervelocities on the order of 1-30 km/s, depending on their size. The key components of the plasmadynamic accelerator are a coaxial plasma gun operated at 10 kV, a dust dispenser activated by a piezoelectric transducer, and power and remote-control systems. The coaxial plasma gun produces a high density (10^18 cm-3) and low temperature (˜ 1 eV) plasma in deuterium ejected by J x B forces, which provides drag on the dust particles in its path. Carbon dust particles will be used, with diameters from 1 to 50 μm. The plasma parameters produced in the coaxial gun are presented and their implication to dust acceleration is discussed. High speed dust will be injected in the National Spherical Torus Experiment to measure the pitch angle of magnetic field lines.

  9. Accelerated Performance Testing on the 2006 NCAT Pavement Test Track

    DOT National Transportation Integrated Search

    2009-12-01

    The original National Center for Asphalt Technology (NCAT) Pavement Test Track was built in 2000 in Opelika, Alabama where it has served as a state-of-the-art, full-scale, closed-loop accelerated loading facility. The construction, operation, and res...

  10. Cosmological consistency tests of gravity theory and cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Ishak-Boushaki, Mustapha B.

    2017-01-01

    Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.

  11. Development of an Accelerated Test Design for Predicting the Service Life of the Solar Array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Thomas, R. E.; Noel, G. T.; Shilliday, T. S.; Wood, V. E.; Carmichael, D. C.

    1979-01-01

    Potential long-term degradation modes for the two types of modules in the Mead array were determined and judgments were made as to those environmental stresses and combinations of stresses which accelerate the degradation of the power output. Hierarchical trees representing the severity of effects of stresses (test conditions) on eleven individual degradation modes were constructed and were pruned of tests judged to be nonessential. Composites of those trees were developed so that there is now one pruned tree covering eight degradation modes, another covering two degradation modes, and a third covering one degradation mode. These three composite trees form the basis for selection of test conditions in the final test plan which is now being prepared.

  12. Sequential accelerated tests: Improving the correlation of accelerated tests to module performance in the field

    NASA Astrophysics Data System (ADS)

    Felder, Thomas; Gambogi, William; Stika, Katherine; Yu, Bao-Ling; Bradley, Alex; Hu, Hongjie; Garreau-Iles, Lucie; Trout, T. John

    2016-09-01

    DuPont has been working steadily to develop accelerated backsheet tests that correlate with solar panels observations in the field. This report updates efforts in sequential testing. Single exposure tests are more commonly used and can be completed more quickly, and certain tests provide helpful predictions of certain backsheet failure modes. DuPont recommendations for single exposure tests are based on 25-year exposure levels for UV and humidity/temperature, and form a good basis for sequential test development. We recommend a sequential exposure of damp heat followed by UV then repetitions of thermal cycling and UVA. This sequence preserves 25-year exposure levels for humidity/temperature and UV, and correlates well with a large body of field observations. Measurements can be taken at intervals in the test, although the full test runs 10 months. A second, shorter sequential test based on damp heat and thermal cycling tests mechanical durability and correlates with loss of mechanical properties seen in the field. Ongoing work is directed toward shorter sequential tests that preserve good correlation to field data.

  13. A Critical Point of Male Gonad Development: Neuroendocrine Correlates of Accelerated Testicular Growth in Rats during Early Life

    PubMed Central

    Dygalo, Nikolay N.; Shemenkova, Tatjana V.; Kalinina, Tatjana S.; Shishkina, Galina T.

    2014-01-01

    Testis growth during early life is important for future male fertility and shows acceleration during the first months of life in humans. This acceleration coincides with the peak in gonadotropic hormones in the blood, while the role of hypothalamic factors remains vague. Using neonatal rats to assess this issue, we found that day 9 of life is likely critical for testis development in rats. Before this day, testicular growth was proportional to body weight gain, but after that the testes showed accelerated growth. Hypothalamic kisspeptin and its receptor mRNA levels begin to elevate 2 days later, at day 11. A significant increase in the mRNA levels for gonadotropin-releasing hormone (GnRH) receptors in the hypothalamus between days 5 and 7 was followed by a 3-fold decrease in GnRH mRNA levels in this brain region during the next 2 days. Starting from day 9, hypothalamic GnRH mRNA levels increased significantly and positively correlated with accelerated testicular growth. Triptorelin, an agonist of GnRH, at a dose that had no effect on testicular growth during “proportional” period, increased testis weights during the period of accelerated growth. The insensitivity of testicular growth to GnRH during “proportional” period was supported by inability of a 2.5-fold siRNA knockdown of GnRH expression in the hypothalamus of the 7-day-old animals to produce any effect on their testis weights. GnRH receptor blockade with cetrorelix was also without effect on testis weights during “proportional” period but the same doses of this GnRH antagonist significantly inhibited “accelerated” testicular growth. GnRH receptor mRNA levels in the pituitary as well as plasma LH concentrations were higher during “accelerated” period of testicular growth than during “proportional” period. In general, our data defined two distinct periods in rat testicular development that are primarily characterized by different responses to GnRH signaling. PMID:24695464

  14. Ultra-accelerated natural sunlight exposure testing

    DOEpatents

    Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.

    2000-06-13

    Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

  15. Accelerated weathering of fire-retardant-treated wood for fire testing

    Treesearch

    Robert H. White

    2009-01-01

    Fire-retardant-treated products for exterior applications must be subjected to actual or accelerated weathering prior to fire testing. For fire-retardant-treated wood, the two accelerated weathering methods have been Method A and B of ASTM D 2898. The rain test is Method A of ASTM D 2898. Method B includes exposures to ultraviolet (UV) sunlamps in addition to water...

  16. Accelerated spike resampling for accurate multiple testing controls.

    PubMed

    Harrison, Matthew T

    2013-02-01

    Controlling for multiple hypothesis tests using standard spike resampling techniques often requires prohibitive amounts of computation. Importance sampling techniques can be used to accelerate the computation. The general theory is presented, along with specific examples for testing differences across conditions using permutation tests and for testing pairwise synchrony and precise lagged-correlation between many simultaneously recorded spike trains using interval jitter.

  17. Computer modeling of test particle acceleration at oblique shocks

    NASA Technical Reports Server (NTRS)

    Decker, Robert B.

    1988-01-01

    The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.

  18. Accelerated testing for studying pavement design and performance (FY 2003) : research summary.

    DOT National Transportation Integrated Search

    2008-01-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by : the highway departments of Missouri, Iowa, Kansas and Nebraska, has supported an : accelerated pavement testing (APT) project to compare the performance of stabilized ...

  19. Initial Results of Accelerated Stress Testing on Single-Channel and Multichannel Drivers: Solid-State Lighting Technology Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This report is the first in a series of studies on accelerated stress testing (AST) of drivers used for SSL luminaires, such as downlights, troffers, and streetlights. A representative group of two-stage commercial driver products was exposed to an AST environment consisting of 75°C and 75% relative humidity (7575). These drivers were a mix of single-channel drivers (i.e., a single output current for one LED primary) and multichannel drivers (i.e., separate output currents for multiple LED primaries). This AST environment was chosen because previous testing on downlights with integrated drivers demonstrated that 38% of the sample population failed in lessmore » than 2,500 hours of testing using this method. In addition to AST test results, the performance of an SSL downlight product incorporating an integrated, multichannel driver during extended room temperature operational life (RTOL) testing is also reported. A battery of measurements was used to evaluate these products during accelerated testing, including full electrical characterization (i.e., power consumption, PF, total harmonic distortion [THD], and inrush current) and photometric characterization of external LED loads attached to the drivers (i.e., flicker performance and lumen maintenance).« less

  20. rf breakdown tests of mm-wave metallic accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2016-01-06

    In this study, we explore the physics and frequency-scaling of vacuum rf breakdowns at sub-THz frequencies. We present the experimental results of rf tests performed in metallic mm-wave accelerating structures. These experiments were carried out at the facility for advanced accelerator experimental tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. We compared the performances of metal structures made with copper and stainless steel. The rf frequency of the fundamental accelerating mode, propagating in the structures at the speed of light, varies from 115 to 140 GHz. The traveling wavemore » structures are 0.1 m long and composed of 125 coupled cavities each. We determined the peak electric field and pulse length where the structures were not damaged by rf breakdowns. We calculated the electric and magnetic field correlated with the rf breakdowns using the FACET bunch parameters. The wakefields were calculated by a frequency domain method using periodic eigensolutions. Such a method takes into account wall losses and is applicable to a large variety of geometries. The maximum achieved accelerating gradient is 0.3 GV/m with a peak surface electric field of 1.5 GV/m and a pulse length of about 2.4 ns.« less

  1. Accelerated in-vitro release testing methods for extended-release parenteral dosage forms.

    PubMed

    Shen, Jie; Burgess, Diane J

    2012-07-01

    This review highlights current methods and strategies for accelerated in-vitro drug release testing of extended-release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in-situ depot-forming systems and implants. Extended-release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, 'real-time' in-vitro release tests for these dosage forms are often run over a long time period. Accelerated in-vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in-vitro release methods using United States Pharmacopeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended-release parenteral dosage forms, along with the accelerated in-vitro release testing methods currently employed are discussed. Accelerated in-vitro release testing methods with good discriminatory ability are critical for quality control of extended-release parenteral products. Methods that can be used in the development of in-vitro-in-vivo correlation (IVIVC) are desirable; however, for complex parenteral products this may not always be achievable. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  2. Accelerated in vitro release testing methods for extended release parenteral dosage forms

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2012-01-01

    Objectives This review highlights current methods and strategies for accelerated in vitro drug release testing of extended release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in situ depot-forming systems, and implants. Key findings Extended release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, “real-time” in vitro release tests for these dosage forms are often run over a long time period. Accelerated in vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in vitro release methods using United States Pharmacopoeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended release parenteral dosage forms, along with the accelerated in vitro release testing methods currently employed are discussed. Conclusions Accelerated in vitro release testing methods with good discriminatory ability are critical for quality control of extended release parenteral products. Methods that can be used in the development of in vitro-in vivo correlation (IVIVC) are desirable, however for complex parenteral products this may not always be achievable. PMID:22686344

  3. Accelerated testing for studying pavement design and performance (FY 2002) : research summary.

    DOT National Transportation Integrated Search

    2004-01-01

    This report covers the Fiscal Year 2002 project conducted at the Accelerated Testing : Laboratory at Kansas State University. The project was selected and funded by the : Midwest States Accelerated Testing Pooled Fund Program, which includes Iowa, Ka...

  4. Speed Kills, Speed Thrills: Constraining and Enabling Accelerations in Academic Work-Life

    ERIC Educational Resources Information Center

    Vostal, Filip

    2015-01-01

    Intensification, speed of change and faster pace of life have recently emerged as significant issues in studies analysing the current academic climate. This article takes up the "social acceleration thesis" as a conceptual resource for capturing the relationship between the individual experience of time and the changing structure and…

  5. Solutions for acceleration measurement in vehicle crash tests

    NASA Astrophysics Data System (ADS)

    Dima, D. S.; Covaciu, D.

    2017-10-01

    Crash tests are useful for validating computer simulations of road traffic accidents. One of the most important parameters measured is the acceleration. The evolution of acceleration versus time, during a crash test, form a crash pulse. The correctness of the crash pulse determination depends on the data acquisition system used. Recommendations regarding the instrumentation for impact tests are given in standards, which are focused on the use of accelerometers as impact sensors. The goal of this paper is to present the device and software developed by authors for data acquisition and processing. The system includes two accelerometers with different input ranges, a processing unit based on a 32-bit microcontroller and a data logging unit with SD card. Data collected on card, as text files, is processed with a dedicated software running on personal computers. The processing is based on diagrams and includes the digital filters recommended in standards.

  6. Association of stressful life events with accelerated bone loss in older men: the Osteoporotic Fractures in Men (MrOS) Study

    PubMed Central

    Fink, Howard A.; Kuskowski, Michael A.; Cauley, Jane A.; Taylor, Brent C.; Schousboe, John T.; Cawthon, Peggy M.; Ensrud, Kristine E.

    2015-01-01

    Purpose/Introduction Prior studies suggest that stressful life events may increase adverse health outcomes, including falls and possibly fractures. The current study builds on these findings and examines whether stressful life events are associated with increased bone loss. Methods 4388 men aged ≥65 years in the Osteoporotic Fractures in Men study completed total hip bone mineral density (BMD) measures at baseline and visit 2, approximately 4.6 years later, and self-reported stressful life events data mid-way between baseline and visit 2, and at visit 2. We used linear regression to model the association of stressful life events with concurrent annualized total hip BMD loss, and log binomial regression or Poisson regression to model risk of concurrent accelerated BMD loss (>1 SD more than mean annualized change). Results 75.3% of men reported ≥1 type of stressful life event, including 43.3% with ≥2 types of stressful life events. Mean annualized BMD loss was −0.36% (SD 0.88) and 13.9% of men were categorized with accelerated BMD loss (about 5.7% or more total loss). Rate of annualized BMD loss increased with the number of types of stressful life events after adjustment for age (p<0.001), but not after multivariable adjustment (p=0.07). Multivariable-adjusted risk of accelerated BMD loss increased with the number of types of stressful life events (RR, 1.10 [95% CI, 1.04–1.16]) per increase of 1 type of stressful life event). Fracture risk was not significantly different between stressful life event-accelerated bone loss subgroups (p=0.08). Conclusions In these older men, stressful life events were associated with a small, dose-related increase in risk of concurrent accelerated hip bone loss. Low frequency of fractures limited assessment of whether rapid bone loss mediates any association of stressful life events with incident fractures. Future studies are needed to confirm these findings and to investigate the mechanism that may underlie this association

  7. High-Power Testing of 11.424-GHz Dielectric-Loaded Accelerating Structures

    NASA Astrophysics Data System (ADS)

    Gold, Steven; Gai, Wei

    2001-10-01

    Argonne National Laboratory has previously described the design, construction, and bench testing of an X-band traveling-wave accelerating structure loaded with a permittivity=20 dielectric (P. Zou et al., Rev. Sci. Instrum. 71, 2301, 2000.). We describe a new program to build a test accelerator using this structure. The accelerator will be powered by the high-power 11.424-GHz radiation from the magnicon facility at the Naval Research Laboratory ( O.A. Nezhevenko et al., Proc. PAC 2001, in press). The magnicon is expected to provide up to 30 MW from each of two WR-90 output waveguide arms in pulses of up to 1 microsecond duration, permitting tests up to a gradient of 40 MV/m. Still higher power pulses (100-500 MW) may be available at the output of an active pulse compressor driven by the magnicon ( A.L. Vikharev et al., Proc. 9th Workshop on Advanced Accelerator Concepts.).

  8. Life prediction for white OLED based on LSM under lognormal distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Jianping; Liu, Fang; Liu, Yu; Wu, Helen; Zhu, Wenqing; Wu, Wenli; Wu, Liang

    2012-09-01

    In order to acquire the reliability information of White Organic Light Emitting Display (OLED), three groups of OLED constant stress accelerated life tests (CSALTs) were carried out to obtain failure data of samples. Lognormal distribution function was applied to describe OLED life distribution, and the accelerated life equation was determined by Least square method (LSM). The Kolmogorov-Smirnov test was performed to verify whether the white OLED life meets lognormal distribution or not. Author-developed software was employed to predict the average life and the median life. The numerical results indicate that the white OLED life submits to lognormal distribution, and that the accelerated life equation meets inverse power law completely. The estimated life information of the white OLED provides manufacturers and customers with important guidelines.

  9. Investigation into Hydraulic Gear Pump Efficiencies during the First Few Hours of the Pumps’ Lives and a Comparative Study of Accelerated Life Test Methods on Hydraulic Fluid Power Gear Pumps. Parts 1 and 2.

    DTIC Science & Technology

    1979-11-12

    Interi THE FIRST FEW HOURS OF THEIR LIVES AND A COMPARATIV 3 Ep. 77 - 29 A STUDY OF ACCELERATED LIFE TEST METHODS ON HYDRAULIC 6 PEFORINOORG...Hydrau- ics and Pneumatics raqazine Designers Guide to Fluid Power Products. The results of this survey were later analyzed and served as the basis in...selected. The selection criterion is based on formulas which use instrument design features, calibration $7) data and accuracy needs. Once selected, the

  10. Pilot instrumentation of a Superpave test section at the Kansas Accelerated Testing laboratory

    DOT National Transportation Integrated Search

    2003-04-01

    Two Superpave test sections were constructed at the Kansas Accelerated Testing Laboratory (K-ATL) with 12.5 mm (2 in) nominal maximum size Superpave mixture (SM-2A) with varying percentages (15 and 30 percent) of river sand. A 150 kN (34 kip) tandem ...

  11. Real-time and accelerated outdoor endurance testing of solar cells

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Anagnostou, E.

    1977-01-01

    Real-time and accelerated outdoor endurance testing was performed on a variety of samples of interest to the National Photovoltaic Conversion Program. The real-time tests were performed at seven different sites and the accelerated tests were performed at one of those sites in the southwestern United States. The purpose of the tests were to help evaluate the lifetime of photovoltaic systems. Three types of samples were tested; transmission samples of possible cover materials, sub-modules constructed using these materials attached to solar cells, and solar cell modules produced by the manufacturers for the ERDA program. Results indicate that suitable cover materials are glass, FEP-A and PFA. Dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  12. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres.

    PubMed

    Andhariya, Janki V; Choi, Stephanie; Wang, Yan; Zou, Yuan; Burgess, Diane J; Shen, Jie

    2017-03-30

    The objective of the present study was to develop a discriminatory and reproducible accelerated release testing method for naltrexone loaded parenteral polymeric microspheres. The commercially available naltrexone microsphere product (Vivitrol ® ) was used as the testing formulation in the in vitro release method development, and both sample-and-separate and USP apparatus 4 methods were investigated. Following an in vitro drug stability study, frequent media replacement and addition of anti-oxidant in the release medium were used to prevent degradation of naltrexone during release testing at "real-time" (37°C) and "accelerated" (45°C), respectively. The USP apparatus 4 method was more reproducible than the sample-and-separate method. In addition, the accelerated release profile obtained using USP apparatus 4 had a shortened release duration (within seven days), and good correlation with the "real-time" release profile. Lastly, the discriminatory ability of the developed accelerated release method was assessed using compositionally equivalent naltrexone microspheres with different release characteristics. The developed accelerated USP apparatus 4 release method was able to detect differences in the release characteristics of the prepared naltrexone microspheres. Moreover, a linear correlation was observed between the "real-time" and accelerated release profiles of all the formulations investigated, suggesting that the release mechanism(s) may be similar under both conditions. These results indicate that the developed accelerated USP apparatus 4 method has the potential to be an appropriate fast quality control tool for long-acting naltrexone PLGA microspheres. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Design of Octupole Channel for Integrable Optics Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergey; Carlson, Kermit; Castellotti, Riccardo

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements onmore » maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.« less

  14. Methodology for Life Testing of Refractory Metal/Sodium Heat Pipes

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    The focus of this work was to establish an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. To accomplish this goal acceleration is required to compress 10 years of operational life into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Specific test series have been identi3ed, based on American Society for Testing and Materials (ASTM) specifications, to investigate long term corrosion rates. The refractory metal selected for demonstration purposes is a Molybdenum-44.5%Rhenium alloy formed by powder metallurgy. The heat pipe makes use of an annular crescent wick design formed by hot isostatic pressing of Molybdenum-Rhenium wire mesh. The heat pipes are filled using vacuum distillation and purity sampling is considered. Testing of these units is round-the-clock with 6-month destructive and non-destructive inspection intervals to identify the onset and level of corrosion. Non-contact techniques are employed for providing power to the evaporator (radio frequency induction heating at I to 5 kW per unit) and calorimetry at the condenser (static gas gap coupled water cooled calorimeter). The planned operating temperature range would extend from 1123 to 1323 K. Accomplishments prior to project cancellation included successful demonstration of the heat pipe wick fabrication technique, establishment of all engineering designs, baselined operational test requirements and procurement/assembly of supporting test hardware systems.

  15. Accelerated Testing of Polymeric Composites Using the Dynamic Mechanical Analyzer

    NASA Technical Reports Server (NTRS)

    Abdel-Magid, Becky M.; Gates, Thomas S.

    2000-01-01

    Creep properties of IM7/K3B composite material were obtained using three accelerated test methods at elevated temperatures. Results of flexural creep tests using the dynamic mechanical analyzer (DMA) were compared with results of conventional tensile and compression creep tests. The procedures of the three test methods are described and the results are presented. Despite minor differences in the time shift factor of the creep compliance curves, the DMA results compared favorably with the results from the tensile and compressive creep tests. Some insight is given into establishing correlations between creep compliance in flexure and creep compliance in tension and compression. It is shown that with careful consideration of the limitations of flexure creep, a viable and reliable accelerated test procedure can be developed using the DMA to obtain the viscoelastic properties of composites in extreme environments.

  16. Verification of mechanistic-empirical design models for flexible pavements through accelerated pavement testing.

    DOT National Transportation Integrated Search

    2014-08-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by the highway : departments of Kansas, Iowa, and Missouri, has supported an accelerated pavement testing (APT) project to : validate several models incorporated in the NCH...

  17. Accelerated pavement testing of low-volume paved roads with geocell reinforcement : [technical summary].

    DOT National Transportation Integrated Search

    2015-03-01

    The Midwest States Accelerated Pavement Testing Pooled-Fund Program, financed : by the highway departments of Kansas, Iowa, Missouri, and New York, has : supported an accelerated pavement testing (APT) project to study the rehabilitation : of low-vol...

  18. Fermilab | Science | Particle Accelerators | Advanced Superconducting Test

    Science.gov Websites

    Accelerators for science and society Particle Physics 101 Science of matter, energy, space and time How Technology (FAST) Facility is America's only test bed for cutting-edge, record high-intensity particle beams in the United States as a particle beam research facility based on superconducting radio-frequency

  19. Accelerated corrosion test for metal drainage pipes : final report.

    DOT National Transportation Integrated Search

    1987-06-01

    This study represents an attempt to develop an accelerated test which would assist the highway engineer in evaluating the usefulness of a new type of coated steel culvert. The test method was to be short in duration (in the order of days), and the re...

  20. 38 CFR 9.14 - Accelerated Benefits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accelerated Benefits. 9...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...

  1. 38 CFR 9.14 - Accelerated Benefits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accelerated Benefits. 9...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...

  2. 38 CFR 9.14 - Accelerated Benefits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accelerated Benefits. 9...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...

  3. 38 CFR 9.14 - Accelerated Benefits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accelerated Benefits. 9...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...

  4. 38 CFR 9.14 - Accelerated Benefits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accelerated Benefits. 9...' GROUP LIFE INSURANCE AND VETERANS' GROUP LIFE INSURANCE § 9.14 Accelerated Benefits. (a) What is an Accelerated Benefit? An Accelerated Benefit is a payment of a portion of your Servicemembers' Group Life...

  5. Metabolic acceleration and the evolution of human brain size and life history.

    PubMed

    Pontzer, Herman; Brown, Mary H; Raichlen, David A; Dunsworth, Holly; Hare, Brian; Walker, Kara; Luke, Amy; Dugas, Lara R; Durazo-Arvizu, Ramon; Schoeller, Dale; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Thompson, Melissa Emery; Shumaker, Robert W; Ross, Stephen R

    2016-05-19

    Humans are distinguished from the other living apes in having larger brains and an unusual life history that combines high reproductive output with slow childhood growth and exceptional longevity. This suite of derived traits suggests major changes in energy expenditure and allocation in the human lineage, but direct measures of human and ape metabolism are needed to compare evolved energy strategies among hominoids. Here we used doubly labelled water measurements of total energy expenditure (TEE; kcal day(-1)) in humans, chimpanzees, bonobos, gorillas and orangutans to test the hypothesis that the human lineage has experienced an acceleration in metabolic rate, providing energy for larger brains and faster reproduction without sacrificing maintenance and longevity. In multivariate regressions including body size and physical activity, human TEE exceeded that of chimpanzees and bonobos, gorillas and orangutans by approximately 400, 635 and 820 kcal day(-1), respectively, readily accommodating the cost of humans' greater brain size and reproductive output. Much of the increase in TEE is attributable to humans' greater basal metabolic rate (kcal day(-1)), indicating increased organ metabolic activity. Humans also had the greatest body fat percentage. An increased metabolic rate, along with changes in energy allocation, was crucial in the evolution of human brain size and life history.

  6. Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier

    NASA Astrophysics Data System (ADS)

    Gold, S. H.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Fliflet, A. W.; Lewis, D.

    2006-01-01

    The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to ˜8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.

  7. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species.

    PubMed

    Perkins, T Alex; Phillips, Benjamin L; Baskett, Marissa L; Hastings, Alan

    2013-08-01

    Populations on the edge of an expanding range are subject to unique evolutionary pressures acting on their life-history and dispersal traits. Empirical evidence and theory suggest that traits there can evolve rapidly enough to interact with ecological dynamics, potentially giving rise to accelerating spread. Nevertheless, which of several evolutionary mechanisms drive this interaction between evolution and spread remains an open question. We propose an integrated theoretical framework for partitioning the contributions of different evolutionary mechanisms to accelerating spread, and we apply this model to invasive cane toads in northern Australia. In doing so, we identify a previously unrecognised evolutionary process that involves an interaction between life-history and dispersal evolution during range shift. In roughly equal parts, life-history evolution, dispersal evolution and their interaction led to a doubling of distance spread by cane toads in our model, highlighting the potential importance of multiple evolutionary processes in the dynamics of range expansion. © 2013 John Wiley & Sons Ltd/CNRS.

  8. Ultra-Accelerated Natural Sunlight Exposure Testing Facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2004-11-23

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  9. Ultra-accelerated natural sunlight exposure testing facilities

    DOEpatents

    Lewandowski, Allan A.; Jorgensen, Gary J.

    2003-08-12

    A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

  10. Time-dependent diffusive acceleration of test particles at shocks

    NASA Astrophysics Data System (ADS)

    Drury, L. O'C.

    1991-07-01

    A theoretical description is developed for the acceleration of test particles at a steady plane nonrelativistic shock. The mean and the variance of the acceleration-time distribution are expressed analytically for the condition under which the diffusion coefficient is arbitrarily dependent on position and momentum. The formula for an acceleration rate with arbitrary spatial variation in the diffusion coefficient developed by Drury (1987) is supplemented by a general theory of time dependence. An approximation scheme is developed by means of the analysis which permits the description of the spectral cutoff resulting from the finite shock age. The formulas developed in the analysis are also of interest for analyzing the observations of heliospheric shocks made from spacecraft.

  11. Testing Gravity and Cosmic Acceleration with Galaxy Clustering

    NASA Astrophysics Data System (ADS)

    Kazin, Eyal; Tinker, J.; Sanchez, A. G.; Blanton, M.

    2012-01-01

    The large-scale structure contains vast amounts of cosmological information that can help understand the accelerating nature of the Universe and test gravity on large scales. Ongoing and future sky surveys are designed to test these using various techniques applied on clustering measurements of galaxies. We present redshift distortion measurements of the Sloan Digital Sky Survey II Luminous Red Galaxy sample. We find that when combining the normalized quadrupole Q with the projected correlation function wp(rp) along with cluster counts (Rapetti et al. 2010), results are consistent with General Relativity. The advantage of combining Q and wp is the addition of the bias information, when using the Halo Occupation Distribution framework. We also present improvements to the standard technique of measuring Hubble expansion rates H(z) and angular diameter distances DA(z) when using the baryonic acoustic feature as a standard ruler. We introduce clustering wedges as an alternative basis to the multipole expansion and show that it yields similar constraints. This alternative basis serves as a useful technique to test for systematics, and ultimately improve measurements of the cosmic acceleration.

  12. Accelerated Aging of the M119 Simulator

    NASA Technical Reports Server (NTRS)

    Bixon, Eric R.

    2000-01-01

    This paper addresses the storage requirement, shelf life, and the reliability of M119 Whistling Simulator. Experimental conditions have been determined and the data analysis has been completed for the accelerated testing of the system. A general methodology to evaluate the shelf life of the system as a function of the storage time, temperature, and relative humidity is discussed.

  13. Synthesis of Sine-on-Random vibration profiles for accelerated life tests based on fatigue damage spectrum equivalence

    NASA Astrophysics Data System (ADS)

    Angeli, Andrea; Cornelis, Bram; Troncossi, Marco

    2018-03-01

    In many real life environments, mechanical and electronic systems are subjected to vibrations that may induce dynamic loads and potentially lead to an early failure due to fatigue damage. Thus, qualification tests by means of shakers are advisable for the most critical components in order to verify their durability throughout the entire life cycle. Nowadays the trend is to tailor the qualification tests according to the specific application of the tested component, considering the measured field data as reference to set up the experimental campaign, for example through the so called "Mission Synthesis" methodology. One of the main issues is to define the excitation profiles for the tests, that must have, besides the (potentially scaled) frequency content, also the same damage potential of the field data despite being applied for a limited duration. With this target, the current procedures generally provide the test profile as a stationary random vibration specified by a Power Spectral Density (PSD). In certain applications this output may prove inadequate to represent the nature of the reference signal, and the procedure could result in an unrealistic qualification test. For instance when a rotating part is present in the system the component under analysis may be subjected to Sine-on-Random (SoR) vibrations, namely excitations composed of sinusoidal contributions superimposed to random vibrations. In this case, the synthesized test profile should preserve not only the induced fatigue damage but also the deterministic components of the environmental vibration. In this work, the potential advantages of a novel procedure to synthesize SoR profiles instead of PSDs for qualification tests are presented and supported by the results of an experimental campaign.

  14. Extended Life Testing of Duplex Ball Bearings

    NASA Technical Reports Server (NTRS)

    Mobley, Jeffrey; Robertson, Michael; Hodges, Charles

    2016-01-01

    Sierra Nevada Corporation’s Space Systems performed bearing life testing for the Scan Mirror Motor/Encoder Assembly (SMMA), part of the Scan Mirror Assembly on-board the Aerosol Polarimetry Sensor (APS) on the NASA Glory Spacecraft. The baseline bearing life test duration extended beyond the launch date for the Glory Spacecraft; a risk that the program was willing to undertake with the understanding that if any anomalies or failures occurred before the required life was achieved, then the mission objectives or operating profile could be modified on orbit to take those results into account. Even though the Glory Spacecraft failed to reach orbit during its launch in March of 2011, the bearing life testing was continued through a mutual understanding of value between Sierra Nevada Corporation and our customer; with a revised goal of testing to failure rather than completing a required number of life cycles. Life testing thus far has not only exceeded the original mission required life, but has also exceeded the published test data for Cumulative Degradation Factor (CDF) from NASA/CR-2009-215681. Many lessons were learned along the way regarding long life testing. The bearing life test has been temporarily suspended due to test support equipment issues.

  15. Capturing real-life forgetting in transient epileptic amnesia via an incidental memory test.

    PubMed

    Hoefeijzers, Serge; Zeman, Adam; Della Sala, Sergio; Dewar, Michaela

    2017-12-13

    Transient epileptic amnesia (TEA) is an epileptic syndrome characterized by recurrent, brief episodes of amnesia. Patients with TEA often complain of interictal (between attacks) retention deficits, characterised by an 'evaporation' of memories for recent events over days to weeks. Clinical tests of anterograde memory often fail to corroborate these complaints as TEA patients commonly perform within the normal range after the standard 10-30-min delay period. Modified laboratory tests that include a 1-3 week delay period frequently reveal clear evidence of 'accelerated long-term forgetting' (ALF). However, they are not used routinely and lack ecological validity. In the present study we examined whether 'real-life' ALF can be captured via a controlled incidental memory test in TEA patients. To this end, the experimenter told 27 TEA patients and 32 controls a well-rehearsed amusing story, apparently as a way of making light conversation before starting a set of research experiments. Without prior warning, the experimenter subsequently probed the participants' memory of this story via tests of free recall and forced choice recognition after 30 min or 1 week. After 30 min retention was comparable in TEA patients and controls. After 1 week TEA patients retained significantly less story material than controls, and significant ALF was revealed in the TEA patients in the recognition test. Our data show that ALF in a 'real-life' situation can occur even when standard memory tests indicate normal memory function. Moreover, our data suggest that incidental memory tests can capture real-life ALF, and that forced-choice recognition tests might be more sensitive than free recall tests for the detection of real-life ALF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Shelf-life prediction of canned "nasi uduk" using accelerated shelf-life test (ASLT) - Arrhenius model

    NASA Astrophysics Data System (ADS)

    Kurniadi, Muhamad; Salam, Nur; Kusumaningrum, Annisa; Nursiwi, Asri; Angwar, Mukhamad; Susanto, Agus; Nurhikmat, Asep; Triwiyono, Frediansyah, Andri

    2017-01-01

    "Nasi Uduk" is one of the Indonesian traditional food made from rice, steamed with coconut milk and seasoning. For optimizing shelf-life, canned "nasi uduk" for military and disaster-response ration, was packed using cylindrical cans of 72,63 × 53,04 mm (Ø × h) in size. One of the important aspects on quality assessment of preserved product was its rancidity. The aim of this research was to determine shelf-life of canned "nasi uduk" using ASLT method of Arrhenius model. Storage temperatures set up at 35, 45 and 55°C for 35 days. Optimization of sterilization process was conducted to achieve the optimum conditions of sterilization. Target lethality value (Fo), microorganism total plate count (TPC) and rancidity levels (TBA) were used as parameters in this research. The results showed that the optimum sterilization conditions were 121 °C for 20 minutes, TPC value of 9.5 × 101 CFU/ml and Fo value 4.14 minutes. Predicted shelf-life of canned "nasi uduk" was 9.6 months which was average TBA value still bellow of the critical point.

  17. Accelerated stress testing of amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Stoddard, W. G.; Davis, C. W.; Lathrop, J. W.

    1985-01-01

    A technique for performing accelerated stress tests of large-area thin a-Si solar cells is presented. A computer-controlled short-interval test system employing low-cost ac-powered ELH illumination and a simulated a-Si reference cell (seven individually bandpass-filtered zero-biased crystalline PIN photodiodes) calibrated to the response of an a-Si control cell is described and illustrated with flow diagrams, drawings, and graphs. Preliminary results indicate that while most tests of a program developed for c-Si cells are applicable to a-Si cells, spurious degradation may appear in a-Si cells tested at temperatures above 130 C.

  18. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  19. Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression.

    PubMed

    Kochunov, Peter; Glahn, David C; Rowland, Laura M; Olvera, Rene L; Winkler, Anderson; Yang, Yi-Hong; Sampath, Hemalatha; Carpenter, Will T; Duggirala, Ravindranath; Curran, Joanne; Blangero, John; Hong, L Elliot

    2013-03-01

    Elevated rate of aging-related biological and functional decline, termed "accelerated aging," is reported in patients with schizophrenia (SCZ) and major depressive disorder (MDD). We used diffusion tensor imaging derived fractional anisotropy (FA) as a biomarker of aging-related decline in white matter (WM) integrity to test the hypotheses of accelerated aging in SCZ and MDD. The SCZ cohort comprised 58 SCZ patients and 60 controls (aged 20-60 years). The MDD cohort comprised 136 MDD patients and 351 controls (aged 20-79 years). The main outcome measures were the diagnosis-by-age interaction on whole-brain-averaged WM FA values and FA values from 12 major WM tracts. Diagnosis-by-age interaction for the whole-brain average FA was significant for the SCZ (p = .04) but not the MDD (p = .80) cohort. Diagnosis-by-age interaction was nominally significant (p<.05) for five WM tracts for SCZ and for none of the tracts in the MDD cohort. Tract-specific heterochronicity of the onset of age-related decline in SCZ demonstrated strong negative correlations with the age-of-peak myelination and the rates of age-related decline obtained from normative sample (r =-.61 and-.80, p<.05, respectively). No such trends existed for MDD cohort. Cerebral WM showed accelerated aging in SCZ but not in MDD, suggesting some difference in the pathophysiology underlying their WM aging changes. Tract-specific heterochronicity of WM development modulated presentation of accelerated aging in SCZ: WM tracts that matured later in life appeared more sensitive to the pathophysiology of SCZ and demonstrated more susceptibility to disorder-related accelerated decline in FA values with age. This trend was not observed in MDD cohort. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression

    PubMed Central

    Kochunov, P.; Glahn, D.C.; Rowland, L.M.; Olvera, R.L.; Winkler, A; Yang, Y.H.; Sampath, H.; Carpenter, W.T.; Dugarrila, R.; Curran, J.; Blangero, J.; Hong, L.E.

    2012-01-01

    Introduction Elevated rate of aging-related biological and functional decline, termed accelerated aging, is reported in patients with schizophrenia (SCZ) and major depressive disorder (MDD). We used diffusion tensor imaging (DTI) derived fractional anisotropy (FA) as biomarkers of aging-related decline in white matter (WM) integrity to test the hypotheses of accelerated aging in SCZ and MDD. Methods The SCZ cohort was composed of 58/60 SCZ patients/controls (age=20–60years). MDD cohort was composed of 136/351 MDD patients/controls (age=20–79years). Main outcome measures were the diagnosis-by-age interaction on whole-brain-averaged WM FA values and FA values from twelve major WM tracts. Results Diagnosis-by-age interaction for the whole-brain average FA was significant for the SCZ (p=0.04) but not in MDD cohort (p=0.80). Diagnosis-by-age interaction was nominally significant (p<0.05) for five WM tracts for SCZ and for none of the tracts in the MDD cohort. Tract-specific heterochronicity of the onset of age-related decline in SCZ demonstrated strong negative correlations with the age-of- peak myelination and the rates of age-related decline obtained from normative sample (r=−0.61 and −0.80, p<0.05, respectively). No such trends existed for MDD cohort. Conclusion Cerebral WM showed accelerated aging in SCZ but not in MDD, suggesting some difference in the pathophysiology underlying their WM aging changes. Tract-specific heterochronicity of WM development modulated presentation of accelerated aging in SCZ: white matter tracts that matured later in life appeared more sensitive to the pathophysiology of SCZ and demonstrated more susceptibility to disorder-related accelerated decline in FA values with age. This trend was not observed in MDD cohort. PMID:23200529

  1. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  2. A new approach to accelerated drug-excipient compatibility testing.

    PubMed

    Sims, Jonathan L; Carreira, Judith A; Carrier, Daniel J; Crabtree, Simon R; Easton, Lynne; Hancock, Stephen A; Simcox, Carol E

    2003-01-01

    The purpose of this study was to develop a method of qualitatively predicting the most likely degradants in a formulation or probing specific drug-excipient interactions in a significantly shorter time frame than the typical 1 month storage testing. In the example studied, accelerated storage testing of a solid dosage form at 50 degrees C, the drug substance SB-243213-A degraded via the formation of two oxidative impurities. These impurities reached a level of 1% PAR after 3 months. Various stressing methods were examined to try to recreate this degradation and in doing so provide a practical and reliable method capable of predicting drug-excipient interactions. The technique developed was able to mimic the 1-month's accelerated degradation in just 1 hr. The method was suitable for automated analysis, capable of multisample stressing, and ideal for use in drug-excipient compatibility screening.

  3. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Modifications and additions to the present process of making CMOS microcircuits which are designed to provide protective layers on the chip to guard against moisture and contaminants were investigated. High and low temperature Si3N4 protective layers were tested on the CMOS microcircuits and no conclusive improvements in device reliability characteristics were evidenced.

  4. Fatigue-test acceleration with flight-by-flight loading and heating to simulate supersonic-transport operation

    NASA Technical Reports Server (NTRS)

    Imig, L. A.; Garrett, L. E.

    1973-01-01

    Possibilities for reducing fatigue-test time for supersonic-transport materials and structures were studied in tests with simulated flight-by-flight loading. In order to determine whether short-time tests were feasible, the results of accelerated tests (2 sec per flight) were compared with the results of real-time tests (96 min per flight). The effects of design mean stress, the stress range for ground-air-ground cycles, simulated thermal stress, the number of stress cycles in each flight, and salt corrosion were studied. The flight-by-flight stress sequences were applied to notched sheet specimens of Ti-8Al-1Mo-1V and Ti-6Al-4V titanium alloys. A linear cumulative-damage analysis accounted for large changes in stress range of the simulated flights but did not account for the differences between real-time and accelerated tests. The fatigue lives from accelerated tests were generally within a factor of two of the lives from real-time tests; thus, within the scope of the investigation, accelerated testing seems feasible.

  5. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 2; Temperature Stability

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Kaya, Taril; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. LHP's are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that in stationary tests the LHP operating temperature is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled. Results of this test program indicate that any change in the accelerating force will result in a chance in the LHP operating temperature through its influence on the fluid distribution in the evaporator, condenser and compensation chamber. However, the effect is not universal, rather it is a function of other test conditions. A steady, constant acceleration may result in an increase or decrease of the operating temperature, while a periodic spin will lead to a quasi-steady operating temperature over a sufficient time interval. In addition, an accelerating force may lead to temperature hysteresis and changes in the temperature oscillation. In spite of all these effects, the LHP continued to operate without any problems in all tests.

  6. Corrosion of High-Density Sintered Tungsten Alloys. Part 2. Accelerated Corrosion Testing

    DTIC Science & Technology

    1988-12-01

    REPORT MRL-R- 1145 CORROSION OF HIGH-DENSITY SINTERED TUNGSTEN ALLOYS PART 2: ACCELERATED CORROSION TESTING J.J. Batten and B.T. Moore I DTIC . *arit*fl...Commo,,wea°h 91 Avor,++.°_ DECEMBER 1988 012 rI DEPARTMENT OF DEFENCE MATERIALS RESEARCH LABORATORY REPORT MRL-R- 1145 CORROSION OF HIGH-DENSITY SINTERED...TUNGSTEN ALLOYS PART 2: ACCELERATED CORROSION TESTING J.J. Batten and B.T. Moore ABSTRACT As a consequence of corrosion during long-term storage in

  7. Toward a mechanistic understanding of the damage evolution of SnAgCu solder joints in accelerated thermal cycling test

    NASA Astrophysics Data System (ADS)

    Mahin Shirazi, Sam

    Accelerated thermal cycling (ATC) tests are the most commonly used tests for the thermo-mechanical performance assessment of microelectronics assemblies. Currently used reliability models have failed to incorporate the microstructural dependency of lead free solder joint behavior and its microstructure evolution during cycling. Thus, it is essential to have a mechanistic understanding of the effect of cycling parameters on damage evolution and failure of lead free solder joints in ATC. Recrystallization has been identified as the damage rate controlling mechanism in ATC. Usually it takes 1/3 of life for completion of recrystallization regardless of cycling parameters. Thus, the life of the solder joints can be predicted by estimating global recrystallization. The objective of the first part of the study was to examine whether the damage scenario applies in service is the same as the harsh thermal cycling tests (i.e. 0/100 °C and -40/125 °C) commonly used in industry. Microstructure analysis results on a variety of lead free solder SnAgCu assemblies subjected to the both harsh (0/100 °C) and mild (20/80 °C) ATC confirmed similar failure mechanism under the both testing conditions. Sn grain morphology (interlaced versus beach ball) has a significant effect on the thermo-mechanical performance (and thus the model) of the lead free solder joints. The longer thermal cycling lifetime observed in the interlaced solder joints subjected to the ATC compared to the beach ball structure was correlated to the different initial microstructure and the microstructure evolution during cycling. For the modeling proposes, the present study was focused on Sn-Ag-Cu solder joints with either a single Sn grain or beach ball structure. Microstructural analysis results of the simulated thermal cycling experiment revealed that, the life can be approximated as determined by the accumulation of a certain amount of work during the high temperature dwells. Finally the effect of precipitates

  8. Verification of mechanistic-empirical design models for flexible pavements through accelerated pavement testing : technical summary.

    DOT National Transportation Integrated Search

    2014-08-01

    Midwest States Accelerated Pavement Testing Pooled-Fund Program, financed by the : highway departments of Kansas, Iowa, and Missouri, has supported an accelerated : pavement testing (APT) project to validate several models incorporated in the NCHRP :...

  9. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  10. Impact of flavour solvent (propylene glycol or triacetin) on vanillin, 5-(hydroxymethyl)furfural, 2,4-decadienal, 2,4-heptadienal, structural parameters and sensory perception of shortcake biscuits over accelerated shelf life testing.

    PubMed

    Yang, Ni; Hort, Joanne; Linforth, Robert; Brown, Keith; Walsh, Stuart; Fisk, Ian D

    2013-11-15

    The influence of choice of flavour solvent, propylene glycol (PG) or triacetin (TA), was investigated during accelerated shelf life (ASL) testing of shortcake biscuits. Specifically, the differential effect on the stability of added vanillin, the natural baked marker compound 5-(hydroxymethyl)furfural (HMF), specific markers of oxidative rancidity (2,4-decadienal, 2,4-heptadienal), and the structural parameters of hardness and fracturability. Significantly more HMF was formed during baking of biscuits prepared with TA; these biscuits were also more stable to oxidative degradation and loss of vanillin during ageing than biscuits prepared with PG. Fresh TA biscuits were significantly more brittle than fresh PG biscuits. There was no impact of solvent choice on hardness. Sensory evaluation of hardness, vanilla flavour and oily off-note was tested during ASL testing. There was no significant impact of storage on sensory ratings for either the PG or TA biscuits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. 46 CFR 160.072-5 - Accelerated weathering test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... submersion in 5% by weight sodium chloride solution for 2 hours followed immediately by storage at 95% (±5... less than 24 hours. (d) The flag fails the accelerated weathering test if (1) After conditioning, the... bright red/orange color, (4) The disc and square images no longer meet the requirements of § 160.072-3(a...

  12. Battery life test using reconditioning

    NASA Technical Reports Server (NTRS)

    Sparks, R. H.

    1977-01-01

    A discussion is presented on nickel cadmium battery life tests using reconditioning and some comparative tests not using reconditioning. The discussion is aimed at the program application part of the testing. The goals of the program were to get an increased utilization out of the battery system in geosynchronous orbit. An attempt was made to push the depth of discharge operation up around 80 to 85 percent and the intent with the reconditioning program was to extend this type of utilization out towards a 10-year life and attune the voltage regulation.

  13. Modelling accelerated degradation data using Wiener diffusion with a time scale transformation.

    PubMed

    Whitmore, G A; Schenkelberg, F

    1997-01-01

    Engineering degradation tests allow industry to assess the potential life span of long-life products that do not fail readily under accelerated conditions in life tests. A general statistical model is presented here for performance degradation of an item of equipment. The degradation process in the model is taken to be a Wiener diffusion process with a time scale transformation. The model incorporates Arrhenius extrapolation for high stress testing. The lifetime of an item is defined as the time until performance deteriorates to a specified failure threshold. The model can be used to predict the lifetime of an item or the extent of degradation of an item at a specified future time. Inference methods for the model parameters, based on accelerated degradation test data, are presented. The model and inference methods are illustrated with a case application involving self-regulating heating cables. The paper also discusses a number of practical issues encountered in applications.

  14. Schooling in Times of Acceleration

    ERIC Educational Resources Information Center

    Buddeberg, Magdalena; Hornberg, Sabine

    2017-01-01

    Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…

  15. Development of an accelerated reliability test schedule for terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Prince, J. L.

    1981-01-01

    An accelerated test schedule using a minimum amount of tests and a minimum number of cells has been developed on the basis of stress test results obtained from more than 1500 cells of seven different cell types. The proposed tests, which include bias-temperature, bias-temperature-humidity, power cycle, thermal cycle, and thermal shock tests, use as little as 10 and up to 25 cells, depending on the test type.

  16. Development and evaluation of accelerated drug release testing methods for a matrix-type intravaginal ring.

    PubMed

    Externbrink, Anna; Eggenreich, Karin; Eder, Simone; Mohr, Stefan; Nickisch, Klaus; Klein, Sandra

    2017-01-01

    Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Accelerated fatigue testing of dentin-composite bond with continuously increasing load.

    PubMed

    Li, Kai; Guo, Jiawen; Li, Yuping; Heo, Young Cheul; Chen, Jihua; Xin, Haitao; Fok, Alex

    2017-06-01

    The aim of this study was to evaluate an accelerated fatigue test method that used a continuously increasing load for testing the dentin-composite bond strength. Dentin-composite disks (ϕ5mm×2mm) made from bovine incisor roots were subjected to cyclic diametral compression with a continuously increasingly load amplitude. Two different load profiles, linear and nonlinear with respect to the number of cycles, were considered. The data were then analyzed by using a probabilistic failure model based on the Weakest-Link Theory and the classical stress-life function, before being transformed to simulate clinical data of direct restorations. All the experimental data could be well fitted with a 2-parameter Weibull function. However, a calibration was required for the effective stress amplitude to account for the difference between static and cyclic loading. Good agreement was then obtained between theory and experiments for both load profiles. The in vitro model also successfully simulated the clinical data. The method presented will allow tooth-composite interfacial fatigue parameters to be determined more efficiently. With suitable calibration, the in vitro model can also be used to assess composite systems in a more clinically relevant manner. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Long life assurance study for manned spacecraft long life hardware. Volume 4: Special long life assurance studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Guidelines for the selection of equipment to be used for manned spacecraft in order to assure a five year maintenance-free service life were developed. A special study was conducted to determine the adequacy of the procedures used to determine the quality and effectiveness of various components. The subjects examined are: (1) temperature cycling for acceptance of electronic assemblies; (2) accelerated testing techniques; (3) electronic part screening techniques; (4) electronic part derating practices; (5) vibration life extension of printed circuit board assemblies; and (6) tolerance funnelling and test requirements.

  19. Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, Mike; Andrews, Richard; Carlson, Kermit

    2016-07-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development ofmore » a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.« less

  20. Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.; Elmore, R.; Kennedy, C.

    This research is to illustrate the use of statistical inference techniques in order to quantify the uncertainty surrounding reliability estimates in a step-stress accelerated degradation testing (SSADT) scenario. SSADT can be used when a researcher is faced with a resource-constrained environment, e.g., limits on chamber time or on the number of units to test. We apply the SSADT methodology to a degradation experiment involving concentrated solar power (CSP) mirrors and compare the results to a more traditional multiple accelerated testing paradigm. Specifically, our work includes: (1) designing a durability testing plan for solar mirrors (3M's new improved silvered acrylic "Solarmore » Reflector Film (SFM) 1100") through the ultra-accelerated weathering system (UAWS), (2) defining degradation paths of optical performance based on the SSADT model which is accelerated by high UV-radiant exposure, and (3) developing service lifetime prediction models for solar mirrors using advanced statistical inference. We use the method of least squares to estimate the model parameters and this serves as the basis for the statistical inference in SSADT. Several quantities of interest can be estimated from this procedure, e.g., mean-time-to-failure (MTTF) and warranty time. The methods allow for the estimation of quantities that may be of interest to the domain scientists.« less

  1. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 1; Start-up

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. They are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the first part of the experimental study, i.e. the effects of a centrifugal force on the LHP start-up. Tests were conducted by varying the heat load to the evaporator, sink temperature, magnitude and frequency of centrifugal force, and LHP orientation relative to the direction of the accelerating force. The accelerating force seems to have little effect on the loop start-up in terms of temperature overshoot and superheat at boiling incipience. Changes in these parameters seem to be stochastic with or without centrifugal accelerating forces. The LHP started successfully in all tests.

  2. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    PubMed

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Disparity between online and offline tests in accelerated aging tests of LED lamps under electric stress.

    PubMed

    Wang, Yao; Jing, Lei; Ke, Hong-Liang; Hao, Jian; Gao, Qun; Wang, Xiao-Xun; Sun, Qiang; Xu, Zhi-Jun

    2016-09-20

    The accelerated aging tests under electric stress for one type of LED lamp are conducted, and the differences between online and offline tests of the degradation of luminous flux are studied in this paper. The transformation of the two test modes is achieved with an adjustable AC voltage stabilized power source. Experimental results show that the exponential fitting of the luminous flux degradation in online tests possesses a higher fitting degree for most lamps, and the degradation rate of the luminous flux by online tests is always lower than that by offline tests. Bayes estimation and Weibull distribution are used to calculate the failure probabilities under the accelerated voltages, and then the reliability of the lamps under rated voltage of 220 V is estimated by use of the inverse power law model. Results show that the relative error of the lifetime estimation by offline tests increases as the failure probability decreases, and it cannot be neglected when the failure probability is less than 1%. The relative errors of lifetime estimation are 7.9%, 5.8%, 4.2%, and 3.5%, at the failure probabilities of 0.1%, 1%, 5%, and 10%, respectively.

  4. Accelerated Testing of UH-60 Viscous Bearings for Degraded Grease Fault

    NASA Technical Reports Server (NTRS)

    Dykas, Brian; Hood, Adrian; Krantz, Timothy; Klemmer, Marko

    2015-01-01

    An accelerated aging investigation of critical aviation bearings lubricated with MIL-PRF- 81322 grease was conducted to derive an understanding of the mechanisms of grease degradation and loss of lubrication over time. The current study focuses on UH-60 Black Hawk viscous damper bearings supporting the tail rotor driveshaft, which were subjected to more than 5800 hours of testing in a heated environment to accelerate the deterioration of the grease. The mechanism of grease degradation is a reduction in the oil/thickener ratio rather than the expected chemical degradation of grease constituents. Over the course of testing, vibration and temperature monitoring of bearings was conducted and trends for failing bearings are presented.

  5. Characterization of wear debris generated in accelerated rolling-element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1978-01-01

    A ferrographic analysis was used to determine the types and quantities of wear debris generated during accelerated rolling contact fatigue tests. The five-ball rolling contact fatigue tester was used. Ball specimens were made of a corrosion resistant, high-temperature bearing steel. The lubricant was a superrefined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear debris were observed: (1) normal rubbing wear particles, (2) fatigue microspall particles, (3) spheres, and (4) friction polymer deposits. The characterization of wear debris as a function of time was of limited use in predicting fatigue failures in these accelerated tests.

  6. Update on lifetime tests results and analysis carried out on Thales Cryogenics integral coolers (RM family)

    NASA Astrophysics Data System (ADS)

    Cauquil, Jean-Marc; Martin, Jean-Yves; Bruins, Peter; Benschop, A. A. J.

    2003-01-01

    The life time tests realised on the serial production of Rotary Mmonoblock RM2 coolers show a measured MTTF of 4900 hours. The conventional test profile applied to these coolers is representative of operation in typical application. The duration of such life time tests is very long. The results of a design change and its impact on MTTF are available only several months after the assembly of the prototypes. We decided to develop a test method in order to reduce the duration of these life time tests. The principle is to define a test protocol easy to implement, more severe than typical application profile in order to accelerate life time tests. The accelerated test profile was defined and tested successfully. This new technique allows us to reduce life time tests costs and duration and thus the costs involved. As a consequence, we decided to have a screening of our production with this accelerated test. This allows us to master continuously the quality of our serial products and to collect additional data. This paper presents the results of life time tests performed on RM2 coolers according to the conventional and accelerated test profiles as well as the first results on the new RM2 design which show a calculated MTTF of 10000 hours.

  7. Accounting for measurement error in log regression models with applications to accelerated testing.

    PubMed

    Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M

    2018-01-01

    In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.

  8. Accelerated radiation damage test facility using a 5 MV tandem ion accelerator

    NASA Astrophysics Data System (ADS)

    Wady, P. T.; Draude, A.; Shubeita, S. M.; Smith, A. D.; Mason, N.; Pimblott, S. M.; Jimenez-Melero, E.

    2016-01-01

    We have developed a new irradiation facility that allows to perform accelerated damage tests of nuclear reactor materials at temperatures up to 400 °C using the intense proton (<100 μA) and heavy ion (≈10 μA) beams produced by a 5 MV tandem ion accelerator. The dedicated beam line for radiation damage studies comprises: (1) beam diagnosis and focusing optical components, (2) a scanning and slit system that allows uniform irradiation of a sample area of 0.5-6 cm2, and (3) a sample stage designed to be able to monitor in-situ the sample temperature, current deposited on the sample, and the gamma spectrum of potential radio-active nuclides produced during the sample irradiation. The beam line capabilities have been tested by irradiating a 20Cr-25Ni-Nb stabilised stainless steel with a 3 MeV proton beam to a dose level of 3 dpa. The irradiation temperature was 356 °C, with a maximum range in temperature values of ±6 °C within the first 24 h of continuous irradiation. The sample stage is connected to ground through an electrometer to measure accurately the charge deposited on the sample. The charge can be integrated in hardware during irradiation, and this methodology removes uncertainties due to fluctuations in beam current. The measured gamma spectrum allowed the identification of the main radioactive nuclides produced during the proton bombardment from the lifetimes and gamma emissions. This dedicated radiation damage beam line is hosted by the Dalton Cumbrian Facility of the University of Manchester.

  9. Evaluating weather factors and material response during outdoor exposure to determine accelerated test protocols for predicting service life

    Treesearch

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2005-01-01

    To develop service life prediction methods for the study of sealants, a fully instrumented weather station was installed at an outdoor test site near Madison, WI. Temperature, relative humidiy, rainfall, ultraviolet (UV) radiation at 18 wavelengths, and wind speed and direction are being continuously measured and stored. The weather data can be integrated over time to...

  10. Combined Mini-Cylex & Disk Acceleration Tests in Type K Copper.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maines, Warren Russell; Kittell, David E.; Hobbs, Michael L.

    We combined the miniature cylinder expansion test (Mini-Cylex), with the Disk Acceleration Test (DAX) using Type K copper, Picatinny Liquid Explosive, and photonic Doppler velocimetry. We estimated the CJ state using plate reverberation methods at the test cap. We extracted velocities at 2, 7, and 10 volume expansions to fit Jones-Wilkins-Lee Equation of State at the tube wall. And we estimated Gurney velocity both at the test cap and tube wall. Our experiments and simulations are within expected uncertainty. The test and the analysis effectively reduce costs while keeping similar fidelity compared with more expensive tests.

  11. NSTAR Extended Life Test Discharge Chamber Flake Analysis

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Karniotis, Christina A.

    2005-01-01

    The Extended Life Test (ELT) of the NASA Solar Electric Propulsion Technology Readiness (NSTAR) ion thruster was concluded after 30,352 hours of operation. The ELT was conducted using the Deep Space 1 (DS1) back-up flight engine, a 30 cm diameter xenon ion thruster. Post-test inspection of the ELT engine revealed numerous contaminant flakes distributed over the bottom of the cylindrical section of the anode within the discharge chamber (DC). Extensive analyses were conducted to determine the source of the particles, which is critical to the understanding of degradation mechanisms of long life ion thruster operation. Analyses included: optical microscopy (OM) and particle length histograms, field emission scanning electron microscopy (FESEM) combined with energy dispersive spectroscopy (EDS), and atomic oxygen plasma exposure tests. Analyses of the particles indicate that the majority of the DC flakes consist of a layered structure, typically with either two or three layers. The flakes comprising two layers were typically found to have a molybdenum-rich (Mo-rich) layer on one side and a carbon-rich (C-rich) layer on the other side. The flakes comprising three layers were found to be sandwich-like structures with Mo-rich exterior layers and a C-rich interior layer. The presence of the C-rich layers indicates that these particles were produced by sputter deposition build-up on a surface external to the discharge chamber from ion sputter erosion of the graphite target in the test chamber. This contaminant layer became thick enough that particles spalled off, and then were electro-statically attracted into the ion thruster interior, where they were coated with Mo from internal sputter erosion of the screen grid and cathode components. Atomic oxygen tests provided evidence that the DC chamber flakes are composed of a significant fraction of carbon. Particle size histograms further indicated that the source of the particles was spalling of carbon flakes from downstream

  12. Accelerated Strength Testing of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  13. An Accelerated Method for Testing Soldering Tendency of Core Pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Qingyou; Xu, Hanbing; Ried, Paul

    2010-01-01

    An accelerated method for testing die soldering has been developed. High intensity ultrasonic vibrations has been used to simulate the die casting conditions such as high pressure and high impingement speed of molten metal on the pin. Soldering tendency of steels and coated pins has been examined. The results indicate that in the low carbon steel/Al system, the onset of soldering is 60 times faster with ultrasonic vibration than that without ultrasonic vibration. In the H13/A380 system, the onset of soldering reaction is accelerated to 30-60 times. Coating significantly reduces the soldering tendency of the core pins.

  14. Applying an overstress principle in accelerated testing of absorbing mechanisms

    NASA Astrophysics Data System (ADS)

    Tsyss, V. G.; Sergaeva, M. Yu; Sergaev, A. A.

    2018-04-01

    The relevance of using overstress test as a forced one to determine the pneumatic absorber lifespan was studied. The obtained results demonstrated that at low load overstress the relative error for the absorber lifespan evaluation is no more than 3%. This means that the test results spread has almost no effect on the lifespan evaluation, and this effect is several times less than that at high load overstress tests. Accelerated testing of absorbers with low load overstress is more acceptable since the relative error for the lifespan evaluation is negligible.

  15. Electron Lens Construction for the Integrable Optics Test Accelerator at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGee, Mike; Carlson, Kermit; Nobrega, Lucy

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. Construction of an electron lens for IOTA is necessary for both electron and proton operation. Components required for the Electron Lens design include; a 0.8 T conventional water-cooled main solenoid, and magnetic bending and focusing elements. The foundation of the design relies on repurposing the Fermilab Tevatron Electron Lens II (TELII)more » gun and collector under ultra-high vacuum (UHV) conditions.« less

  16. Degradation mechanisms and accelerated testing in PEM fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borup, Rodney L; Mukundan, Rangachary

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise frommore » component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties

  17. Experimental evaluation of the Battelle accelerated test design for the solar array at Mead, Nebraska

    NASA Technical Reports Server (NTRS)

    Frickland, P. O.; Repar, J.

    1982-01-01

    A previously developed test design for accelerated aging of photovoltaic modules was experimentally evaluated. The studies included a review of relevant field experience, environmental chamber cycling of full size modules, and electrical and physical evaluation of the effects of accelerated aging during and after the tests. The test results indicated that thermally induced fatigue of the interconnects was the primary mode of module failure as measured by normalized power output. No chemical change in the silicone encapsulant was detectable after 360 test cycles.

  18. Testing Done for Lorentz Force Accelerators and Electrodeless Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Gilland, James H.; Arrington, Lynn A.; Kamhawi, Hani

    2004-01-01

    The NASA Glenn Research Center is developing Lorentz force accelerators and electrodeless plasma propulsion for a wide variety of space applications. These applications range from precision control of formation-flying spacecraft to primary propulsion for very high power interplanetary spacecraft. The specific thruster technologies being addressed are pulsed plasma thrusters, magnetoplasmadynamic thrusters, and helicon-electron cyclotron resonance acceleration thrusters. The pulsed plasma thruster mounted on the Earth Observing-1 spacecraft was operated successfully in orbit in 2002. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. Recent on-orbit operations have focused on extended operations to add flight operation time to the total accumulated thruster life. The results of the experiments pave the way for electric propulsion applications on future Earth-imaging satellites.

  19. An accelerated test design for use with synchronous orbit. [on Ni-Cd cell degradation behavior

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.; Vasanth, K. L.

    1980-01-01

    The Naval Weapons Support Center at Crane, Indiana has conducted a large scale accelerated test of 6.0 Ah Ni-Cd cells. Data from the Crane test have been used to develop an equation for the description of Ni-Cd cell behavior in geosynchronous orbit. This equation relates the anticipated time to failure for a cell in synchronous orbit to temperature and overcharge rate sustained by the cell during the light period. A test design is suggested which uses this equation for setting test parameters for future accelerated testing.

  20. Lifetime prediction and reliability estimation methodology for Stirling-type pulse tube refrigerators by gaseous contamination accelerated degradation testing

    NASA Astrophysics Data System (ADS)

    Wan, Fubin; Tan, Yuanyuan; Jiang, Zhenhua; Chen, Xun; Wu, Yinong; Zhao, Peng

    2017-12-01

    Lifetime and reliability are the two performance parameters of premium importance for modern space Stirling-type pulse tube refrigerators (SPTRs), which are required to operate in excess of 10 years. Demonstration of these parameters provides a significant challenge. This paper proposes a lifetime prediction and reliability estimation method that utilizes accelerated degradation testing (ADT) for SPTRs related to gaseous contamination failure. The method was experimentally validated via three groups of gaseous contamination ADT. First, the performance degradation model based on mechanism of contamination failure and material outgassing characteristics of SPTRs was established. Next, a preliminary test was performed to determine whether the mechanism of contamination failure of the SPTRs during ADT is consistent with normal life testing. Subsequently, the experimental program of ADT was designed for SPTRs. Then, three groups of gaseous contamination ADT were performed at elevated ambient temperatures of 40 °C, 50 °C, and 60 °C, respectively and the estimated lifetimes of the SPTRs under normal condition were obtained through acceleration model (Arrhenius model). The results show good fitting of the degradation model with the experimental data. Finally, we obtained the reliability estimation of SPTRs through using the Weibull distribution. The proposed novel methodology enables us to take less than one year time to estimate the reliability of the SPTRs designed for more than 10 years.

  1. Intermediate Temperature Fluids Life Tests - Theory

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Sarraf, David B.; Locci, Ivan E.; Anderson, William G.

    2008-01-01

    There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 750 K, including space nuclear power system radiators, and high temperature electronics cooling. Potential working fluids include organic fluids, elements, and halides, with halides being the least understood, with only a few life tests conducted. Potential envelope materials for halide working fluids include pure aluminum, aluminum alloys, commercially pure (CP) titanium, titanium alloys, and corrosion resistant superalloys. Life tests were conducted with three halides (AlBr3, SbBr3, and TiCl4) and water in three different envelopes: two aluminum alloys (Al-5052, Al-6061) and Cp-2 titanium. The AlBr3 attacked the grain boundaries in the aluminum envelopes, and formed TiAl compounds in the titanium. The SbBr3 was incompatible with the only envelope material that it was tested with, Al-6061. TiCl4 and water were both compatible with CP2-titanium. A theoretical model was developed that uses electromotive force differences to predict the compatibility of halide working fluids with envelope materials. This theory predicts that iron, nickel, and molybdenum are good envelope materials, while aluminum and titanium halides are good working fluids. The model is in good agreement with results form previous life tests, as well as the current life tests.

  2. An accelerated stress testing program for determining the reliability sensitivity of silicon solar cells to encapsulation and metallization systems

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Davis, C. W.; Royal, E.

    1982-01-01

    The use of accelerated testing methods in a program to determine the reliability attributes of terrestrial silicon solar cells is discussed. Different failure modes are to be expected when cells with and without encapsulation are subjected to accelerated testing and separate test schedules for each are described. Unencapsulated test cells having slight variations in metallization are used to illustrate how accelerated testing can highlight different diffusion related failure mechanisms. The usefulness of accelerated testing when applied to encapsulated cells is illustrated by results showing that moisture related degradation may be many times worse with some forms of encapsulation than with no encapsulation at all.

  3. Accelerating Universe from Gravitational Leakage into Extra Dimensions: Testing with Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Zhu, Zong-Hong; Alcaniz, Jailson S.

    2005-02-01

    There is mounting observational evidence that the expansion of our universe is undergoing an acceleration. A dark energy component has usually been invoked as the most feasible mechanism for the acceleration. However, it is desirable to explore alternative possibilities motivated by particle physics before adopting such an untested entity. In this work, we focus our attention on an acceleration mechanism arising from gravitational leakage into extra dimensions. We test this scenario with high-z Type Ia supernovae compiled by Tonry and coworkers and recent measurements of the X-ray gas mass fractions in clusters of galaxies published by Allen and coworkers. A combination of the two databases gives, at a 99% confidence level, Ωm=0.29+0.04-0.02, Ωrc=0.21+/-0.08, and Ωk=-0.36+0.31-0.35, indicating a closed universe. We then constrain the model using the test of the turnaround redshift, zq=0, at which the universe switches from deceleration to acceleration. We show that, in order to explain that acceleration happened earlier than zq=0=0.6 within the framework of gravitational leakage into extra dimensions, a low matter density, Ωm<0.27, or a closed universe is necessary.

  4. Accelerated Physical Stability Testing of Amorphous Dispersions.

    PubMed

    Mehta, Mehak; Suryanarayanan, Raj

    2016-08-01

    The goal was to develop an accelerated physical stability testing method of amorphous dispersions. Water sorption is known to cause plasticization and may accelerate drug crystallization. In an earlier investigation, it was observed that both the increase in mobility and decrease in stability in amorphous dispersions was explained by the "plasticization" effect of water (Mehta et al. Mol. Pharmaceutics 2016, 13 (4), 1339-1346). In this work, the influence of water concentration (up to 1.8% w/w) on the correlation between mobility and crystallization in felodipine dispersions was investigated. With an increase in water content, the α-relaxation time as well as the time for 1% w/w felodipine crystallization decreased. The relaxation times of the systems, obtained with different water concentration, overlapped when the temperature was scaled (Tg/T). The temperature dependencies of the α-relaxation time as well as the crystallization time were unaffected by the water concentration. Thus, the value of the coupling coefficient, up to a water concentration of 1.8% w/w, was approximately constant. Based on these findings, the use of "water sorption" is proposed to build predictive models for crystallization in slow crystallizing dispersions.

  5. High Power RF Testing of A 3-Cell Superconducting Traveling Wave Accelerating Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanareykin, Alex; Kostin, Romna; Avrakhov, Pavel

    Euclid Techlabs has completed the Phase II SBIR project, entitled “High Power RF Testing of a 3-Cell Superconducting Traveling Wave Accelerating Structure” under Grant #DE-SC0006300. In this final technical report, we summarize the major achievements of Phase I of the project and review the details of Phase II of the project. The accelerating gradient in a superconducting structure is limited mainly by quenching, i.e., by the maximum surface RF magnetic field. Various techniques have been developed to increase the gradient. A traveling wave accelerating SC structure with a feedback waveguide was suggested to allow an increased transit time factor andmore » ultimately, a maximum gradient that is 22%-24% higher than in the best of the time standing wave SRF cavity solution. The proposed structure has an additional benefit in that it can be fabricated much longer than the standing wave ones that are limited by the field flatness factor. Taken together, all of these factors will result in a significant overall length and, correspondingly cost reduction of the SRF based linear collider ILC or SRF technology based FELs. In Phase I of this project, a 3-cell L-band SC traveling wave cavity was designed. Cavity shape, surface field ratios, inter-cell coupling coefficients, accelerating field flatness have been reviewed with the analysis of tuning issues. Moreover, the technological aspects of SC traveling wave accelerating structure fabrication have been studied. As the next step in the project, the Phase II experimental program included engineering design, manufacturing, surface processing and high gradient testing. Euclid Techlabs, LLC contracted AES, Inc. to manufacture two niobium cavities. Euclid Techlabs cold tested traveling wave regime in the cavity, and the results showed very good agreement with mathematical model specially developed for superconducting traveling wave cavity performance analysis. Traveling wave regime was adjusted by amplitude and phase

  6. Long Life Nickel Electrodes for a Nickel-hydrogen Cell: Cycle Life Tests

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1984-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, cycle life tests of nickel electrodes were carried out in Hi/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45-minute low earth orbit cycle regime at 80% depth-of-discharge. The results show that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength did not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. The best plaque type appears to be one which is made of INCO nickel powder type 287 and has a median pore size of 13 micron.

  7. Long life nickel electrodes for a nickel-hydrogen cell: Cycle life tests

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, the cycle life of nickel electrodes was tested in Ni/H2 boiler plate cells. A 19 test cell matrix was made of various nickel electrode designs including three levels each of plaque mechanical strength, median pore size of the plaque, and active material loading. Test cells were cycled to the end of their life (0.5v) in a 45 minute low Earth orbit cycle regime at 80% depth-of-discharge. It is shown that the active material loading level affects the cycle life the most with the optimum loading at 1.6 g/cc void. Mechanical strength does not affect the cycle life noticeably in the bend strength range of 400 to 700 psi. It is found that the best plaque is made of INCO nickel powder type 287 and has median pore size of 13 micron.

  8. NEXIS Reservoir Cathode 2000 Hour Life Test

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason; Schneider, Todd; Polk, Jay; Goebel, Dan; Ohlinger, Wayne; Hill, D. Norm

    2004-01-01

    The current design of the Nuclear Electric Xenon Ion System (NEXIS) employs a reservoir cathode as both the discharge and neutralizer cathode to meet the 10 yr thruster design life. The main difference between a reservoir cathode and a conventional discharge cathode is the source material (barium-containing compound) is contained within a reservoir instead of in an impregnated insert in the hollow tube. However, reservoir cathodes do not have much life test history associated with them. In order to demonstrate the feasibility of using a reservoir cathode as an integral part of the NEXIS ion thruster, a 2000 hr life test was performed. Several proof-of-concept (POC) reservoir cathodes were built early in the NEXIS program to conduct performance testing as well as life tests. One of the POC cathodes was sent to Marshall Space Flight Center (MSFC) where it was tested for 2000 hrs in a vacuum chamber. The cathode was operated at the NEXIS design point of 25 A discharge current and a xenon flow rate of 5.5 sccm during the 2000 hr test. The cathode performance parameters, including discharge current, discharge voltage, keeper current; keeper voltage, and flow rate were monitored throughout test. Also, the temperature upstream of cathode heater, the temperature downstream of the cathode heater, and the temperature of the orifice plate were monitored throughout the life of the test. The results of the 2000 hr test will be described in this paper. Included in the results will be time history of discharge current, discharge voltage, and flow rate. Also, a time history of the cathode temperature will be provided.

  9. Reliability and Failure Modes of Solid-State Lighting Electrical Drivers Subjected to Accelerated Aging

    DOE PAGES

    Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn

    2015-02-19

    An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheldmore » LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.« less

  10. Combined Mini-Cylex & Disk Acceleration Tests in Type K Copper

    DOE PAGES

    Maines, Warren Russell; Kittell, David E.; Hobbs, Michael L.

    2018-04-16

    In this work, we combined the miniature cylinder expansion test (Mini-Cylex), with the Disk Acceleration Test (DAX) using Type K copper, Picatinny Liquid Explosive, and photonic Doppler velocimetry. We estimated the CJ state using plate reverberation methods at the test cap. We extracted velocities at 2, 7, and 10 volume expansions to fit Jones-Wilkins-Lee Equation of State and estimated Gurney velocity at the tube wall. The test also provides an additional method to estimate reaction products Hugoniot through knowledge of the copper test cap. Our experiments and simulations are within expected uncertainty. Lastly, the test and the analysis effectively reducemore » costs while keeping or increasing fidelity.« less

  11. Combined Mini-Cylex & Disk Acceleration Tests in Type K Copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maines, Warren Russell; Kittell, David E.; Hobbs, Michael L.

    In this work, we combined the miniature cylinder expansion test (Mini-Cylex), with the Disk Acceleration Test (DAX) using Type K copper, Picatinny Liquid Explosive, and photonic Doppler velocimetry. We estimated the CJ state using plate reverberation methods at the test cap. We extracted velocities at 2, 7, and 10 volume expansions to fit Jones-Wilkins-Lee Equation of State and estimated Gurney velocity at the tube wall. The test also provides an additional method to estimate reaction products Hugoniot through knowledge of the copper test cap. Our experiments and simulations are within expected uncertainty. Lastly, the test and the analysis effectively reducemore » costs while keeping or increasing fidelity.« less

  12. Estimation of shelf life of wikau maombo brownies cake using Accelerated Shelf Life Testing (ASLT) method with Arrhenius model

    NASA Astrophysics Data System (ADS)

    Wahyuni, S.; Holilah; Asranudin; Noviyanti

    2018-02-01

    The shelf life of brownies cake made from wikau maombo flour was predicted by ASLT method through the Arrhenius model. The aim of this study was to estimate the shelf life of brownies cake made from wikau maombo flour. The storage temperature of brownies cake was carried out at 20°C, 30°C and 45°C. The results showed that TBA (Thio Barbaturic Acid) number of brownies cake decreased as the storage temperature increase. Brownies stored at 20°C and 30°C were overgrown with mold on the storage time of six days. Brownies product (WT0 and WT1) had shelf life at 40°C approximately six and fourteen days, respectively. Brownies made from wikau maombo and wheat flour (WT1) was the best product with had the longest of shelf life about fourteen days.

  13. Simulation of 20-year deterioration of acrylic IOLs using severe accelerated deterioration tests.

    PubMed

    Kawai, Kenji; Hayakawa, Kenji; Suzuki, Takahiro

    2012-09-20

    To investigate IOL deterioration by conducting severe accelerated deterioration testing of acrylic IOLs. Department of Ophthalmology, Tokai University School of Medicine Methods: Severe accelerated deterioration tests performed on 7 types of acrylic IOLs simulated 20 years of deterioration. IOLs were placed in a screw tube bottle containing ultra-pure water and kept in an oven (100°C) for 115 days. Deterioration was determined based the outer appearance of the IOL in water and under air-dried conditions using an optical microscope. For accelerated deterioration of polymeric material, the elapse of 115 days was considered to be equivalent to 20 years based on the Arrhenius equation. All of the IOLs in the hydrophobic acrylic group except for AU6 showed glistening-like opacity. The entire optical sections of MA60BM and SA60AT became yellowish white in color. Hydrophilic acrylic IOL HP60M showed no opacity at any of the time points examined. Our data based on accelerated testing showed differences in water content to play a major role in transparency. There were differences in opacity among manufacturers. The method we have used for determining the relative time of IOL deterioration might not represent the exact clinical setting, but the appearance of the materials would presumably be very similar to that seen in patients.

  14. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Shastry, Rohit

    2016-01-01

    A Long Duration Test (LDT) was initiated in June 2005 as a part of NASA's Evolutionary Xenon Thruster (NEXT) service life validation approach. Testing was voluntarily terminated in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse. The post-test inspection objectives for the ion optics were derived from the original NEXT LDT test objectives, such as service life model validation, and expanded to encompass other goals that included verification of in situ measurements, test issue root causes, and past design changes. The ion optics cold grid gap had decreased only by an average of 7% of pretest center grid gap, so efforts to stabilize NEXT grid gap were largely successful. The upstream screen grid surface exhibited a chamfered erosion pattern. Screen grid thicknesses were = 86% of the estimated pretest thickness, indicating that the screen grid has substantial service life remaining. Deposition was found on the screen aperture walls and downstream surfaces that was primarily composed of grid material and back-sputtered carbon, and this deposition likely caused the minor decreases in screen grid ion transparency during the test. Groove depths had eroded through up to 35% of the accelerator grid thickness. Minimum accelerator aperture diameters increased only by about 5-7% of the pretest values and downstream surface diameters increased by about 24-33% of the pretest diameters. These results suggest that increasing the accelerator aperture diameters, improving manufacturing tolerances, and masking down the perforated diameter to 36 cm were successful in reducing the degree of accelerator aperture erosion at larger radii.

  15. Sensitization to Rubber Accelerators in Northeastern Italy: The Triveneto Patch Test Database.

    PubMed

    Buttazzo, Silvia; Prodi, Andrea; Fortina, Anna Belloni; Corradin, Maria Teresa; Larese Filon, Francesca

    2016-01-01

    Natural and synthetic rubbers containing rubber accelerators are well-known causes of occupational skin disease. Allergic contact dermatitis caused by rubber gloves is frequent and has almost exclusively been attributed to contact sensitization to accelerators. This study aimed to evaluate the frequency of rubber accelerators sensitization in the population living in northeastern Italy, to find time trend and a correlation with occupations, and to investigate co-sensitization between rubber accelerators. A population of 23,774 subjects was patch tested in 6 cities in northeastern Italy in the years 1996 to 2012 using carba mix 3%, thiuram mix 1%, benzothiazole (MBT) mix 1%, and isopropyl phenyl paraphenylamine diamine (IPPD) mix 0.6%. The overall frequency of carbamates, MBT, thiurams, and IPPD mix sensitization was 3.4%, 0.65%, 1.75%, and 0.83%, respectively. On a logistic regression analysis (control group: white-collar workers), we found a statistically significant association to carbamates (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.03-1.7) and thiurams (OR, 1.6; 95% CI, 1.1-2.3) for health care workers. Thiuram sensitivity was also significantly associated with dermatitis in maids and restaurant workers (OR, 2.2; 95% CI, 1.4-3.6), hairdressers (OR, 3.6; 95% CI, 1.8-7.1), shop assistants (OR, 2.9; 95% CI, 1.2-6.8), construction workers (OR, 2.7; 95% CI, 1.7-4.1), mechanics (OR, 2.1; 95% CI, 1.3-3.4), and professional drivers (OR, 2.6; 95% CI, 1.2-5.9). In conclusion, our results demonstrated that rubber accelerators have an important role in allergic contact dermatitis in the northeast of Italy and their sensitization is associated significantly with occupations that wear gloves or use chemical substances. Between rubber accelerators tested, carbamates sensitization is prevalent and increasing during considered years.

  16. Ni-MH storage test and cycle life test

    NASA Technical Reports Server (NTRS)

    Dell, R. Dan; Klein, Glenn C.; Schmidt, David F.

    1994-01-01

    Gates Aerospace Batteries is conducting two long term test programs to fully characterize the NiMH cell technology for aerospace applications. The first program analyzes the effects of long term storage upon cell performance. The second program analyzes cycle life testing and preliminary production lot testing. This paper summarizes these approaches to testing the NiMH couple and culminates with initial storage and testing recommendations. Long term storage presents challenges to deter the adverse condition of capacity fade in NiMH cells. Elevated but stabilized pressures and elevated but stabilized end-of-charge voltages also appear to be a characteristic phenomenon of long term storage modes. However, the performance degradation is dependent upon specific characteristics of the metal-hydride alloy. To date, there is no objective evidence with which to recommend the proper method for storage and handling of NiMH cells upon shipment. This is particularly critical due to limited data points that indicate open circuit storage at room temperature for 60 to 90 days will result in irrecoverable capacity loss. Accordingly a test plan was developed to determine what method of mid-term to long-term storage will prevent irrecoverable capacity loss. The explicit assumption is that trickle charging at some rate above the self-discharge rate will prevent the irreversible chemical changes to the negative electrode that result in the irrecoverable capacity loss. Another premise is that lower storage temperatures, typically 0 C for aerospace customers, will impede any negative chemical reactions. Three different trickle charge rates are expected to yield a fairly flat response with respect to recoverable capacity versus baseline cells in two different modes of open circuit. Specific attributes monitored include: end-of-charge voltage, end-of-charge pressure, mid-point discharge voltage, capacity, and end-of-discharge pressure. Cycle life testing and preliminary production lot

  17. International Space Station Cathode Life Testing

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Sarver-Verhey, Timothy R.

    1997-01-01

    Four hollow cathode assembly (HCA) life tests were initiated at operating conditions simulating on-orbit operation of the International Space Station plasma contactor. The objective of these tests is to demonstrate the mission-required 18,000 hour lifetime with high-fidelity development model HCAS. HCAs are operated with a continuous 6 sccm xenon flow rate and 3 A anode current. On-orbit emission current requirements are simulated with a square waveform consisting of 50 minutes at a 2.5 A emission current and 40 minutes with no emission current. One HCA test was terminated after approximately 8,000 hours so that a destructive analysis could be performed. The analysis revealed no life-limiting processes and the ultimate lifetime was projected to be greater than the mission requirement. Testing continues for the remaining three HCAs which have accumulated approximately 8,000 hours, 10,000 hours, and 11,000 hours, respectively, as of June 1997. Anode and bias voltages, strong indicators of cathode electron emitter condition, are within acceptable ranges and have exhibited no life- or performance-limiting phenomena to date.

  18. Accelerated Desensitization with Adaptive Attitudes and Test Gains with 5th Graders

    ERIC Educational Resources Information Center

    Miller, Melanie; Morton, Jerome; Driscoll, Richard; Davis, Kai A.

    2006-01-01

    The study evaluates an easily-administered test-anxiety reduction program. An entire fifth grade was screened, and 36 students identified as test-anxious were randomly assigned to an Intervention or a non-participant Control group. The intervention was an accelerated desensitization and adaptive attitudes (ADAA) treatment which involved…

  19. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2011-01-01

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033

  20. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings.

    PubMed

    Shen, Jie; Burgess, Diane J

    2012-01-17

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema

    Seryi, Andrei

    2017-12-22

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  2. Post-Test Analysis of a 10-Year Sodium Heat Pipe Life Test

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Locci, Ivan E.; Sanzi, James L.; Hull, David R.; Geng, Steven M.

    2011-01-01

    High-temperature heat pipes are being evaluated for use in energy conversion applications such as fuel cells, gas turbine re-combustors, Stirling cycle heat sources; and with the resurgence of space nuclear power both as reactor heat removal elements and as radiator elements. Long operating life and reliable performance are critical requirements for these applications. Accordingly, long-term materials compatibility is being evaluated through the use of high-temperature life test heat pipes. Thermacore, Inc., has carried out a sodium heat pipe 10-year life test to establish long-term operating reliability. Sodium heat pipes have demonstrated favorable materials compatibility and heat transport characteristics at high operating temperatures in air over long time periods. A representative one-tenth segment Stirling Space Power Converter heat pipe with an Inconel 718 envelope and a stainless steel screen wick has operated for over 87,000 hr (10 years) at nearly 700 C. These life test results have demonstrated the potential for high-temperature heat pipes to serve as reliable energy conversion system components for power applications that require long operating lifetime with high reliability. Detailed design specifications, operating history, and post-test analysis of the heat pipe and sodium working fluid are described. Lessons learned and future life test plans are also discussed.

  3. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  4. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  5. Life Testing of the Vapor Compression Distillation Urine Processing Assembly (VCD/UPA) at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Wieland, Paul O.

    1998-01-01

    Wastewater and urine generated on the International Space Station will be processed to recover pure water. The method selected is vapor compression distillation (VCD). To verify the long-term reliability and performance of the VCD Urine Processing Assembly (UPA), accelerated life testing was performed at the Marshall Space Flight Center (MSFC) from January 1993 to April 1996. Two UPAS, the VCD-5 and VCD-5A, were tested for 204 days and 665 days, respectively. The compressor gears and the distillation centrifuge drive belt were found to have an operating life of approximately 4800 hours. Precise alignment of the flex-spline of the fluids pump is essential to avoid failure of the pump after about 400 hours of operation. Also, leakage around the seals of the drive shaft of the fluids pump and purge pump must be eliminated for continued good performance. Results indicate that, with some design and procedural modifications and suitable quality control, the required performance and operational life can be met with the VCD/UPA.

  6. Accelerated Desensitization and Adaptive Attitudes Interventions and Test Gains with Academic Probation Students

    ERIC Educational Resources Information Center

    Driscoll, Richard; Holt, Bruce; Hunter, Lori

    2005-01-01

    The study evaluates the test-gain benefits of an accelerated desensitization and adaptive attitudes intervention for test-anxious students. College students were screened for high test anxiety. Twenty anxious students, half of them on academic probation, were assigned to an Intervention or to a minimal treatment Control group. The Intervention was…

  7. Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells

    DOE PAGES

    Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.; ...

    2018-03-15

    The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro

  8. Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.

    The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro

  9. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.

    PubMed

    Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

    2008-01-01

    Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.

  10. Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex): NASA's Next Human-Rated Testing Facility

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.

    1999-01-01

    As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support test facility capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. This facility-targeted for evaluation of hypogravity compatible life support systems to be developed for use on planetary surfaces such as Mars or the Moon-is called the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) and is currently under development at the Johnson Space Center. This test bed is comprised of a set of interconnected chambers with a sealed internal environment which are outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support functions. This presentation provides a description of the proposed test "missions" to be supported by the BIO-Plex and the planned development strategy for the facility.

  11. Evaluation of Precast Panels for Airfield Pavement Repair. Phase 2: Results of Accelerated Pavement Testing

    DTIC Science & Technology

    2013-09-01

    ER D C/ G SL T R -1 3 -2 4 Evaluation of Precast Panels for Airfield Pavement Repair Phase II: Results of Accelerated Pavement Testing...default. ERDC/GSL TR-13-24 September 2013 Evaluation of Precast Panels for Airfield Pavement Repair Phase II: Results of Accelerated Pavement ... pavement testing using a C-17 load cart to evaluate the performance of a precast portland cement concrete (PCC) pavement repair system. The system

  12. Analysis of Weibull Grading Test for Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2010-01-01

    Weibull grading test is a powerful technique that allows selection and reliability rating of solid tantalum capacitors for military and space applications. However, inaccuracies in the existing method and non-adequate acceleration factors can result in significant, up to three orders of magnitude, errors in the calculated failure rate of capacitors. This paper analyzes deficiencies of the existing technique and recommends more accurate method of calculations. A physical model presenting failures of tantalum capacitors as time-dependent-dielectric-breakdown is used to determine voltage and temperature acceleration factors and select adequate Weibull grading test conditions. This, model is verified by highly accelerated life testing (HALT) at different temperature and voltage conditions for three types of solid chip tantalum capacitors. It is shown that parameters of the model and acceleration factors can be calculated using a general log-linear relationship for the characteristic life with two stress levels.

  13. Accelerated testing for studying pavement design and performance (FY 2004) : research summary.

    DOT National Transportation Integrated Search

    2009-03-01

    The thirteenth full-scale Accelerated Pavement Test (APT) experiment at the Civil Infrastructure Laboratory (CISL) of Kansas State University aimed to determine the response and the failure mode of thin concrete overlays.

  14. VMAT testing for an Elekta accelerator

    PubMed Central

    Sweeney, Larry E.; Marshall, Edward I.; Mahendra, Saikanth

    2012-01-01

    Volumetric‐modulated arc therapy (VMAT) has been shown to be able to deliver plans equivalent to intensity‐modulated radiation therapy (IMRT) in a fraction of the treatment time. This improvement is important for patient immobilization/ localization compliance due to comfort and treatment duration, as well as patient throughput. Previous authors have suggested commissioning methods for this modality. Here, we extend the methods reported for the Varian RapidArc system (which tested individual system components) to the Elekta linear accelerator, using custom files built using the Elekta iComCAT software. We also extend the method reported for VMAT commissioning of the Elekta accelerator by verifying maximum values of parameters (gantry speed, multileaf collimator (MLC) speed, and backup jaw speed), investigating: 1) beam profiles as a function of dose rate during an arc, 2) over/under dosing due to MLC reversals, and 3) over/under dosing at changing dose rate junctions. Equations for construction of the iComCAT files are given. Results indicate that the beam profile for lower dose rates varies less than 3% from that of the maximum dose rate, with no difference during an arc. The gantry, MLC, and backup jaw maximum speed are internally consistent. The monitor unit chamber is stable over the MUs and gantry movement conditions expected. MLC movement and position during VMAT delivery are within IMRT tolerances. Dose rate, gantry speed, and MLC speed are accurately controlled. Over/under dosing at junctions of MLC reversals or dose rate changes are within clinical acceptability. PACS numbers: 87.55.de, 87.55.Qr, 87.56.bd PMID:22402389

  15. Shelf Life Extension of Tomato Paste Through Organoleptically Acceptable Concentration of Betel Leaf Essential Oil Under Accelerated Storage Environment.

    PubMed

    Basak, Suradeep

    2018-05-01

    This study was attempted with two objectives: (1) to find an acceptable concentration of betel leaf essential oil (BLEO) based on sensory evaluation that can be employed in tomato paste; (2) to evaluate the effect of the acceptable concentration of BLEO in the paste during accelerated storage under 89 ± 1.2% RH at 39 ± 1 °C. Linguistic data obtained from sensory evaluation of tomato paste treated with 4 different concentrations of BLEO were analyzed using fuzzy logic approach. The organoleptically acceptable concentration was determined to be 0.25 mg/g of BLEO in tomato paste. The effect of the selected concentration of BLEO on different physicochemical and microbial attributes of tomato paste during accelerated storage was studied. Untreated tomato paste was found to have 12% less total antioxidant capacity than treated paste at the end of storage. Based on a * /b * value in CIELAB color space, the BLEO treated paste efficiently extended the shelf life by 14 days with respect to untreated paste samples under accelerated storage conditions. BLEO comes with a tag contributing to green consumerism, and its application as food preservative is no less than a value addition to the product. Essential oil is considered to have promising potential as an alternative food preservative, and its use is practically possible if they could overcome the sensory barrier, while retaining the preservative potency. The importance of identifying the sensory attributes for commercial success of essential oil treated food product was considered in this study. It contributes to the potency of organoleptically acceptable concentration of BLEO in shelf life extension of tomato paste under accelerated storage conditions. At industrial level, the estimated shelf life of treated tomato paste can be increased by incorporating more hurdles alongside BLEO. © 2018 Institute of Food Technologists®.

  16. OUTER GALACTIC DISKS AND A QUANTITATIVE TEST OF GRAVITY AT LOW ACCELERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaritsky, Dennis; Psaltis, Dimitrios, E-mail: dzaritsky@as.arizona.ed, E-mail: psaltis@as.arizona.ed

    We use the recent measurement of the velocity dispersion of star-forming, outer-disk knots by Herbert-Fort et al. in the nearly face-on galaxy NGC 628, in combination with other data from the literature, to execute a straightforward test of gravity at low accelerations. Specifically, the rotation curve at large radius sets the degree of non-standard acceleration and then the predicted scale height of the knots at that radius provides the test of the scenario. For our demonstration, we presume that the H{alpha} knots, which are young (age < 10 Myr), are distributed like the gas from which they have recently formedmore » and find a marginal (>97% confidence) discrepancy with a modified gravity scenario given the current data. More interestingly, we demonstrate that there is no inherent limitation that prevents such a test from reaching possible discrimination at the >4{sigma} level with a reasonable investment of observational resources.« less

  17. Life test result of Ricor K529N 1watt linear cryocooler

    NASA Astrophysics Data System (ADS)

    Nachman, Ilan; Veprik, Alexander; Pundak, Nachman

    2007-04-01

    The authors summarize the results of the accelerated life testing of the Ricor type K529N 1 Watt linear split Stirling cooler. The test was conducted in the period 2003-2006, during which the cooler accumulated in excess of 27,500 working hours at an elevated ambient temperature, which is equivalent to 45,000 hours at normal ambient conditions, and performed about 7,500 operational cycles including cooldown and steady-state phases. The cryocooler performances were assessed through the cooldown time and power consumption; no visible degradation in performances was observed. After the cooler failure and the compressor disassembling, an electrical short was discovered in the driving coil. The analysis has shown that the wire insulating varnish was not suitable for such elevated temperatures. It is important to note that the cooler under test was taken from the earliest engineering series; in the later manufacturing line military grade wire with high temperature insulation was used, no customer complaints have been recorded in this instance Special attention was paid to the thorough examination of the technical condition of the critical components of the cooler interior. In particular, dynamic piston-cylinder seal, flying leads, internal O-rings and driving coil were examined in the compressor. As to the cold head, we focused on studying the conditions of the dynamic bushing-plunger seal, O-rings and displacer-regenerator. In addition, a leak test was performed to assess the condition of the metallic crushed seals. From the analysis, the authors draw the conclusion that the cooler design is adequate for long life performance (in excess of 20,000 working hours) applications.

  18. Measurement of the half-life of 79Se with accelerator mass spectrometry

    DOE PAGES

    Dou, Liang; Jiang, Shan; Wang, Xiao-Bo; ...

    2014-10-01

    The accelerator mass spectrometry (AMS) is an effective method for the determination of the half-life of long-lived radionuclides. In this paper, we report a method for measurement of the half-life of 79Se. The number of 79Se atoms was determined from measured 79Se/Se absolute ratios with the AMS system at the China Institute of Atomic Energy and the decay rate of 79Se was determined by counting the emitted β-rays with a liquid scintillation spectrometer. The major improvements of our measurements include using the high abundance of an 79Se sample which was cooled for many years to exclude the interference of short-livedmore » nuclides, the extraction of SeO 2 - molecular ions, that results in a suppression of the 79 Br background by as much as about five orders of magnitude. Also, an AMS measurement of the absolute ratio of 79 Se/Se was developed to avoid systematic errors. The results show that 79 Se/Se is (2.35±0.12)×10 -7 in the reference sample and the radioactivity of 79Se is (1.24±0.05) Bq/g, so the half-life of 79Se is (2.78±0.18)×10 5 a.« less

  19. SAMS Acceleration Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Finkelstein, Robert; Reckart, Timothy

    1997-01-01

    During NASA Increment 3 (September 1996 to January 1997), about 5 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 11 optical disks and were returned to Earth on STS-81. During this time, SAMS data were collected in the Priroda module to support the following experiments: the Mir Structural Dynamics Experiment (MiSDE) and Binary Colloidal Alloy Tests (BCAT). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-81 operations, a Progress engine burn, attitude control thruster operation, and crew exercise. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  20. Andy Sessler: The Full Life of an Accelerator Physicist

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Je; Budnitz, Robert J.; Winick, Herman

    2015-02-01

    This article describes the distinguished career of Andrew M. Sessler, the visionary former director of the Lawrence Berkeley National Laboratory (LBNL), one of the most influential accelerator physicists, and a strong, dedicated human-rights activist. Andy died on 17 April 2014 from cancer at age 85. He grew up in New York City, and attended Harvard (BA in Mathematics, 1949) and then Columbia (PhD in Physics, 1953.) After an NSF postdoc at Cornell with Hans Bethe and a stint on the faculty at the Ohio State University in 1954-59, he joined the Lawrence Radiation Laboratory (now LBNL) in 1959, and spent the remainder of his career there. Although Andy l his mark on several areas of physics, including nuclear structure theory, elementary-particle physics, and many-body problems, his lasting and most important contributions came from his efforts in accelerator physics and engineering, to which he devoted most of his life's work. In collaboration with his colleagues of the legendary Midwestern Universities Research Association, he developed theories for the RF acceleration process and the collective instability phenomena, helping to realize the colliding-beam accelerators with which most of the high-energy-physics discoveries of the last few decades have been made. His work in connection with the free-electron-laser (FEL) amplifier for high-power microwave generation constructed at the Lawrence Livermore National Laboratory anticipated the optical-guiding and the self-amplified spontaneous-emission principles, upon which the success of the X-ray FELs as the fourth-generation light sources is based. Throughout his career Andy made major contributions to issues related to the impact of science and technology on society. He helped usher in a new era of research on energy efficiency and sustainable-energy technology and was instrumental in building the research agendas in those areas for the Atomic Energy Commission (AEC) and later the Department of Energy. With a lifelong

  1. Andy Sessler: The Full Life of an Accelerator Physicist

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Je; Budnitz, Robert J.; Winick, Herman

    2014-04-01

    This article describes the distinguished career of Andrew M. Sessler, the visionary former director of the Lawrence Berkeley National Laboratory (LBNL), one of the most influential accelerator physicists, and a strong, dedicated human-rights activist. Andy died on 17 April 2014 from cancer at age 85. He grew up in New York City, and attended Harvard (BA in Mathematics, 1949) and then Columbia (PhD in Physics, 1953.) After an NSF postdoc at Cornell with Hans Bethe and a stint on the faculty at the Ohio State University in 1954-59, he joined the Lawrence Radiation Laboratory (now LBNL) in 1959, and spent the remainder of his career there. Although Andy l his mark on several areas of physics, including nuclear structure theory, elementary-particle physics, and many-body problems, his lasting and most important contributions came from his efforts in accelerator physics and engineering, to which he devoted most of his life's work. In collaboration with his colleagues of the legendary Midwestern Universities Research Association, he developed theories for the RF acceleration process and the collective instability phenomena, helping to realize the colliding-beam accelerators with which most of the high-energy-physics discoveries of the last few decades have been made. His work in connection with the free-electron-laser (FEL) amplifier for high-power microwave generation constructed at the Lawrence Livermore National Laboratory anticipated the optical-guiding and the self-amplified spontaneous-emission principles, upon which the success of the X-ray FELs as the fourth-generation light sources is based. Throughout his career Andy made major contributions to issues related to the impact of science and technology on society. He helped usher in a new era of research on energy efficiency and sustainable-energy technology and was instrumental in building the research agendas in those areas for the Atomic Energy Commission (AEC) and later the Department of Energy. With a lifelong

  2. Andy Sessler: The Full Life of an Accelerator Physicist

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Je; Budnitz, Robert J.; Winick, Herman

    This article describes the distinguished career of Andrew M. Sessler, the visionary former director of the Lawrence Berkeley National Laboratory (LBNL), one of the most influential accelerator physicists, and a strong, dedicated human-rights activist. Andy died on 17 April 2014 from cancer at age 85. He grew up in New York City, and attended Harvard (BA in Mathematics, 1949) and then Columbia (PhD in Physics, 1953.) After an NSF postdoc at Cornell with Hans Bethe and a stint on the faculty at the Ohio State University in 1954-59, he joined the Lawrence Radiation Laboratory (now LBNL) in 1959, and spent the remainder of his career there. Although Andy left his mark on several areas of physics, including nuclear structure theory, elementary-particle physics, and many-body problems, his lasting and most important contributions came from his efforts in accelerator physics and engineering, to which he devoted most of his life's work. In collaboration with his colleagues of the legendary Midwestern Universities Research Association, he developed theories for the RF acceleration process and the collective instability phenomena, helping to realize the colliding-beam accelerators with which most of the high-energy-physics discoveries of the last few decades have been made. His work in connection with the free-electron-laser (FEL) amplifier for high-power microwave generation constructed at the Lawrence Livermore National Laboratory anticipated the optical-guiding and the self-amplified spontaneous-emission principles, upon which the success of the X-ray FELs as the fourth-generation light sources is based. Throughout his career Andy made major contributions to issues related to the impact of science and technology on society. He helped usher in a new era of research on energy efficiency and sustainable-energy technology and was instrumental in building the research agendas in those areas for the Atomic Energy Commission (AEC) and later the Department of Energy. With a

  3. Technology evaluation of man-rated acceleration test equipment for vestibular research

    NASA Technical Reports Server (NTRS)

    Taback, I.; Kenimer, R. L.; Butterfield, A. J.

    1983-01-01

    The considerations for eliminating acceleration noise cues in horizontal, linear, cyclic-motion sleds intended for both ground and shuttle-flight applications are addressed. the principal concerns are the acceleration transients associated with change in direction-of-motion for the carriage. The study presents a design limit for acceleration cues or transients based upon published measurements for thresholds of human perception to linear cyclic motion. The sources and levels for motion transients are presented based upon measurements obtained from existing sled systems. The approaches to a noise-free system recommends the use of air bearings for the carriage support and moving-coil linear induction motors operating at low frequency as the drive system. Metal belts running on air bearing pulleys provide an alternate approach to the driving system. The appendix presents a discussion of alternate testing techniques intended to provide preliminary type data by means of pendulums, linear motion devices and commercial air bearing tables.

  4. NASA Advanced Life Support Technology Testing and Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.

  5. Component Reliability Testing of Long-Life Sorption Cryocoolers

    NASA Technical Reports Server (NTRS)

    Bard, S.; Wu, J.; Karlmann, P.; Mirate, C.; Wade, L.

    1994-01-01

    This paper summarizes ongoing experiments characterizing the ability of critical sorption cryocooler components to achieve highly reliable operation for long-life space missions. Test data obtained over the past several years at JPL are entirely consistent with achieving ten year life for sorption compressors, electrical heaters, container materials, valves, and various sorbent materials suitable for driving 8 to 180 K refrigeration stages. Test results for various compressor systems are reported. Planned future tests necessary to gain a detailed understanding of the sensitivity of cooler performance and component life to operating constraints, design configurations, and fabrication, assembly and handling techniques, are also discussed.

  6. Nickel-hydrogen cell low-Earth life test update

    NASA Technical Reports Server (NTRS)

    Frate, David T.

    1991-01-01

    When individual pressure vessel (IPV) nickel-hydrogen (Ni/H2) cells were selected as the energy storage system for the Space Station Freedom in March of 1986, a limited database existed on life and performance characteristics of these cells in a low earth orbit (LEO) regime. Therefore, NASA LeRC initiated a Ni/H2 cell test program with the primary objectives of building a test facility, procuring cells from existing NASA contracts, and screening several cell designs by life testing in a LEO 35 percent depth of discharge (DOD) scenario. A total of 40 cells incorporating 13 designs were purchased from Yardney, Hughes, and Eagle-Picher. Thirty-two of the cells purchased were 65 A-hr nameplate capacity and eight cells were 50 A-hr. Yardney and Eagle-Picher cells were built with both the Air Force recirculating and the advanced back-to-back electrode stack configurations and incorporated 31 and 26 percent KOH. Acceptance testing of the first delivered cells began in March of 1988, with life testing following in September of that year.Performance comparisons of these cells are made here while specifically addressing life test data relative to the design differences.

  7. Accelerated radiation damage testing of x-ray mask membrane materials

    NASA Astrophysics Data System (ADS)

    Seese, Philip A.; Cummings, Kevin D.; Resnick, Douglas J.; Yanof, Arnold W.; Johnson, William A.; Wells, Gregory M.; Wallace, John P.

    1993-06-01

    An accelerated test method and resulting metrology data are presented to show the effects of x- ray radiation on various x-ray mask membrane materials. A focused x-ray beam effectively reduces the radiation time to 1/5 of that required by normal exposure beam flux. Absolute image displacement results determined by this method indicate imperceptible movement for boron-doped silicon and silicon carbide membranes at a total incident dose of 500 KJ/cm2, while image displacement for diamond is 50 nm at 150 KJ/cm2 and silicon nitride is 70 nm at 36 KJ/cm2. Studies of temperature rise during the radiation test and effects of the high flux radiation, i.e., reciprocity tests, demonstrate the validity of this test method.

  8. 28,000 Hour Xenon Hollow Cathode LifeTest Results

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1997-01-01

    The International Space Station Plasma Contactor System requires a hollow cathode assembly (HCA) with a lifetime of at least 18,000 hours. Critical components of the HCA include the hollow cathode and electron emitter. A series of hollow cathode wear tests was performed which included a life test operated at the maximum current of the HCA. This test sought to verify the hollow cathode design and contamination control protocols. The life test accumulated 27,800 hours of operation before failing to ignite. The hollow cathode exhibited relatively small changes in operating parameters over the course of the test. This life test is the longest duration test of a high current xenon hollow cathode reported to date.

  9. SSME main combustion chamber life prediction

    NASA Technical Reports Server (NTRS)

    Cook, R. T.; Fryk, E. E.; Newell, J. F.

    1983-01-01

    Typically, low cycle fatigue life is a function of the cyclic strain range, the material properties, and the operating temperature. The reusable life is normally defined by the number of strain cycles that can be accrued before severe material degradation occurs. Reusable life is normally signified by the initiation or propagation of surface cracks. Hot-fire testing of channel wall combustors has shown significant mid-channel wall thinning or deformation during accrued cyclic testing. This phenomenon is termed cyclic-creep and appears to be significantly accelerated at elevated surface temperatures. This failure mode was analytically modelled. The cyclic life of the baseline SSME-MCC based on measured calorimeter heat transfer data, and the life sensitivity of local hot spots caused by injector effects were determined. Four life enhanced designs were assessed.

  10. GTA (ground test accelerator) Phase 1: Baseline design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-08-01

    The national Neutral Particle Beam (NPB) program has two objectives: to provide the necessary basis for a discriminator/weapon decision by 1992, and to develop the technology in stages that lead ultimately to a neutral particle beam weapon. The ground test accelerator (GTA) is the test bed that permits the advancement of the state-of-the-art under experimental conditions in an integrated automated system mode. An intermediate goal of the GTA program is to support the Integrated Space Experiments, while the ultimate goal is to support the 1992 decision. The GTA system and each of its major subsystems are described, and project schedulesmore » and resource requirements are provided. (LEW)« less

  11. Space Acceleration Measurement System (SAMS)/Orbital Acceleration Research Experiment (OARE)

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak

    1998-01-01

    The Life and Microgravity Spacelab (LMS) payload flew on the Orbiter Columbia on mission STS-78 from June 20th to July 7th, 1996. The LMS payload on STS-78 was dedicated to life sciences and microgravity experiments. Two accelerometer systems managed by the NASA Lewis Research Center (LERC) flew to support these experiments, namely the Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurements System (SAMS). In addition, the Microgravity Measurement Assembly (NOAA), managed by the European Space Research and Technology Center (ESA/ESTEC), and sponsored by NASA, collected acceleration data in support of the experiments on-board the LMS mission. OARE downlinked real-time quasi-steady acceleration data, which was provided to the investigators. The SAMS recorded higher frequency data on-board for post-mission analysis. The MMA downlinked real-time quasi-steady as well as higher frequency acceleration data, which was provided to the investigators. The Principal Investigator Microgravity Services (PIMS) project at NASA LERC supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. A summary report was prepared by PIMS to furnish interested experiment investigators with a guide to evaluate the acceleration environment during STS-78, and as a means of identifying areas which require further study. The summary report provides an overview of the STS-78 mission, describes the accelerometer systems flown on this mission, discusses some specific analyses of the accelerometer data in relation to the various activities which occurred during the mission, and presents plots resulting from these analyses as a snapshot of the environment during the mission. Numerous activities occurred during the STS-78 mission that are of interest to the low-gravity community. Specific activities of interest during this mission were crew exercise, radiator deployment, Vernier Reaction

  12. Accelerated aging, natural aging, and small punch testing of gamma-air sterilized polycarbonate urethane acetabular components.

    PubMed

    Kurtz, S M; Siskey, R; Reitman, M

    2010-05-01

    The objectives of this study were three-fold: (1) to determine the applicability of the small punch test to characterize Bionate 80A polycarbonate urethane (PCU) acetabular implants; (2) to evaluate the susceptibility of PCU acetabular implants to exhibit degradation of mechanical behavior following gamma irradiation in air and accelerated aging; and (3) to compare the oxidation of gamma-air sterilized PCU following accelerated aging and 5 years of natural shelf aging. In addition to attenuated total reflectance-Fourier transform infrared spectroscopy, we also adapted a miniature specimen mechanical test, the small punch test, for the deformable PCU cups. Accelerated aging was performed using ASTM F2003, a standard test that represents a severe oxidative challenge. The results of this study suggest that the small punch test is sufficiently sensitive and reproducible to discriminate slight differences in the large-deformation mechanical behavior of Bionate 80A following accelerated aging. The gamma-air sterilized PCU had a reduction of 9% in ultimate load after aging. Five years of shelf aging had little effect on the mechanical properties of the PCU. Overall, our findings suggest that the Bionate 80A material has greater oxidative stability than ultra-high molecular weight polyethylene following gamma irradiation in air and exposure to a severe oxidative challenge. (c) 2010 Wiley Periodicals, Inc.

  13. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines.

    PubMed

    Ali, Mohammad Sajid; Alam, Mohammad Sarfaraz; Alam, Nawazish; Anwer, Tarique; Safhi, Mohammed Mohsen A

    2013-01-01

    The physical and chemical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the objective of this work was to study the stability of clobetasol propionate (CP) in a nanoemulsion. The nanoemulsion formulation containing CP was prepared by the spontaneous emulsification method. For the formulation of the nanoemulsion, Safsol, Tween 20, ethanol, and distilled water were used. The drug was incorporated into an oil phase in 0.05% w/v. The lipophilic nature of the drug led to the O/W nanoemulsion formulation. This was characterized by droplet size, pH, viscosity, conductivity, and refractive index. Stability studies were performed as per ICH guidelines for a period of three months. The shelf life of the nanoemulsion formulation was also determined after performing accelerated stability testing (40°C ± 2°C and 75% ± 5% RH). We also performed an intermediate stability study (30°C ± 2°C/65% RH ± 5% RH). It was found that the droplet size, conductivity, and refractive index were slightly increased, while the viscosity and pH slightly decreased at all storage conditions during the 3-month period. However, the changes in these parameters were not statistically significant (p≥0.05). The degradation (%) of the optimized nanoemulsion of CP was determined and the shelf life was found to be 2.18 years at room temperature. These studies confirmed that the physical and chemical stability of CP were enhanced in the nanoemulsion formulation.

  14. Preliminary results of accelerated exposure testing of solar cell system components

    NASA Technical Reports Server (NTRS)

    Anagnostou, E.; Forestieri, A. F.

    1977-01-01

    Plastic samples and solar cell sub modules were exposed to an accelerated outdoor environment in Arizona and an accelerated simulated environment in a cyclic ultraviolet exposure tester which included humidity exposure. These tests were for preliminary screening of materials suitable for use in the manufacture of solar cell modules which are to have a 20-year lifetime. The samples were exposed for various times up to six months, equivalent to a real time exposure of four years. Suitable materials were found to be FEP-A, FEP-C, PFA, acrylic, silicone compounds and adhesives and possibly parylene. The method of packaging the sub modules was also found to be important to their performance.

  15. A Model-based Prognostics Methodology for Electrolytic Capacitors Based on Electrical Overstress Accelerated Aging

    NASA Technical Reports Server (NTRS)

    Celaya, Jose; Kulkarni, Chetan; Biswas, Gautam; Saha, Sankalita; Goebel, Kai

    2011-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  16. Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Richard P.; Gold, Steven H.

    2016-07-01

    The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements inmore » the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.« less

  17. Accelerated dissolution testing for controlled release microspheres using the flow-through dissolution apparatus.

    PubMed

    Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C

    2009-01-01

    Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.

  18. 78 FR 76410 - Request for Information on Strategies To Accelerate the Testing and Adoption of Pay for Success...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... To Accelerate the Testing and Adoption of Pay for Success (PFS) Financing Models AGENCY: Office of... Strategies to Accelerate the Testing and Adoption of Pay for Success (PFS) Financing Models. The President's... Camacho, Attention: Pay for Success Incentive Fund RFI, U.S. Department of the Treasury, 1500 Pennsylvania...

  19. Causes of decreased life expectancy over the life span in bipolar disorder.

    PubMed

    Kessing, Lars Vedel; Vradi, Eleni; McIntyre, Roger S; Andersen, Per Kragh

    2015-07-15

    Accelerated aging has been proposed as a mechanism explaining the increased prevalence of comorbid general medical illnesses in bipolar disorder. To test the hypothesis that lost life years due to natural causes starts in early and mid-adulthood, supporting the hypothesis of accelerated aging. Using individual data from nationwide registers of patient with a diagnosis of bipolar disorder we calculated remaining life expectancies before age 90 years for values of age 15, 25, 35…75 years among all individuals alive in year 2000. Further, we estimated the reduction in life expectancy due to natural causes (physical illnesses) and unnatural causes (suicide and accidents) in relation to age. A total of 22,635 patients with bipolar disorder were included in the study in addition to data from the entire Danish general population of 5.4 million people. At age 15 years, remaining life expectancy before age 90 years was decreased 12.7 and 8.9 life years, respectively, for men and women with bipolar disorder. For 15-year old boys with bipolar disorder, natural causes accounted for 58% of all lost life years and for 15-year old girls, natural causes accounted for 67% increasing to 74% and 80% for 45-year old men and women, respectively. Data concern patients who get contact to hospital psychiatry only. Natural causes of death is the most prevalent reason for lost life years already from adolescence and increases substantially during early and mid-adulthood, in this way supporting the hypothesis of accelerated aging. Early intervention in bipolar disorder should not only focus on improving outcome of the bipolar disorder but also on decreasing the risk of comorbid general medical illnesses. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Tests of a Fast Plastic Scintillator for High-Precision Half-Life Measurements

    NASA Astrophysics Data System (ADS)

    Laffoley, A. T.; Dunlop, R.; Finlay, P.; Leach, K. G.; Michetti-Wilson, J.; Rand, E. T.; Svensson, C. E.; Grinyer, G. F.; Thomas, J. C.; Ball, G.; Garnsworthy, A. B.; Hackman, G.; Orce, J. N.; Triambak, S.; Williams, S. J.; Andreoiu, C.; Cross, D.

    2013-03-01

    A fast plastic scintillator detector is evaluated for possible use in an ongoing program of high-precision half-life measurements of short lived β emitters. Using data taken at TRI-UMF's Isotope Separator and Accelerator Facility with a radioactive 26Na beam, a detailed investigation of potential systematic effects with this new detector setup is being performed. The technique will then be applied to other β-decay half-life measurements including the superallowed Fermi β emitters 10C, 14O, and T = 1/2 decay of 15O.

  1. Statistical characteristics of mechanical heart valve cavitation in accelerated testing.

    PubMed

    Wu, Changfu; Hwang, Ned H C; Lin, Yu-Kweng M

    2004-07-01

    Cavitation damage has been observed on mechanical heart valves (MHVs) undergoing accelerated testing. Cavitation itself can be modeled as a stochastic process, as it varies from beat to beat of the testing machine. This in-vitro study was undertaken to investigate the statistical characteristics of MHV cavitation. A 25-mm St. Jude Medical bileaflet MHV (SJM 25) was tested in an accelerated tester at various pulse rates, ranging from 300 to 1,000 bpm, with stepwise increments of 100 bpm. A miniature pressure transducer was placed near a leaflet tip on the inflow side of the valve, to monitor regional transient pressure fluctuations at instants of valve closure. The pressure trace associated with each beat was passed through a 70 kHz high-pass digital filter to extract the high-frequency oscillation (HFO) components resulting from the collapse of cavitation bubbles. Three intensity-related measures were calculated for each HFO burst: its time span; its local root-mean-square (LRMS) value; and the area enveloped by the absolute value of the HFO pressure trace and the time axis, referred to as cavitation impulse. These were treated as stochastic processes, of which the first-order probability density functions (PDFs) were estimated for each test rate. Both the LRMS value and cavitation impulse were log-normal distributed, and the time span was normal distributed. These distribution laws were consistent at different test rates. The present investigation was directed at understanding MHV cavitation as a stochastic process. The results provide a basis for establishing further the statistical relationship between cavitation intensity and time-evolving cavitation damage on MHV surfaces. These data are required to assess and compare the performance of MHVs of different designs.

  2. Comparison of test particle acceleration in torsional spine and fan reconnection regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosseinpour, M., E-mail: hosseinpour@tabrizu.ac.ir; Mehdizade, M.; Mohammadi, M. A.

    2014-10-15

    Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as highmore » as 100 MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.« less

  3. Intermediate Temperature Fluids Life Tests - Experiments

    NASA Technical Reports Server (NTRS)

    Anderson, William G.; Bonner, Richard W.; Dussinger, Peter M.; Hartenstine, John R.; Sarraf, David B.; Locci, Ivan E.

    2007-01-01

    There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 725 K (170 to 450 C), including space nuclear power system radiators, fuel cells, and high temperature electronics cooling. Historically, water has been used in heat pipes at temperatures up to about 425 K (150 C). Recent life tests, updated below, demonstrate that titanium/water and Monel/water heat pipes can be used at temperatures up to 550 K (277 C), due to water's favorable transport properties. At temperatures above roughly 570 K (300 C), water is no longer a suitable fluid, due to high vapor pressure and low surface tension as the critical point is approached. At higher temperatures, another working fluid/envelope combination is required, either an organic or halide working fluid. An electromotive force method was used to predict the compatibility of halide working fluids with envelope materials. This procedure was used to reject aluminum and aluminum alloys as envelope materials, due to their high decomposition potential. Titanium and three corrosion resistant superalloys were chosen as envelope materials. Life tests were conducted with these envelopes and six different working fluids: AlBr3, GaCl3, SnCl4, TiCl4, TiBr4, and eutectic diphenyl/diphenyl oxide (Therminol VP-1/Dowtherm A). All of the life tests except for the GaCl3 are ongoing; the GaCl3 was incompatible. As the temperature approaches 725 K (450 C), cesium is a potential heat pipe working fluid. Life tests results are also presented for cesium/Monel 400 and cesium/70-30 copper/nickel heat pipes operating near 750 K (477 C). These materials are not suitable for long term operation, due to copper transport from the condenser to the evaporator.

  4. Lessons learned on the Ground Test Accelerator control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, A.J.; Weiss, R.E.

    1994-09-01

    When we initiated the control system design for the Ground Test Accelerator (GTA), we envisioned a system that would be flexible enough to handle the changing requirements of an experimental project. This control system would use a developers` toolkit to reduce the cost and time to develop applications for GTA, and through the use of open standards, the system would accommodate unforeseen requirements as they arose. Furthermore, we would attempt to demonstrate on GTA a level of automation far beyond that achieved by existing accelerator control systems. How well did we achieve these goals? What were the stumbling blocks tomore » deploying the control system, and what assumptions did we make about requirements that turned out to be incorrect? In this paper we look at the process of developing a control system that evolved into what is now the ``Experimental Physics and Industrial Control System`` (EPICS). Also, we assess the impact of this system on the GTA project, as well as the impact of GTA on EPICS. The lessons learned on GTA will be valuable for future projects.« less

  5. The use of test structures for reliability prediction and process control of integrated circuits and photovoltaics

    NASA Astrophysics Data System (ADS)

    Trachtenberg, I.

    How a reliability model might be developed with new data from accelerated stress testing, failure mechanisms, process control monitoring, and test structure evaluations is illustrated. The effects of the acceleration of temperature on operating life is discussed. Test structures that will further accelerate the failure rate are discussed. Corrosion testing is addressed. The uncoated structure is encapsulated in a variety of mold compounds and subjected to pressure-cooker testing.

  6. Rolling-element fatigue life with two synthetic cycloaliphatic traction fluids

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.

    1976-01-01

    The life potential of two synthetic cycloaliphatic hydrocarbon traction fluids in rolling element fatigue was evaluated in a five ball fatigue tester. Life comparisons with a MIL-L-23699 qualified tetraester oil showed that the traction test oils had good fatigue life performance, comparable to that of the tetraester oil. No statistically significant life differences between the traction fluids and the tetraester oil were exhibited under the accelerated fatigue test conditions. Erratic operating behavior was occasionally encountered during tests with the antiwear additive containing traction fluid for reasons thought to be related to excessive chemical activity under high contact pressure. This behavior occasionally resulted in premature test termination due to excessive surface distress and overheating.

  7. International Space Station Alpha trace contaminant control subassembly life test report

    NASA Technical Reports Server (NTRS)

    Tatara, J. D.; Perry, J. L.

    1995-01-01

    The Environmental Control and Life Support System (ECLSS) Life Test Program (ELTP) began with Trace Contaminant Control Subassembly (TCCS) Life Testing on November 9, 1992, at 0745. The purpose of the test, as stated in the NASA document 'Requirements for Trace Contaminant Control Subassembly High Temperature Catalytic Oxidizer Life Testing (Revision A)' was to 'provide for the long duration operation of the ECLSS TCCS HTCO (High Temperature Catalytic Oxidizer) at normal operating conditions... (and thus)... to determine the useful life of ECLSS hardware for use on long duration manned space missions.' Specifically, the test was designed to demonstrate thermal stability of the HTCO catalyst. The report details TCCS stability throughout the test. Graphs are included to aid in evaluating trends and subsystem anomalies. The report summarizes activities through the final day of testing, January 17, 1995 (test day 762).

  8. Preliminary tests of the electrostatic plasma accelerator

    NASA Technical Reports Server (NTRS)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  9. Ground Test of the Urine Processing Assembly for Accelerations and Transfer Functions

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Almond, Deborah F. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the ground test of the urine processing assembly for accelerations and transfer functions. Details are given on the test setup, test data, data analysis, analytical results, and microgravity assessment. The conclusions of the tests include the following: (1) the single input/multiple output method is useful if the data is acquired by tri-axial accelerometers and inputs can be considered uncorrelated; (2) tying coherence with the matrix yields higher confidence in results; (3) the WRS#2 rack ORUs need to be isolated; (4) and future work includes a plan for characterizing performance of isolation materials.

  10. Acceleration ground test program to verify GAS payload No. 559 structure/support avionics and experiment structural integrity

    NASA Technical Reports Server (NTRS)

    Cassanto, John M.; Cassanto, Valerie A.

    1988-01-01

    Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.

  11. Accelerated bridge paint test program.

    DOT National Transportation Integrated Search

    2011-07-06

    The accelerated bridge paint (AB-Paint) program evaluated a new Sherwin-Williams two-coat, : fast-curing paint system. The system is comprised of an organic zinc-rich primer (SW Corothane I : Galvapac One-Pack Zinc-Rich Primer B65 G11) and a polyurea...

  12. Post-Test Analysis of the Deep Space One Spare Flight Thruster Ion Optics

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Sengupta, Anita; Brophy, John R.

    2004-01-01

    The Deep Space 1 (DSl) spare flight thruster (FT2) was operated for 30,352 hours during the extended life test (ELT). The test was performed to validate the service life of the thruster, study known and identify unknown life limiting modes. Several of the known life limiting modes involve the ion optics system. These include loss of structural integrity for either the screen grid or accelerator grid due to sputter erosion from energetic ions striking the grid, sputter erosion enlargement of the accelerator grid apertures to the point where the accelerator grid power supply can no longer prevent electron backstreaming, unclearable shorting between the grids causes by flakes of sputtered material, and rouge hole formation due to flakes of material defocusing the ion beam. Grid gap decrease, which increases the probability of electron backstreaming and of arcing between the grids, was identified as an additional life limiting mechanism after the test. A combination of accelerator grid aperture enlargement and grid gap decrease resulted in the inability to prevent electron backstreaming at full power at 26,000 hours of the ELT. Through pits had eroded through the accelerator grid webbing and grooves had penetrated through 45% of the grid thickness in the center of the grid. The upstream surface of the screen grid eroded in a chamfered pattern around the holes in the central portion of the grid. Sputter deposited material, from the accelerator grid, adhered to the downstream surface of the screen grid and did not spall to form flakes. Although a small amount of sputter deposited material protruded into the screen grid apertures, no rouge holes were found after the ELT.

  13. Life testing of secondary silver-zinc cells

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C.; Doreswamy, Rajiv

    1991-01-01

    Testing on a variety of secondary silver-zinc (Ag-Zn) cells has been in progress at the Marshall Space Flight Center (MSFC) for over six years. The latest test involves a 350-Ah cell design that has been cycled at 10 C for 16 months. This design has achieved over 7200 low-earth-orbit (LEO) cycles as well as 17 deep discharges at an 85 percent depth of discharge. This test not only is a life test on these cells but also addresses different methods of storing these cells between the deep discharges. As the test is approaching completion, some interesting results are being seen. In particular, two of the four packs currently on test have failed to meet the 35-h (295-Ah) deep discharge requirement that was arbitrarily set at the beginning of the test. This capacity loss failure is likely a result of the storage method used on these two packs between deep discharges. The two packs are LEO cycled in such a way as to minimize overcharge in an attempt to prolong life.

  14. 40 CFR 797.1600 - Fish early life stage toxicity test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the test solution concentrations. The test terminates following 60 days of post-hatch exposure (for an... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Fish early life stage toxicity test... Fish early life stage toxicity test. (a) Purpose. This guideline is intended to be used for assessing...

  15. 40 CFR 797.1600 - Fish early life stage toxicity test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the test solution concentrations. The test terminates following 60 days of post-hatch exposure (for an... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Fish early life stage toxicity test... Fish early life stage toxicity test. (a) Purpose. This guideline is intended to be used for assessing...

  16. Nickel-hydrogen cell low-earth-orbit life test update

    NASA Technical Reports Server (NTRS)

    Frate, David T.

    1991-01-01

    When individual pressure vessel (IPV) nickel-hydrogen (Ni/H2) cells were selected as the energy storage system for Space Station Freedom in March of 1986, a limited database existed on life and performance characteristics of these cells in a low earth orbit (LEO) regime. Therefore, NASA LeRC initiated a Ni/H2 cell test program with the primary objectives of building a test facility, procuring cells from existing NASA contracts, and screening several cell designs by life testing in a LEO 35 percent depth of discharge (DOD) scenario. A total of 40 cells incorporating 13 designs were purchased from Yardney, Hughes, and Eagle-Picher. Thirty-two of the cells purchased were 65 A-hr nameplate capacity and eight cells were 50 A-Hr. Yardney and Eagle-Picher cells were built with both the Air Force recirculating and the advanced back-to-back electrode stack configurations and incorporated 31 and 26 percent KOH. Acceptance testing of the first delivered cells began in March of 1988, with life testing following in September of that year. Performance comparisons of these cells are made here while specifically addressing life test data relative to the design differences.

  17. Opinions concerning euthanasia, life-sustaining treatment and acceleration of death: results of an Italian Association of Medical Oncology (AIOM) survey.

    PubMed

    Catania, C; Zagonel, V; Fosser, V; La Verde, N; Bertetto, O; Iacono, C; Venturini, M; Radice, D; Adamoli, L; Boccardo, F

    2008-11-01

    Advance directives, acceleration of death, euthanasia and 'life-sustaining treatment' have sparked much heated debate among the media, the public, doctors and political leaders. We evaluate the personal opinions of Italian Association of Medical Oncology (AIOM) members. A 30-item questionnaire was developed and delivered to all 1,832 AIOM members. Six-hundred and eighty-five (37%) oncologists completed and returned the questionnaires. Sixty-three per cent felt culturally and psychologically prepared to face these issues. Fifty-four per cent believed that what had been decided while the patient enjoyed good health is no longer applicable in an advanced state of terminal illness. Thirty-nine per cent believed that doctors should abide by these directives, while 49% believed that this should be discussed on a case-by-case basis. Fourteen per cent of oncologists were favourable towards euthanasia and 42% only in particular circumstances. Fifty-six per cent had received at least one request for accelerating death: 15% consented, 50% discussed it with the patient and 31% refused. Advance directives, euthanasia, accelerated death and life-sustaining treatment represent considerable challenges for Italian oncologists. Although prepared to face these issues, AIOM members ask for a debate within the medical world and for a shared judicial regulation.

  18. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  19. Accelerated Aging Test for Plastic Scintillator Gamma Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouzes, Richard T.

    Polyvinyl toluene (PVT) and polystyrene (PS), collectively referred to as “plastic scintillator,” are synthetic polymer materials used to detect gamma radiation, and are commonly used in instrumentation. Recent studies have revealed that plastic scintillator undergoes an environmentally related material degradation that adversely affects performance under certain conditions and histories. A significant decrease in gamma ray sensitivity has been seen in some detectors in systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no agingmore » effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. It has been demonstrated that exposure of plastic scintillator in an environmental chamber to 30 days of high temperature and humidity (90% relative humidity and 55°C) followed by a single cycle to cold temperature (-30°C) will produce severe fogging in all PVT samples. This thermal cycle will be referred to as the “Accelerated Aging Test.” This document describes the procedure for performing this Accelerated Aging Test.« less

  20. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  1. Accelerated testing for studying pavement design and performance (FY 2003) : evaluation of the chemical stabilized subgrade soil (CISL Experiment No. 12).

    DOT National Transportation Integrated Search

    2008-01-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by the highway departments : of Missouri, Iowa, Kansas and Nebraska, has supported an accelerated pavement testing (APT) project to compare : the performance of stabilized ...

  2. Effect of TiO2-Crystal Forms on the Photo-Degradation of EVA/PLA Blend Under Accelerated Weather Testing

    NASA Astrophysics Data System (ADS)

    Van Cong, Do; Trang, Nguyen Thi Thu; Giang, Nguyen Vu; Lam, Tran Dai; Hoang, Thai

    2016-05-01

    Photo-degradation of poly (ethylene-co-vinyl acetate) (EVA)/poly (lactic acid) (PLA) blend and EVA/PLA/TiO2 nanocomposites was carried out under accelerated weather testing conditions by alternating cycles of ultraviolet (UV) light and moisture at controlled and elevated temperatures. The characters, properties, and morphology of these materials before and after accelerated weather testing were determined by Fourier transform infrared spectroscopy, colour changes, viscosity, tensile test, thermogravimetric analysis, and field emission scanning electron microscopy. The increases in the content of oxygen-containing groups, colour changes; the decreases in viscosity, tensile properties, and thermal stability of these materials after accelerated weather testing are the evidence for the photo-degradation of the blend and nanocomposites. After accelerated weather testing, the appearance of many micro-holes and micro-pores on the surface of the collected samples was observed. The photo-degradation degree of the nanocomposites depended on the TiO2-crystal form. Rutile TiO2 do not enhance the degradation, but anatase and mixed crystals TiO2 nanoparticles promoted the degradation of the nanocomposites. Particularly, the mixed crystals TiO2 nanoparticles showed the highest photo-catalytic activity of the nanocomposites.

  3. Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prebys, Eric; Antipov, Sergey; Piekarz, Henryk

    The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be tested with pencil electron beams, but this poster describes the ultimatemore » plan to install a 2.5 MeV RFQ to inject protons, which will produce tune shifts on the order of unity. Technical details will be presented, as well as simulations of protons in the ring.« less

  4. The 50Ah NiH2 cell life test results

    NASA Technical Reports Server (NTRS)

    Jamin, Thierry; Puig, Olivier

    1992-01-01

    Information is given in viewgraph form for the 50 AhNiH2 cell life test results. Information is given on pressure vessel design, electrochemical/stack design, cell electrical characteristics, and cell life test results.

  5. NASA's Advanced Life Support Systems Human-Rated Test Facility

    NASA Technical Reports Server (NTRS)

    Henninger, D. L.; Tri, T. O.; Packham, N. J.

    1996-01-01

    Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.

  6. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M.; Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W.; Biri, S.; Rácz, R.; Kato, Y.; Uchida, T.; Yoshida, Y.

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  7. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  8. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  9. Kinetic Modeling of Accelerated Stability Testing Enabled by Second Harmonic Generation Microscopy.

    PubMed

    Song, Zhengtian; Sarkar, Sreya; Vogt, Andrew D; Danzer, Gerald D; Smith, Casey J; Gualtieri, Ellen J; Simpson, Garth J

    2018-04-03

    The low limits of detection afforded by second harmonic generation (SHG) microscopy coupled with image analysis algorithms enabled quantitative modeling of the temperature-dependent crystallization of active pharmaceutical ingredients (APIs) within amorphous solid dispersions (ASDs). ASDs, in which an API is maintained in an amorphous state within a polymer matrix, are finding increasing use to address solubility limitations of small-molecule APIs. Extensive stability testing is typically performed for ASD characterization, the time frame for which is often dictated by the earliest detectable onset of crystal formation. Here a study of accelerated stability testing on ritonavir, a human immunodeficiency virus (HIV) protease inhibitor, has been conducted. Under the condition for accelerated stability testing at 50 °C/75%RH and 40 °C/75%RH, ritonavir crystallization kinetics from amorphous solid dispersions were monitored by SHG microscopy. SHG microscopy coupled by image analysis yielded limits of detection for ritonavir crystals as low as 10 ppm, which is about 2 orders of magnitude lower than other methods currently available for crystallinity detection in ASDs. The four decade dynamic range of SHG microscopy enabled quantitative modeling with an established (JMAK) kinetic model. From the SHG images, nucleation and crystal growth rates were independently determined.

  10. Bypass control valve seal and bearing life cycle test report

    NASA Technical Reports Server (NTRS)

    Lundback, A. V.

    1972-01-01

    The operating characteristics of a bypass control valve seal and bearing life cycle tests are reported. Data from the initial assembly, leak, torque, and deflection tests are included along with the cycle life test results and conclusions. The equipment involved was to be used in the nuclear engine for the rocket vehicles program.

  11. Multicenter Evaluation of the Accelerate PhenoTest BC Kit for Rapid Identification and Phenotypic Antimicrobial Susceptibility Testing Using Morphokinetic Cellular Analysis

    PubMed Central

    2018-01-01

    ABSTRACT We describe results from a multicenter study evaluating the Accelerate Pheno system, a first of its kind diagnostic system that rapidly identifies common bloodstream pathogens from positive blood cultures within 90 min and determines bacterial phenotypic antimicrobial susceptibility testing (AST) results within ∼7 h. A combination of fresh clinical and seeded blood cultures were tested, and results from the Accelerate Pheno system were compared to Vitek 2 results for identification (ID) and broth microdilution or disk diffusion for AST. The Accelerate Pheno system accurately identified 14 common bacterial pathogens and two Candida spp. with sensitivities ranging from 94.6 to 100%. Of fresh positive blood cultures, 89% received a monomicrobial call with a positive predictive value of 97.3%. Six common Gram-positive cocci were evaluated for ID. Five were tested against eight antibiotics, two resistance phenotypes (methicillin-resistant Staphylococcus aureus and Staphylococcus spp. [MRSA/MRS]), and inducible clindamycin resistance (MLSb). From the 4,142 AST results, the overall essential agreement (EA) and categorical agreement (CA) were 97.6% and 97.9%, respectively. Overall very major error (VME), major error (ME), and minor error (mE) rates were 1.0%, 0.7%, and 1.3%, respectively. Eight species of Gram-negative rods were evaluated against 15 antibiotics. From the 6,331 AST results, overall EA and CA were 95.4% and 94.3%, respectively. Overall VME, ME, and mE rates were 0.5%, 0.9%, and 4.8%, respectively. The Accelerate Pheno system has the unique ability to identify and provide phenotypic MIC and categorical AST results in a few hours directly from positive blood culture bottles and support accurate antimicrobial adjustment. PMID:29305546

  12. Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing.

    PubMed

    Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James

    2015-01-01

    Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials. © 2014 Wiley Periodicals, Inc.

  13. A life prediction methodology for encapsulated solar cells

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1978-01-01

    This paper presents an approach to the development of a life prediction methodology for encapsulated solar cells which are intended to operate for twenty years or more in a terrestrial environment. Such a methodology, or solar cell life prediction model, requires the development of quantitative intermediate relationships between local environmental stress parameters and the basic chemical mechanisms of encapsulant aging leading to solar cell failures. The use of accelerated/abbreviated testing to develop these intermediate relationships and in revealing failure modes is discussed. Current field and demonstration tests of solar cell arrays and the present laboratory tests to qualify solar module designs provide very little data applicable to predicting the long-term performance of encapsulated solar cells. An approach to enhancing the value of such field tests to provide data for life prediction is described.

  14. Equivalent-Groups versus Single-Group Equating Designs for the Accelerated CAT-ASVAB (Computerized Adaptive Test-Armed Services Vocational Aptitude Battery) Project.

    DTIC Science & Technology

    1987-01-01

    DESIGNS FOR THE ACCELERATED CAT -ASVAB * PROJECT Peter H. Stoloff DTIC’- , " SELECTE -NOV 2 3 987 A Division of Hudson Institute CENTER FOR NAVAL ANALYSES...65153M C0031 SI TITLE (Include Security Classification) Equivalent-Groups Versus Single-Group Equating Designs For The Accelerated CAT -ASVAB Project...GROUP ACAP (Accelerated CAT -ASVAB Program), Aptitude tests, ASVAB (Armed 05 10 Services Vocational Aptitude Battery), CAT (Computerized Adaptive Test

  15. Insights into accelerated aging of SSL luminaires

    NASA Astrophysics Data System (ADS)

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; Shepherd, Sarah; Yaga, Robert; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy

    2013-09-01

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6" downlights in environments of 85°C and 85% relative humidity (RH) and 75°C and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.

  16. Testing general relativity on accelerators

    DOE PAGES

    Kalaydzhyan, Tigran

    2015-09-07

    Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators tomore » the effects of gravity. The main observable – maximal energy of the scattered photons – would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. In conclusion, we confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.« less

  17. Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Michizono, Shinichiro; Miura, Takako; Matsumoto, Toshihiro; Liu, Na; Wibowo, Sigit Basuki

    2018-03-01

    A Low-level radio-frequency (LLRF) control systems is required to regulate the rf field in the rf cavity used for beam acceleration. As the LLRF system is usually complex, testing of the basic functions or control algorithms of this system in real time and in advance of beam commissioning is strongly recommended. However, the equipment necessary to test the LLRF system, such as superconducting cavities and high-power rf sources, is very expensive; therefore, we have developed a field-programmable gate array (FPGA)-based cavity simulator as a substitute for real rf cavities. Digital models of the cavity and other rf systems are implemented in the FPGA. The main components include cavity baseband models for the fundamental and parasitic modes, a mechanical model of the Lorentz force detuning, and a model of the beam current. Furthermore, in our simulator, the disturbance model used to simulate the power-supply ripples and microphonics is also carefully considered. Based on the presented cavity simulator, we have established an LLRF system test bench that can be applied to different cavity operational conditions. The simulator performance has been verified by comparison with real cavities in KEK accelerators. In this paper, the development and implementation of this cavity simulator is presented first, and the LLRF test bench based on the presented simulator is constructed. The results are then compared with those for KEK accelerators. Finally, several LLRF applications of the cavity simulator are illustrated.

  18. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 1: overview

    NASA Astrophysics Data System (ADS)

    Billing, M. G.

    2015-07-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper outlines the motivation, design and conversion of CESR to a test accelerator, CESRTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CESRTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CESRTA is a very flexible storage ring, capable of studying a wide range of accelerator physics and instrumentation questions. This paper contains the outline and the basis for a set of papers documenting the reconfiguration of the storage ring and the associated instrumentation required for the studies described above. Further details may be found in these papers.

  19. Probing gravity theory and cosmic acceleration using (in)consistency tests between cosmological data sets

    NASA Astrophysics Data System (ADS)

    Ishak-Boushaki, Mustapha B.

    2018-06-01

    Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on (in)consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use new statistical measures that can detect discordances between data sets when present. We use an algorithmic procedure based on these new measures that is able to identify in some cases whether an inconsistency is due to problems related to systematic effects in the data or to the underlying model. Some recent published tensions between data sets are also examined using our formalism, including the Hubble constant measurements, Planck and Large-Scale-Structure. (Work supported in part by NSF under Grant No. AST-1517768).

  20. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-sciencemore » studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.« less

  1. The use of accelerated radiation testing for avionics

    NASA Astrophysics Data System (ADS)

    Quinn, Heather

    2013-04-01

    In recent years, the use of unmanned aerial vehicles (UAVs) for military and national security applications has been increasing. One possible use of these vehicles is as remote sensing platforms, where the UAV carries several sensors to provide real-time information about biological, chemical or radiological agents that might have been released into the environment. One such UAV, the Global Hawk, has a payload space that can carry nearly one ton of sensing equipment, which makes these platforms significantly larger than many satellites. Given the size of the potential payload and the heightened radiation environment at high altitudes, these systems could be affected by the radiation-induced failure mechanisms from the naturally occurring terrestrial environment. In this paper, we will explore the use of accelerated radiation testing to prepare UAV payloads for deployment.

  2. Accelerated testing for studying pavement design and performance (FY 2002) : performance of foamed asphalt stabilized base in full depth reclaimed asphalt pavement.

    DOT National Transportation Integrated Search

    2004-08-01

    This report covers the Fiscal Year 2002 project conducted at the Accelerated Testing Laboratory at Kansas : State University. The project was selected and funded by the Midwest Accelerated Testing Pooled Fund Program , : which includes Iowa, Kansas, ...

  3. Towards A Model-Based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan S.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.

  4. Design, fabrication, and testing of the BNL radio frequency quadrupole accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, H.; Clifford, T.; Giordano, S.

    1984-01-01

    The Brookhaven National Laboratory polarized H/sup -/ injection program for the AGS utilizes a Radio Frequency Quadrupole Accelerator for acceleration between the polarized source and the Alvarez Linac. Although operation has commenced with a few ..mu.. amperes of H/sup -/ beam, it is anticipated that future polarized H/sup -/ sources will have a considerably improved output. The RFQ will operate at 201.25 MHz and will be capable of handling a beam current of 0.02 amperes with a duty cycle of 0.25%. The resulting low average power has allowed novel solutions to the problems of vane alignment, rf current contacts, andmore » removal of heat from the vanes. The design philosophy, details of cavity fabrication, and vane machining will be discussed. Results of low and high power rf testing will be presented together with the initial results of operations in the polarized H/sup -/ beam line.« less

  5. Preliminary analysis of accelerated space flight ionizing radiation testing

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  6. Accelerated Leach Testing of GLASS: ALTGLASS Version 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivelpiece, Cory L.; Jantzen, Carol M.; Crawford, Charles L.

    The Accelerated Leach Testing of GLASS (ALTGLASS) database is a collection of data from short- and long-term product consistency tests (PCT, ASTM C1285 A and B) on high level waste (HLW) as well as low activity waste (LAW) glasses. The database provides both U.S. and international researchers with an archive of experimental data for the purpose of studying, modeling, or validating existing models of nuclear waste glass corrosion. The ALTGLASS database is maintained and updated by researchers at the Savannah River National Laboratory (SRNL). This newest version, ALTGLASS Version 3.0, has been updated with an additional 503 rows of datamore » representing PCT results from corrosion experiments conducted in the United States by the Savannah River National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and the Vitreous State Laboratory (SRNL, PNNL, ANL, VSL, respectively) as well as the National Nuclear Laboratory (NNL) in the United Kingdom.« less

  7. Accelerated Comparative Fatigue Strength Testing of Belt Adhesive Joints

    NASA Astrophysics Data System (ADS)

    Bajda, Miroslaw; Blazej, Ryszard; Jurdziak, Leszek

    2017-12-01

    Belt joints are the weakest link in the serial structure that creates an endless loop of spliced belt segments. This affects not only the lower strength of adhesive joints of textile belts in comparison to vulcanized splices, but also the replacement of traditional glues to more ecological but with other strength parameters. This is reflected in the lowered durability of adhesive joints, which in underground coal mines is nearly twice shorter than the operating time of belts. Vulcanized splices require high precision in performance, they need long time to achieve cross-linking of the friction mixture and, above all, they require specialized equipment (vulcanization press) which is not readily available and often takes much time to be delivered down, which means reduced mining output or even downtime. All this reduces the reliability and durability of adhesive joints. In addition, due to the consolidation on the Polish coal market, mines are joined into large economic units serviced by a smaller number of processing plants. The consequence is to extend the transport routes downstream and increase reliability requirements. The greater number of conveyors in the chain reduces reliability of supply and increases production losses. With high fixed costs of underground mines, the reduction in mining output is reflected in the increase in unit costs, and this at low coal prices on the market can mean substantial losses for mines. The paper describes the comparative study of fatigue strength of shortened samples of adhesive joints conducted to compare many different variants of joints (various adhesives and materials). Shortened samples were exposed to accelerated fatigue in the usually long-lasting dynamic studies, allowing more variants to be tested at the same time. High correlation between the results obtained for shortened (100 mm) and traditional full-length (3×250 mm) samples renders accelerated tests possible.

  8. Benchmark Tests for Stirling Convertor Heater Head Life Assessment Conducted

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2004-01-01

    A new in-house test capability has been developed at the NASA Glenn Research Center, where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive testing to aid the development of analytical life prediction methodology and to experimentally aid in verification of the flight-design component's life. The new facility includes two test rigs that are performing creep testing of the SRG heater head pressure vessel test articles at design temperature and with wall stresses ranging from operating level to seven times that (see the following photograph).

  9. Accelerated Reader.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This paper provides an overview of Accelerated Reader, a system of computerized testing and record-keeping that supplements the regular classroom reading program. Accelerated Reader's primary goal is to increase literature-based reading practice. The program offers a computer-aided reading comprehension and management program intended to motivate…

  10. Space Mechanisms Lessons Learned and Accelerated Testing Studies

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1997-01-01

    A number of mechanism (mechanical moving component) failures and anomalies have recently occurred on satellites. In addition, more demanding operating and life requirements have caused mechanism failures or anomalies to occur even before some satellites were launched (e.g., during the qualification testing of GOES-NEXT, CERES, and the Space Station Freedom Beta Joint Gimbal). For these reasons, it is imperative to determine which mechanisms worked in the past and which have failed so that the best selection of mechanically moving components can be made for future satellites. It is also important to know where the problem areas are so that timely decisions can be made on the initiation of research to develop future needed technology. To chronicle the life and performance characteristics of mechanisms operating in a space environment, a Space Mechanisms Lessons Learned Study was conducted. The work was conducted by the NASA Lewis Research Center and by Mechanical Technologies Inc. (MTI) under contract NAS3-27086. The expectation of the study was to capture and retrieve information relating to the life and performance of mechanisms operating in the space environment to determine what components had operated successfully and what components had produced anomalies.

  11. Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive Cycle Testing

    DOE PAGES

    Mukundan, Rangachary; Baker, Andrew M.; Kusoglu, Ahmet; ...

    2018-03-01

    A combined chemical/mechanical accelerated stress test (AST) was developed for proton exchange membrane (PEM) fuel cells based on relative humidity cycling (RHC) between dry and saturated gases at open circuit voltage (OCV). Membrane degradation and failure were investigated using scanning electron microscopy and small- and wide-angle X-ray scattering. Changes to membrane thickness, hydrophilic domain spacing, and crystallinity were observed to be most similar between field-operated cells and OCV RHC ASTs, where local thinning and divot-type defects are the primary failure modes. While RHC in air also reproduces these failure modes, it is not aggressive enough to differentiate between different membranemore » types in >1,333 hours (55 days) of testing. Conversely, steady-state OCV tests result in significant ionomer morphology changes and global thinning, which do not replicate field degradation and failure modes. It is inferred that during the OCV RHC AST, the decay of the membrane's mechanical properties is accelerated such that materials can be evaluated in hundreds, instead of thousands, of hours, while replicating the degradation and failure modes of field operation; associated AST protocols are recommended as OCV RHC at 90°C for 500 hours with wet/dry cycle durations of 30s/45s and 2m/2m for automotive and bus operation, respectively.« less

  12. Membrane Accelerated Stress Test Development for Polymer Electrolyte Fuel Cell Durability Validated Using Field and Drive Cycle Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukundan, Rangachary; Baker, Andrew M.; Kusoglu, Ahmet

    A combined chemical/mechanical accelerated stress test (AST) was developed for proton exchange membrane (PEM) fuel cells based on relative humidity cycling (RHC) between dry and saturated gases at open circuit voltage (OCV). Membrane degradation and failure were investigated using scanning electron microscopy and small- and wide-angle X-ray scattering. Changes to membrane thickness, hydrophilic domain spacing, and crystallinity were observed to be most similar between field-operated cells and OCV RHC ASTs, where local thinning and divot-type defects are the primary failure modes. While RHC in air also reproduces these failure modes, it is not aggressive enough to differentiate between different membranemore » types in >1,333 hours (55 days) of testing. Conversely, steady-state OCV tests result in significant ionomer morphology changes and global thinning, which do not replicate field degradation and failure modes. It is inferred that during the OCV RHC AST, the decay of the membrane's mechanical properties is accelerated such that materials can be evaluated in hundreds, instead of thousands, of hours, while replicating the degradation and failure modes of field operation; associated AST protocols are recommended as OCV RHC at 90°C for 500 hours with wet/dry cycle durations of 30s/45s and 2m/2m for automotive and bus operation, respectively.« less

  13. A Novel Detection Model and Its Optimal Features to Classify Falls from Low- and High-Acceleration Activities of Daily Life Using an Insole Sensor System

    PubMed Central

    Cates, Benjamin; Sim, Taeyong; Heo, Hyun Mu; Kim, Bori; Kim, Hyunggun; Mun, Joung Hwan

    2018-01-01

    In order to overcome the current limitations in current threshold-based and machine learning-based fall detectors, an insole system and novel fall classification model were created. Because high-acceleration activities have a high risk for falls, and because of the potential damage that is associated with falls during high-acceleration activities, four low-acceleration activities, four high-acceleration activities, and eight types of high-acceleration falls were performed by twenty young male subjects. Encompassing a total of 800 falls and 320 min of activities of daily life (ADLs), the created Support Vector Machine model’s Leave-One-Out cross-validation provides a fall detection sensitivity (0.996), specificity (1.000), and accuracy (0.999). These classification results are similar or superior to other fall detection models in the literature, while also including high-acceleration ADLs to challenge the classification model, and simultaneously reducing the burden that is associated with wearable sensors and increasing user comfort by inserting the insole system into the shoe. PMID:29673165

  14. Application of particle accelerators in research.

    PubMed

    Mazzitelli, Giovanni

    2011-07-01

    Since the beginning of the past century, accelerators have started to play a fundamental role as powerful tools to discover the world around us, how the universe has evolved since the big bang and to develop fundamental instruments for everyday life. Although more than 15 000 accelerators are operating around the world only a very few of them are dedicated to fundamental research. An overview of the present high energy physics (HEP) accelerator status and prospectives is presented.

  15. Speeding up pyrogenicity testing: Identification of suitable cell components and readout parameters for an accelerated monocyte activation test (MAT).

    PubMed

    Stoppelkamp, Sandra; Würschum, Noriana; Stang, Katharina; Löder, Jasmin; Avci-Adali, Meltem; Toliashvili, Leila; Schlensak, Christian; Wendel, Hans Peter; Fennrich, Stefan

    2017-02-01

    Pyrogen testing represents a crucial safety measure for parental drugs and medical devices, especially in direct contact with blood or liquor. The European Pharmacopoeia regulates these quality control measures for parenterals. Since 2010, the monocyte activation test (MAT) has been an accepted pyrogen test that can be performed with different human monocytic cell sources: whole blood, isolated monocytic cells or monocytic cell lines with IL1β, IL6, or TNFα as readout cytokines. In the present study, we examined the three different cell sources and cytokine readout parameters with the scope of accelerating the assay time. We could show that despite all cell types being able to detect pyrogens, primary cells were more sensitive than the monocytic cell line. Quantitative real-time PCR revealed IL6 mRNA transcripts having the largest change in Ct-values upon LPS-stimulation compared to IL1β and TNFα, but quantification was unreliable. IL6 protein secretion from whole blood or peripheral blood mononuclear cells (PBMC) was also best suited for an accelerated assay with a larger linear range and higher signal-to-noise ratios upon LPS-stimulation. The unique combination with propan-2-ol or a temperature increase could additionally increase the cytokine production for earlier detection in PBMC. The increased incubation temperature could finally increase not only responses to lipopolysaccharides (LPS) but also other pyrogens by up to 13-fold. Therefore, pyrogen detection can be accelerated considerably by using isolated primary blood cells with an increased incubation temperature and IL6 as readout. These results could expedite assay time and thus help to promote further acceptance of the MAT. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Closure of regenerative life support systems: results of the Lunar-Mars Life Support Test Project

    NASA Astrophysics Data System (ADS)

    Barta, D.; Henninger, D.; Edeen, M.; Lewis, J.; Smith, F.; Verostko, C.

    Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass reduce dependency on resupply and increase the level of mission self sufficiency Such systems may be based on the integration of biological and physiocochemical processes to produce potable water breathable atmosphere and nutritious food from metabolic and other mission wastes Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration Johnson Space Center to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads Named the Lunar-Mars Life Support Test Project LMLSTP four integrated human tests were conducted with increasing duration complexity and closure The first test LMLSTP Phase I was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere A single crew member spent 15 days within an atmospherically closed chamber containing 11 2 square meters of actively growing wheat Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems During the second and third tests LMLSTP Phases II IIa four crew members spent 30 days and 60 days respectively in a larger sealed chamber Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water

  17. Test simulation of neutron damage to electronic components using accelerator facilities

    NASA Astrophysics Data System (ADS)

    King, D. B.; Fleming, R. M.; Bielejec, E. S.; McDonald, J. K.; Vizkelethy, G.

    2015-12-01

    The purpose of this work is to demonstrate equivalent bipolar transistor damage response to neutrons and silicon ions. We report on irradiation tests performed at the White Sands Missile Range Fast Burst Reactor, the Sandia National Laboratories (SNL) Annular Core Research Reactor, the SNL SPHINX accelerator, and the SNL Ion Beam Laboratory using commercial silicon npn bipolar junction transistors (BJTs) and III-V Npn heterojunction bipolar transistors (HBTs). Late time and early time gain metrics as well as defect spectra measurements are reported.

  18. Development of a standard accelerated weathering test for aggregates using dimethyl sulfoxide (DMSO) : final report.

    DOT National Transportation Integrated Search

    1986-09-01

    A standard accelerated weathering test using Dimethyl Sulfoxide (DMSO) was developed to simulate the chemical degradation of basaltic rocks. After a thorough study of the parameters affecting the current procedure, such as container geometry, aggrega...

  19. The LeRC rail accelerators: Test designs and diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Kerslake, W. R.; Sturman, J. C.; Wang, S. Y.; Terdan, F. F.

    1983-01-01

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed.

  20. Accelerated Aging in Electrolytic Capacitors for Prognostics

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan; Saha, Sankalita; Biswas, Gautam; Goebel, Kai Frank

    2012-01-01

    The focus of this work is the analysis of different degradation phenomena based on thermal overstress and electrical overstress accelerated aging systems and the use of accelerated aging techniques for prognostics algorithm development. Results on thermal overstress and electrical overstress experiments are presented. In addition, preliminary results toward the development of physics-based degradation models are presented focusing on the electrolyte evaporation failure mechanism. An empirical degradation model based on percentage capacitance loss under electrical overstress is presented and used in: (i) a Bayesian-based implementation of model-based prognostics using a discrete Kalman filter for health state estimation, and (ii) a dynamic system representation of the degradation model for forecasting and remaining useful life (RUL) estimation. A leave-one-out validation methodology is used to assess the validity of the methodology under the small sample size constrain. The results observed on the RUL estimation are consistent through the validation tests comparing relative accuracy and prediction error. It has been observed that the inaccuracy of the model to represent the change in degradation behavior observed at the end of the test data is consistent throughout the validation tests, indicating the need of a more detailed degradation model or the use of an algorithm that could estimate model parameters on-line. Based on the observed degradation process under different stress intensity with rest periods, the need for more sophisticated degradation models is further supported. The current degradation model does not represent the capacitance recovery over rest periods following an accelerated aging stress period.

  1. Insights into accelerated aging of SSL luminaires

    DOE PAGES

    Davis, J. Lynn; Lamvik, Michael; Bittle, James; ...

    2013-09-30

    Although solid-state lighting (SSL) products are often intended to have product lifetimes of 15 years or more, the rapid change in technology has created a need for accelerated life tests (ALTs) that can be performed in the span of several months. A critical element of interpreting results from any systems-level ALT is understanding of the impact of the test environment on each component. Because of its ubiquity in electronics, the use of temperature-humidity environments as potential ALTs for SSL luminaires was investigated. Results from testing of populations of three commercial 6” downlights in environments of 85oC and 85% relative humiditymore » (RH) and 75oC and 75% RH are reported. These test environments were found to accelerate lumen depreciation of the entire luminaire optical system, including LEDs, lenses, and reflectors. The effects of aging were found to depend strongly on both the optical materials that were used and the design of the luminaire; this shows that the lumen maintenance behavior of SSL luminaires must be addressed at the optical systems level. Temperature-Humidity ALTs can be a useful test in understand lumainaire depreciation provided that proper consideration is given to the different aging rates of various materials. Since the impact of the temperature-humidity environment varies among components of the optical system, uniform aging of all system components in a single test is difficult to achieve.« less

  2. Testing cosmic ray acceleration with radio relics: a high-resolution study using MHD and tracers

    NASA Astrophysics Data System (ADS)

    Wittor, D.; Vazza, F.; Brüggen, M.

    2017-02-01

    Weak shocks in the intracluster medium may accelerate cosmic-ray protons and cosmic-ray electrons differently depending on the angle between the upstream magnetic field and the shock normal. In this work, we investigate how shock obliquity affects the production of cosmic rays in high-resolution simulations of galaxy clusters. For this purpose, we performed a magnetohydrodynamical simulation of a galaxy cluster using the mesh refinement code ENZO. We use Lagrangian tracers to follow the properties of the thermal gas, the cosmic rays and the magnetic fields over time. We tested a number of different acceleration scenarios by varying the obliquity-dependent acceleration efficiencies of protons and electrons, and by examining the resulting hadronic γ-ray and radio emission. We find that the radio emission does not change significantly if only quasi-perpendicular shocks are able to accelerate cosmic-ray electrons. Our analysis suggests that radio-emitting electrons found in relics have been typically shocked many times before z = 0. On the other hand, the hadronic γ-ray emission from clusters is found to decrease significantly if only quasi-parallel shocks are allowed to accelerate cosmic ray protons. This might reduce the tension with the low upper limits on γ-ray emission from clusters set by the Fermi satellite.

  3. Accelerate Water Quality Improvement

    EPA Pesticide Factsheets

    EPA is committed to accelerating water quality improvement and minimizing negative impacts to aquatic life from contaminants and other stressors in the Bay Delta Estuary by working with California Water Boards to strengthen water quality improvement plans.

  4. Understanding How Kurtosis Is Transferred from Input Acceleration to Stress Response and Its Influence on Fatigue Llife

    NASA Technical Reports Server (NTRS)

    Kihm, Frederic; Rizzi, Stephen A.; Ferguson, Neil S.; Halfpenny, Andrew

    2013-01-01

    High cycle fatigue of metals typically occurs through long term exposure to time varying loads which, although modest in amplitude, give rise to microscopic cracks that can ultimately propagate to failure. The fatigue life of a component is primarily dependent on the stress amplitude response at critical failure locations. For most vibration tests, it is common to assume a Gaussian distribution of both the input acceleration and stress response. In real life, however, it is common to experience non-Gaussian acceleration input, and this can cause the response to be non-Gaussian. Examples of non-Gaussian loads include road irregularities such as potholes in the automotive world or turbulent boundary layer pressure fluctuations for the aerospace sector or more generally wind, wave or high amplitude acoustic loads. The paper first reviews some of the methods used to generate non-Gaussian excitation signals with a given power spectral density and kurtosis. The kurtosis of the response is examined once the signal is passed through a linear time invariant system. Finally an algorithm is presented that determines the output kurtosis based upon the input kurtosis, the input power spectral density and the frequency response function of the system. The algorithm is validated using numerical simulations. Direct applications of these results include improved fatigue life estimations and a method to accelerate shaker tests by generating high kurtosis, non-Gaussian drive signals.

  5. Benchmark notch test for life prediction

    NASA Technical Reports Server (NTRS)

    Domas, P. A.; Sharpe, W. N.; Ward, M.; Yau, J. F.

    1982-01-01

    The laser Interferometric Strain Displacement Gage (ISDG) was used to measure local strains in notched Inconel 718 test bars subjected to six different load histories at 649 C (1200 F) and including effects of tensile and compressive hold periods. The measurements were compared to simplified Neuber notch analysis predictions of notch root stress and strain. The actual strains incurred at the root of a discontinuity in cyclically loaded test samples subjected to inelastic deformation at high temperature where creep deformations readily occur were determined. The steady state cyclic, stress-strain response at the root of the discontinuity was analyzed. Flat, double notched uniaxially loaded fatigue specimens manufactured from the nickel base, superalloy Inconel 718 were used. The ISDG was used to obtain cycle by cycle recordings of notch root strain during continuous and hold time cycling at 649 C. Comparisons to Neuber and finite element model analyses were made. The results obtained provide a benchmark data set in high technology design where notch fatigue life is the predominant component service life limitation.

  6. Test of US Federal Life Cycle Inventory Data Interoperability

    EPA Science Inventory

    Life cycle assessment practitioners must gather data from a variety of sources. For modeling activities in the US, practitioners may wish to use life cycle inventory data from public databases and libraries provided by US government entities. An exercise was conducted to test if ...

  7. Angular velocities, angular accelerations, and coriolis accelerations

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  8. Proof-test-based life prediction of high-toughness pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panontin, T.L.; Hill, M.R.

    1996-02-01

    The paper examines the problems associated with applying proof-test-based life prediction to vessels made of high-toughness metals. Two A106 Gr B pipe specimens containing long, through-wall circumferential flaws were tested. One failed during hydrostatic testing and the other during tension-tension cycling following a hydrostatic test. Quantitative fractography was used to verify experimentally obtained fatigue crack growth rates and a variety of LEFM and EPFM techniques were used to analyze the experimental results. The results show that: plastic collapse analysis provides accurate predictions of screened (initial) crack size when the flow stress is determined experimentally; LEFM analysis underestimates the crack sizemore » screened by the proof test and overpredicts the subsequent fatigue life of the vessel when retardation effects are small (i.e., low proof levels); and, at a high proof-test level (2.4 {times} operating pressure), the large retardation effect on fatigue crack growth due to the overload overwhelmed the deleterious effect on fatigue life from stable tearing during the proof test and alleviated the problem of screening only long cracks due to the high toughness of the metal.« less

  9. Improving the Total Impulse Capability of the NSTAR Ion Thruster With Thick-Accelerator-Grid Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2001-01-01

    The results of performance tests with thick-accelerator-grid (TAG) ion optics are presented. TAG ion optics utilize a 50 percent thicker accelerator grid to double ion optics' service life. NSTAR ion optics were also tested to provide a baseline performance for comparison. Impingement-limited total voltages for the TAG ion optics were only 0 to 15 V higher than those of the NSTAR ion optics. Electron backstreaming limits for the TAG ion optics were 3 to 9 V higher than those for the NSTAR optics due to the increased accelerator grid thickness for the TAG ion optics. Screen grid ion transparencies for the TAG ion optics were only about 2 percent lower than those for the NSTAR optics, reflecting the lower physical screen grid open area fraction of the TAG ion optics. Accelerator currents for the TAG ion optics were 19 to 43 percent greater than those for the NSTAR ion optics due, in part, to a sudden increase in accelerator current during TAG ion optics' performance tests for unknown reasons and to the lower-than-nominal accelerator aperture diameters. Beam divergence half-angles that enclosed 95 percent of the total beam current and beam divergence thrust correction factors for the TAG ion optics were within 2 degrees and 1 percent, respectively, of those for the NSTAR ion optics.

  10. Life test of the InGaAs focal plane arrays detector for space applications

    NASA Astrophysics Data System (ADS)

    Zhu, Xian-Liang; Zhang, Hai-Yan; Li, Xue; Huang, Zhang-Cheng; Gong, Hai-Mei

    2017-08-01

    The short-wavelength infrared (SWIR) InGaAs focal plane array (FPA) detector consists of infrared detector chip, readout integrated circuit (ROIC), and flip-chip bonding interconnection by Indium bump. In order to satisfy space application requirements for failure rates or Mean Time to Failure (MTTF), which can only be demonstrated with the large number of detectors manufactured, the single pixel in InGaAs FPAs was chosen as the research object in this paper. The constant-stress accelerated life tests were carried out at 70°C 80°C 90°C and100°C. The failed pixels increased gradually during more than 14000 hours at each elevated temperatures. From the random failure data the activation energy was estimated to be 0.46eV, and the average lifetime of a single pixel in InGaAs FPAs was estimated to be longer than 1E+7h at the practical operating temperature (5°C).

  11. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.

    2017-12-01

    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  12. Johnson Space Center's Regenerative Life Support Systems Test Bed

    NASA Technical Reports Server (NTRS)

    Barta, D. J.; Henninger, D. L.

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  13. Johnson Space Center's Regenerative Life Support Systems Test Bed

    NASA Astrophysics Data System (ADS)

    Barta, D. J.; Henninger, D. L.

    1996-01-01

    The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m^2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.

  14. Photometric and Colorimetric Assessment of LED Chip Scale Packages by Using a Step-Stress Accelerated Degradation Test (SSADT) Method.

    PubMed

    Qian, Cheng; Fan, Jiajie; Fang, Jiayi; Yu, Chaohua; Ren, Yi; Fan, Xuejun; Zhang, Guoqi

    2017-10-16

    By solving the problem of very long test time on reliability qualification for Light-emitting Diode (LED) products, the accelerated degradation test with a thermal overstress at a proper range is regarded as a promising and effective approach. For a comprehensive survey of the application of step-stress accelerated degradation test (SSADT) in LEDs, the thermal, photometric, and colorimetric properties of two types of LED chip scale packages (CSPs), i.e., 4000 °K and 5000 °K samples each of which was driven by two different levels of currents (i.e., 120 mA and 350 mA, respectively), were investigated under an increasing temperature from 55 °C to 150 °C and a systemic study of driving current effect on the SSADT results were also reported in this paper. During SSADT, junction temperatures of the test samples have a positive relationship with their driving currents. However, the temperature-voltage curve, which represents the thermal resistance property of the test samples, does not show significant variance as long as the driving current is no more than the sample's rated current. But when the test sample is tested under an overdrive current, its temperature-voltage curve is observed as obviously shifted to the left when compared to that before SSADT. Similar overdrive current affected the degradation scenario is also found in the attenuation of Spectral Power Distributions (SPDs) of the test samples. As used in the reliability qualification, SSADT provides explicit scenes on color shift and correlated color temperature (CCT) depreciation of the test samples, but not on lumen maintenance depreciation. It is also proved that the varying rates of the color shift and CCT depreciation failures can be effectively accelerated with an increase of the driving current, for instance, from 120 mA to 350 mA. For these reasons, SSADT is considered as a suitable accelerated test method for qualifying these two failure modes of LED CSPs.

  15. Photometric and Colorimetric Assessment of LED Chip Scale Packages by Using a Step-Stress Accelerated Degradation Test (SSADT) Method

    PubMed Central

    Yu, Chaohua; Fan, Xuejun; Zhang, Guoqi

    2017-01-01

    By solving the problem of very long test time on reliability qualification for Light-emitting Diode (LED) products, the accelerated degradation test with a thermal overstress at a proper range is regarded as a promising and effective approach. For a comprehensive survey of the application of step-stress accelerated degradation test (SSADT) in LEDs, the thermal, photometric, and colorimetric properties of two types of LED chip scale packages (CSPs), i.e., 4000 °K and 5000 °K samples each of which was driven by two different levels of currents (i.e., 120 mA and 350 mA, respectively), were investigated under an increasing temperature from 55 °C to 150 °C and a systemic study of driving current effect on the SSADT results were also reported in this paper. During SSADT, junction temperatures of the test samples have a positive relationship with their driving currents. However, the temperature-voltage curve, which represents the thermal resistance property of the test samples, does not show significant variance as long as the driving current is no more than the sample’s rated current. But when the test sample is tested under an overdrive current, its temperature-voltage curve is observed as obviously shifted to the left when compared to that before SSADT. Similar overdrive current affected the degradation scenario is also found in the attenuation of Spectral Power Distributions (SPDs) of the test samples. As used in the reliability qualification, SSADT provides explicit scenes on color shift and correlated color temperature (CCT) depreciation of the test samples, but not on lumen maintenance depreciation. It is also proved that the varying rates of the color shift and CCT depreciation failures can be effectively accelerated with an increase of the driving current, for instance, from 120 mA to 350 mA. For these reasons, SSADT is considered as a suitable accelerated test method for qualifying these two failure modes of LED CSPs. PMID:29035300

  16. Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok

    2016-09-01

    The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.

  17. A Systematic Approach to the Study of Accelerated weathering of Building Joint Sealants

    Treesearch

    Christopher C. White; Donald L. Hunston; Kar Tean Tan; James J. Filliben; Adam L. Pintar; Greg Schueneman

    2012-01-01

    An accurate service life prediction model is needed for building joint sealants in order to greatly reduce the time to market of a new product and reduce the risk of introducing a poorly performing product into the marketplace. A stepping stone to the success of this effort is the precise control of environmental variables in a laboratory accelerated test apparatus in...

  18. Environmental Exposure and Accelerated Testing of Rubber-to-Metal Vulcanized-Bonded Assemblies

    DTIC Science & Technology

    1975-08-01

    such bonds are those of rubber coatings on the aluminum M60 machinq gun components, shock isolator and recoil adapter on the GAU 2B/A Minigun, rubber...accelerated humidity test data can be compared to show that both have the same effect on vulcanized bonded assemblies. Butadlene/styrene rubber-to-metal...distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract enterd In 8!ock 20. It different frore Rel , V " - ’O" ) " 18. SUPPLEMENTARY NOTES

  19. The Status of Turkish Accelerator Center Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yavas, Oe.

    2007-04-23

    Recently, conceptual design of Turkic Accelerator Center (TAC) proposal was completed. Main goal of this proposal is a charm factory that consists of a linac-ring type electron-positron collider. In addition, synchrotron radiation from the positron ring and free electron laser from the electron linac are proposed. The project related with this proposal has been accepted by Turkish government. It is planned that the Technical Design Report of TAC will have been written in next three years. In this period, an infrared oscillator free electron laser (IR FEL) will be constructed as a test facility for TAC. 20 and 50 MeVmore » electron energies will be used to obtain infra red free electron laser. The main parameters of the electron linac, the optical cavities and the free electron laser were determined. The possible use of obtained laser beam in basic and applied research areas such as biotechnology, nanotechnology, semiconductors and photo chemistry were stated.« less

  20. Solid Propulsion Systems, Subsystems, and Components Service Life Extension

    NASA Technical Reports Server (NTRS)

    Hundley, Nedra H.; Jones, Connor

    2011-01-01

    The service life extension of solid propulsion systems, subsystems, and components will be discussed based on the service life extension of the Space Transportation System Reusable Solid Rocket Motor (RSRM) and Booster Separation Motors (BSM). The RSRM is certified for an age life of five years. In the aftermath of the Columbia accident there were a number of motors that were approaching the end of their five year service life certification. The RSRM Project initiated an assessment to determine if the service life of these motors could be extended. With the advent of the Constellation Program, a flight test was proposed that would utilize one of the RSRMs which had been returned from the launch site due to the expiration of its five year service life certification and twelve surplus Chemical Systems Division BSMs which had exceeded their eight year service life. The RSRM age life tracking philosophy which establishes when the clock starts for age life tracking will be described. The role of the following activities in service life extension will be discussed: subscale testing, accelerated aging, dissecting full scale aged hardware, static testing full scale aged motors, data mining industry data, and using the fleet leader approach. The service life certification and extension of the BSMs will also be presented.

  1. Brain-Derived Neurotrophic Factor Expression in Individuals With Schizophrenia and Healthy Aging: Testing the Accelerated Aging Hypothesis of Schizophrenia.

    PubMed

    Islam, Farhana; Mulsant, Benoit H; Voineskos, Aristotle N; Rajji, Tarek K

    2017-07-01

    Schizophrenia has been hypothesized to be a syndrome of accelerated aging. Brain plasticity is vulnerable to the normal aging process and affected in schizophrenia: brain-derived neurotrophic factor (BDNF) is an important neuroplasticity molecule. The present review explores the accelerated aging hypothesis of schizophrenia by comparing changes in BDNF expression in schizophrenia with aging-associated changes. Individuals with schizophrenia show patterns of increased overall mortality, metabolic abnormalities, and cognitive decline normally observed later in life in the healthy population. An overall decrease is observed in BDNF expression in schizophrenia compared to healthy controls and in older individuals compared to a younger cohort. There is a marked decrease in BDNF levels in the frontal regions and in the periphery among older individuals and those with schizophrenia; however, data for BDNF expression in the occipital, parietal, and temporal cortices and the hippocampus is inconclusive. Accelerated aging hypothesis is supported based on frontal regions and peripheral studies; however, further studies are needed in other brain regions.

  2. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.

    2018-05-01

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.

  3. Ion Transport and Acceleration at Dipolarization Fronts: High-Resolution MHD/Test-Particle Simulations

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, A. Y.; Sorathia, K.; Merkin, V. G.; Sitnov, M. I.; Mitchell, D. G.; Wiltberger, M. J.; Lyon, J.

    2017-12-01

    Much of plasma heating and transport from the magnetotail into the inner magnetosphere occurs in the form of mesoscale discrete injections associated with sharp dipolarizations of magnetic field (dipolarization fronts). In this study we investigate the mechanisms of ion acceleration at dipolarization fronts in a high-resolution global magnetospheric MHD model (LFM). We use large-scale three-dimensional test-particle simulations (CHIMP) to address the following science questions: 1) what are the characteristic scales of dipolarization regions that can stably trap ions? 2) what role does the trapping play in ion transport and acceleration? 3) how does it depend on particle energy and distance from Earth? 4) to what extent ion acceleration is adiabatic? High-resolution LFM was run using idealized solar wind conditions with fixed nominal values of density and velocity and a southward IMF component of -5 nT. To simulate ion interaction with dipolarization fronts, a large ensemble of test particles distributed in energy, pitch-angle, and gyrophase was initialized inside one of the LFM dipolarization channels in the magnetotail. Full Lorentz ion trajectories were then computed over the course of the front inward propagation from the distance of 17 to 6 Earth radii. A large fraction of ions with different initial energies stayed in phase with the front over the entire distance. The effect of magnetic trapping at different energies was elucidated with a correlation of the ion guiding center and the ExB drift velocities. The role of trapping in ion energization was quantified by comparing the partial pressure of ions that exhibit trapping to the pressure of all trapped ions.

  4. Using a commercial mathematics software package for on-line analysis at the BNL Accelerator Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, R.; Wang, X.J.

    BY WRITING BOTH A CUSTOM WINDOWS(NTTM) DYNAMIC LINK LIBRARY AND GENERIC COMPANION SERVER SOFTWARE, THE INTRINSIC FUNCTIONS OF MATHSOFT MATHCAD(TM) HAVE BEEN EXTENDED WITH NEW CAPABILITIES WHICH PERMIT DIRECT ACCESS TO THE CONTROL SYSTEM DATABASES OF BROOKHAVEN NATIONAL LABORATORY ACCELERATOR TEST FACILITY. UNDER THIS SCHEME, A MATHCAD WORKSHEET EXECUTING ON A PERSONAL COMPUTER BECOMES A CLIENT WHICH CAN BOTH IMPORT AND EXPORT DATA TO A CONTROL SYSTEM SERVER VIA A NETWORK STREAM SOCKET CONNECTION. THE RESULT IS AN ALTERNATIVE, MATHEMATICALLY ORIENTED VIEW OF CONTROLLING THE ACCELERATOR INTERACTIVELY.

  5. Life Test Approach for Refractory Metal/Sodium Heat Pipes

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    Heat pipe life tests described in the literature have seldom been conducted on a systematic basis. Typically one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. This paper describes an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. Approximately 10 years of operational life might be compressed into 3 years of laboratory testing through a combination of increased temperature and mass fluence. Two specific test series have been identified and include: investigation of long term corrosion rates based on the guidelines contained in ASTM G-68-80 (using 7 heat pipes); and investigation of corrosion trends in a cross correlation sequence at various temperatures and mass fluences based on a central composite test design (using 9 heat pipes). The heat pipes selected for demonstration purposes are fabricated from a Mo-44.5%Re alloy with a length of 0.3 meters and a diameter of 1.59 cm(to conserve material) with a condenser to evaporator length ratio of approximately 3. The wick is a crescent annular design formed from 400-mesh Mo-Re alloy material hot isostatically pressed to produce a final wick core of 20 microns or less.

  6. Shelf-life dating of shelf-stable strawberry juice based on survival analysis of consumer acceptance information.

    PubMed

    Buvé, Carolien; Van Bedts, Tine; Haenen, Annelien; Kebede, Biniam; Braekers, Roel; Hendrickx, Marc; Van Loey, Ann; Grauwet, Tara

    2018-07-01

    Accurate shelf-life dating of food products is crucial for consumers and industries. Therefore, in this study we applied a science-based approach for shelf-life assessment, including accelerated shelf-life testing (ASLT), acceptability testing and the screening of analytical attributes for fast shelf-life predictions. Shelf-stable strawberry juice was selected as a case study. Ambient storage (20 °C) had no effect on the aroma-based acceptance of strawberry juice. The colour-based acceptability decreased during storage under ambient and accelerated (28-42 °C) conditions. The application of survival analysis showed that the colour-based shelf-life was reached in the early stages of storage (≤11 weeks) and that the shelf-life was shortened at higher temperatures. None of the selected attributes (a * and ΔE * value, anthocyanin and ascorbic acid content) is an ideal analytical marker for shelf-life predictions in the investigated temperature range (20-42 °C). Nevertheless, an overall analytical cut-off value over the whole temperature range can be selected. Colour changes of strawberry juice during storage are shelf-life limiting. Combining ASLT with acceptability testing allowed to gain faster insight into the change in colour-based acceptability and to perform shelf-life predictions relying on scientific data. An analytical marker is a convenient tool for shelf-life predictions in the context of ASLT. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Experimental test of photonic entanglement in accelerated reference frames

    NASA Astrophysics Data System (ADS)

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert

    2017-05-01

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g--under free-fall as well on a spinning centrifuge--and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.

  8. Experimental test of photonic entanglement in accelerated reference frames

    PubMed Central

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert

    2017-01-01

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g—under free-fall as well on a spinning centrifuge—and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement. PMID:28489082

  9. Experimental test of photonic entanglement in accelerated reference frames.

    PubMed

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C; Ursin, Rupert

    2017-05-10

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g-under free-fall as well on a spinning centrifuge-and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.

  10. Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Acworth, R. I.

    2016-01-01

    Evaluating the possibility of leakage through low-permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from coal and other strata, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and realistic vertical hydraulic conductivity (Kv) measurements of aquitard cores using accelerated gravity can constrain and compliment larger-scale assessments of hydraulic connectivity. Steady-state fluid velocity through a low-K porous sample is linearly related to accelerated gravity (g level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. A CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions up to 100 mm diameter and 200 mm length, and a total stress of ˜ 2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink-swell phenomena, which may alter the permeability. Kv results from CP testing of minimally disturbed cores from three sites within a clayey-silt formation varied from 10-10 to 10-7 m s-1 (number of samples, n = 18). Additional tests were focussed on the Cattle Lane (CL) site, where Kv within the 99 % confidence interval (n = 9) was 1.1 × 10-9 to 2.0 × 10-9 m s-1. These Kv results were very similar to an independent in situ Kv method based on pore pressure propagation though the sequence. However, there was less certainty at two other core sites due to limited and variable Kv data. Blind standard 1 g column tests underestimated Kv compared to CP and in situ Kv data, possibly due to deionised water interactions with clay, and were more time-consuming than CP tests. Our Kv results were compared with the set-up of a flow model for the region, and considered in the context of heterogeneity and preferential flow paths at site and

  11. Decision Models for Determining the Optimal Life Test Sampling Plans

    NASA Astrophysics Data System (ADS)

    Nechval, Nicholas A.; Nechval, Konstantin N.; Purgailis, Maris; Berzins, Gundars; Strelchonok, Vladimir F.

    2010-11-01

    Life test sampling plan is a technique, which consists of sampling, inspection, and decision making in determining the acceptance or rejection of a batch of products by experiments for examining the continuous usage time of the products. In life testing studies, the lifetime is usually assumed to be distributed as either a one-parameter exponential distribution, or a two-parameter Weibull distribution with the assumption that the shape parameter is known. Such oversimplified assumptions can facilitate the follow-up analyses, but may overlook the fact that the lifetime distribution can significantly affect the estimation of the failure rate of a product. Moreover, sampling costs, inspection costs, warranty costs, and rejection costs are all essential, and ought to be considered in choosing an appropriate sampling plan. The choice of an appropriate life test sampling plan is a crucial decision problem because a good plan not only can help producers save testing time, and reduce testing cost; but it also can positively affect the image of the product, and thus attract more consumers to buy it. This paper develops the frequentist (non-Bayesian) decision models for determining the optimal life test sampling plans with an aim of cost minimization by identifying the appropriate number of product failures in a sample that should be used as a threshold in judging the rejection of a batch. The two-parameter exponential and Weibull distributions with two unknown parameters are assumed to be appropriate for modelling the lifetime of a product. A practical numerical application is employed to demonstrate the proposed approach.

  12. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    PubMed

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h.

  13. Accelerated/abbreviated test methods for predicting life of solar cell encapsulants to Jet Propulsion Laboratory California Institute of Technology for the encapsulation task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Kolyer, J. M.

    1978-01-01

    An important principle is that encapsulants should be tested in a total array system allowing realistic interaction of components. Therefore, micromodule test specimens were fabricated with a variety of encapsulants, substrates, and types of circuitry. One common failure mode was corrosion of circuitry and solar cell metallization due to moisture penetration. Another was darkening and/or opacification of encapsulant. A test program plan was proposed. It includes multicondition accelerated exposure. Another method was hyperaccelerated photochemical exposure using a solar concentrator. It simulates 20 year of sunlight exposure in a short period of one to two weeks. The study was beneficial in identifying some cost effective encapsulants and array designs.

  14. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    The types and quantities of wear particles generated during accelerated ball rolling contact fatigue tests were determined. Ball specimens were made of AMS 5749, a corrosion resistant, high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.215 times 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed; normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  15. Life Test Approach for Refractory Metal/Sodium Heat Pipes

    NASA Astrophysics Data System (ADS)

    Martin, James J.; Reid, Robert S.

    2006-01-01

    Heat pipe life tests described in the literature have seldom been conducted on a systematic basis. Typically one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. The objective of this work was to establish an approach to generate carefully controlled data that can conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. Approximately 10 years of operational life might be compressed into 3 years of laboratory testing through a combination of increased temperature and mass fluence. To accomplish this goal test series have been identified, based on American Society for Testing and Materials (ASTM) specifications, to investigate long term corrosion rates. The heat pipes selected for demonstration purposes are fabricated from a Molybdenum-44.5%Rhenium refractory metal alloy and include an internal crescent annular wick design formed by hot isostatic pressing. A processing methodology has been devised that incorporates vacuum distillation filling with an integrated purity sampling technique for the sodium working fluid. Energy is supplied by radio frequency induction coils coupled to the heat pipe evaporator with an input range of 1 to 5 kW per unit while a static gas gap coupled water calorimeter provides condenser cooling for heat pipe temperatures ranging from 1123 to 1323 K. The test chamber's atmosphere would require active purification to maintain low oxygen concentrations at an operating pressure of approximately 75 torr. The test is designed to operate round-the-clock with 6-month non-destructive inspection intervals to identify the onset and level of corrosion. At longer intervals specific heat pipes are destructively evaluated to verify the non-destructive observations. Accomplishments prior to project cancellation included successful demonstration of the heat pipe wick fabrication technique, establishment of all engineering designs

  16. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change.

    PubMed

    Storsve, Andreas B; Fjell, Anders M; Tamnes, Christian K; Westlye, Lars T; Overbye, Knut; Aasland, Hilde W; Walhovd, Kristine B

    2014-06-18

    Human cortical thickness and surface area are genetically independent, emerge through different neurobiological events during development, and are sensitive to different clinical conditions. However, the relationship between changes in the two over time is unknown. Additionally, longitudinal studies have almost invariably been restricted to older adults, precluding the delineation of adult life span trajectories of change in cortical structure. In this longitudinal study, we investigated changes in cortical thickness, surface area, and volume after an average interval of 3.6 years in 207 well screened healthy adults aged 23-87 years. We hypothesized that the relationships among metrics are dynamic across the life span, that the primary contributor to cortical volume reductions in aging is cortical thinning, and that magnitude of change varies with age and region. Changes over time were seen in cortical area (mean annual percentage change [APC], -0.19), thickness (APC, -0.35), and volume (APC, -0.51) in most regions. Volume changes were primarily explained by changes in thickness rather than area. A negative relationship between change in thickness and surface area was found across several regions, where more thinning was associated with less decrease in area, and vice versa. Accelerating changes with increasing age was seen in temporal and occipital cortices. In contrast, decelerating changes were seen in prefrontal and anterior cingulate cortices. In conclusion, a dynamic relationship between cortical thickness and surface area changes exists throughout the adult life span. The mixture of accelerating and decelerating changes further demonstrates the importance of studying these metrics across the entire adult life span. Copyright © 2014 the authors 0270-6474/14/348488-11$15.00/0.

  17. Observational tests of cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Hojjati, Alireza

    The accelerating expansion of the universe is considered to be a well-established fact. However, a physical explanation of its origin is still missing. While the cosmological constant, Λ, is the favorite candidate, a multitude of other theories have been proposed. Rather than testing every theory against data, one can adapt phenomenological approaches aimed at testing Λ. Adopting a model-independent approach to studying dark energy, we have investigated the utility of wavelets for constraining the redshift evolution of the dark energy equation of state, w(z), from a combination of the type Ia supernovae (SNe Ia), cosmic microwave background (CMB) and baryon acoustic oscillation (BAO) data. We have shown that sharp deviations from wΛ = -1 can be detected efficiently. Applying this method to the "Constitution" SNe Ia data, combined with the CMB data from Wilkinson microwave anisotropy probe (WMAP) and BAO data from Sloan digital sky survey, provided only weak hints of dark energy dynamics. Future weak lensing surveys will have the ability to measure the growth of large scale structure with accuracy sufficient for discriminating between different theories of dark energy and modified gravity (MG). The growth of structure can be tested, in a modelindependent way, by parametrizing the evolution equations of cosmological perturbations. At the linear level, this can be achieved by introducing two scale- and time-dependent functions (MG functions). We have consistently implemented the parametrized equations in the commonly used public codes, CAMB and CosmoMC, while preserving the covariant conservation of the energy-momentum. As a demonstration, we have obtained joint constraints on the neutrino mass and parameters of a scalar-tensor gravity model from the CMB, SNe Ia and the correlation of CMB with large scale structure. We have performed a Principal Component Analysis (PCA) to find the eigenmodes and eigenvalues of the forecasted covariance matrix of the MG functions

  18. Fatigue life prediction of liquid rocket engine combustor with subscale test verification

    NASA Astrophysics Data System (ADS)

    Sung, In-Kyung

    Reusable rocket systems such as the Space Shuttle introduced a new era in propulsion system design for economic feasibility. Practical reusable systems require an order of magnitude increase in life. To achieve this improved methods are needed to assess failure mechanisms and to predict life cycles of rocket combustor. A general goal of the research was to demonstrate the use of subscale rocket combustor prototype in a cost-effective test program. Life limiting factors and metal behaviors under repeated loads were surveyed and reviewed. The life prediction theories are presented, with an emphasis on studies that used subscale test hardware for model validation. From this review, low cycle fatigue (LCF) and creep-fatigue interaction (ratcheting) were identified as the main life limiting factors of the combustor. Several life prediction methods such as conventional and advanced viscoplastic models were used to predict life cycle due to low cycle thermal stress, transient effects, and creep rupture damage. Creep-fatigue interaction and cyclic hardening were also investigated. A prediction method based on 2D beam theory was modified using 3D plate deformation theory to provide an extended prediction method. For experimental validation two small scale annular plug nozzle thrusters were designed, built and tested. The test article was composed of a water-cooled liner, plug annular nozzle and 200 psia precombustor that used decomposed hydrogen peroxide as the oxidizer and JP-8 as the fuel. The first combustor was tested cyclically at the Advanced Propellants and Combustion Laboratory at Purdue University. Testing was stopped after 140 cycles due to an unpredicted failure mechanism due to an increasing hot spot in the location where failure was predicted. A second combustor was designed to avoid the previous failure, however, it was over pressurized and deformed beyond repair during cold-flow test. The test results are discussed and compared to the analytical and numerical

  19. Evaluation program for secondary spacecraft cells: Cycle life test

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1979-01-01

    The service life and storage stability for several storage batteries were determined. The batteries included silver-zinc batteries, nickel-cadmium batteries, and silver-cadmium batteries. The cell performance characteristics and limitations are to be used by spacecraft power systems planners and designers. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is presented.

  20. SU-F-T-475: An Evaluation of the Overlap Between the Acceptance Testing and Commissioning Processes for Conventional Medical Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, A; Rangaraj, D; Perez-Andujar, A

    2016-06-15

    Purpose: This work’s objective is to determine the overlap of processes, in terms of sub-processes and time, between acceptance testing and commissioning of a conventional medical linear accelerator and to evaluate the time saved by consolidating the two processes. Method: A process map for acceptance testing for medical linear accelerators was created from vendor documentation (Varian and Elekta). Using AAPM TG-106 and inhouse commissioning procedures, a process map was created for commissioning of said accelerators. The time to complete each sub-process in each process map was evaluated. Redundancies in the processes were found and the time spent on each weremore » calculated. Results: Mechanical testing significantly overlaps between the two processes - redundant work here amounts to 9.5 hours. Many beam non-scanning dosimetry tests overlap resulting in another 6 hours of overlap. Beam scanning overlaps somewhat - acceptance tests include evaluating PDDs and multiple profiles but for only one field size while commissioning beam scanning includes multiple field sizes and depths of profiles. This overlap results in another 6 hours of rework. Absolute dosimetry, field outputs, and end to end tests are not done at all in acceptance testing. Finally, all imaging tests done in acceptance are repeated in commissioning, resulting in about 8 hours of rework. The total time overlap between the two processes is about 30 hours. Conclusion: The process mapping done in this study shows that there are no tests done in acceptance testing that are not also recommended to do for commissioning. This results in about 30 hours of redundant work when preparing a conventional linear accelerator for clinical use. Considering these findings in the context of the 5000 linacs in the United states, consolidating acceptance testing and commissioning would have allowed for the treatment of an additional 25000 patients using no additional resources.« less

  1. Signature energetic analysis of accelerate electron beam after first acceleration station by accelerating stand of Joint Institute for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Sledneva, A. S.; Kobets, V. V.

    2017-06-01

    The linear electron accelerator based on the LINAC - 800 accelerator imported from the Netherland is created at Joint Institute for Nuclear Research in the framework of the project on creation of the Testbed with an electron beam of a linear accelerator with an energy up to 250 MV. Currently two accelerator stations with a 60 MV energy of a beam are put in operation and the work is to put the beam through accelerating section of the third accelerator station. The electron beam with an energy of 23 MeV is used for testing the crystals (BaF2, CsI (native), and LYSO) in order to explore the opportunity to use them in particle detectors in experiments: Muon g-2, Mu2e, Comet, whose preparation requires a detailed study of the detectors properties such as their irradiation by the accelerator beams.

  2. Long life monopropellant hydrazine thruster evaluation for Space Station Freedom application - Test results

    NASA Technical Reports Server (NTRS)

    Popp, Christopher G.; Cook, Joseph C.; Ragland, Brenda L.; Pate, Leah R.

    1992-01-01

    In support of propulsion system thruster development activity for Space Station Freedom (SSF), NASA Johnson Space Center (JSC) conducted a hydrazine thruster technology demonstration program. The goal of this program was to identify impulse life capability of state-of-the-art long life hydrazine thrusters nominally rated for 50 pounds thrust at 300 psia supply pressure. The SSF propulsion system requirement for impulse life of this thruster class is 1.5 million pounds-seconds, corresponding to a throughput of approximately 6400 pounds of propellant. Long life thrusters were procured from The Marquardt Company, Hamilton Standard, and Rocket Research Company, Testing at JSC was completed on the thruster designs to quantify life while simulating expected thruster firing duty cycles and durations for SSF. This paper presents a review of the SSF propulsion system hydrazine thruster requirements, summaries of the three long life thruster designs procured by JSC and acceptance test results for each thruster, the JSC thruster life evaluation test program, and the results of the JSC test program.

  3. Space Suit Portable Life Support System Test Bed (PLSS 1.0) Development and Testing

    NASA Technical Reports Server (NTRS)

    Watts, Carly; Campbell, Colin; Vogel, Matthew; Conger, Bruce

    2012-01-01

    A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level

  4. Shelf-life of a 2.5% sodium hypochlorite solution as determined by Arrhenius equation.

    PubMed

    Nicoletti, Maria Aparecida; Siqueira, Evandro Luiz; Bombana, Antonio Carlos; Oliveira, Gabriella Guimarães de

    2009-01-01

    Accelerated stability tests are indicated to assess, within a short time, the degree of chemical degradation that may affect an active substance, either alone or in a formula, under normal storage conditions. This method is based on increased stress conditions to accelerate the rate of chemical degradation. Based on the equation of the straight line obtained as a function of the reaction order (at 50 and 70 degrees C) and using Arrhenius equation, the speed of the reaction was calculated for the temperature of 20 degrees C (normal storage conditions). This model of accelerated stability test makes it possible to predict the chemical stability of any active substance at any given moment, as long as the method to quantify the chemical substance is available. As an example of the applicability of Arrhenius equation in accelerated stability tests, a 2.5% sodium hypochlorite solution was analyzed due to its chemical instability. Iodometric titration was used to quantify free residual chlorine in the solutions. Based on data obtained keeping this solution at 50 and 70 degrees C, using Arrhenius equation and considering 2.0% of free residual chlorine as the minimum acceptable threshold, the shelf-life was equal to 166 days at 20 degrees C. This model, however, makes it possible to calculate shelf-life at any other given temperature.

  5. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    DOE PAGES

    Degiovanni, A.; Bonomi, R.; Garlasche, M.; ...

    2018-02-09

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less

  6. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, A.; Bonomi, R.; Garlasche, M.

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less

  7. Laser-accelerated particle beams for stress testing of materials.

    PubMed

    Barberio, M; Scisciò, M; Vallières, S; Cardelli, F; Chen, S N; Famulari, G; Gangolf, T; Revet, G; Schiavi, A; Senzacqua, M; Antici, P

    2018-01-25

    Laser-driven particle acceleration, obtained by irradiation of a solid target using an ultra-intense (I > 10 18  W/cm 2 ) short-pulse (duration <1 ps) laser, is a growing field of interest, in particular for its manifold potential applications in different domains. Here, we provide experimental evidence that laser-generated particles, in particular protons, can be used for stress testing materials and are particularly suited for identifying materials to be used in harsh conditions. We show that these laser-generated protons can produce, in a very short time scale, a strong mechanical and thermal damage, that, given the short irradiation time, does not allow for recovery of the material. We confirm this by analyzing changes in the mechanical, optical, electrical, and morphological properties of five materials of interest to be used in harsh conditions.

  8. Long-Term Reliability of SiGe/Si HBTs From Accelerated Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Pallab

    2001-01-01

    Accelerated lifetime tests were performed on double-mesa structure Si(0.7)Ge(0.3)/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175 C-275 C. The transistors (with 5x20 sq micron emitter area) have DC current gains approx. 40-50 and f(sub T) and f(sub max) of up to 22 GHz and 25 GHz, respectively. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REED has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of these devices at room temperature under 1.35 x 10(exp 4) A/sq cm current density operation is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation.

  9. Traveling-wave tube reliability estimates, life tests, and space flight experience

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.; Speck, C. E.

    1977-01-01

    Infant mortality, useful life, and wearout phase of twt life are considered. The performance of existing developmental tubes, flight experience, and sequential hardware testing are evaluated. The reliability history of twt's in space applications is documented by considering: (1) the generic parts of the tube in light of the manner in which their design and operation affect the ultimate reliability of the device, (2) the flight experience of medium power tubes, and (3) the available life test data for existing space-qualified twt's in addition to those of high power devices.

  10. Preliminary research concerning the use of electron accelerators to improve the conservability and to extend the shelf-life of fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Minea, R.; Oproiu, C.; Pascanu, S.; Matei, C.; Ferdes, O.

    1996-06-01

    The potential of ionizing radiation treatment for food preservation, shelf-life extension, control of microbial load and reduction of pathogenic microorganism was demonstrated. The irradiations were performed under normal conditions on the Institute of Physics and Technology for Radiation Device's linear electron accelerator, which has the following parameters: 5 μA mean beam current, 6 MeV electron mean energy, pulse period 3.5 μs and dose rates between 100-1500 Gy/min. This research project was aimed at assuring the consumer's acceptance for radiation-treated food and to obtain a significant reduction of food losses. We also propose a promising solution for the radiation processing of some bulk food products at the place of storage, consisting of a mobile electron accelerator. The main characteristics of the mobile electron accelerator are: electron energy 3 to 5 MeV, maximum beam power 5 kW, vertical electron beam; irradiation is possible both with electron beams and with bremsstrahlung. The results of our preliminary research lead to the conclusion that electron-beam irradiation and the use of electron accelerators is a promising solution for food preservation and food safety. Interesting future applications are outlined.

  11. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    DOE PAGES

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; ...

    2016-03-29

    In this paper, we report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power ofmore » up to 4 MW from a klystron supplied via a TM 01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV=m at a breakdown probability of 1.19 × 10 –1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV=m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV=m at a breakdown probability of 1.09 × 10 –1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.« less

  12. Dynamic Multivariate Accelerated Corrosion Test Protocol

    DTIC Science & Technology

    2014-10-01

    atmospheric, accelerated, AA2024-T3, AA6061-T6, AA7075-T3, 1010 steel, AgCl, rare earth conversion coat, magnesium rich primer, polyurethane , Eyring, Monte...morphology and elemental analysis by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and electrochemical determinations of...in the FT-IR analysis; degradation of the components of the high performance polyurethane coatings exposed in the UV/ozone chamber were more

  13. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: Electron cloud diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billing, M. G.; Conway, J. V.; Crittenden, J. A.

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to themore » test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focuses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. Lastly, while the initial studies of CESRTA focused on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.« less

  14. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: Electron cloud diagnostics

    DOE PAGES

    Billing, M. G.; Conway, J. V.; Crittenden, J. A.; ...

    2016-04-28

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to themore » test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focuses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. Lastly, while the initial studies of CESRTA focused on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.« less

  15. Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command

    NASA Technical Reports Server (NTRS)

    McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.

    1961-01-01

    An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.

  16. Evaluation of accelerated stability test conditions for medicated chewing gums.

    PubMed

    Maggi, Lauretta; Conte, Ubaldo; Nhamias, Alain; Grenier, Pascal; Vergnault, Guy

    2013-10-01

    The overall stability of medicated chewing gums is investigated under different storage conditions. Active substances with different chemical stabilities in solid state are chosen as model drugs. The dosage form is a three layer tablet obtained by direct compression. The gum core contains the active ingredient while the external layers are formulated to prevent gum adhesion to the punches of the tableting machine. Two accelerated test conditions (40°C/75% RH and 30°C/65% RH) are performed for 6 months. Furthermore, a long-term stability test at room conditions is conducted to verify the predictability of the results obtained from the stress tests. Some drugs are stable in all the conditions tested, but other drugs, generally considered stable in solid dosage forms, have shown relevant stability problems particularly when stress test conditions are applied to this particular semi-solid dosage forms. For less stable drugs, the stress conditions of 40°C/75% RH are not always predictable of chewing gum stability at room temperature and may produce false negative; intermediate conditions, 30°C/65% RH, are more predictive for this purpose, the results of drug content found after 6 months at intermediate stress conditions and 12 months at room conditions are generally comparable. But the results obtained show that only long-term conditions stability tests gave consistent results. During aging, the semi solid nature of the gum base itself, may also influence the drug delivery rate during chewing and great attention should be given also to the dissolution stability.

  17. Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator.

    PubMed

    Chitarin, G; Agostinetti, P; Marconato, N; Marcuzzi, D; Sartori, E; Serianni, G; Sonato, P

    2012-02-01

    The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

  18. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests

    PubMed Central

    Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10−3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  19. High Gradient Accelerator Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temkin, Richard

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less

  20. Definition study for an extended manned test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A program was defined which consists of extended ground-based manned tests of regenerative life support systems. The tests are to evaluate prototypes of advanced life support systems under operational, integrated conditions, thus providing data for the design of efficient environmental control and life support systems for use in long-duration space missions. The requirements are defined for test operations to provide a simulation of an orbiting space laboratory. The features of Phase A and B programs are described. These tests use proven backup equipment to ensure successful evaluation of the advanced subsystems. A pre-tests all-systems checkout period is provided to minimize equipment problems during extended testing and to familiarize all crew and operating staff members with test equipment and procedures.

  1. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  2. Evolutionary optimization methods for accelerator design

    NASA Astrophysics Data System (ADS)

    Poklonskiy, Alexey A.

    optimization test problems for EA with a variety of different configurations and suggest optimal default parameter values based on the results. Then we study the performance of the REPA method on the same set of test problems and compare the obtained results with those of several commonly used constrained optimization methods with EA. Based on the obtained results, particularly on the outstanding performance of REPA on test problem that presents significant difficulty for other reviewed EAs, we conclude that the proposed method is useful and competitive. We discuss REPA parameter tuning for difficult problems and critically review some of the problems from the de-facto standard test problem set for the constrained optimization with EA. In order to demonstrate the practical usefulness of the developed method, we study several problems of accelerator design and demonstrate how they can be solved with EAs. These problems include a simple accelerator design problem (design a quadrupole triplet to be stigmatically imaging, find all possible solutions), a complex real-life accelerator design problem (an optimization of the front end section for the future neutrino factory), and a problem of the normal form defect function optimization which is used to rigorously estimate the stability of the beam dynamics in circular accelerators. The positive results we obtained suggest that the application of EAs to problems from accelerator theory can be very beneficial and has large potential. The developed optimization scenarios and tools can be used to approach similar problems.

  3. Service Lifetime Estimation of EPDM Rubber Based on Accelerated Aging Tests

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Li, Xiangbo; Xu, Likun; He, Tao

    2017-04-01

    Service lifetime of ethylene propylene diene monomer (EPDM) rubber at room temperature (25 °C) was estimated based on accelerated aging tests. The study followed sealing stress loss on compressed cylinder samples by compression stress relaxation methods. The results showed that the cylinder samples of EPDM can quickly reach the physical relaxation equilibrium by using the over-compression method. The non-Arrhenius behavior occurred at the lowest aging temperature. A significant linear relationship was observed between compression set values and normalized stress decay results, and the relationship was not related to the ambient temperature of aging. It was estimated that the sealing stress loss in view of practical application would occur after around 86.8 years at 25 °C. The estimations at 25 °C based on the non-Arrhenius behavior were in agreement with compression set data from storage aging tests in natural environment.

  4. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    Ferrographic analysis was used to determine the types and quantities of wear particles generated during accelerated rolling contact fatigue tests. The NASA five-ball rolling contact fatigue tester was used. Ball specimens were made of AMS 5749, a corrosion-resistant high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 billion Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed: normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  5. In Situ, Time-Resolved Accelerator Grid Erosion Measurements in the NSTAR 8000 Hour Ion Engine Wear Test

    NASA Technical Reports Server (NTRS)

    Sovey, J.

    1997-01-01

    Time-resolved, in situ measurements of the charge exchange ion erosion pattern on the downstream face of the accelerator grid have been made during an ongoin wear test of the NSTAR 30 cm ion thruster.

  6. 40 CFR 797.1600 - Fish early life stage toxicity test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dilution water or the test solution. (4) “Control” an exposure of test organisms to dilution water only or... (treatment) concentrations of a test substance and one control are required to conduct an early life stage... trays or cups for each test concentration and control (i.e., 30 per embryo cup with 2 replicates); (C...

  7. 40 CFR 797.1600 - Fish early life stage toxicity test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dilution water or the test solution. (4) “Control” an exposure of test organisms to dilution water only or... (treatment) concentrations of a test substance and one control are required to conduct an early life stage... trays or cups for each test concentration and control (i.e., 30 per embryo cup with 2 replicates); (C...

  8. 40 CFR 797.1600 - Fish early life stage toxicity test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dilution water or the test solution. (4) “Control” an exposure of test organisms to dilution water only or... (treatment) concentrations of a test substance and one control are required to conduct an early life stage... trays or cups for each test concentration and control (i.e., 30 per embryo cup with 2 replicates); (C...

  9. Environmental Control and Life Support Systems Test Facility at MSFC

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. In this photograph, the life test area on the left of the MSFC ECLSS test facility is where various subsystems and components are tested to determine how long they can operate without failing and to identify components needing improvement. Equipment tested here includes the Carbon Dioxide Removal Assembly (CDRA), the Urine Processing Assembly (UPA), the mass spectrometer filament assemblies and sample pumps for the Major Constituent Analyzer (MCA). The Internal Thermal Control System (ITCS) simulator facility (in the module in the right) duplicates the function and operation of the ITCS in the ISS U.S. Laboratory Module, Destiny. This facility provides support for Destiny, including troubleshooting problems related to the ITCS.

  10. The CSU Accelerator and FEL Facility

    NASA Astrophysics Data System (ADS)

    Biedron, Sandra; Milton, Stephen; D'Audney, Alex; Edelen, Jonathan; Einstein, Josh; Harris, John; Hall, Chris; Horovitz, Kahren; Martinez, Jorge; Morin, Auralee; Sipahi, Nihan; Sipahi, Taylan; Williams, Joel

    2014-03-01

    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test stand, and a magnetic test stand. The photocathode drive linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Details of the systems used in CSU Accelerator Facility are discussed.

  11. Regenerative Life Support Systems Test Bed performance - Lettuce crop characterization

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Eckhardt, Bradley D.

    1992-01-01

    System performance in terms of human life support requirements was evaluated for two crops of lettuce (Lactuca sative cv. Waldmann's Green) grown in the Regenerative Life Support Systems Test Bed. Each crop, grown in separate pots under identical environmental and cultural conditions, was irrigated with half-strength Hoagland's nutrient solution, with the frequency of irrigation being increased as the crop aged over the 30-day crop tests. Averaging over both crop tests, the test bed met the requirements of 2.1 person-days of oxygen production, 2.4 person-days of CO2 removal, and 129 person-days of potential potable water production. Gains in the mass of water and O2 produced and CO2 removed could be achieved by optimizing environmental conditions to increase plant growth rate and by optimizing cultural management methods.

  12. Human occupants in low-speed frontal sled tests: effects of pre-impact bracing on chest compression, reaction forces, and subject acceleration.

    PubMed

    Kemper, Andrew R; Beeman, Stephanie M; Madigan, Michael L; Duma, Stefan M

    2014-01-01

    The purpose of this study was to investigate the effects of pre-impact bracing on the chest compression, reaction forces, and accelerations experienced by human occupants during low-speed frontal sled tests. A total of twenty low-speed frontal sled tests, ten low severity (∼2.5g, Δv=5 kph) and ten medium severity (∼5g, Δv=10 kph), were performed on five 50th-percentile male human volunteers. Each volunteer was exposed to two impulses at each severity, one relaxed and the other braced prior to the impulse. A 59-channel chestband, aligned at the nipple line, was used to quantify the chest contour and anterior-posterior sternum deflection. Three-axis accelerometer cubes were attached to the sternum, 7th cervical vertebra, and sacrum of each subject. In addition, three linear accelerometers and a three-axis angular rate sensor were mounted to a metal mouthpiece worn by each subject. Seatbelt tension load cells were attached to the retractor, shoulder, and lap portions of the standard three-point driver-side seatbelt. In addition, multi-axis load cells were mounted to each interface between the subject and the test buck to quantify reaction forces. For relaxed tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, all belt forces, and three resultant reaction forces (right foot, seatpan, and seatback). For braced tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, and two resultant reaction forces (right foot and seatpan). Bracing did not have a significant effect on the occupant accelerations during the low severity tests, but did result in a significant decrease in peak resultant sacrum linear acceleration during the medium severity tests. Bracing was also found to significantly reduce peak shoulder and retractor belt forces for both test severities, and peak lap belt force for the medium test severity. In contrast, bracing resulted in a significant

  13. Rail accelerator research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Cybyk, B. Z.

    1982-01-01

    A rail accelerator was chosen for study as an electromagnetic space propulsion device because of its simplicity and existing technology base. The results of a mission feasibility study using a large rail accelerator for direct launch of ton-size payloads from the Earth's surface to space, and the results of initial tests with a small, laboratory rail accelerator are presented. The laboratory rail accelerator has a bore of 3 by 3 mm and has accelerated 60 mg projectiles to velocities of 300 to 1000 m/s. Rail materials of Cu, W, and Mo were tested for efficiency and erosion rate.

  14. Prospects for Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  15. Determination of Rolling-Element Fatigue Life From Computer Generated Bearing Tests

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Hendricks, Robert C.; Zaretsky, Erwin V.

    2003-01-01

    Two types of rolling-element bearings representing radial loaded and thrust loaded bearings were used for this study. Three hundred forty (340) virtual bearing sets totaling 31400 bearings were randomly assembled and tested by Monte Carlo (random) number generation. The Monte Carlo results were compared with endurance data from 51 bearing sets comprising 5321 bearings. A simple algebraic relation was established for the upper and lower L(sub 10) life limits as function of number of bearings failed for any bearing geometry. There is a fifty percent (50 percent) probability that the resultant bearing life will be less than that calculated. The maximum and minimum variation between the bearing resultant life and the calculated life correlate with the 90-percent confidence limits for a Weibull slope of 1.5. The calculated lives for bearings using a load-life exponent p of 4 for ball bearings and 5 for roller bearings correlated with the Monte Carlo generated bearing lives and the bearing data. STLE life factors for bearing steel and processing provide a reasonable accounting for differences between bearing life data and calculated life. Variations in Weibull slope from the Monte Carlo testing and bearing data correlated. There was excellent agreement between percent of individual components failed from Monte Carlo simulation and that predicted.

  16. Special environmental control and life support equipment test analyses and hardware

    NASA Technical Reports Server (NTRS)

    Callahan, David M.

    1995-01-01

    This final report summarizes NAS8-38250 contract events, 'Special Environmental Control and Life Support Systems Test Analysis and Hardware'. This report is technical and includes programmatic development. Key to the success of this contract was the evaluation of Environmental Control and Life Support Systems (ECLSS) test results via sophisticated laboratory analysis capabilities. The history of the contract, including all subcontracts, is followed by the support and development of each Task.

  17. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2008-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  18. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2012-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  19. Statistical evaluation of accelerated stability data obtained at a single temperature. I. Effect of experimental errors in evaluation of stability data obtained.

    PubMed

    Yoshioka, S; Aso, Y; Takeda, Y

    1990-06-01

    Accelerated stability data obtained at a single temperature is statistically evaluated, and the utility of such data for assessment of stability is discussed focussing on the chemical stability of solution-state dosage forms. The probability that the drug content of a product is observed to be within the lower specification limit in the accelerated test is interpreted graphically. This probability depends on experimental errors in the assay and temperature control, as well as the true degradation rate and activation energy. Therefore, the observation that the drug content meets the specification in the accelerated testing can provide only limited information on the shelf-life of the drug, without the knowledge of the activation energy and the accuracy and precision of the assay and temperature control.

  20. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezian, Michael; Varanauski, Don; Yoder, Tommy; Woodworth, Warren

    2009-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPV has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. The more aggressive second phase, performed at 160 F was designed to determine if the test article will exceed the 95% confidence interval of the model. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  1. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffó, Gustavo, E-mail: duffo@cnea.gov.ar; Consejo Nacional de Investigaciones Científicas y Técnicas; Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cementmore » ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.« less

  2. Accelerated stability studies of Sufoofe Sailan: A Unani formulation.

    PubMed

    Rani, Seema; Rahman, Khaleequr; Younis, Peerzada Mohammad

    2015-01-01

    Sufoofe Sailan (SS) is a polyherbal powder preparation used in Unani medicine to treat gynecological diseases. It is observed that SS degrade early as it is in the form of powder; however, the stability study of SS was not carried out till date. To evaluate the accelerated stability of SS. Finished formulation of SS was packed in three airtight transparent polyethylene terephthalate containers. One pack was analyzed just after manufacturing and remaining two packs were kept in stability chamber at 40°C ± 2°C/75% ± 5% RH, of which one pack was analyzed after the completion of three and another after 6 months. Organoleptic, physico-chemical, microbiological parameters along with high-performance thin layer chromatography (HPTLC) fingerprinting were carried out. Organoleptic characters showed no significant change in accelerated stability condition. All physico-chemical parameters showed changes <5%, HPTLC fingerprinting showed minimum changes and microbial studies were in confirmation to the World Health Organization guidelines. SS confirmed to the International Conference on Harmonization Guideline for accelerated testing of the pharmaceutical product on said parameters and as per the Grimm's statement the shelf life of SS may last 20 months.

  3. Intermediate Temperature Fluids Life Tests - Experiments

    DTIC Science & Technology

    2007-06-01

    TiCl4, TiBr4, and eutectic diphenyl/diphenyl oxide (Therminol VP-1/Dowtherm A). All of the life tests except for the GaCl3 are ongoing; the GaCl3...763 85.5 Eutectic Diphenyl/Diphenyl Oxide 285 530 770 31 Antimony Tribromide SbBr3 370 553 1178 55 Antimony Trichloride SbCl3 346 556 794 Cesium...From a Compatibility Standpoint) Have High Decomposition Potentials, While Halides/ Salts of Good Envelope Materials Have Low Decomposition Potentials

  4. Overview of the Environmental Control and Life Support System (ECLSS) Testing At MSFC

    NASA Technical Reports Server (NTRS)

    Traweek, Mary S.; Tatara, James D.

    1998-01-01

    Previously, almost all water used by the crew during space flight has been transported from earth or generated in-flight as a by-product of fuel cells. Additionally, this water has been stored and used for relatively short periods. To achieve the United States' commitment to a permanent manned presence in space, more innovative techniques are demanded. Over 20,000 pounds of water and large quantities of air would have to be transported to the International Space Station (ISS) every 90 days with a corresponding amount of waste returned to earth, for an 8-person crew. This approach results in prohibitive logistics costs, and necessitates near complete recovery and recycling of water. The potential hazards associated with long-term reuse of reclaimed water and revitalized air resulted in the recognition that additional characterization of closed-loop systems and products is essential. Integrated physical/chemical systems have been designed, assembled, and operated to provide air and potable water meeting ISS quality specifications. The purpose of the Environmental Control and Life Support System (ECLSS) test program at NASA's Marshall Space Flight Center is to conduct research related to the performance of the ISS and its Environmental Control components. The ECLSS Test Program encompasses the Water Recovery Test (WRT), the Integrated Air Revitalization Test (IART), and Life Testing, which permits ECLSS design evaluation. These subsystems revitalize air and reclaim waste waters representative of those to be generated on-orbit. This paper provides an overview of MSFC's 1997 ECLSS testing. Specific tests include: the Stage 10 Water Recovery Test; the Contaminant Injection Test; the Performance Enhancement Test and Life Testing of the Four Bed Molecular Sieve; the Oxygen Generator Assembly Life Test; and the ISS Water Distribution Biofilm Life Test.

  5. Comparison of Accelerated Testing with Modeling to Predict Lifetime of CPV Solder Layers (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, T. J.; Bosco, N.; Kurtz, S.

    2012-03-01

    Concentrating photovoltaic (CPV) cell assemblies can fail due to thermomechanical fatigue in the die-attach layer. In this presentation, we show the latest results from our computational model of thermomechanical fatigue. The model is used to estimate the relative lifetime of cell assemblies exposed to various temperature histories consistent with service and with accelerated testing. We also present early results from thermal cycling experiments designed to help validate the computational model.

  6. Self-shielded electron linear accelerators designed for radiation technologies

    NASA Astrophysics Data System (ADS)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  7. Should Australia Ban the Use of Genetic Test Results in Life Insurance?

    PubMed

    Tiller, Jane; Otlowski, Margaret; Lacaze, Paul

    2017-01-01

    Under current Australian regulation, life insurance companies can require applicants to disclose all genetic test results, including results from research or direct-to-consumer tests. Life insurers can then use this genetic information in underwriting and policy decisions for mutually rated products, including life, permanent disability, and total income protection insurance. Over the past decade, many countries have implemented moratoria or legislative bans on the use of genetic information by life insurers. The Australian government, by contrast, has not reviewed regulation since 2005 when it failed to ensure implementation of recommendations made by the Australian Law Reform Commission. In that time, the Australian life insurance industry has been left to self-regulate its use of genetic information. As a result, insurance fears in Australia now are leading to deterred uptake of genetic testing by at-risk individuals and deterred participation in medical research, both of which have been documented. As the potential for genomic medicine grows, public trust and engagement are critical for successful implementation. Concerns around life insurance may become a barrier to the development of genomic health care, research, and public health initiatives in Australia, and the issue should be publicly addressed. We argue a moratorium on the use of genetic information by life insurers should be enacted while appropriate longer term policy is determined and implemented.

  8. Cavity beam position monitor system for the Accelerator Test Facility 2

    NASA Astrophysics Data System (ADS)

    Kim, Y. I.; Ainsworth, R.; Aryshev, A.; Boogert, S. T.; Boorman, G.; Frisch, J.; Heo, A.; Honda, Y.; Hwang, W. H.; Huang, J. Y.; Kim, E.-S.; Kim, S. H.; Lyapin, A.; Naito, T.; May, J.; McCormick, D.; Mellor, R. E.; Molloy, S.; Nelson, J.; Park, S. J.; Park, Y. J.; Ross, M.; Shin, S.; Swinson, C.; Smith, T.; Terunuma, N.; Tauchi, T.; Urakawa, J.; White, G. R.

    2012-04-01

    The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1μm for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  9. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2004-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30,60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  10. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  11. Estimating degradation in real time and accelerated stability tests with random lot-to-lot variation: a simulation study.

    PubMed

    Magari, Robert T

    2002-03-01

    The effect of different lot-to-lot variability levels on the prediction of stability are studied based on two statistical models for estimating degradation in real time and accelerated stability tests. Lot-to-lot variability is considered as random in both models, and is attributed to two sources-variability at time zero, and variability of degradation rate. Real-time stability tests are modeled as a function of time while accelerated stability tests as a function of time and temperatures. Several data sets were simulated, and a maximum likelihood approach was used for estimation. The 95% confidence intervals for the degradation rate depend on the amount of lot-to-lot variability. When lot-to-lot degradation rate variability is relatively large (CV > or = 8%) the estimated confidence intervals do not represent the trend for individual lots. In such cases it is recommended to analyze each lot individually. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91: 893-899, 2002

  12. Rheological behavior, zeta potential, and accelerated stability tests of Buriti oil (Mauritia flexuosa) emulsions containing lyotropic liquid crystals.

    PubMed

    Zanatta, Cinthia Fernanda; de Faria Sato, Anne Miwa Callejón; de Camargo, Flavio Bueno; Campos, Patrícia Maria Berardo Gonçalves Maia; Rocha-Filho, Pedro Alves

    2010-01-01

    It is well known that the Amazon region presents a huge biodiversity; therefore, countless natural resources are being employed in the production of phytocosmetics and phytomedicines. The purpose of this work was to obtain emulsions produced with Buriti oil and non-ionic surfactants. Two surfactant systems were employed (Steareth-2 associated to Ceteareth-5 and to Ceteareth-20) to produce the emulsions using phase diagram method. Emulsions were obtained by echo-planar imaging method at 75°C. Rheological behavior and zeta potential were evaluated, and accelerated stability tests were performed. All emulsions analyzed presented pseudoplastic behavior. Zeta potential values were obtained between -14.2 and -53.3 mV. The formulations did not show changes in either physical stability, pH, or rheological behavior after accelerated stability tests. Significant differences were observed only after temperature cycling test. Based on these results, the emulsions obtained could be considered as promising delivery systems.

  13. SMART empirical approaches for predicting field performance of PV modules from results of reliability tests

    NASA Astrophysics Data System (ADS)

    Hardikar, Kedar Y.; Liu, Bill J. J.; Bheemreddy, Venkata

    2016-09-01

    Gaining an understanding of degradation mechanisms and their characterization are critical in developing relevant accelerated tests to ensure PV module performance warranty over a typical lifetime of 25 years. As newer technologies are adapted for PV, including new PV cell technologies, new packaging materials, and newer product designs, the availability of field data over extended periods of time for product performance assessment cannot be expected within the typical timeframe for business decisions. In this work, to enable product design decisions and product performance assessment for PV modules utilizing newer technologies, Simulation and Mechanism based Accelerated Reliability Testing (SMART) methodology and empirical approaches to predict field performance from accelerated test results are presented. The method is demonstrated for field life assessment of flexible PV modules based on degradation mechanisms observed in two accelerated tests, namely, Damp Heat and Thermal Cycling. The method is based on design of accelerated testing scheme with the intent to develop relevant acceleration factor models. The acceleration factor model is validated by extensive reliability testing under different conditions going beyond the established certification standards. Once the acceleration factor model is validated for the test matrix a modeling scheme is developed to predict field performance from results of accelerated testing for particular failure modes of interest. Further refinement of the model can continue as more field data becomes available. While the demonstration of the method in this work is for thin film flexible PV modules, the framework and methodology can be adapted to other PV products.

  14. Active matrix organic light emitting diode (OLED)-XL life test results

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Ghosh, Amalkumar P.; Prache, Olivier

    2008-04-01

    OLED displays have been known to exhibit high levels of performance with regards to contrast, response time, uniformity, and viewing angle, but a lifetime improvement has been perceived to be essential for broadening the applications of OLED's in the military and in the commercial market. As a result of this need, the US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to improve the lifetime of OLED displays. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications, and RDECOM CERDEC NVESD ran life tests on these displays, finding over 200% lifetime improvement for the XL devices over the standard displays. Early results were published at the 2007 SPIE Defense and Security Symposium. Further life testing of XL and standard devices at ambient conditions and at high temperatures will be presented this year along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be needed. This is a continuation of the paper "Life test results of OLED-XL long-life devices for use in active matrix organic light emitting diode (AMOLED) displays for head mounted applications" presented at SPIE DSS in 2007.

  15. Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Guinea, A.; Acworth, R. I.

    2015-03-01

    Evaluating the possibility of leakage through low permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from strata such as coal beds, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and reliable hydraulic conductivity (K) measurement of aquitard cores using accelerated gravity can inform and constrain larger scale assessments of hydraulic connectivity. Steady state fluid velocity through a low K porous sample is linearly related to accelerated gravity (g-level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. The CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions of 30 to 100 mm diameter and 30 to 200 mm in length, and a maximum total stress of ~2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink-swell phenomena which may alter the permeability. Vertical hydraulic conductivity (Kv) results from CP testing of cores from three sites within the same regional clayey silt formation varied (10-7 to 10-9 m s-1, n = 14). Results at one of these sites (1.1 × 10-10 to 3.5 × 10-9 m s-1, n = 5) that were obtained in < 24 h were similar to in situ Kv values (3 × 10-9 m s-1) from pore pressure responses over several weeks within a 30 m clayey sequence. Core scale and in situ Kv results were compared with vertical connectivity within a regional flow model, and considered in the context of heterogeneity and preferential flow paths at site and formation scale. More reliable assessments of leakage and solute transport though aquitards over multi-decadal timescales can be achieved by accelerated core testing together with advanced geostatistical and numerical methods.

  16. Simulation of launch and re-entry acceleration profiles for testing of shuttle and unmanned microgravity research payloads

    NASA Astrophysics Data System (ADS)

    Cassanto, J. M.; Ziserman, H. I.; Chapman, D. K.; Korszun, Z. R.; Todd, P.

    Microgravity experiments designed for execution in Get-Away Special canisters, Hitchhiker modules, and Reusable Re-entry Satellites will be subjected to launch and re-entry accelerations. Crew-dependent provisions for preventing acceleration damage to equipment or products will not be available for these payloads during flight; therefore, the effects of launch and re-entry accelerations on all aspects of such payloads must be evaluated prior to flight. A procedure was developed for conveniently simulating the launch and re-entry acceleration profiles of the Space Shuttle (3.3 and 1.7 × g maximum, respectively) and of two versions of NASA's proposed materials research Re-usable Re-entry Satellite (8 × g maximum in one case and 4 × g in the other). By using the 7 m centrifuge of the Gravitational Plant Physiology Laboratory in Philadelphia it was found possible to simulate the time dependence of these 5 different acceleration episodes for payload masses up to 59 kg. A commercial low-cost payload device, the “Materials Dispersion Apparatus” of Instrumentation Technology Associates was tested for (1) integrity of mechanical function, (2) retention of fluid in its compartments, and (3) integrity of products under simulated re-entry g-loads. In particular, the sharp rise from 1 g to maximum g-loading that occurs during re-entry in various unmanned vehicles was successfully simulated, conditions were established for reliable functioning of the MDA, and crystals of 5 proteins suspended in compartments filled with mother liquor were subjected to this acceleration load.

  17. What makes the Universe accelerate? A review on what dark energy could be and how to test it.

    PubMed

    Brax, Philippe

    2018-01-01

    Explaining the origin of the acceleration of the expansion of the Universe remains as challenging as ever. In this review, we present different approaches from dark energy to modified gravity. We also emphasize the quantum nature of the problem and the need for an explanation which should violate Weinberg's no go theorem. This might involve a self-tuning mechanism or the acausal sequestering of the vacuum energy. Laboratory tests of the coupling to matter of nearly massless scalar fields, which could be one of the features required to explain the cosmic acceleration, are also reviewed.

  18. X-43A Rudder Spindle Fatigue Life Estimate and Testing

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Dawicke, David S.; Johnston, William M.; James, Mark A.; Simonsen, Micah; Mason, Brian H.

    2005-01-01

    Fatigue life analyses were performed using a standard strain-life approach and a linear cumulative damage parameter to assess the effect of a single accidental overload on the fatigue life of the Haynes 230 nickel-base superalloy X-43A rudder spindle. Because of a limited amount of information available about the Haynes 230 material, a series of tests were conducted to replicate the overload and in-service conditions for the spindle and corroborate the analysis. Both the analytical and experimental results suggest that the spindle will survive the anticipated flight loads.

  19. Partial discharge testing under direct voltage conditions

    NASA Technical Reports Server (NTRS)

    Bever, R. S.; Westrom, J. L.

    1982-01-01

    DC partial discharge (PD) (corona) testing is performed using a multichannel analyzer for pulse storing, and data is collected during increase of voltage and at quiescent voltage levels. Thus high voltage ceramic disk capacitors were evaluated by obtaining PD data interspersed during an accelerated life test. Increased PD activity was found early in samples that later failed catastrophically. By this technique, trends of insulation behavior are revealed sensitively and nondestructively in high voltage dc components.

  20. Accelerated degradation of silicon metallization systems

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1983-01-01

    Clemson University has been engaged for the past five years in a program to determine the reliability attributes of solar cells by means of accelerated test procedures. The cells are electrically measured and visually inspected and then subjected for a period of time to stress in excess of that normally encountered in use, and then they are reinspected. Changes are noted and the process repeated. This testing has thus far involved 23 different unencapsulated cell types from 12 different manufacturers, and 10 different encapsulated cell types from 9 different manufacturers. Reliability attributes of metallization systems can be classified as major or minor, depending on the severity of the effects observed. As a result of the accelerated testing conducted under the Clemson program, major effects have been observed related to contact resistance and to mechanical adherence and solderability. This paper does not attempt a generalized survey of accelerated test results, but rather concentrates on one particular attribute of metallization that has been observed to cause electrical degradation - increased contact resistance due to Schottky barrier formation. In this example basic semiconductor theory was able to provide an understanding of the electrical effects observed during accelerated stress testing.

  1. Thermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder Joint Using Type-I Censored Data

    PubMed Central

    Mi, Jinhua; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-01-01

    Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA) and fine-pitch ball grid array (FBGA) interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products. PMID:25121138

  2. Physicochemical stability and biological activity of Withania somnifera extract under real-time and accelerated storage conditions.

    PubMed

    Patil, Dada; Gautam, Manish; Jadhav, Umesh; Mishra, Sanjay; Karupothula, Suresh; Gairola, Sunil; Jadhav, Suresh; Patwardhan, Bhushan

    2010-03-01

    Stability testing at preformulation stages is a crucial part of drug development. We studied physicochemical stability and biological activity of Withania somnifera (ashwagandha) dried root aqueous extract during six months real-time and under accelerated storage conditions. The characteristic constituents of ashwagandha roots include withanolides such as withaferin A and withanolide A. We modified and validated the HPLC-DAD method for quantitative measurement of withanolides and fingerprint analysis. The results suggest a significant decline in withaferin A and withanolide A content under real and accelerated conditions. The HPLC fingerprint analysis showed significant changes in some peaks during real and accelerated storage (> 20 %). We also observed incidences of clump formation and moisture sensitivity (> 10 %) under real-time and accelerated storage conditions. These changes were concurrent with a significant decline in immunomodulatory activity (p < 0.01) during the third month of the accelerated storage. Thus, adequate control of temperature and humidity is important for WSE containing formulations. This study may help in proposing suitable guidance for storage conditions and shelf life of ashwagandha formulations. (c) Georg Thieme Verlag KG Stuttgart . New York.

  3. High Intensity Proton Accelerator Project in Japan (J-PARC).

    PubMed

    Tanaka, Shun-ichi

    2005-01-01

    The High Intensity Proton Accelerator Project, named as J-PARC, was started on 1 April 2001 at Tokai-site of JAERI. The accelerator complex of J-PARC consists of three accelerators: 400 MeV Linac, 3 GeV rapid cycle synchrotron and 50 GeV synchrotron; and four major experimental facilities: Material and Life Science Facility, Nuclear and Particle Physics Facility, Nuclear Transmutation Experiment Facility and Neutrino Facility. The outline of the J-PARC is presented with the current status of construction.

  4. Effect of precipitation pattern on leaching of preservative from treated wood and implications for accelerated testing

    Treesearch

    Stan Lebow

    2014-01-01

    There is a need to develop improved accelerated test methods for evaluating the leaching of wood preservatives from treated wood exposed to precipitation. In this study the effects of rate of rainfall and length of intervals between rainfall events on leaching was evaluated by exposing specimens to varying patterns of simulated rainfall under controlled laboratory...

  5. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  6. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE PAGES

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; ...

    2017-03-06

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  7. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    NASA Astrophysics Data System (ADS)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  8. Calculating Nozzle Side Loads using Acceleration Measurements of Test-Based Models

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ruf, Joe

    2007-01-01

    As part of a NASA/MSFC research program to evaluate the effect of different nozzle contours on the well-known but poorly characterized "side load" phenomena, we attempt to back out the net force on a sub-scale nozzle during cold-flow testing using acceleration measurements. Because modeling the test facility dynamics is problematic, new techniques for creating a "pseudo-model" of the facility and nozzle directly from modal test results are applied. Extensive verification procedures were undertaken, resulting in a loading scale factor necessary for agreement between test and model based frequency response functions. Side loads are then obtained by applying a wide-band random load onto the system model, obtaining nozzle response PSD's, and iterating both the amplitude and frequency of the input until a good comparison of the response with the measured response PSD for a specific time point is obtained. The final calculated loading can be used to compare different nozzle profiles for assessment during rocket engine nozzle development and as a basis for accurate design of the nozzle and engine structure to withstand these loads. The techniques applied within this procedure have extensive applicability to timely and accurate characterization of all test fixtures used for modal test.A viewgraph presentation on a model-test based pseudo-model used to calculate side loads on rocket engine nozzles is included. The topics include: 1) Side Loads in Rocket Nozzles; 2) Present Side Loads Research at NASA/MSFC; 3) Structural Dynamic Model Generation; 4) Pseudo-Model Generation; 5) Implementation; 6) Calibration of Pseudo-Model Response; 7) Pseudo-Model Response Verification; 8) Inverse Force Determination; 9) Results; and 10) Recent Work.

  9. Exercise Training During +Gz Acceleration

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Chou, J. L.; Simonson, S. R.; Jackson, C. G. R.; Barnes, P. R.

    1999-01-01

    The overall purpose is to study the effect of passive (without exercise) and active (with exercise) +Gz (head-to-foot) acceleration training, using a short-arm (1.9m radius) centrifuge, on post- training maximal oxygen uptake (VO2 max, work capacity) and 70 deg head-up tilt (orthostatic) tolerance in ambulatory subjects to test the hypothesis that (a) both passive and active acceleration training will improve post-training tilt-tolerance, and (b) there will be no difference in tilt-tolerance between passive and active exercise acceleration training because increased hydrostatic and blood pressures, rather than increased muscular metabolism, will provide the major adaptive stimulus. The purpose of the pilot study was to test the hypothesis that there would be no significant difference in the metabolic responses (oxygen uptake, heart rate, pulmonary ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.

  10. Simulating advanced life support systems to test integrated control approaches

    NASA Astrophysics Data System (ADS)

    Kortenkamp, D.; Bell, S.

    Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.

  11. Vapor Compression Distillation Urine Processor Lessons Learned from Development and Life Testing

    NASA Technical Reports Server (NTRS)

    Hutchens, Cindy F.; Long, David A.

    1999-01-01

    Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (155). Development and life testing over the past several years have brought to the forefront problems and solutions for the VCD technology. Testing between 1992 and 1998 has been instrumental in developing estimates of hardware life and reliability. It has also helped improve the hardware design in ways that either correct existing problems or enhance the existing design of the hardware. The testing has increased the confidence in the VCD technology and reduced technical and programmatic risks. This paper summarizes the test results and changes that have been made to the VCD design.

  12. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    PubMed

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.

  13. Phase Change Material Heat Exchanger Life Test

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean; Stephan, Ryan; Lee, Steve; He, Hung

    2008-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The emitted infrared (IR) heat flux from the lunar surface varies drastically from the light side to the dark side of the moon. Due to the extremely high incident IR flux, especially at low beta angles, a radiator is oftentimes unable to reject the vehicle heat load throughout the entire lunar orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when the radiator is unable to reject the required heat load. The stored energy is then removed from the PCM heat exchanger when the environment is more benign. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration Low Lunar Orbit missions. The Advanced Thermal Control project at JSC is completing a PCM heat exchanger life test to determine whether further technology development is warranted. The life test is being conducted on four nPentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed and reported in the current document.

  14. Refractory Metal Heat Pipe Life Test - Test Plan and Standard Operating Procedures

    NASA Technical Reports Server (NTRS)

    Martin, J. J.; Reid, R. S.

    2010-01-01

    Refractory metal heat pipes developed during this project shall be subjected to various operating conditions to evaluate life-limiting corrosion factors. To accomplish this objective, various parameters shall be investigated, including the effect of temperature and mass fluence on long-term corrosion rate. The test series will begin with a performance test of one module to evaluate its performance and to establish the temperature and power settings for the remaining modules. The performance test will be followed by round-the-clock testing of 16 heat pipes. All heat pipes shall be nondestructively inspected at 6-month intervals. At longer intervals, specific modules will be destructively evaluated. Both the nondestructive and destructive evaluations shall be coordinated with Los Alamos National Laboratory. During the processing, setup, and testing of the heat pipes, standard operating procedures shall be developed. Initial procedures are listed here and, as hardware is developed, will be updated, incorporating findings and lessons learned.

  15. Purpose-in-Life Test: Comparison of the Main Models in Patients with Mental Disorders.

    PubMed

    García-Alandete, Joaquín; Marco, José H; Pérez, Sandra

    2017-06-27

    The aim of this study was to compare the main proposed models for the Purpose-In-Life Test, a scale for assessing meaning in life, in 229 Spanish patients with mental disorders (195 females and 34 males, aged 13-68, M = 34.43, SD = 12.19). Confirmatory factor-analytic procedures showed that the original model of the Purpose-In-Life Test, a 20-item unidimensional scale, obtained a better fit than the other analyzed models, SBχ2(df) = 326.27(170), SBχ2/df = 1.92, TLI = .93, CFI = .94, IFI = .94, RMSEA = .063 (90% CI [.053, .074]), CAIC = -767.46, as well as a high internal consistency, (α = .90). The main conclusion is that the original version of the Purpose-In-Life shows a robust construct validity in a clinical population. However, authors recommend an in-depth psychometric analysis of the Purpose-In-Life Test among clinical population. Likewise, the importance of assessing meaning in life in order to enhance psychotherapeutic treatment is noted.

  16. Relaxation of the accelerating-gas boundary layer to the test-gas boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1973-01-01

    An analytic investigation of the relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate mounted in an expansion tube has been conducted. In this treatment, nitrogen has been considered as the test gas and helium as the accelerating gas. The problem is analyzed in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this time lag is negligible. The transient laminar boundary-layer equations of a perfect binary-gas mixture are taken as the flow governing equations. These coupled equations have been solved numerically by Gauss-Seidel line-relaxation method. The results predict the transient behavior as well as the time required for an all-helium accelerating-gas boundary layer to relax to an all-nitrogen boundary layer.

  17. Life test results for the advanced very high resolution radiometer scanner

    NASA Technical Reports Server (NTRS)

    Lenz, James

    1996-01-01

    The following paper reports the results obtained during a 3.33-year life test on the TIROS Advanced Very High Resolution Radiometer/3 (AVHRR/3) Scanner. The bearing drag torque and lubricant loss over life will be compared to predicted values developed through modeling. The condition of the lubricant at the end of the test will be described and a theory presented to explain the results obtained. The differences (if any) in the predicted and measured values of drag torque and lubricant loss will be discussed and possible reasons for these examined.

  18. Tested by Fire - How two recent Wildfires affected Accelerator Operations at LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spickermann, Thomas

    2012-08-01

    In a little more than a decade two large wild fires threatened Los Alamos and impacted accelerator operations at LANL. In 2000 the Cerro Grande Fire destroyed hundreds of homes, as well as structures and equipment at the DARHT facility. The DARHT accelerators were safe in a fire-proof building. In 2011 the Las Conchas Fire burned about 630 square kilometers (250 square miles) and came dangerously close to Los Alamos/LANL. LANSCE accelerator operations Lessons Learned during Las Conchas fire: (1) Develop a plan to efficiently shut down the accelerator on short notice; (2) Establish clear lines of communication in emergencymore » situations; and (3) Plan recovery and keep squirrels out.« less

  19. Idh2 deficiency accelerates renal dysfunction in aged mice.

    PubMed

    Lee, Su Jeong; Cha, Hanvit; Lee, Seoyoon; Kim, Hyunjin; Ku, Hyeong Jun; Kim, Sung Hwan; Park, Jung Hyun; Lee, Jin Hyup; Park, Kwon Moo; Park, Jeen-Woo

    2017-11-04

    The free radical or oxidative stress theory of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species (ROS) that are produced as by-products of normal metabolic processes in mitochondria. The oxidative stress may arise as a result of either increased ROS production or decreased ability to detoxify ROS. The availability of the mitochondrial NADPH pool is critical for the maintenance of the mitochondrial antioxidant system. The major enzyme responsible for generating mitochondrial NADPH is mitochondrial NADP + -dependent isocitrate dehydrogenase (IDH2). Depletion of IDH2 in mice (idh2 -/- ) shortens life span and accelerates the degeneration of multiple age-sensitive traits, such as hair grayness, skin pathology, and eye pathology. Among the various internal organs tested in this study, IDH2 depletion-induced acceleration of senescence was uniquely observed in the kidney. Renal function and structure were greatly deteriorated in 24-month-old idh2 -/- mice compared with wild-type. In addition, disruption of redox status, which promotes oxidative damage and apoptosis, was more pronounced in idh2 -/- mice. These data support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice, and thus support the oxidative stress theory of aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, Andrew; Areti, Hari

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. Themore » second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected

  1. Prototyping high-gradient mm-wave accelerating structures

    DOE PAGES

    Nanni, Emilio A.; Dolgashev, Valery A.; Haase, Andrew; ...

    2017-01-01

    We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are π-mode standing-wave cavities fed with a TM 01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Q 0 of 2800, approaching the theoretical design value ofmore » 3300. The geometry of these accelerating structures are as close as practical to singlecell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. Furthermore, the structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow an accelerating gradient of 400 MeV/m to be reached.« less

  2. Closure of Regenerative Life Support Systems: Results of the Lunar-Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel; Henninger, D.; Edeen, M.; Lewis, J.; Smth, F.; Verostko, C.

    2006-01-01

    Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass, reduce dependency on resupply and increase the level of mission self sufficiency. Such systems may be based on the integration of biological and physiocochemical processes to produce potable water, breathable atmosphere and nutritious food from metabolic and other mission wastes. Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration, Johnson Space Center, to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads. Named the Lunar-Mars Life Support Test Project (LMLSTP), four integrated human tests were conducted with increasing duration, complexity and closure. The first test, LMLSTP Phase I, was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere. A single crew member spent 15 days within an atmospherically closed chamber containing 11.2 square meters of actively growing wheat. Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems. During the second and third tests, LMLSTP Phases II & IIa, four crew members spent 30 days and 60 days, respectively, in a larger sealed chamber. Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water from wastewater. Air revitalization was accomplished by using a molecular sieve and a Sabatier processor for carbon dioxide absorption and reduction, respectively, with oxygen generation performed by water hydrolysis. Production of potable water from wastewater included urine treatment (vapor compression distillation), primary treatment (ultrafiltration/reverse osmosis and multi-filtration) and post

  3. What makes the Universe accelerate? A review on what dark energy could be and how to test it

    NASA Astrophysics Data System (ADS)

    Brax, Philippe

    2018-01-01

    Explaining the origin of the acceleration of the expansion of the Universe remains as challenging as ever. In this review, we present different approaches from dark energy to modified gravity. We also emphasize the quantum nature of the problem and the need for an explanation which should violate Weinberg’s no go theorem. This might involve a self-tuning mechanism or the acausal sequestering of the vacuum energy. Laboratory tests of the coupling to matter of nearly massless scalar fields, which could be one of the features required to explain the cosmic acceleration, are also reviewed.

  4. Accelerated stability studies of Sufoofe Sailan: A Unani formulation

    PubMed Central

    Rani, Seema; Rahman, Khaleequr; Younis, Peerzada Mohammad

    2015-01-01

    Introduction: Sufoofe Sailan (SS) is a polyherbal powder preparation used in Unani medicine to treat gynecological diseases. It is observed that SS degrade early as it is in the form of powder; however, the stability study of SS was not carried out till date. Aim: To evaluate the accelerated stability of SS. Materials and Methods: Finished formulation of SS was packed in three airtight transparent polyethylene terephthalate containers. One pack was analyzed just after manufacturing and remaining two packs were kept in stability chamber at 40°C ± 2°C/75% ± 5% RH, of which one pack was analyzed after the completion of three and another after 6 months. Organoleptic, physico-chemical, microbiological parameters along with high-performance thin layer chromatography (HPTLC) fingerprinting were carried out. Results: Organoleptic characters showed no significant change in accelerated stability condition. All physico-chemical parameters showed changes <5%, HPTLC fingerprinting showed minimum changes and microbial studies were in confirmation to the World Health Organization guidelines. Conclusion: SS confirmed to the International Conference on Harmonization Guideline for accelerated testing of the pharmaceutical product on said parameters and as per the Grimm's statement the shelf life of SS may last 20 months. PMID:26730145

  5. IARC - Illinois Accelerator Research Center | Pilot Program

    Science.gov Websites

    Toggle navigation Pilot Program Agenda Directions Registration Illinois Accelerator Research Center National Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology , energy and environment. With this pilot program, the DOE Office of Science National Laboratories are

  6. One- and two-stage Arrhenius models for pharmaceutical shelf life prediction.

    PubMed

    Fan, Zhewen; Zhang, Lanju

    2015-01-01

    One of the most challenging aspects of the pharmaceutical development is the demonstration and estimation of chemical stability. It is imperative that pharmaceutical products be stable for two or more years. Long-term stability studies are required to support such shelf life claim at registration. However, during drug development to facilitate formulation and dosage form selection, an accelerated stability study with stressed storage condition is preferred to quickly obtain a good prediction of shelf life under ambient storage conditions. Such a prediction typically uses Arrhenius equation that describes relationship between degradation rate and temperature (and humidity). Existing methods usually rely on the assumption of normality of the errors. In addition, shelf life projection is usually based on confidence band of a regression line. However, the coverage probability of a method is often overlooked or under-reported. In this paper, we introduce two nonparametric bootstrap procedures for shelf life estimation based on accelerated stability testing, and compare them with a one-stage nonlinear Arrhenius prediction model. Our simulation results demonstrate that one-stage nonlinear Arrhenius method has significant lower coverage than nominal levels. Our bootstrap method gave better coverage and led to a shelf life prediction closer to that based on long-term stability data.

  7. Human in the Loop Integrated Life Support Systems Ground Testing

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Marmolejo, Jose A.; Seaman, Calvin H.

    2012-01-01

    Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. This necessitates provisioning the crew with all the things they will need to sustain themselves while carrying out mission objectives. Systems engineering and integration is critical to the point where extensive integrated testing of life support systems on the ground is required to identify and mitigate risks. Ground test facilities (human-rated altitude chambers) at the Johnson Space Center are being readied to integrate all the systems for a mission along with a human test crew. The relevant environment will include deep space habitat human accommodations, sealed atmosphere capable of 14.7 to 8 psi total pressure and 21 to 32% oxygen concentration, life support systems (food, air, and water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth-Moon L2 or L1, the moon, Mars). This type of integrated testing is needed for research and technology development as well as later during the mission design, development, test, and evaluation (DDT&E) phases of an approved program. Testing will evolve to be carried out at the mission level fly the mission on the ground . Mission testing will also serve to inform the public and provide the opportunity for active participation by international, industrial and academic partners.

  8. Human-in-the-Loop Integrated Life Support Systems Ground Testing

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Marmolejo, Jose A.; Westheimer, David T.

    2011-01-01

    Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. This necessitates provisioning the crew with all the things they will need to sustain themselves while carrying out mission objectives. Systems engineering and integration is critical to the point where extensive integrated testing of life support systems on the ground is required to identify and mitigate risks. Ground test facilities (human-rated altitude chamber) at the Johnson Space Center are being readied to integrate all the systems for a mission along with a human test crew. The relevant environment will include deep space habitat human accommodations, sealed atmosphere of 8 psi total pressure and 32% oxygen concentration, life support systems (food, air, water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth-Moon L2 or L1, the moon). This type of integrated testing is needed for research and technology development as well as later during the mission design, development, test, and evaluation (DDT&E) phases of an approved program. Testing will evolve to be carried out at the mission level fly the mission on the ground . Mission testing will also serve to inform the public and provide the opportunity for active participation by international partners.

  9. Development of an alternative testing strategy for the fish early life-stage (FELS) test using the AOP framework

    EPA Science Inventory

    Currently, the fish early life-stage (FELS) test (OECD 210) is the primary guideline used to estimate chronic toxicity of regulated chemicals. Although already more cost-efficient than adult fish tests, the FELS test has some important drawbacks. Both industry and regulatory inst...

  10. The Adaptive Basis of Psychosocial Acceleration: Comment on beyond Mental Health, Life History Strategies Articles

    ERIC Educational Resources Information Center

    Nettle, Daniel; Frankenhuis, Willem E.; Rickard, Ian J.

    2012-01-01

    Four of the articles published in this special section of "Developmental Psychology" build on and refine psychosocial acceleration theory. In this short commentary, we discuss some of the adaptive assumptions of psychosocial acceleration theory that have not received much attention. Psychosocial acceleration theory relies on the behavior of…

  11. Water bath accelerated curing of concrete.

    DOT National Transportation Integrated Search

    1970-01-01

    Water bath methods for accelerating the strength development of portland cement concrete were investigated in a two phase study as follows. Phase I - Participation in a cooperative accelerated strength testing program sponsored by the American Societ...

  12. The beam business: Accelerators in industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, Robert W.; Hamm, Marianne E.

    Most physicists know that particle accelerators are widely used for treating cancer. But few are acquainted with the depth and breadth of their use in a myriad of applications outside of pure science and medicine. Society benefits from the use of particle beams in the areas of communications, transportation, the environment, security, health, and safety - in terms both of the global economy and quality of life. On the manufacturing level, the use of industrial accelerators has resulted in the faster and cheaper production of better parts for medical devices, automobiles, aircraft, and virtually all modern electronics. Consumers also benefitmore » from the use of accelerators to explore for oil, gas, and minerals; sterilize food, wastewater, and medical supplies; and aid in the development of drugs and biomaterials.« less

  13. Accelerated Thermal Cycling and Failure Mechanisms for BGA and CSP Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2000-01-01

    This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies. Acceleration induced failure mechanisms varied from conventional surface mount (SM) failures for CSPs. Examples of unrealistic life projections for other CSPs are also presented. The cumulative cycles to failure for ceramic BGA assemblies performed under different conditions, including plots of their two Weibull parameters, are presented. The results are for cycles in the range of -30 C to 100 C, -55 C to 100 C, and -55 C to 125 C. Failure mechanisms as well as cycles to failure for thermal shock and thermal cycling conditions in the range of -55 C to 125 C were compared. Projection to other temperature cycling ranges using a modified Coffin-Manson relationship is also presented.

  14. Applications of the ram accelerator to hypervelocity aerothermodynamic testing

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Knowlen, C.; Hertzberg, A.

    1992-01-01

    A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.

  15. Testing and design life analysis of polyurea liner materials

    NASA Astrophysics Data System (ADS)

    Ghasemi Motlagh, Siavash

    Certainly, water pipes, as part of an underground infrastructure system, play a key role in maintaining quality of life, health, and wellbeing of human kind. As these potable water pipes reach the end of their useful life, they create high maintenance costs, loss of flow capacity, decreased water quality, and increased dissatisfaction. There are several different pipeline renewal techniques available for different applications, among which linings are most commonly used for the renewal of water pipes. Polyurea is a lining material applied to the interior surface of the deteriorated host pipe using spray-on technique. It is applied to structurally enhance the host pipe and provide a barrier coating against further corrosion or deterioration. The purpose of this study was to establish a relationship between stress, strain and time. The results obtained from these tests were used in predicting the strength of the polyurea material during its planned 50-year design life. In addition to this, based on the 10,000 hours experimental data, curve fitting and Findley power law models were employed to predict long-term behavior of the material. Experimental results indicated that the tested polyurea material offers a good balance of strength and stiffness and can be utilized in structural enhancement applications of potable water pipes.

  16. Vibration environment - Acceleration mapping strategy and microgravity requirements for Spacelab and Space Station

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.; Baugher, Charles R.; Delombard, Richard

    1990-01-01

    In order to define the acceleration requirements for future Shuttle and Space Station Freedom payloads, methods and hardware characterizing accelerations on microgravity experiment carriers are discussed. The different aspects of the acceleration environment and the acceptable disturbance levels are identified. The space acceleration measurement system features an adjustable bandwidth, wide dynamic range, data storage, and ability to be easily reconfigured and is expected to fly on the Spacelab Life Sciences-1. The acceleration characterization and analysis project describes the Shuttle acceleration environment and disturbance mechanisms, and facilitates the implementation of the microgravity research program.

  17. Structural Benchmark Testing for Stirling Convertor Heater Heads

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.

  18. Thermal and Cycle-Life Behavior of Commercial Li-ion and Li-Polymer Cells

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.; Quinzio, M. V.

    2001-01-01

    Accelerated and real-time LEO cycle-life test data will be presented for a range of commercial Li-ion and Li-polymer (gel type) cells indicating the ranges of performance that can be obtained, and the performance screening tests that must be done to assure long life. The data show large performance variability between cells, as well as a highly variable degradation signature during non-cycling periods within the life tests. High-resolution Dynamic Calorimetry data will be presented showing the complex series of reactions occurring within these Li cells as they are cycled. Data will also be presented for cells being tested using an Adaptive Charge Control Algorithm (ACCA) that continuously adapts itself to changes in cell performance, operation, or environment to both find and maintain the optimum recharge over life. The ACCA has been used to prevent all unneeded overcharge for Li cells, NiCd cells and NiH2 cells. While this is important for all these cell types, it is most critical for Li-ion cells, which are not designed with electrochemical tolerance for overcharge.

  19. Accelerated Stress Testing of Multi-Source LED Products: Horticulture Lamps and Tunable-White Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Lynn; Rountree, Kelley; Mills, Karmann

    This report discusses the use of accelerated stress testing (AST) to provide insights into the long-term behavior of commercial products utilizing different types of mid-power LEDs (MP-LEDs) integrated into the same LED module. Test results are presented from two commercial lamps intended for use in horticulture applications and one tunable-white LED module intended for use in educational and office lighting applications. Each of these products is designed to provide a custom spectrum for their targeted applications and each achieves this goal in different ways. Consequently, a comparison of the long-term stability of these devices will provide insights regarding approaches thatmore » could be used to possibly lengthen the lifetime of SSL products.« less

  20. Accelerated/abbreviated test methods of the low-cost silicon solar array project. Study 4, task 3: Encapsulation

    NASA Technical Reports Server (NTRS)

    Kolyer, J. M.; Mann, N. R.

    1977-01-01

    Methods of accelerated and abbreviated testing were developed and applied to solar cell encapsulants. These encapsulants must provide protection for as long as 20 years outdoors at different locations within the United States. Consequently, encapsulants were exposed for increasing periods of time to the inherent climatic variables of temperature, humidity, and solar flux. Property changes in the encapsulants were observed. The goal was to predict long term behavior of encapsulants based upon experimental data obtained over relatively short test periods.

  1. Methods to Prove 20+ Year Life of CPV Products (in less than 20 Years)

    NASA Astrophysics Data System (ADS)

    Bowman, John; Spencer, Mark

    2011-12-01

    Due to the long term life expectations of photovoltaic products and the short duration of most introduced CPV technologies, it is critical for CPV companies to carefully construct field trials to prove product life. Because of the complicated geometric, thermal, and spectral characteristics of CPV systems, conducting very precise power output measurements reproducibly over many months is very difficult. Robust normalization methods specific to the exact optical system and PV cell type must be developed. Once the performance over a specific duration, e.g. one year, is established, then some justification is required to extrapolate to future performance. Comparisons to accelerated test results provide this justification. SolFocus has been conducting field trials of the SF-1100S CPV system for over two years. These field trials consist of controlled populations of SF-1100P modules, operating in grid-tied systems, which have been repeatedly measured at the individual module level over the duration of the trials. In this paper, field data will be presented along with normalization methodology and statistical methods for determining power degradation slope distributions for populations of individual modules. These results will be correlated with accelerated field tests which have been ongoing for 1.5 years and are estimated to be equivalent to 10 to 15 years of non-accelerated operation.

  2. Safety and Abuse Testing of Energizer LiFeS2 AA Cells

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Baldwin, Laura; Bragg, Bobby J.

    2003-01-01

    The LiFeS2 test program was part of the study on state-of-the-art batteries/cells available in the commercial market. It was carried out in an effort to replace alkaline AA cells for Shuttle and Station applications. A large number of alkaline cells are used for numerous Shuttle and Station applications as loose cells. Other government agencies reported good performance and abuse tolerance of the AA LiFeS2 cells. In this study, only abuse testing was performed on the cells to determine their tolerance. The tests carried out were over-discharge, external short circuit, heat-to-vent, vibration and drop.

  3. Laser Acceleration of Ions for Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiki; Habs, Dietrich; Yan, Xueqing

    Ion beam therapy for cancer has proven to be a successful clinical approach, affording as good a cure as surgery and a higher quality of life. However, the ion beam therapy installation is large and expensive, limiting its availability for public benefit. One of the hurdles is to make the accelerator more compact on the basis of conventional technology. Laser acceleration of ions represents a rapidly developing young field. The prevailing acceleration mechanism (known as target normal sheath acceleration, TNSA), however, shows severe limitations in some key elements. We now witness that a new regime of coherent acceleration of ions by laser (CAIL) has been studied to overcome many of these problems and accelerate protons and carbon ions to high energies with higher efficiencies. Emerging scaling laws indicate possible realization of an ion therapy facility with compact, cost-efficient lasers. Furthermore, dense particle bunches may allow the use of much higher collective fields, reducing the size of beam transport and dump systems. Though ultimate realization of a laser-driven medical facility may take many years, the field is developing fast with many conceptual innovations and technical progress.

  4. ESP – Data from Restarted Life Tests of Various Silicon Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Jim

    2010-10-06

    Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  5. Rapid Analyses of Polyetheretherketone Wear Characteristics by Accelerated Wear Testing with Microfabricated Surfaces for Artificial Joint Systems

    PubMed Central

    Kuo, Chien-Wei

    2017-01-01

    Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system. PMID:29230411

  6. Rapid Analyses of Polyetheretherketone Wear Characteristics by Accelerated Wear Testing with Microfabricated Surfaces for Artificial Joint Systems.

    PubMed

    Su, Chen-Ying; Kuo, Chien-Wei; Fang, Hsu-Wei

    2017-01-01

    Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system.

  7. Acceleration sensitivity of micromachined pressure sensors

    NASA Astrophysics Data System (ADS)

    August, Richard; Maudie, Theresa; Miller, Todd F.; Thompson, Erik

    1999-08-01

    Pressure sensors serve a variety of automotive applications, some which may experience high levels of acceleration such as tire pressure monitoring. To design pressure sensors for high acceleration environments it is important to understand their sensitivity to acceleration especially if thick encapsulation layers are used to isolate the device from the hostile environment in which they reside. This paper describes a modeling approach to determine their sensitivity to acceleration that is very general and is applicable to different device designs and configurations. It also describes the results of device testing of a capacitive surface micromachined pressure sensor at constant acceleration levels from 500 to 2000 g's.

  8. Effect of carbide distribution on rolling-element fatigue life of AMS 5749

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Bamberger, E. N.

    1983-01-01

    Endurance tests with ball bearings made of corrosion resistant bearing steel which resulted in fatigue lives much lower than were predicted are discussed. Metallurgical analysis revealed an undesirable carbide distribution in the races. It was shown in accelerated fatigue tests in the RC rig that large, banded carbides can reduce rolling element fatigue life by a factor of approximately four. The early spalling failures on the bearing raceways are attributed to the large carbide size and banded distribution.

  9. [Cumulative effect of Coriolis acceleration on coronary hemodynamics].

    PubMed

    Lapaev, E V; Bednenko, V S

    1985-01-01

    Time-course variations in coronary circulation and cardiac output were measured in 29 healthy test subjects who performed tests with a continuous cumulation of Coriolis accelerations and in 12 healthy test subjects who were exposed to Coriolis accelerations combined with acute hypoxia. Adaptive changes in coronary circulation were seen. It is recommended to monitor coronary circulation during vestibulometric tests as part of medical expertise of the flying personnel.

  10. Measuring the quality-of-life effects of diagnostic and screening tests.

    PubMed

    Swan, J Shannon; Miksad, Rebecca A

    2009-08-01

    Health-related quality of life (HRQL) is a central concept for understanding the outcomes of medical care. When used in cost-effectiveness analysis, HRQL is typically measured for conditions persisting over long time frames (years), and quality-adjusted life year (QALY) values are generated. Consequently, years are the basic unit of time for cost-effectiveness analysis results: dollars spent per QALY gained. However, shorter term components of health care may also affect HRQL, and there is increased interest in measuring and accounting for these events. In radiology, the short-term HRQL effects of screening and diagnostic testing may affect a test's cost-effectiveness, even though they may only last for days. The unique challenge in radiology HRQL assessment is to realistically tap into the testing and screening experience while remaining consistent with QALY theory. The authors review HRQL assessment and highlight methods developed to specifically address the short-term effects of radiologic screening and testing.

  11. Testing and testing positive: childhood adversities and later life HIV status among Kenyan women and their partners.

    PubMed

    Goodman, Michael L; Raimer-Goodman, Lauren; Chen, Catherine X; Grouls, Astrid; Gitari, Stanley; Keiser, Philip H

    2017-12-01

    Adverse childhood experiences are a critical feature of lifelong health. No research assesses whether childhood adversities predict HIV-testing behaviors, and little research analyzes childhood adversities and later life HIV status in sub-Saharan Africa. We use regression models with cross-sectional data from a representative sample (n = 1974) to analyze whether adverse childhood experiences, separately or as cumulative exposures, predict reports of later life HIV testing and testing HIV+ among semi-rural Kenyan women and their partners. No significant correlation was observed between thirteen cumulative childhood adversities and reporting prior HIV testing for respondent or partner. Separately, childhood sexual abuse and emotional neglect predicted lower odds of reporting having previously been tested for HIV. Witnessing household violence during one's childhood predicted significantly higher odds of reporting HIV+. Sexual abuse predicted higher odds of reporting a partner tested HIV+. Preventing sexual abuse and household violence may improve HIV testing and test outcomes among Kenyan women. More research is required to understand pathways between adverse childhood experiences and partner selection within Kenya and sub-Saharan Africa, and data presented here suggest understanding pathways may help improve HIV outcomes. © The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The evolution of predictive adaptive responses in human life history

    PubMed Central

    Nettle, Daniel; Frankenhuis, Willem E.; Rickard, Ian J.

    2013-01-01

    Many studies in humans have shown that adverse experience in early life is associated with accelerated reproductive timing, and there is comparative evidence for similar effects in other animals. There are two different classes of adaptive explanation for associations between early-life adversity and accelerated reproduction, both based on the idea of predictive adaptive responses (PARs). According to external PAR hypotheses, early-life adversity provides a ‘weather forecast’ of the environmental conditions into which the individual will mature, and it is adaptive for the individual to develop an appropriate phenotype for this anticipated environment. In internal PAR hypotheses, early-life adversity has a lasting negative impact on the individual's somatic state, such that her health is likely to fail more rapidly as she gets older, and there is an advantage to adjusting her reproductive schedule accordingly. We use a model of fluctuating environments to derive evolveability conditions for acceleration of reproductive timing in response to early-life adversity in a long-lived organism. For acceleration to evolve via the external PAR process, early-life cues must have a high degree of validity and the level of annual autocorrelation in the individual's environment must be almost perfect. For acceleration to evolve via the internal PAR process requires that early-life experience must determine a significant fraction of the variance in survival prospects in adulthood. The two processes are not mutually exclusive, and mechanisms for calibrating reproductive timing on the basis of early experience could evolve through a combination of the predictive value of early-life adversity for the later environment and its negative impact on somatic state. PMID:23843395

  13. Test results of a Nb 3Al/Nb 3Sn subscale magnet for accelerator application

    DOE PAGES

    Iio, Masami; Xu, Qingjin; Nakamoto, Tatsushi; ...

    2015-01-28

    The High Energy Accelerator Research Organization (KEK) has been developing a Nb 3Al and Nb 3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb 3Al cable and the technology acquisition of magnet fabrication with Nb 3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb 3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in amore » minimum-gap common-coil configuration with two Nb 3Al coils sandwiched between two Nb 3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a “bladder and key” technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb 3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb 3Sn coil and 8.2 T in the Nb 3Al coil. The quench characteristics of the magnet were studied.« less

  14. TTK Chitra tilting disc heart valve model TC2: An assessment of fatigue life and durability.

    PubMed

    Subhash, N N; Rajeev, Adathala; Sujesh, Sreedharan; Muraleedharan, C V

    2017-08-01

    Average age group of heart valve replacement in India and most of the Third World countries is below 30 years. Hence, the valve for such patients need to be designed to have a service life of 50 years or more which corresponds to 2000 million cycles of operation. The purpose of this study was to assess the structural performance of the TTK Chitra tilting disc heart valve model TC2 and thereby address its durability. The TC2 model tilting disc heart valves were assessed to evaluate the risks connected with potential structural failure modes. To be more specific, the studies covered the finite element analysis-based fatigue life prediction and accelerated durability testing of the tilting disc heart valves for nine different valve sizes. First, finite element analysis-based fatigue life prediction showed that all nine valve sizes were in the infinite life region. Second, accelerated durability test showed that all nine valve sizes remained functional for 400 million cycles under experimental conditions. The study ensures the continued function of TC2 model tilting disc heart valves over duration in excess of 50 years. The results imply that the TC2 model valve designs are structurally safe, reliable and durable.

  15. Long life technology work at Rockwell International Space Division

    NASA Technical Reports Server (NTRS)

    Huzel, D. K.

    1974-01-01

    This paper presents highlights of long-life technology oriented work performed at the Space Division of Rockwell International Corporation under contract to NASA. This effort included evaluation of Saturn V launch vehicle mechanical and electromechanical components for potential extended life capabilities, endurance tests, and accelerated aging experiments. A major aspect was evaluation of the components at the subassembly level (i.e., at the interface between moving surfaces) through in-depth wear analyses and assessments. Although some of this work is still in progress, preliminary conclusions are drawn and presented, together with the rationale for each. The paper concludes with a summary of the effort still remaining.

  16. SAMS Acceleration Measurement on Mir From March to September 1996

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Ken; Truong, Duc; Reckart, Timothy

    1997-01-01

    During NASA Increment 2 (March to September 1996), over 15 gigabytes of acceleration data were collected by the Space Acceleration Measurement System (SAMS) onboard the Russian Space Station, Mir. The data were recorded on 55 optical disks and were returned to Earth on STS-79. During this time, SAMS data were collected in the Kristall and Kvant modules, and in the Priroda module to support the following experiments: the Queen's University Experiments in Liquid Diffusion (QUELD), the Technological Evaluation of the MIM (TEM), the Forced Flow Flame Spreading Test (FFFT), and Candle Flames in Microgravity (CFM). This report points out some of the salient features of the microgravity environment to which these experiments were exposed. Also documented are mission events of interest such as the docked phase of STS-76 operations, an extravehicular activity (EVA) to install and deploy solar panels on the Kvant module, a Progress engine burn to raise Mir's altitude, and an on-orbit SAMS calibration procedure. Also included are a description of the Mir module orientations, and the panel notations within the modules. This report presents an overview of the SAMS acceleration measurements recorded by 10 Hz and 100 Hz sensor heads. Variations in the acceleration environment caused by unique activities such as crew exercise and life-support fans are presented. The analyses included herein complement those presented in previous mission summary reports published by the Principal Investigator Microgravity Services (PIMS) group.

  17. Life testing of a nine-couple hybrid thermoelectric panel

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.

    1973-01-01

    Life test data are presented for a nine couple thermoelectric panel of hybrid couples tested at an average hot junction temperature of 840 C (1113 K). In the hybrid couple, a hollow cylinder of p-type Si-Ge is used to encapsulate a segmented PbTe/Si-Ge n-leg. The output power and internal resistance of the panel as well as the resistances of the individual hybrid couples are presented as functions of test time covering a period of more than 4200 hours. Test results indicated improved stability relative to hybrid couples tested at higher temperatures. Thermal cycling of the panel resulted in an order of magnitude increase in room temperature resistance. However, very little change in resistance at operating temperatures was noted following the thermal cycles.

  18. Telemetric Sensors for the Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Somps, Chris J.; Madou, Marc; Jeutter, Dean C.; Singh, Avtar; Connolly, John P. (Technical Monitor)

    1996-01-01

    Telemetric sensors for monitoring physiological changes in animal models in space are being developed by NASA's Sensors 2000! program. The sensors measure a variety of physiological measurands, including temperature, biopotentials, pressure, flow, acceleration, and chemical levels, and transmit these signals from the animals to a remote receiver via a wireless link. Thus physiologic information can be obtained continuously and automatically without animal handling, tethers, or percutaneous leads. We report here on NASA's development and testing of advanced wireless sensor systems for space life sciences research.

  19. Long life nickel electrodes for a nickel-hydrogen cell. I Initial performance

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.; Blaser, C.; Keener, K. M.

    1983-01-01

    In order to develop a long life nickel electrode for a Ni/H2 cell, an investigation was begun to study the effects of sinter structure and active material loading level on the long life performance of nickel electrodes. This paper is a report on the initial performance of these electrodes as a part of an accelerated life test program. Seven different types of nickel plaques were made which included three levels of both their mechanical strength and median pore size. These plaques were impregnated with three levels of active material loading. The resultant electrodes were tested by a 200-cycle stress test which was conducted in flooded electrolyte, and also for initial performance in a Ni/H2 boiler plate cell. An interesting and unexpected observation was that an increased initial utilization of the active material was due more to its complete discharge to the lower average oxidation state than its increased charge acceptance in the charged state.

  20. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.